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Abstract

This paper is concerned with the relativistic Boltzmann equation without angular

cutoff. We establish the global-in-time existence, uniqueness and asymptotic stability

for solutions nearby the relativistic Maxwellian. We work in the case of a spatially

periodic box. We assume the generic hard-interaction and soft-interaction conditions

on the collision kernel that were derived by Dudyński and Ekiel-Jeżewska (Comm.

Math. Phys. 115(4):607–629, 1985) in [32], and our assumptions include the case of

Israel particles (J. Math. Phys. 4:1163–1181, 1963) in [56]. In this physical situation,

the angular function in the collision kernel is not locally integrable, and the collision

operator behaves like a fractional diffusion operator. The coercivity estimates that

are needed rely crucially on the sharp asymptotics for the frequency multiplier that

has not been previously established. We further derive the relativistic analogue of

the Carleman dual representation for the Boltzmann collision operator. This resolves

the open question of perturbative global existence and uniqueness without the Grad’s

angular cut-off assumption.
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1 Introduction

In 1872, Ludwig Boltzmann [17] derived a fundamental equation which mathemati-

cally models the dynamics of a gas represented as a collection of molecules. This is

a model for the collisional dynamics between non-relativistic particles. For the colli-

sional dynamics between special relativistic particles whose speed is comparable to

the speed of light, Lichnerowicz and Marrot [62] have derived the relativistic Boltz-

mann equation in 1940, which is a fundamental model for fast moving particles. The

relativistic Boltzmann equation is written as

pμ∂μF = p0∂t F + cp · ∇x F = C(F, F), (1.1)

where c > 0 is the speed of light. For this equation the unknown is F = F(t, x, p)

where the time variable is t ≥ 0, the spatial variable is x ∈ T
3 and the momentum

satisfies p ∈ R
3. Then the collision operator C(F, F) is given by

C(F, G) =
∫

R3

dq

q0

∫

R3

dq ′

q ′0

∫

R3

dp′

p′0 W (p, q|p′, q ′)[F(q ′)G(p′) − F(q)G(p)].

(1.2)

Here, the transition rate W (p, q|p′, q ′) is

W (p, q|p′, q ′) = c

2
sσ(g, θ)δ(4)(pμ + qμ − p′μ − q ′μ), (1.3)

where σ(g, θ) is the scattering kernel measuring the interactions between particles

and the Dirac δ-function expresses the conservation of energy and momentum. The

notation for pμ, qμ, p′μ and q ′μ will be defined in §2.1 and (2.8). Here s, g and θ will

be defined in (2.2), (2.3) and (2.9) respectively.

This equation is a relativistic generalization of the Newtonian Boltzmann equation:

∂t F +v ·∇x F =
∫

R3
dv∗

∫

S2
dω B(v − v∗, ω)[F(v′

∗)F(v′)−F(v∗)F(v)], (1.4)

where

v′ = v + v∗
2

+ |v − v∗|
2

ω, v′
∗ = v + v∗

2
− |v − v∗|

2
ω,

and the collision kernel B depends only on the relative velocity |v − v∗| and the

scattering angle ω. The mathematical analysis of the Boltzmann equation such as the

well-posedness of the equation or the regularity of the solution crucially depends on

the assumptions on the scattering kernel B(v − v∗, ω). The kernel B is in general

assumed to be in the form of a product in its arguments as

B(v − v∗, ω) = �(|v − v∗|)b0(ω),

where both � and b0 are assumed to be non-negative. This assumption is general and

it includes the varied kinds of collision kernels such as the hard-sphere collision kernel
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�(|v−v∗|) ≈ |v−v∗|, the collision kernel for Maxwellian molecules �(|v−v∗|) ≈ 1,

the collision kernel for the inverse-power law potential ψ(r) = 1
r p−1 with B ≈ |v −

v∗|γ θ−γ ′
b′

0(θ) where γ = p−5
p−1

, γ ′ = 2p
p−1

, b′
0 is bounded, and cos θ = v−v∗

|v−v∗| ·ω, and

the assumption also includes many other kernels.

Both equations model the evolution of a large number of particles interacting via col-

lisions. The classical non-relativistic Boltzmann equation has been widely studied in

many aspects. However, the relativistic Boltzmann equation has received relatively less

attention perhaps because of its complicated structure and the computational difficulty

on dealing with relativistic post-collisional momenta. The relativistic Boltzmann equa-

tion is a correction to the Newtonian equation which will do a better job of describing

fast-moving particles whose speeds may be closer to the speed of light. Understand-

ing the behavior of fast-moving special relativistic particles is crucial in describing

many astrophysical and cosmological processes [61]. Especially, the description of

the dynamics of quark plasma formed in heavy ion collisions will have to involve a

satisfactory understanding in a certain relativistic hydrodynamical equation [34], and

the relativistic Boltzmann equation is a good candidate for describing those relativistic

collisional hydrodynamical models. Further fast moving particles are precisely the sit-

uation where non-cutoff effects can become important. References on the relativistic

Boltzmann equation include [20, 23, 38, 78, 87].

For short range interactions we have collision kernels such as σ(g, θ) = constant or

sσ(g, θ) = constant, and these are the relativistic analogue of the classical hard-sphere

model (although there is no relativistic hard-sphere). However, once we consider the

long-range interactions when particles are fast moving, then σ(g, θ) can be very singu-

lar and non-integrable near θ = 0. This occurs especially for long-range interactions

and grazing collisions.

The difficulty with the angular singularity can be removed with Grad’s “cut-off”

assumption [41] that σ ∈ L1
loc(R

3 × S
2). In this case, we say that the Boltzmann

equation is in the “cutoff" regime. Otherwise, we call it the Boltzmann equation with-

out angular cutoff; sometimes this is called the “non-cutoff” regime. This cut-off

assumption is indeed very powerful in the mathematical analysis, as it removes the

singularity from the angular kernel and allows one to split the gain and the loss terms

of the Boltzmann operator.

However, it has been well-known that the regularity of a solution to the Boltzmann

equation depends crucially on the assumption. For the angular kernel with the Grad

cutoff, it has been known to propagate singularities [18, 28]. On the other hand, it

has been known that the Boltzmann equation without angular cutoff has smoothing

effects [3, 53, 55, 65]. In the case without angular cutoff, one has to make use of the

cancellation between the gain and the loss terms to estimate the angular singularity.

Without angular cutoff the Boltzmann operator behaves as the fractional Laplacian on

a lifted paraboloid of the energy-momentum four-vector [45].

Unfortunately, to the best of our knowledge, the relativistic Boltzmann equation has

not been studied without the “cut-off” hypothesis though the case when the collisions

tend to be grazing is very important. In this paper we study the relativistic Boltzmann

equation without assuming the angular cut-off hypothesis which would give a better

understanding on the long-range interactions of relativistic particles.
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1.1 A Brief History of Previous Results on the Relativistic Boltzmann Equation

The special relativistic Boltzmann equation was first derived in the paper by Lich-

nerowicz and Marrot [62] in 1940. In 1967, Bichteler [16] showed the local existence

of the solutions to the relativistic Boltzmann equation. In 1989, Dudynski and Ekiel-

Jezewska [32] showed that there exist unique L2 solutions to the linearized equation.

Afterwards, Dudynski [30] studied the long time and small-mean-free-path limits of

these solutions. Regarding large data global in time weak solutions, Dudynski and

Ekiel-Jezewska [33] in 1992 extended DiPerma-Lions renormalized solutions [26]

to the relativistic Boltzmann equation using their causality results from 1985 [31].

Recently, Wang [90] proved the global well-posedness of the relativistic Boltzmann

equation with perturbative large amplitude initial data.

In 1996, Andreasson [11] studied the regularity of the gain term and the strong L1

convergence of the solutions to the Jüttner equilibrium which were generalizations of

Lions’ results [63, 64] in the non-relativistic case. He showed that the gain term is

regularizing. In 1997, Wennberg [91] showed the regularity of the gain term in both

non-relativistic and relativistic cases.

Regarding the Newtonian limit for the Boltzmann equation, there is a local result by

Calogero [19] and a global result by Strain [81]. Also, Andreasson, Calogero and Illner

[12] proved that there is a blow-up if only with gain-term in 2004. Then, in 2009, Ha,

Lee, Yang, and Yun [48] provided uniform L2-stability estimates for the relativistic

Boltzmann equation. In 2011, Speck and Strain [77] connected the relativistic Boltz-

mann equation to the relativistic Euler equation via the Hilbert expansions. The gain

of regularity for the gain operator was proved in [58] for hard- and soft-interactions.

The propagations of L1, L∞, and L p estimates were proved in [85], [60], and [59],

respectively.

Regarding problems with the initial data nearby the global Maxwellian equilibrium

(2.12) that we consider in this paper, Glassey and Strauss [40] first proved there exist

unique global smooth solutions to the equation on the torus T
3 for the hard-interactions

in 1993. Also, in the same paper they have shown that the convergence rate to the rela-

tivistic Maxwellian is exponential. Their assumptions on the differential cross-section

covered the case of cut-off hard-interactions. In 1995 [37], they extended their results

to the whole space and have shown that the convergence rate to the equilibrium solu-

tion is polynomial. Under reduced restrictions on the cross-sections, Hsiao and Yu [52]

gave results on the asymptotic stability of Boltzmann equation using energy methods

in 2006. In 2010, Yang and Yu [92] proved time decay rates in the whole space for

the relativistic Boltzmann equation with hard-interactions and for the relativistic Lan-

dau equation. In 2010, Strain [80] showed that unique global-in-time solutions to the

relativistic Boltzmann equation exist for the soft-interactions with cut-off. Recently,

Duan and Yu [27] have shown the global wellposedness for the relativistic Boltzmann

equation for soft-interactions in the weighted L∞ perturbation framework. We also

mention a recent result [13] on the global wellposedness for the relativistic quantum

Boltzmann equation for both Bosons and Fermions near equilibrium. In addition, we

would like to mention that Glassey and Strauss [39] in 1991 computed the Jacobian

determinant of the relativistic collision map.
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1.1.1 On the Newtonian Boltzmann EquationWithout Angular Cut-Off

Regarding non-relativistic results for the spatially homogeneous Boltzmann equation

without angular cutoff, we refer to results on moment propagation [36, 71, 88] and the

results on instantaneous smoothing effect [15]. For the existence of measure-valued

solutions, we have [68].

Regarding non-relativistic results with non-cutoff assumptions, we would like to

mention [2] for the entropy dissipation and regularizing effect and [24] for the instan-

taneous smoothing effect. For the existence theory, we have the work by Alexandre

and Villani [1] on renormalized weak solutions with non-negative defect measure.

Also, we would like to record the work of Gressman and Strain [43, 44] on the global

existence of unique solutions close to the Maxwellian equilibrium. The large time

decay in the whole space for these solutions was shown in [76, 83]. We also mention

that Alexandre, Morimoto, Ukai, Xu, and Yang [3–7] obtained the proof of the global

existence of unique solutions with non-cutoff assumptions, using different methods.

We would like to mention the work by the same group [8] from 2013 on the local exis-

tence with mild regularity for the non-cutoff Boltzmann equation where they work

with an improved initial condition and do not assume that the initial data is close to

a global equilibrium. Local existence with large polynomially decaying initial data

has been recently proven by Henderson, Snelson and Tarfulea in [50]. Morimoto and

Sakamoto [67] have recently proven the existence of unique global solutions close

to equilibrium in a critical Chemin-Lerner space. We mention also the works in [9,

10, 49, 51]. Stability of the vacuum state has been recently established in [22], build-

ing upon [66]. Also a new regularization mechanism was developed in [75], a weak

Harnack-type inequality for the Boltzmann equation has been proved in [54], and the

C∞ regularization estimates are proven in [55]. Recently, the construction of unique

global solutions with low regularity using the Wiener algebra L1
k in the x variables

was introduced in [29].

2 Statement of theMain Results and Strategies

In this section, we will introduce a reformulation of the equation (1.1) by the lin-

earization around the relativistic Maxwellian equilibrium. Before we introduce the

reformulated problem including stating our main hypothesis on the scattering kernel

and our main theorems, we first introduce several notations that we will use throughout

the paper.

2.1 Notations

Throughout the paper, we denote A � B if there exists a uniform constant C > 0 such

that A ≤ C B. If A � B and B � A, then we denote A ≈ B. We define Br = B(0, r)

to be the standard ball of center zero and radius r > 0.

The relativistic momentum of a particle is denoted by a four-vector representation

pμ where μ = 0, 1, 2, 3. Without loss of generality we normalize the mass of each
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particle m = 1. We raise and lower the indices with the Minkowski metric pμ =
ημν pν , where the metric is defined as ημν = diag(−1, 1, 1, 1) is a 4 × 4 matrix.

The signature of the metric throughout this paper is (− + ++). The inverse of the

Minkowski metric is denoted ημν = diag(−1, 1, 1, 1). In general, Latin indices i, j,

etc., take values in {1, 2, 3}, while Greek indices κ, λ, μ, ν, etc., take on the values

{0, 1, 2, 3}. With p = (p1, p2, p3) ∈ R
3, we write pμ = (p0, p) where p0, which is

the energy of a relativistic particle with momentum p, is defined as p0 =
√

c2 + |p|2
where |p|2 = p · p. We use the standard Euclidean dot product: p · q

def=
∑3

i=1 pi q i .

We use the notation pμ to both denote the component μ and also to denote the vector

(p0, p) without ambiguity. We furthermore use the Einstein convention of implicit

summation over repeated indices with one up and one down. The product between

the four-vectors with raised and lowered indices is the Lorentz inner product which is

then given by

pμqμ = pμημνqμ =
3
∑

μ=0

3
∑

ν=0

pμημνqμ = −p0q0 + p · q.

Note that the momentum for each particle satisfies the mass shell condition pμ pμ =
−c2 with p0 > 0. Also, the product pμqμ is Lorentz invariant as described in Defini-

tion 2.13.

By expanding the relativistic Boltzmann equation (1.1) and dividing both sides by

p0 we write the relativistic Boltzmann equation as

∂t F + p̂ · ∇x F = Q(F, F), F(t = 0, x, p) = F0(x, p), (2.1)

where Q(F, F) = C(F, F)/p0 and the normalized velocity of a particle p̂ is given

by

p̂ = c
p

p0
= p
√

1 + |p|2/c2
.

We define the quantities s and g which respectively are the square of the energy and

the relative momentum in the center-of-momentum system, p + q = 0, as

s = s(pμ, qμ) = −(pμ + qμ)(pμ + qμ) = 2(−pμqμ + c2) ≥ 0, (2.2)

and

g = g(pμ, qμ) =
√

(pμ − qμ)(pμ − qμ) =
√

2(−pμqμ − c2). (2.3)

Note that we have s = g2 + 4c2. We now rewrite the quantities s and g from (2.2)

and (2.3) with c = 1 as

s = s(pμ, qμ) = −(pμ + qμ)(pμ + qμ) = 2(−pμqμ + 1) ≥ 0, (2.4)

123



   20 Page 8 of 167 J.W. Jang, R.M. Strain

and

g = g(pμ, qμ) =
√

(pμ − qμ)(pμ − qμ) =
√

2(−pμqμ − 1). (2.5)

Now we have that s = g2 + 4. Similarly we can define ḡ as the relative momentum

between p′μ and pμ in the center-of-momentum system. It is defined as

ḡ
def= g(p′μ, pμ) =

√

(p′μ − pμ)(p′
μ − pμ) =

√

2(−p′μ pμ − 1)

=
√

2(p′0 p0 − p′ · p − 1) =

√

2
|p − p′|2 + |p × p′|2

p0 p′0 + p · p′ + 1
.

(2.6)

In the same manner, we define the relative momentum between p′μ and qμ as

g̃
def= g(p′μ, qμ) =

√

(p′μ − qμ)(p′
μ − qμ) =

√

2(−p′μqμ − 1)

=
√

2(p′0q0 − p′ · q − 1) =

√

2
|p′ − q|2 + |p′ × q|2

p′0q0 + p′ · q + 1
.

(2.7)

Again we have s̄ = ḡ2 + 4 and s̃ = g̃2 + 4. These important quantities will be used

extensively in the proofs below.

The conservation of energy and momentum for elastic collisions is described as

pμ + qμ = p′μ + q ′μ. (2.8)

Then the scattering angle θ is defined by

cos θ =
(pμ − qμ)(p′

μ − q ′
μ)

g2
. (2.9)

Together with the conservation of energy and momentum in (2.8), it can be shown

that the angle and cos θ are well-defined [38]. Note that the numerator of cos θ can be

further written as

(pμ − qμ)(p′
μ − q ′

μ) = (pμ − qμ)(pμ + qμ − 2q ′
μ)

= (pμ − qμ)(pμ − qμ) + 2(pμ − qμ)(qμ − q ′
μ)

= g2 + 2(pμ − qμ)(qμ − q ′
μ)

= g2 + 2(pμ − p′μ + p′μ − qμ)(p′
μ − pμ)

= g2 − 2(p′μ − pμ)(p′
μ − pμ) + 2(p′μ − qμ)(p′

μ − pμ)

= g2 − 2ḡ2 + 2(p′μ − qμ)(p′
μ − pμ) = g2 − 2ḡ2.

(2.10)
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As above, we note that it follows from the collision geometry (2.8) that

(p′μ − qμ)(p′
μ − pμ) = 0.

Therefore, using (2.10) with (2.5) and (2.6) we can write

1 − 2 sin2 θ

2
= cos θ = 1 − 2

ḡ2

g2
, (2.11)

and hence we obtain that θ ≈ ḡ
g

. This estimate will be used frequently in §3.

Remark 2.1 Since we are dealing with the non-cutoff relativistic Boltzmann equation

then there will be an angular singularity when cos θ = 1 as in (2.20). The purpose of

this remark is to explain the collisional geometry when cos θ = 1. By (2.11) when

cos θ = 1 we have
ḡ2

g2 = 0 which means

0 = ḡ2 = (pμ − p′μ)(pμ − p′
μ).

Equivalently, this means that

(p′0 − p0)2 = |p′ − p|2.

And this implies that p0 = p′0 and p = p′ because otherwise

|p′0 − p0| =
∣

∣

∣

∣

|p′|2 − |p|2
p′0 + p0

∣

∣

∣

∣

< |p′ − p|.

Therefore, if cos θ = 1, we have p′μ = pμ and also q ′μ = qμ by (2.8).

Here we would like to introduce the relativistic Maxwellian which models the equi-

librium solutions, also known as Jüttner solutions. These are characterized as a particle

distribution which maximizes the entropy subject to constant mass, momentum, and

energy. They are given by

J (p) = e
− c p0

kB T

4πckB T K2(
c2

kB T
)
,

where kB is Boltzmann constant, T is the temperature, and K2 stands for the Bessel

function K2(z) = z2

2

∫∞
1 dt e−zt (t2 − 1)

3
2 . Throughout this paper, we normalize all

physical constants to 1, including the speed of light c = 1. Then we observe that the

relativistic Maxwellian is given by

J (p) = e−p0

4π
. (2.12)
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2.2 Relativistic Collision Operator

We now consider the center-of-momentum expression for the relativistic collision

operator. Note that this expression has appeared in the physics literature; see [23]. For

other representations of the operator such as Glassey–Strauss coordinate expression,

see [11, 39, 40]. Also, see [81, 82] for the relationship between those two representa-

tions of the collision operator. As in [23], one can reduce the collision operator (1.2)

using Lorentz transformations and get

Q( f , h) =
∫

R3
dq

∫

S2
dω vøσ(g, θ)[ f (q ′)h(p′) − f (q)h(p)], (2.13)

where vø = vø(p, q) is the Møller velocity given by

vø(p, q) =
√

∣

∣

∣

p

p0
− q

q0

∣

∣

∣

2
−
∣

∣

∣

p

p0
× q

q0

∣

∣

∣

2
= g

√
s

p0q0
. (2.14)

The post-collisional momenta in the center-of-momentum expression are written as

p′ = p + q

2
+ g

2

(

ω + (ξ − 1)(p + q)
(p + q) · ω

|p + q|2
)

, (2.15)

and

q ′ = p + q

2
− g

2

(

ω + (ξ − 1)(p + q)
(p + q) · ω

|p + q|2
)

, (2.16)

where ξ
def= p0+q0

√
s

.

For F, G smooth and vanishing sufficiently rapidly at infinity, it turns out [38] that

the collision operator satisfies

∫

Q(F, G) dp =
∫

pQ(F, G) dp =
∫

p0 Q(F, G) dp = 0, (2.17)

and

∫

Q(F, F)(1 + log F) dp ≤ 0. (2.18)

Note that (2.17) leads to the conservation laws of total mass, momentum, and energy

as

d

dt

∫

T3
dx

∫

R3
dp

⎛

⎝

1

p

p0

⎞

⎠ F(t, x, p) = 0.
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Also, (2.18) leads to the Boltzmann H-theorem which states that the entropy of the

system is a non-decreasing function of t ; i.e., we have

d

dt

∫

T3
dx

∫

R3
dp (−F log F)(t, x, p) ≥ 0,

where the expression −F log F is called the entropy density.

2.3 Main Hypothesis on the Collision Kernel�

The relativistic Boltzmann collision kernel σ(g, θ) is a non-negative function which

only depends on the relative velocity g and the scattering angle θ . We assume that σ

takes the form of the product in its arguments; i.e.,

σ(g, θ)
def= �(g)σ0(θ). (2.19)

In general, we suppose that both � and σ0 are non-negative functions.

Without loss of generality, we may assume that the collision kernel σ is supported

only when cos θ ≥ 0 throught this paper; i.e., 0 ≤ θ ≤ π
2

. Otherwise, the following

symmetrization [38] will reduce to this case:

σ̄ (g, θ) = [σ(g, θ) + σ(g,−θ)]1cos θ≥0,

where 1A is the indicator function of the set A.

We suppose that the angular function θ �→ σ0(θ) is not locally integrable; for some

C > 0, it satisfies

1

Cθ1+γ
≤ sin θ · σ0(θ) ≤ C

θ1+γ
, γ ∈ (0, 1), ∀θ ∈

(

0,
π

2

]

. (2.20)

Notice that we do not assume any “cut-off” hypothesis on the angular function [41]

that σ0 ∈ L1
loc(S

2). We further assume the collision kernel satisfies the following

hard-interaction assumption:

�(g) = C�ga, −γ ≤ a < 2, C� > 0. (2.21)

In the soft-interaction case we assume that

�(g) = C�g−b, γ < b < min

{

3

2
+ γ, 2

}

, C� > 0. (2.22)

For these expressions we introduce the following unified notation

ρ =
{

a for the hard-interactions (2.21),

−b for the soft-interactions (2.22).
(2.23)
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Then we generally have for both hard (2.21) and soft (2.22) interactions that

�(g) = C�gρ, C� > 0.

We further remark that the conditions above imply that 0 ≤ a + γ < 2 + γ and

max{− 3
2
,−2 + γ } < −b + γ < 0 so that in general

max

{

−3

2
,−2 + γ

}

< ρ + γ < 2 + γ.

These are the assumptions on the kernel that we will use throughout this paper.

These assumptions on our collision kernel have been motivated from important

physical interactions. Conditions on our collision kernel are generic in the sense of

the collision kernel assumptions derived by Dudyński and Ekiel-Jeżewska in [32]. In

this work we do not study the high order singularities when γ ∈ [1, 2) for (2.20).

Our results can further cover the case of Israel particles from [56]. Unfortunately, to

the best of our knowledge, the relativistic Boltzmann equation has not been studied

without the “cut-off” hypothesis. This problem was also discussed in the appendix to

[74]. In this paper we will study the relativistic Boltzmann equation without assuming

the Grad’s angular cut-off hypothesis in order to try to obtain a better understanding

of relativistic gases. We include several additional physical references that discuss

the special relativistic Boltzmann collision kernels [20, 23, 25, 32, 34, 35, 56, 72–74]

including those with an angular singularity such as in (2.20). Some of these are also

discussed in [81, Appendix B].

2.4 Linearization and Reformulation of the Boltzmann Equation

We will consider the linearization of the collision operator and the perturbation around

the relativistic Jüttner equilibrium state

F(t, x, p) = J (p) +
√

J (p) f (t, x, p). (2.24)

Without loss of generality, we suppose that the mass, momentum, and energy conser-

vation laws for the perturbation f (t, x, p) hold for all t ≥ 0 as

∫

R3
dp

∫

T3
dx

⎛

⎝

1

p

p0

⎞

⎠

√

J (p) f (t, x, p) = 0. (2.25)

We will now linearize the relativistic Boltzmann equation (2.1) with (2.13) around the

relativistic Maxwellian equilibrium state (2.24). We obtain that

∂t f + p̂ · ∇x f + L( f ) = �( f , f ), f (0, x, v) = f0(x, v), (2.26)
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where the linearized relativistic Boltzmann operator L is given by

L( f )
def= −J−1/2 Q(J ,

√
J f ) − J−1/2 Q(

√
J f , J )

=
∫

R3
dq

∫

S2
dω vøσ(g, ω)

(

f (q)
√

J (p)

+ f (p)
√

J (q) − f (q ′)
√

J (p′) − f (p′)
√

J (q ′)
)

√

J (q),

and the bilinear operator � is given by

�( f , h)
def= J−1/2 Q(

√
J f ,

√
J h)

=
∫

R3
dq

∫

S2
dω vøσ(g, θ)

√

J (q)( f (q ′)h(p′) − f (q)h(p)).
(2.27)

Then notice that we have

L( f ) = −�( f ,
√

J ) − �(
√

J , f ). (2.28)

We will further decompose L = N + K.

We call N as the norm part and K as the compact part. First, we define the weight

function ζ̃ such that

�(
√

J , f ) =
(∫

R3
dq

∫

S2
dω vøσ(g, θ)( f (p′) − f (p))

√

J (q ′)
√

J (q)

)

−ζ̃ (p) f (p), (2.29)

where

ζ̃ (p)
def=
∫

R3
dq

∫

S2
dω vøσ(g, θ)(

√

J (q) −
√

J (q ′))
√

J (q). (2.30)

We now call ζ̃ (p) the frequency multiplier of the linearized Boltzmann collision

operator. It is crucial to obtain the sharp asymptotic behavior of ζ̃ (p) for the proof

of the coercivity estimates of the linearized relativistic Boltzmann operator without

angular cutoff, which will be used crucially for the proof of the global well-posedness

of the relativistic Boltzmann equation without angular cutoff nearby the Maxwellian

equilibrium (2.12).

The weight function ζ̃ (p) can be split into the sum of two weight functions as

ζ̃ = ζ + ζK

where the weights satisfy the following asymptotics; for any ε ∈ (0, γ /2), there exists

a finite constant Cε > 0 such that under (2.23) we have

|ζK(p)| � Cε(p0)
ρ
2 +ε

and ζ(p) ≈ (p0)
ρ+γ

2 . (2.31)
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These asymptotics are proven in Theorem 2.3. Further ζ and ζK are defined precisely

in (3.16) and (3.17).

This splitting motivates the following splitting of the linearized operator L: the

compact part K of the linearized Boltzmann operator L is defined by

K f = ζK(p) f − �( f ,
√

J )

= ζK(p) f −
∫

R3
dq

∫

S2
dω vøσ(g, θ)

√

J (q)( f (q ′)
√

J (p′) − f (q)
√

J (p)),

(2.32)

and the sharp norm part is called N and it is defined by

N f = −�(
√

J , f ) − ζK(p) f

= ζ(p) f −
∫

R3
dq

∫

S2
dω vøσ(g, ω)( f (p′) − f (p))

√

J (q ′)
√

J (q).

(2.33)

Then, the norm part satisfies that

〈N f , f 〉 = 1

2

∫

R3
dp

∫

R3
dq

∫

S2
dω vøσ(g, θ)( f (p′) − f (p))2

√

J (q ′)
√

J (q)

+
∫

R3
dp ζ(p)| f (p)|2. (2.34)

This holds because a pre-post collisional change of variables (p, q) → (p′, q ′) as in
(2.94) provides

−
∫

R3
dp

∫

R3
dq

∫

S2
dω vøσ(g, θ)( f (p′) − f (p))h(p)

√

J (q ′)
√

J (q)

= −1

2

∫

R3

dp

∫

R3

dq

∫

S2

dω vøσ(g, θ)( f (p′) − f (p))h(p)
√

J (q ′)
√

J (q)

− 1

2

∫

R3
dp

∫

R3
dq

∫

S2
dω vøσ(g, θ)( f (p) − f (p′))h(p′)

√

J (q)
√

J (q ′)

= 1

2

∫

R3

dp

∫

R3

dq

∫

S2

dω vøσ(g, θ)( f (p′) − f (p))(h(p′) − h(p))
√

J (q ′)
√

J (q).

With this computation in mind we define a fractional semi-norm as

| f |2
B

def= 1

2

∫

R3
dp

∫

R3
dq

∫

S2
dω vøσ(g, θ)( f (p′) − f (p))2

√

J (q)J (q ′).

For l ∈ R, we also define the unified weight function

wl(p) = (p0)l . (2.35)
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Then we further define a non-local fractional weighted semi-norm | f |Bl
as:

| f |2
Bl

def= 1

2

∫

R3
dp

∫

R3
dq

∫

S2
dω vøσ(g, θ)wl(p)( f (p′) − f (p))2

√

J (q)J (q ′).

(2.36)

These norms appear in the process of linearization of the collision operator.

2.5 Spaces

Before introducing our methods and strategies, we would like to define several function

spaces that we use throughout this paper.

We will use 〈·, ·〉 to denote the standard L2(R3
p) inner product. Also, we will use

(·, ·) to denote the L2(T3
x × R

3
p) inner product. As will be seen, the construction of

our solutions depends on the following weighted fractional Sobolev space:

I ρ,γ def= { f ∈ L2(R3
p) : | f |I ρ,γ < ∞},

where the norm is described as

| f |2I ρ,γ
def= | f |2

L2
ρ+γ

2

+
∫

R3
dp

∫

R3
dp′ ( f (p′) − f (p))2

|p − p′|3+γ
(p′0 p0)

ρ+γ
4 1|p−p′|≤1,

(2.37)

and we use the notation (2.23) to define ρ with (2.21) and (2.22). Here we further

define the weighted L2 norm | · |L2
l

for l ∈ R as

| f |L2
l

def=
∫

R3
dp wl(p)| f (p)|2.

This is a standard weighted isotropic L2 based fractional derivative norm that is known

to be finite for a large class of functions. We remark that the norm is flat and not

geometric, and this is one of the main differences from the non-relativistic case. We

discuss this further in (2.42)–(2.43)–(2.44)–(2.45).

The notation on the norm | · | refers to function space norms acting on R
3
p only. The

analogous norm acting on T
3
x × R

3
p is denoted by ‖ · ‖. So that we have

‖ f ‖2
I ρ,γ

def= ‖ | f |I ρ,γ ‖2
L2(T3)

.

Given the weight (2.35), using ρ from (2.23) we also define a general weighted frac-

tional Sobolev norm as

| f |2
I
ρ,γ

l
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def= |wl f |2
L2

ρ+γ
2

+
∫

R3
dp

∫

R3
dp′ w2l(p)

( f (p′) − f (p))2

|p − p′|3+γ
(p′0 p0)

ρ+γ
4 1|p−p′|≤1,

(2.38)

where as usual ρ = a under (2.21), and ρ = −b under (2.22). Then similarly

‖ f ‖2
I
ρ,γ
l

def= ‖ | f |I
ρ,γ

l
‖2

L2(T3)
.

The multi-indices α = (α1, α2, α3) will be used to record spatial derivatives. We write

∂α = ∂α1

x1
∂α2

x2
∂α3

x3
.

If each component of α is not greater than that of α′, we write α ≤ α′. Also, α < α′

means α ≤ α′ and |α| < |α′| where |α| = α1 + α2 + α3. We further define the

derivative space I
ρ,γ

N (T3 × R
3) with integer N ≥ 0 spatial derivatives by

‖ f ‖2
I
ρ,γ

N

= ‖ f ‖2
I
ρ,γ

N (T3×R3)
=

∑

|α|≤N

‖∂α f ‖2
I ρ,γ (T3×R3)

.

We also define the weighted derivative space I
ρ,γ

l,N (T3 × R
3) whose norm is given by

‖ f ‖2
I
ρ,γ
l,N

= ‖ f ‖2
I
ρ,γ
l,N (T3×R3)

=
∑

|α|≤N

‖∂α f ‖2
I
ρ,γ
l (T3×R3)

.

We define the space H N = H N (T3 × R
3) with integer N ≥ 0 spatial derivatives as

‖ f ‖2
H N = ‖ f ‖2

H N (T3×R3)
=

∑

|α|≤N

‖∂α f ‖2
L2(T3×R3)

.

We then define the space H N
l = H N

l (T3 × R
3) by

‖ f ‖2

H N
l

= ‖ f ‖2

H N
l (T3×R3)

=
∑

|α|≤N

‖wl∂α f ‖2
L2(T3×R3)

.

We sometimes denote the norm ‖ f ‖2

H N
l

as ‖ f ‖2
H for simplicity when there is no risk

of ambiguity. We remark that we always use N to denote the number of derivatives,

and we always use l to denote the order of the weights so there is no ambiguity.

We will also consider the spatial derivative of �. Recall that the linearization of

the collision operator is given by (2.27) and that the post-collisional variables p′ and

q ′ satisfy (2.15) and (2.16). Then, we can define the spatial derivatives of the bilinear

collision operator � as

∂α�( f , h) =
∑

α′≤α

Cα,α′�(∂α−α′
f , ∂α′

h), (2.39)

123



Relativistic Boltzmann Equation without Cut-Off Page 17 of 167    20 

where Cα,α′ are non-negative constants.

Now, we state our main result as follows:

Theorem 2.2 (Main Theorem) Fix N ≥ 2, which represents the total number of spatial

derivatives. Choose f0 = f0(x, p) ∈ H N
l+m(T3 × R

3) in (2.24) which satisfies (2.25).

For the hard-interactions (2.21) and the soft-interactions (2.22) we can take any m ≥ 0

and l ≥ 0 for the existence and uniqueness.

There is an η0 > 0 such that if ‖ f0‖H N
l+m (T3×R3) ≤ η0, then there exists a unique

global solution to the relativistic Boltzmann equation (1.1), in the form (2.24), which

satisfies

f (t, x, p) ∈ L∞
t ([0,∞); H N

l (T3 × R
3)) ∩ L2

t ((0,∞); I
ρ,γ

l,N (T3 × R
3)),

where we use the notation from (2.23).

For the hard-interactions (2.21) we have exponential decay to equilibrium. For

some fixed λ > 0 and for any l ≥ 0, we have the uniform estimate

‖wl f (t)‖H N (T3×R3) � e−λt‖wl f0‖H N (T3×R3).

Furthermore, for the soft-interactions (2.22), fix any m > 0 and l ≥ |ρ + γ |/4 > 0,

then for ‖ f0‖H N
l+m (T3×R3) sufficiently small, we further have the polynomial decay

‖wl f (t)‖H N (T3×R3) ≤ ‖wl+m f0‖H N (T3×R3)

(

1 + Cl,m

|ρ + γ |
2m

t

)− 2m
|ρ+γ |

,

for some constant Cl,m > 0.

2.6 Main Estimates

The proof of Theorem 2.2 heavily depends on the establishment of a global in time

energy inequality. For this, we needed to obtain sharp upper- and lower-bound esti-

mates for the linearized operator L and the nonlinear operator �. In this section, we

would like to record our main upper and lower bound estimates of the inner products

that involve the operators ζ̃ , �, L , K, and N from (2.27)–(2.33). The proofs of these

estimates are given in §3, §4 and §5. In general we will prove these estimates in the

class of Schwartz functions. However all of these estimates can be justified in general

by standard approximation procedures.

In the theorem and the lemmas below we use ρ = a in the hard-interaction case

(2.21) and ρ = −b in the soft-interaction case (2.22), as in (2.23).

Theorem 2.3 The frequency multiplier ζ̃ (p) from (2.30) can be split into the sum of

two frequency multiplier functions as

ζ̃ = ζ + ζK,
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which are defined in (3.16) and (3.17) respectively. These multiplier functions satisfy

the following asymptotics:

|ζK(p)| ≤ Cε(p0)
ρ
2 +ε

and ζ(p) ≈ (p0)
ρ+γ

2 . (2.40)

Here, for any small ε > 0 there exists a finite constant Cε > 0 as above.

Theorem 2.4 We have the following uniform estimate

|〈�( f , h), η〉| � | f |L2 |h|I ρ,γ |η|I ρ,γ .

Lemma 2.5 Suppose that |α| ≤ N with N ≥ 2 and l ≥ 0. Then we have the estimate

|
(

w2l∂α�( f , h), ∂αη
)

| � ‖ f ‖H N
l

‖h‖I
ρ,γ

l,N
‖∂αη‖I

ρ,γ

l
.

Lemma 2.6 We have the uniform inequality for K that

|〈w2l
K f , f 〉| ≤ ε| f |2

I
ρ,γ

l

+ Cε | f |2
L2(BCε )

where ε > 0 is any small number and Cε > 0 is a finite constant.

Lemma 2.7 We have the uniform inequality for N that

|〈w2l
N f , f 〉| � | f |2

I
ρ,γ

l

.

Lemma 2.8 We have the uniform coercive lower bound estimate:

〈w2l
N f , f 〉 � | f |2

I
ρ,γ

l

− C | f |2
L2(BC )

for some C ≥ 0 and for any l ∈ R. If l = 0, then we can take C = 0.

Lemma 2.7 and Lemma 2.8 together imply that the norm piece is comparable to

the fractional Sobolev norm I ρ,γ as

〈N f , f 〉 ≈ | f |2I ρ,γ . (2.41)

We lastly have the coercive inequality for the linearized Boltzmann operator:

Lemma 2.9 For some C > 0, we have the uniform lower bound

〈w2l L f , f 〉 � | f |2
I
ρ,γ
l

− C | f |2
L2(BC )

.

Note that Lemma 2.9 is a direct consequence of Lemmas 2.6 and 2.8 simply because

L = K + N from (2.32) and (2.33).
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2.7 Main Difficulties and Our Strategy

In this section, we will explain the main difficulties that we have experienced and

how we resolved those issues. And we will further explain several new ideas and

techniques that we developed in the course of the proof. We will begin with the

following discussion regarding the sharp linearized norm for the Newtonian Boltzmann

equation (1.4) in comparison to the relativistic Boltzmann equation (2.1).

We mention that the unique global solutions to the Newtonian non-cutoff Boltzmann

equation constructed in [44] depend on the non-isotropic geometric fractional Sobolev

space N s,ρ with the following norm:

| f |2N s,ρ
def= | f |2

L2
ρ+2s

+
∫

R3

dv

∫

R3

dv′ ( f (v′) − f (v))2

d(v, v′)3+2s
(
〈

v′〉 〈v〉)
ρ+2s

2 1d(v,v′)≤1.

(2.42)

Above the parameters satisfy s ∈ (0, 1) and ρ > −3, and 〈v〉 =
√

1 + |v|2. Further

d(v, v′) is an anisotropic metric on the “lifted" paraboloid:

d(v, v′)
def=

√

|v − v′|2 +
( |v|2

2
− |v′|2

2

)2

.

Note that the inclusion of the quadratic difference in the metric is essential and it is

not a lower-order term. Further [45] shows that the sharp diffusive behavior of the full

nonlinear Newtonian Boltzmann collision operator (1.4) is the same as the linearized

norm in (2.42).

Alexandre, Morimoto, Ukai, Xu, and Yang also proved the global existence of

unique solutions to the non-cutoff Boltzmann equation [4–7], and they used the triple

norm which is given by

||| f ||| =
∫

R3
dv

∫

R3
dv∗

∫

S2
dσ B(v − v∗, σ )

×
[

μ(v∗)( f (v′) − f (v))2 + f 2(
√

μ(v′) −
√

μ(v))2
]

. (2.43)

This norm ||| f ||| can be shown to be equivalent to | f |2N s,ρ in (2.42) as in [4–7, 44].

Further Alexandre, Hérau and Li [9] have derived the sharp linearized diffusive

behavior using pseudo-differential operators as follows:

−〈L f , f 〉 + | f |L2
l

≈
∫

R3
dv

(

〈v〉ρ | 〈Dv〉s f (v)|2 + 〈v〉ρ | 〈v ∧ Dv〉s f (v)|2 + 〈v〉ρ+2s | f (v)|2
)

.

(2.44)

Here L is the linearized Newtonian Boltzmann collision operator [9]. This expression

holds for Schwartz functions f and for any l ∈ R, where the implicit constant will
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depend upon l. Since these three expressions (2.42), (2.43) and (2.44) all in some sense

sharply characterize the diffusion of the linearized Dirichlet form 〈L f , f 〉 for the

Newtonian Boltzmann equation (1.4), then they equivalently show the non-isotropic

behavior of the fractional diffusion in the Newtonian case.

On the other hand, when it comes to the relativistic situation, due to the collisional

geometry as in (2.8) the analogous metric d(pμ, p′μ) to (2.42) is the metric on the

“lifted" hyperboloid between two energy-momentum 4-vectors:

d(pμ, p′μ)
def=
√

|p − p′|2 + |p0 − p′0|2.

Note that, different from the non-relativistic analogue | · |N s,ρ in (2.42), our semi-norm

for the relativistic case (2.37) behaves like a weighted fractional Sobolev norm, as

we will observe that the Euclidean distance d(pμ, p′μ) between energy-momentum

4-vectors pμ and p′μ on a “lifted” hyperboloid in R
4 is indeed equivalent to the

standard 3-dimensional Euclidean distance |p − p′|. This is because we have

|p − p′|2 ≤ (p0 − p′0)2 + |p − p′|2 def= d(pμ, p′μ)2,

and that when p �= p′ we have

|p0 − p′0| = ||p|2 − |p′|2|
p0 + p′0 = ||p| − |p′||(|p| + |p′|)

p0 + p′0 < ||p| − |p′|| ≤ |p − p′|.

These two expressions together result in

|p − p′| ≤ d(pμ, p′μ) ≤
√

2|p − p′|. (2.45)

This discussion shows that in the special relativistic situation the bounded momentum,

p/p0, and the linearly growing collisional energy conservation, p′0 + q ′0 = p0 +
q0, cause the non-cutoff diffusion of the relativistic Boltzmann collision operator to

be isotropic as in (2.37). This contrasts with the Newtonian case (1.4) where the

momentum, v, grows linearly and the collisional energy conservation, |v′|2 + |v′
∗|2 =

|v|2 + |v∗|2, is quadratic and the fractional diffusion is non-isotropic as in (2.42)–

(2.43)–(2.44). The isotropic diffusion in the special relativistic case allows us to use

standard Littlewood–Paley operators when we prove our main estimates and avoids

the complexity of non-isotropic diffusion.

Even with the isotropic diffusion, there are major difficulties in the special rela-

tivistic case in merely establishing the required cancellation estimates as we will now

explain. Indeed in 1991 Glassey and Strauss [39, Proof of Theorem 2] calculated a

sharp estimate which showed that the p-derivatives of p′ and q ′ exhibit some momen-

tum growth in the Glassey–Strauss coordinates [47, Equation (1.18)]. This momentum

growth of the first derivatives of p′ and q ′, which does not occur in the Newtonian

case, can be highly problematic as seen in [47].

Further, to establish the cancellation estimates of the non-local diffusion the stan-

dard approach is to do a change of variables of the form p′ → p or q ′ → q. This was
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the foundation of the “cancellation lemma” [2] for the Newtonian Boltzmann equation

(1.4). This Newtonian cancellation lemma can be stated as

∫

R3
dv

∫

S2
dσ B(v − v∗, σ )(F(v′) − F(v)) = (F ∗ S)(v∗), (2.46)

where

S(z) = C3|z|ρ, 0 < C3 < ∞.

This holds for a general class of functions F for a Newtonian collision kernel such

as B(v − v∗, σ ) ≈ |v − v∗|ρθ−2−2s with ρ > −3 and s ∈ (0, 1). The main tool

in proving this cancellation lemma is the change of variables v′ → v with Jacobian

determinant

∣

∣

∣

∣

dv′

dv

∣

∣

∣

∣

= 1

4
(cos(θ/2))2 ≥ 1

8
> 0, 0 ≤ θ ≤ π

2
.

This Newtonian cancellation lemma (2.46) and the associated change of variables

v′ → v, and generalizations, have been a foundation for proving cancellation estimates

for the Newtonian Boltzmann equation without angular cutoff.

However the analogous relativistic Jacobian determinant has been shown to be

highly problematic. Indeed, it has been numerically calculated using high precision

arithmetic recently in [21] that the Jacobian determinant

∣

∣

∣

∂ p′
∂ p

∣

∣

∣
has a huge number of

distinct points at which it is essentially zero. This motivated us to look for a counter-

example.

Now in §3 we will introduce a counter-example to a relativistic cancellation lemma,

such as (2.46), in the following sense. We formally write down the following relativistic

quantity:

ζ̃
B
(p)

def= 1

2

∫

R3
dq

∫

S2
dω vøσ(g, θ)(J (q) − J (q ′)) = ζ̃

B

1 (p) − ζ̃
B

2 (p).

Recall the relativistic Maxwellian, J (q), (a Schwartz function) is given by (2.12).

Then in §3 we have shown for a fixed constant c′ > 0 that

ζ̃
B

1 (p) = c′

p0
e

p0

2

∫

R3

dq

q0

e− 1
2 q0

g

∫ ∞

0

rdr√
r2 + s

sλσ(gλ, θλ)

× exp

(

− p0 + q0

2
√

s

√

r2 + s

)

I0

( |p × q|
g
√

s
r

)

.

We take this opportunity to record the following modified Bessel functions:

I0(y)
def= 1

2π

∫ 2π

0

dφ exp(y cos φ), I1(y) = 1

2π

∫ 2π

0

dφ cos φ exp(y cos φ).

(2.47)
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We also define the notations

g2
λ = g2 + 1

2

√
s(
√

r2 + s −
√

s), sλ = g2
λ + 4,

and

cos θλ = 2g2

g2
λ

− 1 =
g2 − 1

2

√
s(

√
r2 + s − √

s)

g2 + 1
2

√
s(

√
r2 + s − √

s)
.

Then with all the terms defined we observe that ζ̃
B

1 (p) represents a finite integral

because it contains exponential decay in both the q and the r variables. However, if

we consider the term in ζ̃
B

2 (p) with J (q ′) only, then in §3 we derive that

ζ̃
B

2 (p) = c′

p0

∫

R3

dq

q0

e−q0

g

∫ ∞

0

rdr√
r2 + s

sλσ(gλ, θλ).

Here we can assume that the angular kernel σ0 from (2.20) is for example pointwise

bounded. Then we see that the dr integration becomes infinite in ζ̃
B

2 (p), since this

term no longer contains sufficient decay in the r variable.1 Therefore ζ̃
B

2 (p) = ∞,

and we can rigorously justify this argument using standard approximation procedures.

This shows that the relativistic analog of the Newtonian cancellation lemma in (2.46)

is false.

Remark 2.10 This illustrates that the crucial change of variable in cancellation lemma,

q ′ → q (or (q ′, ω) → (q, k) for some |k| = 1) as stated in [2] for the Newtonian

Boltzmann equation, is not well defined in the special relativistic case. This statement

is further independent of our choice of coordinate representations of (p′, q ′), such as

for example (2.15).2 Indeed, if the change of variables q ′ → q held with an integrable

Jacobian then ζ̃
B

2 (p) would be finite.

Since we do not have a cancellation lemma, or the crucial change of variables

from q ′ → q or p′ → p, instead we introduce the following novel series of changes

of variables in order to estimate the cancellation of the fractional derivatives in the

relativistic Boltzmann equation. If we consider the norm term from (2.33), and we

take the L2(R3
p) inner product with η(p) then we will have to estimate a term like

1

2

∫

R3
dp η(p)

∫

R3
dq

∫

S2
dω vøσ(g, θ)( f (p′) − f (p))

√

J (q ′)J (q). (2.48)

For a term such as this one, we may use the reduction of the delta function of the

conservation laws (2.8) in the center-of-momentum frame as in [23], [79, (5.39)] and

[82, Theorem 1.2] to obtain the following representation of an operator:

1 Although notice that one could make the dr integration finite by artificially assuming rapid decay in

(2.22). But this is outside the range of the physical assumptions.

