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Global solutions to the Boltzmann equation without
angular cutoff and the Landau equation with
Coulomb potential

By
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STRAINT

Abstract

This report succinctly summarizes results proved in the authors’ recent work [7] where
the unique existence of solutions to the Boltzmann equation without angular cut-off and the
Landau equation with Coulomb potential are studied in a perturbation framework. A major
feature is the use of the Wiener space A(2), which can be expected to play a similar role to L.
Compared to the L?-based solution spaces that were employed for prior known results, this
function space enables us to establish a new global existence theory. One further feature is that,
not only an initial value problem, but also an initial boundary value problem whose boundary
conditions can be regarded as physical boundaries in some simple situation, are considered
for both equations. In addition to unique existence, large-time behavior of the solutions and
propagation of spatial regularity are also proved. In the end of report, key ideas of the proof
will be explained in a concise way.
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§1. Introduction

We study the following kinetic equation which includes the collisional operator:
(1.1) O F(t,x,v)+v- -V, F(t,z,v) = Q(F, F)(t,z,v).

Here the unknown F' = F(¢,z,v) is a non-negative density function for particles with
position * = (x1,72,73) in a given domain  C R3 and velocity v = (v1,v2,v3) €
R3 at time t > 0. Partial differential equations of this form are sometimes called
Kinetic equations, they describe the dynamics of rarefied gases in various settings. In
particular the Boltzmann and Landau equations, which are regarded as fundamental
Kinetic equations, will be investigated in this report.

When the bilinear collision operator Q(F, G) takes the form

(1.2) Q(F,G)(v) =V, - { » (v —u) [F(u)V,G(v) — G(v)V,F(u)] du} )

then (1) is called the Landau equation, where the Landau collision kernel ¢ in (1) is
a non-negative symmetric 3 x 3 matrix-valued function defined for z = (z1,29,23) €

R3\{0} as

ZjZm

(1.3) wjm(z> = {51' - EE } ’3’74_27 Jym=1,2,3.

Here 0;,, is the Kronecker delta and —3 < v < 1 is a parameter determined by the
interaction potential between particles. The case v = —3 corresponds to the classical
Coulomb potential (see [13, 19]).

If Q(F,G) instead takes the form

(14)  QF.G)(v) = /R 3 /S Bv—u,0) [F()G(') ~ F)G(v)] dodu,

then the equation is called the Boltzmann equation, where the velocity pairs (v, u) and
(v',u') satisty
,  v+u  |v—ul

- 2 7
oeS?.
, vt+u  |v—ul
g —_ 0',
2 2

The Boltzmann collision kernel B(v — u,0) is a non-negative function, depending on

the relative velocity |v — u| and the deviation angle 6 between o and (v — u)/|v — u,

cosf = <a, |U_—u|>
v—u

determined via
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In this report we assume that B is given by
B(v —u,0) = Cpglv — u|"b(cos 0),

for a constant C'g > 0, where |[v—u|” is called the kinetic part with v > —3, and b(cos 6)
is called the angular part satisfying that there are (', > 0, 0 < s < 1 such that

b(cosf)sinh ~ CLH~ 172 as § | 0.

We further assume, by convention as in [20], that b(cos #) is supported on [0, 7/2]. This
can be assumed without loss of genrality since one can always replace b(cos ) by

[b(cos @) + b(cos(m — 0))]1[0,x/2(0).

This follows from a standard change of variables.

One physical example is given when the collision kernel is derived from a spherical
intermolecular repulsive potential of the inverse power law form ¢(r) = r~ =1 with 2 <
¢ < oo corresponding to which B satisfies the assumptions above with v = (¢—5)/({—1)
and s = 1/(¢ — 1), cf. [4]. Also, for the connections between the Boltzmann equation
with long range interactions and the Landau equation with Coulomb potential, we refer
the reader to [20].

Throughout this report, in the Boltzmann case we further require that

(1.5) 7>max{—3,—g—25}

due to the mild regularity setting of the results in this article. Notice this is satisfied
for the inverse power law model for any 2 < ¢ < oo.

