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ABsTRACT: The IceCube Neutrino Observatory, located under 1.4 km of Antarctic ice, instruments a
cubic kilometer of ice with 5,160 optical modules that detect Cherenkov radiation originating from
neutrino interactions. The more densely instrumented center, DeepCore, aims to detect atmospheric
neutrinos at 10 GeV scales to improve important measurements of fundamental neutrino properties
such as the oscillation parameters and to search for non-standard interactions. Sensitivity to
oscillation parameters, dependent on the distance traveled over the neutrino energy (L/E), is limited
in IceCube by the resolution of the arrival angle (which determines L) and energy (E). Event
reconstruction improvements can therefore directly lead to advancements in oscillation results.
This work uses a Convolutional Neural Network (CNN) to reconstruct the energy of 10 GeV scale
neutrino events in IceCube, providing results with competitive resolutions and faster runtimes than
previous likelihood-based methods.
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1 Introduction

The IceCube Neutrino Observatory, located at the South Pole, detects atmospheric neutrinos that
have interacted in the ice and bedrock. IceCube uses 5160 Digital Optical Modules (DOMs),
attached to cables called strings that are arranged in a hexagonal array, to detect the Cherenkov
light from neutrino interactions [1]. The center-most DOMs are more densely arranged, in an
array called DeepCore, to extend the detection energy down to GeV scales [2]. These 10-GeV
scale neutrinos are at energies higher than accelerator and reactor experiments can reach, giving a
unique look at the neutrino oscillation region at these energies. Likelihood-based reconstruction
methods are currently used to reconstruct the energy (E) and arrival angle (determines L), which
are the necessary variables to constrain the oscillations parameters. An alternate solution is to apply
machine learning methods to improve the resolution and runtime of the energy reconstruction.

2 Convolutional Neural Network architecture and training

Neutrinos can be detected anywhere within the IceCube detector volume, so that events are spatially
invariant, which is a symmetry that convolution neural networks (CNN5s) excel at identifying [3, 4].
IceCube has successfully implemented a CNN for high-energy events (> 100 GeV) [5, 6], buta CNN
must be specifically optimized to handle low-energy neutrinos because the sparse DOM layout and
the limited scattered light at these energies provide less input information for reconstruction.

The low-energy CNN only uses the 8 DeepCore strings and nearby 19 IceCube strings, focusing
the CNN on the low-energy optimized region of the detector (figure 1). All hits per DOM are
summarized into 5 charge and timing variables, which are separately given to the CNN for the
DeepCore and IceCube strings because they have different z-spacing between DOMs, creating
a two-branched network architecture. The CNN then uses its convolutional kernel to span the
vertical, or z-depth, of the string; no xy-plane convolution is applied since the DeepCore strings
are in an irregular geometry. After 8 convolutional layers, each followed by a dropout and batch
normalization layer (see ref. [7] for more detail), the two CNN branches are concatenated to train
on one fully connected layer, giving a single output: the reconstructed energy.
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Figure 1. Top view of the IceCube detector, with DeepCore strings in red, IceCube strings in gray, and a
blue highlight on all strings used for the low-energy CNN.

To train the CNN, a sample of more than 6 million unweighted, charge-current (CC) v,, Monte
Carlo (MC) events was generated in GENIE [8], a neutrino MC generator with an emphasis on
few-GeV neutrino interaction physics. Since v, events look like v, events with high inelasticity, the
generation for the training sample focused only on v, events. The training sample has a flat energy
distribution from 1-200 GeV, in the target region for an oscillation analysis, and a nearly flat energy
distribution from 200-500 GeV. CNNs are known for their difficulty extrapolating beyond their train-
ing samples [9], so the energy is extended to 500 GeV to avoid issues at the sample boundary. To test
the CNN, an independent GENIE sample was generated with ~ 4 million unweighted v, CC events
and ~ 1.6 million unweighted v, CC events. These samples are weighted by both the atmospheric
flux and standard oscillation parameters, so that the CNN is tested on data-like distributions.

3 CNN performance and runtime

Figure 2 shows the CNN’s energy prediction compared to the truth for the v, CC (left) and v,
CC (right) testing samples. For the v, CC events, the CNN does well at low energies, with
it’s red, solid median line staying near the 1:1 perfect diagonal until about 150 GeV. At energies
greater than 150 GeV, the CNN begins to slightly underestimate the true energy on average. At
high energies, the performance is degraded by muon tracks that leave the volume of DOMs used
for the CNN. Training the CNN with more high energy events generated above the target region
(200-500 GeV) has improved resolution in past studies. Other options that are being explored for
future improvements are expanding the CNN to include more IceCube DOMs or removing events
that leave the detector volume from the final data set.

For the v, CC events, the CNN has a slight overestimation of the energy after 100 GeV. Since
the CNN is trained on v, CC events only, it only sees the hadronic component of the cascade, which
has less light per unit energy than electromagnetic cascades. This could account for the CNN’s
underestimation of the high energy v, events.



Figure 3 shows a direct comparison of the energy-dependent fractional resolution for the CNN
and the current likelihood-based reconstruction used for low-energy IceCube events. The CNN
shows the most improvement at low energies (< 25 GeV) for both the v, CC (left) and v, CC (right)
testing samples, where the majority of the atmospheric neutrino data is expected. The CNN also has
comparable resolution with the likelihood-based method up to 200 GeV for both testing samples.
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Figure 2. CNN predicted energy vs. true energy for v,, CC events (left) and v, CC events (right).
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Figure 3. Fractional energy resolution as a function of true neutrino energy, for v,, (left) and v, (right).

The CNN and likelihood-based reconstructions’ runtimes are in table 1. Both the CNN’s GPU
and CPU runtimes are faster per event than the likelihood-based reconstruction (CPU capability
only). It should be noted that the likelihood-based method reconstructs 8 variables simultaneously,
but even if the CNN is run in serial to reconstruct 8 variables, its runtime would increase by less

than a factor of 10. Speed is particularly important for IceCube’s high statistics atmospheric data
sample, which the CNN can reconstruct on a computer cluster in minutes.

Table 1. Runtimes for the CNN (using GPU and CPU) and likelihood-based method (using CPU only).

Method Average Time per Event (seconds) | Events per Day per Single Core
CNN on GPU 0.0077 11,000,000
CNN on CPU 0.27 320,000
Likelihood-Based 40 2,100




4 Conclusion

The low-energy CNN has comparable energy resolution to current likelihood-based reconstruction
methods and a speedup of 10* in runtime when applied to 10 GeV scale IceCube events. The
success of the low-energy CNN architecture extends beyond energy reconstruction, with ongoing
explorations of applications spanning other variable reconstructions and classifications, such as
neutrino direction [10], which are necessary for neutrino oscillation analyses.
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