2 We refer to [82] for a discussion of a variety of coordinate representations of the relativistic Boltzmann

collision operator.
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Lemma 2.11 (Center-of-momentum reduction, Theorem 1.2 of [82]) For an integrable

function G : R
4 × R

4 × R
4 × R

4 → R, we have

∫

R3

dp′

p′0

∫

R3

dq ′

q ′0 sσ(g, θ)δ(4)(pμ + qμ − p′μ − q ′μ)G(pμ, qμ, p′μ, q ′μ)

= 1

2

∫

S2

dω g
√

s σ(g, θ)G(pμ, qμ, p′μ, q ′μ).

Above we assume that the function G(pμ, qμ, p′μ, q ′μ) has sufficient vanishing con-

ditions so that the integrals above are well-defined. We also use (2.15) and (2.16) to

define p′μ and q ′μ in the second integral.

Then we can use Lemma 2.11 to write (2.48) as follows

∫

R3

dp

p0

∫

R3

dq

q0

∫

R3

dp′

p′0

∫

R3

dq ′

q ′0 δ(4)(pμ + qμ − p′μ − q ′μ)sσ(g, θ)

×η(p)( f (p′) − f (p))
√

J (q ′)J (q). (2.49)

To better understand this term, we now introduce the Carleman representation of the

collision operator as follows:

Lemma 2.12 (Carleman representation) We have the following equality:

∫

R3

dp

p0

∫

R3

dq

q0

∫

R3

dp′

p′0

∫

R3

dq ′

q ′0 sσ(g, θ)δ(4)(p′μ + q ′μ − pμ − qμ)G(p, q, p′)

=
∫

R3

dp

p0

∫

R3

dp′

p′0

∫

E
q

p′−p

dπq

8ḡq0
sσ(g, θ)G(p, q, p′),

where we assume that G has a sufficient vanishing condition so the integral is well-

defined. Here E
q

p′−p
is the two-dimensional hypersurface for relativistic collisions

which is defined as

E
q

p′−p
= {q ∈ R

3 : (p′μ − pμ)(pμ + qμ) = 0}.

Further q ′μ is defined by (2.8), and the measure can be represented as

dπq = dq u(p0 + q0 − p′0)δ

(

ḡ

2
+

qμ(pμ − p′
μ)

ḡ

)

, (2.50)

where above we use the function u which is defined by

u(x) = 0 if x < 0, and u(x) = 1 if x ≥ 0. (2.51)

We also recall (2.6).
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The proof of Lemma 2.12 is given in §7.1. Then using this Carleman representation

from Lemma 2.12 we can represent (2.49) as

1

8

∫

R3

dp

p0
η(p)

∫

R3

dp′

p′0 ( f (p′) − f (p))
s

ḡ

√
J (p)

√

J (p′)

∫

E
q

p′−p

dπq

q0
σ(g, θ)J (q).

(2.52)

Typically we can estimate integrals such as the one above in dπq . And a term such as√
J (p)√
J (p′)

is bounded when we are close to the singularity and |p′ − p| is small. Then we

are left with linear dependence on p and p′ in the remaining integrals of dp dp′. These

are the main ideas in one method that we developed to prove the required cancellation

estimates. Recalling the bilinear operator (2.27), this change of variables procedure

allows us to estimate terms such as 〈�( f , h), η〉 when we estimate the cancellation

using the function η.

However proving the upper bound estimates by performing summation of the

Littlewood–Paley decomposed pieces of the trilinear estimates in §4.6 also requires an

alternative cancellation estimate (Proposition 4.7) of the difference of trilinear forms

(T
k,l
+ − T

k,l
− )( f , h, η) as in (4.3) while estimating the cancellation using the function

h. Since the standard integration by parts does not work for the integral which contains

fractional derivatives, we had to derive a second representations of the trilinear inner

product of (2.27) as 〈�( f , h), η〉. To achieve this, we derived the dual representation

T ∗
f h of the abstract operator T f η for each fixed f such that

〈�( f , h), η〉 = 〈T f η, h〉 = 〈η, T ∗
f h〉.

In the relativistic case the expression involving T ∗
f h is rather complicated, whose

integrands involve special functions and Lorentz transformations. This expression is

written precisely in (7.21) and in decomposed form in (4.33), and more generally

in Lemma 2.18. To the best of our knowledge, this “dual representation” has not

been previously derived for the relativistic Boltzmann operator. Now we note that the

methods that we used in §3 for the dual-type representation including the splitting of

the region of the q integration into |q| ≤ 1
2
|p|1/m , and |q| ≥ 1

2
|p|1/m for some large

m ≥ 1 does not work for the sharp upper-bound estimates for similar types of operators

to (4.33), since the factor
√

J (q) in the operators from (4.33) does not provide sufficient

decay in the |q| variable to control the integral if we implement the methods used in §3.

Instead the breakthrough idea in our estimates involved the spliting of the upper-bound

estimate for each operator as in (4.39) into two terms D1 and D2. Then D1 can be

reverted back to the original representation and estimated using a strategy analogous

to (2.48)–(2.49)–(2.52). And D2 stays in the dual representation. In this way one can

push all the polynomial growth in the q variable into the original representation in D1

which has some leftover exponential decay such that one can intentionally create the

otherwise missing polynomial decay in D2. This idea was very effective for the control

of Part I I in (4.35) and Part I I I in (4.36) in §4.3 even though they still need much

more delicate sophistication on the choices in the splitting such that all the estimates

123



Relativistic Boltzmann Equation without Cut-Off Page 25 of 167    20 

work for the full range of the soft interaction 0 > ρ+γ > −3/2 in (2.22) and the hard

interaction 0 ≤ ρ + γ < 2 + γ in (2.21). For example, we include the artificial terms

1 =
(

s̃
p′0q0

)7/4 (
s̃

p′0q0

)−7/4
for the Part I I estimates and

(

g̃2

p′0q0

)3/4 (
g̃2

p′0q0

)−3/4

for

the Part I I I estimates, and these choices are sharp in the sense that these powers 7
4

and 3
4

and the choices s̃
p′0q0 and

g̃2

p′0q0 are the only possible choices that can control

each decomposed piece in our estimates. For the full details we refer to §4.3.

In addition to the previously discussed techniques for establishing the cancella-

tion estimates, the proofs of our main upper-bound estimates in Theorem 2.4 and

Lemma 2.5 use a dyadic decomposition of the linearized operator � and its kernel

σ(g, θ) nearby the angular singularity θ = 0 since the angular kernel σ0(θ) is not

integrable by itself. In §4.1, we start by showing that θ ≈ ḡ
g

and consider the dyadic

decomposition around ḡ. Then for ḡ ≈ 2−k , we estimate the upper-bounds of the

trilinear forms in (4.3) for the gain term T
k,l
+ and the loss term T

k,l
− of the linearized

operator � separately. If we consider the region nearby the singularity where ḡ ≈ 2−k

for k > 0, then we cannot simply separate the gain and loss terms. Thus in §4.2 we

rewrite the difference of trilinear forms (T
k,l
+ − T

k,l
− )( f , h, η) in terms of the differ-

ence η(p′) − η(p) or J (q ′) − J (q) of the pre- and the post-collisional momenta and

work to obtain extra decaying factors of |p′ − p| or |q ′ − q| to reduce the order of

angular singularity. Then in §4.3, we prove the cancellation estimates using the dual

representation in (4.33). Then in §4.4, we prove further estimates, including cancella-

tion estimates, for the compact operator K from (2.32). In order to manage the dyadic

sum of the momentum derivatives, we further explain the isotropic Littlewood–Paley

decomposition inequalities that we will use in §4.5. This decomposition allows us to

bound the sum of those decomposed pieces containing momentum-derivatives above

by the terms in our weighted fractional derivative norm |η|I ρ,γ and |h|I ρ,γ . Then in

§4.6, we use triple sum estimates together with all the previous estimates in this section

in order to prove the main upper-bound estimates of Theorem 2.4 and Lemma 2.5.

Additional difficulties regarding proving upper-bound estimates occur because the

lower bound of the relativistic version of the relative momentum g = g(pμ, qμ) from

(2.5) depends on the weights of p and q. More precisely, one has the following sharp

inequality [40]:

√

|p − q|2 + |p × q|2
√

p0q0
≤

√

2
|p − q|2 + |p × q|2

p0q0 + p · q + 1
= g ≤ |p − q|. (2.53)

The proof of (2.53) directly follows from (2.5) and the Cauchy–Schwartz inequality:

|1 + p · q| ≤ p0q0. This affects the lower-bound estimates of the hard-interaction

case (2.21) for ga+γ and the upper-bound estimates in the soft-interaction case (2.22)

for g−b+γ because a + γ ≥ 0 and −b + γ < 0. The emergence of the extra weight

(p0q0)−
1
2 in the lower bound of each relative momentum g causes the crucial dif-

ference in the order of p, and we resolved this issue using another inequality of

g ≤ √
s �

√

p0q0 instead of using the standard g ≤ |p − q| in many estimates.

This is one of the major differences from the non-relativistic case where each rela-
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tive momentum |p − q| creates one power of p0, whereas each relative momentum

g(pμ, qμ) corresponds to only a half-power of p0 growth.

Also, the appearance of extra momentum weights, wl(p), in our norms introduce

additional difficulties. These weights are necessary because the L2 energy functional

E(t) and the dissipation functional D(t) do not satisfy E(t) � D(t) in the soft-

interaction (2.22) case when −b + γ < 0 and this results in | f |L2
−b+γ

< | f |L2 . In

order to overcome the difficulty of not having | f |L2
−b+γ

≥ | f |L2 , we put the extra

weights wl into our norms and interpolate with stronger norms as in (6.31) to obtain

the L2 decay-in-time estimate with the polynomial rates. This interpolation technique

had been developed in [84]. However this is extremely complicated and delicate in the

relativistic situation because of the difficult algebraic structure that is present in the

equation.

We hope that these results will be useful to study many further mathematical prob-

lems in the relativistic Kinetic theory such as relativistic fluid limit problems, the

Newtonian limit, the relativistic Boltzmann equation coupled with relativistic matter

models [14] to name a few.

2.8 Outline of the Article

In this section we will outline the rest of this article.

In §3 we prove the sharp asymptotics for the frequency multiplier to obtain coer-

civity estimates for the linearized collision operator. Namely, we prove Theorem 2.3.

To prove Theorem 2.3, we will use the two different representations that we have

given in §3.2 and these will be derived in §8. We will further follow the proof strategy

that will be outlined in §3.3. We prove that ζ from (3.16) has a leading order positive

lower bound in Proposition 3.3 in §3.4. Then we will prove that ζ0 from (3.3) has the

leading order upper bound in Proposition 3.4 in §3.5. In §3.6, we prove in Proposi-

tion 3.7 that ζL(p) from (3.4) has a lower order upper bound and we further prove in

Proposition 3.8 that ζ̃ L(p) from (3.10) has a lower order upper bound.

In §4 we prove the main upper bound estimates on the linearized (2.28) and non-

linear collision operator (2.27) that are stated in §2.6. In particular in §4.1, we will

start by introducing the dyadic decomposition of the angular singularity in the non-

linear collision operator. In the rest of §4.1, we will make upper-bound estimates

on the decomposed pieces of gain and loss terms away from the angular singularity.

Then in §4.2, we prove the cancellation estimates. Namely, we use the cancellation of

f (p) − f (p′) in the region p � p′ to cancel the angular singularity and to obtain the

upper bound estimates for the decomposed pieces nearby the angular singularity. The

proof heavily depends on the use of certain Lorentz transformations and the relativistic

Carleman-type dual representation from §7. In §4.3, we perform upper bound estimates

that incorporate cancellation on the dual expression from (4.33). In §4.4, we prove

additional estimates for the compact operator K. Those final upper-bounds contain

momentum derivatives of the functions and the sum of those upper-bounds will further

be bounded above in terms of our weighted fractional derivative norms via Littlewood–

Paley type arguments. In §4.5, we explain the main Littlewood–Paley inequalities that

we will use to prove our main estimates. Then in §4.6, we use triple sum estimates to
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establish the final main upper-bound estimates on the linearized collision operators K,

N , and the nonlinear operator � using the upper-bound estimates on the decomposed

pieces from the previous sections.

In §5, we prove the coercive lower bound of the norm part 〈N f , f 〉. We also show

that the norm part 〈N f , f 〉 is comparable to the weighted fractional Sobolev norm

| · |I ρ,γ . In this section, we use the Fourier redistribution argument from [44].

In §6, we finally use the standard iteration method and the uniform energy estimate

for the iterated sequence of approximate solutions to prove the local existence. Our

proof of the global well-posedness in §6 uses the nonlinear energy method introduced

in [46]. In particular we derive the relativistic system of macroscopic equations and

local conservation laws. And we use these to prove that the local solutions are global

by the standard continuity argument and the energy estimates. We also show that the

L2 functional of solutions decays exponentially in time for the hard-interactions (2.21)

and decays polynomially in time to zero for the soft-interactions (2.22).

In §7, we derive the relativistic Carleman-type dual representation for the gain and

loss terms and obtain the dual formulation of the trilinear form, which are used in

many places in the previous sections.

In §8 we provide full derivations of the two different representations that we have

given in §3.2 for the proofs of the sharp asymptotics for the frequency multiplier and

the coercivity estimates.

In §9 we provide the proofs of the pointwise estimates: Lemma 2.14, Lemma 2.15,

and Lemma 2.16.

2.9 A Brief Description of Lorentz Transformations

In this section we define several notations and conventions involving Lorentz trans-

formations which will be used in several key places throughout the article.

Let � be a 4 × 4 matrix (of real numbers) denoted by

� = (�μ
ν)0≤μ,ν≤3.

For the basics of Lorentz transformations, we refer to [20] and [89]. We use the

convention that the top index μ denotes the row of the matrix, and the bottom index

ν denotes the column of the matrix. We will also use the vector notation

�μ def= (�μ
0,�

μ
1,�

μ
2,�

μ
3), for μ = 0, 1, 2, 3,

to express the μ-th row of �. We will further use the notation � to exclusively denote

a Lorentz transformation.

Definition 2.13 � is a (proper) Lorentz transformation if det(�) = 1 and

�κ
μηκλ�

λ
ν = ημν, (μ, ν = 0, 1, 2, 3).

In matrix notation this can also be written ��D� = D, for D = diag(−1, 1, 1, 1).

This condition implies the invariance: pμqμ = pμημνqν = (�κ
μ pμ)ηκλ(�

λ
νqν).
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In this paper we will use several times a specific Lorentz transformation � =
(�μ

ν)0≤μ,ν≤3 which maps into the “center of momentum” system as

Aμ def= �μ
ν(pν + qν) = (

√
s, 0, 0, 0), Bμ def= −�μ

ν(pν − qν) = (0, 0, 0, g).

(2.54)

The first condition in (2.54) is the one that means that you are mapping the particle

momentum to the center of momentum system where p+q = 0. The second condition

in (2.54) is extremely useful for the changes of variables that we will use in the rest

of this paper.

The explicit form of the matrix � satisfying (2.54) was derived in [79, Section

5.3.1.3], it was also written in [80, p. 593]. More precisely, we have

� = (�μ
ν) =

⎛

⎜

⎜

⎜

⎜

⎝

p0+q0
√

s
− p1+q1√

s
− p2+q2√

s
− p3+q3√

s

�1
0 �1

1 �1
2 �1

3

0
(p×q)1

|p×q|
(p×q)2

|p×q|
(p×q)3

|p×q|
p0−q0

g
− p1−q1

g
− p2−q2

g
− p3−q3

g

⎞

⎟

⎟

⎟

⎟

⎠

, (2.55)

with the second row given by

�1
0 = �1

0(p, q) = 2|p × q|
g
√

s
,

and for i = 1, 2, 3 we have

�1
i = �1

i (p, q) =
2
(

pi {p0 + q0 pμqμ} + qi {q0 + p0 pμqμ}
)

g
√

s|p × q| .

This Lorentz transformation satisfies (2.54).

Now any Lorentz transformation, �, is invertible and the inverse matrix is denoted

�−1 = (� ν
μ )0≤μ,ν≤3 where we denote (�−1)νμ = � ν

μ so that �ν
κ� κ

μ = δν
μ, where

δν
μ is the standard Kronecker delta which is unity when the indices are equal and zero

otherwise. It follows from Definition 2.13 that

(�−1)νμ = � ν
μ = ηνλ �κ

λ ηκμ.

Definition 2.13 further implies that (�−1)νμ = � ν
μ is a Lorentz transformation. We

can then directly calculate the inverse of (2.55) as

�−1 = (�ν
μ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

p0+q0
√

s
−�1

0 0 − p0−q0

g
p1+q1√

s
�1

1
(p×q)1

|p×q| − p1−q1

g
p2+q2√

s
�1

2
(p×q)2

|p×q| − p2−q2

g
p3+q3√

s
�1

3
(p×q)3

|p×q| − p3−q3

g

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.
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We will use the Lorentz transformation (2.55) and it’s inverse in several of the proofs

of the estimates below.

2.10 Preliminary Lemmas

Here we introduce several useful pointwise estimates that will be used throughout

the paper. The proofs of the following lemmas (Lemma 2.14, Lemma 2.15, and

Lemma 2.16) will be given in §9.

Lemma 2.14 With the notations (2.4) and (2.5) we have

s = g2 + 4 ≥ max{g2, 4}, (2.56)

and

s ≤ 4p0q0. (2.57)

We trivially conclude from (2.57)–(2.56) that

g �

√

p0q0 (2.58)

Recalling (2.53) we further have

|p − q|
√

p0q0
≤ g, (2.59)

and

|p × q|
√

p0q0
≤ g, (2.60)

and

g ≤ |p − q|. (2.61)

We also have

|p0 − q0| ≤ |p − q|, (2.62)

and

p0 + q0 ≤ 2p0q0. (2.63)

We now state a few pointwise estimates for (3.5). We have the inequality:

j ≤ l. (2.64)
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Further

j2 ≤ 1

2
p0q0, l ≤ 1

2
p0q0. (2.65)

Also

l2 − j2 = (p0 + q0)2g2 − 4|p × q|2
16g2

= s

16g2
|p − q|2, (2.66)

and

√

l2 − j2 = |p − q|
√

g2 + 4

4g
≥ 1

4
|p − q|. (2.67)

Next for g2
� defined in (3.6) we have

g2 max{
√

y2 + 1,
√

2}g2 � g2
� � s� � s

√

y2 + 1, ∀0 ≤ y ≤ ∞. (2.68)

If the notations l, j , and g� are defined instead as

l = l(p′, q)
def= p′0 + q0

4
, j = j(p′, q)

def= |p′ × q|
2g̃

, and (2.69)

g2
� = g̃2 + s̃

2
(
√

|z|2 + 1 − 1), s� = g2
� + 4, g2

L = 1

2
s̃(
√

|z|2 + 1 − 1),

(2.70)

(cf. (7.13), (7.17) and (7.18) with r = √
s|z|), then we have

cos θ� = 2g̃2

g2
�

− 1 =
g̃2 − s̃

2
(
√

|z|2 + 1 − 1)

g̃2 + s̃
2
(
√

|z|2 + 1 − 1)
, (2.71)

j ≤ l, (2.72)

j2 � p′0q0, l � p′0q0, (2.73)

l2 − j2 = (p′0 + q0)2 g̃2 − 4|p′ × q|2

16g̃2
= s̃

16g̃2
|p′ − q|2, (2.74)

√

l2 − j2 = |p′ − q|

√

g̃2 + 4

4g̃
≥ 1

4
|p′ − q|, (2.75)

and

g̃2 max{
√

|z|2 + 1,
√

2} � g2
� � s� � s̃

√

|z|2 + 1, ∀0 ≤ |z| ≤ ∞. (2.76)
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Further, we will also need sharp estimates of the following integrals

K̄ γ (l, j)
def=
∫ 1

0

dy y1−γ exp(−l

√

y2 + 1)I0( j y), (2.77)

where γ ∈ (0, 2) and

J2(l, j)
def=
∫ ∞

0

dy
y exp

(

−l
√

y2 + 1
)

I0( j y)
√

1 + y2
(2.78)

Also define

K̃ 2(l, j)
def=
∫ ∞

0

dy y(y2 + 1)1/2 exp

(

−l

√

y2 + 1

)

I0( j y). (2.79)

These integrals are known from [42] and [40]. In particular a proof of Lemma 2.15

below is given by combining the results from [40, Lemma 3.5, Lemma 3.6 and Corol-

lary 2]. We give the following lemma and proof for completeness.

Lemma 2.15 For both (2.69) and (3.5), we have

max
0≤x≤1

exp(−l
√

x2 + 1 + j x) � exp(−
√

l2 − j2). (2.80)

Then for (2.77), we have the uniform estimate

|K̄ γ (l, j)| � exp

(

−
√

l2 − j2

)

. (2.81)

For (2.78) we have the exact formula

J2(l, j) = (

√

l2 − j2)−1 exp(−
√

l2 − j2), (2.82)

and then for (2.79) we have the formula

K̃ 2(l, j) = (

√

l2 − j2)−5 exp(−
√

l2 − j2)

×
(

(l2 − j2 + 3

√

l2 − j2 + 3)l2 − (l2 − j2) −
(

√

l2 − j2

)3
)

.

(2.83)

In addition, we have the following pointwise estimates:

Lemma 2.16 If k > −3 then we have

∫

R3
dq
√

J (q)|p − q|k ≈ (p0)
k
. (2.84)
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Also, for (2.14) we have

vø � 1. (2.85)

In addition, if the collision kernel σ(g, θ) is supported only when cos θ ≥ 0, then we

have

g̃ ≈ g. (2.86)

For (2.70) we have

0 ≤
(

s̃�(g̃)g̃4

s��(g�)g4
�

)

≤ 1, (2.87)

and

∣

∣

∣

∣

∣

s̃�(g̃)g̃4

s��(g�)g4
�

− 1

∣

∣

∣

∣

∣

�
s̃(
√

|z|2 + 1 − 1)

g̃2
�

, (2.88)

for both hard and soft interactions (2.21) and (2.22). Also, using (2.8) we have

p0 ≤ p′0 + q ′0 ≤ 2p′0q ′0 (2.89)

and

pμqμ = p′μq ′
μ, p′μqμ = pμq ′

μ, p′μ pμ = q ′μqμ. (2.90)

We remark that (2.90) directly implies that

(p′μ − qμ)(p′
μ − pμ) = 0.

These pointwise estimates above will be used crucially for main upper-bound and

lower-bound estimates in the rest of this paper. We now also introduce a lifting of the

6-fold integral below into a 8-fold integral:

Lemma 2.17 (Claim (7.5) of [80]) Let g = g(p′μ, q ′μ) and s = s(p′μ, q ′μ). Recall

(2.51). Then we have for a function G = G(pμ, qμ, p′μ, q ′μ) that

∫

R3

dp′

p′0

∫

R3

dq ′

q ′0 G(pμ, qμ, p′μ, q ′μ)= 1

16

∫

R4×R4
d�(p′μ, q ′μ) G(pμ, qμ, p′μ, q ′μ),

where

d�(p′μ, q ′μ)
def= dp′μdq ′μu(p′0+q ′0)u(s−4)δ(s−g2−4)δ

(

(p′μ+q ′μ)(p′
μ−q ′

μ)
)

.

Note that g = g under (2.8).
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We will also need to use the following alternative integral formula’s in our estimates.

We define the following integral

IG
def=
∫

R3
dp

∫

R3
dq

∫

S2
dω vøσ(g, θ)G(q, p′, p, q ′0). (2.91)

Here we use the variables (2.15) and (2.16), and we assume that G(q, p′, p, q ′0) is a

Schwartz function for which the integral above is well defined.

Lemma 2.18 For IG from (2.91) we can alternatively represent the integral as

IG

= c′

2

∫

R3

dp′

p′0

∫

R3

dq

q0

√
s̃

g̃

∫

R2

dz
√

|z|2 + 1
s�σ(g�, θ�)G(q, p′, p′ + A, q0 + A0),

(2.92)

where we assume that G = G(q, p′, p′+ A, q0 + A0) is a Schwartz function for which

the integrals (2.91) and (2.92) are well defined. The constant satisfies c′ > 0. This

is the case if the function G has suitable cancellation so that the integral in (2.92) is

finite.

On the other hand, more generally (for c′ > 0) we have that IG from (2.91) can be

alternatively expressed as

IG = c′

2

∫

R3

dp′

p′0

∫

R3

dq

q0

√
s̃

g̃

∫

R2

dz
√

|z|2 + 1
s�σ(g�, θ�)

[

G(q, p′, p′+A, q0+A0)

− s̃�(g̃)g̃4

s��(g�)g4
�

G(q, p′, p′, q0)

]

. (2.93)

The formula above may be used in the case that G may not have enough cancellation

by itself to make the integral above well defined.

The transformation from (2.91) to (2.92) or (2.93) has the following mapping prop-

erties for the variables p, q, p′, and q ′ in (2.91) from (2.15) and (2.16) etc: It sends

qμ → qμ, p′μ → p′μ, p → p′ + A, q ′0 → q0 + A0, g → g�, s → s�, θ → θ�,

ḡ → gL , where we use the definitions (2.70) or (7.17), (2.71) or (7.18), (7.20) and

(7.19).

Lemma 2.18 is proven in §7.2. In the next subsection, we introduce additional

conventions of notations that we use throughout the paper.

2.11 Further Notations

We call the change of pre- and post-collisional momentum variables (p, q) �→ (p′, q ′)
as the pre-post change of variables. It is known from [39] that the Jacobian for this
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change of variables is equal to

∣

∣

∣

∣

∂(p′, q ′)

∂(p, q)

∣

∣

∣

∣

= p′0q ′0

p0q0
. (2.94)

We note that this Jacobian is calculated in [39] in the Glassey–Strauss coordinates as

written in [38, Page 98, Equation (3.359)]. Then it is explained in [82, Equation (23)]

how to also use this change of variable in the center-of-momentum coordinates (2.15)

and (2.16) that are used in this paper.

We further introduce the following notation. Given h1 = h1(p, q), we define the

function h = h(p) as an integral on R
3 as

h(p) =
∫

R3
h1(p, q)dq.

In this case, for A > 0 we split the integral into

∫

R3
=
∫

|q|≥A

+
∫

|q|<A

,

and abuse the notations to denote each term as

|q|≥A = |h||q|≥A
def=
∫

|q|≥A

h1(p, q)dq, and

[h]|q|<A = |h||q|<A
def=
∫

|q|<A

h1(p, q)dq.

(2.95)

This convention of the notations will be used in a few convenient places in the rest of

this paper.

3 FrequencyMultiplier Estimates

The existence theory for the Boltzmann equation without angular cutoff was devel-

oped in the class of weak solutions via the method of renormalization [1]. Further

the existence and uniqueness theory was developed using the energy method via lin-

earization nearby Maxwellian equilibrium in [4–6, 44]. This current paper is mainly

concerned with the energy method nearby equilibrium. One of the most crucial parts

in the proof via the energy method is to create a positive dissipation term in the energy

inequality. It turns out that the coercivity estimates for the dissipation term crucially

depends on the asymptotics of the frequency multiplier (2.30) whose explicit form

will be introduced later on (3.16) and (3.17).

Regarding the Newtonian Boltzmann equation (1.4), the estimates on the asymp-

totics of the frequency multiplier have been proved by Pao [70] using the symmetry

of the linearized operator and using the sharp pointwise estimates of certain special
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functions. This can also be proven using the procedure outlined in §3.1. These asymp-

totics have been crucially used in the coercivity estimates and the spectral theory for

the linearized Boltzmann operator in [69]. These coercivity estimates, and in addition

the Newtonian cancellation lemma from [2] has been crucially used for the proof of

the global in time wellposedness in [4, 6, 44] nearby equilibrium.

In this section, we are interested in proving analogous results for the relativis-

tic Boltzmann equation (1.1). Namely, we would like to establish the estimates on

the asymptotics of the relativistic frequency multipliers for the linearized Boltzmann

operator. However, in the relativistic case, it turns out that the collisional structure is

substantially different [21], and the crucial change of variable p′ → p in the non-

relativistic cancellation lemma does not hold in the relativistic case (which is explained

in Remark 2.10). This also shows the major difficulty in the relativistic case versus the

non-relativistic case (in regards to the lack of the change of variables from p′ → p)

and in regards to the inability to use the standard proof of the behavior of the frequency

multiplier term ζ from the non-relativstic case.

We believe that this estimate can be useful to study many problems in the relativistic

Kinetic theory. The sharp asymptotic leading order estimate in Theorem 2.3 should

be useful in mathematical studies of relativistic fluid limit problems, the Newtonian

limit, the relativistic Boltzmann equation coupled with relativistic matter models to

name a few.

Remark 3.1 Throughout this section, based upon (2.40), we call a term A(p) a leading

order term, if A(p) ≈ (p0)
ρ+γ

2 . In addition, we call a term B(p) a lower order term

if for some positive constant ε > 0 there exists a finite constant Cε > 0 such that

|B(p)| ≤ Cε(p0)
ρ+γ

2 −ε .

3.1 Comparison to the Newtonian Case

In contrast to [70], one can prove the asymptotic behavior of the non-relativistic

frequency multiplier in the following simple way.

In the non-relativisitic case (1.4) the analog of the collision frequency multiplier

(2.30) is given [44, Page 11] by

ν̃(v) =
∫

R3
dv∗

∫

S2
dω B(v − v∗, ω)

(

√

μ(v∗) −
√

μ(v′∗)
)

√

μ(v∗), (3.1)

where the Newtonian Maxwellian equilibrium is given by

μ(v)
def= (2π)−3/2 exp

(

−|v|2/2
)

.

Note the similarity to ζ̃ in (2.30). In the non-relativistic case, due to symmetry the

following decomposition of the frequency multiplier is very useful:

(

√

μ(v∗) −
√

μ(v′∗)
)

√

μ(v∗) = 1

2

(

√

μ(v∗) −
√

μ(v′∗)
)2

+ 1

2

(

μ(v∗) − μ(v′
∗)
)

.
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This decomposition allows the splitting

ν̃(v) = ν(v) + νK(v),

where

ν(v)
def= 1

2

∫

R3
dv∗

∫

S2
dω B(v − v∗, ω)

(

√

μ(v∗) −
√

μ(v′∗)
)2

.

Now ν(v) is clearly non-negative and it can be quickly shown that ν(v) has the expected

leading order asymptotic behavior as |v| → ∞.

On the other hand from (3.1) we have

νK(v) = 1

2

∫

R3
dv∗

∫

S2
dω B(v − v∗, ω)

(

μ(v∗) − μ(v′
∗)
)

.

Now one can use the Newtonian cancellation lemma [2], the change of variable from

v′
∗ → v∗, to show for some C ′ > 0 that

νK(v) = C ′
∫

R3
dv∗ μ(v∗)�(|v − v∗|).

This expression directly implies that νK(v) has lower order asymptotic behavior as

|v| → ∞. This decomposition is crucial to designing a norm that captures the sharp

behavior of the linearized collision operator and to further prove the global in time

existence of solutions nearby equilibrium.

Unfortunately in the relativistic case this approach fails as we now explain. We

recall that the main difference in the integrand of ζ̃ in (2.30) is

√

J (q)(
√

J (q) −
√

J (q ′)).

The analogous splitting in the relativistic case is

(
√

J (q) −
√

J (q ′))
√

J (q) = 1

2

(

√

J (q) −
√

J (q ′)
)2

+ 1

2

(

J (q) − J (q ′)
)

.

(3.2)

However, this decomposition does not help in the relativistic case and it is also closely

related to the fact that the crucial change of variables q ′ → q in the cancellation

lemma [2] is problematic in the relativistic case [21] even in the case with an angular

cutoff. We now provide the sketch of the argument.

We ignore the positive square term,
(√

J (q) −
√

J (q ′)
)2

, and focus on the second

term on the right side in (3.2). We can write this term from (2.30) as

ζ̃
B
(p)

def= 1

2

∫

R3
dq

∫

S2
dω vøσ(g, θ)(J (q) − J (q ′)) = ζ̃

B

1 (p) − ζ̃
B

2 (p).
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We can further assume that the angular kernel σ0 from (2.19) is just pointwise bounded

(we do not need to assume that it is mean-zero) with an angular cutoff. Then the term

on the right side of (3.2) containing J (q) in (2.30) corresponds to (8.17) in §8.3. Then

(8.17) is transformed into (8.20) so that

ζ̃
B

1 (p) = c′

p0
e

p0

2

∫

R3

dq

q0

e− 1
2 q0

g

∫ ∞

0

rdr√
r2 + s

s�σ(g�, θ�)

× exp

(

− p0 + q0

2
√

s

√

r2 + s

)

I0

( |p × q|
g
√

s
r

)

.

Above c′ > 0, and we further use the notations (3.6) below with r = y
√

s in addition

to the Bessel function (2.47). We point out that the above is a finite integral since it

contains exponential decay in both the q and the r variables in (8.20). However, if

we look at the new loss term with J (q ′) only, then if we follow the same derivation,

then we obtain (8.20) without the exponential term and without the Bessel function

I0. Indeed following the transformation procedure in §8.3 we obtain

ζ̃
B

2 (p) = c′

p0

∫

R3

dq

q0

e−q0

g

∫ ∞

0

rdr√
r2 + s

s�σ(g�, θ�).

Thus we see following this procedure that the dr integration becomes infinite in ζ̃
B

2 (p),

since this term no longer contains sufficient decay in the r variable. Therefore, the

whole integral becomes infinity unless we artificially assume that the kernel σ decays

very rapidly for large r . (We mention that this can be directly justified using standard

approximation procedures.)

If the cancellation lemma were true then the integrand in ζ̃
B

2 (p) would be integrable

and ζ̃
B

2 (p) would be finite. Indeed, the expression ζ̃
B

2 (p) integrates to infinity by this

argument. The factor J (q ′) does not provide sufficient decay to control the integral.

That is why such a decomposition, which was very effective in the Newtonian case,

does not help in the relativistic case. It is adding and subtracting a term which is

infinity.

3.2 Main Decomposition

Instead we perform in §8 the following transformation of (2.30) as ζ̃ = ζ0 +ζL where

for c′ > 0 we have

ζ0
def= c′

p0

∫

R3

dq

q0

e−q0√
s

g

∫ ∞

0

ydy
√

y2 + 1
s�σ(g�, θ�)

s�(g)g4

s��(g�)g4
�

×
[

1 − exp

(

l(1 −
√

y2 + 1)

)

I0 ( j y)

]

, (3.3)
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and

ζL
def= c′

p0

∫

R3

dq

q0

e−q0√
s

g

∫ ∞

0

ydy
√

y2 + 1
s�σ(g�, θ�)

× exp

(

l(1 −
√

y2 + 1)

)

I0 ( j y)

(

s�(g)g4

s��(g�)g4
�

− 1

)

. (3.4)

We recall the modified Bessel function from (2.47). These expressions arise by apply-

ing the change of variables r �→ y = r√
s
, to the expressions (8.14) and (8.15). Above

we use the notations l and j that are defined as

l = l(p, q)
def= p0 + q0

4
, and j = j(p, q)

def= |p × q|
2g

. (3.5)

We also further define the notations

g2
� = g2 + s

2
(

√

y2 + 1 − 1), s� = g2
� + 4, (3.6)

and from (8.11) we have

cos θ� = 2g2

g2
�

− 1 =
g2 − s

2
(
√

y2 + 1 − 1)

g2 + s
2
(
√

y2 + 1 − 1)
.

It is shown in §3.6 that ζL(p) in (3.4) has lower order asymptotic behavior, and in

§3.5 we see that the main part of ζ0(p) in (3.3) has a leading order upper bound.

We remark that the dynamics of each decomposed piece of ζ̃ in (3.3) and (3.4) are

essentially depending on the integral domain for the q and y variables, and the Bessel

function I0( j y) from (2.47), which makes them extremely complex. It turns out that

the major difficulty involves the difference inside the inside the integrand in (3.3):

[

1 − exp

(

l(1 −
√

y2 + 1) + j y cos φ

)

]

.

This expression is zero at y = 0 and converges to one as y → ∞. However this

expression also has it’s negative minimum at

ym = j | cos φ|
√

l2 − j2 cos2 φ
, (3.7)

and the difference above remains negative, for say cos φ > 0, until

ys = 2l j cos φ

l2 − j2 cos2 φ
, (3.8)
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where 0 ≤ ym ≤ ys → 0 as l → ∞. Thus the whole integral in (3.3) is negative

in a large region nearby the minimum of the difference and nearby the singularity

of the kernel σ(g�, θ�) at y = 0. This region where the integrand is negative and

close to it’s minimum makes it extremely problematic to prove the required leading

order asymptotic positive lower bound. Therefore, it is unclear from this point of view

whether or not (2.30) or (3.3) is positive or a leading order term. It is essential to have

a positive leading order term for the collision frequency multiplier in order to obtain

the sharp behavior of the linearized collision operator.

For this reason we needed to derive another representation of ζ̃ from (2.30). As in

(8.21), we can alternatively write ζ̃ as

ζ̃ (p) = c′

π p0

∫

R3

dq

q0

e−q0√
s

g

∫ ∞

0

ydy
√

y2 + 1
s�σ(g�, θ�)

∫ π

0

dφ

×
[

exp(2l − 2l

√

y2 + 1 + 2 j y cos φ) − exp(l − l

√

y2 + 1 + j y cos φ)
]

,

where we use the notations (3.5) and (3.6) and c′ > 0. Then ζ̃ can be decomposed

into two terms ζ̃ = ζ̃ 0 + ζ̃ L as

ζ̃ 0(p) = c′

π p0

∫

R3

dq

q0

e−q0√
s

g

∫ ∞

0

ydy
√

y2 + 1
s�σ(g�, θ�)

∫ π

0

dφ
s�(g)g4

s��(g�)g4
�

×
[

exp(2l − 2l

√

y2 + 1 + 2 j y cos φ) − exp(l − l

√

y2 + 1 + j y cos φ)
]

,

(3.9)

and

ζ̃ L(p) = c′

p0

∫

R3

dq

q0

e−q0√
s

g

∫ ∞

0

ydy
√

y2 + 1
s�σ(g�, θ�)

(

1 − s�(g)g4

s��(g�)g4
�

)

×
[

exp(2l − 2l

√

y2 + 1)I0(2 j y) − exp(l − l

√

y2 + 1)I0( j y)
]

. (3.10)

The expression (3.9) looks like a better candidate for the leading order term because

the difference

[

exp(2l − 2l

√

y2 + 1 + 2 j y cos φ) − exp(l − l

√

y2 + 1 + j y cos φ)
]

now has it’s maximum, ym , at (3.7) and it is positive on 0 ≤ y ≤ ys from (3.8).

However this difference is negative for y ≥ ys and still remains large and negative in

a significantly sized region after y passes ys which causes further extreme difficulties

in proving a leading order positive lower bound.

Instead the key point will be that when we add ζ0 and ζ̃ 0 then the resulting term

is clearly positive and leading order. And we will later show that ζ̃ L from (3.10)

and ζL from (3.4) are lower order terms. In particular we can take the summation of
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1
2
ζ0(p)1|p|≥1 from (3.3) and 1

2
ζ̃ 0(p)1|p|≥1 from (3.9). By adding an additional term

〈p〉(ρ+γ )/21|p|≤1, we obtain that

ζ ′(p)
def=
[

ζ0(p) + ζ̃ 0(p)

2

]

1|p|≥1 + 〈p〉(ρ+γ )/21|p|≤1

= c′1|p|≥1

2π p0

∫

R3

dq

q0

e−q0√
s

g

∫ ∞

0

ydy
√

y2 + 1
s�σ(g�, θ�)

s�(g)g4

s��(g�)g4
�

∫ π

0

dφ

×
[

exp(2l − 2l

√

y2 + 1 + 2 j y cos φ) − 2 exp(l − l

√

y2 + 1 + j y cos φ) + 1
]

+〈p〉(ρ+γ )/21|p|≤1

= c′1|p|≥1

2π p0

∫

R3

dq

q0

e−q0√
s

g

∫ ∞

0

ydy
√

y2 + 1
s�σ(g�, θ�)

s�(g)g4

s��(g�)g4
�

×
∫ π

0

dφ
[

exp(l − l

√

y2 + 1 + j y cos φ) − 1
]2

+ 〈p〉(ρ+γ )/21|p|≤1. (3.11)

Note that ζ ′(p) is then automatically positive for all p. The term 〈p〉(ρ+γ )/21|p|≤1

guarantees that ζ(p) > 0 near p = 0 (if necessary).

However, unfortunately it turns out that there is an additional severe difficulty to

obtain the sharp pointwise asymptotic upper bound of the expression (3.11) for ζ(p).

The problem is that the following term

exp(−q0) exp(2l − 2l

√

y2 + 1 + 2 j y cos φ)

does not in general have uniform decay in the q0 variable when we are close to the

singularity in the dy integral at y = 0. Here we recall the definitions (3.5). Therefore

while the expression ζ ′(p) in (3.11) appears good for obtaining a positive asymptotic

lower bound, it is extremely difficult to obtain the required sharp upper bound. There

is the same difficulty for ζ̃ L(p) in (3.10). To overcome this situation we split the dq

integral into the two regions |q| ≥ 1
2
|p|1/m and |q| ≤ 1

2
|p|1/m .

Remark 3.2 The derivations of the alternative formula’s in (3.3), (3.4), (3.9) and (3.10)

of (2.30) in §8 still hold under the restrictions to the region such as
[

ζ̃
]

|q|≥ 1
2 |p|1/m

and
[

ζ̃
]

|q|≤ 1
2 |p|1/m

using the convention (2.95). This is straightforward from the proofs in

§8.

With these splittings, we are then able to obtain the sharp asymptotic upper bound

estimates of ζ(p) and ζ̃ L(p) on the region |q| ≤ 1
2
|p|1/m . And on |q| ≥ 1

2
|p|1/m from

(2.30) using (2.95) we further define

ζ̃ 1(p)
def=
[

ζ̃ (p)
]

|q|≥ 1
2 |p|1/m

1|p|≥1 (3.12)
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We will prove that ζ̃ 1(p) has low order asymptotic behavior in Proposition 3.9. Then

these estimates together will be enough to prove our main theorem.

To this end, from (3.3) and (3.4), we also define the following two terms

ζ0,m(p)
def= [ζ0(p)]|q|≤ 1

2 |p|1/m 1|p|≥1, ζL,m(p)
def= [ζL(p)]|q|≤ 1

2 |p|1/m 1|p|≥1,

(3.13)

In (3.13) above we use the notation convention from (2.95). For example

ζ0,m(p) = c′

p0

∫

|q|≤ 1
2 |p|1/m

dq

q0

e−q0√
s

g

∫ ∞

0

ydy
√

y2 + 1
s�σ(g�, θ�)

s�(g)g4

s��(g�)g4
�

×
[

1 − exp

(

l(1 −
√

y2 + 1)

)

I0 ( j y)

]

, (3.14)

Similarly, from (3.9) and (3.10), we further define

ζ̃ 0,m(p)
def= [ζ̃ 0(p)]|q|≤ 1

2 |p|1/m 1|p|≥1, ζ̃ L,m(p)
def= [ζ̃ L(p)]|q|≤ 1

2 |p|1/m 1|p|≥1,

(3.15)

With these definitions instead of (3.11) we define the modified frequency multiplier

ζ(p)
def= 1

2

[

ζ0,m(p) + ζ̃ 0,m(p)
]

+ 〈p〉(ρ+γ )/21|p|≤1

= c′1|p|≥1

2π p0

∫

|q|≤ 1
2 |p|1/m

dq

q0

e−q0√
s

g

∫ ∞

0

ydy
√

y2 + 1
s�σ(g�, θ�)

s�(g)g4

s��(g�)g4
�

×
∫ π

0

dφ
[

exp(l − l

√

y2 + 1 + j y cos φ) − 1
]2

+ 〈p〉(ρ+γ )/21|p|≤1.

(3.16)

Again this is automatically positive.

As such, we introduce the construction of a positive leading order term and a lower

order term in the frequency multiplier ζ̃ (p) from (2.30), which is highly non-trivial.

We suggest the following novel decomposition of ζ̃ = ζ + ζK as

ζ̃ (p) = ζ(p) + ζK(p)

where ζ is given by (3.16), using also (2.30), (3.4), (3.10) and (3.12) we have

ζK
def= ζ̃ (p)1|p|≤1 + ζ̃ 1(p) + 1

2

(

ζL,m + ζ̃ L,m

)

− 〈p〉(ρ+γ )/21|p|≤1, (3.17)

Then we will show that ζ and ζK satisfy the asymptotics from (2.40). In particular the

main positive term is (3.16).
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Lastly, we also introduce two additional representations of ζ̃ (p) from (2.30). In

particular it is shown in §8 that we have the following splitting of ζ̃ = ζ0 + ζL in

(8.14) with c′ > 0 as

ζ0
def= c′

p0
e

p0

4

∫

R3

dq

q0

e− 3
4 q0

g

∫ ∞

0

rdr√
r2 + s

s�σ(g�, θ�)
s�(g)g4

s��(g�)g4
�

×
[

exp

(

− p0 + q0

4

)

− exp

(

− p0 + q0

4
√

s

√

r2 + s

)

I0

( |p × q|
2g

√
s

r

)

]

,

(3.18)

and ζL is further given in (8.15). Here g� is given by (8.9), s� by (8.6), and θ� by

(8.7). Note that (3.18) and (8.15) can alternatively be obtained by applying the change

of variables y �→ r = √
sy to the expressions (3.3) and (3.4). We will use the formula

(3.18) in the proof of Proposition 3.4.

We can also write (3.18) in a further alternative form with other variables by using

the following change of variables

r �→ k
def= 1

2

√
s(
√

r2 + s −
√

s). (3.19)

Then this gives

dk = 1

2

√
s

rdr√
r2 + s

.

Also, we have

√
r2 + s√

s
= 1 + 2k

s
,

and

r = 2
√

k2 + ks√
s

.

Here g� from (8.9) and θ� from (8.7) now take the form

g2
� = g2 + k, (3.20)

and

cos θ� = g2 − k

g2 + k
= 1 − 2

k

g2 + k
.
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Therefore, we have

θ�

2
≈ sin

θ�

2
=
√

k

g2 + k
. (3.21)

With respect to the new variable k, then (3.18) can be re-written as

ζ0
def= c′

p0
e

p0

4

∫

R3

dq

q0

e− 3
4 q0

g

∫ ∞

0

2dk√
s

s�σ(g�, θ�)
s�(g)g4

s��(g�)g4
�

×
[

exp

(

− p0 + q0

4

)

− exp

(

− p0 + q0

4

(

1 + 2k

s

))

I0

( |p × q|
gs

√

k2 + ks

)]

= c′

p0

∫

R3

dq

q0

e−q0

g

∫ ∞

0

2dk√
s

s�σ(g�, θ�)
s�(g)g4

s��(g�)g4
�

×
[

1 − exp

(

− (p0 + q0)k

2s

)

I0

( |p × q|
gs

√

k2 + ks

)]

,

where s� = g2
� + 4 with (3.20). This representation of ζ0 in the k variables above

will be used in the proof of Lemma 3.5, which is one part of the leading order upper

bound estimate of ζ0.

3.3 Outline of the Proof of Theorem 2.3

Specifically, in the rest of §3, in order to prove Theorem 2.3 we will make upper- and

lower-bound estimates for ζ in (3.16) and will conclude that it is a leading order term.

In addition, we will show that ζK in (3.17) is a lower-order term.

We will first prove that ζ(p) from (3.16) has a leading order positive lower bound

in Proposition 3.3. Then we will prove that ζ0 from (3.3) has the leading order upper

bound in Proposition 3.4. Then in Proposition 3.7 we prove that ζL(p) from (3.4) has

a lower order upper bound. We further prove in Proposition 3.8 that ζ̃ L,m(p) from

(3.15) with (3.10) has a lower order upper bound. We then prove in Proposition 3.9

that ζ̃ 1(p) from (3.12) has a lower order upper bound. Note that both ζ̃ (p)1|p|≤1 and

〈p〉(ρ+γ )/21|p|≤1 have lower order upper bounds since 1|p|≤1 trivially makes p0 � 1.

All of these estimates combine to prove that ζK has a lower order upper bound, and

that ζ̃ (p) from (2.30) has a leading order asymptotic upper bound.