In this report we focus on two kinds of specific bounded domains  C R3. We
consider either a torus, or a finite channel with prescribed boundary conditions.

e For the torus domain case, we set
Q=T3:=[0,2n]>.
Correspondingly, F(t,x,v) is assumed to be spatially periodic in z € T3.
e For the finite channel case, we set
Q=1IxT*={z=(21,2),21 €[ :=(-1,1),z := (22,23) € T*> = [0, 27} .

Correspondingly, F (¢, z,v) is assumed to be spatially periodic for z € T? and satisfy
either of the following two boundary conditions at x; = +1:
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— Inflow boundary condition:
(1.6) F(t,—1,%,0)|y,>0 = G_(t,Z,v), F(t,1,Z,0)|p,<0 = G+(t,Z,v),
or

— Specular reflection boundary condition:

F(ta _1ujav1717>|v1>0 = F(ta _]-7ja_vlul_))7

(1.7)
F(ta 1,j,U171_1)|v1<0 = F(ta 173_37 _Ulaﬁ)v
where v = (vg, v3).

Let us consider (1) in a perturbation framework. It is well-known that the following
global Maxwellian equilibrium state

p= () = (2m) =22

is a spatially homogeneous steady solution to (1) for both the Landau case (1) and the
Boltzmann case (1). Then the form of the solution that we will look for is

F(t,z,0) = p+ p? f(t,2,v),
and the new unknown f = f(¢,x,v) satisfies
(1.8) Of +v-Vof + Lf =T(f.])
with initial data
(1.9) F0,2,0) = folz,v) = p~ V2 [Fo(z,v) — pl.
Here the linear and nonlinear parts of the collision operator ) are given by
Lf=-p"% {Q(u,/ﬁf) +Q(uz f, u)} ,
and
(1.10) (f,9) = p~2Q(p? f,n%g),

respectively.
In the case of the finite channel, the boundary conditions (1) and (1) along z; are
also recast as

(1'11) f(t7 _17'f7v)|’u1>0 :g_(t7§j7v>7 f(t7]‘7j7v)"l)1<0 :g+(t7§j7v)
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with g+ = p~/2[G+ — p] for the inflow boundary, and

f(ta _17i70176)|v1>0 = f(ta _17j7 _Ulal_}%

(1.12)
f(ta 17f7U1,5)|v1<0 = f(ta 17‘%7 _017@)7

for the specular reflection boundary.
We further assume that the total mass, momentum and energy of the system are

conserved over time. In other words, we assume

1
(1.13) / / v ,u%f(t, z,v)dvdr =0 € R®

for each ¢ > 0. This corresponds to the form of the pertubation (1) and the expectation
that the solution will converge to the Maxwellian 4 as ¢ — oo in a sense to be specified
below. Here we use the domains:

e O ="T3 or
e 0= (—1,1) x T? with the specular reflection boundary condition (1).

In the latter case, we further assume that the initial data Fjy is even with respect to
(z1,v1) so that the following holds

(1.14) Fo(xy,Z,v1,0) = Fy(—x1,Z, —v1,0).

It can be formally shown that, if (1) is assumed, the same evenness holds for a solution
F at time t > 0. This condition deduces the conservation law of the first component of
momentum for the specular reflection boundary condition case.

For convenience of terminology in relation to (1.1) below, in the rest of this report
we will call them soft potentials if either v+ 2 < 0 in the Landau case or v+ 2s < 0 in
the Boltzmann case, and we will call them the hard potentials otherwise.

There has been a large number of research works studying the existence of a global
solutions to (1) for small data. For the Landau equation including the case with Coulomb
interaction potential, Guo [13] proved that there exists a global classical solution f €
Lg°(0,00; H ﬁ’v), where H8-Sobolev regularity was required to control the nonlinearity
of the equation by the Sobolev embedding theorem.

For the Boltzmann equation with the long range interaction, Gressman-Strain [12]
and AMUXY [1, 2] independently proved global existence when 2 = T2 and Q = R3,
respectively. In [12] one solution space used is L{°(0, 00; L2H2) for the hard potential
case and the soft potential case under the condition (1), and another solution space is
L;’O(O,oo;H;l’U) for the more singular soft potential case for v below (1). Regularity
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conditions for the solution spaces are determined by the use of the Sobolev embedding
for this equation.

