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Abstract

This paper is concerned with the relativistic Boltzmann equation without angular
cutoff. We establish the global-in-time existence, uniqueness and asymptotic stability
for solutions nearby the relativistic Maxwellian. We work in the case of a spatially
periodic box. We assume the generic hard-interaction and soft-interaction conditions
on the collision kernel that were derived by Dudyriski and Ekiel-Jezewska (Comm.
Math. Phys. 115(4):607-629, 1985) in [32], and our assumptions include the case of
Israel particles (J. Math. Phys. 4:1163-1181, 1963) in [56]. In this physical situation,
the angular function in the collision kernel is not locally integrable, and the collision
operator behaves like a fractional diffusion operator. The coercivity estimates that
are needed rely crucially on the sharp asymptotics for the frequency multiplier that
has not been previously established. We further derive the relativistic analogue of
the Carleman dual representation for the Boltzmann collision operator. This resolves
the open question of perturbative global existence and uniqueness without the Grad’s
angular cut-off assumption.
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1 Introduction

In 1872, Ludwig Boltzmann [17] derived a fundamental equation which mathemati-
cally models the dynamics of a gas represented as a collection of molecules. This is
a model for the collisional dynamics between non-relativistic particles. For the colli-
sional dynamics between special relativistic particles whose speed is comparable to
the speed of light, Lichnerowicz and Marrot [62] have derived the relativistic Boltz-
mann equation in 1940, which is a fundamental model for fast moving particles. The
relativistic Boltzmann equation is written as

pHo F = p°F +cp-V.F =C(F, F), (1.1)

where ¢ > 0 is the speed of light. For this equation the unknown is F = F (¢, x, p)
where the time variable is ¢ > 0, the spatial variable is x € T3 and the momentum
satisfies p € R>. Then the collision operator C (F, F) is given by

d dq’ dp’
cr.6) = [ 5[ S5 [ Bw.ar PG - F@GE
R3 4~ JR3 ¢ R3 P
(1.2)
Here, the transition rate W(p, q|p’, q¢’) is
C
W(p.qlp'4) = 350 (s, 08D (p" +q" — p" —q'"), (1.3)

where o (g, 0) is the scattering kernel measuring the interactions between particles
and the Dirac §-function expresses the conservation of energy and momentum. The
notation for p*, g, p’* and g’* will be defined in §2.1 and (2.8). Here s, g and 6 will
be defined in (2.2), (2.3) and (2.9) respectively.

This equation is a relativistic generalization of the Newtonian Boltzmann equation:

81F+U-VXF=/ dv*/ dw B(v — vy, )[F(V,) F(V')—F(v) F(v)], (1.4)
R3 S2
where

;U F U v — vy , U+ vy [v — vyl

w, v, w,
2 2 2 2

and the collision kernel B depends only on the relative velocity |v — v,| and the
scattering angle w. The mathematical analysis of the Boltzmann equation such as the
well-posedness of the equation or the regularity of the solution crucially depends on
the assumptions on the scattering kernel B(v — vy, ). The kernel B is in general
assumed to be in the form of a product in its arguments as

B(v — vy, w) = W(Jv — v« Dbo(w),

where both W and bg are assumed to be non-negative. This assumption is general and
itincludes the varied kinds of collision kernels such as the hard-sphere collision kernel
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20 Page4of167 J.W. Jang, R.M. Strain

W (Jv—v4|) & |v—wvy], the collision kernel for Maxwellian molecules W (Jv—v,|) &~ 1,
the collision kernel for the inverse-power law potential ¥ (r) = }'1’%1 with B =~ |v —

v*|7’9_7’/b6(9) where y = Z—j, y = %, by, is bounded, and cos 6 = |5:31\ -w, and
the assumption also includes many other kernels.

Both equations model the evolution of a large number of particles interacting via col-
lisions. The classical non-relativistic Boltzmann equation has been widely studied in
many aspects. However, the relativistic Boltzmann equation has received relatively less
attention perhaps because of its complicated structure and the computational difficulty
on dealing with relativistic post-collisional momenta. The relativistic Boltzmann equa-
tion is a correction to the Newtonian equation which will do a better job of describing
fast-moving particles whose speeds may be closer to the speed of light. Understand-
ing the behavior of fast-moving special relativistic particles is crucial in describing
many astrophysical and cosmological processes [61]. Especially, the description of
the dynamics of quark plasma formed in heavy ion collisions will have to involve a
satisfactory understanding in a certain relativistic hydrodynamical equation [34], and
the relativistic Boltzmann equation is a good candidate for describing those relativistic
collisional hydrodynamical models. Further fast moving particles are precisely the sit-
uation where non-cutoff effects can become important. References on the relativistic
Boltzmann equation include [20, 23, 38, 78, 87].

For short range interactions we have collision kernels such as o' (g, #) = constant or
so (g, 0) = constant, and these are the relativistic analogue of the classical hard-sphere
model (although there is no relativistic hard-sphere). However, once we consider the
long-range interactions when particles are fast moving, then o (g, 6) can be very singu-
lar and non-integrable near & = 0. This occurs especially for long-range interactions
and grazing collisions.

The difficulty with the angular singularity can be removed with Grad’s “cut-off”
assumption [41] that 0 € L}OC(R3 x S§?). In this case, we say that the Boltzmann
equation is in the “cutoff" regime. Otherwise, we call it the Boltzmann equation with-
out angular cutoff; sometimes this is called the “non-cutoff” regime. This cut-off
assumption is indeed very powerful in the mathematical analysis, as it removes the
singularity from the angular kernel and allows one to split the gain and the loss terms
of the Boltzmann operator.

However, it has been well-known that the regularity of a solution to the Boltzmann
equation depends crucially on the assumption. For the angular kernel with the Grad
cutoff, it has been known to propagate singularities [18, 28]. On the other hand, it
has been known that the Boltzmann equation without angular cutoff has smoothing
effects [3, 53, 55, 65]. In the case without angular cutoff, one has to make use of the
cancellation between the gain and the loss terms to estimate the angular singularity.
Without angular cutoff the Boltzmann operator behaves as the fractional Laplacian on
a lifted paraboloid of the energy-momentum four-vector [45].

Unfortunately, to the best of our knowledge, the relativistic Boltzmann equation has
not been studied without the “cut-off”” hypothesis though the case when the collisions
tend to be grazing is very important. In this paper we study the relativistic Boltzmann
equation without assuming the angular cut-off hypothesis which would give a better
understanding on the long-range interactions of relativistic particles.
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1.1 A Brief History of Previous Results on the Relativistic Boltzmann Equation

The special relativistic Boltzmann equation was first derived in the paper by Lich-
nerowicz and Marrot [62] in 1940. In 1967, Bichteler [16] showed the local existence
of the solutions to the relativistic Boltzmann equation. In 1989, Dudynski and Ekiel-
Jezewska [32] showed that there exist unique L? solutions to the linearized equation.
Afterwards, Dudynski [30] studied the long time and small-mean-free-path limits of
these solutions. Regarding large data global in time weak solutions, Dudynski and
Ekiel-Jezewska [33] in 1992 extended DiPerma-Lions renormalized solutions [26]
to the relativistic Boltzmann equation using their causality results from 1985 [31].
Recently, Wang [90] proved the global well-posedness of the relativistic Boltzmann
equation with perturbative large amplitude initial data.

In 1996, Andreasson [11] studied the regularity of the gain term and the strong L'
convergence of the solutions to the Jiittner equilibrium which were generalizations of
Lions’ results [63, 64] in the non-relativistic case. He showed that the gain term is
regularizing. In 1997, Wennberg [91] showed the regularity of the gain term in both
non-relativistic and relativistic cases.