We remark that we have not estimated the asymptotic upper bound of ζ̃ 0(p) from

(3.9) or more accurately we have not estimated ζ̃ 0,m(p) from (3.15) and this is not

necessary because from the splittings above we have

ζ̃ 0,m(p) = [ζ̃ (p)]|q|≤ 1
2 |p|1/m 1|p|≥1 − ζ̃ L,m(p) = ζ0,m(p) + ζL,m(p) − ζ̃ L,m(p).

Therefore using the estimates discussed in the previous paragraph we obtain that

ζ̃ 0,m(p) and ζ(p) both have the leading order asymptotic upper bound. All of the

estimates discussed in this sub-section together give the proof of Theorem 2.3.
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3.4 Leading Order Lower Bound Estimate

The main result in this section is the following leading order lower bound.

Proposition 3.3 Suppose γ ∈ (0, 2) in (2.20). Then for both hard (2.21) and soft

(2.22) interactions, using the notation (2.23), for (3.16), we have

ζ(p) � (p0)
ρ+γ

2 .

This uniform lower bound also holds for (3.11).

Proof of Proposition 3.3 In order to obtain the lower-bound estimate for ζ(p), we first

study the lower bound of the perfect square term

[

exp(l − l

√

y2 + 1 + j y cos φ) − 1
]2

in (3.16). We first observe that, if y ∈ [0, y∗] with

y∗ def= 2l j cos φ

l2 − j2 cos2 φ
, (3.22)

then we have

l − l

√

y2 + 1 + j y cos φ ≥ 0.

Notice that we also have

l − l

√

y2 + 1 + j y cos φ ≥ 1

2
j y cos φ,

if 0 ≤ y ≤ y1, where

y1
def= 2l j cos φ

4l2 − j2 cos2 φ
.

Also 1
2

≤ cos φ ≤
√

2
2

for φ ∈ [π/4, π/3]. Recalling (3.22), we remark that y∗ ≤ 3

because

y∗ = 2l j cos φ

l2 − j2 cos2 φ
≤

√
2l j

l2 − j2

2

≤
√

2l2

l2

2

≤ 2
√

2,

as j ≤ l and
√

2l j

l2− j2

2

is an increasing function in j . Recalling again (3.22), then 0 ≤

y1 ≤ y∗
4

≤
√

2
2

. Since in particular with φ ∈ [π/4, π/3] we have

l − l

√

y2 + 1 + j y cos φ ≥ 0, 0 ≤ y ≤ y1.
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Then by the Taylor expansion

[

exp(l − l

√

y2 + 1 + j y cos φ) − 1
]2

≥ (l − l

√

y2 + 1 + j y cos φ)2.

We will use this lower bound in the following developments.

Now we start by proving the stated lower bound for (3.11). Now we split each

integral representation of the decomposed pieces based on a restriction of the y and φ

domains. We will now define the term

ζ∗
def= [ζ ′]0≤y≤y1 and φ∈[π/4,π/3],

where ζ∗ is ζ ′ when the integrals inside (3.11) are only on the restricted domains

0 ≤ y ≤ y1 and φ ∈ [π/4, π/3]. This notation is similar to (2.95). Note that of course

ζ ′(p) ≥ ζ∗(p). We will show that ζ∗(p) has a high-order lower bound. Note that

inside this integration region, 0 ≤ y ≤ y1 and φ ∈ [π/4, π/3], the integral is still

non-negative.

First of all, we note from (3.11) that

ζ∗(p) ≥ c′

2π p0

∫

R3

dq

q0

e−q0√
s

g

∫ π/3

π/4

dφ

∫ y1

0

ydy
√

y2 + 1
s�σ(g�, θ�)

×(l − l

√

y2 + 1 + j y cos φ)2 s�(g)g4

s��(g�)g4
�

+ 〈p〉(ρ+γ )/21|p|≤1

≥ c′

2π p0

∫

R3

dq

q0

e−q0√
s

g

∫ π/3

π/4

dφ

∫ y1

0

ydy
√

y2 + 1
s�σ(g�, θ�)

×1

4
( j y cos φ)2 s�(g)g4

s��(g�)g4
�

+ 〈p〉(ρ+γ )/21|p|≤1

≥ c′

2π p0

∫

R3

dq

q0

e−q0√
s

g

∫ π/3

π/4

dφ

∫ y1

0

ydy
√

y2 + 1
s�σ(g�, θ�)

×1

4

(

j y

2

)2
s�(g)g4

s��(g�)g4
�

+ 〈p〉(ρ+γ )/21|p|≤1,

where we used that cos φ ≥ 1
2

when φ ∈ [π/4, π/3].
Now we will estimate the kernel σ(g�, θ�) from (2.19). Here, by (2.20) with (3.6),

(3.19), (3.20) and (3.21) we have

σ0(θ�) ≈
(

sy2

sy2 + 2g2(
√

y2 + 1 + 1)

)−1−γ /2

. (3.23)
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Next using (3.6) we have that

g2
� = g2 + s

2

(

√

y2 + 1 − 1

)

= g2 + sy2

2

(

√

y2 + 1 + 1

)

=
sy2 + 2g2

(

√

y2 + 1 + 1

)

2(
√

y2 + 1 + 1)
. (3.24)

Thus, also recalling (2.23) and (3.24), we have

s�σ(g�, θ�)
s�(g)g4

s��(g�)g4
�

= s�(g)σ0(θ�)
g4

g4
�

≈ s�(g)g4

(

sy2

sy2 + 2g2(
√

y2 + 1 + 1)

)−1−γ /2
1

g4
�

.

Thus

s�σ(g�, θ�)
s�(g)g4

s��(g�)g4
�

≈ sgρ+4

(

sy2

sy2 + 2g2(
√

y2 + 1 + 1)

)−1−γ /2

×
(

sy2 + 2g2(
√

y2 + 1 + 1)

2(
√

y2 + 1 + 1)

)−2

.

We conclude that

s�σ(g�, θ�)
s�(g)g4

s��(g�)g4
�

= s�(g)σ0(θ�)
g4

g4
�

≈ s−γ /2gρ+4 y−2−γ (2(

√

y2 + 1 + 1))2

(

sy2 + 2g2(

√

y2 + 1 + 1)

)−1+γ /2

.(3.25)

Thus, since γ ∈ (0, 2), we have

s�σ(g�, θ�)
s�(g)g4

s��(g�)g4
�

� s−1 y−2−γ gρ+4,

where we used γ /2 − 1 < 0 and y ≤ y1 ≤
√

2
2

. Therefore,

ζ∗(p) �
c′

p0

∫

R3

dq

q0

e−q0√
s

g

∫ π/3

π/4

dφ
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×
∫ y1

0

ydy
√

y2 + 1
j2s−1 y−γ g4+ρ + 〈p〉(ρ+γ )/21|p|≤1.

Then we have

ζ∗(p) �
c′

p0

∫

R3

dq

q0

e−q0√
s

g
j2s−1g4+ρ

∫ y1

0

y1−γ dy + 〈p〉(ρ+γ )/21|p|≤1

�
c′

p0

∫

R3

dq

q0

e−q0√
s

g
j2s−1g4+ρ y

2−γ

1 + 〈p〉(ρ+γ )/21|p|≤1.

We further have on φ ∈ [π/4, π/3], using also j ≤ l, that

y
2−γ

1 =
(

2l j cos φ

4l2 − j2 cos2 φ

)2−γ

≥
(

l j

4l2 − j2/4

)2−γ

�

(

j

l

)2−γ

,

as cos φ ≥ 1
2

. Altogether, we have

ζ∗(p) �
c′

p0

∫

R3

dq

q0

e−q0√
s

g
j2s−1g4+ρ

(

j

l

)2−γ

+ 〈p〉(ρ+γ )/21|p|≤1

�
c′

p0

∫

R3

dq

q0

e−q0√
s

g
s−1g4+ρ j4−γ l−2+γ + 〈p〉(ρ+γ )/21|p|≤1.

Now we recall (3.5), (2.56), (2.59) and note that γ ∈ (0, 2). Then we obtain

ζ∗(p) �
1

p0

∫

R3

dq

q0
e−q0

g−1+γ+ρ |p × q|4−γ s−1/2(p0 + q0)−2+γ + 〈p〉(ρ+γ )/21|p|≤1

�
1

p0

∫

R3

dq

q0
e−q0

s−1/2gγ+ρ−1|p × q|4−γ (p0q0)−2+γ + 〈p〉(ρ+γ )/21|p|≤1,

(3.26)

above we also used (2.63). Further, since (2.57), we have

s−1/2 � (p0q0)−1/2.

If γ + ρ − 1 ≥ 0, then from (2.59) and (2.62) we have

gγ+ρ−1 ≥
(

|p − q|
√

p0q0

)γ+ρ−1

≥
(

|p0 − q0|
√

p0q0

)γ+ρ−1

.

Otherwise, when γ + ρ − 1 < 0, using (2.57) with (2.56) we have

gγ+ρ−1 ≥ (p0q0)γ /2+ρ/2−1/2.
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Finally, we use the spherical-coordinate representation of q �→ (r , θq , φq). We let the

z-axis be parallel to the direction of p such that φq is the angle between p and q. Then

we have

ζ∗(p) �
1

p0

∫ ∞

0

dr
r2e−

√
1+r2

√
r2 + 1

∫ π

0

dφq sin φq

×(p0q0)−1/2 min

⎧

⎨

⎩

(

|p0 − q0|
√

p0q0

)γ+ρ−1

, (p0q0)γ /2+ρ/2−1/2

⎫

⎬

⎭

×|p|4−γ r4−γ sin4−γ φq(p0q0)−2+γ + 〈p〉(ρ+γ )/21|p|≤1

≈ |p|4−γ (p0)−1−1/2+γ /2+ρ/2−1/2−2+γ + 〈p〉(ρ+γ )/21|p|≤1

≈ |p|4−γ (p0)−4+3γ /2+ρ/2 + 〈p〉(ρ+γ )/21|p|≤1. (3.27)

Now we remark that if |p| ≥ 1 then we have |p| ≈ p0. We conclude

ζ ′(p) ≥ ζ∗(p) � (p0)
ρ
2 + γ

2 .

This completes the proof for the high-order lower bound of ζ ′(p).

Similarly, we can obtain the high-order lower bound of ζ(p) from (3.16). Note that

the only difference between ζ(p) and ζ ′(p) from (3.16) and (3.11) is that the domain

R
3 with respect to q variable in (3.11) is now restricted to |q| ≤ 1

2
|p|1/m in (3.16).

Then we note that the proof for the high-order lower bound of ζ(p) is exactly the same

as ζ ′(p) until (3.26) above except for the change from
∫

R3 dq into
∫

|q|≤ 1
2 |p|1/m dq. Then

in the spherical-coordinate representation of q �→ (r , θq , φq) for (3.27), we change

the integral domain
∫∞

0 dr in (3.27) to
∫

1
2 |p|1/m

0 dr . Then analogous to (3.27) we have

ζ(p) �
1

p0

∫ 1
2 |p|1/m

0

dr
r2e−

√
1+r2

√
r2 + 1

∫ π

0

dφq sin φq

×(p0q0)−1/2 min

⎧

⎨

⎩

(

|p0 − q0|
√

p0q0

)γ+ρ−1

, (p0q0)γ /2+ρ/2−1/2

⎫

⎬

⎭

×|p|4−γ r4−γ sin4−γ φq(p0q0)−2+γ + 〈p〉(ρ+γ )/21|p|≤1.

Now in the region |q| ≤ 1
2
|p|1/m with |p| ≥ 1 and m ≥ 1 sufficiently large inside

(3.27) we have

min

⎧

⎨

⎩

(

|p0 − q0|
√

p0q0

)γ+ρ−1

, (p0q0)γ /2+ρ/2−1/2

⎫

⎬

⎭

� (p0)γ /2+ρ/2−1/2 min
{

(q0)−γ /2−ρ/2+1/2, (q0)γ /2+ρ/2−1/2
}
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We further have on |p| ≥ 1 with q0 =
√

1 + r2 that

∫ 1
2 |p|1/m

0

dr
r2e−

√
1+r2

√
r2 + 1

r4−γ min
{

(q0)−γ /2−ρ/2, (q0)γ /2+ρ/2−1
}

(q0)−2+γ

�

∫ 1
2

0

dr
r2e−

√
1+r2

√
r2 + 1

r4−γ min
{

(q0)−γ /2−ρ/2, (q0)γ /2+ρ/2−1
}

(q0)−2+γ � c 1
2
,

for some constant c 1
2

> 0 if |p| ≥ 1. Therefore, the same proof with the modifications

above works for the leading-order lower bound of ζ(p) from (3.16). In particular the

estimate (3.27) continues to hold, and this completes the leading-order lower-bound

estimates. ��

This completes the leading order lower bound estimates of ζ(p). In the next two

sections, we will use the decomposition ζ̃ (p) = ζ0(p) + ζL(p) from (3.3) and (3.4)

to obtain the leading order upper bound of ζ̃ (p), and the lower order upper bounds of

ζL(p) and ζ̃ L(p) from (3.10).

3.5 Leading Order Upper Bound Estimates

We now prove the following leading order upper bound estimate for ζ0 from (3.3)

using the alternative representation (3.18):

Proposition 3.4 Suppose γ ∈ (0, 2) in (2.20). Then for both hard (2.21) and soft

(2.22) interactions, for (3.18) when |p| ≥ 1, we have

|ζ0(p)| � (p0)
ρ+γ

2 .

This consequently implies the same uniform bound for ζ0,m(p) from (3.14).

For the proof, we decompose ζ0 from (3.18) as ζ0 = ζ1 + ζ2 where

ζ1
def= c′

p0
e

p0

4

∫

R3

dq

q0

e− 3
4 q0

g

∫ ∞

0

rdr√
r2 + s

s�σ(g�, θ�)
s�(g)g4

s��(g�)g4
�

×
[

exp

(

− p0 + q0

4

)

− exp

(

− p0 + q0

4
√

s

√

r2 + s

)]

, (3.28)

ζ2
def= c′

p0
e

p0

4

∫

R3

dq

q0

e− 3
4 q0

g

∫ ∞

0

rdr√
r2 + s

s�σ(g�, θ�)
s�(g)g4

s��(g�)g4
�

× exp

(

− p0 + q0

4
√

s

√

r2 + s

)[

1 − I0

( |p × q|
2g

√
s

r

)]

. (3.29)

Clearly, ζ1 is positive. We estimate ζ1 in Lemma 3.5 and then we will estimate ζ2 in

Lemma 3.6; Proposition 3.4 then follows directly. First, we have
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Lemma 3.5 Assuming either (2.21) or (2.22) with (2.20), then we have the following

uniform asymptotic bound for ζ1 from (3.28):

ζ1(p) � (p0)
ρ+γ

2 .

Proof The change of variables (3.19) on the representation (3.28) yields that

ζ1
def= c′

p0
e

p0

4

∫

R3

dq

q0

e− 3
4 q0

g

∫ ∞

0

2dk√
s

s�σ(g�, θ�)
s�(g)g4

s��(g�)g4
�

×
[

exp

(

− p0 + q0

4

)

− exp

(

− p0 + q0

4

(

1 + 2k

s

))

]

= c′

p0

∫

R3

dq

q0

e−q0

g

∫ ∞

0

2dk√
s

s�σ(g�, θ�)
s�(g)g4

s��(g�)g4
�

[

1 − exp

(

− (p0 + q0)k

2s

)

]

= c4

p0

∫

R3

dq

q0
e−q0√

s�(g)g3

∫ ∞

0

dk
σ0(cos θ�)

g4
�

[

1 − exp

(

− (p0 + q0)k

2s

)

]

.

Here c4 = 2c′. We start by showing the upper-bound estimates of ζ1. By the funda-

mental theorem of calculus, we have

ζ1 = c4

p0

∫

R3

dq

q0
e−q0√

s�(g)g3

∫ ∞

0

dk
σ0(cos θ�)

g4
�

[

1 − exp

(

− (p0 + q0)k

2s

)

]

= c4

p0

∫

R3

dq

q0
e−q0√

s�(g)g3

∫ ∞

0

dk
σ0(cos θ�)

g4
�

×
∫ 1

0

dϑ exp

(

− (p0 + q0)k

2s
ϑ

)

(p0 + q0)k

2s
. (3.30)

Note that using (2.20), (2.21), (2.22), (2.23), (3.20), and (3.21), we have

�(g) ≈ gρ and σ0(cos θ�) ≈
(

k

k + g2

)−1−γ /2

≈ g
2+γ

� k−1−γ /2. (3.31)

We will use this equivalence in the following developments.

We split into two cases: k ≤ 4 and k > 4. First consider k ≤ 4. We use

exp
(

− (p0+q0)k
2s

ϑ
)

≤ 1 and g ≤ g� = (g2 + k)1/2 from (3.20), then when k ≤ 4 we

have

ζ1(p) �
1

p0

∫

R3

dq

q0
e−q0√

sg3�(g)

∫ 4

0

dk
g

2+γ
�

g4
�

k−1− γ
2
(p0 + q0)k

2s

�

∫

R3
dq e−q0

�(g)s
γ
2

∫ 4

0

dk k− γ
2 . (3.32)

Here we used g� ≤ √
s when k ≤ 4. Since γ ∈ (0, 2), the integral converges.
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Now we use g �
√

p0q0 from (2.56) and (2.57) in the hard interaction (2.21) case.

Alternatively we will use g ≥ |p−q|√
p0q0

from (2.59) in the soft interaction (2.22) case,

and s � p0q0 from (2.57). Then on k ≤ 4 we further have

ζ1(p) �

∫

R3

dq e−q0

(p0q0)
a+γ

2 � (p0)
a+γ

2 ,

for the hard interactions, and

ζ1(p) �

∫

R3
dq e−q0

(

|p − q|
√

p0q0

)−b

(p0q0)
γ
2 � (p0)

−b+γ
2 ,

for the soft interactions.

On the other hand, when k > 4, we still have (3.31) and (3.30). Hence

ζ1(p) �
1

p0

∫

R3

dq

q0
e−q0√

sg3�(g)

∫ ∞

4

dk

[

1 − exp
(

− (p0+q0)k
2s

) ]

k1+γ /2(k + g2)1−γ /2

�
1

p0

∫

R3

dq

q0
e−q0√

sg1+γ �(g)

∫ ∞

4

dk k−1−γ /2
[

1 − exp

(

− (p0 + q0)k

2s

)

]

�

∫

R3
dq e−q0

gγ �(g)

∫ ∞

4

dk k−1−γ /2
[

1 − exp

(

− (p0 + q0)k

2s

)

]

�

∫

R3
dq e−q0

gγ �(g)

∫ ∞

4

dk k−1−γ /2. (3.33)

Above we used g �
√

s �
√

p0q0 from (2.56)–(2.57) and
[

1− exp
(

− (p0+q0)k
2s

) ]

�

1.

Then, also using g �
√

p0q0 for hard interactions (2.21) and (2.59) for the soft

interactions (2.22), when k ≥ 4, we have

ζ1(p) �

∫

R3
dq e−q0

ga+γ

∫ ∞

4

dk k−1−γ /2 �

∫

R3
dq e−q0

ga+γ

�

∫

R3
dq e−q0

(p0q0)
a+γ

2 � (p0)
a+γ

2 ,

in the hard interaction case, and

ζ1(p) �

∫

R3
dq e−q0

g−b+γ

∫ ∞

4

dk k−1−γ /2 �

∫

R3
dq e−q0

g−b+γ

�

∫

R3
dq e−q0

(

|p − q|
√

p0q0

)−b+γ

� (p0)
−b+γ

2 ,

in the soft interaction case. This completes the upper-bound estimate of ζ1. ��
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On the other hand, we have the following upper-bound estimate for ζ2:

Lemma 3.6 Suppose γ ∈ (0, 2) in (2.20). Then for both hard (2.21) and soft (2.22)

interactions with (2.23) we have the following uniform upper bound for (3.29) when

|p| ≥ 1:

|ζ2(p)| � (p0)
ρ+γ

2 .

Proof We use the change of variables r �→ y
def= r√

s
on (3.29). This yields

ζ2
def= c′

p0
e

p0

4

∫

R3

dq

q0

e− 3
4 q0

g

∫ ∞

0

√
sydy

√

y2 + 1
s�σ(g�, θ�)

s�(g)g4

s��(g�)g4
�

× exp

(

− p0 + q0

4

√

y2 + 1

)[

1 − I0

( |p × q|
2g

y

)]

.

Recall (3.5). Note that σ(g�, θ�) = �(g�)σ0(θ�) ≥ 0. Then we have

ζ2
def= c′

p0
e

p0

4

∫

R3

dq

q0

e− 3
4 q0

g

∫ ∞

0

√
sydy

√

y2 + 1
s�(g)σ0(θ�)

g4

g4
�

× exp

(

−l

√

y2 + 1

)

[1 − I0( j y)] . (3.34)

Note that I0 ≥ 1 so that ζ2 ≤ 0. By (3.23), using g2 ≤ s from (2.56) we have

σ0(θ�) � (y2 +
√

y2 + 1)1+γ /2 y−2−γ ,

Plugging this into (3.34), we have

|ζ2| �
1

p0
e

p0

4

∫

R3

dq

q0

e− 3
4 q0

g
s
√

s�(g)

∫ ∞

0

y−1−γ dy
√

y2 + 1
(y2 +

√

y2 + 1)1+γ /2

× exp

(

−l

√

y2 + 1

)

[I0( j y) − 1] , (3.35)

where we also used
g4

g4
�

≤ 1 from (3.6). Also note that

exp

(

−l

√

y2 + 1

)

= exp(−l) exp

(

−l(

√

y2 + 1 − 1)

)

= e
−p0−q0

4 exp

(

−l(

√

y2 + 1 − 1)

)

.
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Plugging this into (3.35), we have

|ζ2| �
1

p0

∫

R3

dq

q0

e−q0

g
s
√

s�(g)Y (p, q), (3.36)

where we define

Y (p, q)
def=
∫ ∞

0

y−1−γ dy
√

y2 + 1
(y2 +

√

y2 + 1)1+γ /2

× exp

(

−l(

√

y2 + 1 − 1)

)

[I0( j y) − 1] . (3.37)

For the upper-bound estimate of Y (p, q) we split the region [0,∞) into two:

Y (p, q) = Ỹ 1(p, q) + Ỹ 2(p, q),

where Ỹ 1(p, q) is the integral in (3.37) restricted to the integration region y ≥ 1 and

then Ỹ 2(p, q) is the expression in (3.37) on the integration region 0 < y < 1.

First we consider the case Ỹ 1(p, q) that y ≥ 1. When y ≥ 1, we have

y−1−γ

√

y2 + 1
(y2 +

√

y2 + 1)1+γ /2 �
y−1−γ

√

y2 + 1
(y2)1+γ /2 �

y
√

y2 + 1
.

Therefore, on the region y ≥ 1, using (2.78) we have

Ỹ 1(p, q) � exp(l)

∫ ∞

1

dy
y

√

y2 + 1
exp(−l

√

y2 + 1)I0( j y) � exp(l)J2(l, j).

By (2.82) we then have

Ỹ 1(p, q) � exp(l)
exp(−

√

l2 − j2)
√

l2 − j2
.

Since p0 − q0 ≤ |p − q| from (2.62), we have

exp

(

p0 − q0 − |p − q|
4

)

≤ 1. (3.38)

Thus, using (2.61), (2.66), (2.67) and (3.38) we have

Ỹ 1(p, q) � exp

(

p0 + q0

4
−

√
s

4g
|p − q|

)

4g√
s|p − q|

� exp

(

q0

2

)

exp

(

p0 − q0

4
− |p − q|

4

)

4√
s

�
exp

(

q0

2

)

√
s

.
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Now we will use �(g) ≈ gρ from (2.21)–(2.23). In the hard interaction case (2.21)

we use (2.59) and (2.58) in (3.36) to conclude that

[ζ2]y≥1 �

∫

R3
dq

exp
(

−q0

2

)

|p − q| (p0q0)
a+1

2 � (p0)
a
2 − 1

2 . (3.39)

Then in the soft interaction case (2.22), using b < 2, we use (2.57) and (2.59) to

obtain

[ζ2]y≥1 �

∫

R3
dq

exp
(

−q0

2

)

|p − q|1+b
(p0q0)

b+1
2 � (p0)−

b
2 − 1

2 . (3.40)

Here [ζ2]y≥1 is ζ2 restricted to the integration region y ≥ 1 using the convention (2.95).

This completes the proof for the upper bound of ζ2 when y ≥ 1.

Alternatively, using (3.37) we will show that |ζ2| on 0 < y < 1 is bounded

uniformly from above by (p0)
ρ
2 + γ

2 . We prove this using the known Taylor expansion

of the modified Bessel function of the first kind I0 [42] as follows:

I0( j y) =
∞
∑

M=0

1

(M !)2

(

j y

2

)2M

.

Now, since y < 1, recalling (3.37) we have

y−1−γ

√

y2 + 1
(y2 +

√

y2 + 1)1+γ /2 � y−1−γ ,

and

exp

(

−l(

√

y2 + 1 − 1)

)

= exp

(

−l
y2

√

y2 + 1 + 1

)

≤ exp

(

−l
y2

√
2 + 1

)

.

Therefore, by (3.37), we have

Ỹ 2(p, q) �

∫ 1

0

dy y−1−γ exp

(

−l
y2

√
2 + 1

) ∞
∑

M=1

1

(M !)2

(

j y

2

)2M

�

∞
∑

M=1

1

(M !)2
( j/2)2M

∫ 1

0

dy y−1−γ+2M exp
(

−cly2
)

,

where we define

c
def= 1

1 +
√

2
. (3.41)
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For M ≥ 1, we further define

YM
def=
∫ 1

0

dy y−1−γ+2M exp
(

−cly2
)

.

Here we take a change of variables y �→ z = ly2 with dz = 2lydy and obtain

YM ≤ l
γ
2 −M

2

∫ l

0

dz z−1−γ /2+M exp (−cz)

≤ l
γ
2 −M

2

∫ ∞

0

dz z−1−γ /2+M exp (−cz)

≤ l
γ
2 −M

2
3M−1 sup

z∈[0,∞)

{

( z

3

)M−1

exp
(

− z

3

)

}∫ ∞

0

dz z−γ /2 exp (−(c − 1/3)z)

≤ C13M sup
z∈[0,∞)

{

( z

3

)M−1

exp
(

− z

3

)

}

l
γ
2 −M ,

where the constant C1 is uniformly bounded since γ ∈ (0, 2) as

C1
def= 1

6

∫ ∞

0

dz z−γ /2 exp (−(c − 1/3)z) < ∞.

This holds because c > 1
3

from (3.41). We use the Stirling formula error bounds to

obtain

sup
z∈[0,∞)

{

( z

3

)M−1

exp
(

− z

3

)

}

≤ 1√
2π

(M − 1)!√
M − 1

≤ 1√
4π

M !√
M

, if M ≥ 2.

Alternatively if M = 1 we have the bound

sup
z∈[0,∞)

{

exp
(

− z

3

)}

≤ 1, if M = 1.

Therefore we have the general bound

YM ≤ C13M M !√
M

l
γ
2 −M , M ≥ 1. (3.42)

We will use this bound to estimate [ζ2]0<y<1 using the convention (2.95).

First we notice that using (3.5) we have

j2M l
γ
2 −M ≤ (q0)M l

γ
2 , (3.43)

123



   20 Page 56 of 167 J.W. Jang, R.M. Strain

where to prove (3.43) we used j2/l ≤ q0 which follows from (2.60) as

j2

l
= |p × q|2

g2(p0 + q0)
≤ p0q0

p0 + q0
≤ q0. (3.44)

Now we plug (3.42) and (3.43) into (3.36) with Ỹ 2(p, q), to obtain

[ζ2]0<y<1 �
1

p0

∫

R3

dq

q0

e−q0

g
s
√

s�(g)l
γ
2

∞
∑

M=1

1

M !
√

M

(

3

4

)M

(q0)M

�
1

p0

∫

R3

dq

q0

e−q0

g
s
√

s�(g)l
γ
2 exp

(

3

4
q0

)

.

We use �(g) ≈ gρ with −2 < ρ from (2.23). In the hard interaction case (2.21), we

will use (2.65), (2.59) and (2.58) to conclude that

[ζ2]0<y<1 �

∫

R3

dq e− q0

4

|p − q| (p0q0)
1
2 + γ

2 + 1+a
2 � (p0)

a
2 + γ

2 . (3.45)

And in the soft interaction case (2.22) we will use (2.59) and (2.57) to obtain

[ζ2]0<y<1 �

∫

R3
dq

e− q0

4

|p − q|1+b
(p0q0)

1
2 + γ

2 + 1+b
2 � (p0)−

b
2 + γ

2 , (3.46)

where we recall that 1+b < 3. This proves that [ζ2]0<y<1 has the leading order upper

bound. ��

Thus we obtain Proposition 3.4 by combining Lemmas 3.5 and 3.6. In the next

section, we will prove that the remainder terms ζL from (3.4), and ζ̃ L,m from (3.13)

have lower order upper bounds. We will also prove that ζ̃ 1(p) from (3.12) has a lower

order upper bound in Proposition 3.9.

3.6 Lower Order Upper Bound Estimates

In this section, we study the upper bound estimates of ζL from (3.4), ζ̃ L,m from (3.13)

and ζ̃ 1(p) from (3.12), which together form part of ζK in (3.17). Our goal will be to

prove that |ζL(p)|, |ζ̃ L,m(p)|, and |ζ̃ 1(p)| have lower order upper bounds.

3.6.1 Lower Order Upper Bound for �L(p)

For the proof of the lower order upper bound of |ζL | we will use the representation in

(3.4). We have the following uniform asymptotic bound:
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Proposition 3.7 Suppose γ ∈ (0, 2) in (2.20). Then for both hard (2.21) and soft

(2.22) interactions, for (3.4) when |p| ≥ 1, we have

|ζL(p)| � (p0)
ρ
2 .

This bound then automatically also holds for |ζL,m(p)| from (3.13).

Proof By (3.4) and the definition of l and j of (3.5) we have

ζL
def= c′

p0
e

p0

4

∫

R3

dq

q0

e− 3
4 q0

g

√
s

×
∫ ∞

0

ydy
√

y2 + 1
s�σ(g�, θ�) exp

(

−l

√

y2 + 1

)

I0 ( j y)

(

s�(g)g4

s��(g�)g4
�

− 1

)

.

(3.47)

In the hard interaction case (2.21), we have
�(g)
�(g�)

=
(

g
g�

)a

with a < 2. Since g ≤ g�

from (3.6), we have
�(g)
�(g�)

≥ g2

g2
�

. Then this implies

∣

∣

∣

∣

∣

s�(g)g4

s��(g�)g4
�

− 1

∣

∣

∣

∣

∣

= 1 − s�(g)g4

s��(g�)g4
�

≤ 1 − sg6

s�g6
�

= s�g6
� − sg6

s�g6
�

.

Further note that we have

s�g6
� − sg6 = (g8

� − g8) + 4(g6
� − g6)

= (g2
� − g2)

(

(g4
� + g4)(g2

� + g2) + 4g4
� + 4g2

�g2 + 4g4
)

�
s

2
(

√

y2 + 1 − 1)g4
�s�,

since g2
� − g2 = s

2
(
√

y2 + 1 − 1) from (3.6), s�
def= g2

� + 4 and again g ≤ g�.

Therefore, we have

∣

∣

∣

∣

∣

s�(g)g4

s��(g�)g4
�

− 1

∣

∣

∣

∣

∣

≤ s�g6
� − sg6

s�g6
�

�
s
2
(
√

y2 + 1 − 1)

g2
�

. (3.48)

This is the main estimate for this difference in the hard interaction case.

We now consider the same estimate in the soft interaction case (2.22). Since g ≤ g�

and
�(g)
�(g�)

=
(

g
g�

)−b

with b ∈ [γ, 2), then we have
�(g)
�(g�)

≥ 1. Then b ∈ [γ, 2)

further implies

1 − s�(g)g4

s��(g�)g4
�

≤ 1 − sg4

s�g4
�

= s�g4
� − sg4

s�g4
�

.
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In this case we also have

s�g4
� − sg4 = (g6

� − g6) + 4(g4
� − g4)

= (g2
� − g2)

(

g4
� + g2

�g2 + g4 + 4g2
� + 4g2

)

= (g2
� − g2)

(

g4
� + g2

�g2 + g4 + 4g2
� + 4g2

)

≤ s

2
(

√

y2 + 1 − 1)(3g4
� + 8g2

�)

�
s

2
(

√

y2 + 1 − 1)g2
�s�,

because again g2
� − g2 = s

2
(
√

y2 + 1 − 1) from (3.6). Therefore, we have

∣

∣

∣

∣

∣

s�(g)g4

s��(g�)g4
�

− 1

∣

∣

∣

∣

∣

≤ s�g4
� − sg4

s�g4
�

�
s
2
(
√

y2 + 1 − 1)

g2
�

. (3.49)

Note that in both the hard interaction case and the soft interaction case the final upper

bounds are the same in (3.48) and (3.49).

In both cases, then plugging (3.48) and (3.49) into (3.47) we have

|ζL | �
1

p0
e

p0

4

∫

R3

dq

q0

e− 3
4 q0

g
s1/2 K2(p, q), (3.50)

where we define K2 = K2(p, q) by

K2
def=
∫ ∞

0

ydy
√

y2 + 1
s�σ(g�, θ�) exp

(

−l

√

y2 + 1

)

I0 ( j y)

s
2
(
√

y2 + 1 − 1)

g2
�

.

(3.51)

We will split into two cases: y ≤ 1 and y > 1. We write K2 = K2,≤1 + K2,≥1 below

where K2,≤1 and K2,≥1 denote K2 on y ≤ 1 and y ≥ 1, respectively.

First let us generally estimate the kernel. We will use the product form (2.19) with

the estimates (2.21)–(2.22)–(2.23) to obtain

s�σ(g�, θ�)

s
2
(
√

y2 + 1 − 1)

g2
�

≈ s�g
ρ−2
� sσ0(θ�)(

√

y2+1−1) ≈ s�g
ρ
�sσ0(θ�)y2

g2
�(
√

y2 + 1 + 1)
.

Additionally using (3.23) with (3.24) we have

σ0(θ�) ≈
(

s

g2
�

y2

2(
√

y2 + 1 + 1)

)−1−γ /2

� y−2−γ (

√

1 + y2)1+γ /2

(

g2
�

s

)1+γ /2
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We plug this into the previous estimate to obtain

s�σ(g�, θ�)

s
2
(
√

y2 + 1 − 1)

g2
�

� y−γ (1 + y2)γ /4 s�g
ρ
�s

g2
�

(

g2
�

s

)1+γ /2

� y−γ (1 + y2)γ /4s�g
ρ
�

(

g2
�

s

)γ /2

.

We conclude from (2.68) and the above that in general we have

s�σ(g�, θ�)

s
2
(
√

y2 + 1 − 1)

g2
�

� y−γ (1 + y2)γ /2s�g
ρ
� � y−γ (1 + y2)(1+γ )/2sg

ρ
�.

In particular, recalling (2.21)–(2.22)–(2.23) and using (3.48), (3.49), and (2.68), then

in general we have

s�σ(g�, θ�)

∣

∣

∣

∣

∣

s�(g)g4

s��(g�)g4
�

− 1

∣

∣

∣

∣

∣

� S y−γ (1 + y2)1+γ /2, ∀0 ≤ y ≤ ∞.

(3.52)

This holds in particular since a < 2 in (2.21). Here we define

S
def= s1+ a

2 for hard interactions (2.21),

def= sg−b for soft interactions (2.22).
(3.53)

These are the specific estimates that we will use on the kernel of (3.51).

Now we return to estimating (3.51) on the region when y ≤ 1. Then using the above

calculations we have the following bound for
∣

∣K2,≤1

∣

∣:

|K2,≤1| � S

∫ 1

0

dy y1−γ (1 + y2)(1+γ )/2 exp

(

−l

√

y2 + 1

)

I0( j y)

� S

∫ 1

0

dy y1−γ exp

(

−l

√

y2 + 1

)

I0( j y) � SK̄ γ (l, j),

where we used (1 + y2)(1+γ )/2 � 1 as y ∈ (0, 1), and γ > 0. Since γ ∈ (0, 2), this

integral converges. In the last upper bound we used (2.77). From (2.81) we conclude

|K2,≤1| � S exp

(

−
√

l2 − j2

)

. (3.54)

This completes our estimate on the region when y ≤ 1.

123



   20 Page 60 of 167 J.W. Jang, R.M. Strain

On the other region when y > 1, using (3.52) and (3.53), for the integral defined

in (3.51) we have for both hard and soft interactions, that

|K2,≥1| � S

∫ ∞

1

dy y(y2 + 1)1/2 exp

(

−l

√

y2 + 1

)

I0( j y) � SK̃ 2(l, j).

Here K̃ 2(l, j) is defined in (2.79). The formula for K̃ 2 is (2.83) and we have

K̃ 2(l, j) � (

√

l2 − j2)−5 exp(−
√

l2 − j2)(l2 − j2 + 1)l2. (3.55)

By (2.66), we have l2 − j2 = s
16g2 |p − q|2. Thus, we obtain

K̃ 2(l, j) �
l2

(
√

l2 − j2)3

(

1 + 1

l2 − j2

)

exp(−
√

l2 − j2)

�
(p0 + q0)2

16

(

4g√
s|p − q|

)3
(

1 +
(

4g√
s|p − q|

)2
)

exp(−
√

l2 − j2).

We point out that due to (2.61) the above is not singular when |p − q| = 0.

Note that using (2.56) and (2.61) we have

1 +
(

4g√
s|p − q|

)2

≤ 1 + 16

s
� 1. (3.56)

Also using g ≤ √
s, which follows from (2.56), we have

K̃ 2(l, j) �
(p0 + q0)2

16

(

4g√
s|p − q|

)3

exp(−
√

l2 − j2)

�
(p0 + q0)2

16

(

4

|p − q|

)3

exp(−
√

l2 − j2)

�
(p0 + q0)2

|p − q|3 exp(−
√

l2 − j2). (3.57)

We will use estimate (3.57) to control the size of |K2,≥1| below.

We will now to use the region |q| ≤ 1
2
|p|1/m and |p| ≥ 1 to complete our estimate

of |K2,≥1|. Then later we will do separate estimates on the complementary region:

|q| ≥ 1
2
|p|1/m . Now since |q| ≤ 1

2
|p|1/m , m > 1 and |p| ≥ 1, then we have

p0

4
≤ |p|

2
≤ |p − q| ≤ 3

2
|p|, (3.58)

and

1 ≤ q0 ≤ 2(p0)1/m . (3.59)

123



Relativistic Boltzmann Equation without Cut-Off Page 61 of 167    20 

Thus we have

(p0 + q0)2

|p − q|3 �
1

p0
.

Hence we obtain from (3.57) that

K̃ 2(l, j) �
1

p0
exp(−

√

l2 − j2). (3.60)

We therefore conclude from (3.60) that

|K2,≥1| � S
1

p0
exp

(

−
√

l2 − j2

)

. (3.61)

By (3.53), (3.54) and (3.61), using (2.95) we finally obtain

[|ζL(p)|]|q|≤ 1
2 |p|1/m �

1

p0
e

p0

4

∫

|q|≤ 1
2 |p|1/m

dq

q0

√
s

g
e− 3

4 q0

S exp

(

−
√

l2 − j2

)

�
1

p0

∫

|q|≤ 1
2 |p|1/m

dq

q0
e− q0

2

√
s

g
S exp

(

p0 − q0

4
−
√

l2 − j2

)

.

We will use the inequality above to obtain the final upper bounds.

In the hard interaction case (2.21), we use (2.57), (2.59) and (2.67) to obtain

[|ζL(p)|]|q|≤ 1
2 |p|1/m �

∫

R3
dq

(p0q0)1+ a
2

|p − q| e− q0

2 exp

(

p0 − q0 − |p − q|
4

)

.

(3.62)

Therefore, from (3.38) we have

[|ζL(p)|]|q|≤ 1
2 |p|1/m � (p0)

a
2 .

In the soft interaction case (2.22), we use (2.59) and (2.67) to obtain

[|ζL(p)|]|q|≤ 1
2 |p|1/m

�

∫

|q|≤ 1
2 |p|1/m

dq
(p0q0)

b
2 +1

|p − q|1+b
e− q0

2 exp

(

p0 − q0 − |p − q|
4

)

. (3.63)

By (3.38), since b < 2, we then have

[|ζL(p)|]|q|≤ 1
2 |p|1/m � (p0)

b
2 +1

∫

R3
dq |p − q|−1−be− q0

2 (q0)
b
2 +1 � (p0)−

b
2 .

123



   20 Page 62 of 167 J.W. Jang, R.M. Strain

This completes the desired estimates on the region |q| ≤ 1
2
|p|1/m

Next we perform the estimates on the complementary region where |q| ≥ 1
2
|p|1/m ,

|p| ≥ 1 and m > 1. Therefore, in this region we have

q0 ≥ |q| ≥ 1

2

(

|p|2
)

1
2m ≥ 1

2

(

1

2

)
1

2m (

p0
)

1
m

.

Then, for some c = cm > 0, we have additional exponential decay from

e−q0 = e−q0/2e−q0/2 ≤ e−q0/2e−c(p0)1/m

, (3.64)

Then with (3.64) we have exponential decay in p0.

Now we need to replace the estimates on K̃ 2(l, j) above, which is defined in (2.79).

Recalling the estimates (3.55) and (3.56), instead of (3.57) we use (2.56) and (2.61)

to obtain

K̃ 2(l, j) �
(p0 + q0)2

16

(

4g√
s|p − q|

)3

exp(−
√

l2 − j2)

� (p0 + q0)2 exp(−
√

l2 − j2). (3.65)

We conclude from the above estimate, recalling also (3.53), that

|K2,≥1| � S(p0 + q0)2 exp(−
√

l2 − j2).

Then by (3.50), (3.51), (3.53), (3.54) and the above, we further obtain

[|ζL(p)|]|q|≥ 1
2 |p|1/m

�
1

p0
e

p0

4

∫

|q|≥ 1
2 |p|1/m

dq

q0

√
s

g
e− 3

4 q0

S(p0 + q0)2 exp

(

−
√

l2 − j2

)

�
1

p0

∫

|q|≥ 1
2 |p|1/m

dq

q0
e− q0

2

√
s

g
S(p0 + q0)2 exp

(

p0 − q0

4
−
√

l2 − j2

)

� p0e−c(p0)1/m

∫

|q|≥ 1
2 |p|1/m

dq q0e− q0

4

√
s

g
S,

where in the last inequality we used (2.63), (2.67), (3.38) and (3.64). Then from the

same procedures we used to prove (3.62) and (3.63), using the exponential decay in

p0 above, we obtain for some uniform c′ > 0 that

[|ζL(p)|]|q|≥ 1
2 |p|1/m � e−c′(p0)1/m

. (3.66)

Combining the previous estimates, this completes the proof. ��
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This completes the proof of the lower order upper bound estimates for ζL from

(3.4). Next, we prove that ζ̃ L,m from (3.15) has a lower order upper bound.

3.6.2 Lower Order Upper Bound for �̃L,m

We now prove the following proposition:

Proposition 3.8 Suppose γ ∈ (0, 2) in (2.20), and recall (2.23). For any given small

ε > 0, assume that m is sufficiently large such that
|ρ|+8

2m
≤ ε. Then for both hard

(2.21) and soft (2.22) interactions there exists a finite constant Cε > 0 such that for

(3.15) we have the following uniform asymptotic estimate

∣

∣

∣ζ̃ L,m(p)

∣

∣

∣ ≤ Cε(p0)
ρ
2 +ε.

We recall (3.10) and (3.15) with (2.95). Then we use the following representation

in this section (implicitly assuming |p| ≥ 1):

ζ̃ L,m(p) = c′

p0

∫

|q|≤ 1
2 |p|1/m

dq

q0

e−q0 √
s

g

∫ ∞

0

ydy
√

y2 + 1
s�σ(g�, θ�)

(

1 − s�(g)g4

s��(g�)g4
�

)

×
(

exp(2l − 2l

√

y2 + 1)I0(2 j y) − exp(l − l

√

y2 + 1)I0( j y)

)

def= ζ̃
1

L − ζ̃
2

L .

The splitting of ζ̃ L into ζ̃
1

L and ζ̃
2

L allows us to realize ζ̃
2

L = −ζL,m from (3.13)

with (3.4) and the lower order upper bound estimate for ζL was already given in

Proposition 3.7.

Proof Based on the above discussion, in this proof we only need to give the asymptotic

upper bound for ζ̃
1

L . We start with

ζ̃
1

L = c′

p0

∫

|q|≤ 1
2 |p|1/m

dq

q0

e−q0√
s

g

∫ ∞

0

ydy
√

y2 + 1
s�σ(g�, θ�)

(

1 − s�(g)g4

s��(g�)g4
�

)

× exp(2l − 2l

√

y2 + 1)I0(2 j y).

We recall that we have the kernel estimate (3.52) with the notation (3.53).

Thus when y ≤ 1, since 0 < γ < 2, we have

[ζ̃ 1

L ]y≤1 �
1

p0

∫

|q|≤ 1
2 |p|1/m

dq

q0

e−q0
s1/2

g
exp(2l)K̄ γ (2l, 2 j)S,

where we defined K̄ γ (l, j) in (2.77). In particular from (2.81) we have

K̄ γ (2l, 2 j) � exp(−
√

(2l)2 − (2 j)2).
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Thus, when y ≤ 1, we have

[ζ̃ 1

L ]y≤1 �
1

p0

∫

|q|≤ 1
2 |p|1/m

dq

q0

e−q0
s1/2

g
exp(2l −

√

4l2 − 4 j2)S. (3.67)

Above we are using the convention from (2.95).

On the other hand, if y ≥ 1, we again use the kernel estimate (3.52) with (3.53).

Then, for both hard and soft interactions, we have

[ζ̃ 1

L ]y≥1 �
1

p0

∫

|q|≤ 1
2 |p|1/m

dq

q0

e−q0
s1/2

g
exp(2l)S

×
∫ ∞

1

dy y(y2 + 1)1/2 exp(−2l

√

y2 + 1)I0(2 j y).

Then note that

∫ ∞

1

dy y(y2 + 1)1/2 exp(−2l

√

y2 + 1)I0(2 j y) ≤ K̃ 2(2l, 2 j),

where K̃2 is defined in (2.79). Then by (3.60), on the region |q| ≤ 1
2
|p|1/m , we have

K̃ 2(2l, 2 j) �
1

p0
exp(−

√

4l2 − 4 j2). (3.68)

Hence if y ≥ 1, we have

[ζ̃ 1

L ]y≥1 �
1

p0

∫

|q|≤ 1
2 |p|1/m

dq

q0

e−q0
s1/2

gp0
S exp(2l −

√

4l2 − 4 j2). (3.69)

Thus, combining (3.67) and (3.69), we obtain

ζ̃
1

L �
1

p0

∫

|q|≤ 1
2 |p|1/m

dq

q0

e−q0
s1/2

g
S exp(2l −

√

4l2 − 4 j2).

We will now split this estimate into the hard (2.21) and soft (2.22) interaction cases.

In the hard interaction case (2.21), we use (2.59), (2.57) and (2.67) to obtain

ζ̃
1

L �

∫

|q|≤ 1
2 |p|1/m

dq |p − q|−1(p0q0)1+ a
2 exp

(

p0 − q0 − |p − q|
2

)

.

Then by (3.58), (3.59), and (3.38), we have

ζ̃
1

L �

∫

|q|≤ 1
2 |p|1/m

dq |p|−1(p0)
(1+ a

2 )
(

1+ 1
m

)

123



Relativistic Boltzmann Equation without Cut-Off Page 65 of 167    20 

� |p|−1+ 3
m (p0)

(1+ a
2 )
(

1+ 1
m

)

� (p0)
a
2 + a+8

2m , (3.70)

since |p| ≥ 1. Then for any given small ε > 0, we choose m sufficiently large such

that a+8
2m

≤ ε. This yields Proposition 3.8 in the hard interaction case on the region

|q| ≤ 1
2
|p|1/m .

In the soft interaction case (2.22), we use (2.59) and (2.67) to obtain

ζ̃
1

L �

∫

|q|≤ 1
2 |p|1/m

dq |p − q|−1−b(p0q0)
b
2 +1 exp

(

p0 − q0 − |p − q|
2

)

.