Later, the embedding theorems for Besov spaces are employed to improve these
results in view of functional spaces. Duan-Liu-Xu [8] was first to use a so-called Chemin-
Lerner type space for the problem. Denoting the Besov space B§71(R3) by Bj for s € R,
they established a unique global solution in EE}O Bg/ QL% for the cutoff hard potential case
(i.e. b(cosf) is integrable over S? and 0 < v < 1). Here, E%OngL% is a set of tempered
distributions whose

1z p2r2ps = 212” sup (|8 F (- )z,
J—

is finite. Here {A;}32_; is the inhomogeneous Littlewood-Paley decomposition. The
advantage of this space for the problem is twofold: First, it is simpler to control the
nonlinear part in this space rather than in the usual Bochner space L%OBg/ 2L% because
the summation over j comes after all the LP? norms with respect to ¢,  and v, which
defines a stronger topology. Second, the embeddings B3/? < L> and B3/? — H3/?
hold, while H3/2 ¢ L in dimension three. Morimoto-Sakamoto [17] extended their
result by solving the problem in the same function space for the non-cutoff hard and
soft potential cases restricted by (1), and Duan-Sakamoto [9] established the cutoff soft
potential case (i.e. b(cos®) integrable and —3 < v < 0). Notice that the embedding to
L plays a key role for all of these results.

On the other hand, the study of the non-cutoff Boltzmann equation in L7°, have
not been fully explored yet. In this case a difficulty arises from the observation that the
L°° norm of a solution can no longer be controlled via embedding theorems. Instead,
we focus on a property that L*° is a Banach algebra, i.e., if f and g belong to L,
then the L norm of the product fg is bounded by the product of L> norms of f and
g. From this point of view, recently some works are carried out to utilize the Wiener
space A(f2), denoted by L/,lC or L%C in this report, as a solution space for the = variable.
We refer to [5, 6, 11, 14, 15, 18] as examples of an application of the Wiener space to
solvability of various partial differential equations. Here a function f on Q = T3 is in

L} if
1fllzy = /\f ) dn(k) .= > |f(k)] < 0.

keZ3

It is easy to see that Lj is indeed a Banach algebra because

Ifallie =D 1 *g(k)] < ZZ F @3k =01 = [1f L2 gl s < oo,
k

provided f and g are in L. We are motivated by these works to apply the theory of
the Wiener space for our initial and initial-boundary value problems.
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In order to study the well-posedness of the problems, we introduce a function space
X7 with 0 < T < oo, which is a key point in this work. For the problem in a torus T3,

we define

(1.15) Xp =L L¥L?

with norm

(116 Il = [ sup 17l 4500 < o
where

A~

Ft ) = Fouf (bl v) = / e f (2, 0) da, k€ 78
T3

denotes the Fourier transform of f(,x,v) with respect to x € T3.
For the problem in a finite channel, we define

(1.17) Xp =L L¥L; ,

with norm

(118) s = [ sup 1Rz, , dS(E) < oc.
72 0<t<T ’

Here we take the Fourier transform with respect to & = (x2, z3), that is,

f(t,x1, k,v) = Faf(t, 1, k,v) = / e*i’_“'jf(t,arl,i:,v) dz
T2
for k = (ko,k3) € Z2. We remark that we have used the measure integral in (1) and
(1) to denote the summation over k € Z3 and k € Z, respectively. This notation will
simplify the notion of solution spaces as in (1) and (1). Furthermore, our proof for the
case of T can be applied to that of the whole space R3 with appropriate modification.
We intend to use the notation that can be used for both case with replacement of Zi
and dX(k) by RZ’ and d§, respectively.
We also introduce the velocity weighted norm

g o= [ sup luf(e,k )z 4209
73 0<t<T

(1.19) or [ sup (e, , E(R),
i |

2 0<¢t<T

for the problems in a torus and finite channel, respectively. Here w = wg»(v) is a
velocity weight function defined as

(1.20) wen(v) =e T, () = I+ 0],
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with two parameters ¢ and ¥. We write wy »(v) = w(v) to simplify the notation when-
ever there would be no confusion. In the situation when ¢ = 0, we have w, y(v) = 1
and hence the function space X7 with velocity weight is reduced to Xr without weight.
Throughout this report we require that (g,) satisfies the following hypothesis in terms

of v and s:
( Landau case: if —2 < <1 then ¢ = 0;
if -3 <~ < —2then ¢>0and0 < ¢ <2 with
(H) the restriction that 0 < ¢ < 1if ¥ = 2.