Regarding the Newtonian limit for the Boltzmann equation, there is a local result by
Calogero [19] and a global result by Strain [81]. Also, Andreasson, Calogero and Illner
[12] proved that there is a blow-up if only with gain-term in 2004. Then, in 2009, Ha,
Lee, Yang, and Yun [48] provided uniform L>-stability estimates for the relativistic
Boltzmann equation. In 2011, Speck and Strain [77] connected the relativistic Boltz-
mann equation to the relativistic Euler equation via the Hilbert expansions. The gain
of regularity for the gain operator was proved in [58] for hard- and soft-interactions.
The propagations of L', L, and L? estimates were proved in [85], [60], and [59],
respectively.

Regarding problems with the initial data nearby the global Maxwellian equilibrium
(2.12) that we consider in this paper, Glassey and Strauss [40] first proved there exist
unique global smooth solutions to the equation on the torus T? for the hard-interactions
in 1993. Also, in the same paper they have shown that the convergence rate to the rela-
tivistic Maxwellian is exponential. Their assumptions on the differential cross-section
covered the case of cut-off hard-interactions. In 1995 [37], they extended their results
to the whole space and have shown that the convergence rate to the equilibrium solu-
tion is polynomial. Under reduced restrictions on the cross-sections, Hsiao and Yu [52]
gave results on the asymptotic stability of Boltzmann equation using energy methods
in 2006. In 2010, Yang and Yu [92] proved time decay rates in the whole space for
the relativistic Boltzmann equation with hard-interactions and for the relativistic Lan-
dau equation. In 2010, Strain [80] showed that unique global-in-time solutions to the
relativistic Boltzmann equation exist for the soft-interactions with cut-off. Recently,
Duan and Yu [27] have shown the global wellposedness for the relativistic Boltzmann
equation for soft-interactions in the weighted L°° perturbation framework. We also
mention a recent result [13] on the global wellposedness for the relativistic quantum
Boltzmann equation for both Bosons and Fermions near equilibrium. In addition, we
would like to mention that Glassey and Strauss [39] in 1991 computed the Jacobian
determinant of the relativistic collision map.

@ Springer



20 Page6of 167 J.W. Jang, R.M. Strain

1.1.1 On the Newtonian Boltzmann Equation Without Angular Cut-Off

Regarding non-relativistic results for the spatially homogeneous Boltzmann equation
without angular cutoff, we refer to results on moment propagation [36, 71, 88] and the
results on instantaneous smoothing effect [15]. For the existence of measure-valued
solutions, we have [68].

Regarding non-relativistic results with non-cutoff assumptions, we would like to
mention [2] for the entropy dissipation and regularizing effect and [24] for the instan-
taneous smoothing effect. For the existence theory, we have the work by Alexandre
and Villani [1] on renormalized weak solutions with non-negative defect measure.
Also, we would like to record the work of Gressman and Strain [43, 44] on the global
existence of unique solutions close to the Maxwellian equilibrium. The large time
decay in the whole space for these solutions was shown in [76, 83]. We also mention
that Alexandre, Morimoto, Ukai, Xu, and Yang [3—7] obtained the proof of the global
existence of unique solutions with non-cutoff assumptions, using different methods.
We would like to mention the work by the same group [8] from 2013 on the local exis-
tence with mild regularity for the non-cutoff Boltzmann equation where they work
with an improved initial condition and do not assume that the initial data is close to
a global equilibrium. Local existence with large polynomially decaying initial data
has been recently proven by Henderson, Snelson and Tarfulea in [50]. Morimoto and
Sakamoto [67] have recently proven the existence of unique global solutions close
to equilibrium in a critical Chemin-Lerner space. We mention also the works in [9,
10, 49, 51]. Stability of the vacuum state has been recently established in [22], build-
ing upon [66]. Also a new regularization mechanism was developed in [75], a weak
Harnack-type inequality for the Boltzmann equation has been proved in [54], and the
C®° regularization estimates are proven in [55]. Recently, the construction of unique
global solutions with low regularity using the Wiener algebra L }c in the x variables
was introduced in [29].

2 Statement of the Main Results and Strategies

In this section, we will introduce a reformulation of the equation (1.1) by the lin-
earization around the relativistic Maxwellian equilibrium. Before we introduce the
reformulated problem including stating our main hypothesis on the scattering kernel
and our main theorems, we first introduce several notations that we will use throughout
the paper.

2.1 Notations

Throughout the paper, we denote A < B if there exists a uniform constant C > 0 such
that A < CB.If A < B and B < A, then we denote A ~ B. We define B, = B(0, r)
to be the standard ball of center zero and radius r > 0.

The relativistic momentum of a particle is denoted by a four-vector representation
p"* where u = 0, 1, 2, 3. Without loss of generality we normalize the mass of each
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particle m = 1. We raise and lower the indices with the Minkowski metric p, =
nuwp”, where the metric is defined as n,, = diag(—1,1,1,1) is a 4 x 4 matrix.
The signature of the metric throughout this paper is (— 4+ +4). The inverse of the
Minkowski metric is denoted n*V = diag(—1, 1, 1, 1). In general, Latin indices i, j,
etc., take values in {1, 2, 3}, while Greek indices «, A, i, v, etc., take on the values
{0, 1,2, 3}. With p = (pl, p2, p3) € R3, we write pt = (po, p) where po, which is
the energy of a relativistic particle with momentum p, is defined as p° = \/c2 + | p|?
where |p|?> = p - p. We use the standard Euclidean dot product: p - ¢ = Z?:l Piqt.
We use the notation p* to both denote the component p and also to denote the vector
(p°, p) without ambiguity. We furthermore use the Einstein convention of implicit
summation over repeated indices with one up and one down. The product between
the four-vectors with raised and lowered indices is the Lorentz inner product which is
then given by

3 3
p”‘]ﬂ = pp«qull = Z Zpl‘qul/« = —Poqo +p-q.
n=0v=0

Note that the momentum for each particle satisfies the mass shell condition p* p,, =
—c? with p¥ > 0. Also, the product p"q, is Lorentz invariant as described in Defini-
tion 2.13.

By expanding the relativistic Boltzmann equation (1.1) and dividing both sides by
p° we write the relativistic Boltzmann equation as

WF+p-VoF =Q(F, F), F@=0,x,p)=Fo(x,p), 2.1

where Q(F, F) = C(F, F)/p and the normalized velocity of a particle p is given
by

P P
p=c5=

p° ST+ pl2/e?

