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ABsTRACT. The IceCube Neutrino Observatory is designed to observe neutrinos interacting deep
within the South Pole ice sheet. It consists of 5160 digital optical modules, which are arrayed over
a cubic kilometer from 1450 m to 2450 m depth. At the lower center of the array is the DeepCore
subdetector. It has a denser configuration which lowers the observable energy threshold to about
10 GeV and creates the opportunity to study neutrino oscillations with low energy atmospheric
neutrinos. A precise reconstruction of neutrino direction is critical in the measurements of
oscillation parameters. In this contribution, I will discuss a method to reconstruct the zenith angle
of 10-GeV scale events in IceCube using a convolutional neural network and compare the result to
that of the current likelihood-based reconstruction algorithm.

Keyworbps: Analysis and statistical methods; Data processing methods; Pattern recognition,
cluster finding, calibration and fitting methods
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1 Introduction

The IceCube Neutrino Observatory is a Cherenkov detector located deep under the Antarctic
ice. There are 5160 digital optical modules (DOMs) which make up 78 IceCube strings and
8 DeepCore strings (figure 1). The DeepCore strings are more densely instrumented and located
at the lower center of the IceCube string array. The DeepCore subdetector lowers the observable
energy threshold to approximately 5 GeV, providing an opportunity to study neutrino oscillations
in IceCube. It is sensitive to the neutrino mixing angle 6,3 and mass splitting Am%z, which can
be measured by studying v, disappearance using atmospheric neutrinos created in cosmic ray air
showers. Neutrino oscillation probabilities depend on the ratio of neutrino energy to neutrino
travel distance, which can be inferred using the incident neutrino zenith angle (6cpir,). Precisely
measuring 0 ,cpi 18 critical in measuring oscillation parameters.
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Figure 1. IceCube Neutrino Observatory at the South Pole (left) and top view of detector strings (right)
with 8 DeepCore strings (red filled) and 19 IceCube strings (orange circled) used as input to CNN.

When neutrino interactions take place within the detector, relativistic charged particles are
produced and propagate in the ice, emitting Cherenkov photons which are detected by the DOMs



and converted into a series of electrical pulses, or hits. A convolutional network (CNN) is employed
to reconstruct 6,¢n;n by using these hits.

2 Convolutional neural network

CNNs are broadly used in modern physics experiments for particle identification [1] and recon-
struction [2, 3]. The CNN employed for e, reconstruction has the structure as shown in
figure 2.

IC: [19, 60, 5]

Output layer

DC: [8, 60, 5]
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Figure 2. Structure of CNN with input shape of (number of strings, 60 DOMs, 5 variables).

Most neutrino interactions deposit light signals in both DeepCore and the surrounding IceCube
strings. Since the DeepCore and the IceCube strings have different configurations, two separate
input layers are used to separate the hits in the neutrino event from the eight DeepCore strings
and the 19 surrounding IceCube strings, as shown in the left panel of figure 2. For each of the
60 DOMs on a string, 5 variables are calculated from the pulse series: sum of charges, time
of the first hit, time of the last hit, charge weighted mean of pulse time, and charge weighted
standard deviation of pulse time. The two sets of input variables pass via 8 convolutional layers
separately and the outputs are concatenated at the end of the convolutional layers. The output
layer delivers the value of 6, for the neutrino event. The training sample is a simulated
v, charged-current (CC) Monte-Carlo dataset with true neutrino energy between 5-150 GeV and
true 6,enitn distribution as shown in figure 3. A total of 3479000 events were used to train the CNN
at the high performance computing center at Michigan State University, requiring approximately
6 days and over 600 epochs to converge. The loss function of the CNN is the mean absolute error.
The training and validation loss curves are shown in the right plot in figure 3.

3 Performance

The performance of the CNN method is discussed by comparing to the standard likelihood-based
reconstruction method using a v, CC sample. Selections applied on reconstructed variables
include: neutrino energy in the range 5 to 300 GeV, z-coordinate of neutrino event vertex in the
range —500 to —200m, and p3s < 300 m, where ps¢ is the horizontal distance in the xy plane
between the reconstructed neutrino interaction vertex and string 36.

The plots in figure 4 show the 1D distributions of cos(fenitn). The CNN method has more
events concentrated at the equator (cos 6 = 0) while the likelihood-based method over-distributes
events near the poles (cos @ = +1). This could be due to the zenith distribution of the training
sample and might be resolved in future by using a training sample with flat true 6cpi, distribution.
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Figure 3. True 6,y distribution of training sample (left); training (blue) and validation (teal) loss curves
(right).
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Figure 4. 1D distributions of cos(6enitn) (left) and cos(6,enin) reconstruction error (right) with blue (orange)
representing CNN (likelihood-based) reconstructed cos(@enn) and green representing true cos(6zenin) Of
true v, CC events.
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Figure 5. 2D distributions of true vs. CNN (left) or likelihood-based (right) reconstructed cos (6 enim) With
median (solid) and contours (dashed) of 68% of events in vertical slices.

The overall RMS of CNN method is smaller than that of the likelihood-based method by 10.3%.
In the 2D distributions of true versus reconstructed cos(6enitn) (see figure 5) the CNN method has
a similar median contour and narrower 68%-contours than those of the likelihood-based method.



The CNN and likelihood-based methods have a similar bias against true or reconstructed cos (6 zenith)
(see figure 6) and true neutrino energy (see figure 7).
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Figure 6. 1D slices of reconstructed — true vs. true (left) or reconstructed (right) cos(6enin) With blue
(orange) representing CNN (likelihood-based) result, solid curve representing median, and shaded area
containing 68% of events.
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Figure 7. 1D slices of reconstructed — true vs. true neutrino energy with blue (orange) representing CNN
(likelihood-based) result, solid curve representing median, and shaded area containing 68% of events.

As listed in table 1, the CNN method can run on both CPU and GPU and on a GPU can achieve
a speed-up of 10000 compared to the likelihood-based method. Rapid processing is crucial for the
oscillation analysis of the very large neutrino dataset provided by IceCube-DeepCore.

Table 1. Processing speed of CNN and likelihood-based methods.
Second/Event GPU | CPU

CNN 0.0044 | 0.108
Likelihood-based - 44.97



4 Conclusion

The CNN method provides a comparable performance to the current likelihood-based method
on O(100)-GeV neutrino direction reconstruction, improving the overall RMS in the direction
reconstruction by 10% on the v, sample. The bias against either true or reconstructed cos (6 enitn)
slices are comparable between the two methods. With the help of GPU cluster, the CNN method
is up to 10000 times faster than the current method in processing, easing the computational burden
required for IceCube oscillation analyses. Future studies will use a training sample with a flat true
0 enith distribution.
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