Now we use (3.58), (3.59), and (3.38) to obtain for |p| ≥ 1 that

ζ̃
1

L �

∫

|q|≤ 1
2 |p|1/m

dq |p|−1−b(p0)

(

1+ b
2

)(

1+ 1
m

)

� |p|−1−b+ 3
m (p0)

(

1+ b
2

)(

1+ 1
m

)

� (p0)−
b
2 + b+8

2m . (3.71)

For any given small ε > 0, we choose m sufficiently large such that b+8
2m

≤ ε. This

yields Proposition 3.8 in the soft interaction case. This completes the proof. ��

3.6.3 Low-Order Upper-Bound for �̃1

Lastly, we introduce the following proposition on the lower-order upper bound estimate

for |ζ̃ 1| from (3.12).

Proposition 3.9 Suppose γ ∈ (0, 2) and m > 0. Then for both hard (2.21) and soft

(2.22) interactions, for some c > 0, we have the uniform upper bound for (3.12):

∣

∣

∣
ζ̃ 1(p)

∣

∣

∣
� e−c(p0)1/m

,

Proof Note that on |q| ≥ 1
2
|p|1/m , then we will prove that each decomposed piece ζ0

from (3.18) and ζL from (3.4) of ζ̃ is lower order as above.

In §3.5, in both (3.32) and (3.33), if we restrict the domain to the case |q| ≥
1
2
|p|1/m , then we have the bound (3.64) for some uniform c > 0. Therefore, ζ1 in

this subregion is lower order in p0, as it has additional exponential decay e−c(p0)1/m
.

Similarly, for ζ2, in (3.39), (3.40), (3.45), and (3.46), can again use (3.64) on the region

|q| ≥ 1
2
|p|1/m . Thus, ζ2 is also lower order in this region, and hence ζ0 is lower order

when |q| ≥ 1
2
|p|1/m .

On the other hand for ζL from (3.4), we have (3.66) in §3.6 which is exactly the

desired estimate. Thus, ζL is also lower order in p0, and hence ζ̃ is also lower order

in this sub-region. This completes the proof. ��

This concludes our discussion on the sharp asymptotics of the frequency multipliers.

In this next section, we provide upper-bound estimates on the nonlinear linearized

Boltzmann operator �.
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4 Main Upper Bound Estimates

In this section we prove the main upper bound estimates on the linearized (2.28) and

non-linear collision operator (2.27). In particular in §4.1 we dyadically decompose

the singularity and perform size estimates on the decomposed pieces of (2.27). In

§4.2, we perform the upper bound estimates that incorporate the cancellation when

we are nearby the singularity. Then in §4.3, we perform upper bound estimates that

incorporate cancellation on the dual expression from (4.33). In §4.4 we give some

additional estimates on the decomposed pieces that will be useful in proving in partic-

ular Lemma 2.6. In §4.5, we explain the main Littlewood–Paley inequalities that we

will use to prove our main estimate. Then in §4.6, we use triple sum estimates together

with all the previous estimates in the section in order to prove the main estimates from

§2.6.

4.1 Estimates on the Single Decomposed Pieces

In this section, we mainly discuss about the estimates on the decomposed pieces of

the trilinear product 〈�( f , h), η〉. For the usual 8-fold representation, we recall (2.27)

and obtain that

〈w2l�( f , h), η〉 =
∫

R3
dp

∫

R3
dq

∫

S2
dω vøσ(g, θ)w2l(p)η(p)

√

J (q)

×
(

f (q ′)h(p′) − f (q)h(p)
)

= T l
+ − T l

−, (4.1)

where the gain term T l
+ and the loss term T l

− are defined as

T l
+( f , h, η)

def=
∫

R3
dp

∫

R3
dq

∫

S2
dω vøσ(g, θ)w2l(p)η(p)

√

J (q) f (q ′)h(p′),

T l
−( f , h, η)

def=
∫

R3
dp

∫

R3
dq

∫

S2
dω vøσ(g, θ)w2l(p)η(p)

√

J (q) f (q)h(p).

And when l = 0 we denote T 0
± = T±.

In the following, we will use the dyadically decomposed pieces T l
+ and T l

− around

the angular singularity. We let {χk}∞k=−∞ be a partition of unity on (0,∞) such that

|χk | ≤ 1 and supp(χk) ⊂ [2−k−1, 2−k]. Then, using (2.19) we define

σk(g, θ)
def= σ(g, θ)χk(ḡ), (4.2)

where we recall ḡ
def= g(pμ, p′μ) defined in (2.6). The reason that we dyadically

decompose around ḡ is that we have θ ≈ ḡ
g

for small θ using (9.2). We refer to

Remark 2.1 and (2.11) for further explanations of this cancellation.
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Then we write the decomposed pieces T
k,l
+ and T

k,l
− as

T
k,l
+ ( f , h, η)

def=
∫

R3
dp

∫

R3
dq

∫

S2
dω vøσk(g, θ)w2l(p)η(p)

√

J (q) f (q ′)h(p′)

T
k,l
− ( f , h, η)

def=
∫

R3
dp

∫

R3
dq

∫

S2
dω vøσk(g, θ)w2l(p)η(p)

√

J (q) f (q)h(p).

(4.3)

Thus, for f , h, η ∈ S(R3), where S(R3) denotes the standard Schwartz space on R
3:

〈w2l�( f , h), η〉 =
∞
∑

k=−∞
{T k,l

+ ( f , h, η) − T
k,l
− ( f , h, η)}.

We will also use the definitions

σ̃ k
def= sσ(g, θ)

g̃
χk(ḡ), ḡ

def= g(pμ, p′μ), g̃
def= g(p′μ, qμ), (4.4)

where we further recall (2.5), (2.6) and (2.7).

Now, we start making some size estimates for the decomposed pieces T
k,l
− and T

k,l
+

for Schwartz functions. Then the estimates can be justified in general by approxima-

tion.

Proposition 4.1 For any integer k ∈ Z and for any l ≥ 0 and m ≥ 0, we have the

uniform estimate for both hard- and soft-interactions (2.21) and (2.22):

|T k,l
− ( f , h, η)| � 2kγ | f |L2

−m
|wlh|L2

ρ+γ
2

|wlη|L2
ρ+γ

2

. (4.5)

Proof The term T
k,l
− is given as in (4.3). Then the condition ḡ ≈ 2−k is equivalent to

saying that the angle θ is comparable to 2−k g−1 by (9.2). Given the size estimates for

σ(g, ω)
def= �(g)σ0(cos θ) with (2.20) and the support of χk , we obtain

∫

S2
dω σk(g, ω) � �(g)

∫

S2
dω σ0(cos θ)χk(ḡ)

� �(g)

∫ 2−k g−1

2−k−1g−1
dθ σ0(cos θ) sin θ

� �(g)

∫ 2−k g−1

2−k−1g−1
dθ

1

θ1+γ

� �(g)2kγ gγ .

(4.6)

Thus, under kernel assumptions (2.21) and (2.22), we have

|T k,l
− ( f , h, η)| � 2kγ

∫

R3
dp

∫

R3
dq gρ+γ vø| f (q)||h(p)|

√

J (q)|η(p)|w2l(p)
def= I .
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In the hard-interaction case (2.21) with ρ +γ ≥ 0, we use (2.58) and (2.85). Then,

we obtain

I � 2kγ

∫

R3
dp

∫

R3
dq (p0q0)

ρ+γ
2 | f (q)||h(p)|

√

J (q)|η(p)|w2l(p).

By the Cauchy–Schwarz inequality,

I � 2kγ

(∫

R3
dp

∫

R3
dq | f (q)|2|wlh(p)|2

√

J (q)(p0)
ρ+γ

2

)
1
2

×
(∫

R3
dp |wlη(p)|2(p0)

ρ+γ
2

∫

R3
dq
√

J (q)(q0)
ρ+γ

)
1
2

.

(4.7)

Since
∫

R3 dq
√

J (q)(q0)
ρ+γ ≈ 1, we have

I � 2kγ

(∫

R3
dp

∫

R3
dq | f (q)|2|wlh(p)|2

√

J (q)(p0)
ρ+γ

2

)
1
2

×
(∫

R3

dp |wlη(p)|2(p0)
ρ+γ

2

)
1
2

� 2kγ | f |L2
−m

|wlh|L2
ρ+γ

2

|wlη|L2
ρ+γ

2

for any m ≥ 0.

(4.8)

On the other hand, in the soft-interaction case with (2.22), we have − 3
2

< ρ+γ < 0.

Then we use (2.59) to obtain

I � 2kγ

∫

R3
dp

∫

R3
dq |p − q|ρ+γ (p0q0)

−ρ−γ
2 | f (q)||h(p)|

√

J (q)|η(p)|w2l(p).

With the Cauchy–Schwarz inequality, we have

I � 2kγ

(∫

R3
dp

∫

R3
dq | f (q)|2|wlh(p)|2

√

J (q)(p0)
1
2 (ρ+γ )

(q0)
−ρ−γ

)
1
2

×
(∫

R3

dp |wlη(p)|2(p0)
− 1

2 (ρ+γ )
(p0)

−ρ−γ
∫

R3

dq
√

J (q)|p − q|2(ρ+γ )

)
1
2

.

Now we use (2.84) to obtain

I � 2kγ

(∫

R3
dp

∫

R3
dq | f (q)|2|wlh(p)|2

√

J (q)(p0)
1
2 (ρ+γ )

(q0)
−ρ−γ

)
1
2

×
(∫

R3
dp |wlη(p)|2(p0)

1
2 (ρ+γ )

)
1
2
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� 2kγ | f |L2
−m

|wlh|L2
1
2

(ρ+γ )

|wlη|L2
1
2

(ρ+γ )

for any m ≥ 0.

This completes the proof. ��

Before we do the size estimates for the T
k,l
+ term, we first prove a useful inequality

as in the following proposition.

Proposition 4.2 Suppose k is any integer. Then, we have

g̃
√

s̃

∫

R3

dp

p0

∫

R3

dq ′

q ′0 χk(ḡ)ḡ−2−γ δ(4)(pμ + qμ − p′μ − q ′μ) � 2kγ ,

where ḡ = g(p′μ, pμ) from (2.6) and g̃
def= g(p′μ, qμ) and s̃

def= g̃2 + 4 from (2.7).

Proof Define

k2(p′, q)
def=
∫

R3

dp

p0

∫

R3

dq ′

q ′0 χk(ḡ)ḡ−2−γ δ(4)(pμ + qμ − p′μ − q ′μ).

By Lemma 2.17, we have

k2(p′, q)
def= 1

16

∫

R4×R4
d�(pμ, q ′μ)χk(ḡ)ḡ−2−γ δ(4)(pμ + qμ − p′μ − q ′μ),

where

d�(pμ, q ′μ)
def= dpμdq ′μu(p0 + q ′0)u(

˜
s − 4)δ(

˜
s −

˜
g2 − 4)δ

(

(pμ + q ′μ)(pμ − q ′
μ)
)

,

with
˜
g

def= g(pμ, q ′μ) and
˜
s

def=
˜
g2 + 4. Notice that

˜
g

def= g(pμ, q ′μ) = g(p′μ, qμ) = g̃

from (2.7) using (2.8). Here, u(x) is defined in (2.51). We make the change of variables

from (pμ, q ′μ) to

p̄μ = pμ + q ′μ, q̄μ = pμ − q ′μ.

Then we have

k2(p′, q) = 1

256

∫

R4×R4
d�( p̄μ, q̄μ)χk(ḡ)ḡ−2−γ δ(4)(qμ − p′μ + q̄μ),

where now

d�( p̄μ, q̄μ)
def= d p̄μdq̄μu( p̄0)u(− p̄μ p̄μ − 4)δ(− p̄μ p̄ − q̄μq̄μ − 4)δ

(

p̄μq̄μ

)

.

Here, ḡ originally from (2.6) is now redefined as

ḡ2 = (p′μ − pμ)(p′
μ − pμ) =

(

p′μ − p̄μ + q̄μ

2

)(

p′
μ −

p̄μ + q̄μ

2

)

.
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Then we carry out the delta function δ(4)(qμ − p′μ + q̄μ) and obtain

k2(p′, q) = 1

256

∫

R4
d�( p̄μ)χk(ḡ)ḡ−2−γ ,

where now

d�( p̄μ)
def= d p̄μu( p̄0)u(− p̄μ p̄μ − 4)δ(− p̄μ p̄μ − g̃2 − 4)δ

(

p̄μ(p′
μ − qμ)

)

,

where g̃ = g(p′μ, qμ). Above, ḡ is now redefined as

ḡ2 =
(

p′μ − p̄μ + q̄μ

2

)(

p′
μ −

p̄μ + q̄μ

2

)

= 1

4
(p′μ + qμ − p̄μ)(p′

μ + qμ − p̄μ).

Since s̃ = g̃2 + 4, we have

u( p̄0)δ(− p̄μ p̄μ − g̃2 − 4) = u( p̄0)δ(− p̄μ p̄μ − s̃)

= u( p̄0)δ(( p̄0)2 − | p̄|2 − s̃) = δ( p̄0 −
√

| p̄|2 + s̃)

2
√

| p̄|2 + s̃
.

(4.9)

Now note that u(− p̄μ p̄μ − 4) = 1 because − p̄μ p̄μ − 4 = g̃2 ≥ 0. By carrying out

the delta function δ( p̄0 −
√

| p̄|2 + s̃), we have

k2(p′, q) = 1

512

∫

R3

d p̄
√

| p̄|2 + s̃
δ( p̄μ(p′

μ − qμ))ḡ−2−γ χk(ḡ).

We will further change variables inside this integral to evaluate the delta function. For

the reduction we move to a new Lorentz frame as below.

We recall Definition 2.13 and then consider the Lorentz transform � = �(p′, q)

of (2.55) where we exchange the role of p in (2.55) with p′. As in (2.54), with p

replaced by p′, this transformation maps into the center-of-momentum frame as

Aν = �μ
ν(p′

μ + qμ) = (
√

s̃, 0, 0, 0), Bν = −�μ
ν(p′

μ − qμ) = (0, 0, 0, g̃).

After applying this change of variables, we have

k2(p′, q) = 1

512

∫

R3

d p̄
√

| p̄|2 + s̃
δ( p̄μBμ))ḡ−2−γ χk(ḡ),

where
d p̄√
| p̄|2+s̃

is a Lorentz invariant measure. Here, ḡ is now redefined as

ḡ2 = − s̃

2
+ p̄0

√
s̃

2
=

√
s̃

2
(

√

| p̄|2 + s̃ −
√

s̃).
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We write p̄ in the polar coordinate system (y, φ, ψ) ∈ [0,∞)×[0, 2π)×[0, π) such

that we have

k2(p′, q) = 1

512

∫ 2π

0

dφ

∫ π

0

sin ψdψ

∫ ∞

0

y2dy
√

y2 + s̃
δ(yg̃ cos ψ)ḡ−2−γ χk(ḡ),

where ḡ is now

ḡ2 =
√

s̃

2

(

√

y2 + s̃ −
√

s̃

)

.

We carry out the delta function at ψ = π
2

and obtain

k2(p′, q) = π

256g̃

∫ ∞

0

ydy
√

y2 + s̃
ḡ−2−γ χk(ḡ).

Note that the support condition χk(ḡ) implies that ḡ ∈ [2−k−1, 2−k]. Then this is

equivalent to

Y1
def=

√
s̃ + 2−2k−1

√
s̃

≤
√

y2 + s̃ ≤
√

s̃ + 2−2k+1

√
s̃

def= Y2.

Then we consider the change of variables y �→ y′ =
√

y2 + s̃ with ydy = y′dy′ and

obtain

k2(p′, q) = π

256g̃

∫ Y2

Y1

y′dy′

y′ ḡ−2−γ χk(ḡ) ≈ 2k(γ+2) π

g̃

∫ Y2

Y1

dy′χk(ḡ)

� 2k(γ+2) π

g̃
(Y2 − Y1) ≈ 2k(γ+2) π

g̃

(

2−2k+1

√
s̃

− 2−2k−1

√
s̃

)

≈ 2kγ 1

g̃
√

s̃
.

Therefore, we obtain

g̃
√

s̃k2(p′, q) � 2kγ ,

and this completes the proof for the proposition. ��

We are now ready to estimate the operator T
k,l
+ . This is more difficult and requires

more refined techniques because it contains the post-collisional momenta. By taking

a pre-post change of variables (p, q) → (p′, q ′) as in (2.94), we obtain from (4.3)

that the term T
k,l
+ is equal to

T
k,l
+ ( f , h, η) =

∫

R3
dp

∫

R3
dq

∫

S2
dω σk(g, ω)vø f (q)h(p)

√

J (q ′)η(p′)w2l(p′),

(4.10)
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where σk(g, ω) is defined in (4.2) with (2.19). We note that no momentum weight is

gained for the plus term T
k,l
+ in |wl f |L2 in this proposition below.

Proposition 4.3 For any integer k ∈ Z and l ≥ 0, we have the following uniform

estimate for both hard and soft-interactions (2.21) and (2.22):

|T k,l
+ ( f , h, η)| � 2kγ |wl f |L2 |wlh|L2

ρ+γ
2

|wlη|L2
ρ+γ

2

. (4.11)

Proof Using (2.21) and (2.22), we have

|T k,l
+ ( f , h, η)|

�

∫

R3
dp

∫

R3
dq

∫

S2
dω gρvøσ0χk(ḡ)| f (q)||h(p)|

√

J (q ′)|η(p′)|w2l(p′)
def= I .

(4.12)

We will separately estimate the hard and soft interactions cases.

We start with the hard-interaction case (2.21) with ρ + γ ≥ 0. We first note that

w2l(p′) � wl(p′)wl(p)wl(q),

as l ≥ 0 and p′0 ≤ p0 + q0. By the Cauchy–Schwarz inequality,

I �

(∫

R3
dp

∫

R3
dq

∫

S2
dω vø

gρσ0χk(ḡ)

g̃ρ+γ
|wl f (q)|2|wlη(p′)|2

√

J (q ′)(p0)
ρ+γ

2

)
1
2

×
(∫

R3
dp

∫

R3
dq

∫

S2
dω vøgρσ0χk(ḡ)g̃ρ+γ |wlh(p)|2

√

J (q ′)(p0)
−ρ−γ

2

)
1
2

def= I1 · I2, (4.13)

where g̃ = g(p′μ, qμ). We estimate I2 first. We can rewrite I2 as follows:

I2 =
(∫

R3

dp

∫

R3

dq

∫

S2

dω vøgρσ0χk(ḡ)g̃ρ+γ |wl h(p)|2
√

J (q ′)(p0)
−ρ−γ

2

)
1
2

≈
(∫

R3

dp

p0

∫

R3

dq

q0

∫

R3

dp′

p′0

∫

R3

dq ′

q ′0 sgρσ0χk(ḡ)g̃ρ+γ |wl h(p)|2
√

J (q ′)(p0)
−ρ−γ

2

×δ(4)(p′μ + q ′μ − pμ − qμ)

)
1
2

.

Then, we take a pre-post change of variables (p, q) �→ (p′, q ′) and use g̃ =
g(p′μ, qμ) = g(pμ, q ′μ) to obtain

I2 ≈
(∫

R3

dp′

p′0

∫

R3

dq ′

q ′0

∫

R3

dp

p0

∫

R3

dq

q0
sgρσ0χk(ḡ)g̃ρ+γ |wlh(p′)|2

√

J (q)
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×(p′0)
−ρ−γ

2 δ(4)(pμ + qμ − p′μ − q ′μ)

)
1
2

≈
(∫

R3

dp′

p′0

∫

R3

dq

q0
s̃ g̃2ρ+2γ+2|wlh(p′)|2

√

J (q)(p′0)
−ρ−γ

2

×
∫

R3

dp

p0

∫

R3

dq ′

q ′0 χk(ḡ)ḡ−2−γ δ(4)(pμ + qμ − p′μ − q ′μ)

)
1
2

, (4.14)

where we used g ≈ g̃, s ≈ s̃ with s̃
def= g̃2 + 4, and σ0(θ) ≈ θ−2−γ ≈ (

ḡ
g
)−2−γ by

(2.20), (2.86), and (9.2). Then we use Proposition 4.2 and obtain that

I2 � 2
kγ
2

(∫

R3

dp′

p′0

∫

R3

dq

q0

√
s̃ g̃2ρ+2γ+1|wlh(p′)|2

√

J (q)(p′0)
−ρ−γ

2

)
1
2

.

We further use g̃ �
√

p′0q0 and s̃ � p′0q0 from (2.58) and (2.57) to conclude that

I2 � 2
kγ
2

(∫

R3
dp′ (p′0)

ρ+γ
2 |wlh(p′)|2

∫

R3
dq (q0)ρ+γ

√

J (q)

)
1
2

≈ 2
kγ
2 |wlh|L2

ρ+γ
2

.

This completes the estimate for I2.

Now we estimate I1. We first observe that

(p0)
ρ+γ

2

√

J (q ′) � (p′0q ′0)
ρ+γ

2

√

J (q ′) � (p′0)
ρ+γ

2

√

Jα(q ′) � (p′0)
ρ+γ

2 ,

for some α ∈ (0, 1) by (2.89) and ρ + γ ≥ 0. Thus, we obtain that

I1 �

(∫

R3
dp

∫

R3
dq

∫

S2
dω vø

gρσ0χk(ḡ)

g̃ρ+γ
|wl f (q)|2|wlη(p′)|2(p′0)

ρ+γ
2

)
1
2

.

We raise the 8-fold integration into 12-fold integration like (4.14) without the pre-post

change of variable this time. Then we obtain

I1 �

(∫

R3

dp′

p′0

∫

R3

dq

q0
s̃ g̃2|wl f (q)|2|wlη(p′)|2(p′0)

ρ+γ
2

×
∫

R3

dp

p0

∫

R3

dq ′

q ′0 χk(ḡ)ḡ−2−γ δ(4)(pμ + qμ − p′μ − q ′μ)

)
1
2

,

where we used g ≈ g̃, s ≈ s̃ with s̃
def= g̃2 + 4, and σ0(θ) ≈ θ−2−γ ≈ (

ḡ
g
)−2−γ by

(2.20) and (9.2), as in I2 case. By Proposition 4.2, we have

I1 � 2
kγ
2

(∫

R3

dp′

p′0

∫

R3

dq

q0

√
s̃ g̃|wl f (q)|2|wlη(p′)|2(p′0)

ρ+γ
2

)
1
2

.
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Then, using (2.57) and (2.58) we obtain

I1 � 2
kγ
2

(∫

R3

dp′

p′0

∫

R3

dq

q0
|wl f (q)|2|wlη(p′)|2(p′0)

ρ+γ
2 p′0q0

)
1
2

� 2
kγ
2

(∫

R3
dp′ (p′0)

ρ+γ
2 |wlη(p′)|2

∫

R3
dq|wl f (q)|2

)
1
2

� 2
kγ
2 |wl f |L2 |wlη|L2

ρ+γ
2

(4.15)

by the Cauchy–Schwarz inequality. Thus, from (4.13) we have

I � 2kγ |wl f |L2 |wlh|L2
ρ+γ

2

|wlη|L2
ρ+γ

2

.

This completes the proof for the hard-interaction case (2.21).

On the other hand, in the soft-interaction case (2.22) when 0 > ρ + γ > − 3
2

, we

have the following by the Cauchy–Schwarz inequality for I defined in (4.12):

I �

(∫

R3
dp

∫

R3
dq

∫

S2
dω vø

gρσ0χk(ḡ)

gρ+γ
| f (q)|2|h(p)|2w2l(p′)

√

J (q ′)(p′0)
ρ+γ

2

)
1
2

×
(∫

R3

dp

∫

R3

dq

∫

S2

dω vøgρσ0χk(ḡ)gρ+γ |wlη(p′)|2
√

J (q ′)(p′0)
−ρ−γ

2

)
1
2

= I1 · I2. (4.16)

For I1, we split the region of p′ into two: p′0 ≤ 1
2
(p0 + q0) and p′0 ≥ 1

2
(p0 + q0).

If p′0 ≤ 1
2
(p0 + q0), p0 + q0 − q ′0 ≤ 1

2
(p0 + q0) by the conservation laws (2.8).

Thus, −q ′0 ≤ − 1
2
(p0 +q0) and J (q ′) ≤

√
J (p)

√
J (q) =

(

J (p)J (q)J (p′)J (q ′)
)1/4

by using the conservation laws (2.8). Since the exponential decay is faster than any

polynomial decay, we have

w2l(p′)(p′0)
1
2 (ρ+γ )

√

J (q ′) � (p0)−m(q0)−m

for any fixed m > 0. On the other region, we have p′0 ≥ 1
2
(p0 + q0) and hence

p′0 ≈ (p0 + q0) because p′0 ≤ (p0 + q0). Then w2l(p′) � w2l(p)w2l(q) as l ≥ 0.

Also, we have (p′0)
1
2 (ρ+γ ) � (p0)

1
2 (ρ+γ ) because ρ + γ < 0. Thus, we obtain

w2l(p′)(p′0)
1
2 (ρ+γ )

√

J (q ′) � w2l(p)w2l(q)(p0)
1
2 (ρ+γ ).

After computing dω integral as in (4.6) in both cases above, we obtain

I1 �

(∫

R3

dp

∫

R3

dq
gρ2kγ gγ

gρ+γ
| f (q)|2|h(p)|2w2l(p)w2l(q)(p0)

1
2 (ρ+γ )

)

1
2
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≈
(∫

R3

dp

∫

R3

dq 2kγ |wl f (q)|2|wl h(p)|2(p0)
1
2 (ρ+γ )

)
1
2

� 2
kγ
2 |wl f |L2 |wl h|L2

ρ+γ
2

,

by the Cauchy–Schwarz inequality.

Next we estimate I2 from (4.16). Note that vø = g
√

s

p0q0 by (2.14). By a pre-post

change of variables (p′, q ′) �→ (p, q) as in (2.94), we have

I2 =
(∫

R3
dp

∫

R3
dq

∫

S2
dω vøgρσ0χk(ḡ)gρ+γ |wlη(p)|2

√

J (q)(p0)
−ρ−γ

2

)
1
2

.

Then by (4.6), we have

I2 �

(∫

R3
dp

∫

R3
dq vø2kγ g2(ρ+γ )|wlη(p)|2

√

J (q)(p0)
−ρ−γ

2

)
1
2

. (4.17)

Using (2.59) for 0 > ρ + γ > − 3
2

and (2.85), we have

I2 �

(

∫

R3
dp

∫

R3
dq 2kγ |p − q|2(ρ+γ )

(p0q0)ρ+γ
|wlη(p)|2

√

J (q)(p0)
−ρ−γ

2

)
1
2

.

Also (q0)−ρ−γ
√

J (q) �
√

Jα(q) for some α > 0. Then using (2.84) we have

I2 �

(∫

R3
dp 2kγ |wlη(p)|2(p0)

3
2 (−ρ−γ )

∫

R3
dq

√
Jα(q)

|p − q|2(−ρ−γ )

)

1
2

�

(∫

R3
dp 2kγ |wlη(p)|2(p0)

3
2 (−ρ−γ )(p0)2(ρ+γ )

)
1
2

= 2
kγ
2 |wlη|L2

ρ+γ
2

. (4.18)

Together, we obtain that

I � 2kγ |wl f |L2 |wlh|L2
ρ+γ

2

|wlη|L2
ρ+γ

2

.

This completes the proof. ��

Remark 4.4 For future use in the proof of Proposition 4.9 we point out that estimate

(4.18) also holds for the hard potentials (2.21) when ρ + γ ≥ 0. Indeed in this case

we use (2.85) and (2.58) in (4.17) to obtain

I2 �

(∫

R3
dp

∫

R3
dq 2kγ (p0q0)ρ+γ |wlη(p)|2

√

J (q)(p0)
−ρ−γ

2

)
1
2

.
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Again (q0)ρ+γ
√

J (q) �
√

Jα(q) for some α > 0, and using (2.84) we have

I2 �

(∫

R3
dp 2kγ |wlη(p)|2(p0)

1
2 (ρ+γ )

)
1
2

� 2
kγ
2 |wlη|L2

ρ+γ
2

. (4.19)

And this is the desired estimate.

This concludes our discussion of the upper-bound estimates for the collision oper-

ators away from the angular singularity. In the next section we will make upper-bound

estimates for the same operators nearby the angular singularity. The key point for that

is to utilize the cancellation properties between the gain and the loss terms.

4.2 Cancellation Estimates

In this section we will establish uniform upper bound estimates for the difference

T
k,l
+ − T

k,l
− in the case when k > 0. We will need our upper bound estimates to have a

dependency on a negative power of 2k so we have a good estimate after summation in

k > 0. Before we move onto the actual estimates, we will now introduce the following

useful inequality:

Lemma 4.5 Suppose ḡ < 1. Then, we have q ′0 ≈ q0 and p′0 ≈ p0. In particular if

ḡ ≈ 2−k for some k > 0, we then have p0 ≤
√

5p′0 and p′0 ≤
√

5p0.

This equivalence is one of the advantages that we take on this region ḡ < 1 nearby

the angular singularity. We prove the case p0 ≈ p′0 and the case for q0 ≈ q ′0 is the

same because ḡ = g(p′μ, pμ) = g(q ′μ, qμ) < 1 in the same region.

Proof Recall the inequality
|p−p′|√

p0 p′0 ≤ ḡ from (2.59). If ḡ ≤ 2−k , we have

(p′0)2 = 1 + |p′|2 ≤ 1 + 2(|p′ − p|2 + |p|2)
≤ 1 + 2(2−2k p′0 p0 + |p|2) ≤ 2((p0)2 + 2−2k p′0 p0). (4.20)

By Young’s inequality, we have

2−2k p0 p′0 ≤ 2−4k(p0)2 + 1

4
(p′0)2.

We put this into (4.20) and obtain that

(p′0)2 ≤ 2((p0)2 + 2−4k(p0)2 + 1

4
(p′0)2).

Thus,

(p′0)2 ≤ 4(1 + 2−4k)(p0)2 ≤ 17

4
(p0)2, (4.21)
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as k is a positive integer. Therefore, (p′0)2 ≤ 5(p0)2 holds and hence p′0 ≤
√

5p0.

The same proof works if we interchange the roles of p and p′. Therefore, p0 ≈ p′0. ��

For the upper-bound estimates of the difference T
k,l
+ − T

k,l
− , we also define paths

from p to p′ and from q to q ′. Fix any two p, p′ ∈ R
3 and consider κ : [0, 1] → R

3

given by

κ(ϑ)
def= ϑ p + (1 − ϑ)p′ for ϑ ∈ [0, 1]. (4.22)

Similarly, we define the following for the path from q ′ to q;

κq(ϑ)
def= ϑq + (1 − ϑ)q ′ for ϑ ∈ [0, 1].

Then we can easily notice that κ(ϑ) + κq(ϑ) = p′ + q ′ = p + q.

We also define the length of the gradient as:

|∇|i H(p)
def= max

0≤ j≤i
sup

|χ |≤1

∣

∣

∣

(

χ · ∇
) j

H(p)

∣

∣

∣, i = 0, 1, 2, (4.23)

where χ ∈ R
3 and |χ | is the usual Euclidean length. Note that we have |∇|0 H = |H |

and we will write |∇|1 H = |∇|H without ambiguity.

Now we start estimating the term |T k,l
+ −T

k,l
− | under the condition ḡ < 1. We recall

from (4.3) and (4.10) that |(T k,l
+ − T

k,l
− )( f , h, η)| is defined as

|(T k,l
+ − T

k,l
− )( f , h, η)| =

∣

∣

∣

∣

∫

R3
dp

∫

R3
dq

∫

S2
dω σk(g, ω)vø f (q)h(p)

×(w2l(p′)
√

J (q ′)η(p′) − w2l(p)
√

J (q)η(p))

∣

∣

∣

∣

,

(4.24)

The key part is to estimate |w2l(p′)
√

J (q ′)η(p′) − w2l(p)
√

J (q)η(p)|.
We have the following proposition for the cancellation estimate:

Proposition 4.6 For any k > 0 and for 0 < γ < 1 and m ≥ 0, we have the uniform

estimate:

|(T k,l
+ − T

k,l
− )( f , h, η)| � 2(γ−1)k | f |L2

−m
|wlh|L2

ρ+γ
2

∣

∣

∣
wl |∇|η

∣

∣

∣

L2
ρ+γ

2

. (4.25)

Proof We want our kernel to have a good dependency on 2−k so we end up with

the negative power on 2 as 2(γ−1)k . We first split the term w2l(p′)
√

J (q ′)η(p′) −
w2l(p)

√
J (q)η(p) into two parts as

w2l(p′)
√

J (q ′)η(p′) − w2l(p)
√

J (q)η(p)

= w2l(p′)
√

J (q ′)
(

η(p′) − η(p)
)

+ w2l(p′)
(

√

J (q ′) −
√

J (q)
)

η(p)
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+(w2l(p′) − w2l(p))
√

J (q)η(p)
def= I + II + III. (4.26)

For part I, we define the whole integral with part I (T
k,l
+,I − T

k,l
−,I) as

T
k,l
+,I − T

k,l
−,I

def=
∫

R3
dp

∫

R3
dq

∫

S2
dω vøσk(g, ω) f (q)h(p)w2l(p′)

×
√

J (q ′)
(

η(p′) − η(p)
)

.

For the cancellation terms, we obtain

η(p′) − η(p) = (p′ − p) ·
∫ 1

0

dϑ (∇η)(κ(ϑ)).

We first note that under ḡ < 1 we have w2l(p′) ≈ w2l(p) by Lemma 4.5. Also note

that |p′ − p| = |q ′ − q| ≤ g(qμ, q ′μ)
√

q0q ′0 = ḡ
√

q0q ′0 ≈ 2−k
√

q0q ′0. In addition,

we have that (q0q ′0)
1
2

√

J (q ′) � (J (q)J (q ′))ε for a sufficiently small ε > 0. This is

because Lemma 4.5 implies that q0 + q ′0 ≈ q ′0 if ḡ ≤ 2−k for a positive integer k.

Thus, we obtain that

∣

∣

∣
T

k,l
+,I − T

k,l
−,I

∣

∣

∣
� 2−k

∫ 1

0

dϑ

∫

R3
dp

∫

R3
dq

∫

S2
dω vøσk(g, ω)| f (q)||h(p)|

×w2l(p)(J (q)J (q ′))ε |∇|η(κ(ϑ)).

We thus conclude

∣

∣

∣T
k,l
+,I − T

k,l
−,I

∣

∣

∣ � 2−k

(∫ 1

0

dϑ

∫

R3
dp

∫

R3
dq

∫

S2
dω vøσk(g, ω)| f (q)|2|h(p)|2

×w2l(p)(J (q)J (q ′))ε
)

1
2

×
(∫ 1

0

dϑ

∫

R3
dp

∫

R3
dq

∫

S2
dω vøσk(g, ω)w2l(p)

×(J (q)J (q ′))ε ||∇|η(κ(ϑ))|2
)

1
2

def= 2−k I
1/2
1 × I

1/2
2 , (4.27)

where the second inequality is by the Cauchy–Schwarz inequality. For the first part

I1, we use J (q ′)ε � 1 and follow exactly the same argument as in the estimate for

|T k,l
− | as in (4.6) and (4.5) to obtain that

I1 � 2kγ | f |2
L2

−m
|wlh|2

L2
ρ+γ

2

, for any m ≥ 0.

For the second part I2, we recall that κ(ϑ) = ϑ p + (1−ϑ)p′. Following Lemma 2.11

we first recover the integrals with respect to the post-collisional momenta p′ and q ′
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and write I2 as a 13-fold integral as follows:

I2 = I2(η) =
∫ 1

0

dϑ

∫

R3

dp

p0

∫

R3

dp′

p′0

∫

R3

dq

q0

∫

R3

dq ′

q ′0 sσk(g, ω)δ(4)(p′μ

+q ′μ − pμ − qμ)

×w2l(p)(J (q)J (q ′))ε
∣

∣|∇|η(ϑ p + (1 − ϑ)p′)
∣

∣

2
. (4.28)

We recall σk(g, ω) � gρσ0(ω)χk(ḡ) ≈ gρ
(

ḡ
g

)−2−γ

χk(ḡ) as in (9.2) for both hard

and soft-interactions (2.21) and (2.22). Then, we have

I2 �

∫ 1

0

dϑ

∫

R3

dp

p0

∫

R3

dp′

p′0

∫

R3

dq

q0

∫

R3

dq ′

q ′0 sgρ

(

ḡ

g

)−2−γ

χk(ḡ)

×δ(4)(p′μ + q ′μ − pμ − qμ)w2l(p)(J (q)J (q ′))ε
∣

∣|∇|η(ϑ p + (1 − ϑ)p′)
∣

∣

2
.

Here, we split ḡ−2−γ = ḡ−3−γ ′ × ḡ−γ+1+γ ′
for some constant γ ′ > 0 to be chosen.

Then note that −γ + 1 + γ ′ > 0 for any γ ′ ≥ 0. For the first component ḡ−3−γ ′
, we

use

ḡ(pμ, p′μ) = ḡ(qμ, q ′μ) ≥ |q − q ′|
√

q0q ′0
= |p′ − p|

√

q0q ′0

and obtain that

ḡ−3−γ ′
(J (q)J (q ′))ε � |p − p′|−3−γ ′

(J (q)J (q ′))ε
′
,

for some ε > ε′ > 0. For the second component ḡ1+γ ′−γ , we use ḡ ≈ 2−k from the

support condition χk(ḡ) to obtain that ḡ1+γ ′−γ ≈ 2(γ−1−γ ′)(k+1). Thus, we obtain

ḡ−2−γ (J (q)J (q ′))ε � 2(γ−1−γ ′)(k+1)|p − p′|−3−γ ′
(J (q))ε

′
,

where we also used J (q ′)ε
′ ≤ 1. Hence,

I2 � 2(γ−1−γ ′)(k+1)

∫ 1

0

dϑ

∫

R3

dp

p0

∫

R3

dp′

p′0

∫

R3

dq

q0

∫

R3

dq ′

q ′0
sgρ+γ+2

|p − p′|3+γ ′ χk(ḡ)

×δ(4)(p′μ + q ′μ − pμ − qμ)w2l(p)(J (q))ε
′ ∣
∣|∇|η(ϑ p + (1 − ϑ)p′)

∣

∣

2
.

By Lemma 2.12, we can reduce this integral to the integral on the set E
q

p′−p
and obtain

I2 � 2(γ−1−γ ′)(k+1)

∫ 1

0

dϑ

∫

R3

dp

p0

∫

R3

dp′

p′0

∫

E
q

p′−p

dπq

8ḡq0

sgρ+γ+2

|p − p′|3+γ ′ χk(ḡ)

×w2l(p)(J (q))ε
′ ∣
∣|∇|η(ϑ p + (1 − ϑ)p′)

∣

∣

2
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where dπq = dq u(p0 + q0 − p′0)δ
(

ḡ
2

+ qμ(pμ−p′
μ)

ḡ

)

. We use another ḡ−1 ≤ 2k+1

and reorder terms to obtain that

I2 � 2(γ−γ ′)(k+1)

∫ 1

0

dϑ

∫

R3

dp

p0

∫

R3

dp′

p′0

∫

E
q

p′−p

dπq

q0

sgρ+γ+2

|p − p′|3+γ ′ χk(ḡ)

×w2l(p)(J (q))ε
′ ∣
∣|∇|η(ϑ p + (1 − ϑ)p′)

∣

∣

2

≈ 2(γ−γ ′)(k+1)

∫ 1

0

dϑ

∫

R3

dp

p0

∫

R3

dp′

p′0

∣

∣|∇|η(ϑ p + (1 − ϑ)p′)
∣

∣

2

|p − p′|3+γ ′ χk(ḡ)

×w2l(p)

∫

E
q

p′−p

dπq

q0
sgρ+γ+2(J (q))ε

′
.

We use that ρ + γ + 2 ≥ 0 for both hard and soft-interactions (2.21) and (2.22) and

(2.57), (2.58), and Lemma 4.5 to obtain

∫

E
q

p′−p

dπq

q0
sgρ+γ+2(J (q))ε

′
� (p0)2+ ρ+γ

2

∫

E
q

p′−p

dπq

q0
(q0)2+ ρ+γ

2 (J (q))ε
′

� (p0 p′0)1+ ρ+γ
4

∫

E
q

p′−p

dπq

q0
(J (q))ε

′′
,

where ε′′ is some uniform constant such that 0 < ε′′ < ε′.
Then we claim that

∫

E
q

p′−p

dπq

q0
(J (q))ε

′′
� 1. (4.29)

This can be seen by a direct computation. We can justify the claim as follows

∫

E
q

p′−p

dπq

q0
(J (q))ε

′′ =
∫

R3

dq

q0
u(p0 + q0 − p′0)δ

(

ḡ

2
+

qμ(pμ − p′
μ)

ḡ

)

(J (q))ε
′′
.

We take the change of variables on q into angular coordinates as q ∈ R
3 �→ (r , θ, φ)

and choose the z-axis parallel to p − p′ such that the angle between q and p − p′ is

equal to φ. The terms in the delta function can be rewritten as

ḡ

2
+

qμ(pμ − p′
μ)

ḡ
= 1

2ḡ
(ḡ2 + 2qμ(pμ − p′

μ))

= 1

2ḡ
(ḡ2 − 2q0(p0 − p′0) + 2q · (p − p′))

= 1

2ḡ
(ḡ2 − 2

√

1 + r2(p0 − p′0) + 2r |p − p′| cos φ).
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Thus, we obtain that

∫

E
q

p′−p

dπq

q0
(J (q))ε

′′

=
∫ ∞

0

dr√
1 + r2

∫ π

0

dφ

∫ 2π

0

dθ r2 sin φ u(p0 +
√

1 + r2 − p′0)

×δ

(

1

2ḡ
(ḡ2 − 2

√

1 + r2(p0 − p′0) + 2r |p − p′| cos φ)

)

e−ε′′√1+r2

=
∫ ∞

0

dr√
1 + r2

∫ 1

−1

d(− cos φ)

∫ 2π

0

dθ r2 u(p0 +
√

1 + r2 − p′0)

× ḡ

r |p − p′|δ
(

cos φ + ḡ2 − 2
√

1 + r2(p0 − p′0)

2r |p − p′|

)

e−ε′′√1+r2

≤
∫ ∞

0

rdr√
1 + r2

∫ 2π

0

dθ u(p0 +
√

1 + r2 − p′0)
ḡ

|p − p′|e−ε′′√1+r2

�

∫ ∞

0

rdr√
1 + r2

e−ε′′√1+r2
� 1,

where we have used ḡ ≤ |p − p′| and u(x) ≤ 1. Thus we obtain

I2 � 2(γ−γ ′)(k+1)

∫ 1

0

dϑ

∫

R3
dp′

∫

R3
dp (p0 p′0)

ρ+γ
4 w2l(p)

×
∣

∣|∇|η(ϑ p + (1 − ϑ)p′)
∣

∣

2

|p − p′|3+γ ′ χk(ḡ).

Now we define u = p − p′ and consider the change of variables p �→ u = p − p′.
Then we have ϑ p + (1 − ϑ)p′ = p′ + ϑu. Note that the support condition χk(ḡ)

gives p0 ≈ p′0 and wl(p) ≈ wl(p′). Also, the support condition χk(ḡ) indicates that

|u| = |p − p′| ≥ ḡ ≥ 2−k−1 and that |u| ≤ 2−k51/4 p′0. This is because we can use

p0 ≤
√

5p′0 from Lemma 4.5 to obtain that

|u| = |p − p′| ≤ 2−k
√

p0 p′0 ≤ 2−k51/4 p′0.

Then we have

I2 � 2(γ−γ ′)(k+1)

∫ 1

0

dϑ

∫

R3
dp′(p′0)

ρ+γ
2 w2l(p′)

×
∫

2−k−1≤|u|≤2−k 51/4 p′0
du

∣

∣|∇|η(p′ + ϑu)
∣

∣

2

|u|3+γ ′ .

We will consider this expression briefly and estimate some of the terms in the integrand.

In a moment we will use the change of variables p′ �→ v = p′ + ϑu.
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We first claim that p′0 ≈ v0 def=
√

1 + |v|2. This can be proved as follows. We show

that v0 � p′0 first. Note that we have

(v0)2 = 1 + |v|2 = 1 + |p′ + ϑu|2 = 1 + |p′|2 + ϑ2|u|2 + 2ϑ p′ · u

≤ 2(p′0)2 + 2ϑ2|u|2 ≤ 2(p′0)2 + 2ϑ22−2k51/2(p′0)2 ≤ 7

2
(p′0)2

as ϑ is in (0, 1) and k is a positive integer. So we have v0 � p′0. On the other hand,

in order to prove p′0 � v0, we recall that v = p′ + ϑu and obtain

(p′0)2 = 1 + |p′|2 = 1 + |v − ϑu|2 = (1 + |v|2) − 2ϑv · u + ϑ2|u|2. (4.30)

By Young’s inequality, we have 2ϑ |v · u| ≤ 4|v|2 + 1
4
ϑ2|u|2. We plug this back into

(4.30) to obtain that

(p′0)2 ≤ 5(v0)2 + 5

4
ϑ2|u|2 ≤ 5(v0)2 + 5

4
ϑ22−2k51/2(p′0)2 ≤ 5(v0)2 + 12

16
(p′0)2,

because k is a positive integer and ϑ ∈ (0, 1). Therefore, we obtain (p′0)2 ≤ 20(v0)2.

We conclude that p′0 ≈ v0.

We plug in these estimates, and then we use Fubini’s theorem to change the order

of integration to obtain

I2 � 2(γ−γ ′)(k+1)

∫ 1

0

dϑ

∫

2−k−1≤|u|
du

1

|u|3+γ ′

∫

R3
dp′(v0)

ρ+γ
2 w2l(v) ||∇|η(v)|2 .

Now we consider the change of variables p′ �→ v = p′ + ϑu. We obtain

I2 � 2(γ−γ ′)(k+1)

∫ 1

0

dϑ

∫

2−k−1≤|u|
du

1

|u|3+γ ′

×
∫

R3
dv(v0)

ρ+γ
2 w2l(v) ||∇|η(v)|2

� 2(γ−γ ′)(k+1)
∣

∣

∣w
l |∇|η

∣

∣

∣

2

L2
ρ+γ

2

∫ 1

0

dϑ

∫

2−k−1≤|u|
du

1

|u|3+γ ′

� 2(γ−γ ′)(k+1)
∣

∣

∣w
l |∇|η

∣

∣

∣

2

L2
ρ+γ

2

∫ 1

0

dϑ

∫ ∞

2−k−1
d|u| |u|2

|u|3+γ ′

� 2(γ−γ ′)(k+1)
∣

∣

∣w
l |∇|η

∣

∣

∣

2

L2
ρ+γ

2

2(k+1)γ ′
� 2(k+1)γ

∣

∣

∣w
l |∇|η

∣

∣

∣

2

L2
ρ+γ

2

� 2kγ
∣

∣

∣w
l |∇|η

∣

∣

∣

2

L2
ρ+γ

2

. (4.31)
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From (4.27) and (4.31), we obtain

|(T k,l
+,I − T

k,l
−,I)( f , h, η)| � 2−k I

1/2
1 × I

1/2
2

� 2(γ−1)k | f |L2
−m

|wlh|L2
ρ+γ

2

|wl |∇|η|L2
ρ+γ

2

.

This completes the estimate for part I.

For part II of (4.26) in (4.24), we use the fundamental theorem of calculus and

obtain that

√

J (q ′) −
√

J (q) =
∫ 1

0

dϑ (q ′ − q) · (∇
√

J )(κq(ϑ)).

Thus, we have

∣

∣

∣

(

√

J (q ′) −
√

J (q)
)

η(p)

∣

∣

∣
≤
∫ 1

0

dϑ |q ′ − q||∇|
√

J (κq(ϑ))|η(p)|.

Now we observe that |q ′ − q| ≤ g(qμ, q ′μ)
√

q0q ′0 = ḡ
√

q0q ′0 ≈ 2−k
√

q0q ′0. For

|∇|
√

J , we use that

|∇|
√

J (κq(ϑ)) �
√

J (κq(ϑ)).