We define the quantities s and g which respectively are the square of the energy and
the relative momentum in the center-of-momentum system, p + g = 0, as

s=s(p", g") = —(p" + 4"V (pu +qu) = 2(=pqu +c*) =0,  (2.2)

and

g =g8(p". ¢") =V (P* — g (pu — qp) = /2(—ptqu — c2). (2.3)

Note that we have s = g2 + 4c2. We now rewrite the quantities s and g from (2.2)
and (2.3) withc = 1 as

s=s(p"*, ¢")=—-p" +9")(pu +q.) =2(=p'qu+1) =0, (2.4)
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20 Page8of167 J.W. Jang, R.M. Strain

and

g=2g(". ¢") =V (p" —a")(pu — qu) = 2(—ptq, — 1). (2.5)

Now we have that s = g2 + 4. Similarly we can define g as the relative momentum
between p'* and p* in the center-of-momentum system. It is defined as

FE (" ") = [0 = PPl = p) = 2P p = )

2.6
10 -0 , |P_P/|2+|P XP/|2 ( )
=200"p" =p"-p—1D = 2—— .
ppP+p-p+1
In the same manner, we define the relative momentum between p* and g* as
g=g(p™ g = \/(p’“ —q") (P, —qu) = \/2(—17’“% -1
2.7

2 2
= 200 = p' g — 1) = P gl 1P x g1
p/0q0+p’-q+l

Again we have 5§ = g2 +4 and § = §2 + 4. These important quantities will be used

extensively in the proofs below.
The conservation of energy and momentum for elastic collisions is described as

Pt = g, (238)
Then the scattering angle 6 is defined by

(" —a" (P, —aq,)

cosf =
g2

(2.9)

Together with the conservation of energy and momentum in (2.8), it can be shown
that the angle and cos 0 are well-defined [38]. Note that the numerator of cos 6 can be
further written as

" = a" P, —q,) = P" =" (pu + 9, —2q,)
=" = 4" (pp — qu) + 200" — 4"V qu — q,)
=8>+ 200" — 4"V qu — q])
=g*+20p" — p* + p"* = g")(P), — P
=g —20p" = p")P), — p) + 200" — 4" (P}, — pp)

=g =28 +2(p" — ¢")(p}, — pu) = g* — 23"
(2.10)
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As above, we note that it follows from the collision geometry (2.8) that

" =" p, — pw) =0.

Therefore, using (2.10) with (2.5) and (2.6) we can write

0 =2
1—251n25=c059=1—2g—2, @2.11)
g

and hence we obtain that 6 ~ (%. This estimate will be used frequently in §3.

Remark 2.1 Since we are dealing with the non-cutoff relativistic Boltzmann equation
then there will be an angular singularity when cos & = 1 as in (2.20). The purpose of
this remark is to explain the collisional geometry when cos6 = 1. By (2.11) when

=2
cos6 = 1 we have §7 = 0 which means

0=2"=p" = p")(pu—p))-
Equivalently, this means that

" =pN2=1p' - pl

And this implies that p* = p’® and p = p’ because otherwise

/

1p° — p = 1P = Ip

- p/0+p0 _p|

<lp

Therefore, if cos @ = 1, we have p’* = p* and also ¢’* = g* by (2.8).

Here we would like to introduce the relativistic Maxwellian which models the equi-
librium solutions, also known as Jiittner solutions. These are characterized as a particle
distribution which maximizes the entropy subject to constant mass, momentum, and
energy. They are given by

_ e
5T

J(p) = ——,
47TCkBTK2(kB—T)

where kp is Boltzmann constant, T is the temperature, and K5 stands for the Bessel
function K»(z) = % f loo dt e (1> — 1)%. Throughout this paper, we normalize all
physical constants to 1, including the speed of light ¢ = 1. Then we observe that the
relativistic Maxwellian is given by

—p0

e
J(p)=—. (2.12)
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20 Page 10 of 167 J.W. Jang, R.M. Strain

2.2 Relativistic Collision Operator

We now consider the center-of-momentum expression for the relativistic collision
operator. Note that this expression has appeared in the physics literature; see [23]. For
other representations of the operator such as Glassey—Strauss coordinate expression,
see [11, 39, 40]. Also, see [81, 82] for the relationship between those two representa-
tions of the collision operator. As in [23], one can reduce the collision operator (1.2)
using Lorentz transformations and get

Q(f.h) = /R3 dq /sz dw ve0 (g, )L f (gHh(p) = F(@Oh(P)], (2.13)

where vy = vg(p, q) is the Mgller velocity given by

P 2 |p 2 gs
wp. )= || 55— 5 = |5 < L[ = Vi (2.14)
p pq

The post-collisional momenta in the center-of-momentum expression are written as

,_Pta _ r+q) o

p=tyt (et e ne o ). 2.15)
and

,_Ptg _ r+qg o

e CRCE R G e | (2.16)

where & = 214 +q
For F, G smooth and vanishing sufficiently rapidly at infinity, it turns out [38] that
the collision operator satisfies

/Q(F, G) dp:/pQ(F, G) dp:/pOQ(F, G)dp =0, (2.17)
and
/Q(F, F)(14+1logF)dp <O. (2.18)

Note that (2.17) leads to the conservation laws of total mass, momentum, and energy

as
d 1
—/ dx/ dp| p | F(t,x,p)=0.
dt Jp3 R3 pO
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Also, (2.18) leads to the Boltzmann H-theorem which states that the entropy of the
system is a non-decreasing function of #; i.e., we have

d

- de dp (=Flog F)(t,x, p) = 0,
dt Jr3 R3

where the expression —F log F is called the entropy density.

2.3 Main Hypothesis on the Collision Kernel ¢

The relativistic Boltzmann collision kernel o (g, €) is a non-negative function which
only depends on the relative velocity g and the scattering angle 6. We assume that o
takes the form of the product in its arguments; i.e.,

o(g,0) o D(g)op(0). (2.19)

In general, we suppose that both ® and o are non-negative functions.
Without loss of generality, we may assume that the collision kernel o is supported
only when cos @ > 0 throught this paper; i.e., 0 < 6 < % Otherwise, the following

symmetrization [38] will reduce to this case:

0(g,0)=1[0(g,0)+ 0(g, —0)lcos6>0,

where 14 is the indicator function of the set A.
We suppose that the angular function 6 +— o () is not locally integrable; for some
C > 0, it satisfies

C
<sinf -og(F) <

T
= <omye ve@n, vee(0.3] @20

Notice that we do not assume any “cut-off”” hypothesis on the angular function [41]

that o9 € L l] oc (S?). We further assume the collision kernel satisfies the following

hard-interaction assumption:
d(g) =Copg?, -y <a<2, Co>0. (2.21)
In the soft-interaction case we assume that
®(g)=Cog ", y<b <min{%+y,2}, Co > 0. (2.22)

For these expressions we introduce the following unified notation

(2.23)

__ | a for the hard-interactions (2.21),
P =1 —b for the soft-interactions (2.22).
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20 Page 12 of 167 J.W. Jang, R.M. Strain

Then we generally have for both hard (2.21) and soft (2.22) interactions that
®(g) = Cog”, Co >0.

We further remark that the conditions above imply that 0 < a +y < 2 + y and
max{—%, —2 4y} < —b+ y < 0so that in general

3
max{—z,—Z—i—y} <p+y<2+y.

These are the assumptions on the kernel that we will use throughout this paper.

These assumptions on our collision kernel have been motivated from important
physical interactions. Conditions on our collision kernel are generic in the sense of
the collision kernel assumptions derived by Dudyiski and Ekiel-Jezewska in [32]. In
this work we do not study the high order singularities when y € [1, 2) for (2.20).
Our results can further cover the case of Israel particles from [56]. Unfortunately, to
the best of our knowledge, the relativistic Boltzmann equation has not been studied
without the “cut-off” hypothesis. This problem was also discussed in the appendix to
[74]. In this paper we will study the relativistic Boltzmann equation without assuming
the Grad’s angular cut-off hypothesis in order to try to obtain a better understanding
of relativistic gases. We include several additional physical references that discuss
the special relativistic Boltzmann collision kernels [20, 23, 25, 32, 34, 35, 56, 72-74]
including those with an angular singularity such as in (2.20). Some of these are also
discussed in [81, Appendix B].