Boltzmann case: if v 4 2s > 0 then ¢ = 0;
L if -3 <y < —2sthen ¢>0andd=1.

To obtain the rate of convergence, under the hypothesis (H), associated with the
velocity weight function w = wg ¢(v) and 7, we define a parameter  in the Landau case

as
1 forq=0, -2<~ <1,

Y forg>0,-3<~y< -2
I+ y+2 1 =7

and in the non-cutoff Boltzmann case we define

1 for g =0, v+ 2s > 0,
(1.23) K = 9

— Y forg>0, —-3<~y<—2s 0=1.
O+ yras Y "

Note that « € (0, 1].

To state the main results in the next section, we will now introduce some more
notation. Recall that to characterize the energy functional for the problem, we have
introduced the function space

Xp=L,LFL? or LyLFL?

xT1,Vv?

respectively, as well as the velocity weighted space X% as in (1), where the velocity
weight w = wy »(v) is defined in (1) under the assumption (H) as in (1.1). In what
follows, we further define the corresponding energy dissipation rate functionals. From
now on we will also use f, g and h as generic smooth real valued functions in our
estimates, when f is not being used as the solution to an equation such as (1). Then since
we are taking the Fourier transform we will also use the standard complex conjugate as
f. Now, for the Landau equation, we recall the Landau kernel in (1). Then we define

oI = gI™(v) = VI (v — u)p(u)du.
R3
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It is convenient to define the following velocity weighted D-norm:

|wq,19f|D Z / Wy 9 {Uj 8113 favmf + ajmvjvmff}

7,m=1

In the case of the finite channel, we also define

”wqﬁfHD Z // qﬁ{aj &,Jf(%mf%— ojmvjvmff} dvdxy,

7j,m=1

by including an extra integration in z; € I = (—1,1). For the case of the non-cutoff
Boltzmann equation, we define accordingly

’wq,ﬁf’% =

[ [ B woud sute) - )T - F0) dodude
RS JR3 Js2

e[ ] Bw— o @@ (i)~ ) dodude

and in the presence of the spatial variable in the finite channel we have

lwg,091D =

/ /R /R /g Jw 5 (0)p(u)(f(V') = F)(f(v') = f(v)) dodudvdz,

+ /I /R % /R % /S B(v— u,0)ul o (0) f(0) 7 (1)) ~ b)) dodudvae,.

Then, corresponding to the energy functional X7/, we define the weighted dissipation

rate functionals:

g Mayises, = |

k

1/2
g flogizae, = | (/ w0 Fe (1, R ) as(k),
k

for the torus and finite channel domains, respectively. In the case of a finite channel, we

T 1/2
</ wq,0Fa f(t, k)], dt) dx(k)
0

and

need to include an extra first-order derivative in x, and thus we define the total energy
functional and energy dissipation rate functional respectively as

(1.24) Erw(f) = Z lwe,00 fllzrrsere

T,V
la]<1
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and

(1.25)  Dru(f)= ) 10%ab.dllnirzrz + D lwgo{l =P fllLirz .

la|<1 la|<1

(L‘lUD

Here 0% = 0y = 031052093 with a = (aq, a2, a3) a standard multi-index, P is the
projection from L? into the null space of the linear operator L, and the macroscopic

part (a,b,c) of f is defined via P by

Pf:{a+b vt - (\v|2 )c}u%.

Further the norm || - || ;.1 Lirzrz in only the t and x variables for a function g = g(t, x) is

understood in the same 1ntegrat10n order as the norm || - || LILZLZ o
’E U

— 1/2
l9llcrzre, :/ (/ / | Fzg(t, k)|2da:1dt> d¥ (k).
z2 0 J-1

For any given ¢t > 0, we define the following norms in x and v:
lwaod Olzges = [ lonoFef ()]l 200,
Zk

and

lagofOllzae, , = [ | lou P (6 R) sz, , 2GR

xq,v
k

The corresponding high-order norms are defined by

o ey o2 = [ ()"0 Fo (8] dS(E),

Z k
and

lagofOlly a2, = [ B g Fef R, 2,

k
where m is an integer.
For the inflow boundary value problem in the finite channel case, we also define the

following norms to capture the boundary effect of the given functions g.:

T T

ZICED Y A SN CI PR RTEES B A I L A

+ 0 +v1<0 +v1<0

T
+Z// oy |~ 1|Lgi|2dvdt—|—2// 1| T (g%, 93| Pdvdt
+ 0 +v:<0 +v1<0

3 / [ ol kPP,

+ 0 +v1<0
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and
(1.26) B = [ VEGRE(R).