Also, we have that (q0q ′0)
1
2

√

J (κq(ϑ)) � (J (q)J (q ′))ε for any ϑ ∈ [0, 1] for suf-

ficiently small ε > 0. Thus, using w2l(p′) ≈ w2l(p) by Lemma 4.5, the difference
∣

∣

∣T
k,l
+,II − T

k,l
−,II

∣

∣

∣ of the part II of (4.26) in (4.24) is bounded above as

∣

∣

∣T
k,l
+,II − T

k,l
−,II

∣

∣

∣

� 2−k

∫

R3
dp

∫

R3
dq

∫

S2
dω vøσk(g, ω)| f (q)||h(p)|(J (q)J (q ′))ε |η(p)|w2l(p).

(4.32)

Now the rest of the proof follows exactly the same as in the estimate for |T k,l
− | as in

(4.6) and (4.5), and we obtain the upper bound in the right-hand side of the proposition

because |η| is less than or equal to ||∇|η| by the definition of the length of the gradient

(4.23). Thus,

∣

∣

∣
T

k,l
+,II − T

k,l
−,II

∣

∣

∣
� 2(γ−1)k | f |L2

−m
|wlh|L2

ρ+γ
2

|wl |∇|η|L2
ρ+γ

2

.

The term III is then handled the same way as the term II. Together with the previous

estimates, we obtain the proposition. ��
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4.3 Dual Cancellation Estimates

We will also derive the following cancellation estimates that have the momentum

derivative acting on h instead of η.

Proposition 4.7 For any k > 0 and for 0 < γ < 1 and any m > 0, we have the

uniform estimate:

∣

∣

∣
(T

k,l
+,d − T

k,l
−,d)( f , h, η)

∣

∣

∣
� 2k(γ−1)| f |L2

−m
|wl |∇|h|L2

ρ+γ
2

|wlη|L2
ρ+γ

2

.

For the proof of Proposition 4.7, we will have to derive and use the Carleman dual

representation of the trilinear form 〈w2l�( f , h), η〉. The dual representation of the

trilinear term is derived in (7.21) in §7.

If we consider the dyadic decomposition of the region ḡ ≤ 1 into ḡ ≈ 2−k in the

original representation as in (4.2), then this decomposition corresponds to the dyadic

decomposition of gL ≈ 2−k in the new representation (7.21) after we applied the

Lorentz transformation. As before (4.2), we let {χk}∞k=−∞ be the partition of unity on

(0,∞) such that |χk | ≤ 1 and supp(χk) ⊂ [2−k−1, 2−k]. Then we define

c′

2
σ(g�, θ�)χk(gL)

def= σk(g�, θ�).

Here c′
2

> 0 is the constant that comes from (7.21), and gL is defined in (7.17). We can

now write the decomposed pieces of the dual formulation as T
k,l
+,d = T

k,l
+,d( f , h, η)

and T
k,l
−,d = T

k,l
−,d( f , h, η) from (7.21) as

T
k,l
+,d

def=
∫

R3

dp′

p′0

∫

R3

dq

q0

√
s̃

g̃

∫

R2

dz
√

|z|2 + 1
s�σk(g�, θ�)

√

J (q)w2l(p′)η(p′) f (q)

× h
(

A(p′, q, z) + p′) exp

(

− p′0 + q0

4
(
√

|z|2 + 1 − 1) + |p′ × q|
2g̃

z1

)

T
k,l
−,d

def=
∫

R3

dp′

p′0

∫

R3

dq

q0

√
s̃

g̃

∫

R2

dz
√

|z|2 + 1
s�σk(g�, θ�)

√

J (q)w2l(p′)η(p′) f (q)

× s̃�(g̃)g̃4

s��(g�)g4
�

h(p′). (4.33)

From the calculations in §7 we have that

(T
k,l
+,d − T

k,l
−,d)( f , h, η) = (T

k,l
+ − T

k,l
− )( f , h, η),

also using the definitions (4.3). The rest of the notation used above is defined in (2.70)

or (7.17), (2.71) or (7.18), and (7.20). This notation will also be defined the first time

we use it in the proof below. Thus, again, for f , h, η ∈ S(R3) Schwartz functions, we

123



Relativistic Boltzmann Equation without Cut-Off Page 85 of 167    20 

have:

〈w2l�( f , h), η〉 =
∞
∑

k=−∞
{T k,l

+,d( f , h, η) − T
k,l
−,d( f , h, η)}.

Since this dual representation is written in (p′, q, z) variables as above, instead of

the standard (p, q, ω) variables, we will first check what the condition ḡ ≈ 2−k of

the dyadic decomposition of the angular singularity would correspond to in the new

variable gL which is defined in (2.70). The rest of this section is devoted to the proof

of Proposition 4.7.
In order to estimate the trilinear terms in (4.33) nearby the singularity, for the

difference of (4.33), we split up the difference of the integrands as follows

h
(

A(p′, q, z) + p′) exp

(

− p′0 + q0

4
(
√

|z|2 + 1 − 1) + |p′ × q|
2g̃

z1

)

− s̃�(g̃)g̃4

s��(g�)g4
�

h(p′)

= exp

(

− p′0 + q0

4
(
√

|z|2 + 1 − 1) + |p′ × q|
2g̃

z1

)

(

h
(

A(p′, q, z) + p′)− h(p′)
)

+ s̃�(g̃)g̃4

s��(g�)g4
�

(

exp

(

− p′0 + q0

4
(
√

|z|2 + 1 − 1) + |p′ × q|
2g̃

z1

)

− 1

)

h(p′)

+ exp

(

− p′0 + q0

4
(
√

|z|2 + 1 − 1) + |p′ × q|
2g̃

z1

)

(

1 − s̃�(g̃)g̃4

s��(g�)g4
�

)

h(p′)

= I + I I + I I I .

In the rest of this section, we will make an upper-bound estimate for each part of the

trilinear term T
k,l
+ − T

k,l
− which involves the parts I , I I , and I I I . Thus we define

(T
k,l
+,I − T

k,l
−,I )( f , h, η)

def=
∫

R3

dp′

p′0

∫

R3

dq

q0

√
s̃

g̃

∫

R2

dz
√

|z|2 + 1
s�σk(g�, θ�)

√

J (q)w2l(p′)η(p′) f (q)

× exp
(

−l(
√

|z|2 + 1 − 1) + j z1

)

[

h
(

A(p′, q, z) + p′)− h
(

p′)
]

, (4.34)

where we recall the notation (2.69). We also define

(T
k,l
+,I I − T

k,l
−,I I )( f , h, η)

def=
∫

R3

dp′

p′0 h(p′)w2l(p′)η(p′)
∫

R3

dq

q0

√

J (q) f (q)

√
s̃

g̃

∫

R2

dz
√

|z|2 + 1
s�σk(g�, θ�)

× s̃�(g̃)g̃4

s��(g�)g4
�

(

exp
(

−l(
√

|z|2 + 1 − 1) + j z1

)

− 1
)

, (4.35)
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and lastly

(T
k,l
+,I I I − T

k,l
−,I I I )( f , h, η)

def=
∫

R3

dp′

p′0 h(p′)w2l(p′)η(p′)
∫

R3

dq

q0

√

J (q) f (q)

√
s̃

g̃

∫

R2

dz
√

|z|2 + 1
s�σk(g�, θ�)

× exp
(

−l(
√

|z|2 + 1 − 1) + j z1

)

(

1 − s̃�(g̃)g̃4

s��(g�)g4
�

)

. (4.36)

Then note that T
k,l
+,d −T

k,l
−,d = T

k,l
+,I −T

k,l
−,I +T

k,l
+,I I −T

k,l
−,I I +T

k,l
+,I I I −T

k,l
−,I I I . For our

estimates of each of these terms, we will make use of these dual representations that

are written in the variables (p′, q, z). Therefore we will next study which conditions

in the z variable corresponds to the correct dyadic decomposition.

We first note that the condition 2−k−1 ≤ gL ≤ 2−k is equivalent to

2−2k−1s̃−1 ≤ (
√

|z|2 + 1 − 1) ≤ 2−2k+1s̃−1 (4.37)

by (2.70). In the rest of this section, we will denote the condition (4.37) simply as

(
√

|z|2 + 1 − 1) ≈ 2−2k s̃−1.

We also note that (4.37) implies that

0 < 2−k−1s̃−1/2 ≤ |z| ≤ 2−k+1s̃−1/2

√

1 + 2−2k s̃−1 ≤ 2−k+2s̃−1/2 ≤ 1,

(4.38)

since k > 0 and s̃ ≥ 4.

Proof of Proposition 4.7 We will split the proof into three parts I , I I , and I I I . In each

part we estimate each of the terms in (4.34), (4.35), and (4.36) respectively.

Estimates on part I . For the estimate of the first part in (4.34), we use the Cauchy–

Schwarz inequality to obtain that

|(T
k,l
+,I − T

k,l
−,I )( f , h, η)|

�

(∫

R3

dp′

p′0

∫

R3

dq

q0

(√
s̃

g̃

)2
∫

R2

dz
√

|z|2 + 1
s�σk(g�, θ�)(J (q))1/2w2l(p′)(q0)m

× exp
(

−l(
√

|z|2 + 1 − 1) + j z1

)

[

h
(

A(p′, q, z) + p′)− h
(

p′)
]2)1/2

×
(∫

R3

dp′

p′0

∫

R3

dq

q0

∫

R2

dz
√

|z|2 + 1
s�σk(g�, θ�)(J (q))1/2w2l(p′)|η(p′)|2| f (q)|2

× exp
(

−l(
√

|z|2 + 1 − 1) + j z1

)

(q0)−m

)1/2
def= D

1/2
1 D

1/2
2 , (4.39)
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for a sufficiently large m > 0. We note that the spltting with the term (q0)m above is

important because the term D2 needs the extra |q| decay and the term D1 has plenty

of exponential |q| decay.

The representation of D1. We can recover the original representation of D1 in the

following way. Specifically we notice that D1 is of the form (2.92) with G in (2.92)

given by

G = c′

2
(q0)m

√
s̃

g̃
χk(gL)(J (q))1/2w2l(p′) exp

(

−l(
√

|z|2 + 1 − 1) + j z1

)

×
[

h
(

A(p′, q, z) + p′)− h
(

p′)
]2

,

Thus since (2.92) is also equal to (2.91), we obtain that D1 corresponds to

D1 ≈
∫

R3
dp

∫

R3
dq

∫

S2
dω

s

p0q0
σ(g, θ)χk(ḡ)w2l(p′)J (q ′)1/2

[

h(p′) − h (p)

]2

(q0)m ,

where we used (2.86) such that vø

√
s̃

g̃
≈ s

p0q0 . We use the fundamental theorem of

calculus to obtain

D1 �

∫

R3
dp

∫

R3
dq

∫

S2
dω

s

p0q0
σ(g, θ)χk(ḡ)w2l(p′)J (q ′)1/2

×|p′ − p|2
(∫ 1

0

dϑ(|∇|h) (κ(ϑ))

)2

(q0)m

�

∫ 1

0

dϑ

∫

R3
dp

∫

R3
dq

∫

S2
dω

s

p0q0
σ(g, θ)χk(ḡ)w2l(p′)J (q ′)1/2

×|p′ − p|2
(

(|∇|h) (κ(ϑ))

)2

(q0)m,

where κ(ϑ)
def= ϑ p+(1−ϑ)p′. Note that |p′− p|2 = |q ′−q|2 ≤ g(qμ, q ′μ)2q0q ′0 =

ḡ2q0q ′0 ≈ 2−2kq0q ′0 by (2.59). And w(p′) ≈ w(p). Also, we have that

(q0)m(q0q ′0)J (q ′)1/2 � (J (q)J (q ′))ε

for a sufficiently small ε > 0 by Lemma 4.5. Then this term D1 has an upper bound

of 2−2k I2 where I2 is defined in (4.28), but the notation η is replaced by h; in other

words in (4.28) we use I2 = I2(h). Then by the same arguments leading to (4.31) we

obtain the upper bound of D1 as

D1 � 2k(γ−2)
∣

∣

∣w
l |∇|h

∣

∣

∣

2

L2
ρ+γ

2

.

This completes our estimate for D1.
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The estimates for D2. The term D2 is given by

D2 =
∫

R3

dp′

p′0

∫

R3

dq

q0

∫

R2

dz
√

|z|2 + 1
s�σk(g�, θ�)(J (q))1/2w2l(p′)

×|η(p′)|2| f (q)|2 exp
(

−l(
√

|z|2 + 1 − 1) + j z1

)

(q0)−m,

where l = p′0+q0

4
and j = |p′×q|

2g̃
from (2.69). Note that s� = g2

� +4, and from (7.17)

we have

g2
� = g̃2 + s̃

2
(
√

|z|2 + 1 − 1). (4.40)

Above we recall (2.7). Also from (2.20) and (7.18) we have

σ0(θ�) ≈ θ
−2−γ
� ≈

(

s̃(
√

|z|2 + 1 − 1)

g2
�

)−1−γ /2

. (4.41)

Therefore, we have

s�σ(g�, θ�) ≈ s�g
ρ+γ+2
� s̃−1−γ /2

(

√

|z|2 + 1 − 1
)−1−γ /2

� g
ρ+γ+2
� s̃−γ /2

(

√

|z|2 + 1 − 1
)−1−γ /2

, (4.42)

by (4.38). Then we further note using (4.37) and (4.38) that

D2 �

∫

R3

dp′

p′0

∫

R3

dq

q0

∫

(√
|z|2+1−1

)

≈2−2k s̃−1

dz
√

|z|2 + 1

×g
ρ+γ+2
� s̃−γ /2

(

√

|z|2 + 1 − 1
)−1−γ /2

(J (q))1/2w2l(p′)

×|η(p′)|2| f (q)|2 exp
(

−l(
√

|z|2 + 1 − 1) + j z1

)

(q0)−m

≈ 2k(γ+2)

∫

R3

dp′

p′0

∫

R3

dq

q0

∫

(√
|z|2+1−1

)

≈2−2k s̃−1

d|z|
√

|z|2 + 1
|z|(q0)−m

×g
ρ+γ+2
� s̃(J (q))1/2w2l(p′)|η(p′)|2| f (q)|2 exp

(

−l(
√

|z|2 + 1 − 1)
)

I0( j |z|)

� 2k(γ+2)

∫

R3

dp′

p′0

∫

R3

dq

q0
el max

0≤|z|≤1

{

exp
(

−l
√

|z|2 + 1
)

I0( j |z|)
}

(q0)−m

×
∫

(√
|z|2+1−1

)

≈2−2k s̃−1

d|z|
√

|z|2 + 1
|z|gρ+γ+2

� s̃(J (q))1/2w2l(p′)|η(p′)|2| f (q)|2.
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In the following we further use the modified Bessel functions from (2.47). In the

inequality above we also used I0( j |z|) from (2.47). Using (2.80) with (2.69) we have

max
0≤|z|≤1

exp
(

−l
√

|z|2 + 1 + j |z|
)

� exp(−
√

l2 − j2). (4.43)

The estimate (4.43) is earlier proven in [40]. Then, by (2.75) we have

(J (q))1/2el exp(−
√

l2 − j2) ≤ exp

(

−q0

2
+ p′0 + q0

4
− |p′ − q|

4

)

≤ exp

(

p′0 − q0

4
− |p′ − q|

4

)

≤ 1, (4.44)

by (2.62). Thus,

D2 � 2k(γ+2)

∫

R3

dp′

p′0

∫

R3

dq

q0
s̃w2l(p′)|η(p′)|2| f (q)|2(q0)−m

×
∫

(√
|z|2+1−1

)

≈2−2k s̃−1

d|z|
√

|z|2 + 1
|z|gρ+γ+2

� ,

We make the change of variables |z| �→ K
def= l(

√

|z|2 + 1 − 1) with

d K = l|z|d|z|
√

|z|2 + 1
.

Since ρ + γ + 2 ≥ 0, we use (2.57), (4.38) and (4.40) to obtain

g
ρ+γ+2
� � s̃ρ/2+γ /2+1 � (p′0q0)ρ/2+γ /2+1.

Then we have

D2 � 2k(γ+2)

∫

R3

dp′

p′0

∫

R3

dq

q0

∫

k≈2−2k s̃−1l

d K

l
(p′0q0)ρ/2+γ /2+1

×s̃w2l(p′)|η(p′)|2| f (q)|2(q0)−m

� 2kγ

∫

R3
dp′

∫

R3
dq (p′0q0)ρ/2+γ /2w2l(p′)|η(p′)|2| f (q)|2(q0)−m .

Thus we obtain

D2 � 2kγ | f |2
L2

ρ+γ
2

−m

|wlη|2
L2

ρ+γ
2

,

for any m > 0.
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Therefore, altogether for any m > 0 we have

|(T k,l
+,I − T

k,l
−,I )( f , h, η)| � 2k(γ−1)| f |L2

ρ+γ
2

−m

∣

∣

∣
wl |∇|h

∣

∣

∣

L2
ρ+γ

2

|wlη|L2
ρ+γ

2

. (4.45)

This completes our estimate of T
k,l
+,I − T

k,l
−,I .

Estimates on Part I I . We now estimate the upper-bound of the term (4.35) nearby

singularity when k > 0. Inside (4.35) we define

K I I (q, p′)
def=
√

J (q)

∫

R2

dz
√

|z|2 + 1
s�σk(g�, θ�)

× s̃�(g̃)g̃4

s��(g�)g4
�

(

exp
(

−l(
√

|z|2 + 1 − 1) + j z1

)

− 1
)

, (4.46)

To estimate the differerence, by the fundamental theorem of calculus we have

exp
(

−l(
√

|z|2 + 1 − 1) + j z1

)

− 1

= (−l(
√

|z|2 + 1 − 1) + j z1)

∫ 1

0

dϑ exp
(

−ϑl(
√

|z|2 + 1 − 1) + ϑ j z1

)

=
(

− l|z|2
√

|z|2 + 1 + 1
+ j |z| cos φ

)

∫ 1

0

dϑ exp
(

−ϑl(
√

|z|2 + 1 − 1) + ϑ j z1

)

,

(4.47)

where we use (2.69). Now we will use the angular variable φ ∈ [0, 2π) for z, with

z1 = |z| cos φ and we recall the modified Bessel functions (2.47). We will use the

known Bessel function inequality I1(x) ≤ x I0(x) for x ≥ 0, we have that

I1(ϑ j |z|) ≤ ϑ j |z|I0(ϑ j |z|).

In order to estimate (4.46) using (4.47) we will split the integral
∫ 1

0 dϑ into two as

ϑ ∈ (0, 1/2] and ϑ ∈ (1/2, 1). In particular we define

K 1
I I (q, p′)

def=
√

J (q)

∫

R2

dz
√

|z|2 + 1
s�σk(g�, θ�)

s̃�(g̃)g̃4

s��(g�)g4
�

×
(

− l|z|2
√

|z|2 + 1 + 1
+ j |z| cos φ

)

∫ 1/2

0

dϑ exp
(

−ϑl(
√

|z|2 + 1 − 1) + ϑ j z1

)

,

(4.48)

and

K 2
I I (q, p′)

def=
√

J (q)

∫

R2

dz
√

|z|2 + 1
s�σk(g�, θ�)

s̃�(g̃)g̃4

s��(g�)g4
�
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×
(

− l|z|2
√

|z|2 + 1 + 1
+ j |z| cos φ

)∫ 1

1/2

dϑ exp

(

− ϑl(
√

|z|2 + 1 − 1) + ϑ j z1

)

(4.49)

Then we have K I I (q, p′) = K 1
I I (q, p′) + K 2

I I (q, p′).
The first case with ϑ ∈ (0, 1/2] in (4.48). Using (2.70), (2.71), and (4.41) we have

that the kernel satisfies

s�σ(g�, θ�)
s̃�(g̃)g̃4

s��(g�)g4
�

= s̃�(g̃)σ0(θ�)
g̃4

g4
�

≈ s̃�(g̃) (sin(θ�))−2−γ g̃4

g4
�

≈ s̃�(g̃)

(

s̃

g2
�

(
√

|z|2 + 1 − 1)

)−1−γ /2
g̃4

g4
�

≈ s̃−γ /2�(g̃)g̃4
(

√

|z|2 + 1 − 1
)−1−γ /2

g
γ−2
�

≈ s̃−γ /2�(g̃)g̃4
(

√

|z|2 + 1 − 1
)−1−γ /2

(

g̃2 + 1

2
s̃(
√

|z|2 + 1 − 1)

)γ /2−1

.

Therefore, since γ < 2 and s̃ � g̃2, we have

(

g̃2 + 1

2
s̃(
√

|z|2 + 1 − 1)

)γ /2−1

� g̃γ−2

(

1 + 1

2
(
√

|z|2 + 1 − 1)

)γ /2−1

� g̃γ−2,

and we have

∣

∣

∣

∣

∣

s�σ(g�, θ�)
s̃�(g̃)g̃4

s��(g�)g4
�

∣

∣

∣

∣

∣

� s̃−γ /2�(g̃)g̃2+γ
(

(
√

|z|2 + 1 − 1)
)−1−γ /2

� s̃−γ /2�(g̃)g̃2+γ |z|−2−γ (1 + |z|2)1/2+γ /4. (4.50)

We will use these kernel estimates to further estimate K 1
I I (q, p′) and K 2

I I (q, p′).
Therefore, for K 1

I I (q, p′) using (4.50) and |z| ≤ 1 from (4.38), we have

J−1/2(q)

∣

∣

∣

∣

K 1
I I (q, p′)

∣

∣

∣

∣

�

∫

(
√

|z|2+1−1)≈2−2k s̃−1

dz
√

|z|2 + 1
s̃−γ /2�(g̃)g̃2+γ |z|−2−γ (1 + |z|2)1/2+γ /4

×
∫ 1

2

0

dϑ

(

l|z|2
√

|z|2 + 1 + 1
+ j2|z|2

)

exp
(

−ϑl(
√

|z|2 + 1 − 1) + ϑ j z1

)

� (l + j2)s̃−γ /2�(g̃)g̃2+γ

∫ 1
2

0

dϑ
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×
∫

(
√

|z|2+1−1)≈2−2k s̃−1
dz |z|−γ exp

(

−ϑl(
√

|z|2 + 1 − 1) + ϑ j z1

)

.

So that

J−1/2(q)

∣

∣

∣

∣

K 1
I I (q, p′)

∣

∣

∣

∣

� (l + j2)s̃−γ /2�(g̃)g̃2+γ

∫ 1
2

0

dϑ exp (ϑl)

×
∫

(
√

|z|2+1−1)≈2−2k s̃−1
d|z| |z|1−γ exp

(

−ϑl
√

|z|2 + 1
)

I0(ϑ j |z|)

Then finally using (4.38) we have

J−1/2(q)

∣

∣

∣

∣

K 1
I I (q, p′)

∣

∣

∣

∣

� 2k(γ−1)s̃
γ−1

2 (l + j2)s̃−γ /2�(g̃)g̃2+γ

×
∫ 1

2

0

dϑ exp (ϑl)

∫

|z|≈2−k s̃−1/2
d|z| exp

(

−ϑl
√

|z|2 + 1
)

I0(ϑ j |z|),

Now we recall (2.47) and (4.43). We use those with (2.75) to obtain

√

J (q) exp(ϑl) exp
(

−ϑl
√

|z|2 + 1
)

I0(ϑ j |z|)

� exp

(

−q0

2
+ ϑ

p′0 + q0

4
− ϑ

|p′ − q|
4

)

� exp

(

−(1 − ϑ)
q0

2
+ ϑ

(

p′0 − q0

4
− |p′ − q|

4

))

� exp

(

−(1 − ϑ)
q0

2

)

,

by (2.62). We further have

∫ 1
2

0

dϑ exp

(

−(1 − ϑ)
q0

2

)

= 1

q0
exp

(

−q0

4

)

.

Also note that

∫

|z|≈2−k s̃−1/2
d|z| |z|m ≈ (2−k s̃−1/2)m+1. (4.51)

Thus, collecting all of these estimates for (4.48) we have

∣

∣

∣

∣

K 1
I I (q, p′)

∣

∣

∣

∣

� 2k(γ−2)(l + j2)s̃−1�(g̃)g̃2+γ 1

q0
exp

(

−q0

4

)

.

Then we can plug the estimate above into (4.35) on the region where 0 ≤ ϑ ≤ 1/2

using the convention (2.95), also using l, j2 � p′0q0 and g̃ �
√

s̃ from (2.73) and
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(2.56), to obtain

∣

∣

∣

∣

(T
k,l
+,I I − T

k,l
−,I I )( f , h, η)

∣

∣

∣

∣

ϑ≤1/2

� 2k(γ−2)

∫

R3

dp′

p′0

∫

R3

dq

q0

∣

∣

∣h(p′)w2l(p′)η(p′) f (q)

∣

∣

∣

×
√

s̃

g̃

1

q0
exp

(

−q0

4

)

(l + j2)s̃−1�(g̃)g̃2+γ

� 2k(γ−2)

∫

R3
dp′

∫

R3
dq

∣

∣

∣
h(p′)w2l(p′)η(p′) f (q)

∣

∣

∣
g̃ρ+γ 1

q0
exp

(

−q0

4

)

.

We next use the Cauchy–Schwarz inequality to obtain that

∣

∣

∣

∣

(T
k,l
+,I I − T

k,l
−,I I )( f , h, η)

∣

∣

∣

∣

ϑ≤1/2

� 2k(γ−2) I
1/2
1 I

1/2
2 ,

where

I1
def=
∫

R3
dp′|h(p′)|2w2l(p′)

∫

R3
dq | f (q)|2 g̃ρ+γ+3/2 1

q0
(p′0q0)−3/4 exp

(

−q0

4

)

,

and

I2
def=
∫

R3
dp′|η(p′)|2w2l(p′)

∫

R3
dq g̃ρ+γ−3/2 1

q0
(p′0q0)3/4 exp

(

−q0

4

)

.

We will see below that it was important to add the term such as g̃−3/2(p′0q0)3/4 above.

The choice of the power 3/4 here is sharp in the sense that this is the only possible

value that makes both I1 and I2 above can be controlled. We will now estimate both

I1 and I2.

For the estimate of I1, note that we have ρ + γ + 3/2 ≥ 0 from (2.20)–(2.23) and

g̃ρ+γ+3/2 � (p′0q0)ρ/2+γ /2+3/4,

where we used (2.58). Then we have

I1 � | f |2
L2

−m
|wlh|2

L2
ρ+γ

2

,

for any m > 0.

For the estimate of I2, if ρ + γ − 3/2 < 0, from (2.84) we have that

∫

R3

dq (p′0q0)3/4 g̃ρ+γ−3/2 exp

(

−q0

4

)
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≤
∫

R3

dq (p′0q0)3/4|p′ − q|ρ+γ−3/2(p′0q0)−ρ/2−γ /2+3/4 exp

(

−q0

4

)

≈ (p′0)ρ/2+γ /2.

On the other hand, if ρ + γ − 3/2 ≥ 0, then we have

∫

R3
dq (p′0q0)3/4g̃ρ+γ−3/2 exp

(

−q0

4

)

�

∫

R3
dq (p′0q0)3/4(p′0q0)ρ/2+γ /2−3/4 exp

(

−q0

4

)

≈ (p′0)ρ/2+γ /2.

Therefore, in general we have

I2 � |wlη|2
L2

ρ+γ
2

.

Altogether, we conclude that we have

∣

∣

∣

∣

(T
k,l
+,I I − T

k,l
−,I I )( f , h, η)

∣

∣

∣

∣

ϑ≤1/2

� 2k(γ−2)| f |L2
−m

|wlh|L2
ρ+γ

2

|wlη|L2
ρ+γ

2

. (4.52)

This completes our estimate of T
k,l
+,I I − T

k,l
−,I I when ϑ ≤ 1/2.

The other case with ϑ > 1
2

. In this case, we recall (4.49) and then we have

J−1/2(q)

∣

∣

∣

∣

K 2
I I (q, p′)

∣

∣

∣

∣

�

∫

R2

dz
√

|z|2 + 1
s�σk(g�, θ�)

s̃�(g̃)g̃4

s��(g�)g4
�

×
∫ 1

1
2

dϑ

(

l|z|2
√

|z|2 + 1 + 1
+ j2|z|2

)

exp
(

−ϑl(
√

|z|2 + 1 − 1) + ϑ j z1

)

� (l + j2)

∫ 1

1
2

dϑ

∫

R2

dz
√

|z|2 + 1
|z|2s�σk(g�, θ�)

s̃�(g̃)g̃4

s��(g�)g4
�

× exp
(

−ϑl(
√

|z|2 + 1 − 1) + ϑ j z1

)

� (l + j2)

∫

R2

dz
√

|z|2 + 1
|z|2s�σk(g�, θ�)

s̃�(g̃)g̃4

s��(g�)g4
�

× exp
(

−l(
√

|z|2 + 1 − 1) + j z1

)

×
∫ 1

1
2

dϑ exp
(

−(ϑ − 1)l(
√

|z|2 + 1 − 1) + (ϑ − 1) j z1

)

.

Plugging this into (4.35) on 1/2 < ϑ ≤ 1 using the convention (2.95) we have

∣

∣

∣

∣

(T
k,l
+,I I − T

k,l
−,I I )( f , h, η)

∣

∣

∣

∣

ϑ>1/2
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�

∫

R3

dp′

p′0 h(p′)w2l(p′)η(p′)
∫

R3

dq

q0

√

J (q) f (q)

√
s̃

g̃

×(l + j2)

∫

R2

dz
√

|z|2 + 1
|z|2s�σk(g�, θ�)

s̃�(g̃)g̃4

s��(g�)g4
�

× exp
(

−l(
√

|z|2 + 1 − 1) + j z1

)

×
∫ 1

1
2

dϑ exp
(

−(ϑ − 1)l(
√

|z|2 + 1 − 1) + (ϑ − 1) j z1

)

. (4.53)

Then by the Cauchy–Schwarz inequality, we have

∣

∣

∣

∣

(T
k,l
+,I I − T

k,l
−,I I )( f , h, η)

∣

∣

∣

∣

ϑ>1/2

� D
1/2
3 × D

1/2
4 ,

where for any m > 0 we define

D3
def=
∫ 1

1
2

dϑ

∫

R3

dp′

p′0 |h(p′)|2w2l(p′)
∫

R3

dq

q0

√

J (q)

(√
s̃

g̃

)2

(q0)m

(

p′0q0

s̃

)

7
4

×
∫

R2

dz
√

|z|2 + 1
s�σk(g�, θ�) exp

(

−l(
√

|z|2 + 1 − 1) + j z1

)

,

and

D4
def=
∫

R3

dp′

p′0 |η(p′)|2w2l(p′)
∫

R3

dq

q0
| f (q)|2

√

J (q)

×(l + j2)2

∫

R2

dz
√

|z|2 + 1
|z|4s�σk(g�, θ�)

(

s̃�(g̃)g̃4

s��(g�)g4
�

)2
(

s̃

p′0q0

)
7
4

×
∫ 1

1
2

dϑ exp
(

−(2ϑ − 1)l(
√

|z|2 + 1 − 1) + (2ϑ − 1) j z1

)

(q0)−m .

The choice of the power 7/4 here is sharp in the sense that this is the only possible

value that makes both D3 and D4 above can be controlled. We will now estimate the

terms D3 and D4.

For the estimates of D3, we notice that D3 is of the form (2.92) and so it can also be

written in the form (2.91) using Lemma 2.18. Thus we obtain that up to an unimportant

constant D3 corresponds to

D3 ≈
∫

R3
dp

∫

R3
dq

∫

S2
dω vø

√
s̃

g̃

(

p′0q0

s̃

)

7
4

σ(g, θ)χk(ḡ)w2l(p′)J (q ′)1/2|h(p′)|2(q0)m .
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By taking the pre-post change of variables (p, q) �→ (p′, q ′) as in (2.94), and using

Lemma 4.5, we have

D3 ≈
∫

R3
dp

∫

R3
dq

∫

S2
dω vø

√
s̃

g̃

(

p0q ′0

s̃

)

7
4

σ(g, θ)χk(ḡ)w2l(p)J (q)1/2|h(p)|2(q0)m .

Then using (2.14), Lemma 4.5 and (2.86), we further have

D3 ≈
∫

R3
dp

∫

R3
dq

∫

S2
dω

(

p0q0

s

)

3
4

σ(g, θ)χk(ḡ)w2l(p)J (q)1/2|h(p)|2(q0)m .

Next using (2.56) and (4.6), we have

D3 � 2kγ

∫

R3
dp w2l(p)|h(p)|2

∫

R3
dq

(

p0q0

s

)

3
4

J (q)1/2gρ+γ (q0)m

� 2kγ

∫

R3
dp w2l(p)|h(p)|2

∫

R3
dq

(

p0q0
)

3
4

J (q)1/2gρ+γ− 3
2 (q0)m .

(4.54)

Now if ρ + γ − 3
2

≥ 0, then we use (2.58) and obtain

2kγ

∫

R3
dp w2l(p)|h(p)|2

∫

R3
dq

(

p0q0
)

3
4

J (q)1/2(p0q0)
ρ+γ

2 − 3
4 (q0)m � 2kγ

∣

∣

∣
wl h

∣

∣

∣

2

L2
ρ+γ

2

.

If −3 < ρ + γ − 3
2

< 0, then we use (2.59) and obtain

2kγ

∫

R3
dp w2l(p)|h(p)|2

∫

R3
dq

(

p0q0
)

3
4

J (q)1/2

(

|p − q|
√

p0q0

)ρ+γ− 3
2

(q0)m

� 2kγ
∣

∣

∣
wlh

∣

∣

∣

2

L2
ρ+γ

2

.

Therefore in either case we have

D3 � 2kγ
∣

∣

∣w
lh

∣

∣

∣

2

L2
ρ+γ

2

. (4.55)

This completes our estimate for the term D3.

On the other hand, for the estimates of D4, we note that

D4 �

∫

R3

dp′

p′0 |η(p′)|2w2l(p′)
∫

R3

dq

q0
| f (q)|2

√

J (q)(p′0q0)2

(

s̃

p′0q0

)
7
4
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×
∫

(
√

|z|2+1−1)≈2−2k s̃−1

dz
√

|z|2 + 1
|z|4s�σ(g�, θ�)

(

s̃�(g̃)g̃4

s��(g�)g4
�

)

×
∫ 1

1
2

dϑ exp
(

−(2ϑ − 1)l(
√

|z|2 + 1 − 1) + (2ϑ − 1) j z1

)

(q0)−m,

where we used (2.73) and (2.87). Also, we note that 2ϑ − 1 > 0 if ϑ > 1/2. Then

using (4.38) and (4.44) with l and j in (4.44) replaced by (2ϑ − 1)l and (2ϑ − 1) j

and (2.62) we have

√

J (q) max
0≤|z|≤1

exp
(

−(2ϑ − 1)l(
√

|z|2 + 1 − 1) + (2ϑ − 1) j z1

)

� (J (q))1/2e(2ϑ−1)l exp(−(2ϑ − 1)

√

l2 − j2)

� (J (q))1−ϑ exp

(

(2ϑ − 1)

(

−q0

2
+ p′0 + q0

4
− |p′ − q|

4

))

� (J (q))1−ϑ exp

(

(2ϑ − 1)

(

p′0 − q0

4
− |p′ − q|

4

))

� (J (q))1−ϑ .

Therefore, we have

D4 �

∫

R3

dp′

p′0 |η(p′)|2w2l(p′)
∫

R3

dq

q0
| f (q)|2(p′0q0)2(q0)−m−1

(

s̃

p′0q0

)
7
4

×
∫

(
√

|z|2+1−1)≈2−2k s̃−1

dz
√

|z|2 + 1
|z|4s̃−γ /2�(g̃)g̃2+γ |z|−2−γ (1 + |z|2)1/2+γ /4,

where we used (4.50) and

∫ 1

1
2

dϑ (J (q))1−ϑ �
1

q0
.

Then by (4.38), using (2.56) and (4.51) we further have

D4 �

∫

R3

dp′

p′0 |η(p′)|2w2l(p′)
∫

R3

dq

q0
| f (q)|2(p′0q0)2(q0)−m−1

(

s̃

p′0q0

)
7
4

×
∫

|z|≈2−k s̃−1/2
d|z| |z|3−γ s̃−γ /2 g̃2+ρ+γ

� 2k(γ−4)

∫

R3
dp′|η(p′)|2w2l(p′)

∫

R3
dq| f (q)|2(q0)−m−1g̃

3
2 +ρ+γ

(

p′0q0
)− 3

4
.

Then since 3
2

+ ρ + γ > 0, we have

g̃
3
2 +ρ+γ � (p′0q0)

ρ+γ
2 + 3

4 ,
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by (2.58). Therefore, we have

D4 � 2k(γ−4)| f |2
L2

−m′
|wlη|2

L2
ρ+γ

2

,

for any m′ ≥ 0. Thus, together with (4.55), we have

∣

∣

∣

∣

(T
k,l
+,I I − T

k,l
−,I I )( f , h, η)

∣

∣

∣

∣

ϑ>1/2

� 2k(γ−2)| f |L2
−m′

|wlh|L2
ρ+γ

2

|wlη|L2
ρ+γ

2

.

Then altogether, combining the estimate for ϑ > 1/2 with the one for ϑ ≤ 1/2 in

(4.52) for any m′ ≥ 0 we have

∣

∣

∣
(T

k,l
+,I I − T

k,l
−,I I )( f , h, η)

∣

∣

∣
� 2k(γ−2)| f |L2

−m′
|wlh|L2

ρ+γ
2

|wlη|L2
ρ+γ

2

. (4.56)

This completes the estimate for Part I I .

Estimates on Part I I I . Finally, we estimate the last part from (4.36). Note that in

(4.36) T
k,l
+,I I I − T

k,l
−,I I I is non-negative since we have (2.87). Then, using (2.88) and

(4.37) we first note that

∣

∣

∣

∣

∣

1 − s̃�(g̃)g̃4

s��(g�)g4
�

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1 − s̃�(g̃)g̃4

s��(g�)g4
�

∣

∣

∣

∣

∣

1
2

�

(

s̃(
√

|z|2 + 1 − 1)

g2
�

)
1
2

≈ 2−k

g�

.

Therefore, we obtain

(T
k,l
+,I I I − T

k,l
−,I I I ) � 2−k

∫

R3

dp′

p′0 h(p′)w2l(p′)η(p′)
∫

R3

dq

q0

√

J (q) f (q)

√
s̃

g̃

×
∫

(
√

|z|2+1−1)≈2−2k s̃−1

dz
√

|z|2 + 1
s�σ(g�, θ�)

exp
(

−l(
√

|z|2 + 1 − 1) + j z1

) 1

g�

.

Then using the Cauchy–Schwarz inequality we have

(T
k,l
+,I I I − T

k,l
−,I I I )

� 2−k

(∫

R3

dp′

p′0 |h(p′)|2w2l(p′)
∫

R3

dq

q0

√

J (q)

(√
s̃

g̃

)2

(q0)m

(

p′0q0

g̃2

)

3
4

×
∫

(
√

|z|2+1−1)≈2−2k s̃−1

dz
√

|z|2 + 1
s�σ(g�, θ�) exp

(

−l(
√

|z|2 + 1 − 1) + j z1

)

)1/2

×
(∫

R3

dp′

p′0 |η(p′)|2w2l(p′)
∫

R3

dq

q0
| f (q)|2

√

J (q)
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×
∫

(
√

|z|2+1−1)≈2−2k s̃−1

dz
√

|z|2 + 1
s�σ(g�, θ�)

(

g̃2

p′0q0

)
3
4

1

g2
�

× exp
(

−l(
√

|z|2 + 1 − 1) + j z1

)

(q0)−m

)1/2

=: 2−k D
1/2
5 × D

1/2
6 .

We estimate D5 similarly to how we estimated for D3 just below (4.53). Note that D5

and 2D3 are the same except for the term
(

p′0q0

s̃

)
7
4

in D3 replaced by
(

p′0q0

g̃2

)
3
4

in D5,

since
∫ 1

1
2

dϑ = 1
2
. By the same argument, D5 has exactly the same upper-bound in

(4.54) by observing that the additional term s̃
p′0q0 in D5 satisfies s̃

p′0q0 � 1 (by (2.57))

and that the term
(

1
s

)
3
4 in (4.54) was treated as

(

1
s

)
3
4 �

(

1
g2

)
3
4
. Therefore, as in (4.55),

we have

D5 � 2kγ
∣

∣

∣
wlh

∣

∣

∣

2

L2
ρ+γ

2

. (4.57)

This completes our estimate for the term D5.

For the estimates of D6, we use (4.37) and (4.42) to observe that

s�σ(g�, θ�)
1

g2
�

� g
ρ+γ
� s̃−γ /2(

√

|z|2 + 1 − 1)−1−γ /2 ≈ 2k(γ+2)g
ρ+γ
� s̃.

Thus using (2.70) we have

D6 � 2k(γ+2)

∫

R3

dp′

p′0 |η(p′)|2w2l(p′)
∫

R3

dq

q0
| f (q)|2

√

J (q)

×
∫

(
√

|z|2+1−1)≈2−2k s̃−1

dz
√

|z|2 + 1
g

ρ+γ+ 3
2

� s̃

(

1

p′0q0

)
3
4

× exp
(

−l(
√

|z|2 + 1 − 1) + j z1

)

(q0)−m .

Note that ρ + γ + 3
2

> 0 and hence

g
ρ+γ+ 3

2

� � s̃
ρ+γ

2 + 3
4 ,

by (2.70) and (4.38). Next using (4.43) and (4.44), we have

√

J (q) max
0≤|z|≤1

exp
(

−l(
√

|z|2 + 1 − 1) + j z1

)

� 1.

Thus, using (2.57), we conclude that

D6 � 2k(γ+2)

∫

R3

dp′

p′0 |η(p′)|2w2l(p′)
∫

R3

dq

q0
| f (q)|2
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×
∫

(
√

|z|2+1−1)≈2−2k s̃−1

|z|d|z|
√

|z|2 + 1
s̃

ρ+γ
2 + 7

4

(

1

p′0q0

)
3
4

(q0)−m .

Thus using (4.51) we have

D6 � 2k(γ+2)

∫

R3

dp′

p′0 |η(p′)|2w2l(p′)
∫

R3

dq

q0
| f (q)|2

×
∫

(
√

|z|2+1−1)≈2−2k s̃−1
d(
√

|z|2 + 1 − 1) s̃
ρ+γ

2 + 7
4

(

1

p′0q0

)
3
4

(q0)−m

≈ 2kγ

∫

R3

dp′

p′0 |η(p′)|2w2l(p′)
∫

R3

dq

q0
| f (q)|2s̃

ρ+γ
2 + 3

4

(

1

p′0q0

)
3
4

(q0)−m

� 2kγ

∫

R3

dp′

p′0 |η(p′)|2w2l(p′)
∫

R3

dq

q0
| f (q)|2(p′0q0)

ρ+γ
2 (q0)−m .

Since m > 0 can be any number arbitrarily large, we have

D6 � 2kγ | f |2
L2

−m′
|wlη|2

L2
ρ+γ

2
−1

,

for any m′ ≥ 0. Thus, together with (4.57), for any m′ ≥ 0 we have

∣

∣

∣
T

k,l
+,I I I − T

k,l
−,I I I

∣

∣

∣
� 2k(γ−1)| f |L2

−m′
|wlh|L2

ρ+γ
2

|wlη|L2
ρ+γ

2
−1

,

This estimate combined with (4.45) and (4.56) thus completes the proof of Proposi-

tion 4.7. ��

This concludes our cancellation estimates for the differences involving three arbi-

trary smooth functions.

4.4 Additional Estimates

We will also need estimates when we have a more specific Schwartz function satisfying

the following uniform estimate

(|∇|φ)(p) ≤ Cφe−cp0

, Cφ ≥ 0, c > 0. (4.58)

With this in mind, we have the next estimates:

Proposition 4.8 We assume (4.58), then for any k ≥ 0 we have

∣

∣

∣(T
k,l
+ − T

k,l
− )(g, h, φ)

∣

∣

∣ � Cφ 2(γ−1)k |g|L2
−m

|h|L2
−m

.

The above inequality holds uniformly for any m ≥ 0 and l ∈ R.
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Proof We decompose the cancellation term as in (4.26), with terms I , I I , and I I I ,

except that η in (4.26) is replaced by φ. Then φ satisfying (4.58) has rapid decay as

does J from (2.12). In particular, in this case all the terms I , I I , and I I I can now be

estimated exactly as in the estimate from (4.32), also using the exponential decay as

in (4.58) and (2.12). We thus obtain directly Proposition 4.8. ��

Proposition 4.9 Fix l ∈ R. Assume (4.58). We have the uniform estimates

∣

∣

∣
T

k,l
+ ( f , φ, η)

∣

∣

∣
� Cφ 2γ k |wl f |L2

ρ+γ−1
2

|wlη|L2
ρ+γ

2

, (4.59)

for any k ≤ 0. Additionally for any m ≥ 0 and any k we obtain

|T k,l
+ ( f , h, φ)| + |T k,l

− ( f , h, φ)| � Cφ 2kγ | f |L2
−m

|h|L2
−m

. (4.60)

Proof We first explain the proof of (4.60). If φ is as in (4.58), then both T
k,l
+ ( f , h, φ)

and T
k,l
− ( f , h, φ) have rapid decay in both p and q variables in (4.10) and (4.3). By

applying the Cauchy–Schwarz inequality to (4.3) and (4.10) and using (4.6), we obtain

(4.60).

We will now prove the upper bound of

∣

∣

∣
T

k,l
+ ( f , φ, η)

∣

∣

∣
as in (4.59). We consider I

as in (4.12) with φ = h. By the Cauchy–Schwartz inequality we have

I �

(∫

R3

dp

∫

R3

dq

∫

S2

dω vø
gρσ0χk(ḡ)

gρ+γ
| f (q)|2|φ(p)|2

√

J (q ′)(p′0)
ρ+γ

2 w2l(p′)

)1/2

×
(∫

R3
dp

∫

R3
dq

∫

S2
dω vøgρσ0χk(ḡ)gρ+γ |wlη(p′)|2

√

J (q ′)(p′0)
−ρ−γ

2

)
1
2

= I1 · I2. (4.61)

First we will estimate I2 in (4.61). We have the following uniform estimate for I2:

I2 � 2
kγ
2 |wlη|L2

ρ+γ
2

.

This estimate is given in (4.18) for the soft potential case (2.22) and in (4.19) for the

hard potential case (2.21).

For the estimate of I1 in (4.61), it suffices to show the following claim:

∫

R3
dp

∫

R3
dq

∫

S2
dω vø

gρσ0χk(ḡ)

gρ+γ
| f (q)|2|φ(p)|2

√

J (q ′)(p′0)
ρ+γ

2 w2l(p′)

� 2kγ |wl f |2
L2

ρ+γ−1
2

. (4.62)

Then together with (4.18), we obtain (4.77) after summation of S1 and S3, since

0 < γ < 1.
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The claim (4.62) can be proved as follows. Let the left-hand side of (4.62) be IL .

By recovering dp′ and dq ′ measures from dω, we obtain that

IL =
∫

R3

dp

p0

∫

R3

dq

q0

∫

R3

dp′

p′0

∫

R3

dq ′

q ′0 s
gρσ0χk(ḡ)

gρ+γ
| f (q)|2|φ(p)|2

×
√

J (q ′)(p′0)
ρ+γ

2 w2l(p′)δ(4)
(

p′μ + q ′μ − pμ − qμ
)

.

We make the change of variables (p, q, p′, q ′) �→ (q, p, q ′, p′). Then we obtain

IL =
∫

R3

dp

p0

∫

R3

dq

q0

∫

R3

dp′

p′0

∫

R3

dq ′

q ′0 s
gρσ0χk(ḡ)

gρ+γ
| f (p)|2|φ(q)|2

×
√

J (p′)(q ′0)
ρ+γ

2 w2l(q ′)δ(4)
(

p′μ + q ′μ − pμ − qμ
)

.

Using the energy conservation law from the delta function, we obtain that

(q ′0)
ρ+γ

2 w2l(q ′) = (q ′0)
ρ+γ

2 +2l = (p0 + q0 − p′0)
ρ+γ

2 +2l .

Now we use the relativistic Carleman representation, in Lemma 2.12, to reduce the

integral as

IL ≈
∫

R3

dp

p0

∫

R3

dp′

p′0

∫

E
q

p′−p

dπq

q0

s

ḡ

gρσ0χk(ḡ)

gρ+γ
| f (p)|2|φ(q)|2

×
√

J (p′)(p0 + q0 − p′0)
ρ+γ

2 +2l ,

where dπq is defined in (2.50). Using (2.20), (9.2), (2.57), and (2.58), we have

s

ḡ

gρσ0χk(ḡ)

gρ+γ
� 2kγ (p0q0)2

ḡ3
χk(ḡ).