2.4 Linearization and Reformulation of the Boltzmann Equation

We will consider the linearization of the collision operator and the perturbation around
the relativistic Jiittner equilibrium state

F(t,x,p)=J(p)+JIJ(p)ft, x,p). (2.24)

Without loss of generality, we suppose that the mass, momentum, and energy conser-
vation laws for the perturbation f (¢, x, p) hold for all # > 0 as

1
/R3 dp [JF dx | p |\vJ(p)f(t,x,p)=0. (2.25)

PO

We will now linearize the relativistic Boltzmann equation (2.1) with (2.13) around the
relativistic Maxwellian equilibrium state (2.24). We obtain that

Wf+p-Vuf +L(f)=T(f, f), fO,x,v) = folx,v), (2.26)
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where the linearized relativistic Boltzmann operator L is given by
L) = =700 NI =17 2T f. 1)
= [ da [ do v o) (1@
+ FPVIT@) = F@WIP) = FEWI@)VI@).

and the bilinear operator I" is given by

C(f,h) = 72T, Th)

27)
= /R dq /S 4w vy0 (2, 0T (@) (f @) = [ (@h(p)).
Then notice that we have
L(f)=~T(f,vJ) =TI, f). (2.28)

We will further decompose L = N + K.
We call N as the norm part and K as the compact part. First, we define the weight
function ¢ such that

rWJ, f)= <fR3 dq /82 dw veo (g,0)(f(p) — f(p))\/J(q’)\/J(q))
—Z(p) f(p). (2.29)

where

i 2 [ da [ dowote0)/T@ —VI@WI@. @30

We now call Z(p) the frequency multiplier of the linearized Boltzmann collision
operator. It is crucial to obtain the sharp asymptotic behavior of (p) for the proof
of the coercivity estimates of the linearized relativistic Boltzmann operator without
angular cutoff, which will be used crucially for the proof of the global well-posedness
of the relativistic Boltzmann equation without angular cutoff nearby the Maxwellian
equilibrium (2.12).

The weight function Z (p) can be split into the sum of two weight functions as

(=4

where the weights satisfy the following asymptotics; for any ¢ € (0, y/2), there exists
a finite constant C, > 0 such that under (2.23) we have

P Pty
5t+e

1G] S Ce(p?) and  ¢(p)~ (") 2 (2.31)
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These asymptotics are proven in Theorem 2.3. Further ¢ and i are defined precisely
in (3.16) and (3.17).

This splitting motivates the following splitting of the linearized operator L: the
compact part /C of the linearized Boltzmann operator L is defined by

Kf=¢(p)f =T~
=P f — /R3 dq /sz dw veo (8,0 T (@) (f (g I () — f@VI(p)),

(2.32)
and the sharp norm part is called A and it is defined by
Nf=-TWI. f)=txp)f
= ¢(p)f — /R g /S do vy0 (8. 0)((0) = FPIVIT @I @)
(2.33)

Then, the norm part satisfies that

1
NFf. )= E/RS dp/lR3 dq /sz dw ve0 (g, 0)(f(p) — F(P)*VI (@I (q)

+ fR A ()PP 234)

This holds because a pre-post collisional change of variables (p, ¢) — (p’, ¢’) as in
(2.94) provides

) /R v /R “ /§ do v0 (g, 0)(f (p') = F (PP T @V T (9)
1
2 /R* dp /R 4 /s dw ve0 (3, 0)(f(p) — F(PDR(PIV T ()T (@)
1
_ E/ﬂ@ dp/;@ dq /;2 dw vgo (g,0)(f(p) — f(p/”h(P’VTq)\/qu)

1
=5 [ar [ da [ dorvuote. 000 = )06 ~ BTG ITD.

With this computation in mind we define a fractional semi-norm as

def l /
RS [ ap [ da [ dowo o o) - o7 I@I@

For / € R, we also define the unified weight function
w'(p) = (") (2.35)
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Then we further define a non-local fractional weighted semi-norm | f'|g, as:

wr 1
IfI5, = /dl?/ dQ/dwvch(g,@)w (PP = FPY NI (@I (@)

(2.36)

These norms appear in the process of linearization of the collision operator.

2.5 Spaces

Before introducing our methods and strategies, we would like to define several function
spaces that we use throughout this paper.
We will use (-, -) to denote the standard LZ(R?,) inner product. Also, we will use

(-, -) to denote the L2(']I‘)3€ X R;) inner product. As will be seen, the construction of
our solutions depends on the following weighted fractional Sobolev space:

177 Z{f € LXR}) : |10y < 0o},

where the norm is described as

_ 2
1 E111,, s [ ap [ LEIZT o0y,

(2.37)

and we use the notation (2.23) to define p with (2.21) and (2.22). Here we further
define the weighted L?norm | - | L? for/ € R as

def

f1p2 —/ dp w'(p)| f(p)I*.
]R3

This is a standard weighted isotropic L based fractional derivative norm that is known
to be finite for a large class of functions. We remark that the norm is flat and not
geometric, and this is one of the main differences from the non-relativistic case. We
discuss this further in (2.42)—(2.43)—(2.44)—(2.45).

The notation on the norm | - | refers to function space norms acting on R?, only. The

analogous norm acting on ']I‘i X R; is denoted by || - ||. So that we have

def

11300 £ 1 Loy 122 o).

Given the weight (2.35), using p from (2.23) we also define a general weighted frac-
tional Sobolev norm as

2
s
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_ 2
fILz /dpf dp' w?(p )(f|(p) /f;(fy)) PP T s,

(2.38)

where as usual p = a under (2.21), and p = —b under (2.22). Then similarly

def

LA Z 01 N Wz,

2

The multi-indices @ = («', @2, &) will be used to record spatial derivatives. We write

9% = 9% 9o’ g’

Xl TX2 X3t

If each component of « is not greater than that of o', we write o < o’. Also, @ < o’
means & < o and |o| < |&'| where |o| = a! + «® + . We further define the
derivative space 1 1/\),”/(11’3 x R3) with integer N > 0 spatial derivatives by

2 2 2
LA = 1 o gy = 2 10 F Iy s

le| <N

We also define the weighted derivative space I}’ P (T3 x R?) whose norm is given by

2 2
130 = 1 W cpsmsy = D 19% £l sy

le| <N

We define the space HY = HN (T3 x R?) with integer N > 0 spatial derivatives as

1w = I W sy = D 19 Fll720m wms)-

la|=N

We then define the space HY = H (T* x R?) by

2 2 1 2
LIy = 1 Wy = D 10" 720 gy
le] <N

We sometimes denote the norm || f ||i1 vas|f ”%1 for simplicity when there is no risk

of ambiguity. We remark that we always use N to denote the number of derivatives,
and we always use [ to denote the order of the weights so there is no ambiguity.

We will also consider the spatial derivative of I'. Recall that the linearization of
the collision operator is given by (2.27) and that the post-collisional variables p’ and
q' satisfy (2.15) and (2.16). Then, we can define the spatial derivatives of the bilinear
collision operator I" as

T (f.h) =) CoaT @ f,0h), (2.39)

o' <a
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where C, o/ are non-negative constants.
Now, we state our main result as follows:

Theorem 2.2 (Main Theorem) Fix N > 2, which represents the total number of spatial
derivatives. Choose fy = fo(x, p) € H}Y, (T* x R?) in (2.24) which satisfies (2.25).
For the hard-interactions (2.21) and the soft-interactions (2.22) we can take anym > 0
and l > 0 for the existence and uniqueness.

There is an no > 0 such that if || fol| HY (T3 xR5) < no, then there exists a unique

global solution to the relativistic Boltzmann equation (1.1), in the form (2.24), which
satisfies

[, x, p) € L(10, 00); HY (T x RY) N L7 (0, 00); I/ (T x RY)),

where we use the notation from (2.23).
For the hard-interactions (2.21) we have exponential decay to equilibrium. For
some fixed ). > 0 and for any | > 0, we have the uniform estimate

e—)»ll

1 1
lw' f Ol gy s xrsy S |w” foll v (13 xR3)-

Furthermore, for the soft-interactions (2.22), fixanym > O andl > |p + y|/4 > 0,
then for | foll HY (T3xR?) sufficiently small, we further have the polynomial decay
+m

2m
lo+yl \
lw! £ Ol g s sy < 1w foll v ers gy (1 + Cim t :

for some constant C; ,, > 0.

