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Abstract

Multi-photon entangled graph states are a fundamental resource in quantum communication net-
works, distributed quantum computing, and sensing. These states can in principle be created determin-
istically from quantum emitters such as optically active quantum dots or defects, atomic systems, or
superconducting qubits. However, finding efficient schemes to produce such states has been a long-
standing challenge. Here, we present an algorithm that, given a desired multi-photon graph state,
determines the minimum number of quantum emitters and precise operation sequences that can produce
it. The algorithm itself and the resulting operation sequence both scale polynomially in the size of
the photonic graph state, allowing one to obtain efficient schemes to generate graph states containing

hundreds or thousands of photons.

I. Introduction

Entanglement is widely recognized as playing a critical role in quantum computation, error
correction, communication, and sensing. A family of entangled states that features prominently
in these applications are graph (or cluster) states. They are key resources in one-way quantum
computing paradigms [1], [2] and in quantum error correction [3], [4], [S], [6]. In addition,
many quantum repeater schemes [7], [8], [9], [10], [11] and quantum sensing protocols [12],
[13] rely on graph states. Photonic graph states are especially important because photons are the
predominant platform for measurement- and fusion-based computing, and, as flying qubits, they
are the only viable choice for quantum networks [14] and quantum imaging [15], [16].

Unfortunately, creating photonic resource states is fundamentally difficult. Because photons

do not interact with each other, most attempts have focused on probabilistic generation schemes



using linear optics and postselection [17], which are very resource-intensive, severely limiting
the size of the resulting states [18], [19]. This bottleneck can in principle be overcome by instead
using a deterministic approach in which entangled photons are produced directly from quantum
emitters (i.e., matter qubits). One possibility would be to prepare a graph state on emitters [20],
[21] and transduce it to photons, but this requires a number of emitters equal to the size of the
target photonic graph state. This daunting resource overhead can be avoided by instead using
sequential generation schemes. Refs. [22], [23] put forward such an approach that works well
for one-dimensional (1D) graph states [24] and has led to experimental demonstrations [25],
[26]. However, in the general case where the entanglement structure is more complicated, this
method scales exponentially in the size of the target state and can lead to long generation circuits,
motivating the search for more efficient approaches. Refs. [27], [28] put forward protocols for
2D lattice graphs that leverage the principle that entangled emitters can emit entangled photons.
This idea was extended further to develop protocols that deterministically generate resource states
for quantum repeaters [29], [30], [31], [32]—tailored to color centers in Refs. [33], [34]—and
one-way computing [35], [36]. Refs. [35], [32] allowed for the re-interference of photons with
emitters to further enhance flexibility in entanglement creation.

Despite this progress and the intense interest this approach has generated among experimental-
ists, existing graph state generation protocols are limited to a small subset of graphs or require a
number of emitters that scales linearly with the graph size [37], [36]. This is extremely resource-
intensive, especially in light of the schemes for generating repeater graph states presented in
Refs. [29], [31], which require only two emitters regardless of the number of photons. The
required resources (number of emitters and entangling gates) is a critical factor that determines
the practical feasibility of the protocol. For a general graph state, finding resource-efficient
generation protocols in polynomial time remains an open problem.

Here, we address this challenge by presenting a general approach to generating arbitrary pho-
tonic graph states from quantum emitters. Given a target graph state, we show how to determine
in polynomial time both the minimal number of emitters required to create it and an explicit
generation protocol. The latter consists of a sequence of gate operations and measurements
performed on the emitters. Moreover, our protocol naturally takes into account the order in
which photons should be emitted, which can be an important consideration for applications,

as it is generally preferable to emit photons in the order they are measured to avoid photon



storage. Our method provides a recipe for doing this. The broad applicability of our method, its
practical relevance, and its efficient use of resources make it ideally suited to the generation of

any photonic graph state from various types of quantum emitters.