We further have that

(p0 + q0 − p′0)
ρ+γ

2 +2l � (p0q0 p′0)
ρ+γ

2 +2l

and that

|φ(q)|2
√

J (p′)(q0)
ρ+γ

2 +2l+2(p′0)
ρ+γ

2 +2l � (J (p′)J (q))ε,

for some sufficiently small ε > 0 because φ(q) is the product of a polynomial in q

and
√

J (q). Altogether we obtain

IL � 2kγ

∫

R3
dp | f (p)|2(p0)

ρ+γ
2 +2l+1

∫

R3

dp′

p′0
1

ḡ3
(J (p′))ε

∫

E
q

p′−p

dπq

q0
(J (q))ε .
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Now we use (4.29) to obtain

IL � 2kγ

∫

R3
dp | f (p)|2(p0)

ρ+γ
2 +2l+1

∫

R3

dp′

p′0
1

ḡ3
(J (p′))ε .

Here we note that, if k ≤ 0, we have ḡ ≈ 2−k � 1. Thus, ḡ−3 ≈ (ḡ2 + 1)−3/2. We

further use that 1

ḡ3 ≤ (p0 p′0)3/2

|p−p′|3 to obtain that

1

ḡ3
�

( |p − p′|2
p0 p′0 + 1

)−3/2

.

Then if |p| ≤ 1 we have

(p0)
ρ+γ

2 +2l+1

∫

R3

dp′

p′0
1

ḡ3
(J (p′))ε � (p0)

ρ+γ
2 +2l−m

∫

R3

dp′

p′0 (J (p′))ε � (p0)
ρ+γ

2 +2l−m,

for any m > 0. On the other hand, if |p| > 1, then we further split the region p′ ∈ R
3

into |p′| ≤ |p|
2

and |p′| >
|p|
2

. If |p′| ≤ |p|
2

, then we have

J (p′)ε � (J (p′)J (p))ε
′
,

for some 0 < ε′ < ε. Thus, we have

(p0)
ρ+γ

2 +2l+1

∫

R3

dp′

p′0
1

ḡ3
(J (p′))ε � (p0)

ρ+γ
2 +2l+1 J (p)ε

′
∫

R3

dp′

p′0 (J (p′))ε
′
� (p0)−m,

for any m > 0. Lastly, if |p′| >
|p|
2

, we have

|p − p′| ≥ |p| − |p′| ≥ |p|
2

� p0,

which leads us to

∫

R3

dp′

p′0

( |p − p′|2
p0 p′0 + 1

)−3/2

(J (p′))ε � (p0)−3/2

∫

R3
(p′0)1/2(J (p′))ε � (p0)−3/2.

Therefore, we can conclude that

IL � 2kγ

∫

R3
dp | f (p)|2(p0)

ρ+γ
2 +2l− 1

2 = 2kγ
∣

∣

∣
wl f

∣

∣

∣

2

L2
ρ+γ−1

2

.

This finishes the proof for the claim (4.62). ��
This concludes our discussion of the cancellation estimates nearby the angular

singularities. In the next sub-section we briefly introduce the standard 3-dimensional

Littlewood–Paley theory which allows us to make sharp estimates of the linearized

Boltzmann collision operator.
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4.5 Littlewood–Paley Decompositions

We now introduce the 3-dimensional Littlewood–Paley theory. We will see in (4.65)

that the sum of weighted L2-norm of the Littlewood–Paley pieces is bounded above by

our fractional derivative norm from (2.37). We further bound the sum of the weighted

L2-norms of the derivatives of the Littlewood–Paley pieces above by the fractional

derivative norm in (4.66).

We choose a real valued function φ(p) ∈ C∞
c (R3

p) such that it satisfies φ(p) = 1

if |p| ≤ 1/2 and φ(p) = 0 if |p| ≥ 1. Also define ψ(p) = φ(p)−2−3φ(p/2). Using

the standard scaling, we further define

φ j (p) = 23 jφ(2 j p), j ≥ 0,

ψ j (p) = 23 jψ(2 j p), j ≥ 1.

Now define the partial sum operator

S j ( f ) = f ∗ φ j =
∫

R3
23 jφ(2 j (p − q)) f (q)dq, j ≥ 0,

and the difference operator

� j ( f ) = f ∗ ψ j =
∫

R3
23 jψ(2 j (p − q)) f (q)dq, j ≥ 0.

For j = 0 we define �0( f ) = S0( f ). We suppose that
∫

R3 φ(p)dp = 1, so that

� j (1)(p) = (1 ∗ ψ j )(p) =
∫

R3
ψ j (q)dq = 0. (4.63)

Throughout this sub-section, the variables p and p′ are independent vectors in R
3 and

we will not assume the variables p and p′ are related by the collision geometry as in

(2.15) and (2.16).

We further have for all sufficiently smooth f as l → ∞ that

l
∑

j=0

� j ( f )(p) = Sl( f )(p) → f (p),

and that

(

∫

R3
dp |Sl( f )(p)|r (p0)ρ

)
1
r

�
(

∫

R3
dp | f (p)|r (p0)ρ

)
1
r
,

uniformly in j ≥ 0 for any fixed ρ ∈ R and any r ∈ [1,∞]. This Lr -boundedness

property also holds for the operators � j .
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We are now interested in estimating the upper bound for

∞
∑

j=0

2γ j

∫

R3
dp |� j f |2(p0)ρ,

when 0 < γ < 1 and ρ ∈ R. To this end, for any j ≥ 1, we have

1

2

∫

R3
dp

∫

R3
dp′

∫

R3
dz ( f (p) − f (p′))2ψ j (z − p)ψ j (z − p′)(z0)ρ

= −
∫

R3
dp (� j f (p))2(p0)ρ +

∫

R3
dp

∫

R3
dz ( f (p))2ψ j (z − p)� j (1)(z)(z0)ρ

= −
∫

R3
dp (� j f (p))2(p0)ρ, (4.64)

which follows from � j (1)(z) = 0 in (4.63). Also z0 =
√

1 + |z|2 etc.

On the other hand, from the support condition for ψ j (z − p)ψ j (z − p′) on z, we

have p0 ≈ p′0 ≈ z0. Also notice that |ψ j (z − p′)| � 23 j . Thus, we obtain that

∫

R3

dz |ψ j (z − p′)||ψ j (z − p)|(z0)ρ � (p0 p′0)
ρ
2

∫

R3

dz |ψ j (z − p′)||ψ j (z − p)|

� 23 j (p0 p′0)
ρ
2

∫

R3
dz |ψ j (z − p)| � 23 j (p0 p′0)

ρ
2 .

Now |ψ j (z − p′)||ψ j (z − p)| is supported only when |p − p′| ≤ 2− j+1. Hence

2γ j

∫

R3
dz |ψ j (z − p′)||ψ j (z − p)|(z0)ρ � 2(3+γ ) j (p0 p′0)

ρ
2 1|p−p′|≤2− j+1 .

Since there exists j0 > 0 such that 2− j0 < |p − p′| ≤ 2− j0+1, we have

∞
∑

j=1

2(3+γ ) j 1|p−p′|≤2− j+1 =
j0
∑

j=1

2(3+γ ) j 1|p−p′|≤2− j+1 � 2(3+γ ) j0 1|p−p′|≤1

�
1|p−p′|≤1

|p − p′|γ+3
.

When j = 0, the term
∫

R3 dp |�0 f |2(p0)ρ is bounded above by | f |2
L2

ρ
. Combining

these estimates we obtain that

∣

∣

∣

∣

∣

∣

1

2

∞
∑

j=0

2γ j

∫

R3
dp

∫

R3
dp′

∫

R3
dz ( f (p) − f (p′))2ψ j (z − p)ψ j (z − p′)(z0)ρ

∣

∣

∣

∣

∣

∣

�

∫

R3
dp

∫

R3
dp′ (p0 p′0)

ρ
2
( f (p) − f (p′))2

|p − p′|γ+3
1|p−p′|≤1.
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Therefore using (4.64) we have shown, for any γ ∈ (0, 1) and any ρ ∈ R, that the

following inequality holds:

∞
∑

j=0

2γ j

∫

R3
dp |� j f |2(p0)ρ

� | f |2
L2

ρ
+
∫

R3
dp

∫

R3
dp′ (p0 p′0)

ρ
2
( f (p) − f (p′))2

|p − p′|3+γ
1|p−p′|≤1 � | f |2I ρ,γ .

(4.65)

This holds uniformly for any smooth function f .

To use the cancellation estimates obtained in §4.2, it is also necessary to obtain an

analogous inequality to (4.65) for the derivatives of the Littlewood–Paley pieces. We

need to establish a similar inequality when � j ’s are replaced by 2−k j∇� j where ∇ is

the standard 3-dimensional gradient. We denote a derivative by ∇α = (∂α1

p1
, ∂α2

p2
, ∂α3

p3
).

For any partial derivative ∂
∂ pi

� j f , it holds that ∂
∂ pi

� j f = 2 j �̃ j f where �̃ j is the

j th-Littlewood–Paley cut-off operator associated to a new cut-off function ψ̃ which

also satisfies the cancellation property (4.63) that �̃ j (1)(p) = 0. Thus, for a multi-

index α, we can write

2−|α| j∇α� j f (p) = �α
j ( f )(p)

where �α
j is the cut-off operator associated to some ψα .

Then, we can repeat the same proof as for (4.65) by considering the following

integral instead and make an upper-bound estimate on the weighted L2-norm of the

derivatives of each Littlewood–Paley decomposed piece:

1

2

∫

R3
dp

∫

R3
dp′

∫

R3
dz( f (p) − f (p′))2ψα

j (z − p)ψα
j (z − p′)(z0)ρ

= −
∫

R3
dp|�α

j ( f )(p)|2(p0)ρ .

This follows from the same condition as in (4.63) that �α
j (1)(p) = 0. Similarly the

analogous estimates can be multiplied by 2γ j and summed over j to get

∞
∑

j=0

2γ j

∫

R3

dp |�α
j ( f )(p)|2(p0)ρ

� | f |2
L2

ρ
+
∫

R3
dp

∫

R3
dp′ (p0 p′0)

ρ
2
( f (p) − f (p′))2

|p − p′|3+γ
1|p−p′|≤1.

Therefore, for any multi-index α, for any fixed ρ, l ∈ R, it follows that we have

∞
∑

j=0

2(γ−|α|) j

∫

R3
dp |∇α� j f (p)|2(p′0)

ρ+γ
2 w2l(p) � | f |2

I
ρ,γ

l

. (4.66)
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This holds uniformly since p0 ≈ p′0 if |p − p′| ≤ 1 by Lemma 4.5.

This concludes our introduction to the standard Littlewood–Paley theory. In the next

sub-section we will make our final upper-bound estimates of the linearized Boltzmann

operator by utilizing the previous propositions.

4.6 Upper Bound Estimates

We begin with the proof of Theorem 2.4. We first decompose

h = �0h +
∞
∑

i=1

�i h
def=

∞
∑

i=0

hi and η = �0η +
∞
∑

j=1

� jη
def=

∞
∑

j=0

η j .

Also we consider the dyadic decomposition of the gain and the loss terms and write

the trilinear product as

〈w2l�( f , h), η〉 =
∞
∑

i=0

∞
∑

j=0

〈w2l�( f , hi ), η j 〉

=
∞
∑

i=1

∞
∑

j=0

〈w2l�( f , hi+ j ), η j 〉 +
∞
∑

i=0

∞
∑

j=0

〈w2l�( f , h j ), ηi+ j 〉.

We further split this up using (4.3) as

〈w2l�( f , h), η〉 =
∞
∑

k=−∞

∞
∑

i=1

∞
∑

j=0

{T k,l
+ ( f , hi+ j , η j ) − T

k,l
− ( f , hi+ j , η j )}

+
∞
∑

k=−∞

∞
∑

i=0

∞
∑

j=0

{T k,l
+ ( f , h j , ηi+ j ) − T

k,l
− ( f , h j , ηi+ j )}. (4.67)

We first consider the sum over k for fixed i as the following

∞
∑

k=−∞

∞
∑

j=0

{T k,l
+ ( f , hi+ j , η j ) − T

k,l
− ( f , hi+ j , η j )}

=
∞
∑

j=0

j
∑

k=−∞
{T k,l

+ ( f , hi+ j , η j ) − T
k,l
− ( f , hi+ j , η j )}

+
∞
∑

j=0

∞
∑

k= j+1

{T k,l
+ ( f , hi+ j , η j ) − T

k,l
− ( f , hi+ j , η j )} def= S1 + S2. (4.68)

When f , h, η are Schwartz functions, the order of summation may be rearranged

because the sum will be seen to be absolutely convergent. Then by (4.11) and (4.5),
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we obtain

|S1| �

∞
∑

j=0

2γ j
∣

∣

∣
wl f

∣

∣

∣

L2

∣

∣

∣
wlhi+ j

∣

∣

∣

L2
ρ+γ

2

∣

∣

∣
wlη j

∣

∣

∣

L2
ρ+γ

2

� 2− γ i
2

∣

∣

∣w
l f

∣

∣

∣

L2

⎛

⎝

∞
∑

j=0

2γ (i+ j)|wlhi+ j |2L2
ρ+γ

2

⎞

⎠

1
2
⎛

⎝

∞
∑

j=0

2γ j |wlη j |2L2
ρ+γ

2

⎞

⎠

1
2

� 2− γ i
2

∣

∣

∣w
l f

∣

∣

∣

L2
|h|I

ρ,γ

l
|η|I

ρ,γ

l
, (4.69)

where the second inequality is by the Cauchy–Schwarz inequality and the last inequal-

ity is by (4.65). Regarding the sum S2, we use the cancellation estimates from §4.2.

By (4.25), we can sum in k from k = j + 1 to ∞, since γ − 1 < 0. Then we obtain

|S2| �

∞
∑

j=0

2(γ−1) j | f |L2
−m

∣

∣

∣w
lhi+ j

∣

∣

∣

L2
ρ+γ

2

∣

∣

∣w
l |∇|η j

∣

∣

∣

L2
ρ+γ

2

� 2
−γ i

2 | f |L2
−m

⎛

⎝

∞
∑

j=0

2γ (i+ j)|wlhi+ j |2L2
ρ+γ

2

⎞

⎠

1
2
⎛

⎝

∞
∑

j=0

2(γ−2) j
∣

∣

∣w
l |∇|η j

∣

∣

∣

2

L2
ρ+γ

2

⎞

⎠

1
2

� 2
−γ i

2 | f |L2
−m

|h|I
ρ,γ

l
|η|I

ρ,γ

l
, (4.70)

where the third inequality is by (4.66). Finally, we take the sum in i from i = 1 to ∞
on both S1 and S2 to obtain that

∞
∑

i=1

∞
∑

j=0

〈w2l�( f , hi+ j ), η j 〉 �
∣

∣

∣w
l f

∣

∣

∣

L2
|h|I

ρ,γ
l

|η|I
ρ,γ
l

. (4.71)

This completes the estimate for the first term in (4.67).

Now we move onto estimating the second part of (4.67). We consider the sum over

k of the terms 〈w2l�( f , h j ), ηi+ j 〉 for fixed i as

∞
∑

k=−∞

∞
∑

j=0

{T k,l
+ ( f , h j , ηi+ j ) − T

k,l
− ( f , h j , ηi+ j )}

=
∞
∑

j=0

j
∑

k=−∞
{T k,l

+ ( f , h j , ηi+ j ) − T
k,l
− ( f , h j , ηi+ j )}

+
∞
∑

j=0

∞
∑

k= j+1

{T k,l
+ ( f , h j , ηi+ j ) − T

k,l
− ( f , h j , ηi+ j )} def= S3 + S4. (4.72)
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Then by (4.11) and (4.5), we obtain

|S3| �

∞
∑

j=0

2γ j
∣

∣

∣w
l f

∣

∣

∣

L2

∣

∣

∣w
l h j

∣

∣

∣

L2
ρ+γ

2

∣

∣

∣w
lηi+ j

∣

∣

∣

L2
ρ+γ

2

� 2− γ i
2

∣

∣

∣w
l f

∣

∣

∣

L2

⎛

⎝

∞
∑

j=0

2γ j |wlh j |2L2
ρ+γ

2

⎞

⎠

1
2
⎛

⎝

∞
∑

j=0

2γ (i+ j)|wlηi+ j |2L2
ρ+γ

2

⎞

⎠

1
2

,

where the second inequality is just the Cauchy–Schwarz inequality. Then we use (4.65)

to obtain

|S3| � 2− γ i
2

∣

∣

∣w
l f

∣

∣

∣

L2
|h|I

ρ,γ
l

|η|I
ρ,γ
l

. (4.73)

Regarding the sum S4, we use an alternative cancellation estimate from §4.2. By

Proposition 4.7, we can conduct the sum in k from k = j + 1 to ∞, since γ − 1 < 0.

Then we obtain

|S4| �

∞
∑

j=0

2(γ−1) j | f |L2
−m

∣

∣

∣w
l |∇|h j

∣

∣

∣

L2
ρ+γ

2

∣

∣

∣w
lηi+ j

∣

∣

∣

L2
ρ+γ

2

� 2
−γ i

2 | f |L2
−m

⎛

⎝

∞
∑

j=0

2(γ−2) j
∣

∣

∣w
l |∇|h j

∣

∣

∣

2

L2
ρ+γ

2

⎞

⎠

1
2
⎛

⎝

∞
∑

j=0

2γ (i+ j)|wlηi+ j |2L2
ρ+γ

2

⎞

⎠

1
2

� 2
−γ i

2 | f |L2
−m

|h|I
ρ,γ

l
|η|I

ρ,γ

l
, (4.74)

where the third inequality is by (4.66). Finally, we take the sum in i from i = 0 to ∞
on both S3 and S4 and obtain that

∞
∑

i=0

∞
∑

j=0

〈w2l�( f , h j ), ηi+ j 〉 �
∣

∣

∣w
l f

∣

∣

∣

L2
|h|I

ρ,γ
l

|η|I
ρ,γ
l

. (4.75)

Then (4.71) and (4.75) with (4.67) completes the proof of Theorem 2.4 as a special

case when l = 0.

Lemma 2.5 can also be proven as follows. We first take a spatial derivative ∂α on

the non-linear collision operator � with |α| ≤ N for some N ≥ 2 to observe (2.39).

We multiply ∂αη on both sides of (2.39) and integrate with respect to x and p. Then

by (4.71) and (4.75), we obtain

∣

∣

∣

(

w2l�(∂α−α′
f , ∂α′

h), ∂αη
)∣

∣

∣
� ‖wl f ‖H N

x L2
v
‖h‖H N

x I
ρ,γ

l
‖∂αη‖I

ρ,γ

l
.

This proves Lemma 2.5 for the both hard (2.21) and soft-interactions (2.22).

Furthermore, we would like to mention a proposition that contains other useful

compact estimates.
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Proposition 4.10 Let φ be a function satisfying (4.58). Then we have that

|〈w2l�(φ, h), η〉| � |h|I
ρ,γ

l
|η|I

ρ,γ

l
, (4.76)

Further, for any fixed ε > 0 small enough, we have that

|〈w2l�( f , φ), h〉| � |wl f |L2
ρ
2

−ε

|h|I
ρ,γ
l

. (4.77)

Additionally, for any m ≥ 0, we have

|〈w2l�( f , h), φ〉| � | f |L2
−m

|h|L2
−m

. (4.78)

Proof First of all, we note that (4.67) with (4.71) and (4.75) immediately imply (4.76)

because |wlφ|L2 is bounded.

We now prove (4.77). In this case we also use the splitting (4.67) with (4.68) and

(4.72). For the terms S2 and S4, we follow (4.70) and (4.74) to obtain

|S2|, |S4| � 2
−γ i

2 | f |L2
−m

|h|I
ρ,γ

l
.

Here we used that |φ|I
ρ,γ

l
� 1.

For the upper-bound estimate of |S1| and |S3|, we use the upper bounds of
∣

∣

∣T
k,l
+

∣

∣

∣ ( f , φ, h) and

∣

∣

∣T
k,l
−

∣

∣

∣ ( f , φ, h). We further split S1 as S1 = S+
1 − S−

1 where

from (4.68) we have

S±
1

def=
∞
∑

j=0

j
∑

k=−∞
T

k,l
± ( f , φi+ j , h j ).

We similarly split S3 = S+
3 − S−

3 where from (4.72) we have

S±
3

def=
∞
∑

j=0

j
∑

k=−∞
T

k,l
± ( f , φ j , hi+ j ).

For the upper bound of

∣

∣

∣T
k,l
− ( f , φ, h)

∣

∣

∣ we use (4.5) and obtain that, similar to (4.69)

and (4.73), S−
1 and S−

3 are bounded as

∣

∣S−
1

∣

∣+
∣

∣S−
3

∣

∣ � 2− γ i
2 | f |L2

−m
|wlh|L2

ρ+γ
2

.

Note that |wlφ|L2
ρ+γ

2

� 1 as before. Now we further use (4.59) to obtain that

∣

∣S+
1

∣

∣+
∣

∣S+
3

∣

∣ � 2− γ i
2 |wl f |L2

ρ+γ−1
2

|wlh|L2
ρ+γ

2

.
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This yields (4.77) since ε > 0 can be chosen sufficiently small such that γ −1 < −2ε.

For (4.78), we write the trilinear form as the sum

〈w2l�( f , h), φ〉 =
∞
∑

k=0

(T
k,l
+ − T

k,l
− )( f , h, φ) +

−1
∑

k=−∞
(T

k,l
+ − T

k,l
− )( f , h, φ)

def= S5 + S6.

Note that here φ has rapid decay using (4.58). We obtain the upper bound for S6 from

(4.60) and summing over k ≤ −1 since γ > 0. Our estimate for S5 follows from

Proposition 4.8 because γ − 1 < 0. This completes the proof. ��

Note that (4.76) implies Lemma 2.7 together with the frequency multiplier asymp-

totics (2.31). Also, Proposition 4.10 further implies the following lemma:

Lemma 4.11 We have the uniform estimate

|〈w2l
K f , h〉| � |wl f |L2

ρ
2

|h|I
ρ,γ

l
. (4.79)

From (2.32), this lemma is a direct consequence of (4.77) and the estimate on

|ζK(p)| by choosing ε ∈ (0, γ /4) in (2.31). Note that (4.79) implies Lemma 2.6 by

letting h = f . More precisely, we see that for any small ε > 0, the upper bound of

(4.79) is bounded above by

|wl f |L2
ρ
2

| f |I
ρ,γ

l
≤ ε

2
| f |2

I
ρ,γ

l

+ Cε |wl f |2
L2

ρ
2

.

For the term Cε |wl f |2
L2

ρ
2

, we split the region into |p| ≤ R and |p| ≥ R. When

|p| ≤ R, the term is bounded above by Cε | f |2
L2(BR)

. Outside the ball, we choose

R > 0 sufficiently large enough so that Cε R− γ
2 ≤ ε

2
. Then we obtain Lemma 2.6.

This concludes our discussion of upper-bound estimates for the linearized Boltz-

mann operator. In the next section we will make coercive lower-bound estimates.

5 Main Coercive Estimates

In this section, for any Schwartz function f , we consider the quadratic difference aris-

ing in the inner product of the norm part N f with f . Our goal is to prove Lemma 2.8.

The key point is to estimate the norm | f |2
B

which arises in the inner product 〈N f , f 〉
from (2.34) and will be defined as follows:

| f |2
B

def= 1

2

∫

R3
dp

∫

R3
dq

∫

S2
dω vøσ(g, θ)( f (p′) − f (p))2

√

J (q)J (q ′).
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5.1 Pointwise Estimates

The norm | f |2
B

can be further estimated using Lemma 2.11 as

| f |2
B

= 1

2

∫

R3

dp

p0

∫

R3

dp′

p′0 ( f (p′) − f (p))2

×
∫

R3

dq

q0

∫

R3

dq ′

q ′0 δ(4)(p′μ + q ′μ − pμ − qμ)sσ(g, θ)e− q0+q′0
2

≈ 1

2

∫

R3

dp

p0

∫

R3

dp′

p′0 ( f (p′) − f (p))2

×
∫

R3

dq

q0

∫

R3

dq ′

q ′0 δ(4)(p′μ + q ′μ − pμ − qμ)sgρ

(

ḡ

g

)−2−γ

e− q0+q′0
2 ,

where we used (2.22) and (2.20) and (9.2). We conclude that

| f |2
B

≈ 1

2

∫

R3

dp

p0

∫

R3

dp′

p′0
( f (p′) − f (p))2

ḡ3+γ

×
∫

R3

dq

q0

∫

R3

dq ′

q ′0 δ(4)(p′μ + q ′μ − pμ − qμ)sgρ+γ+2ḡe− q0+q′0
2 .

Then we define a kernel K (p, p′) as follows:

K (p, p′)
def=
∫

R3

dq

q0

∫

R3

dq ′

q ′0 δ(4)(p′μ + q ′μ − pμ − qμ)sgρ+γ+2 ḡe− q0+q′0
2 .

Thus we have

| f |2
B

≈ 1

2

∫

R3

dp

p0

∫

R3

dp′

p′0
( f (p′) − f (p))2

ḡ3+γ
K (p, p′). (5.1)

We will prove a pointwise lower bound for the kernel K (p, p′) as follows.

Proposition 5.1 The kernel K (p, p′) is bounded from below as

K (p, p′) � 1ḡ≤11|p′0−p0|≤ḡ(p0 p′0)
ρ+γ

4 +1.

Proof We use (2.56), (2.59), and ρ + γ + 4 > 0 for both hard- and soft-interactions

to obtain that

sgρ+γ+2 ≥ gρ+γ+4 ≥ |p − q|ρ+γ+4

(p0q0)
ρ+γ+4

2

.
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Also, note that g2 ≥ g̃2 by (9.1). Therefore, using (2.7) and (2.90) we obtain

sgρ+γ+2 ≥ gρ+γ+4 ≥ g̃ρ+γ+4 ≥ |p − q ′|ρ+γ+4

(p0q ′0)
ρ+γ+4

2

.

With the extra assumption that ḡ ≤ 1, using Lemma 4.5, we obtain q0 ≈ q ′0 ≈
q0 + q ′0. Thus, we have

sgρ+γ+2 �
|p − q|ρ+γ+4

(p0q0)
ρ+γ+4

2

+ |p − q ′|ρ+γ+4

(p0q ′0)
ρ+γ+4

2

�
|2p − (q + q ′)|ρ+γ+4

(p0(q0 + q ′0))
ρ+γ+4

2

. (5.2)

We then raise the kernel K (p, p′) to the 8-dimensional integral in qμ and q ′μ using

Lemma 2.17 with dqμ and dq ′μ as below:

K (p, p′) = 1

16

∫

R4
dqμ

∫

R4
dq ′μ δ(4)(p′μ + q ′μ − pμ − qμ)sgρ+γ+2 ḡe− q0+q′0

2

×u(q0 + q ′0)u( ¯̄s − 4)δ( ¯̄s − ¯̄g2 − 4)δ((qμ + q ′μ)(qμ − q ′
μ)),

where ¯̄s def= s(qμ, q ′μ) and ¯̄g def= g(qμ, q ′μ). By (5.2), we have

K (p, p′) �

∫

R4
dqμ

∫

R4
dq ′μ δ(4)(p′μ + q ′μ − pμ

−qμ)
|2p − (q + q ′)|ρ+γ+4

(p0(q0 + q ′0))
ρ+γ+4

2

ḡe− q0+q′0
2

×u(q0 + q ′0)u( ¯̄s − 4)δ( ¯̄s − ¯̄g2 − 4)δ((qμ + q ′μ)(qμ − q ′
μ))1{ḡ≤1}.

Now apply the change of variables

p̄μ = qμ + q ′μ, q̄μ = qμ − q ′μ.

This transformation has Jacobian equal to 16. With this change of variable the integral

becomes

K (p, p′) �

∫

R4
dq̄μ

∫

R4
d p̄μ δ(4)(p′μ − pμ − q̄μ)

|2p − p̄|ρ+γ+4

(p0 p̄0)
ρ+γ+4

2

ḡe− p̄0

2

×u( p̄0)u(− p̄μ p̄μ − 4)δ(− p̄μ p̄μ − q̄μq̄μ − 4)δ( p̄μq̄μ)1{ḡ≤1}.

Note that ḡ did not change under this change of variables. We next carry out the delta

function argument for δ(4)(p′μ − pμ − q̄μ) to obtain

K (p, p′) �

∫

R4
d p̄μ |2p − p̄|ρ+γ+4

(p0 p̄0)
ρ+γ+4

2

1{ḡ≤1}ḡe− p̄0

2
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×u( p̄0)u(− p̄μ p̄μ − 4)δ(− p̄μ p̄μ − ḡ2 − 4)δ( p̄μ(p′
μ − pμ)).

Since s̄ = ḡ2 + 4, using (4.9) with g̃ replaced by ḡ we have

u( p̄0)δ(− p̄μ p̄μ − ḡ2 − 4) = u( p̄0)δ(− p̄μ p̄μ − s̄) = δ( p̄0 −
√

| p̄|2 + s̄)

2
√

| p̄|2 + s̄
.

Again using s̄ = ḡ2 + 4, we have − p̄μ p̄μ − 4 = s̄ − 4 = ḡ2 ≥ 0 to guarantee that

u(− p̄μ p̄μ − 4) = 1 by (2.51). We evaluate one integral using the delta function:

K (p, p′) �

∫

R3

d p̄

p̄0

|2p − p̄|ρ+γ+4

(p0 p̄0)
ρ+γ+4

2

1{ḡ≤1}ḡδ( p̄μ(p′
μ − pμ))e− p̄0

2 ,

where p̄0 =
√

| p̄|2 + s̄.

Now express p̄ using polar coordinates p̄ �→ (r , θ, φ). We further choose the z-axis

parallel to p′ − p such that the angle between p̄ and p′ − p is equal to φ. Note that

the Jacobian that we get from this change of variables is equal to r2 sin φ. Then the

terms in the delta function can be written as

p̄μ(p′
μ − pμ) = − p̄0(p′0 − p0) + p̄ · (p′ − p) =

−
√

r2 + s̄(p′0 − p0) + r |p′ − p| cos φ.

By using |2p − p̄| ≥ ||2p| − | p̄||, we have

K (p, p′) �

∫ ∞

0

dr√
r2 + s̄

∫ 2π

0

dθ

∫ π

0

dφ r2 sin φ δ

(

cos φ −
√

r2 + s̄(p′0 − p0)

r |p′ − p|

)

× ḡ

r |p′ − p|
|2|p| − r |ρ+γ+4

(p0
√

r2 + s̄)
ρ+γ+4

2

1{ḡ≤1}e
−

√
r2+s̄
2 ,

We define the set Sp,p′ as

Sp,p′
def=
{

r ∈ [0,∞) :
∣

∣

∣

∣

∣

√
r2 + s̄(p′0 − p0)

r |p′ − p|

∣

∣

∣

∣

∣

≤ 1

}

.

By a simple calculation, we can see that this set is equivalent to

Sp,p′ =
{

r ∈ [0,∞) : r2 ≥ s̄|p′0 − p0|2

ḡ2

}

.
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Then by carrying out one integration with the delta function, and the change of variables

u = cos φ, we get

K (p, p′) �

∫

Sp,p′

rdr√
r2 + s̄

ḡ

|p′ − p|
|2|p| − r |ρ+γ+4

(p0
√

r2 + s̄)
ρ+γ+4

2

e−
√

r2+s̄
2 1{ḡ≤1}.

Now we will make the extra assumption that

|p′0 − p0| ≤ ḡ. (5.3)

We point out that this assumption (5.3) is necessary in the following sense: There is

a region in (p, p′) space where ḡ ≤ 1 and |p′0 − p0| can be arbitrarily large, which

then makes
s̄|p′0−p0|2

ḡ2 become similarly large. This would prevent the lower bound in

this proposition due to the exponential decay in e−
√

r2+s̄
2 .

This assumption, |p′0 − p0| ≤ ḡ, further implies that

|p′ − p|2 = ḡ2 + |p′0 − p0|2 ≤ 2ḡ2,

and

s̄|p′0 − p0|2

ḡ2
≤ s̄ = ḡ2 + 4 ≤ 5.

Therefore, we have

K (p, p′) �

∫ ∞

5

rdr√
r2 + s̄

|2|p| − r |ρ+γ+4

(p0
√

r2 + s̄)
ρ+γ+4

2

e−
√

r2+s̄
2 1{ḡ≤1}1{|p′0−p0|≤ḡ}.

Using s̄ ≤ 5, r√
r2+5

> 1
2
, and p0 ≈ p′0, we can further have that

K (p, p′) � 1{ḡ≤1}1{|p′0−p0|≤ḡ}

∫ ∞

5

dr
|2|p| − r |ρ+γ+4

(p0
√

r2 + 5)
ρ+γ+4

2

e−
√

r2+5
2

≈ 1{ḡ≤1}1{|p′0−p0|≤ḡ}(p0)
ρ+γ+4

2 ≈ 1{ḡ≤1}1{|p′0−p0|≤ḡ}(p0 p′0)
ρ+γ

4 +1.

This completes the proof. ��

Together with (5.1), Proposition 5.1 implies that

| f |2
B

�

∫

R3
dp

∫

R3
dp′ ( f (p′) − f (p))2

ḡ3+γ
(p′0 p0)

ρ+γ
4 1ḡ≤11|p′0−p0|≤ḡ.
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Since ḡ2 = −|p′0 − p0|2 + |p′ − p|2, the cutoff function 1|p′0−p0|≤ḡ is equal to

1|p′0−p0|≤ 1√
2
|p′−p|. Since ḡ ≤ |p′ − p|, we can conclude that

| f |2
B

�

∫

R3
dp

∫

R3
dp′ ( f (p′) − f (p))2

|p′ − p|3+γ
(p′0 p0)

ρ+γ
4 1|p′−p|≤11|p′0−p0|≤ 1√

2
|p′−p|.

(5.4)

However, this pointwise lower bound is not a sufficient coercivity estimate because of

the extra cut-off restricting 1|p′0−p0|≤ 1√
2
|p′−p|. Recall that we want to show

| f |2
L2

ρ+γ
2

+ | f |2
B

� | f |2I ρ,γ , (5.5)

in order to obtain Lemma 2.8 for the case l = 0 using also (2.31).

A direct pointwise comparison is not possible for this desirable coercivity because

of the extra cut-off restricting 1|p′0−p0|≤ 1√
2
|p′−p|. In the next section, we will use the

technique called “Fourier redistribution” from [44] to get around this obstruction.

5.2 Fourier Redistribution

Essentially the key idea is to take an advantage from the Fourier transform in the

situation where the pointwise bound is not available. More precisely, we use the

following proposition of [44]:

Proposition 5.2 (Proposition 7.1 of [44]) Suppose K1 and K2 are even, nonnegative,

measurable functions on R
3 satisfying

∫

R3
du Kl(u)|u|2 < ∞, l = 1, 2.

Suppose φ is any smooth, non-negative function on R
3 and that there is some constant

Cφ such that |∇2φ(u)| ≤ Cφ for all u. For l = 1, 2, consider the following quadratic

forms (defined for arbitrary real-valued Schwartz functions f ):

| f |2Kl

def=
∫

R3
dp

∫

R3
dp′ φ(p)φ(p′)Kl(p − p′)( f (p) − f (p′))2.

If there exists a finite, non-negative constant C such that, for all ζ ∈ R
3,

∫

R3
du K1(u)|e2π i〈ζ,u〉 − 1|2 ≤ C +

∫

R3
du K2(u)|e2π i〈ζ,u〉 − 1|2,

then for all Schwartz functions f ,

| f |2K1
≤ | f |2K2

+ C ′Cφ

∫

R3
dp φ(p)( f (p))2,
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where the constant C ′ satisfies C ′ � 1 + C +
∫

R3 du (K1(u) + K2(u))|u|2 uniformly

in K1, K2, φ and C.

In order to obtain the favorable coercivity estimates, we fix functions K1 and K2 on

R
4 given by

K1(u
0, u) = |u|−3−γ 1|u|≤1

and

K2(u
0, u) = |u|−3−γ 1|u|≤11|u0|≤ε|u|,

with u
def= (u1, u2, u3) ∈ R

3, u0 ∈ R and |u|2 = u2
1 + u2

2 + u2
3. Note that the particular

choice of u0 = p′0 − p0, u = p′ − p and ε = 1√
2

corresponds to the coercive lower

bound (5.4) with φ(p)
def= (

√

1 + |p|2)
ρ+γ

4 φ̃(pμ) where {φ̃(pμ)} is a smooth partition

of unity in R
4 which will be defined just below.

In order to use Proposition 5.2, we need to establish that the estimates of the

derivatives of φ and the Fourier condition on K1 and K2. Let {φ̃} be a smooth partition

of unity of R
4 which is locally finite and such that their zeroth, first, and second

derivatives are uniformly bounded. Then the estimates on the derivatives of φ(p)
def=

(
√

1 + |p|2)
ρ+γ

4 φ̃(pμ) are straight forward.

In order to prove the Fourier condition, we suppose further that each φ̃ is supported

only on a Euclidean ball of radius ε
16

for a small ε > 0. Also, we consider a fixed

v ∈ R
3 such that φ̃(vμ) �= 0 with vμ def= (

√

1 + |v|2, v) for some fixed φ̃. We then

write p = v + u and p′ = v + u′. If φ̃(p) and φ̃(p′) are both not equal to zero, then

both |u|, |u′| ≤ ε
8

by the support condition of φ̃. Then, we have

|p′0 − p0| = |
√

1 + |p′|2 −
√

1 + |p′|2| = ||p′|2 − |p|2|
√

1 + |p|2 +
√

1 + |p′|2

= |(p′ − p) · (p + p′)|
√

1 + |p|2 +
√

1 + |p′|2
= |(u′ − u) · (2v + u + u′)|
√

1 + |v + u|2 +
√

1 + |v + u′|2

≤ |2v · (u′ − u)|
√

1 + |v + u|2 +
√

1 + |v + u′|2
+ |(u′ − u) · (u + u′)|
√

1 + |v + u|2 +
√

1 + |v + u′|2

≤ |2v · (u′ − u)|
√

1 + |v + u|2 +
√

1 + |v + u′|2
+ |u + u′|

2
|u − u′|. (5.6)

For the upper-bound estimate of the first fraction, we split into two cases: |v| ≤ ε
4

and

|v| > ε
4

. In the former case, we have

|2v · (u′ − u)|
√

1 + |v + u|2 +
√

1 + |v + u′|2
≤ |v||u′ − u| ≤ ε

4
|u′ − u|.
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In the latter case, we have both |v + u′|, |v + u| ≥ |v|
2

because |u′|, |u| ≤ ε
8

<
|v|
2

.

Thus, we have

|2v · (u′ − u)|
√

1 + |v + u|2 +
√

1 + |v + u′|2
≤ 2|v · (u′ − u)|

√

1 + |v|2
.

In (5.6), we also recall that
|u+u′|

2
≤ ε

4
. Then in (5.6), the additional condition that

|v·(u′−u)|√
1+|v|2

≤ ε
8
|u′ − u| further guarantees that

|p′0 − p0| ≤ ε

2
|u′ − u|.

Now the inequality above holds for any |v|. Therefore, we also have that

|u − u′|−3−γ 1|u−u′|≤11 |v·(u′−u)|√
1+|v|2

≤ ε
8 |u′−u|φ̃(p′μ)φ̃(pμ) � K2(p′μ − pμ)φ̃(p′μ)φ̃(pμ),

where p′μ = (
√

1 + |v + u′|2, v + u′) and pμ = (
√

1 + |v + u|2, v + u). Then for

fixed v �= 0, we define E2 = {u : |u| ≤ 1
2
,

|v·u|√
1+|v|2

≤ ε
8
|u|} and we can choose a

coordinate system such that this is the set E2 in Proposition 5.3 below.

Proposition 5.3 (Proposition 7.2 of [44]) Fix any ε > 0, and let E1 and E2 be the sets

in R
3 given by E1

def= {u ∈ R
3 : |u| ≤ 2} and E2

def= {u ∈ R
3 : |u| ≤ 1

2
and |u3| ≤ ε|u|}.

Then

∫

E1

du|e2π i〈ζ,u〉 − 1|2|u|−3−γ � 1 +
∫

E2

du|e2π i〈ζ,u〉 − 1|2|u|−3−γ ,

uniformly for all ζ ∈ R
3.

Thus Proposition 5.3 verifies the Fourier condition that is required in Proposi-

tion 5.2. Thus we have

∫

R3
dp

∫

R3
dp′ φ̃(p)φ̃(p′)(p0 p′0)

ρ+γ
4 K1(pμ − p′μ)( f (p) − f (p′))2

�

∫

R3
dp

∫

R3
dp′ φ̃(p)φ̃(p′)(p0 p′0)

ρ+γ
4 K2(pμ − p′μ)( f (p) − f (p′))2

+
∫

R3
dp (p0)

ρ+γ
4 φ̃(p)( f (p))2.

Then by summing over the partition and using Proposition 5.1 we obtain
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∫

R3
dp

∫

R3
dp′ (p0 p′0)

ρ+γ
4 K1(pμ − p′μ)( f (p) − f (p′))2

∑

φ̃

φ̃(p)φ̃(p′)

� | f |2
B

+ | f |2
L2

ρ+γ
2

.

The above holds since φ̃(p) is chosen to have compact support in a small ball so the

integral

∫

R3
dp (p0)

ρ+γ
4 φ̃(p)( f (p))2

is not higher order than | f |2
L2

ρ+γ
2

.

Now let 0 < M < ∞ be the maximal number of partition elements that can be

non-zero at any specific point. Then for any p, there must be an element of the partition

such that we have φ̃(p) ≥ 1
M

. Then since the partition of unity was chosen in such

a way that we have uniform bounds on the first derivatives, then we can choose a

radius δ > 0 such that φ̃(q) ≥ 1
2M

for any q in the ball of center p and radius δ. If

0 < ε < 1
2
δ then we then have that

∫

R3
dp

∫

R3
dp′ (p0 p′0)

ρ+γ
4

( f (p) − f (p′))2

|p − p′|3+γ
1|p−p′|≤ε � | f |2

B
+ | f |2

L2
ρ+γ

2

.

Note that the integral of the lower bound above over ε < |p − p′| ≤ 1 is clearly

bounded by the upper bound above. Thus we conclude

| f |2
L2

ρ+γ
2

+ | f |2
B

� | f |2I ρ,γ ,

This completes the proof for our main coercive inequality stated in Lemma 2.8 for the

case l = 0 using the Fourier redistribution.

5.3 Coercivity with ExtraWeightswl for l > 0.

Notice that Lemma 2.8 for the case l = 0 has been proven above. Now we will prove

Lemma 2.8 when l > 0.

Proof of Lemma 2.8 Suppose l �= 0. Because of the presence of the weight w2l(p) in
the integration, the change of variables (p, q) �→ (p′, q ′) creates another difference
of w2l(p) − w2l(p′) inside the inner product of (2.33) as seen below:

−
∫

R3
dp

∫

R3
dq

∫

S2
dω w2l(p)vøσ(g, θ)( f (p′) − f (p)) f (p)

√

J (q ′)
√

J (q)

= −1

2

∫

R3
dp

∫

R3
dq

∫

S2
dω w2l(p)vøσ(g, θ)( f (p′) − f (p)) f (p)

√

J (q ′)
√

J (q)
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− 1

2

∫

R3

dp

∫

R3

dq

∫

S2

dω w2l(p′)vøσ(g, θ)( f (p) − f (p′)) f (p′)
√

J (q)
√

J (q ′)

= 1

2

∫

R3
dp

∫

R3
dq

∫

S2
dω w2l(p)vøσ( f (p′) − f (p))2

√

J (q ′)
√

J (q)

+ 1

2

∫

R3
dp

∫

R3
dq

∫

S2
dω (w2l(p) − w2l(p′))vøσ( f (p′)

− f (p)) f (p′)
√

J (q)
√

J (q ′)
def= | f |2

B2l
+ I ′.

Here we are also using (2.36). We express the inner product of 〈w2lN f , f 〉 from
(2.33) as

〈w2l
N f , f 〉 =

∫

R3

dp ζ(p)w2l(p)| f (p)|2 + | f |2
B2l

+ I ′ ≈ |wl f |2
L2

ρ+γ
2

+ | f |2
B2l

+ I ′,

by (2.31). We notice that we already obtain the following coercivity by using the

methods in §5.2:

|wl f |2
L2

ρ+γ
2

+ | f |2
B2l

� | f |2
I
ρ,γ

l

,

as we can let
ρ+γ

2
�→ ρ+γ

2
+ 2l in §5.2.

We now estimate the upper-bound for the term I ′. We first take the change of

variables (p′, q ′) �→ (p, q) from (2.94) again and use the Cauchy–Schwarz inequality

to obtain

|I ′| � | f |B2l

(

∫

R3
dp

∫

R3
dq

∫

S2
dω

(w2l(p) − w2l(p′))2

w2l(p)

×vøσ(g, θ)| f (p)|2
√

J (q)
√

J (q ′)
)

1
2
. (5.7)

Now, by the fundamental theorem of calculus, we have

w2l(p′) − w2l(p) =
∫ 1

0

dτ (p′ − p) · (∇w2l)(ζ(τ ))

where ζ(τ ) = p + τ(p′ − p). Since p′ − p = q − q ′ from (2.8), we have that

√

1 + |ζ(τ )|2 � p0
√

1 + |q − q ′|2.

Thus, we obtain

(w2l(p) − w2l(p′))2

w2l(p)

√

J (q)J (q ′) � |p − p′|2w2l(p)(p0)−2δ(J (q)J (q ′))
1
4 .
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Above δ ∈ (0, 1] is a small constant that satisfies δ < 2l which is possible since l > 0;

if 2l − 1 > 0 then we can take δ = 1. We write |p − p′|2 = |p − p′|γ+ε |q ′ −q|2−γ−ε

for some small ε ∈ (0, 2 − γ ). We recall from (9.2) that
ḡ
g

= sin θ
2

. We also use that

|p − p′| ≤ ḡ
√

q0q ′0 by (2.59) and p − p′ = q ′ − q from (2.8). Then, we have

|p − p′|2(J (q)J (q ′))
1
4 ≤ ḡγ+ε(q0q ′0)

γ+ε
2 |q ′ − q|2−γ−ε(J (q)J (q ′))

1
4

� gγ+ε

(

sin
θ

2

)γ+ε

(J (q))ε
′
,

where ε′ > 0 is sufficiently small and we also use |q ′ − q|2−γ−ε(J (q)J (q ′))
1
4 −δ̃ � 1

for any δ̃ ∈ (0, 1
8
). Then the extra powers on sin θ

2
will control the angular singularity

and we obtain that

∫

S2
dω vøσ(g, θ)gγ+ε

(

sin
θ

2

)γ+ε

(J (q))ε
′

� gρ+γ+ε(J (q))ε
′
� (p0q0)

ρ+γ+ε
2 (J (q))ε

′
� (p0)

ρ+γ+ε
2 (J (q))ε

′′
,

if ρ + γ + ε ≥ 0 by (2.58). If ρ + γ + ε < 0, then we use (2.59) to obtain

∫

S2
dω vøσ(g, θ)gγ+ε

(

sin
θ

2

)γ+ε

(J (q))ε
′

� gρ+γ+ε(J (q))ε
′
� |p − q|ρ+γ+ε(p0q0)−

ρ+γ+ε
2 (J (q))ε

′
.

We put these back into (5.7) to get for any small η1 > 0 and any small η2 > 0 that

|I ′| � | f |B2l
|wl f |L2

ρ+γ−δ′
2

≤ η1| f |2
B2l

+ η2|wl f |2
L2

ρ+γ
2

+ C |wl f |2
L2(BC )

,

where δ′ = 4δ − ε > 0 and C = C(η1, η2) > 0. This proves Lemma 2.8. ��

This concludes our discussion of the main coercive estimates and Lemma 2.8. In

the next section we will prove the global existence and uniqueness of the solutions to

the Boltzmann equation by using the non-linear energy method.