Finally, throughout this report, C' denotes a generic positive (generally large) uni-
form constant that may take different values in different places. A < B means that
there is a generic constant C' > 0 such that A < CB.

§2. Main Results

To state the main results, we are first concerned with the problem for the Landau
equation or the non-cutoff Boltzmann equation in the torus. In the following state-
ments, we point out that an omitted constant C' in the notation < is always uniformly
independent of ¢ > 0.

Theorem 2.1 (Existence and large-time behavior in the torus).  Let Q = T3, Q
be given in the form (1) or (1), and wyy be chosen under the assumption (H). There
is €g > 0 such that if Fo(z,v) = p+ p2 fo(z,v) >0 and

[wg,0.foll 1 L2 < €o,
then the initial value problem (1)-(1) possesses a unique global mild solution f in
{feL,LFL:N L,ch%LiD | f(t,z,v) satisfies the conservation laws (1)}.

This solution satisfies F(t,z,v) = pu+ pz f(t,x,v) > 0 and

lwgw fllrLeerz + lweoflleirzrz ) S llwgofollore

~
v,D

for any T > 0.
Moreover, let k € (0,1] be defined in (1) or (1) for the Landau case or the non-
cutoff Boltzmann case, respectively, then there is a A > 0 such that the solution also

enjoys the time decay estimate
(2.1) If)lzrre S e Nlwgofollzr e,
for any t > 0.

Theorem 2.2 (Propagation of spatial regularity). Under the same hypotheses
as in Theorem 2.1, for any integer m > 0, there exists an €1 > 0 such that if

[wg0follLy | r2 < e,
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then the solution f(t,z,v) to (1)-(1) established in Theorem 2.1 satisfies

(2.2) ”wq,ﬂfHL;’ngng + qu,ﬁfHL}:’mL%Lg,D S qu,ﬁfOHLi’mL%
for any T > 0.

Next, we are concerned with the problem for the Landau equation or the non-cutoff
Boltzmann equation in finite channel.

Theorem 2.3 (Inflow boundary condition).  Let Q = I x T? and w,  be chosen
under the assumption (H). There is €9 > 0 such that if
FO(:Elvja U) =p+ M%f()(xbja U) > 07
F(t,£1,7,v) = p+ p2 gy (t,3,v) > 0
forvy >0atx;=—-1andvy <0 at x1 =1,

and
le|<1

then there exists a unique mild solution
feLLTL: ,NLiLTL2 L2 |

to the inflow boundary problem (1), (1) and (1) for the Landau equation or the non-cutoff
Boltzmann equation.
The solution satisfies F(t,x1,Z,v) = p+ u%f(t, x1,Z,v) >0 and

Eruw(f) + Drw(f) S D llwgwd® follirz , + Elwesgz)

lo| <1

for any T > 0, where E1,,(f), Drw(f), and E(wq99x) are defined in (1), (1), and (1),
respectively.
Moreover, let k € (0, 1] be defined in (1) or (1) for the Landau case or the non-cutoff

Boltzmann case, respectively, then there is A > 0 such that if

E(wg,pg+) + sup E(e™"g%) < e
s>

for €9 > 0 further small enough, then it holds that

Z ||3af(t)||L}€L§M Se M Z [wq,90 foll L1 2

xq,v
la|<1 la| <1

4 M {E(wq,ﬁﬂ) + sug E(e’\sﬁﬁ)}
s>

for any t > 0.
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Theorem 2.4 (Specular reflection boundary condition).  Let Q = I x T? and
wq,9 be chosen under the assumption (H). There is eg > 0 such that if Fy(z1,Z,v) =
7 +u%fo(a:1,§:,v) >0 and

(2.4) Z [wg90% follLirz < eo,

,v
o] <1

then there exists a unique mild solution f(t,z1,Z,v) in
{feLjLT¥L: ,NLLLTL2 L2 | f(t,21,2,0) satisfies (1) and (1)}

to the specular reflection boundary problem (1), (1) and (1) for the Landau equation or
the non-cutoff Boltzmann equation. The solution satisfies F(t,z1,Z,v) = /H—,u%f(t, x1,T,v) >
0 and
Eruw(f) + Prw(f) S D lwewd® follirz
| <1

for any T > 0, where Ep () and Dr ., (f) are defined in (1) and (1), respectively.