II. Results and Discussion

A. Overview of the algorithm

Determining how to efficiently generate an arbitrary photonic graph state from a set of quantum
emitters is highly nontrivial and markedly distinct from the problem of finding an efficient
quantum circuit that creates a target state on a register of qubits [38]. Several additional challenges
arise in the former, including the fact that qubits are both created and removed, and that different
types of qubits (photons vs. emitters), with different roles and allowed gates, are involved.
Depending on the experimental setup, there may also be further restrictions, e.g., emitted photons
cannot interact with any other qubits following their emission (although schemes that re-interfere
photons with emitters have been proposed [35], [32]). Our method addresses these challenges
by leveraging three main ingredients: the notion of the height function (which is related to
the entanglement entropy), the stabilizer formalism, and the concept of time-reversed emission
events and measurements, which we introduce here.

The first insight is to utilize the so-called height function, which is the entanglement entropy
of the system as a function of the partition point when the system is arranged in a 1D lattice
and partitioned into two subsystems [39], [40]. This function provides information about the
entanglement structure of the target state as well as the number of emitters required to produce
it. The latter is equal to the maximum value of the height function (see below), which depends
on the photon emission order. Optimizing this order is NP-complete in general, although we
show that heuristic approaches exist for more structured graphs. Moreover, the height function
plays a crucial role in determining the sequence of operations (gates and measurements) needed
to generate the target graph state from the emitters.

A second key ingredient is the use of gates from the Clifford group. Given that arbitrary graph
states can be generated solely with Clifford gates [41], [42], which were also exclusively used
in the protocols of Refs. [24], [25], [27], [29], [30], [36], [28], [31], restricting ourselves to this

set does not affect the generality of our approach. Clifford gates enable the use of the stabilizer



formalism, such that we can manipulate Pauli operators instead of keeping track of the whole
state. This makes the problem of finding the emission operation sequence tractable, reducing it
from exponential to polynomial scaling due to the Gottesman-Knill theorem [43].

A final key element in our algorithm is that we time-reverse the emission sequence. That is,
we start from a target multi-photon graph state and an appropriate number of decoupled emitters
(obtained from the height function for the target state), and we determine a sequence of emitter
gates, “time-reversed measurements”, and “photon absorption” events such that the target state
is converted to a product state. This is somewhat reminiscent of disentangling circuits used for
quantum state tomography of 1D systems [44]. The final state is a product state because, without
loss of generality, photons that have not yet been emitted can be described by qubits prepared in
the computational basis state |0). Photon emission is then modeled as a two-qubit photon-emitter
gate that brings the photon from |0) into an entangled state with the emitters [24]. Because the
photon absorption steps are time-reversed versions of photon emission, these too are described
by photon-emitter gates.

The run time of the protocol solver algorithm scales as O(né), where n,, is the number of
photons in the target graph state. This is a direct consequence of the fact that the algorithm
is based on the stabilizer formalism (see Methods section). This is in contrast to previous
methods [22], [23], which scale exponentially in 7, due to the need to perform singular value
decompositions repeatedly. We also show that the number of gates in the final emission sequence
scales at most as (’)(ng) (see Methods). However, this assumes two-qubit gates can be applied
between any pair of emitters. If this is not the case, then additional SWAP operations are needed,
bringing the gate count up to O (nf;) Therefore, both the protocol solver and the resulting gate
sequence it obtains scale polynomially in the size of the target graph state.

Now we provide a more detailed description of the protocol solver algorithm. We begin with
a target graph state |t,) of n, photons and n. decoupled emitters, so that the total state is
|U) = |3b,) ®|0)¥™. An n, = 4 photon example graph is shown in Fig. 1(a). This is what the
state of the total system should be at the end of the generation sequence. n, is set by the size of
the desired photonic graph state |¢/,), while n. remains to be determined. We assume the graph
representing ¢,) is connected; if this is not the case, then the algorithm can be run separately
for each connected subgraph. The state |¥) is fully described by a set of n = n, +n, stabilizers

gm>» m = 1,... n, defined such that g,, |¥) = |¥). The full set of n qubits can be arranged in



