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Abstract: IceCube-Gen2 is a future large-scale extension to the IceCube Neutrino Observatory, a
cubic-kilometer-scale neutrino detector at the geographic South Pole. The IceCube data acquisition
system architecture, while running stably with over 99% uptime, will be re-optimized for IceCube-
Gen2 to solve design challenges with power consumption, communications bandwidth, and cable
specifications. In particular, we describe how distribution of the photomultiplier tube signal
digitization and pre-trigger storage can reduce power and bandwidth requirements. Additional
changes to IceCube’s custom communications protocol can also relax crosstalk requirements on the
copper cabling. We report on the status of these optimizations in the prototype Gen2 digital optical
module design for the upcoming IceCube Upgrade.
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1 Introduction

The IceCube Neutrino Observatory, a cubic-kilometer-scale neutrino detector built into the ice
sheet at the South Pole, uses an array of digital optical modules (DOMs) to detect the Cherenkov
light from charged secondary particles produced in neutrino interactions [1]. A future large-scale
extension, IceCube-Gen2, includes ∼10,000 new optical modules with greater photocathode area
instrumenting 8 km3, deployed as 120 additional strings (cables) of 80 DOMs each [2, 3].

Building an optical array 8× the volume of IceCube presents several scaling challenges if one
simply extends the copper cabling to distances of up to 6 km. Not only would resistive losses
and signal attenuation become problematic, but also the required power consumption would exceed
the maximum power delivery of individual cables and, in aggregate, the generating capacity of the
South Pole power station. Communications bandwidth also becomes an issue since the module dark
noise will increase with the larger photocathode area. Finally, the cable cost and manufacturability
become difficult due to tight specifications on the electrical crosstalk. Here we present solutions
to these scaling challenges for IceCube-Gen2 by changing the cabling and data acquisition (DAQ)
architecture and designing new electronics for the Gen2 DOM.

2 FieldHub

The primary copper cabling scaling issue can be solved by moving the custom electronics that
communicate with the DOMs from the counting house (the IceCube Laboratory, or ICL) into the
field. A “FieldHub” at the top of each Gen2 string contains the custom electronics that provide
communications and timing to the optical modules. The downhole cable remains conceptually the
same, as a collection of low-crosstalk “quads” (two twisted pairs) with multiple DOMs connected
to each wire pair. The surface cable between the FieldHub and the ICL, however, is replaced with
optical fiber and thicker-gauge copper power cable, where the fiber provides gigabit Ethernet and
“White Rabbit” precision timing [4] to the FieldHubs, and the power cable can be run at higher
voltage (400–600 VDC) to lower resistive losses. The metal FieldHub enclosure is insulated to
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withstand the outside temperature range of −80°C to −15°C and elevated on poles to avoid being
buried in the snow. The FieldHub architecture has been successfully demonstrated in a prototype
cosmic ray detector station operating with the IceCube array since 2019 [5].

3 Gen2 DOM and Waveform Microbase

The power consumption of IceCube-Gen2 will be dominated by the optical array and thus the
individual power consumption of each of the ∼10,000 DOMs. By optimizing and distributing the
digitization and processing of each of the photomultiplier (PMT) signals in the multi-PMT Gen2
DOMs [6], the overall power can be reduced significantly while still adding features to increase the
DOM’s dynamic range and time resolution. A model of the Gen2 DOM is shown in figure 1.

Compared to the multi-PMT mDOM for the IceCube Upgrade [7], the Gen2 DOM design:
• uses eighteen 4" PMTs instead of twenty-four 3" PMTs, providing the same photocathode

area while reducing processing power;
• distributes the PMT signal digitization and processing to each PMT base (see below);
• reduces the digitization rate from 120 Msps to 60 Msps, possible since the photon arrival

times are more spread out due to the larger string spacing;
• adds a time-to-digital converter (TDC) to record the leading edge time with high precision;
• and adds a second lower-gain channel using one of the PMT dynodes to extend the dynamic

range, since Gen2 targets mainly high-energy (> 100 TeV) neutrinos.
Gen2 DOM Design vs. Upgrade mDOM
• 16–18x 4-in. PMTs vs. 24 3-in. PMTs

• reduced power for same photocathode area
• PMT signal capture and processing is ~70% of DOM power consumption

• Reduced digitization rate (60 vs 120 Msps)
• photon arrival times more spread out due to larger string spacing (scattering 

in ice)
• modest impact on timing resolution with shaping
• add TDC for precision leading edge capture

• Distributed digitization and waveform processing at each PMT base
• modular design instead of monolithic central processing
• small, low-power FPGAs

• Add second channel at dynode 8 or 9 for extended dynamic range
• more important in Gen2 with higher energy events

• More details on DOM design: talk by Vedant Basu
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Gen2 DOM

Figure 1. Preliminary model of the
IceCube-Gen2 DOM.