Moreover, let k € (0, 1] be defined in (1) or (1) for the Landau case or the non-cutoff
Boltzmann case, respectively, then there is A > 0 such that

Z 10°f(Olrrrz Se M Z [wq.00 foll L1 z2

o] <1 |l <1

1Y

for any t > 0.

Theorem 2.5 (Propagation of spatial regularity in ).  Let all of the conditions
in Theorem 2.3 and Theorem 2.4 be satisfied and let f be the solution obtained in the
theorems. Then for any integer m > 0, there is e > 0 such that if

S g 0d® folluy sz, + Bluwg o (B™G) < e

o<1

and

Z [wg,00” fOHL1 L2 <e

Il v
|la|<1

hold in the place of (2.3) and (2.4), respectively, then we obtain that

Z quyﬂaafOHL}“mL%"Lil’v + Z qu,ﬁaafo‘|L£7ML%L31L3,D
|| <1 laf<1

<3S w0 folloy sz, + Elwgolhy"2)

laf <1
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for the inflow boundary condition, and

Z ||wq,196af0||L}mmL°T°ng

la| <1 la| <1

+ Z [wq,00% follLr 1212 12

xq1 “wv,D

< Z ||wq71980‘f0||% L2

T,V
|| <1

for the specular reflection boundary condition, respectively.

Here we give two remarks on the theorem: First, as far as we know, these are the
first results which shows the existence of solutions to initial boundary problems of the
Landau and non-cutoff Boltzmann equation with physical boundaries. Second, for the
torus domain case, the solution space we have used is larger than those employed in
the preceding works [12, 13]. Our proof for the torus case = T2 can be modified to
the case of the whole domain Q = R3, and the solution space is also larger than those
used in previous work. In place of L, we define the space L% as a set of tempered
distributions on R?® whose Fourier transform is integrable. Then one can show that
fﬁ?Bg/ ZL% C L%LOTOL% for any 7' > 0. Indeed the Wiener algebra Lé is known to
contain continuous functions with arbitrarily low orders of regularity.

8§3. Proof Outline

In this report we do not give the whole proof of the theorems, instead we propose
an outline of it. For this purpose, in this section we mainly consider the Boltzmann
equation for the hard potential case in a torus. In this simplest case we do not have
to use the weight functions due to (1.1), (1) and (1) and to control the terms coming
from the boundary conditions so that we can focus on looking into crucial points of the
proof. Here we just remark that such more complicated terms can be also controlled by
the methods we will explain below, and the case of the Landau equation is treated in
the same way as that of the Boltzmann equation because the collision terms () for each
case share important properties we will essentially rely on (see [13]).

Proof strategy is based on the energy method (see also [16] for one of the earliest use
of this method to the Boltzmann equation). Therefore we shall show uniform a priori
estimates of solutions in Xt given by (1) and the unique existence of local solutions, then
we combine them to extend the local solutions to global ones by a standard continuation
argument. For the uniform estimates, a key idea is to apply the Fourier transform with
respect to z to the nonlinear term I' in (1). Then we can define the bilinear operator r
as

fEa) = [ [ Bo— w2 (1) 510 ~ 1w + 50 ) dodu.
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Using this expression, we can apply the usual energy method to
(3.1) O f(t ke, v) +iv-kf(t k,v) + Lt k,v) =T(f, f)(t, k,v).

Indeed, since L acts only on the velocity variable, for the Boltzmann case we can apply
the estimates proven in [2] and [12] to have

(3.2) So{I = P}f|%5 < Re(Lf, f) 12

for some §y > 0, where Re(-) stands for taking the real part of a complex number.
Similarly, for the nonlinear term, one can prove the estimate

\(fxf, DILHE) | <C [ 17E=Dlala®lolh)o a0,

L3

To prove this we crucially use the trilinear estimates from [3] and [12].