2.6 Main Estimates

The proof of Theorem 2.2 heavily depends on the establishment of a global in time
energy inequality. For this, we needed to obtain sharp upper- and lower-bound esti-
mates for the linearized operator L and the nonlinear operator I'. In this section, we
would like to record our main upper and lower bound estimates of the inner products
that involve the operators E I, L, K, and NV from (2.27)—(2.33). The proofs of these
estimates are given in §3, §4 and §5. In general we will prove these estimates in the
class of Schwartz functions. However all of these estimates can be justified in general
by standard approximation procedures.

In the theorem and the lemmas below we use p = a in the hard-interaction case
(2.21) and p = —b in the soft-interaction case (2.22), as in (2.23).

Theorem 2.3 The frequency multiplier Z(p) from (2.30) can be split into the sum of
two frequency multiplier functions as

¢ =1¢+ ik,
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which are defined in (3.16) and (3.17) respectively. These multiplier functions satisfy
the following asymptotics:

pty
2

S+
it (p)] < Ce(PH ™" and  t(p)~ (P°) 7. (2.40)
Here, for any small ¢ > 0 there exists a finite constant C. > 0 as above.

Theorem 2.4 We have the following uniform estimate
KOO h),ml S 1 f g2 lhliey Inler .
Lemma 2.5 Suppose that |a| < N with N > 2 and | > 0. Then we have the estimate
(w0 T 1, 9 ) 1S IF g Il g 10l
Lemma 2.6 We have the uniform inequality for KC that

(WK S = €lf o + Cel Fla,

where € > 0 is any small number and C. > 0 is a finite constant.

Lemma 2.7 We have the uniform inequality for N that
(W NF NS 1S
Lemma 2.8 We have the uniform coercive lower bound estimate:
W NF, Y21 o = Cl o,

for some C > 0 and for anyl € R. If | = 0, then we can take C = 0.

Lemma 2.7 and Lemma 2.8 together imply that the norm piece is comparable to
the fractional Sobolev norm /°-V as

NF Y=oy (2.41)

We lastly have the coercive inequality for the linearized Boltzmann operator:

Lemma 2.9 For some C > 0, we have the uniform lower bound
WXL, ) 2 1f s = ClF 150y

Note that Lemma 2.9 is a direct consequence of Lemmas 2.6 and 2.8 simply because
L = K + N from (2.32) and (2.33).
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2.7 Main Difficulties and Our Strategy

In this section, we will explain the main difficulties that we have experienced and
how we resolved those issues. And we will further explain several new ideas and
techniques that we developed in the course of the proof. We will begin with the
following discussion regarding the sharp linearized norm for the Newtonian Boltzmann
equation (1.4) in comparison to the relativistic Boltzmann equation (2.1).

‘We mention that the unique global solutions to the Newtonian non-cutoff Boltzmann
equation constructed in [44] depend on the non-isotropic geometric fractional Sobolev
space N*-# with the following norm:

def , (f(v’) - f(v))2 ,0+2v
Bees 2115+ [ av [ av L L () o) " e
(2.42)

Above the parameters satisfy s € (0, 1) and p > —3, and (v) = /1 + |v|?. Further
d(v, V') is an anisotropic metric on the “lifted" paraboloid:

d o SV AT .
. v) = \/'” v < 2 2

Note that the inclusion of the quadratic difference in the metric is essential and it is
not a lower-order term. Further [45] shows that the sharp diffusive behavior of the full
nonlinear Newtonian Boltzmann collision operator (1.4) is the same as the linearized
norm in (2.42).

Alexandre, Morimoto, Ukai, Xu, and Yang also proved the global existence of
unique solutions to the non-cutoff Boltzmann equation [4-7], and they used the triple
norm which is given by

|||f|||=/ dv/ dv*/ doB(v — vy, 0)
R} IR s?

x [ ) = FOD? + PG = Vr@)?]. @43

This norm ||| ||| can be shown to be equivalent to | f |%vx~ » In (2.42) as in [4-7, 44].
Further Alexandre, Hérau and Li [9] have derived the sharp linearized diffusive
behavior using pseudo-differential operators as follows:

—(Lf, P+ £

~ /R3 dv <<v>” (D)’ fP + ()] (v A Dy)* f@)]* + (v)° |f(v)|2> :
(2.44)

Here L is the linearized Newtonian Boltzmann collision operator [9]. This expression
holds for Schwartz functions f and for any / € R, where the implicit constant will
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depend upon /. Since these three expressions (2.42), (2.43) and (2.44) all in some sense
sharply characterize the diffusion of the linearized Dirichlet form (L f, f) for the
Newtonian Boltzmann equation (1.4), then they equivalently show the non-isotropic
behavior of the fractional diffusion in the Newtonian case.

On the other hand, when it comes to the relativistic situation, due to the collisional
geometry as in (2.8) the analogous metric d(p*, p'*) to (2.42) is the metric on the
“lifted" hyperboloid between two energy-momentum 4-vectors:

d(p", p™) = \/Ip — PP+ 1p° = pO

Note that, different from the non-relativistic analogue | - | ys.» in (2.42), our semi-norm
for the relativistic case (2.37) behaves like a weighted fractional Sobolev norm, as
we will observe that the Euclidean distance d(p*, p’*) between energy-momentum
4-vectors p* and p’* on a “lifted” hyperboloid in R* is indeed equivalent to the
standard 3-dimensional Euclidean distance |p — p’|. This is because we have

=P =@ = +1p— PP =dp", p"),

and that when p # p’ we have

0_ 0 = p? = 1p'P1 _ llpl = 1P 1Pl + 1P

— < _ N < _ /.
20+ po 201 p Pl = 1Pl =1p = Pl

Ip

These two expressions together result in
Ip =PI <d(p", p") < V2Ip—~ p'l. (2.45)

This discussion shows that in the special relativistic situation the bounded momentum,
p/pY, and the linearly growing collisional energy conservation, p® + ¢ = p° +
¢, cause the non-cutoff diffusion of the relativistic Boltzmann collision operator to
be isotropic as in (2.37). This contrasts with the Newtonian case (1.4) where the
momentum, v, grows linearly and the collisional energy conservation, [v'|? + [v.|? =
[v]? + |vg|?, is quadratic and the fractional diffusion is non-isotropic as in (2.42)—
(2.43)—(2.44). The isotropic diffusion in the special relativistic case allows us to use
standard Littlewood—Paley operators when we prove our main estimates and avoids
the complexity of non-isotropic diffusion.

Even with the isotropic diffusion, there are major difficulties in the special rela-
tivistic case in merely establishing the required cancellation estimates as we will now
explain. Indeed in 1991 Glassey and Strauss [39, Proof of Theorem 2] calculated a
sharp estimate which showed that the p-derivatives of p” and ¢’ exhibit some momen-
tum growth in the Glassey—Strauss coordinates [47, Equation (1.18)]. This momentum
growth of the first derivatives of p’ and ¢’, which does not occur in the Newtonian
case, can be highly problematic as seen in [47].