a 1D lattice with site index = € {0,1,2,...,n} (see Fig. 1(b)). Sites x = 1,...,n, correspond
to the photons and are ordered according to the desired photon emission ordering, while the
sites © = n, + 1,...,n are the emitters. The additional = = 0 site is included as a matter of
convention. We can now define the height function h(z) = S, to be the bipartite entanglement
entropy when the 1D lattice is divided into the subregion A = {1,2,...,z} and its complement.
Note that Sy, = ﬁ log, Tr(p%) can be any of the Rényi entropies; for stabilizer states, they
are all equal [45]. In Ref. [22], it was shown that the state of the emitted photons, |¢/,), can be
represented by a matrix product state (MPS) with bond dimension 2"¢. Because the entanglement
entropy of a MPS is given by the base-2 logarithm of the bond dimension [46], it follows that 7,
is equal to the maximum value of h(x). The height function for the graph in Fig. 1(a) is shown
in Fig. 1(c). In this example, its maximum is 2, implying 2 emitters are needed. In general, the
maximum of the height function is in fact the minimal number of emitters capable of generating
the target graph state, as fewer emitters would be insufficient to match the bond dimension of
any exact MPS representation.

The height function can be computed efficiently from the stabilizers. Because products of
stabilizers are also stabilizers, there are many equivalent choices for the set {g,,}. Here, we
focus on a particular choice of the stabilizers that we refer to as the echelon gauge [47], in
which the stabilizer matrix has a row-reduced echelon form (see Methods). When the g, are in

this gauge, the height function can be expressed as [47]

h($> :n_x_#{gm’l(gm) >.1'}, (1)

where 1(g,,) is the index of the left-most (smallest index) site on which g,, acts nontrivially.
The last term in Eq. (1) counts the number of stabilizers that act nontrivially only on sites to
the right of (i.e., larger than) x. Although Eq. (1) depends on n., this dependence cancels out
for states like |¥) in which the emitters are decoupled. Therefore we can obtain n,. from the
maximum of i(x) on the photonic sites, using only the stabilizers of |1),).

Once we have the number of emitters n., we can run the protocol solver algorithm to determine
the sequence of gates, time-reversed measurements, and photon absorption events needed to
transform the target state | ) into the initial state |0)®", which corresponds to decoupled emitters
and no photons. We first introduce a photon index j and initialize it to j = n,. The algorithm

then consists of four steps:



(i) Transform the stabilizers g,, into echelon gauge if they are not already, then compute the
height function h(x).

(ii) If h(j) > h(j — 1), skip to step (iii). Otherwise apply a time-reversed measurement and
update the g,, accordingly.

(iii)) Apply a photon absorption operation on the j-th photon and update the g,, accordingly. If
j > 1, then set 7 — 5 — 1 and go to step (i). Otherwise, go to step (iv).

(iv) All photons are now in state |0). Apply a series of gates on the emitters to disentangle
them, bringing the total state to [0)“".

This algorithm involves repeated applications of two basic operational primitives: time-reversed

measurement and photon absorption. During the algorithm, the height function of the current

state tells us which of these we need to perform next to bring the state closer to |0)*". Each

photon absorption step disentangles one photon qubit from the rest, starting with the last-emitted

photon, 57 = n,, and working down to the first photon, j = 1. For our 4-photon example, the

graphs at intermediate steps of the algorithm are shown in Fig. 1(d). A step by step explanation

of this example is given in the Supplementary Information. When the algorithm concludes, we

can reverse the entire sequence to obtain an operation sequence that generates |¢,) starting from

n. decoupled emitters. We now describe each of the two operational primitives in more detail,

the precise gates they introduce into the generation sequence, and their connection to the height

function.

Photon absorption of the j-th photon refers to a time-reversed version of photon emission. For
concreteness, we focus on the case where emission is described by a CNOT gate between the
photon and its emitter (with the emitter as the control), as in Ref. [24], although our algorithm
can be adapted to any Clifford gate describing photon emission. Mathematically, the task of
absorbing photon j requires finding a stabilizer g, that can be transformed to o by applying

CNOT,;, where 7 is an emitter site. It is possible to find such a stabilizer when h(j) > h(j —1).