6 Local and Global Existence

In this last section, we will establish global existence based on the modern method

of separating the needed space-time estimates. This methodology goes back to the

cut-off Boltzmann theory [46]. We will show that the sharp estimates proved in the

previous sections can be utilized for the method. The system of space-time relativistic

macroscopic equations (6.9) and the system of relativistic conservation laws (6.14)

will be derived and used to prove the coercive lower bound for the linear Boltzmann

operator L in our isotropic fractional derivative norm (2.37). In §6.1 we will explain the
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local existence argument, and then in §6.2 we establish the global existence, uniqueness

and asymptotic decay rates to equilibrium.

6.1 Local Existence

We now use the estimates that we made in the previous sections to sketch the local

existence proof for small initial data. Full details of a similar local existence argument

can be found in [29]. We will use the standard iteration method and uniform energy

estimates for the iterated sequence of approximate solutions. The iteration starts at

f 0(t, x, p) = 0. We solve for f m+1(t, x, p) such that

(∂t + p̂ · ∇x + N ) f m+1 + K f m = �( f m, f m+1), f m+1(0, x, p) = f0(x, p).

(6.1)

It can be proven with our estimates as the main tool that the linear equation (6.1) admits

smooth solutions with the same regularity in H N
l as a given smooth small initial data

and that the solution has a gain of L2((0, T ); I
ρ,γ

l,N ). We omit these standard details.

We will set up some estimates which are necessary to find a local classical solution as

m → ∞. As mentioned before, we will use the norm ‖·‖H for ‖·‖H N
l

for convenience

and also use the norm ‖ · ‖I for the norm ‖ · ‖I
ρ,γ

l,N
. Define the total norm as

M( f (t)) = ‖ f (t)‖2
H +

∫ t

0

dτ ‖ f (τ )‖2
I .

In this section we will also use the notation | f |I ρ,γ to denote 〈N f , f 〉 to simplify the

notation below (this is justified by Lemmas 2.7 and 2.8).

Here we state our main energy estimate:

Lemma 6.1 Let { f m} be the sequence of iterated approximate solutions. There exists

a short time T ∗ = T ∗(‖ f0‖2
H ) > 0 such that for ‖ f0‖2

H sufficiently small, there is a

uniform constant C0 > 0 such that

sup
m≥0

sup
0≤τ≤T ∗

M( f m(τ )) ≤ 2C0‖ f0‖2
H .

Proof We will only write down the proof in the case l = 0. For l > 0 the proof is

analogous, using the weighted norm as in (6.27). We prove this lemma by induction

over k. If k = 0, the lemma is trivially true. Suppose that the lemma holds for k = m.

Let f m+1 be the solution to the linear equation (6.1) with given f m . We take the spatial

derivative ∂α on the linear equation (6.1) and obtain

(∂t + p̂ · ∇x )∂
α f m+1 + N (∂α f m+1) + K(∂α f m) = ∂α�( f m, f m+1).
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Then, we take a inner product with ∂α f m+1. The trilinear estimate of Lemma 2.5 and

(2.41) implies that

1

2

d

dt
‖∂α f m+1‖2

L2
p L2

x
+ ‖∂α f m+1‖2

I ρ,γ + (K(∂α f m), ∂α f m+1)

≈ (∂α�( f m, f m+1), ∂α f m+1) � ‖ f m‖H ‖ f m+1‖2
I .

We integrate over time to obtain that

1

2
‖∂α f m+1(t)‖2

L2
p L2

x
+
∫ t

0

dτ‖∂α f m+1(τ )‖2
I ρ,γ +

∫ t

0

dτ(K(∂α f m), ∂α f m+1)

≤ 1

2
‖∂α f0‖2

L2
p L2

x
+ C

∫ t

0

dτ‖ f m‖H ‖ f m+1‖2
I . (6.2)

From the compact estimate (4.79), for any small ε > 0 we have

∣

∣

∣

∣

∫ t

0

dτ(K(∂α f m), ∂α f m+1)

∣

∣

∣

∣

≤ Cε

∫ t

0

dτ ‖wρ/2∂α f m(τ )‖2
L2 + ε

∫ t

0

dτ ‖∂α f m+1(τ )‖2
I ρ,γ .

We can interpolate for any small ε′ > 0 there is a large Cε′ > 0 such that

‖wρ/2∂α f m(τ )‖2
L2 ≤ Cε′‖∂α f m(τ )‖2

L2 + ε′‖∂α f m(τ )‖2
I .

We use these estimates in (6.2) and take a sum over all the derivatives such that |α| ≤ N

to obtain

M( f m+1(t)) ≤ ‖ f0‖2
H + 2C sup

0≤τ≤t

M( f m+1(τ )) sup
0≤τ≤t

M1/2( f m(τ ))

+ 2CεCε′

∫ t

0

dτ‖ f m(τ )‖2
H + 2ε

∫ t

0

dτ‖ f m+1(τ )‖2
I

+ 2Cεε
′
∫ t

0

dτ‖ f m(τ )‖2
I

≤ ‖ f0‖2
H + 2C sup

0≤τ≤t

M( f m+1(τ )) sup
0≤τ≤t

M1/2( f m(τ ))

+ 2CεCε′ t sup
0≤τ≤t

M( f m(τ ))

+ 2ε sup
0≤τ≤t

M( f m+1(τ )) + 2Cεε
′ sup

0≤τ≤t

M( f m(τ )). (6.3)

Then by the induction hypothesis on M( f m(τ )), we obtain that

M( f m+1(t)) ≤ ‖ f0‖2
H + 2C

√

2C0‖ f0‖H sup
0≤τ≤t

M( f m+1(τ ))
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+4C0CεCε′ t‖ f0‖2
H + 4C0Cεε

′‖ f0‖2
H + 2ε sup

0≤τ≤t

M( f m+1(τ )).

Thus we obtain

(1 − 2ε − 2C
√

2C0‖ f0‖H ) sup
0≤τ≤T ∗

M( f m+1(t))

≤ (1 + 4C0CεCε′ T ∗ + 4C0Cεε
′)‖ f0‖2

H .

Thus we choose ‖ f0‖H , ε > 0, ε′ > 0, and T ∗ > 0 sufficiently small (in that order)

to obtain that

sup
0≤τ≤t

M( f m+1(t)) ≤ 2C0‖ f0‖2
H .

This proves the lemma by induction. ��

Now, we prove the local existence result with the uniform control on each iteration.

Theorem 6.2 For any sufficiently small M0 > 0, there exists a time T ∗ = T ∗(M0) > 0

and M1 > 0 such that if ‖ f0‖2
H ≤ M1, then there exists a unique solution f (t, x, p)

to the linearized relativistic Boltzmann equation (2.26) on [0, T ∗) × T
3 × R

3 such

that

sup
0≤t≤T ∗

M( f (t)) ≤ M0.

Also, M( f (t)) is continuous on [0, T ∗).

Proof Existence and Uniqueness. By letting m → ∞ in the previous lemma, we obtain

sufficient compactness to obtain the local existence of a strong solution f (t, x, p) to

(2.26). For the uniqueness, suppose there exists another solution h to (2.26) with the

same initial data satisfying sup0≤t≤T ∗ M(h(t)) ≤ ε for a sufficiently small ε > 0.

Then, by the equation, we have

{∂t + p̂ · ∇x }( f − h) + L( f − h) = �( f − h, f ) + �(h, f − h). (6.4)

Then, by the Sobolev embedding H2(T3) ⊂ L∞(T3), Theorem 2.4, and the Cauchy–

Schwarz inequality, we have

|({�(h, f − h) + �( f − h, f )}, f − h)|
� ‖h‖L2

p H2
x
‖ f − h‖2

I ρ,γ + ‖ f − h‖L2
p,x

‖ f ‖H2
x I ρ,γ ‖ f − h‖I ρ,γ = T1 + T2.

For T1, we have

∫ t

0

dτ T1(τ ) �
√

ε

∫ t

0

dτ‖ f (τ ) − h(τ )‖2
I ρ,γ
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because we have sup0≤t≤T ∗ M(h(t)) ≤ ε. For T2, we use the Cauchy–Schwarz

inequality and obtain

∫ t

0

dτ T2(τ ) ≤
√

ε

(

sup
0≤τ≤t

‖ f (τ ) − h(τ )‖2
L2

p,x

∫ t

0

dτ‖ f (τ ) − h(τ )‖2
I ρ,γ

)1/2

�
√

ε

(

sup
0≤τ≤t

‖ f (τ ) − h(τ )‖2
L2

p,x
+
∫ t

0

dτ‖ f (τ ) − h(τ )‖2
I ρ,γ

)

because f also satisfies sup0≤t≤T ∗ M( f (t)) � ε. For the linearized Boltzmann oper-

ator L on the left-hand side of (6.4), we use Lemma 2.9 to obtain

(L( f − h), f − h) ≥ c‖ f − h‖2
I ρ,γ − C‖ f − h‖2

L2(T3×BR)

for some small c > 0 and some R > 0. We finally take the inner product of (6.4) with

( f − h) and integrate over [0, t] × T
3 × R

3 and use the estimates above to obtain

1

2
‖ f (t) − h(t)‖2

L2(T3×R3)
+ c

∫ t

0

dτ ‖ f (τ ) − h(τ )‖2
I ρ,γ

�
√

ε

(

sup
0≤τ≤t

‖ f (τ ) − h(τ )‖2
L2(T3×R3)

+
∫ t

0

dτ‖ f (τ ) − h(τ )‖2
I ρ,γ

)

+
∫ t

0

dτ‖ f (τ ) − h(τ )‖2
L2(T3×R3)

.

By Gronwall’s inequality, we obtain that f = h because f and h satisfy the same

initial conditions. This proves the uniqueness of the solution.

Continuity. Let [s, t] be a time interval. We follow the simliar argument as in (6.2)

and (6.3) with the time interval [s, t] instead of [0, t] and let f m = f m+1 = f and

obtain that

|M( f (t)) − M( f (s))| =
∣

∣

∣

∣

1

2
‖ f (t)‖2

H − 1

2
‖ f (s)‖2

H +
∫ t

s

dτ ‖ f (τ )‖2
I

∣

∣

∣

∣

�

(∫ t

s

dτ ‖ f (τ )‖2
I

)(

1 + sup
s≤τ≤t

M1/2( f (τ ))

)

.

As s → t , we obtain that |M( f (t)) − M( f (s))| → 0 because ‖ f ‖2
I is integrable in

time. This proves the continuity of M . ��

This concludes the proof of the local existence.

Remark 6.3 In this remark we will briefly outline two different approaches to proving

the positivity of a solution F(t, x, p) = J (p) +
√

J (p) f (t, x, p) ≥ 0 when we

initially have that F0 = J +
√

J f0 ≥ 0.
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One approach, which was used in particular in [44], is to use the approximation

of a solution to the cut-off relativistic Boltzmann equation where positivity is already

known. In this approach (a) one has a solution to the relativistic Boltzmann equation

with a cut-off angular kernel singularity that can be shown to be non-negative. Then

(b) one proves that you can choose an approximate cut-off kernel σn which converges

to the non-cutoff kernel σ satisfying (2.20)–(2.22). Then (c) prove that the solutions

to the equation with the approximate kernel σn that are known to be positive converge

to the solutions to the equation with kernel σ in a strong enough sense to conclude that

the solutions remain positive in the limit. This was done in the non-relativistic situation

for instance in [3]. However all of the steps (a)–(c) contain substantial lengthy details

that would need to be worked out carefully and the existing literature does not contain

precisely what we would need for the relativistic Boltzmann equation.

In order to handle lower regularity solutions one may choose F0 = J +
√

J f0 ≥ 0

and still need to approximate by F0,ε = J +
√

J f0,ε ≥ 0 such that F0,ε → F0

in a suitable space. One elementary way to make this choice is as follows. Given

F0 = J+
√

J f0 ≥ 0, then let φε ≥ 0 be a standard mollifier. Then further define f0,ε
def=

φε ∗( f0 +
√

J )−
√

J . Then f0,ε is smooth and we will have f0,ε → f0 and F0,ε → F0

as ε → 0 in suitable spaces. Further F0,ε = J +
√

J f0,ε = φε ∗ ( f0 +
√

J ) ≥ 0,

since f0 +
√

J ≥ 0 by assumption.

Another approach was used in [5]. They used a maximum principle style argument

to prove the positivity without using approximation. We believe this method may also

work to to prove the positivity for the the relativistic Boltzmann equation without

angular cut-off.

However both methods would need to be worked out in full detail, and both

approaches require significant additional lengthy calculations. Due to the current

length of the present paper, we leave these developments for future work.

In the next subsection, we will show global existence using the nonlinear energy

method from [46]. We point out that this approach is substantially more difficult in

the special relativistic case as we will observe in the developments below.

6.2 Global Existence

In order to prove the global-in-time existence of solutions, we will have to prove the

global energy inequality. The main point for this is to obtain the uniform lower bound

estimate on the Dirichlet form, 〈L f , f 〉, of the linear operator L . Note that the linear

Boltzmann operator L has a very large null space P f as it will be introduced below in

(6.5). To study this null space we will derive the system of macroscopic equations (6.9)

and balance laws (6.14) with respect to the coefficients appearing in the expression for

the hydrodynamic part P f . Then we prove a coercive inequality for the microscopic

part {I − P} f . Using these coercivity estimates for the non-linear local solutions to

the relativistic Boltzmann system, we will show that these solutions must be global in

time by proving energy inequalities and using the standard continuity argument. We

will also prove the rapid time decay of the solutions to equilibrium in the later part of

this section.
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Now we use the relativistic Maxwellian solution J (p) from (2.12), and recall that
∫

R3 J (p)dp = 1. We introduce the following notations for the integrals:

λ0 =
∫

R3

p0 Jdp, λ00 =
∫

R3

(p0)2 Jdp, λ11 =
∫

R3

(p1)
2 Jdp, λ11

0 =
∫

R3

p2
1

p0
Jdp.

The 5-dimensional null space of the linearized Boltzmann operator L is given by

nl(L) = span{
√

J , p1

√
J , p2

√
J , p3

√
J , p0

√
J }.

Then we define the orthogonal projection from L2(R3) onto nl(L) by P . Then we can

write P f as a linear combination of the basis as

P f =
(

A
f (t, x) +

3
∑

i=1

B
f

i (t, x)pi + C
f (t, x)p0

)

√
J , (6.5)

where the coefficients are given by

A
f =

∫

R3
f
√

Jdp − λ0
C

f , B
f

i =
∫

R3 f pi

√
Jdp

λ11
, C

f =
∫

R3 f (p0
√

J − λ0
√

J )dp

λ00 − (λ0)2
.

This choice of the basis was given in [86]. We now observe the null space (6.5) and

the positivity of the linear operator, as proven in [40].

Lemma 6.4 〈Lg, h〉 = 〈Lh, g〉, 〈Lg, g〉 ≥ 0. And Lg = 0 if and only if g = Pg.

Then we can decompose f (t, x, p) as

f = P f + {I − P} f . (6.6)

We start from plugging the expression (6.6) into (2.26). Then we obtain

{∂t + p̂ · ∇x }P f = −∂t {I − P} f − ( p̂ · ∇x + L){I − P} f + �( f , f ). (6.7)

Note that we have expressed the hydrodynamic part P f in terms of the microscopic

part {I − P} f and the higher-order term �. We define the operator

l({I − P} f ) = −( p̂ · ∇x + L)({I − P} f ).

Using the expression (6.5) of P f with respect to the basis elements, we obtain that

the left-hand side of (6.7) can be written as

∂tA
√

J +
3
∑

i=1

∂i (A + C p0)
pi

p0

√
J + ∂tC p0

√
J +

3
∑

i=1

∂tBi pi

√
J
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+
3
∑

i=1

∂iBi

p2
i

p0

√
J +

3
∑

i=1

∑

i �= j

∂ jBi

pi p j

p0

√
J ,

where A = A f , B = B f , C = C f and ∂i = ∂xi
. For fixed (t, x) we can write the

left-hand side with respect to the following basis, {ek}14
k=1, which consists of

√
J ,

(

pi

p0

√
J

)

1≤i≤3

, p0
√

J ,
(

pi

√
J
)

1≤i≤3
,

(

pi p j

p0

√
J

)

1≤i≤ j≤3

.

(6.8)

Then we can rewrite the left-hand side of (6.7) as

∂tA
√

J +
3
∑

i=1

∂iA
pi

p0

√
J + ∂tC p0

√
J +

3
∑

i=1

(∂iC + ∂tBi )pi

√
J

+
3
∑

i=1

3
∑

j=1

((1 − δi j )∂iB j + ∂ jBi )
pi p j

p0

√
J .

By the comparison of coefficients, we can obtain a system of macroscopic equations

∂tA = −∂t ma + la + Ga,

∂iA = −∂t mia + lia + Gia,

∂tC = −∂t mc + lc + Gc,

∂iC + ∂tBi = −∂t mic + lic + Gic,

(1 − δi j )∂iB j + ∂ jBi = −∂t mi j + li j + Gi j ,

(6.9)

where the indices are from the index set defined as D = {a, ia, c, ic, i j | 1 ≤ i ≤
j ≤ 3} and mμ, lμ, and Gμ for μ ∈ D are the coefficients of {I − P} f , l({I − P} f ),

and �( f , f ) with respect to the basis {ek}14
k=1 respectively.

Also, we derive the local conservation laws. The derivation of the local conservation

laws for the relativistic Boltzmann equation has already been introduced in [86] and

we introduce the full details here for the sake of completeness. We first multiply the

linearized Boltzmann equation by
√

J , pi

√
J , p0

√
J and integrate them over R

3 to

obtain that

∂t

∫

R3
f
√

Jdp +
∫

R3
p̂ · ∇x f

√
Jdp = 0,

∂t

∫

R3
f
√

J pi dp +
∫

R3
p̂ · ∇x f

√
J pi dp = 0,

∂t

∫

R3
f
√

J p0dp +
∫

R3
p̂ · ∇x f

√
J p0dp = 0.

(6.10)
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These hold because 1, pi , p0 are collisional invariants using (2.17). We will plug the

decomposition f = P f + {I − P} f into (6.10). We first consider the microscopic

part. Note that

∫

R3
p̂ · ∇x {I − P} f

√
J

⎛

⎝

1

pi

p0

⎞

⎠ dp =
3
∑

j=1

∫

R3

p j

p0
∂ j {I − P} f

√
J

⎛

⎝

1

pi

p0

⎞

⎠ dp

=
3
∑

j=1

∂ j

〈

{I − P} f ,
√

J

⎛

⎜

⎝

p j

p0

pi p j

p0

p j

⎞

⎟

⎠

〉

. (6.11)

We also notice that
∫

R3{I − P} f
√

J (p)p j dp = 0. Also, we have that

∂t

∫

R3
{I − P} f

√
J

⎛

⎝

1

pi

p0

⎞

⎠ = ∂t

〈

{I − P} f ,
√

J

⎛

⎝

1

pi

p0

⎞

⎠

〉

= 0. (6.12)

On the other hand, the hydrodynamic part P f = (A + B · p + C p0)
√

J satisfies

∂t

∫

R3

⎛

⎝

1

pi

p0

⎞

⎠ P f
√

Jdp = ∂t

∫

R3

⎛

⎝

A + B · p + C p0

Api + B · ppi + C p0 pi

Ap0 + B · p p0 + C(p0)
2

⎞

⎠

√
J (p)dp,

and

∫

R3
p̂ · ∇x P f

√
J

⎛

⎝

1

pi

p0

⎞

⎠ dp =
3
∑

j=1

∫

R3
∂ j

⎛

⎜

⎝

p j

p0 (A + B · p + C p0)
pi p j

p0 (A + B · p + C p0)

p jA + B · pp j + C p0 p j

⎞

⎟

⎠

√
J (p)dp.

Thus we obtain

∂t

∫

R3

⎛

⎝

1

pi

p0

⎞

⎠ P f
√

Jdp +
∫

R3
p̂ · ∇x P f

√
J

⎛

⎝

1

pi

p0

⎞

⎠ dp

=

⎛

⎝

∂tA + λ0∂tC

λ11∂tBi

λ0∂tA + λ00∂tC

⎞

⎠+

⎛

⎝

λ11
0 ∇x · B

λ11
0 ∂iA + λ11∂iC

λ11∇x · B

⎞

⎠ . (6.13)

Also, we have that L( f ) = L{I − P} f . Together with (6.10), (6.11), (6.12), and

(6.13), we finally obtain the local conservation laws satisfied by (A,B, C):

∂tA + λ0∂tC + λ11
0 ∇x · B = −∇x ·

〈

{I − P} f ,
√

J
p

p0

〉

,
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λ11∂tB + λ11
0 ∇xA + λ11∇xC = −∇x ·

〈

{I − P} f ,
√

J
p ⊗ p

p0

〉

,

λ0∂tA + λ00∂tC + λ11∇x · B = 0.

Comparing the first and the third conservation laws, we obtain the following local

conservation laws:

μ1∂tA + μ2∇x · B = −∇x ·
〈

{I − P} f ,
√

J
p

p0

〉

,

λ11∂tB + λ11
0 ∇xA + λ11∇xC = −∇x ·

〈

{I − P} f ,
√

J
p ⊗ p

p0

〉

,

μ3∂tC + μ4∇x · B = −∇x ·
〈

{I − P} f ,
√

J
p

p0

〉

.

(6.14)

Above the constants are given by μ1 =
(

1 − (λ0)2

λ00

)

> 0, μ2 =
(

λ11
0 − λ0λ11

λ00

)

,

μ3 =
(

λ0 − λ00

λ0

)

< 0 and μ4 =
(

λ11
0 − λ11

λ0

)

.

We also mention that we have the following lemma on the coefficients A,B, C

directly from the conservation of mass, momentum, and energy:

Lemma 6.5 Let f (t, x, p) be the local solution to the linearized relativistic Boltzmann

equation (2.26) which is shown to exist in Theorem 6.2 which satisfies the mass,

momentum, and energy conservation laws (2.25). Then we have

∫

T3
A(t, x)dx =

∫

T3
Bi (t, x)dx =

∫

T3
C(t, x)dx = 0,

where i ∈ {1, 2, 3}.

We also list two lemmas that help us to control the coefficients in the linear microscopic

term l and the non-linear higher-order term �.

Lemma 6.6 For any coefficient lμ for the microscopic term l, and for any m ≥ 0 we

have

‖lμ‖
H N−1

x
�

∑

|α|≤N

‖{I − P}∂α f ‖L2
−m (T3×R3), ∀μ ∈ D.

Proof In order to estimate the size for the H N−1 norm, we use any ek from (6.8) to

observe that

〈∂αl({I − P} f ), ek〉 = −〈 p̂ · ∇x ({I − P}∂α f ), ek〉 − 〈L({I − P}∂α f ), ek〉.

For any |α| ≤ N − 1, the L2-norm of the first part of the right-hand side is
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‖〈 p̂ · ∇x ({I − P}∂α f ), ek〉‖2
L2

x
�

∫

T3×R3
dxdp |ek ||{I − P}∇x∂

α f |2

� ‖{I − P}∇x∂
α f ‖2

L2
−m (T3×R3)

.

On the other hand, by (2.28) and (4.78) we have

‖〈L({I − P}∂α f ), ek〉‖2
L2

x
�
∥

∥

∥|{I − P}∂α f |L2
−m

|J 1/4|L2
−m

∥

∥

∥

2

L2
x

� ‖{I − P}∂α f ‖2

L2
−m (T3×R3)

,

for any m ≥ 0. This completes the proof. ��
Lemma 6.7 Let ‖ f ‖2

H ≤ M0 for some M0 > 0. Then, for any m ≥ 0, we have

‖Gμ‖
H N−1

x
�
√

M0

∑

|α|≤N−1

‖∂α f ‖L2
−m (T3×R3), ∀μ ∈ D.

Proof In order to estimate the size the for H N−1 norm, we consider 〈�( f , f ), ek〉. By

(4.78), for any m ≥ 0, we have

‖〈�( f , f ), ek〉‖H N−1
x

�
∑

|α|≤N−1

∑

α′≤α

∥

∥

∥|∂α−α′
f |L2

−m
|∂α′

f |L2
−m

∥

∥

∥

L2
x

� ‖ f ‖
L2

−m H N−1
x

∑

|α|≤N−1

‖∂α f ‖L2
−m

�
√

M0

∑

|α|≤N−1

‖∂α f ‖L2
−m (T3×R3).

This completes the proof. ��
These two lemmas above, the macroscopic equations, and the local conservation

laws will together prove the following theorem on the coercivity estimate for the

microscopic term {I −P} f which is crucial for the coercivity of the linearized operator

L in the energy form and hence is crucial for the energy inequality which will imply

the global existence of the solution with the continuity argument.

Theorem 6.8 Given the initial condition f0 ∈ H which satisfies the mass, momentum,

and energy conservation laws (2.25) and the assumptions in Theorem 6.2, we can

consider the local solution f (t, x, p) to the linearized relativistic Boltzmann equation

(2.26). Then, there is a constant M0 > 0 such that if

‖ f (t)‖2
H ≤ M0,

then there are universal constants δ > 0 and C > 0 such that

∑

|α|≤N

‖{I − P}∂α f ‖2
I ρ,γ (t) ≥ δ

∑

|α|≤N

‖P∂α f ‖2
I ρ,γ (t) − C

d I (t)

dt
,
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where I (t) is an interaction potential defined as

I (t) =
∑

|α|≤N−1

{I α
a (t) + I α

b (t) + I α
c (t)},

Above, each of the sub-potentials I α
a (t), I α

b (t), and I α
c (t) are defined during the proof

in (6.16), (6.18) and (6.21).

Proof Since we have the expression P f =
(

A + B · p + C p0
)√

J as in (6.5), we

have that

‖P∂α f (t)‖2
I ρ,γ � ‖∂α

A(t)‖2
L2

x
+ ‖∂α

B(t)‖2
L2

x
+ ‖∂α

C(t)‖2
L2

x
.

Thus, it suffices to prove the following estimate:

‖A(t)‖2
H N

x
+ ‖B(t)‖2

H N
x

+ ‖C(t)‖2
H N

x

�
∑

|α|≤N

‖{I − P}∂α f (t)‖2

L2
ρ+γ

2

+ M0

∑

|α|≤N

‖∂α f (t)‖2

L2
ρ+γ

2

+ d I (t)

dt
.

(6.15)

Then note that the term M0

∑

|α|≤N ‖∂α f (t)‖2

L2
ρ+γ

2

on (RHS) of (6.15) can be treated

by using

∑

|α|≤N

‖∂α f (t)‖2

L2
ρ+γ

2

�
∑

|α|≤N

‖P∂α f (t)‖2

L2
ρ+γ

2

+
∑

|α|≤N

‖{I − P}∂α f (t)‖2

L2
ρ+γ

2

� ‖A(t)‖2
H N

x
+ ‖B(t)‖2

H N
x

+ ‖C(t)‖2
H N

x
+

∑

|α|≤N

‖{I − P}∂α f (t)‖2

L2
ρ+γ

2

,

and the terms in A, B, and C can be absorbed by the (LHS) of (6.15) for a sufficiently

small M0 > 0. Therefore, we obtain Theorem 6.8 from (6.15).

In order to prove (6.15), we will estimate each of the ∂α derivatives of A,B, C

for 0 < |α| ≤ N separately. Later, we will use Poincaré inequality to estimate the

L2-norm of A, B and C to finish the proof.

For the estimate for A, we use the second equation in the system of macroscopic

equations (6.9)2 which tells ∂iA = −∂t mia + lia + Gia . We take ∂i∂
α onto this

equation for |α| ≤ N − 1 and sum over i and obtain that

−�∂α
A =

3
∑

i=1

(∂t∂i∂
αmia − ∂i∂

α(lia + Gia)).
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We now multiply ∂αA and integrate over T
3 to obtain

‖∇∂α
A‖2

L2
x

≤‖∂α(lia + Gia)‖L2
x
‖∇∂α

A‖L2
x
+ d

dt

3
∑

i=1

∫

T3
∂i∂

αmia∂α
A(t, x)dx

−
3
∑

i=1

∫

T3
∂i∂

αmia∂t∂
α
A(t, x)dx .

We define the interaction functional

I α
a (t) =

3
∑

i=1

∫

T3
∂i∂

αmia∂α
A(t, x)dx . (6.16)

For the last term, we use the first equation of the local conservation laws (6.14)1 to

obtain that

∫

T3

3
∑

i=1

|∂i∂
αmia∂t∂

α
A(t, x)|dx ≤ ζ‖∇ · ∂α

B‖2
L2

x
+ Cζ ‖{I − P}∇∂α f ‖2

L2
ρ+γ

2

,

for any ζ > 0, since mμ are the coefficients of {I − P} f with respect to the basis

{ek}. Together with Lemma 6.6 and Lemma 6.7, we obtain that

∑

|α|≤N−1

(

‖∇∂α
A‖2

L2
x
− ζ‖∇ · ∂α

B‖2
L2

x

)

� Cζ

∑

|α′|≤N

‖{I − P}∂α′
f ‖2

L2
ρ+γ

2

+
∑

|α|≤N−1

d I α
a

dt
+ M0

∑

|α′|≤N

‖∂α′
f ‖2

L2
ρ+γ

2

.

(6.17)

This completes our main estimate for A.

We now explain the estimate for C, we use the fourth equation in the system of

macroscopic equations (6.9)4 which tells ∂iC + ∂tBi = −∂t mic + lic + Gic. We take

∂i∂
α onto this equation for |α| ≤ N − 1 and sum over i and obtain that

−�∂α
C = d

dt
(∇ · ∂α

B) +
3
∑

i=1

(∂t∂i∂
αmic − ∂i∂

α(lic + Gic)).

We now multiply ∂αC and integrate over T
3 to obtain

‖∇∂α
C‖2

L2
x

≤ d

dt

∫

T3
(∇ · ∂α

B)∂α
C(t, x)dx −

∫

T3
(∇ · ∂α

B)∂t∂
α
C(t, x)dx

+
3
∑

i=1

‖∂α(lic + Gic)‖L2
x
‖∇∂α

C‖L2
x
+ d

dt

3
∑

i=1

∫

T3
∂i∂

αmic∂
α
C(t, x)dx
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−
3
∑

i=1

∫

T3
∂i∂

αmic∂t∂
α
C(t, x)dx .

We define the interaction functional

I α
c (t) =

∫

T3
(∇ · ∂α

B)∂α
C(t, x)dx +

3
∑

i=1

∫

T3
∂i∂

αmic∂
α
C(t, x)dx . (6.18)

We also use the third equation of the local conservation laws (6.14)3 to obtain that

∫

T3

3
∑

i=1

|∂i∂
αmic∂t∂

α
C(t, x)|dx � ‖∇ · ∂α

B‖2
L2

x
+ ‖{I − P}∇∂α f ‖2

L2
ρ+γ

2

.

We use (6.14)3 again to estimate

∫

T3

∣

∣(∇ · ∂α
B)∂t∂

α
C(t, x)

∣

∣ dx � ‖∇ · ∂α
B‖2

L2
x
+ ‖{I − P}∇∂α f ‖2

L2
ρ+γ

2

. (6.19)

Together with Lemma 6.6 and Lemma 6.7, we obtain that

∑

|α|≤N−1

(

‖∇∂α
C‖2

L2
x
− λ‖∇ · ∂α

B‖2
L2

x

)

� Cζ

∑

|α′|≤N

‖{I − P}∂α′
f ‖2

L2
ρ+γ

2

+
∑

|α|≤N−1

d I α
c

dt
+ M0

∑

|α′|≤N

‖∂α′
f ‖2

L2
ρ+γ

2

,

(6.20)

where above λ > 0. This is our main estimate for the C terms.

Next we estimate the terms involving B, we use the last equation in the system of

macroscopic equations (6.9)5 which tells (1 − δi j )∂iB j + ∂ jBi = −∂t mi j + li j + Gi j .

Note that when i = j , we have

∂ jB j = −∂t m j j + l j j + G j j .

We take ∂ j∂
α on (6.9)5 for |α| ≤ N − 1 and sum on j to obtain

�∂α
Bi =

3
∑

j=1

(

−∂ j∂
α(1 − δi j )∂iB j − ∂ j∂

α∂t mi j + ∂ j∂
αli j + ∂ j∂

αGi j

)

= −
∑

j �=i

∂ j∂
α∂iB j +

3
∑

j=1

(

− ∂ j∂
α∂t mi j + ∂ j∂

αli j + ∂ j∂
αGi j

)

.
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Then by using ∂i∂ jB j = −∂i∂t m j j + ∂i l j j + ∂i G j j , we have

�∂α
Bi =

∑

j �=i

(

∂α∂i∂t m j j − ∂α∂i l j j − ∂α∂i G j j

)

+
3
∑

j=1

(

− ∂ j∂
α∂t mi j + ∂ j∂

αli j + ∂ j∂
αGi j

)

.

We now multiply ∂αBi and integrate over T
3 to obtain

‖∇∂α
Bi ‖2

L2
x

�
d

dt

3
∑

j=1

∫

T3
∂α(∂ j mi j − ∂i m j j (1 − δi j ))∂

α
Bi dx

−
3
∑

j=1

∫

T3
∂α(∂ j mi j − ∂i m j j (1 − δi j ))∂t∂

α
Bi dx +

∑

μ∈D

‖∂α(lμ + Gμ)‖L2
x
.

We define the interaction functional

I α
b (t) =

3
∑

i=1

3
∑

j=1

∫

T3
∂α(∂ j mi j − ∂i m j j (1 − δi j ))∂

α
Bi dx . (6.21)

We also use the second equation of (6.14)2 to obtain for any ζ > 0 that

3
∑

i=1

3
∑

j=1

∫

T3
|∂α(∂ j mi j − ∂i m j j (1 − δi j ))∂t∂

α
Bi (t, x)|dx

≤ ζ(‖∇ · ∂α
A‖2

L2
x
+ ‖∇ · ∂α

C‖2
L2

x
) + Cζ ‖{I − P}∇∂α f ‖2

L2
ρ+γ

2

.

Together with Lemma 6.6 and Lemma 6.7, we obtain for ζ ′ > 0 sufficiently small

that

∑

|α|≤N−1

(

‖∇∂α
B‖2

L2
x
− ζ ′(‖∇ · ∂α

A‖2
L2

x
+ ‖∇ · ∂α

C‖2
L2

x
)
)

� Cζ ′
∑

|α′|≤N

‖{I − P}∂α′
f ‖2

L2
ρ+γ

2

+
∑

|α|≤N−1

d I α
b

dt
+ M0

∑

|α′|≤N

‖∂α′
f ‖2

L2
ρ+γ

2

.

(6.22)

This is our main estimate for the B terms.
Now we first consider the lower bounds in the estimates of (6.17), (6.20), and

(6.22). We multiply the lower bound in (6.20) by a small constant ε > 0 and then add
to it the lower bounds in (6.17) and (6.22) to obtain
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∑

|α|≤N−1

(

‖∇∂α
A‖2

L2
x
+ ‖∇∂α

B‖2
L2

x
+ ε‖∇∂α

C‖2
L2

x

)

−
∑

|α|≤N−1

(

ζ‖∇ · ∂α
B‖2

L2
x
+ ζ ′(‖∇ · ∂α

A‖2
L2

x
+ ‖∇ · ∂α

C‖2
L2

x
) + ελ‖∇ · ∂α

B‖2
L2

x

)

≈
∑

|α|≤N−1

(

‖∇∂α
A‖2

L2
x
+ ‖∇∂α

B‖2
L2

x
+ ε‖∇∂α

C‖2
L2

x

)

.

The last line above is obtained by first choosing ε > 0 small, and second choosing

ζ > 0 sufficiently small, and lastly choosing ζ ′ > 0 sufficiently small. Then (6.17),

(6.20), and (6.22) imply that

‖∇A‖2

H N−1
x

+ ‖∇B‖2

H N−1
x

+ ‖∇C‖2

H N−1
x

�
∑

|α|≤N

‖{I − P}∂α f ‖2

L2
ρ+γ

2

+ d I

dt
+ M0

∑

|α|≤N

‖∂α f ‖2

L2
ρ+γ

2

.
(6.23)

On the other hand, with the Poincaré inequality and Lemma 6.5, we obtain that

‖A‖2 �

(

‖∇A‖ +
∣

∣

∣

∣

∫

T3
A(t, x)dx

∣

∣

∣

∣

)2

≈ ‖∇A‖2.

This same estimate holds for B and C. Therefore, the inequality (6.15) holds and this

completes the proof for the theorem. ��

We now use this coercive estimate to prove that the local solutions from Theorem 6.2

will be global-in-time solutions by the standard continuity argument. We will also

prove that the solutions have exponential decay in time for hard interactions (2.21)

and polynomial decay in time for soft interactions (2.22).

Before we go into the proof for the global existence, we would like to mention a

coercive lower bound for the linearized Boltzmann collision operator L which also

gives the positivity of the operator:

Lemma 6.9 Assume (2.20)–(2.23) hold. Then there is a constant δ > 0 such that

〈L f , f 〉 ≥ δ|{I − P} f |2I ρ,γ .

Proof We give the standard proof of Lemma 6.9 using the method of contradic-

tion. In this proof we denote |g|2
N

def= 〈N g, g〉 and 〈g, g〉N
def= 〈N g, g〉 recalling

(2.34). Assuming the lemma is false, we obtain a sequence of normalized functions

{gn(p)}n≥1 satisfying that |gn|N = 1 for all n ≥ 1. By Lemma 6.4 we also have

∫

R3
gn J 1/2(p)dp =

∫

R3
gn pi J 1/2(p)dp =

∫

R3
gn p0 J 1/2(p)dp = 0, (6.24)
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and for some uniform constant C > 0 and ∀n ≥ 1 we have

〈Lgn, gn〉 = 〈N gn, gn〉 + 〈Kgn, gn〉 ≤ C/n. (6.25)

We denote the weak limit, with respect to the inner product 〈·, ·〉N , of gn (up to a

subsequence) by g0. Lower semi-continuity of the weak limit implies |g0|N ≤ 1.

From (2.32) and (2.33) we have

〈Lgn, gn〉 = |gn|2N + 〈Kgn, gn〉.

By Lemma 2.6 and (4.79), for any small ε > 0, we have

|〈Kgn, gn〉| ≤ ε|gn|2N + Cε |gn|2
L2(BCε )

.

Here we use Lemma 2.7 and Lemma 2.8 to bound 〈N g, g〉 ≈ |g|2I ρ,γ . Now by the

fractional-order Rellich-Kondrachov Theorem we have (up to taking a sub-sequence)

that |gn − g0|2
L2(BCε )

→ 0 as n → ∞. By first choosing ε > 0 small and then letting

n → ∞, we conclude that 〈Kgn, gn〉 → 〈Kg0, g0〉.
Letting n → ∞ in (6.25), we have shown that

0 = 1 + 〈Kg0, g0〉.

Equivalently

0 =
(

1 − |g0|2N
)

+ 〈Lg0, g0〉.

Now both terms are non-negative by Lemma 6.4. Hence |g0|2
N

= 1 and 〈Lg0, g0〉 = 0.

Again using Lemma 6.4 we have g0 = Pg0. Alternatively, letting n → ∞ in (6.24)

we deduce that g0 = (I − P) g0 or g0 ≡ 0; this contradicts |g0|2
N

= 1. ��

Now, we define the dissipation rate Dl as

Dl =
∑

|α|≤N

‖∂α f (t)‖2
I
ρ,γ

l

.

We will use the energy functional El(t) to be a high-order norm which satisfies

El(t) ≈
∑

|α|≤N

‖wl∂α f (t)‖2
L2(T3×R3)

. (6.26)

This functional will be precisely defined during the proof. Then, we would like to set

up the following energy inequality:

d

dt
El(t) + Dl(t) ≤ C

√

El(t)Dl(t). (6.27)
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We will prove this energy inequality and use this to show the global existence.

Proof of Theorem 2.2 We first prove the energy inequality for the l = 0 case. We

denote D
def= D0 and E

def= E0. By the definitions of the interaction functionals defined

in Theorem 6.8, for any C ′ > 0 there exists C ′′ = C ′′(C ′) > 0 sufficiently large such

that

‖ f (t)‖2
L2

p H N
x

≤ (C ′′ + 1)‖ f (t)‖2
L2

p H N
x

− C ′ I (t) � ‖ f (t)‖2
L2

p H N
x

.

We remark that C ′′ doesn’t depend on f (t, x, p) but only on C ′ and the structure of

I . Here we define the energy functional E(t) as

E(t) = (C ′′ + 1)‖ f (t)‖2
L2

p H N
x

− C ′ I (t).

Then, the above inequalities show that the definition of E satisfies (6.26).

Recall the local existence Theorem 6.2, and Theorem 6.8, and choose M0 ≤ 1 so

that both theorems hold. We choose 0 < M1 ≤ M0
2

and consider initial data E(0) so

that

E(0) ≤ M1 < M0.

From the local existence theorem, we define T > 0 so that

T = sup{t ≥ 0|E(t) ≤ 2M1}.

By taking the spatial derivative ∂α onto the linearized relativistic Boltzmann equation

(2.26), multiplying by ∂α f and integrating over (x, p), and summing over α, we

obtain

1

2

d

dt
‖ f (t)‖2

L2
p H N

x
+

∑

|α|≤N

(L∂α f , ∂α f ) =
∑

|α|≤N

(∂α�( f , f ), ∂α f ). (6.28)

By the estimates from Lemma 2.5, we have

∑

|α|≤N

(∂α�( f , f ), ∂α f ) �
√

ED.

Since our choice of M1 satisfies E(t) ≤ 2M1 ≤ M0, we see that the assumption for

Theorem 6.8 is satisfied. Then, Theorem 6.8 and Lemma 6.9 tell us that

∑

|α|≤N

(L∂α f , ∂α f ) ≥ δ‖{I − P} f ‖2
I ρ,γ

≥ δ

2
‖{I − P} f ‖2

I ρ,γ + δδ′

2

∑

|α|≤N

‖P∂α f ‖2
I ρ,γ (t) − δC

2

d I (t)

dt
.
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Let δ′′ = min{ δ
2
, δδ′

2
} and let C ′ = δC . Then, we have

1

2

d

dt

(

‖ f (t)‖2
L2

p H N
x

− C ′ I (t)
)

+ δ′′
D �

√
ED.

We multiply (6.28) by C ′′ and add this onto the last inequality above using the positivity

of L to conclude that

dE(t)

dt
+ δ′′

D(t) ≤ C
√

E(t)D(t),

for some C > 0. Suppose M1 = min{ δ′′2

8C2 , M0
2

}. Then, we have

dE(t)

dt
+ δ′′

D(t) ≤ C
√

E(t)D(t) ≤ C
√

2M1D(t) ≤ δ′′

2
D(t).

Now, we integrate over t for 0 ≤ t ≤ τ < T and obtain

E(τ ) + δ′′

2

∫ τ

0

D(t)dt ≤ E(0) ≤ M1 < 2M1.

Since E(τ ) is continuous in τ , E(τ ) ≤ M1 if T < ∞. This contradicts the definition

of T and hence T = ∞. This proves the global existence.

If we have l > 0, we recall Lemma 2.9 and deduce that for some C > 0 that

(

w2l L∂α f , ∂α f
)

�
1

2
‖∂α f ‖2

I
ρ,γ
l

− C‖∂α f ‖2
L2(BC )

. (6.29)

We also take the ∂α derivative on the linearized Boltzmann equation (2.26), take the

inner product with w2l∂α f , integrate both sides, and use Lemma 2.5 to obtain that

∑

|α|≤N

(

1

2

d

dt
‖wl∂α f (t)‖2

L2 + (w2l L∂α f , ∂α f )

)

�
√

El(t)Dl(t).

Then we apply the lower bound estimate (6.29). Finally, we add the energy inequality

for l = 0 case multiplied by sufficiently large constant C ′ > 0 to obtain

d

dt
El(t) + Dl(t) �

√

El(t)Dl(t), (6.30)

where we define the energy functional El as

El(t)
def= 1

2

∑

|α|≤N

‖wl∂α f (t)‖2
L2 + C ′

E(t).
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Thus, we obtain the energy inequality for the case l > 0. In the hard-interaction case

with (2.21), note that El(t) � Dl(t). This and the equation (6.30) show the exponential

time decay for El(t) � El(0) sufficiently small.

On the other hand, in the soft-interaction case (2.22) we do not have El(t) �

Dl(t) because ρ + γ < 0. Instead, to obtain the rapid polynomial decay we use the

interplation technique from [84]. The inequality that we do have is El+(ρ+γ )/4(t) �

Dl(t). Using that inequality, we perform the following interpolation for fixed l ≥
|ρ + γ |/4 and m > 0

El(t) � E

2m
2m+|ρ+γ |

l+(ρ+γ )/4(t)E

|ρ+γ |
2m+|ρ+γ |

l+m (t) � D

2m
2m+|ρ+γ |
l (t)E

|ρ+γ |
2m+|ρ+γ |

l+m (t)

� D

2m
2m+|ρ+γ |
l (t)E

|ρ+γ |
2m+|ρ+γ |

l+m (0). (6.31)

Thus from (6.30) we have

d

dt
El(t) + Cl,mE

− |ρ+γ |
2m

l+m (0)E
2m+|ρ+γ |

2m

l (t) ≤ 0

for some Cl,m > 0. Thus we have

d

(

E
− |ρ+γ |

2m

l (t)

)

dt
≥ Cl,m

|ρ + γ |
2m

E
− |ρ+γ |

2m

l+m (0).

By integrating over [0, t] we obtain

E
− |ρ+γ |

2m

l (t) ≥ E
− |ρ+γ |

2m

l (0) + tCl,m

|ρ + γ |
2m

E
− |ρ+γ |

2m

l+m (0).

Now we use that El(0) � El+m(0) to conclude the polynomial decay for the soft

potentials as in Theorem 2.2. This concludes the proof of our main theorem. ��

In the following section we will establish the relativistic Carleman representation.

7 Relativistic Carleman Representation

In this Section we will introduce the relativistic Carleman representation for the gain

and loss terms which have arisen many times throughout this paper. We will introduce

two Carleman representations in §7.1 and §7.2 that are not the same. The one in §7.1

is based on the reduction of the space R
3
q × R

3
q ′ onto the hyperplane

E
q

p′−p
= {q ∈ R

3 : (p′μ − pμ)(pμ + qμ) = 0}

via the evaluation of the delta function of the energy-momentum conservation laws.

On the other hand, the Carleman representation that we introduce in §7.2 is based
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on the derivation of Hilbert-Schmidt operator via taking the specific choice of the

Lorentz transformation (2.55) and this derivation is similar to those introduced in [80,

Appendix A]. Each derivation has their own advantage; the former one in §7.1 is

more appropriate for the case when the unknowns are written in the variables of p

and p′ only (c.f., (4.28) and (4.62)), whereas the latter one in §7.2 is more explicit

and is powerful for a general situation especially when we need a dual cancellation

estimate (c.f. Proposition 4.7). In §7.1 we will prove Lemma 2.11 which allows us to

integrate over the surface of the collisional geometry (2.8). Then in §7.2 we will prove

Lemma 2.18 which allows us to present the dual representation (7.21) for the trilinear

form 〈w2l�( f , h), η〉 from (4.1) and more generally for (7.1).

7.1 Carleman Dual Representation

We consider the collision integral from (2.13). The purpose of this subsection will

be to prove Lemma 2.12. By Lemma 2.11 the integral (2.13) can be written in the

following form:

∫

R3

dp

p0

∫

R3

dq

q0

∫

R3

dq ′

q ′0

∫

R3

dp′

p′0 sσ(g, θ)δ(4)(p′μ + q ′μ − pμ − qμ)G(p, q, p′),

(7.1)

where G can be defined to suitably represent (2.13). More generally we will assume

that the function G has a sufficient vanishing condition so that the integral in (7.1)

is well-defined. We will prove that we can write the integral (7.1) as one on the set

R
3 × R

3 × E
q

p′−p
where E

q

p′−p
is the hyperplane

E
q

p′−p
= {q ∈ R

3 : (p′μ − pμ)(pμ + qμ) = 0}.

This will be the main result of this subsection.