Further, to establish the cancellation estimates of the non-local diffusion the stan-
dard approach is to do a change of variables of the form p’ — p or ¢’ — g. This was
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the foundation of the “cancellation lemma” [2] for the Newtonian Boltzmann equation
(1.4). This Newtonian cancellation lemma can be stated as

/ dv/ do B(v — vy, 0)(F(V') — F(v)) = (F % S)(vs), (2.46)
R3 S2

where

S(z) = C3lz|”, 0 <C3 < o0,

This holds for a general class of functions F for a Newtonian collision kernel such
as B(v — vy,0) & |v — v*|p9_2_2“ with p > —3 and s € (0, 1). The main tool
in proving this cancellation lemma is the change of variables v’ — v with Jacobian
determinant

dv’

1 1
| = Z(cos(@/zn2 >2>0 0=0<

SRS

This Newtonian cancellation lemma (2.46) and the associated change of variables
v/ — v, and generalizations, have been a foundation for proving cancellation estimates
for the Newtonian Boltzmann equation without angular cutoff.

However the analogous relativistic Jacobian determinant has been shown to be
highly problematic. Indeed, it has been numerically calculated using high precision

arithmetic recently in [21] that the Jacobian determinant ) £ ‘ has a huge number of

distinct points at which it is essentially zero. This motlvated us to look for a counter-
example.

Now in §3 we will introduce a counter-example to a relativistic cancellation lemma,
such as (2.46), in the following sense. We formally write down the following relativistic
quantity:

dsl'l
(e /dCI/dwvwd(g 0)(J(q) — J(Q))—El(p) 4“2(19)

Recall the relativistic Maxwellian, J(g), (a Schwartz function) is given by (2.12).
Then in §3 we have shown for a fixed constant ¢’ > 0 that

( ) / dq e 2‘] / rdr ( )
{ p s,0(gx, 0
1 ,—rz A Xy UA

iR

We take this opportunity to record the following modified Bessel functions:

w 1 2 1 2
Iy(y) = / dgexp(ycosg), Ii(y) = —/ d¢ cos ¢ exp(y cos ).
2w Jo 21 Jo
(2.47)
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We also define the notations
1
g =82+§«/E(VV2+ —V5), si=gl+4,

and

27 8 aSWP sV
5 &+ VW s = )

cos b =

. ~B .
Then with all the terms defined we observe that ¢ (p) represents a finite integral
because it contains exponential decay in both the ¢ and the r variables. However, if

we consider the term in Ef (p) with J(q") only, then in §3 we derive that

EB( ) C// dQE_"O /°° rdr (2. 62)

P)=—% Y 510 (8, On)-

? P Jwd® ¢ Jo VPt

Here we can assume that the angular kernel oy from (2.20) is for example pointwise

. . . e . . ~B . .
bounded. Then we see that the dr integration becomes infinite in £, (p), since this

. . . . ~B
term no longer contains sufficient decay in the r variable.! Therefore ¢ 5 (p) = oo,
and we can rigorously justify this argument using standard approximation procedures.
This shows that the relativistic analog of the Newtonian cancellation lemma in (2.46)
is false.

Remark 2.10 This illustrates that the crucial change of variable in cancellation lemma,
q' — q (or (¢, w) — (g, k) for some |k| = 1) as stated in [2] for the Newtonian
Boltzmann equation, is not well defined in the special relativistic case. This statement
is further independent of our choice of coordinate representations of (p’, ¢’), such as
for example (2.15).% Indeed, if the change of variables ¢’ — g held with an integrable

Jacobian then Ef (p) would be finite.

Since we do not have a cancellation lemma, or the crucial change of variables
from g’ — q or p’ — p, instead we introduce the following novel series of changes
of variables in order to estimate the cancellation of the fractional derivatives in the
relativistic Boltzmann equation. If we consider the norm term from (2.33), and we
take the LZ(R;) inner product with n(p) then we will have to estimate a term like

1
5/11@3 dp n(p) /ﬂ@ dq /s,z dw veo (g,0)(f(p") — fF(PHVI (@) (q). (2.48)

For a term such as this one, we may use the reduction of the delta function of the
conservation laws (2.8) in the center-of-momentum frame as in [23], [79, (5.39)] and
[82, Theorem 1.2] to obtain the following representation of an operator:

1 Although notice that one could make the dr integration finite by artificially assuming rapid decay in
(2.22). But this is outside the range of the physical assumptions.

2 We refer to [82] for a discussion of a variety of coordinate representations of the relativistic Boltzmann
collision operator.
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Lemma 2.11 (Center-of-momentum reduction, Theorem 1.2 of [82]) For an integrable
function G : R* x R* x R* x R* = R, we have

oo L5

_2/ do g /5 0(3.0)G(p*. g, p™ . g"™).

K —pt—g"™G(p*, q", p™. q™)

Above we assume that the function G(p*, g, p'*, ¢'*) has sufficient vanishing con-
ditions so that the integrals above are well-defined. We also use (2.15) and (2.16) to
define p'* and q'* in the second integral.

Then we can use Lemma 2.11 to write (2.48) as follows

/ / / / D (ph + g — p™ — g"™)sa (g, 0)
R3 R3 R3 P R3

xn(p)(f(P) = F(PIV I (@) (@). (2.49)

To better understand this term, we now introduce the Carleman representation of the
collision operator as follows:

Lemma 2.12 (Carleman representation) We have the following equality:

L5 ko [ 5o Lo
I

where we assume that G has a sufficient vanishing condition so the integral is well-
defined. Here E?, is the two-dimensional hypersurface for relativistic collisions
which is defined as

08D (p™ +q" — p* —¢"G(p.q. p)

so(g,Q)G(p q.p),

El , =1lqg R : (p" = p")(pu +qu) = 0).

Further qg'* is defined by (2.8), and the measure can be represented as
g q"(pu—py)
dry = dq u(p®+q° — p)s <§ + u) , (2:50)
8

where above we use the function u which is defined by
u(x) =0ifx <0,andu(x) =1ifx > 0. (2.51)

We also recall (2.6).
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The proof of Lemma 2.12 is given in §7.1. Then using this Carleman representation
from Lemma 2.12 we can represent (2.49) as

1 [ dp / dp’ , s JT(p) dr,
8 |3 p0 - = —Lo(g,0)J(q).
8/1@3 pon(p) s 0 (f(p") f(p))gm b o(g,0)J(q)

(2.52)

Typically we can estimate integrals such as the one above in d7,;. And a term such as
I s bounded when we are close to the singularity and | p’ — p| is small. Then we
VEAVD)

are left with linear dependence on p and p’ in the remaining integrals of dp dp’. These
are the main ideas in one method that we developed to prove the required cancellation
estimates. Recalling the bilinear operator (2.27), this change of variables procedure
allows us to estimate terms such as (I'(f, &), n) when we estimate the cancellation
using the function 7.

However proving the upper bound estimates by performing summation of the
Littlewood—Paley decomposed pieces of the trilinear estimates in §4.6 also requires an
alternative cancellation estimate (Proposition 4.7) of the difference of trilinear forms
(T = T8 (f, b, ) as in (4.3) while estimating the cancellation using the function
h. Since the standard integration by parts does not work for the integral which contains
fractional derivatives, we had to derive a second representations of the trilinear inner
product of (2.27) as (I'(f, h), n). To achieve this, we derived the dual representation
T;h of the abstract operator Ty for each fixed f such that

(C(f h)m) =(Tgn, h) = (n, Trh).

