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Abstract: The IceCube Neutrino Observatory is designed to observe neutrinos interacting deep

within the South Pole ice sheet. It consists of 5160 digital optical modules, which are arrayed over

a cubic kilometer from 1450 m to 2450 m depth. At the lower center of the array is the DeepCore

subdetector. It has a denser configuration which lowers the observable energy threshold to about

10 GeV and creates the opportunity to study neutrino oscillations with low energy atmospheric

neutrinos. A precise reconstruction of neutrino direction is critical in the measurements of

oscillation parameters. In this contribution, I will discuss a method to reconstruct the zenith angle

of 10-GeV scale events in IceCube using a convolutional neural network and compare the result to

that of the current likelihood-based reconstruction algorithm.
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1 Introduction

The IceCube Neutrino Observatory is a Cherenkov detector located deep under the Antarctic

ice. There are 5160 digital optical modules (DOMs) which make up 78 IceCube strings and

8 DeepCore strings (figure 1). The DeepCore strings are more densely instrumented and located

at the lower center of the IceCube string array. The DeepCore subdetector lowers the observable

energy threshold to approximately 5 GeV, providing an opportunity to study neutrino oscillations

in IceCube. It is sensitive to the neutrino mixing angle θ23 and mass splitting Δm
2

32
, which can

be measured by studying ν` disappearance using atmospheric neutrinos created in cosmic ray air

showers. Neutrino oscillation probabilities depend on the ratio of neutrino energy to neutrino

travel distance, which can be inferred using the incident neutrino zenith angle (θzenith). Precisely

measuring θzenith is critical in measuring oscillation parameters.

Figure 1. IceCube Neutrino Observatory at the South Pole (left) and top view of detector strings (right)

with 8 DeepCore strings (red filled) and 19 IceCube strings (orange circled) used as input to CNN.

When neutrino interactions take place within the detector, relativistic charged particles are

produced and propagate in the ice, emitting Cherenkov photons which are detected by the DOMs
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and converted into a series of electrical pulses, or hits. A convolutional network (CNN) is employed

to reconstruct θzenith by using these hits.

2 Convolutional neural network

CNNs are broadly used in modern physics experiments for particle identification [1] and recon-

struction [2, 3]. The CNN employed for θzenith reconstruction has the structure as shown in

figure 2.

Figure 2. Structure of CNN with input shape of (number of strings, 60 DOMs, 5 variables).

Most neutrino interactions deposit light signals in both DeepCore and the surrounding IceCube

strings. Since the DeepCore and the IceCube strings have different configurations, two separate

input layers are used to separate the hits in the neutrino event from the eight DeepCore strings

and the 19 surrounding IceCube strings, as shown in the left panel of figure 2. For each of the

60 DOMs on a string, 5 variables are calculated from the pulse series: sum of charges, time

of the first hit, time of the last hit, charge weighted mean of pulse time, and charge weighted

standard deviation of pulse time. The two sets of input variables pass via 8 convolutional layers

separately and the outputs are concatenated at the end of the convolutional layers. The output

layer delivers the value of θzenith for the neutrino event. The training sample is a simulated

ν` charged-current (CC) Monte-Carlo dataset with true neutrino energy between 5–150 GeV and

true θzenith distribution as shown in figure 3. A total of 3479000 events were used to train the CNN

at the high performance computing center at Michigan State University, requiring approximately

6 days and over 600 epochs to converge. The loss function of the CNN is the mean absolute error.

The training and validation loss curves are shown in the right plot in figure 3.

3 Performance

The performance of the CNN method is discussed by comparing to the standard likelihood-based

reconstruction method using a ν` CC sample. Selections applied on reconstructed variables

include: neutrino energy in the range 5 to 300 GeV, z-coordinate of neutrino event vertex in the

range −500 to −200 m, and ρ36 < 300 m, where ρ36 is the horizontal distance in the xy plane

between the reconstructed neutrino interaction vertex and string 36.

The plots in figure 4 show the 1D distributions of cos(θzenith). The CNN method has more

events concentrated at the equator (cos θ = 0) while the likelihood-based method over-distributes

events near the poles (cos θ = ±1). This could be due to the zenith distribution of the training

sample and might be resolved in future by using a training sample with flat true θzenith distribution.
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Figure 3. True θzenith distribution of training sample (left); training (blue) and validation (teal) loss curves

(right).

Figure 4. 1D distributions of cos(θzenith) (left) and cos(θzenith) reconstruction error (right) with blue (orange)

representing CNN (likelihood-based) reconstructed cos(θzenith) and green representing true cos(θzenith) of

true ν` CC events.

Figure 5. 2D distributions of true vs. CNN (left) or likelihood-based (right) reconstructed cos(θzenith) with

median (solid) and contours (dashed) of 68% of events in vertical slices.

The overall RMS of CNN method is smaller than that of the likelihood-based method by 10.3%.

In the 2D distributions of true versus reconstructed cos(θzenith) (see figure 5) the CNN method has

a similar median contour and narrower 68%-contours than those of the likelihood-based method.
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The CNN and likelihood-based methods have a similar bias against true or reconstructed cos(θzenith)

(see figure 6) and true neutrino energy (see figure 7).

Figure 6. 1D slices of reconstructed — true vs. true (left) or reconstructed (right) cos(θzenith) with blue

(orange) representing CNN (likelihood-based) result, solid curve representing median, and shaded area

containing 68% of events.

Figure 7. 1D slices of reconstructed — true vs. true neutrino energy with blue (orange) representing CNN

(likelihood-based) result, solid curve representing median, and shaded area containing 68% of events.

As listed in table 1, the CNN method can run on both CPU and GPU and on a GPU can achieve

a speed-up of 10000 compared to the likelihood-based method. Rapid processing is crucial for the

oscillation analysis of the very large neutrino dataset provided by IceCube-DeepCore.

Table 1. Processing speed of CNN and likelihood-based methods.

Second/Event GPU CPU

CNN 0.0044 0.108

Likelihood-based - 44.97
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4 Conclusion

The CNN method provides a comparable performance to the current likelihood-based method

on O(100)-GeV neutrino direction reconstruction, improving the overall RMS in the direction

reconstruction by 10% on the ν` sample. The bias against either true or reconstructed cos(θzenith)

slices are comparable between the two methods. With the help of GPU cluster, the CNN method

is up to 10000 times faster than the current method in processing, easing the computational burden

required for IceCube oscillation analyses. Future studies will use a training sample with a flat true

θzenith distribution.

References

[1] A. Aurisano et al., A convolutional neural network neutrino event classifier, 2016 JINST 11 P09001

[arXiv:1604.01444].

[2] IceCube collaboration, Reconstruction techniques in IceCube using convolutional and generative

neural networks, EPJ Web Conf. 207 (2019) 05005.

[3] IceCube collaboration, Reconstructing neutrino energy using CNNs for GeV scale IceCube events, PoS

ICRC2021 (2021) 1053.

– 5 –

https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://arxiv.org/abs/1604.01444
https://doi.org/10.1051/epjconf/201920705005
https://doi.org/10.1051/epjconf/201920705005
https://doi.org/10.1051/epjconf/201920705005
https://doi.org/10.1051/epjconf/201920705005
https://doi.org/10.22323/1.395.1053
https://doi.org/10.22323/1.395.1053
https://doi.org/10.22323/1.395.1053
https://doi.org/10.22323/1.395.1053

	Direction reconstruction using a CNN for GeV-scale neutrinos in IceCube
	Contents
	1  Introduction
	2  Convolutional neural network
	3  Performance
	4  Conclusion
	References