To this end, we now use Lemma 2.17 to rewrite (7.1) as

∫

R3

dp

p0

∫

R3

dp′

p′0 B(p, q, p′),

where B = B(p, q, p′) is defined as

B =
∫

R3

dq

q0

∫

R3

dq ′

q ′0 sσ(g, θ)δ(4)(p′μ + q ′μ − pμ − qμ)G(p, q, p′)

=
∫

R4×R4
d�(qμ, q ′μ)sσ(g, θ)δ(4)(p′μ + q ′μ − pμ − qμ)G(pμ, qμ, p′μ),

with as in

d�(qμ, q ′μ)
def= dqμdq ′μu(q ′0)u(q0)δ(s − g2 − 4)δ((qμ − q ′μ)(qμ + q ′μ)),
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and u(x) is defined in (2.51).

Next we apply the following change of variable

q̄μ = q ′μ − qμ.

Then with this change of variable the integral becomes

B =
∫

R4×R4
d�(q̄μ, qμ)sσ(g, θ)δ(4)(p′μ + q̄μ − pμ)G(pμ, qμ, p′μ),

where

d�(q̄μ, qμ)
def= dqμdq̄μu(q̄0 + q0)u(q0)δ(s − g2 − 4)δ(q̄μ(2qμ + q̄μ)).

This change of variables gives us the Jacobian = 1. Finally we evaluate the delta

function, δ(4), to obtain

B =
∫

R4
d�(qμ)sσ(g, θ)G(pμ, qμ, p′μ),

where we are now integrating over the four vector qμ and

d�(qμ) = dqμu(p0 − p′0 + q0)u(q0)δ(s − g2 − 4)δ((pμ − p′μ)(2qμ + pμ − p′
μ)).

Here, we note that

∫

R

dq0u(q0)δ(s − g2 − 4)

=
∫

R

dq0u(q0)δ(−(pμ + qμ)(pμ + qμ) − (pμ − qμ)(pμ − qμ) − 4)

=
∫

R

dq0u(q0)δ(−(pμ + qμ)(pμ + qμ) − (pμ − qμ)(pμ − qμ) − 4)

=
∫

R

dq0u(q0)δ(2 − 2qμqμ − 4)

=
∫

R

dq0u(q0)δ(2(q0 −
√

1 + |q|2)(q0 +
√

1 + |q|2))

= 1

4

∫

R

dq0

√

1 + |q|2
u(q0)

(

δ(q0 −
√

1 + |q|2) + δ(q0 +
√

1 + |q|2)
)

= 1

4

∫

R

dq0

√

1 + |q|2
u(q0)δ(q0 −

√

1 + |q|2).

We thus conclude that the integral is given by

B =
∫

E
q

p′−p

dπq

8ḡq0
sσ(g, θ)G(p, q, p′), (7.2)
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where dπq = dq u(p0 + q0 − p′0)δ
(

ḡ
2

+ qμ(pμ−p′
μ)

ḡ

)

with q0 def=
√

1 + |q|2. This is

a 2-dimensional surface measure on the hypersurface E
q

p′−p
in R

3.

7.2 Dual Representation for a Trilinear Term

In this section we will prove Lemma 2.18. For concreteness, we focus on the derivation

of the Carleman dual representation of the trilinear term 〈w2l�( f , h), η〉. We explain

how to generalize to the full proof of Lemma 2.18 at the end.

After applying the pre-post change of variables, as in (2.94), to the T l
+ part of (4.1),

then this term is given by

I = 〈w2l�( f , h), η〉 =
∫

R3
dp

∫

R3
dq

∫

S2
dω vøσ(g, θ) f (q)h(p)

×
(

w2l(p′)η(p′)
√

J (q ′) − w2l(p)η(p)
√

J (q)
)

def= Igain − Iloss . (7.3)

We initially suppose that
∫

S2 dω |σ0(cos θ)| < ∞ and that

∫

S2
dω σ0(cos θ) = 0.

Then, under that condition, the loss term vanishes Iloss = 0 and we obtain

I = Igain =
∫

R3
dp

∫

R3
dq

∫

S2
dω vøσ(g, θ) f (q)h(p)w2l(p′)η(p′)

√

J (q ′).

By applying Lemma 2.11 we obtain another representation of I :

I =
∫

R3

dp

p0

∫

R3

dq

q0

∫

R3

dp′

p′0

∫

R3

dq ′

q ′0 sσ(g, θ)δ(4)(p′μ + q ′μ − pμ − qμ)

× f (q)h(p)w2l(p′)η(p′)
√

J (q ′). (7.4)

Here from (2.5), (2.56), (2.6), and (2.7) we have g = g(pμ, qμ), s = g2 + 4, ḡ
def=

g(pμ, p′μ) = g(qμ, q ′μ), and g̃ = g(pμ, q ′μ). Also from (9.1) and (9.2) we have

cos θ = 2
g̃2

g2
− 1.

We further claim that

g2 = g̃2 − 1

2
(pμ + q ′μ)(p′

μ + qμ − pμ − q ′
μ). (7.5)
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Recall that s̃
def= g̃2 + 4. Then, using (2.5) and (2.4), (7.5) is equivalent to

g2 = g̃2 − 1

2
s̃ − 1

2
(pμ + q ′μ)(p′

μ + qμ) = 1

2
g̃2 − 2 − 1

2
(pμ + q ′μ)(p′

μ + qμ)

= 1

2
g̃2 + g2 + 2pμqμ − 1

2
(pμ + q ′μ)(p′

μ + qμ).

Thus we prove (7.5) by showing that

1

2
g̃2 + 2pμqμ − 1

2
(pμ + q ′μ)(p′

μ + qμ) = 0.

Expanding the left-hand side of this equation, we obtain

−pμq ′
μ − 1 + 2pμqμ − 1

2
pμ p′

μ − 1

2
q ′μ p′

μ − 1

2
pμqμ − 1

2
q ′μqμ.

Therefore, using (2.90) we obtain

−1 + pμqμ − 1

2
pμ p′

μ − 1

2
pμq ′

μ − 1

2
p′μqμ − 1

2
q ′μqμ,

which by (2.8) is equal to

−1 + pμqμ − 1

2
(pμ + qμ)(p′

μ + q ′
μ) = −1 + pμqμ + 1

2
s = 0.

This finishes the proof of the claim (7.5).

Remark 7.1 Combining (7.5) and (9.1), we see that ḡ2 can be represented as

ḡ2 = −1

2
(pμ + q ′μ)(p′

μ + qμ − pμ − q ′
μ).

In the rest of this section we will use this representation and follow the formula for ḡ2

as we perform the changes of variables below.

Then exchanging p and p′ in (7.4), we have

I =
∫

R3

dp′

p′0

∫

R3

dq

q0

∫

R3

dp

p0

∫

R3

dq ′

q ′0 s̃σ(g̃, θ ′)δ(4)(pμ + q ′μ − p′μ − qμ)

× f (q)h(p′)w2l(p)η(p)
√

J (q ′),

where the angle θ ′ is now redefined as

cos θ ′ def= 2
g2

g̃2
− 1, (7.6)
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and from Remark 7.1 and (7.5) we have

g̃2 = g2 + ḡ2, ḡ2 = −1

2
(p′μ + q ′μ)(pμ + qμ − p′

μ − q ′
μ).

And we further use s̃
def= g̃2 + 4. As we change variables below we will refer to the

transformed ḡ as gL .
We now define the functional i(p, q) as

i(p, q)
def= 1

p0q0

∫

R3

dp′

p′0

∫

R3

dq ′

q ′0 s̃σ(g̃, θ ′)δ(4)(pμ + q ′μ − p′μ − qμ)h(p′)
√

J (q ′),

(7.7)

so that we have

I =
∫

R3

∫

R3
i(p, q) f (q)w2l(p)η(p)dqdp. (7.8)

We first translate (7.7) into an expression involving the total and relative momentum

variables, p′μ + q ′μ and p′μ − q ′μ respectively. Define u as in (2.51). Let g
def=

g(p′μ, q ′μ) and s
def= s(p′μ, q ′μ). Then by Lemma 2.17 we have

i(p, q) = 1

16p0q0

∫

R4×R4
d�(p′μ, q ′μ)h(p′)

√

J (q ′)s̃σ(g̃, θ ′)δ(4)(p′μ + qμ − pμ − q ′μ),

where

d�(p′μ, q ′μ)
def= dp′μdq ′μu(p′0 + q ′0)u(s − 4)δ(s − g2 − 4)δ((p′μ + q ′μ)(p′

μ − q ′
μ)).

Thus we have lifted to an integral over R
4 × R

4 from one over R
3 × R

3.

Now we apply the change of variables p̄μ = p′μ + q ′μ and q̄μ = p′μ − q ′μ. Then

the Jacobian is 16. Since q ′ = p̄−q̄
2

and p′ = p̄+q̄
2

, we have

i(p, q)= c′

p0q0

∫

R4×R4
d�( p̄μ, q̄μ)s̃σ(g̃, θ ′)δ(4)(qμ−pμ+q̄μ)h

(

p̄+q̄

2

)

e
− p̄0+q̄0

4 ,

for some constant c′ > 0 (whose value below can change from line to line), where

d�( p̄μ, q̄μ)
def= d p̄μdq̄μu( p̄0)u(− p̄μ p̄μ − 4)δ(− p̄μ p̄μ − q̄μq̄μ − 4)δ( p̄μq̄μ).

We now carry out δ(4)(qμ − pμ + q̄μ) to obtain

i(p, q) = c′

p0q0

∫

R4
d�( p̄μ)s̃σ(g̃, θ ′)h

(

p̄ + p − q

2

)

exp

(− p̄0 + p0 − q0

4

)

,

123



   20 Page 146 of 167 J.W. Jang, R.M. Strain

where the measure d�( p̄μ) is now equal to

d�( p̄μ)
def= d p̄μu( p̄0)u(− p̄μ p̄μ − 4)δ(− p̄μ p̄μ − g2 − 4)δ( p̄μ(pμ − qμ)).

Since s = g2 + 4 from (2.4), we have

u( p̄0)δ(− p̄μ p̄μ − g2 − 4) = u( p̄0)δ(− p̄μ p̄μ − s) = u( p̄0)δ(( p̄0)2 − | p̄|2 − s)

= δ( p̄0 −
√

| p̄|2 + s)

2
√

| p̄|2 + s
.

Then we carry out one integration using this delta function to obtain

i(p, q) = c′

2p0q0

∫

R3

d p̄

p̄0
u(− p̄μ p̄μ − 4)δ( p̄μ(pμ − qμ))s̃σ(g̃, θ ′)

×h

(

p̄ + p − q

2

)

exp

(

−
√

| p̄|2 + s + p0 − q0

4

)

,

where p̄0 =
√

| p̄|2 + s. Using s = g2 + 4 again, we have

− p̄μ p̄μ − 4 = s − 4 = g2 ≥ 0

to guarantee that u(− p̄μ p̄μ − 4) = 1. Thus

i(p, q) = c′

2p0q0
exp

(

p0 − q0

4

)∫

R3

d p̄

p̄0
δ( p̄μ(pμ − qμ))s̃σ(g̃, θ ′)

×h

(

p̄ + p − q

2

)

exp

(

−
√

| p̄|2 + s

4

)

,

where p̄0 =
√

| p̄|2 + s. In this representation we have that the angle θ ′ is still given

by (7.6) but now we have

g̃2 = g2 + g2
L , g2

L = −1

2
p̄μ(pμ + qμ − p̄μ) = −1

2
p̄μ(pμ + qμ) − 1

2
s.

And again s̃
def= g̃2 + 4.

We finish off our reduction by moving to a new Lorentz frame. We choose the

Lorentz transformation from (2.55) which importantly satisfies the condition (2.54).

Then, using the change of variables (2.55), with Uμ = (1, 0, 0, 0)�, we have

∫

R3

d p̄

p̄0
δ( p̄μ(pμ − qμ))s̃σ(g̃, θ ′)h

(

p̄ + p − q

2

)

e

(

p̄μUμ
4

)
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=
∫

R3

d p̄

p̄0
δ( p̄μ Bμ)s�σ(g�, θ�)h

(

((�−1)νμ p̄μ)1≤ν≤3 + p − q

2

)

e

(

p̄μŪμ
4

)

.

We used that
d p̄

p̄0 is Lorentz invariant. Here p̄0 =
√

| p̄|2 + s and s�, g� ≥ 0 are

g2
�

def= g2 + g2
L , g2

L = −1

2
p̄μ Aμ − 1

2
s = 1

2

√
s( p̄0 −

√
s),

where

s�
def= g2

� + 4, (7.9)

and

cos θ�
def= 2

g2

g2
�

− 1. (7.10)

Also, Ū
μ

is given by Ū
μ = �μ

νUμ =
(

p0+q0
√

s
,

2|p×q|
g
√

s
, 0,

p0−q0

g

)

.

We now switch to polar coordinates in the form

d p̄ = r2dr sin ψdψdφ, p̄
def= r(sin ψ cos φ, sin ψ sin φ, cos ψ).

Then we obtain

p̄μ Bμ = gr cos ψ.

Then the integral i(p, q) is now equal to

i(p, q) = c′

2p0q0
exp

(

p0 − q0

4

)∫ 2π

0

dφ

∫ π

0

dψ sin ψ

×
∫ ∞

0

r2dr√
r2 + s

δ(gr cos ψ)s�σ(g�, θ�)h

(

((�−1)νμ p̄μ)1≤ν≤3 + p − q

2

)

e

(

p̄μŪμ
4

)

.

We evaluate the last delta function at ψ = π/2 to write i(p, q) as

i(p, q) = c′

2gp0q0
exp

(

p0 − q0

4

)∫ 2π

0

dφ

∫ ∞

0

rdr√
r2 + s

s�σ(g�, θ�)

×h

(

((�−1)νμ p̄μ)1≤ν≤3 + p − q

2

)

exp

(

− p̄0 p0 + q0

4
√

s
+ |p × q|

2g
√

s
r cos φ

)

,
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where

p̄μ = (
√

r2 + s, r cos φ, r sin φ, 0).

Then we have for (i = 1, 2, 3) that

((�−1)νμ p̄μ)ν=i = (�μ
ν p̄μ)ν=i =

3
∑

μ=0

�μ
i p̄μ

= pi + qi√
s

√

r2 + s + �1
i r cos φ + (p × q)i

|p × q| r sin φ
def= ai ,

and we have

(�−1)0
μ p̄μ = �μ

0 p̄μ =
3
∑

μ=0

�μ
0 p̄μ = − p0 + q0

√
s

√

r2 + s + �1
0 r cos φ

= − p0 + q0

√
s

√

r2 + s + 2|p × q|
g
√

s
r cos φ

def= a0.

Define x = (x1, x2)
def= (r cos φ, r sin φ), and denote

a0(p, q, x) = a0(p, q, x) = a0, (7.11)

and

a(p, q, x) = (a1(p, q, x), a2(p, q, x), a3(p, q, x)) = (a1, a2, a3). (7.12)

Then we note that

aμaμ = −(a0)2 + |a|2 = −s,

since � is a Lorentz transformation. Also note that

a(p, q, 0) = (p + q) and a0(p, q, 0) = −(p0 + q0).

Then we have

i(p, q) = c′

2gp0q0
exp

(

p0 − q0

4

)∫

R2

dx
√

|x |2 + s
s�σ(g�, θ�)

×h

(

a(p, q, x) + p − q

2

)

exp

(

− p0 + q0

4
√

s

√

|x |2 + s + |p × q|
2g

√
s

x1

)

.

Now, with (7.9) and (7.10), g� ≥ 0 is given by

g2
� = g2 + g2

L , g2
L = 1

2

√
s(
√

|x |2 + s −
√

s). (7.13)
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So by (7.8) we obtain a new representation of our gain term

I = Igain = c′

2

∫∫

R6

dp

p0

dq

q0
exp

(

p0 − q0

4

)∫

R2

dx

g
√

|x |2 + s
s�σ(g�, θ�)w2l(p)η(p)

× f (q)h

(

a(p, q, x) + p − q

2

)

exp

(

− p0 + q0

4
√

s

√

|x |2 + s + |p × q|
2g

√
s

x1

)

. (7.14)

This completes our transformation of the gain term Igain .

We now return to the loss term Iloss . We recall that Iloss = 0 under the assumptions

that
∫

S2 dω|σ0(cos θ)| < ∞ and
∫

S2 dωσ0(cos θ) = 0. We will now find a different

expression than Iloss which also integrates to zero under the same conditions, that will

provide suitable cancellation for the term in (7.14) even when we no longer assume

that
∫

S2 dω|σ0(cos θ)| < ∞ and
∫

S2 dωσ0(cos θ) = 0.

To this end, we recall the definition (7.10). This using (7.13) we have

cos θ� = 2g2

g2
�

− 1 =
g2 − 1

2

√
s(

√
r2 + s − √

s)

g2 + 1
2

√
s(

√
r2 + s − √

s)
. (7.15)

Differentiating cos θ� with respect to r , we have

d(cos θ�)

dr
= − g2

√
sr

g4
�

√
r2 + s

.

Since we have assumed that
∫ 1
−1 d(cos θ�)σ0(cos θ�) = 0, then we further have

∫ ∞

0

dr
g2

√
sr

g4
�

√
r2 + s

σ0(cos θ�) = 0.

This follows since cos θ� = 1 and − 1 correspond to r = 0 and r = ∞ respectively,

using (7.15).

Thus we obtain

c′

2

∫

R3

dp

p0

∫

R3

dq

q0
exp

(

p0 − q0

4

)∫ 2π

0

dφ

∫ ∞

0

rdr

g
√

r2 + s
s�(g)σ0(cos θ�)

g4

g4
�

×w2l(p)η(p) f (q)h(p) exp

(

− p0 + q0

4

)

= 0.

The above is the same as

c′

2

∫

R3

dp

p0

∫

R3

dq

q0
exp

(

p0 − q0

4

)∫

R2

dx

g
√

|x |2 + s
s�(g)σ0(cos θ�)

g4

g4
�

×w2l(p)η(p) f (q)h(p) exp

(

− p0 + q0

4

)

= 0.
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Subtracting this zero integral from (7.14), we further obtain

I = c′

2

∫

R3

dp

p0

∫

R3

dq

q0
exp

(

p0 − q0

4

)∫

R2

dx

g
√

|x |2 + s
s�σ(g�, θ�)w2l(p)η(p) f (q)

×
[

h

(

a(p, q, x) + p − q

2

)

exp

(

− p0 + q0

4
√

s

√

|x |2 + s + |p × q|
2g

√
s

x1

)

− s�(g)g4

s��(g�)g4
�

h(p) exp

(

− p0 + q0

4

)

]

. (7.16)

This is equal to the original integral I when the mean value of σ0 is zero.

Since we are working with the Schwartz functions, by a standard approximation

argument we can directly prove that (7.16) also holds even when the mean value of σ0

is not zero and σ0 is not integrable such as in (2.19) with (2.20) and (2.21) or (2.22).

We refer to [44, Appendix A] and (8.12) for full details of analogous approximation

arguments.

Now by making the change of variables x �→ z = x√
s

with dz = s−1dx, we have

I = c′

2

∫

R3

dp

p0

∫

R3

dq

q0

√
s

g

∫

R2

dz
√

|z|2 + 1
s�σ(g�, θ�)

√

J (q)w2l(p)η(p) f (q)

×
[

h

(

a(p, q,
√

sz) + p − q

2

)

exp

(

− p0 + q0

4
(
√

|z|2 + 1 − 1) + |p × q|
2g

z1

)

− s�(g)g4

s��(g�)g4
�

h(p)

]

.

Next we recover the original variables by relabelling p and p′ above, we then have

〈w2l�( f , h), η〉 = I

= c′

2

∫

R3

dp′

p′0

∫

R3

dq

q0

√
s̃

g̃

∫

R2

dz
√

|z|2 + 1
s�σ(g�, θ�)

√

J (q)w2l(p′)η(p′) f (q)

×
[

h

(

a(p′, q,
√

s̃z) + p′ − q

2

)

exp

(

− p′0 + q0

4
(
√

|z|2 + 1 − 1) + |p′ × q|
2g̃

z1

)

− s̃�(g̃)g̃4

s��(g�)g4
�

h
(

p′)
]

,

where g�, s�, and θ� are defined as

g2
� = g̃2 + g2

L , g2
L = 1

2
s̃(
√

|z|2 + 1 − 1), (7.17)

cos θ�
def= 2

g̃2

g2
�

− 1, and s� = g2
� + 4. (7.18)
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Here we also have from (7.11) and (7.12) that

a0(p′, q,
√

s̃z) = −(p′0 + q0)
√

|z|2 + 1 + �1
0

√
s̃z1,

and

a(p′, q,
√

s̃z) = (p′ + q)
√

|z|2 + 1 + �1
√

s̃z1 + p′ × q

|p′ × q|
√

s̃z2,

where �1 = �1(p′, q) = (�1
1(p′, q),�1

2(p′, q),�1
3(p′, q)) from (2.55). Further

define

− A0 = −A0(p′, q, z) = a0(p′, q,
√

s̃z) + (p′0 + q0)

2

= − (p′0 + q0)

2
(
√

|z|2 + 1 − 1) + |p′ × q|
g̃

z1 = −2l(
√

|z|2 + 1 − 1) + 2 j z1,

(7.19)

and

A = A(p′, q, z) = a(p′, q,
√

s̃z) − (p′ + q)

2

= (p′ + q)

2
(
√

|z|2 + 1 − 1) + 1

2
�1

√
s̃z1 + 1

2

p′ × q

|p′ × q|
√

s̃z2. (7.20)

Then we have

〈w2l�( f , h), η〉

= c′

2

∫

R3

dp′

p′0

∫

R3

dq

q0

√
s̃

g̃

∫

R2

dz
√

|z|2 + 1
s�σ(g�, θ�)

√

J (q)w2l(p′)η(p′) f (q)

×
[

h
(

A(p′, q, z) + p′) exp

(

− A0

2

)

− s̃�(g̃)g̃4

s��(g�)g4
�

h(p′)

]

. (7.21)

This is the main expression for the dual representation that we will use to prove our

cancellation estimates which land on the function h.

We have actually proven a more general integral formula. Now we consider (2.91).

The transformation from (2.91) to (2.92) or (2.93) incorporates the series of changes

of variables discussed previously in this section. The transformation from (2.91) to

(2.92) follows exactly from the arguments between (7.3) to (7.14). Then to additionally

derive (2.93) we further follow the arguments between (7.14) and (7.16). This proves

Lemma 2.18.
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8 Collision FrequencyMultiplier Derivation

We now explain a derivation of an alternative form of ζ̃ (p) from (2.30), and give the

new decomposition of ζ̃ (p) that has been explained in §3.2.

8.1 Derivation of a new representation of �̃(p)

For a fixed p ∈ R
3, recalling (2.30), we would like to have an alternative representation

of the following integral:

I
def= −ζ̃ (p) =

∫

R3×S2
vøσ(g, θ)

√

J (q)
(

√

J (q ′) −
√

J (q)
)

dqdω
def= Igain − Iloss .

Initially, suppose that
∫

S2 dω |σ0(cos θ)| < ∞ and that

∫

S2
dω σ0(cos θ) = 0.

Then, under that condition, the loss term vanishes Iloss = 0 and we obtain

I = Igain =
∫

R3
dq

∫

S2
dω vøσ(g, θ)

√

J (q)
√

J (q ′). (8.1)

By recovering the delta function involving the energy-momentum convervation laws,

we obtain another representation of I :

I = 1

p0

∫

R3

dq

q0

∫

R3

dp′

p′0

∫

R3

dq ′

q ′0 sσ(g, θ)δ(4)(p′μ + q ′μ − pμ − qμ)
√

J (q)
√

J (q ′).

Here g = g(pμ, qμ), s = g2 + 4, ḡ
def= g(pμ, p′μ) = g(qμ, q ′μ), g̃ = g(p′μ, qμ),

and

cos θ = 2
g̃2

g2
− 1,

by (2.10). We further claim that

g2 = g̃2 − 1

2
(pμ + q ′μ)(p′

μ + qμ − pμ − q ′
μ). (8.2)

Let s̃
def= g̃2 + 4. Then (8.2) is equivalent to

g2 = g̃2 − 1

2
s̃ − 1

2
(pμ + q ′μ)(p′

μ + qμ)

= 1

2
g̃2 − 2 − 1

2
(pμ + q ′μ)(p′

μ + qμ)
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= 1

2
g̃2 + g2 + 2pμqμ − 1

2
(pμ + q ′μ)(p′

μ + qμ).

Thus we prove (8.2) by showing that

1

2
g̃2 + 2pμqμ − 1

2
(pμ + q ′μ)(p′

μ + qμ) = 0.

Expanding the left-hand side of this equation, we obtain

−pμq ′
μ − 1 + 2pμqμ − 1

2
pμ p′

μ − 1

2
q ′μ p′

μ − 1

2
pμqμ − 1

2
q ′μqμ.

By the result of the conservation laws pμ + qμ = p′μ + q ′μ, we have pμqμ = p′μq ′
μ

and p′μqμ = pμq ′
μ. Therefore, we obtain

−1 + pμqμ − 1

2
pμ p′

μ − 1

2
pμq ′

μ − 1

2
p′μqμ − 1

2
q ′μqμ,

which is equal to

−1 + pμqμ − 1

2
(pμ + qμ)(p′

μ + q ′
μ) = −1 + pμqμ + 1

2
s = 0.

This finishes the proof of the claim (8.2).

By exchanging q and q ′, we have

I = 1

p0

∫

R3

dq

q0

√

J (q)

∫

R3

dp′

p′0

∫

R3

dq ′

q ′0
√

J (q ′)s̃σ(g̃, θ ′)δ(4)(p′μ + qμ − pμ − q ′μ),

where the angle θ ′ is now defined as

cos θ ′ def= 2
g2

g̃2
− 1,

and

g̃2 = g2 − 1

2
(pμ + qμ)(p′

μ + q ′
μ − pμ − qμ).

We have the new argument in the delta function and s̃
def= g̃2 + 4.

We now define the functional i(p, q) as

i(p, q)
def= 1

p0q0

∫

R3

dp′

p′0

∫

R3

dq ′

q ′0
√

J (q ′)s̃σ(g̃, θ ′)δ(4)(p′μ + qμ − pμ − q ′μ),

(8.3)
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so that we have

I =
∫

R3
i(p, q)

√

J (q)dq. (8.4)

We first translate (8.3) into an expression involving the total and relative momentum

variables, p′μ + q ′μ and p′μ − q ′μ respectively. Define u by u(x) = 0 if x < 0 and

u(x) = 1 if x ≥ 0. Let g′ def= g(p′μ, q ′μ) and s′ def= s(p′μ, q ′μ). Then by the claim (7.5)

of [80], we have

i(p, q) = 1

16p0q0

∫

R4×R4
d�(p′μ, q ′μ)

e−q ′0/2

4π
s̃σ(g̃, θ ′)δ(4)(p′μ + qμ − pμ − q ′μ),

where

d�(p′μ, q ′μ)
def= dp′μdq ′μu(p′0 + q ′0)u(s′ − 4)δ(s′ − g′2 − 4)δ((p′μ + q ′μ)(p′

μ − q ′
μ)).

Thus we have lifted to an integral over R
4 × R

4 from one over R
3 × R

3.

Now we apply the change of variables p̄μ = p′μ + q ′μ and q̄μ = p′μ − q ′μ. Then

the Jacobian is 16. Since q ′0 = p̄0−q̄0

2
, we have

i(p, q) = c′

p0q0

∫

R4×R4
d�( p̄μ, q̄μ)s̃σ(g̃, θ ′)δ(4)(qμ − pμ + q̄μ) exp

(− p̄0 + q̄0

4

)

for some constant c′ > 0 (whose value can change from line to line), where

d�( p̄μ, q̄μ)
def= d p̄μdq̄μu( p̄0)u(− p̄μ p̄μ − 4)δ(− p̄μ p̄μ − q̄μq̄μ − 4)δ( p̄μq̄μ).

We now carry out δ(4)(qμ − pμ + q̄μ) to obtain

i(p, q) = c′

p0q0

∫

R4
d�( p̄μ)s̃σ(g̃, θ ′) exp

(− p̄0 + p0 − q0

4

)

,

where the measure d�( p̄μ) is now equal to

d�( p̄μ)
def= d p̄μu( p̄0)u(− p̄μ p̄μ − 4)δ(− p̄μ p̄μ − g2 − 4)δ( p̄μ(pμ − qμ)).

Since s = g2 + 4, we have

u( p̄0)δ(− p̄μ p̄μ − g2 − 4) = u( p̄0)δ(− p̄μ p̄μ − s)

= u( p̄0)δ(( p̄0)2 − | p̄|2 − s) = δ( p̄0 −
√

| p̄|2 + s)

2
√

| p̄|2 + s
.
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Then we carry out one integration using this delta function to obtain

i(p, q) = c′

2p0q0

∫

R3

d p̄

p̄0
u(− p̄μ p̄μ − 4)δ( p̄μ(pμ − qμ))s̃σ(g̃, θ ′)

× exp

(

−
√

| p̄|2 + s + p0 − q0

4

)

,

where p̄0 =
√

| p̄|2 + s. Using s = g2 + 4 again, we have

− p̄μ p̄μ − 4 = s − 4 = g2 ≥ 0

to guarantee that u(− p̄μ p̄μ − 4) = 1. Thus

i(p, q) = c′

2p0q0
exp

(

p0 − q0

4

)∫

R3

d p̄

p̄0
δ( p̄μ(pμ − qμ))s̃σ(g̃, θ ′)e

(

p̄μUμ
4

)

,

where p̄0 =
√

| p̄|2 + s and Uμ = (1, 0, 0, 0). We finish off our reduction by moving

to a new Lorentz frame. We consider a Lorentz transformation � which maps into the

center-of-momentum system as

Aν
def= �μ

ν(pμ + qμ) = (
√

s, 0, 0, 0), Bν
def= −�μ

ν(pμ − qμ) = (0, 0, 0, g).

The explicit form of the matrix � was given p. 593 of [80], and also in [79]. More

precisely, we consider

� = (�μ
ν) =

⎛

⎜

⎜

⎜

⎜

⎝

p0+q0
√

s
− p1+q1√

s
− p2+q2√

s
− p3+q3√

s

�1
0 �1

1 �1
2 �1

3

0
(p×q)1

|p×q|
(p×q)2

|p×q|
(p×q)3

|p×q|
p0−q0

g
− p1−q1

g
− p2−q2

g
− p3−q3

g

⎞

⎟

⎟

⎟

⎟

⎠

, (8.5)

with the second row given by

�1
0 = �1

0(p, q) = 2|p × q|
g
√

s
,

and for i = 1, 2, 3 we have

�1
i = �1

i (p, q) =
2
(

pi {p0 + q0 pμqμ} + qi {q0 + p0 pμqμ}
)

g
√

s|p × q| .

Then, using this change of variables, we have

∫

R3

d p̄

p̄0
δ( p̄μ(pμ − qμ))s̃σ(g̃, θ ′)e

(

p̄μUμ
4

)

=
∫

R3

d p̄

p̄0
δ( p̄μBμ)s�σ(g�, θ�)e

(

p̄μŪμ
4

)

.
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Note that
d p̄

p̄0 is Lorentz invariant. Here p̄0 =
√

| p̄|2 + s and s�, g� ≥ 0 are

g2
�

def= g2 − 1

2
Aμ( p̄μ − Aμ) = g2 + 1

2

√
s( p̄0 −

√
s),

where

s�
def= g2

� + 4, (8.6)

and

cos θ�
def= 2

g2

g2
�

− 1. (8.7)

Also, Ū
μ

is defined as Ū
μ =

(

p0+q0
√

s
,

2|p×q|
g
√

s
, 0,

p0−q0

g

)

. We switch to polar coordi-

nates in the form

d p̄ = r2dr sin ψdψdφ, p̄
def= r(sin ψ cos φ, sin ψ sin φ, cos ψ).

Then we obtain

p̄μ Bμ = gr cos ψ.

Then the integral i(p, q) is now equal to

i(p, q) = c′

2p0q0
exp

(

p0 − q0

4

)∫ 2π

0

dφ

∫ π

0

dψ sin ψ

×
∫ ∞

0

r2dr√
r2 + s

δ(gr cos ψ)s�σ(g�, θ�)e

(

p̄μŪμ
4

)

.

We evaluate the last delta function at ψ = π/2 to write i(p, q) as

i(p, q) = c′

2gp0q0
exp

(

p0 − q0

4

)

×
∫ 2π

0

dφ

∫ ∞

0

rdr√
r2 + s

s�σ(g�, θ�) exp

(

− p̄0 p0 + q0

4
√

s
+ |p × q|

2g
√

s
r cos φ

)

.

By using the modified Bessel function of index zero given by (2.47) we have

i(p, q) = c′

2gp0q0
exp

(

p0 − q0

4

)

×
∫ ∞

0

rdr√
r2 + s

s�σ(g�, θ�) exp

(

− p0 + q0

4
√

s

√

r2 + s

)

I0

( |p × q|
2g

√
s

r

)

.

(8.8)
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Now g� ≥ 0 is given by

g2
� = g2 + 1

2

√
s(
√

r2 + s −
√

s), (8.9)

with (8.6) and (8.7). So by (8.4) we obtain a new representation of our gain term

I = Igain = c′

p0
e

p0

4

∫

R3

dq

q0

e− 3
4 q0

g

∫ ∞

0

rdr√
r2 + s

s�σ(g�, θ�)

× exp

(

− p0 + q0

4
√

s

√

r2 + s

)

I0

( |p × q|
2g

√
s

r

)

, (8.10)

We recall that Iloss = 0. We will now find a different expression than Iloss which is

also equal to zero, that will provide suitable cancellation for the term in (8.10) when

we no longer assume that
∫

S2 dω |σ0(cos θ)| < ∞ and
∫

S2 dω σ0(cos θ) = 0.

To this end, we recall the definitions (8.9) and (8.7). This yields

cos θ� = 2g2

g2
�

− 1 =
g2 − 1

2

√
s(

√
r2 + s − √

s)

g2 + 1
2

√
s(

√
r2 + s − √

s)
, (8.11)

using (8.9) above. Then we have

dg2
�

dr
=

√
sr

2
√

r2 + s
.

By differentiating cos θ� with respect to r , we have

d(cos θ�)

dr
= d

dr

g2 − 1
2

√
s(

√
r2 + s − √

s)

g2
�

=
− 1

2

√
s 2r

2
√

r2+s
g2
� − (g2 − 1

2

√
s(

√
r2 + s − √

s))
dg2

�

dr

g4
�

= −1

2

√
s

r√
r2 + sg2

�

−
(g2 − 1

2

√
s(

√
r2 + s − √

s))

g4
�

√
sr

2
√

r2 + s

=
√

sr

2g4
�

√
r2 + s

(

−g2
� − (g2 − 1

2

√
s(
√

r2 + s −
√

s))

)

=
√

sr

2g4
�

√
r2 + s

(

−2g2
)

= − g2
√

sr

g4
�

√
r2 + s

.

Therefore,

d(cos θ�)

dr
= − g2

√
sr

g4
�

√
r2 + s

.
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Since we have assumed that

∫ 1

−1

d(cos θ�)σ0(cos θ�) = 0,

we further have

∫ ∞

0

dr
g2

√
sr

g4
�

√
r2 + s

σ0(cos θ�) = 0,

as cos θ� = 1 and − 1 correspond to r = 0 and r = ∞ respectively, by (8.11). Thus

we obtain

c′

p0
e

p0

4

∫

R3

dq

q0

e− 3
4 q0

g

∫ ∞

0

rdr√
r2 + s

s�(g)σ0(cos θ�)
g4

g4
�

exp

(

− p0 + q0

4
√

s

√
s

)

= 0.

Subtracting this zero integral from (8.10), we obtain

I = c′

p0
e

p0

4

∫

R3

dq

q0

e− 3
4 q0

g

∫ ∞

0

rdr√
r2 + s

s�σ(g�, θ�)

×
[

exp

(

− p0 + q0

4
√

s

√

r2 + s

)

I0

( |p × q|
2g

√
s

r

)

− exp

(

− p0 + q0

4

)

s�(g)g4

s��(g�)g4
�

]

. (8.12)

This is equal to the original integral I = −ζ̃ (p) when the mean value of σ0 is zero.

We also note that (8.12) also holds for (2.30) even when the mean value of σ0 is not

zero. Suppose that
∫

S2 dw |σ0(θ)| < ∞ and that
∫

S2 dw σ0(θ) = 2πc0 �= 0. Define

σ ε
0 (θ) = σ0(θ) − 1[1−ε,1](cos θ)

∫ 1

−1

dt ′
σ0(t

′)

ε
.

Then, we have
∫ 1
−1 σ ε

0 (θ)d(cos θ) = 0 vanishing on ω ∈ S
2. Now, define

ζ̃
ε
(p) =

∫

R3×S2
vø�(g)σ ε

0 (θ)
√

J (q)
(

√

J (q) −
√

J (q ′)
)

dqdω.

Then, also using (2.30), we have

∣

∣

∣ζ̃ (p) − ζ̃
ε
(p)

∣

∣

∣

=
∣

∣

∣

∣

c0

∫

R3×S2
vø�(g)

√

J (q)
(

√

J (q) −
√

J (q ′)
) 1[1−ε,1](cos θ)

ε
dqdω

∣

∣

∣

∣

.

(8.13)
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If cos θ = 1, by Remark 2.1 and e.g. (2.11), (2.6) and (2.8) we have p′μ = pμ and

q ′μ = qμ. Thus, as ε → 0, the difference term in (8.13) → 0 as
√

J (q)−
√

J (q ′) has

a higher order cancellation and hence the integrand vanishes on the set cos θ = 1. By

the higher-order cancellation, an additional cutoff argument shows that the identity

(8.12) holds for the noncutoff kernel σ0 from (2.20).

8.2 First representation of �̃

We will now further split ζ̃ = ζ0 + ζL . From (8.12) for simplicity we write

−I = c′

p0
e

p0

4

∫

R3

dq

q0

e− 3
4 q0

g
K̃ (p, q),

where

K̃ (p, q)
def=
∫ ∞

0

rdr√
r2 + s

s�σ(g�, θ�)

×
[

exp

(

− p0 + q0

4

)

s�(g)g4

s��(g�)g4
�

− exp

(

− p0 + q0

4
√

s

√

r2 + s

)

I0

( |p × q|
2g

√
s

r

)

]

.

Notice that both terms of the integral converge for large r ≥ 1. We further split

exp

(

− p0 + q0

4

)

s�(g)g4

s��(g�)g4
�

− exp

(

− p0 + q0

4
√

s

√

r2 + s

)

I0

( |p × q|
2g

√
s

r

)

=
(

exp

(

− p0 + q0

4

)

− exp

(

− p0 + q0

4
√

s

√

r2 + s

)

I0

( |p × q|
2g

√
s

r

))

s�(g)g4

s��(g�)g4
�

+ exp

(

− p0 + q0

4
√

s

√

r2 + s

)

I0

( |p × q|
2g

√
s

r

)

(

s�(g)g4

s��(g�)g4
�

− 1

)

.

This motivates the following splitting of ζ̃ = ζ0 + ζL with

ζ0
def= c′

p0
e

p0

4

∫

R3

dq

q0

e− 3
4 q0

g

∫ ∞

0

rdr√
r2 + s

s�σ(g�, θ�)
s�(g)g4

s��(g�)g4
�

×
[

exp

(

− p0 + q0

4

)

− exp

(

− p0 + q0

4
√

s

√

r2 + s

)

I0

( |p × q|
2g

√
s

r

)

]

,

(8.14)

and

ζL
def= c′

p0
e

p0

4

∫

R3

dq

q0

e− 3
4 q0

g

∫ ∞

0

rdr√
r2 + s

s�σ(g�, θ�)

× exp

(

− p0 + q0

4
√

s

√

r2 + s

)

I0

( |p × q|
2g

√
s

r

)

(

s�(g)g4

s��(g�)g4
�

− 1

)

. (8.15)
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This completes the derivation of our first representation of ζ̃ (p).

8.3 Derivation of an alternative representation of �̃(p)

For a fixed p ∈ R
3, we would like to have an alternative representation of (2.30):

− ζ̃ (p) =
∫

R3×S2
vøσ(g, θ)

√

J (q)
(

√

J (q ′) −
√

J (q)
)

dqdω
def= Igain − Iloss .

(8.16)

Then exactly as previously we can derive (8.10) for the term Igain . We will now find

an alternative expression for Iloss that will provide suitable cancellation for the term

in (8.10).

To this end, using the definition of Iloss from (8.16) yields

Iloss =
∫

R3
dq

∫

S2
dω vøσ(g, θ)J (q). (8.17)

Since the gain term representation (8.1) results in (8.3) and (8.4), the loss term (8.17)

would yield

Iloss =
∫

R3
iloss(p, q)dq,

where

iloss(p, q)
def= 1

p0q0

∫

R3

dp′

p′0

∫

R3

dq ′

q ′0 J (q ′)s̃σ(g̃, θ ′)δ(4)(p′μ + qμ − pμ − q ′μ),

(8.18)

by following the same argument between (8.1) and (8.4). Note that we have exchanged
q and q ′ variables in the procedure. Then we can easily see that the only difference
between (8.3) and (8.18) is the power on the term J (q ′); i.e., the power on J (q ′) in
iloss(p, q) is twice of that in i(p, q). Therefore, the same derivation results in the new
representation of the loss term similar to (8.8):

iloss(p, q) = c′

gp0q0
exp

(

p0 − q0

2

)

×
∫ ∞

0

rdr√
r2 + s

s�σ(g�, θ�) exp

(

− p0 + q0

2
√

s

√

r2 + s

)

I0

( |p × q|
g
√

s
r

)

.

(8.19)

In particular we have

Iloss = c′

p0
e

p0

2

∫

R3

dq

q0

e− 1
2 q0

g

∫ ∞

0

rdr√
r2 + s

s�σ(g�, θ�)
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× exp

(

− p0 + q0

2
√

s

√

r2 + s

)

I0

( |p × q|
g
√

s
r

)

. (8.20)

Subtracting this integral from (8.10), we obtain

I = c′

p0
e

p0

4

∫

R3

dq

q0

e− 3
4 q0

g

∫ ∞

0

rdr√
r2 + s

s�σ(g�, θ�)

×
[

exp

(

− p0 + q0

4
√

s

√

r2 + s

)

I0

( |p × q|
2g

√
s

r

)

− exp

(

p0 + q0

4

)

exp

(

− p0 + q0

2
√

s

√

r2 + s

)

I0

( |p × q|
g
√

s
r

)

]

.

This is equal to the original integral I = −ζ̃ (p). The representation above also holds

when σ0 does not have mean zero or does not have a bounded integral, as we discussed

in (8.13).

As in (3.3) and (3.4), we take the change of variables r �→ y = r√
s

in I above.

Then, we can write ζ̃ as follows

ζ̃ (p) = c′

π p0

∫

R3

dq

q0

e−q0√
s

g

∫ ∞

0

ydy
√

y2 + 1
s�σ(g�, θ�)

∫ π

0

dφ

×
[

exp(2l − 2l

√

y2 + 1 + 2 j y cos φ) − exp(l − l

√

y2 + 1 + j y cos φ)
]

,

(8.21)

where we use the notations (3.5) and (3.6). This completes the derivation.

9 Proofs of the pointwise estimates

In this subsection we give the proofs of Lemma 2.14, Lemma 2.15, and Lemma 2.16.

Proof of Lemma 2.14 The proof of (2.56) is direct, and (2.57) follows from (2.4) and

the Cauchy–Schwartz inequality. Then (2.59), (2.60) and (2.61) follow from (2.53).

For (2.62) notice that that

p0 − q0 = |p|2 − |q|2
p0 + q0

= (p − q) · (p + q)

p0 + q0
≤ |p − q|.

Then (2.63) is automatic.

Now using (3.5) then equation (2.64) follows from (2.60). And (2.65) is automatic.

The proof of (2.66) requires some development and is from [40]. Now using (3.5) we

have

l2 − j2 =
(

p0 + q0

4

)2

−
( |p × q|

2g

)2

= (p0 + q0)2g2 − 4|p × q|2
16g2

.
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By the definition of g in (2.5), we have

(p0 + q0)2g2 − 4|p × q|2

= (p0 + q0)2(−2 − 2pμqμ) − 4|p × q|2

= (2 + |p|2 + |q|2 + 2p0q0)(−2 + 2p0q0 − 2p · q) − 4|p × q|2

= (2 + |p|2 + |q|2 + 2p0q0)(−2 − |p|2 − |q|2 + 2p0q0 + |p − q|2) − 4|p × q|2

= (2p0q0)2 − (2 + |p|2 + |q|2)2 + (2 + |p|2 + |q|2 + 2p0q0)|p − q|2 − 4|p × q|2

= (2p0q0)2 − (2 + |p|2 + |q|2)2 + (p0 + q0)2|p − q|2 − 4|p × q|2.

We calculate that

(2p0q0)2 − 4|p × q|2 = 4 + 4|p|2|q|2 + 4|p|2 + 4|q|2 − 4|p × q|2

= 4 + 4(p · q)2 + 4|p|2 + 4|q|2,

and

(2 + |p|2 + |q|2)2 = 4 + |p|4 + |q|4 + 4|p|2 + 4|q|2 + 2|p|2|q|2.

Thus, using also (2.4), we have

(2p0q0)2 − (2 + |p|2 + |q|2)2 + (p0 + q0)2|p − q|2 − 4|p × q|2

= (p0 + q0)2|p − q|2 − |p|4 − |q|4 + 4(p · q)2 − 2|p|2|q|2

= (p0 + q0)2|p − q|2 − (|p|2 + |q|2)2 + 4(p · q)2

= (p0 + q0)2|p − q|2 − (|p|2 + |q|2 + 2p · q)(|p|2 + |q|2 − 2p · q)

= (p0 + q0)2|p − q|2 − |p + q|2|p − q|2 = s|p − q|2.

Therefore, we have (2.66). Then (2.67) follows from (2.66) and (2.56).

We will now prove (2.68). The upper bound of g2
� in (2.68) follows from (3.6) with

(2.56). The lower bound of g2
� in (2.68) follows from (3.24) and (2.56). ��

Proof of Lemma 2.15 We will start with (2.81). From (2.47) and (2.77) we have

|K̄ γ (l, j)| � max
0≤x≤1

exp(−l
√

x2 + 1 + j x).

The maximum of the function h(x)
def= −l

√
x2 + 1 + j x occurs at x = 0, x = 1, or

x = x0 = j√
l2− j2

where h′(x0) = 0. Note that h(x0) = −
√

l2 − j2. When x = 1,

we have

h(1) = −
√

2l + j ≤ −
√

l2 − j2.

Thus, we conclude (2.80) and (2.81).

Then (2.78) is a known integral that can be calculated exactly [42] as (2.82). Further

(2.83) is calculated during the proof of Corollary 2 in [40, Corollary 2, pp. 323]. In

particular we can obtain (2.83) from K̃ 2(l, j) = ∂2
l J2(l, j). ��
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Proof of Lemma 2.16 We remark that the proof of (2.84) follows from well known

pointwise estimates. Then (2.85) is a direct consequence of (2.57) and (2.58).

For (2.86), note that (2.11), [59, Proposition 2.7], or [57, pp.12 or pp.58] implies

g2 = g̃2 + ḡ2, (9.1)

and

sin
θ

2
= ḡ

g
. (9.2)

Then, since θ ∈
(

0, π
2

]

, we have ḡ ≤ g̃. Therefore,

g̃2 ≤ g2 ≤ 2g̃2.

This implies (2.86).

For (2.87), we first mention that
s̃�(g̃)g̃4

s��(g�)g4
�

is clearly non-negative. On the other

hand, using (2.70) we have

g̃ ≤ g�, and s̃ ≤ s�.

Since �(g) = C�gρ and ρ ∈ (−2.5, 2) for both (2.21) and (2.22), we have 4−ρ > 0

and

s̃�(g̃)g̃4

s��(g�)g4
�

= s̃ g̃4−ρ

s�g
4−ρ
�

≤ 1.

The proof for (2.88) follows by (3.48) and (3.49).

For (2.90), we note that using (2.8) we have

−2 + 2p′μq ′
μ = (p′μ + q ′μ)(p′

μ + q ′
μ) = (pμ + qμ)(pμ + qμ) = −2 + 2pμqμ.

Similarly, also using (2.8) we have

−2 − 2p′μqμ = (p′μ − qμ)(p′
μ − qμ) = (pμ − q ′μ)(pμ − q ′

μ) = −2 − 2pμq ′
μ.

The proof that p′μ pμ = q ′μqμ is the same. This completes these proofs. ��
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