ij>
From Eq. (1), we see that this condition implies there must be at least one stabilizer, g,, such

that 1(g,) = j. This stabilizer has the form

Go =050y -0 )

s )
where «, 5, € {z,y, z} label the nontrivial Pauli operators, and 1 < j <n, <i; <--- < iz < n.
Note that we can assume g, acts trivially on all photons with index larger than j since these have

already been decoupled at this point in the algorithm. We also assume that g, acts nontrivially



on at least one emitter site; if this is not the case, then photon absorption is unnecessary since
the j-th photon is then already disconnected. To transform g, into o7, we can first apply a local
Clifford operation on the j-th site and general Clifford operations on the emitters to transform
ga — 0;0;, where i > n,, is an emitter site. This can be done for example by applying local
Clifford operations to transform g, to oo}, --- 07, and then applying CNOT gates on pairs of
emitters to transform this to o7 o;. Applying CNOT;; brings this to o7, completing the absorption
of the j-th photon. Note that we can choose any emitter to absorb the photon; typically, the
emitter that requires the shortest circuit to transform g, into o7 is preferred. The resulting circuit
is included in the time-reversed generation sequence.

Time-reversed measurements are applied whenever h(j) < h(j — 1), in which case photon
absorption is not possible. Indeed, in this case, Eq. (1) implies #{¢,|1(g) = j} = 0, or in other
words, a suitable g, does not exist. In order to absorb the next photon, we must therefore first
find a way to increase h(j) relative to h(j — 1). This can be accomplished with a time-reversed
measurement on an emitter. To perform this operation, we first rotate the state to |®) ®|0),, where
|®) is a stabilizer state involving photons 1, ..., j and emitters other than ¢. This can always be
done using O(n.) Clifford gates on emitters when h(j) < h(j — 1) (see Methods). Now notice
that this state is obtained from the pre-measurement state CNOT;; |®) ® |+), when emitter 7 is
measured to be in the state |0),. Therefore, starting from |®) ® |0),, if we perform a Hadamard
gate on emitter ¢ followed by the gate CNOT,;, we effectively reverse the measurement on
the emitter. These operations transform the stabilizers g,, in such a way that h(j) now satisfies
h(j) > h(j—1) (see Methods), and we can proceed with the next photon absorption. The emitter

gates, Hadamard on ¢, and CNOT;; are all included in the time-reversed generation sequence.

B. Examples

We demonstrate our algorithm with several examples. The first is the important case of
repeater graph states [10], where we use our algorithm to obtain generation protocols that
are more efficient than previously known ones. As a second example, we consider random
graphs containing up to hundreds of photons and demonstrate the polynomial scaling of the
resulting generation circuits. Additional examples, including modified repeater graph states, error
correcting codes, and a simple example that illustrates the algorithm in detail can be found in

Supplementary Notes 1-4.



Next, we apply our algorithm to find operation sequences that produce repeater graph states
[10]. In addition to its importance in quantum network applications, this example also illustrates
how different photon emission orderings impact the required number of emitters. Ref. [29]
presented a generation protocol for a particular ordering that was devised essentially through
guesswork. Our algorithm can be used to systematically find protocols for any ordering. An exam-
ple of a 12-photon repeater graph state is shown in Fig. 2(a). The graph contains a fully connected
core of 6 photons, each of which is connected to a single external photon. Bell measurements
are performed on pairs of these external photons, where the two photons in each pair come from
different graph states. If a Bell measurement succeeds, then the two corresponding core photons
are linked by an edge, and entanglement extends across two nodes of the repeater network.
Having multiple external photons provides built-in redundancy that increases the likelihood that
at least one Bell measurement between two repeater graph states is successful. Upon success,
core photons are then measured in the z or z basis to remove photons connected to failed
measurements or to create entanglement links between successful measurements, respectively.
Because the external photons are measured first, it may be advantageous to emit these first when
generating the graph state to reduce photon storage requirements. This corresponds to the photon
ordering shown in Fig. 2(a). The height function for this graph and photon ordering is shown
in Fig. 2(d), where it is evident that 6 emitters are needed to produce the state. However, if
efficient photon storage is available, then the ordering shown in Fig. 2(b) may be preferable,
where now external and core photons are emitted in an alternating sequence. This ordering
reduces the number of emitters down to only 2, as shown in Fig. 2(e). As we discuss further
below, this illustrates our general finding that “natural” orderings in which neighboring vertices
are emitted around the same time reduce the requisite number of emitters. This reduction in
quantum resources becomes still more dramatic as the size of the graph increases; for orderings
as shown in Fig. 2(a), the number of emitters scales linearly with photon number, while for the
natural ordering of Fig. 2(b), the number of emitters remains at 2 regardless of the number of
photons. This is shown explicitly in the Supplemental Information.