In the relativistic case the expression involving T}" h is rather complicated, whose
integrands involve special functions and Lorentz transformations. This expression is
written precisely in (7.21) and in decomposed form in (4.33), and more generally
in Lemma 2.18. To the best of our knowledge, this “dual representation” has not
been previously derived for the relativistic Boltzmann operator. Now we note that the
methods that we used in §3 for the dual-type representation including the splitting of

the region of the ¢ integration into |g| < %|p|1/’”, and |g| > %|p|1/’” for some large
m > 1 does not work for the sharp upper-bound estimates for similar types of operators
to (4.33), since the factor 1/ J (q) in the operators from (4.33) does not provide sufficient
decay in the |g| variable to control the integral if we implement the methods used in §3.
Instead the breakthrough idea in our estimates involved the spliting of the upper-bound
estimate for each operator as in (4.39) into two terms Dj and D;. Then D; can be
reverted back to the original representation and estimated using a strategy analogous
to (2.48)—(2.49)—(2.52). And D; stays in the dual representation. In this way one can
push all the polynomial growth in the g variable into the original representation in D
which has some leftover exponential decay such that one can intentionally create the
otherwise missing polynomial decay in D;. This idea was very effective for the control
of Part /1 in (4.35) and Part /11 in (4.36) in §4.3 even though they still need much
more delicate sophistication on the choices in the splitting such that all the estimates
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work for the full range of the soft interaction 0 > p+y > —3/2in (2.22) and the hard
interaction 0 < p + y < 24y in (2.21). For example, we include the artificial terms

N N ) 2 3/4 2 —3/4
1=<W) (W) forthePartIIestlmatesand(W) (W) for

the Part 711 estimates, and these choices are sharp in the sense that these powers 47'1

and % and the choices ﬁ and p;%—io are the only possible choices that can control
each decomposed piece in our estimates. For the full details we refer to §4.3.

In addition to the previously discussed techniques for establishing the cancella-
tion estimates, the proofs of our main upper-bound estimates in Theorem 2.4 and
Lemma 2.5 use a dyadic decomposition of the linearized operator I' and its kernel
o (g, 0) nearby the angular singularity & = 0 since the angular kernel o((6) is not
integrable by itself. In §4.1, we start by showing that 6 ~ % and consider the dyadic

decomposition around g. Then for § ~ 27X, we estimate the upper-bounds of the
trilinear forms in (4.3) for the gain term Tf’l and the loss term T of the linearized
operator I separately. If we consider the region nearby the singularity where g ~ 2%
for k > 0, then we cannot simply separate the gain and loss terms. Thus in §4.2 we
rewrite the difference of trilinear forms (Tf’l — Tf’l)( f, h,n) in terms of the differ-
ence n(p’) — n(p) or J(q') — J(q) of the pre- and the post-collisional momenta and
work to obtain extra decaying factors of |p’ — p| or |¢' — g| to reduce the order of
angular singularity. Then in §4.3, we prove the cancellation estimates using the dual
representation in (4.33). Then in §4.4, we prove further estimates, including cancella-
tion estimates, for the compact operator X from (2.32). In order to manage the dyadic
sum of the momentum derivatives, we further explain the isotropic Littlewood—Paley
decomposition inequalities that we will use in §4.5. This decomposition allows us to
bound the sum of those decomposed pieces containing momentum-derivatives above
by the terms in our weighted fractional derivative norm |n|;».» and |k|;e.v. Then in
§4.6, we use triple sum estimates together with all the previous estimates in this section
in order to prove the main upper-bound estimates of Theorem 2.4 and Lemma 2.5.

Additional difficulties regarding proving upper-bound estimates occur because the
lower bound of the relativistic version of the relative momentum g = g(p*, g**) from
(2.5) depends on the weights of p and g. More precisely, one has the following sharp
inequality [40]:

lp—ql*>+Ip x g lp—ql*>+Ip x g
v < /2 —g<lp—ql. (253

NS P°°+p-qg+1

The proof of (2.53) directly follows from (2.5) and the Cauchy—Schwartz inequality:
1+ p-ql < p°". This affects the lower-bound estimates of the hard-interaction
case (2.21) for g7 and the upper-bound estimates in the soft-interaction case (2.22)
for g7"*7 because a + y > 0 and —b + y < 0. The emergence of the extra weight
(poqo)_% in the lower bound of each relative momentum g causes the crucial dif-
ference in the order of p, and we resolved this issue using another inequality of
g < /s < /p%0O instead of using the standard g < |p — ¢| in many estimates.
This is one of the major differences from the non-relativistic case where each rela-
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tive momentum |p — ¢| creates one power of p°, whereas each relative momentum
g(p*, g') corresponds to only a half-power of p® growth.

Also, the appearance of extra momentum weights, wl( p), in our norms introduce
additional difficulties. These weights are necessary because the L> energy functional
E(1) and the dissipation functional D(¢) do not satisfy £(t) < D(t) in the soft-
interaction (2.22) case when —b + y < 0 and this results in | f| 2, < [flz2. In

order to overcome the difficulty of not having | f| 2, = | fl;2, we put the extra
2 oty

weights w! into our norms and interpolate with stronger norms as in (6.31) to obtain
the L2 decay-in-time estimate with the polynomial rates. This interpolation technique
had been developed in [84]. However this is extremely complicated and delicate in the
relativistic situation because of the difficult algebraic structure that is present in the
equation.

We hope that these results will be useful to study many further mathematical prob-
lems in the relativistic Kinetic theory such as relativistic fluid limit problems, the
Newtonian limit, the relativistic Boltzmann equation coupled with relativistic matter
models [14] to name a few.

2.8 Outline of the Article

In this section we will outline the rest of this article.

In §3 we prove the sharp asymptotics for the frequency multiplier to obtain coer-
civity estimates for the linearized collision operator. Namely, we prove Theorem 2.3.
To prove Theorem 2.3, we will use the two different representations that we have
given in §3.2 and these will be derived in §8. We will further follow the proof strategy
that will be outlined in §3.3. We prove that ¢ from (3.16) has a leading order positive
lower bound in Proposition 3.3 in §3.4. Then we will prove that ¢y from (3.3) has the
leading order upper bound in Proposition 3.4 in §3.5. In §3.6, we prove in Proposi-
tion 3.7 that ¢y (p) from (3.4) has a lower order upper bound and we further prove in
Proposition 3.8 that £ ; (p) from (3.10) has a lower order upper bound.

In §4 we prove the main upper bound estimates on the linearized (2.28) and non-
linear collision operator (2.27) that are stated in §2.6. In particular in §4.1, we will
start by introducing the dyadic decomposition of the angular singularity in the non-
linear collision operator. In the rest of §4.1, we will make upper-bound estimates
on the decomposed pieces of gain and loss terms away from the angular singularity.
Then in §4.2, we prove the cancellation estimates. Namely, we use the cancellation of
f(p) — f(p)) in the region p >~ p’ to cancel the angular singularity and to obtain the
upper bound estimates for the decomposed pieces nearby the angular singularity. The
proof heavily depends on the use of certain Lorentz transformations and the relativistic
Carleman-type dual representation from §7. In §4.3, we perform upper bound estimates
that incorporate cancellation on the dual expression from (4.33). In §4.4, we prove
additional estimates for the compact operator K. Those final upper-bounds contain
momentum derivatives of the functions and the sum of those upper-bounds will further
be bounded above in terms of our weighted fractional derivative norms via Littlewood—
Paley type arguments. In §4.5, we explain the main Littlewood—Paley inequalities that
we will use to prove our main estimates. Then in §4.6, we use triple sum estimates to
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establish the final main upper-bound estimates on the linearized collision operators i,
N, and the nonlinear operator I" using the upper-bound estimates on the decomposed
pieces from the previous sections.

In §5, we prove the coercive lower bound of the norm part (N f, f). We also show
that the norm part (N f, f) is comparable to the weighted fractional Sobolev norm
| - |70 . In this section, we use the Fourier redistribution argument from [44].