The primary custom electronics in this design is the
Waveform Microbase (wuBase), which incorporates the
PMT high voltage generation and the signal digitization
and processing onto each PMT base (figure 2a). The
choices of ADC, FPGA, and microcontroller (MCU) are
optimized for low power consumption, currently 140 mW
/ PMT. Multiple waveform buffers are used in the FPGA in
order to reduce deadtime. Figure 2b shows the data flow
from each wuBase to the central DOM mainboard; each
base is connected with a serial UART to a central MCU
responsible for assembly of data packets to the surface.
Clock signals are also distributed to each base so that
the individual base timestamps can be synchronized or
translated to a single DOM time domain, which in turn is
translated to UTC in the FieldHubs using the reciprocal
pulsing method (RAPCal) described in ref. [1].

The low power usage of the wuBase compared to using a monolithic, high-speed multi-channel
ADC and a large central FPGA enables a reduction in DOM power consumption. We are targeting
a total power consumption of 4W/DOM, compared to ≈ 10W for the Upgrade mDOM. This solves
issues with power distribution down the cable, where resistive losses at the bottom of the string can
limit the number of DOMs per wire pair. This DOM power target results in a total Gen2 power
budget of 85–100 kW, which is reasonable given near-term capacity limits on the South Pole Station
power generation.
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(a) Waveform MicroBase block diagram.
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(b) Data flow from each PMT base
to the main cable.

Figure 2. Data flow in the Gen2 DOM from each PMT to the main cable. Left: the Waveform Microbase on
each PMT digitizes the signal high- and low-gain channels and records the leading edge time with a TDC.
Right: data from each base are collected by a central microcontroller (MCU) and buffered in flash memory
while coarse timestamps are sent to the surface DAQ. When an array-level trigger is formed, full waveform
information is read out from the hit buffers.

4 DAQ architecture

In the IceCube DAQ system, each PMT photon detection or “hit” is registered by the DOMs, and
an array- or subarray-level trigger is used to select collections of hits likely to be from particle
interactions instead of background hits. When a trigger is formed, hits from all DOMs are bundled
into an event that is passed to the higher-level processing and filtering system for directional and
energy reconstruction. In the current DAQ and for the IceCube Upgrade, all DOM hits are sent to
computers in the ICL where they are buffered on disk for up to two weeks. This long buffer (the
“hitspool”) allows readout of all raw detector data in case of an astrophysical event that might have
resulted in sub-threshold neutrinos, triggered by an external gravitational wave or supernova alert.

Sending all DOM hits to the ICL, however, utilizes a significant portion of the communications
bandwidth for background hit readout. In order to mitigate this in IceCube-Gen2, we are imple-
menting a new architecture where the hitspool is moved to flash storage on the DOM itself. Coarse
(sub-microsecond) timestamps of multi-PE hits are sent to the ICL for triggering, and then event
readouts collect the hit data when needed for each trigger in order to build the events. This greatly
decreases the bandwidth usage from ≈ 400 kbps/DOM in the IceCube Upgrade to ≈ 10 kbps/DOM
for Gen2. This in turn allows us to attach more DOMs per wire pair, simplifying the downhole
cable design. An additional optimization we are exploring is unfolding the PMT waveforms into
(charge, time) pulse series on the DOMs [8], a processing step that serves both as a highly effective
form of data compression and is also required by most of our reconstruction algorithms.

Finally, we consider the electrical requirements on the communications cable. Currently we
require very stringent crosstalk suppression [1], primarily due to the fact that the RAPCal time
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calibration procedure is inherently analog and measures delays with signal zero-crossings; any
crosstalk can distort the waveform and result in significant time errors. If the current crosstalk
specifications cannot be met for Gen2, this can be mitigated at the DAQ level simply by scheduling
RAPCal pulses when neighboring wire pairs are quiet.

5 Summary and outlook

We have presented solutions to several of the scaling problems presented by the IceCube-Gen2
optical array. In particular, changes to the cabling and DAQ architecture solve issues with copper
cable length and bandwidth, and a new electronics design for the Gen2 DOM increases efficiency
and lowers power consumption. The cabling and FieldHub architecture is already in use at the
South Pole in a prototype cosmic ray station; we continue to optimize the design of the FieldHub
enclosure, facilitating the regular raising of the FieldHub to prevent it from being buried in the snow
over decades of operation. Additionally, several prototypes for the Gen2 DOM will be deployed in
the upcoming IceCube Upgrade, allowing validation of the design.
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