Due to the weak dissipation effect of the linear term L in (3), we also need a priori
estimates of the macroscopic part Pf ~ (a,b,c). In order to obtain them, we derive
the fluid-like system, which is a system of partial differential equations of (a,b,c) and
microscopic parts represented by higher-order moment functions. This system comes
from the conservation laws in (1). The usual energy method may be applied, however,
we followed the dual argument employed in [10] would give a simpler and unified proof
of all cases. The necessary a priori estimates are obtained in this way.

For the proof of local existence, we construct a solution via the Hahn-Banach
extension theorem. In this respect we are highly motivated by [1] and [17] to employ
this method, especially for the initial boundary value problem in a finite channel. We

will find a solution to the linear inhomogeneous problem
(3.3) dhg+v-Veg+ ZL1g—T(h,g9) = -,
g<0a Z, v) = gO(x7 U)a

where
Z1g=—p'?Q(p,u'?g) and  ZLah = —p'2Q(u' 2, p).

We can show that, if an initial datum g is sufficiently regular and a given function h is
sufficiently regular and small, then there exists T, > 0 such that the Cauchy problem
admits a unique global local solution in

(3.4) Ly L3, Ly VLR L7, Ly p

for the torus case. A key idea of this proof is to first establish a weak solution in L3 L2 ,
and then show that the solution additionally satisfies the desired regularity condition.
This idea comes from the observation that

Xp. = L LT L, C L™((0,T,) x T% L?) C LY L%,
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and that L2  is a Hilbert space, which is more suitable for the weak formulation of the

equation in the L? framework. Let . be a mollifier over T? parametrized with £ > 0.
The approximated initial value problem of (3) is
(3.5) Og+v-Veg+ 219 — (he, 9) = —L2he,

g(ov z, U) = gO,é?(xv U)?

where go . = go *4 X and he = h*, x.. Then one can show that (3) has a weak solution
ge € L>(0,Tp; L3(T? x R3)). To see this, define

G:i=—0+ (- Vo + 24 —T(he,"))",

where the asterisk stands for taking the adjoint operator with respect to the inner
product Li,v‘ Then the solvability of (3) is reduced to show that G is an injection over

Wi ={g: g € H'(0,Tp; S(T*> x R?)) such that g(Tp,z,v) =0}.

Here S stands for the usual Schwartz class. This is proven by showing that

T() TO
(3.6) lg=(OI + A / lg:I%dr < / 1Gg.| dr,
t t

which follows from the application of the energy method to (3).
Moreover, we can show that the following functional is bijective

T.
M(w€) = (u(0)790,5) _/ (£2h5,u)dt
0
over
Wy = {w:w=%u, ue W} C L'(0,To; L*(T* x R?)),

where h. € W; is uniquely determined by w. € Wy as 4 : W; — W,. Using (3),
one can show that .Z : Wy — C can be extended to be a bounded linear functional
on LY(0,Ty; L>(T? x R3)). Therefore by the Hahn-Banach theorem there exists g. €
L>(0, To; L2(T3 x R3)) such that

M(we) = /OTO(ge(t),ws(t))dt, Vw. € L'(0,Tp; L*(T? x R?)),

which is a weak solution to (3). By the same scheme we can further prove that g. has
sufficient regularity. Next, we show that the sequence of approximate solutions {g.}
strongly converges to a function in the solution space (3), which turns out to be a local
solution to (3). Finally, by the iterative scheme

atfn_|_1 - fon—i—l + glfn—l—l _ F(fn7 fn+1) = -2 f",
SN0, 2,0) = folz,v)
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for n € N, we show that (1)-(1) has a local solution.

Combining the local existence of a solution and the a priori estimates obtained
above, we can show the unique global existence of a solution in Xrp.

Propagation of regularity is similarly proven by means of the same energy method
that was used to prove the unique global existence. We can then obtain (2.2). Indeed,
multiplication of the weight function (k)™ to the equation is harmless to the aforemen-
tioned argument.

In order to obtain the large time behavior, we set h = eM f , where f is a solution
to (3). Then h solves

d;h + ik - vh + Lh = e ™D (h, h) + Ah.
Hence by the energy method we obtain

Ihllrrsere + bllcizzrz ) S IPllzizsers,

which leads to the desired decay rate (2.1).
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