As discussed in Ref. [36], some of the edges in the repeater graph can be removed without
affecting the functionality of the repeater. Fig. 2(c) shows an example of this in which 4 of the
core edges are deleted. As shown in Fig. 2(f), the number of emitters is still 2. However, removing

the redundant edges reduces the depth of the resulting generation circuit, which is shown in



Fig. 2(g). This circuit contains 4 CNOTSs between emitters and 1 intermediate measurement on
an emitter, whereas the original protocol presented in Ref. [29] requires 5 two-qubit gates and
5 intermediate measurements.

To demonstrate how our algorithm scales with the number of photons in the target state, we
run it for random graphs ranging in size from n, = 16 to n, = 256 photons. These graphs are
produced randomly using the Erdos—Rényi model [48]. In this approach, each random graph is
constructed by connecting n,, vertices randomly with fixed probability p. We discard any graphs
that contain disconnected vertices when sampling these realizations. The likelihood that such
graphs arise becomes very small if p is chosen sufficiently close to 1. In Fig. 3, we show the
maximum value, Ay, of the height function averaged over 1024 realizations for each value of
n,. Averaged measurement and gate counts are also shown. It is evident that ., and hence
the number of emitters, scales linearly with n, as n, becomes large. The same is also true of
the number of measurements. On the other hand, the number of CNOTSs and the total number
of gates in the resulting generation circuits scale quadratically with the number of photons
in the target state. These results confirm both the polynomial scaling of our algorithm, which
allows us to easily find generation protocols for graph states containing hundreds of photons,
and the polynomial scaling of the resulting protocols, which makes them practical for near-term

experiments.

C. Photon emission ordering

A powerful feature of our algorithm is that it readily incorporates a desired photon emission
ordering. This is encoded when we arrange the photons and emitters in a 1D lattice to define
the height function. If no specific ordering is preferred, then ideally we would want to choose
the ordering that minimizes the number of emitters n.. However, the task of finding this optimal
ordering is NP-complete, as we show in Methods. Nevertheless, one can still look for heuristic
solutions to the problem. In fact, the expression for the height function in Eq. (1) makes it
clear that this function is suppressed for orderings in which the stabilizers, when expressed in
the echelon gauge, are supported predominantly on high-index sites on the right side of the 1D
lattice. This tends to occur for “natural” orderings in which neighboring photons in the graph
are emitted around the same time, because in this case the stabilizers are localized on the 1D

lattice. This was illustrated with our repeater graph state example in the previous section. The



extent to which the stabilizers can be localized in this way depends on the graph of course.
For an N x M square lattice, it is inevitable that some neighboring vertices will be separated
by M steps in the emission sequence (assuming M < N), and so the number of emitters is of
order M. On the other hand, for other graph structures like those of the repeater graph states,
far fewer emitters may be needed, provided a natural photon ordering is used. Note that in this
example, as for many graphs, edges between remote vertices cannot be avoided (see Fig. 2(b)).
Despite this, we showed that optimal orderings for which the height function remains small can
still be found. Thus, emitting neighboring vertices around the same time is sufficient but not
always necessary to keep the number of emitters small.

In summary, we presented an efficient algorithm to construct polynomial-depth operation
sequences that produce arbitrary multi-photon graph states from a minimal number of quantum
emitters. By reducing both the number of photon sources and the number of quantum operations
that need to be performed on them, our method brings the wide range of quantum information

applications that rely on entangled photon resource states closer to experimental reality.
III. Methods

A. Echelon gauge

The echelon gauge was first defined in Ref. [47], where it was called row reduced echelon
form. In this gauge, the stabilizer tableau has a recursive row-reduced form based on the following

three types of matrices:

o1 | * *
T *---% o | * *
— — o9 | * *
1 1 B B
; ) ; 1 : (3)
M : M
M
1 1
1

where o, 01, and oy are nontrivial Pauli matrices, and o; # o5. In this work, we always choose
o9 = 07, and o; can be either o® or ¢¥. The full tableau cannot have the first form shown above
(with only identities in the first column), because this case does not apply to pure states. However,
the submatrix M can follow any of the above three patterns, and the structure iterates recursively.
The stabilizers can be transformed into this gauge starting from any other by performing a series

of row reductions, as described in Ref. [47]. In the echelon gauge, the independent stabilizers



acting on A = {x +1,...,n} appear at the bottom right of the tableau. Therefore, starting
from the formula for the entanglement entropy for subregion A of a stabilizer state [49], S; =
nz — |G|, where nj is the size of A and |G4| is the number of independent stabilizers acting

on A, and using h(z) = S, = S4, we obtain Eq. (1).

B. Time-reversed measurements

Above, we saw that when the total state of the system has the form |®) ® |0),, where i is an
emitter site, we can perform a time-reversed measurement to convert this to the pre-measurement
state CNOT;; |®) ® |+),. Here, we clarify two important questions regarding this process: (i)
When and how can we bring the system into the state |®) ® |0),? (ii) How can we see that
a time-reversed measurement on this state increases h(j), as needed for a subsequent photon
absorption process?

Regarding question (i), when A(j) < h(j — 1), we can always find a set of Clifford gates that
act purely on the emitters that will transform the state of the system into |®) ® |0),. To see this,
first note that h(j) = h(n,), as follows from Eq. (1) when photons j + 1 through n, are in state
|0). Using that the height function is bounded from above by n., we then have h(n,) = h(j) <
h(j — 1) < n.. On the other hand, from Eq. (1) we have h(n,) = n. — #{gm|1(gm) > np}.
Together, these results imply #{¢,,|1(gn) > n,} > 0, or in other words, there is at least one
stabilizer that is supported solely on the emitter sites. We can therefore transform this stabilizer
into o7 using at most O(n,) Clifford gates on the emitters, bringing the state to |®) ® |0),. We
can then convert this stabilizer to of by applying a Hadamard gate on site ¢. This prepares the
system for the second part of the time-reversed measurement process, which is the gate CNOT;;.

We answer question (ii) by proving the following theorem:

Theorem 1: If h(j) < h(j — 1) and the i-th qubit (¢ > j) is stabilized by of, then applying
CNOT;; will boost h(z) = h(z)+1,Vx e {j,j+1,---,i—1}.

Proof: We are assuming that h(j) < h(j — 1), which from Eq. (1) implies #{g|1(gm) =
j} = 0. Now consider how the stabilizers transform under CNOT;;. If 1(g,,) < j before the
gate, then 1(g,,) remains invariant, and the contributions of these stabilizers to h(z) remain the
same after the gate. The only potential changes to h(z) come from stabilizers g,, for which

1(gm) > j. These stabilizers necessarily have 1 on the j-th site. Stabilizers among this set that



have 1 or o7 on the -th site will be unchanged by the CNOT}; gate. However, if one or more of
these stabilizers have o7 or af before the gate, then afterward, these stabilizers will contain af .
Consequently, h(j) increases, while h(j — 1) remains the same. In the echelon gauge, there can
only be one stabilizer with o} as the left-most nontrivial Pauli. Therefore, h(j) — h(j)+1 when
CNOT;; is applied. Moreover, if the i-th qubit is stabilized by o7, then this becomes o707} after
the gate, and so the height function for all sites between j — 1 and i increases: h(x) — h(z)+1

Vee{jj+1,--,i—1} O

C. Scaling analyses

Here, we determine the complexity of both the protocol solver algorithm itself and the resulting
graph state generation circuit. Regarding the algorithm, the main factor that determines the
complexity is the need to restore the stabilizers to the echelon gauge after each operation is
applied. Transforming a n-qubit stabilizer state into the echelon gauge generally requires O(n?)
steps, which is the complexity of Gaussian elimination. Another important factor is the process of
determining which gates need to be applied in preparation for photon absorption or time-reversed
measurement. Solving for each set of gates takes no more than O(n.n) steps, which is the number
of entries in the emitter part of the stabilizer tableau. Thus, the Gaussian eliminations needed to
restore echelon gauge dominate the scaling. In the worst case where n, o n, our algorithm will
then take O(n?) steps, where the additional factor of n comes from the fact that the algorithm
requires O(n,) ~ O(n) iterations.

As for the complexity of the output generation circuit, there are at most O(n,.) operations
between any two photon emissions. For example, O(n.) gates are needed to transform g, into
the appropriate form for photon absorption. Thus, the depth of the circuit acting on the emitter
qubits is at most O(n,n.). In the worst case where 7, ~ n,, the scaling is then O(n?), which is
consistent with Fig. 3. Nevertheless, due to the fact that some long-range two-qubit gates may
arise, and given that these are usually decomposed as O(n,) short-ranged two-qubit gates in real

devices, the overall circuit depth may become O(n,n?).

D. Complexity of finding optimal photon emission orderings

We can show that the task of finding optimal emission orderings is NP-complete by mapping

this to a known graph theory problem. Define I';; to be the adjacency matrix of the graph



representing the target state | ). Ref. [45] showed that we can obtain the height function from
I';; using the formula h(z) = ranky(I" 4 1), where I', 5 is the sub-matrix of I';; with row indices
i€ A=1{1,2,--- 2} and column indices j € A. Note that this expression does not simplify
the computation of h(z); it can take more steps to find the maximum compared to using Eq. (1)
since the former performs Gaussian eliminations for O(n,,) rounds, while the latter only takes
one round. However, the maximum value of this alternative expression for i(x) is precisely equal
to a graph theoretic property known as linear rank-width (LRW) [50]. The task of finding an
optimal photon emission ordering is therefore equivalent to finding the graph isomorphism that
minimizes the LRW, which has long been studied in coding theory in the context of optimizing
block code trellises [51]. Unfortunately, determining whether a simple connected graph has an
LRW bounded from above by a positive integer k (i.e., max,h(x) < k) has been shown to
be NP-complete [52], [53]. Therefore, it is unlikely this problem can be solved efficiently for
large, arbitrary photonic graph states unless P = NP. Nevertheless, if the parameter k is set to
1, this problem can be answered in polynomial time [54]. If the parameter £ is set to larger
values, a recent work [55] showed that this problem can be reduced to a fixed parameter tractable
problem. Specifically, its answer, along with the sequence solution (if it exists), can be determined
in O(f (k)nf)) steps, where f(k) is an exponentially large function of k. However, the growth
of f(k) is so rapid that this result is not likely to be of practical use for photonic graph state

generation.
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Fig. 1. Illustration of the protocol solver algorithm. (a) An example of a 4-photon graph state. (b) The graph is mapped
to a 1D lattice. (c) The height function is computed and found to have maximum value 2, implying 2 emitters are needed.
These are added to the 1D lattice. (d) Starting from the target state and decoupled emitters, a time-reversed sequence of emitter
gates, photon absorption events, and time-reversed emitter measurements is constructed, until all qubits are disentangled. Further

details about this example can be found in the Supplementary Information.



(@) o
eg
o3 o9
10
o4

(9

P14 10)

o1

e {0}
p3 -@

(b)

P4+ 10)
€1 +10)HH
€2 - 10)

(C) o3 o1 6 (d) U,o ° ) o
3 o7 Tre. |
o4 2 e’,e Q"O
Ne .
—
e
o506 o12-011 B )
=
s w0 (0
o7 ®9
X
m {0
FHT— ro {0 EH—
pu 0] [z}
@ P12 -10) el
I
A {aH~>Ho)

Fig. 2. Results for repeater graph states. (a) 12-photon repeater graph state in which external photons are emitted first. (b)

Same graph state as in (a), but with “natural” emission ordering. (c) Same graph state as in (b) but with some unnecessary

edges deleted. (d), (e) and (f) show the height functions of the states in (a), (b) and (c), respectively. (g) Emission circuit for

state shown in (c), where H is the Hadamard gate, P = diag(1, ) is the phase gate, and X = o°.
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Fig. 3. Scaling of emitter number and generation circuit depth. The maximum value of the height function Amax, measurement
counts, and gate counts needed to produce random graphs of size n, are all averaged over 1024 graph realizations for each
value of n, drawn from an Erdos—Rényi ensemble with edge probability p = 0.95. Dashed curves are included to show the

scaling with n, and nf,. The error bars stand for the standard deviation of these realizations.
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