In §6, we finally use the standard iteration method and the uniform energy estimate
for the iterated sequence of approximate solutions to prove the local existence. Our
proof of the global well-posedness in §6 uses the nonlinear energy method introduced
in [46]. In particular we derive the relativistic system of macroscopic equations and
local conservation laws. And we use these to prove that the local solutions are global
by the standard continuity argument and the energy estimates. We also show that the
L? functional of solutions decays exponentially in time for the hard-interactions (2.21)
and decays polynomially in time to zero for the soft-interactions (2.22).

In §7, we derive the relativistic Carleman-type dual representation for the gain and
loss terms and obtain the dual formulation of the trilinear form, which are used in
many places in the previous sections.

In §8 we provide full derivations of the two different representations that we have
given in §3.2 for the proofs of the sharp asymptotics for the frequency multiplier and
the coercivity estimates.

In §9 we provide the proofs of the pointwise estimates: Lemma 2.14, Lemma 2.15,
and Lemma 2.16.

2.9 A Brief Description of Lorentz Transformations

In this section we define several notations and conventions involving Lorentz trans-
formations which will be used in several key places throughout the article.
Let A be a4 x 4 matrix (of real numbers) denoted by

A= (A%)OS/L,US&
For the basics of Lorentz transformations, we refer to [20] and [89]. We use the
convention that the top index u denotes the row of the matrix, and the bottom index
v denotes the column of the matrix. We will also use the vector notation

A= (Ao, Ay, Ay, AM3), for pu=0,1,2,3,

to express the u-th row of A. We will further use the notation A to exclusively denote
a Lorentz transformation.

Definition 2.13 A is a (proper) Lorentz transformation if det(A) = 1 and
A oAt =, (v =0,1,2,3).

In matrix notation this can also be written AT DA = D, for D = diag(—1, 1, 1, 1).
This condition implies the invariance: p*q,, = p*nu.q" = (AKup“)nKA(A)‘vq”).
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In this paper we will use several times a specific Lorentz transformation A =
(A"™,)0<p,v<3 which maps into the “center of momentum” system as

AM g Aﬂv(pv +qv) = (\/Ev Ov 01 0)5 BM g _Auv(pv - q\)) = (07 Oa 07 g)
(2.54)

The first condition in (2.54) is the one that means that you are mapping the particle
momentum to the center of momentum system where p+¢q = 0. The second condition
in (2.54) is extremely useful for the changes of variables that we will use in the rest
of this paper.

The explicit form of the matrix A satisfying (2.54) was derived in [79, Section
5.3.1.3], it was also written in [80, p. 593]. More precisely, we have

P°+4° _pitai _ pte _ pitas

Ay A A Al

A= (AM) = 0o x@1 (pxga  (pxgs3 |- (2.55)
o o Ipxal lpxql Ipxql
P’=4° _pi—qi _pr—q2 _p3—q3
8 8 8 8
with the second row given by
2|p x 4|

Ao =Ao(p,g) = ,
g

and fori = 1, 2, 3 we have

AL = Al g) = 2(pitP° +4°p"qu) + aite” + P°p"qu})
o gv/slp x gl

This Lorentz transformation satisfies (2.54).

Now any Lorentz transformation, A, is invertible and the inverse matrix is denoted
Al = (A;},})OSM,VS3 where we denote (A_l)"ﬂ = Alf so that A”KA/f = 8"#, where
8", is the standard Kronecker delta which is unity when the indices are equal and zero
otherwise. It follows from Definition 2.13 that

(A—I)VM A,uv — TIUA AKA M-

Definition 2.13 further implies that (A‘l)"u =A M" is a Lorentz transformation. We
can then directly calculate the inverse of (2.55) as

0 0 0 0
Ptq Al 0 r—=q
—Aly _

Ng g

P1+41 Al1 (PxXP1 _ pi—q
—1 X

AT = = P;-/ngz 1 (llfxqq)lz Pziqz

7 N2 g 3
p3tgs A N (Pxq)3 _ P3—q3

NG [pxql g
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We will use the Lorentz transformation (2.55) and it’s inverse in several of the proofs
of the estimates below.

2.10 Preliminary Lemmas
Here we introduce several useful pointwise estimates that will be used throughout

the paper. The proofs of the following lemmas (Lemma 2.14, Lemma 2.15, and
Lemma 2.16) will be given in §9.

Lemma 2.14 With the notations (2.4) and (2.5) we have
s = g7 +4 > max{g?, 4}, (2.56)
and
s <4p’q". (2.57)

We trivially conclude from (2.57)—(2.56) that

g S p° (2.58)
Recalling (2.53) we further have
lp—q| <g (2.59)
quO
and
pxal (2.60)
p°q°
and
g=<1Ip—ql (2.61)
We also have
1P’ 4" <1p—ql. (2.62)
and
P’ +q° <2p%"°. (2.63)

We now state a few pointwise estimates for (3.5). We have the inequality:

i<l (2.64)
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Further
2 _1 99 1 60
J"<=zpq, l<=-pq. (2.65)
2 2
Also
2 (P +499%g? 4|p><61|2 s
P —j*= 2.66
and
p)
. Vg +4 1
\/12—]2=|P—Q|Tzzlp—ql. (2.67)

Next for g% defined in (3.6) we have

¢Zmax{/y> +1, x/_}g2<gA<sA Ssyy2+1, YO<y<oo. (2.68)

If the notations 1, j, and g are defined instead as

0

dej de X
I=1(p/ ){_/¥,j:j( )’_f|p2 AR~ (2.69)
8
5§ 1.
2+5<¢|z|2+1—1>, sa = g3 +4, gi=5s<¢|z|2+1—1>,
(2.70)

(cf. (1.13), (7.17) and (7.18) with r = \/s|z|), then we have

28 Z -3z +1-1

costy = — —1= = , 2.71)
g% FHIVIP+1-1)
i<l 2.72)
2<% 150, (2.73)
2 (P42 —4lp' x g 5
P?—j*= 167 16~2|p —q. (274

~2
. V& +4 1
\/lz—ﬂzlp/—q|4—~z—|p/—q|, (2.75)
g 4
and
FZmax{V]z2 + 1,v2} S g3 Ssa S5VIZP 41, YO < [z] <occ. (2.76)
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Further, we will also need sharp estimates of the following integrals

1
K, j)= /0 dy y'7V exp(—=1y/y2 + DIo(jy), (2.77)
where y € (0, 2) and

y exp (—lv y2+ 1) Io(jy)

1+y?

def o0
AHE f dy 2.78)
0

Also define

Ko, j) = f dyy(y2+1)1/2exp(—l\/y2+1)10<jy>. (2.79)
0

These integrals are known from [42] and [40]. In particular a proof of Lemma 2.15
below is given by combining the results from [40, Lemma 3.5, Lemma 3.6 and Corol-
lary 2]. We give the following lemma and proof for completeness.

Lemma 2.15 For both (2.69) and (3.5), we have

max exp(—IvVxZ+ 1+ jx) Sexp(—/12 — j2). (2.80)

0<x<

Then for (2.77), we have the uniform estimate

K, ) S exp <—,/12 — j2) . (2.81)

For (2.78) we have the exact formula

L, j) = G2 = ) exp(—/12 — j2), (2.82)

and then for (2.79) we have the formula

Ka(l, j) = (JI2 = D exp(—/12 — j2)
3
x ((12—j2~|—3,/12—j2+3)lz—(lz—j2)—( lz—jz) )

(2.83)
In addition, we have the following pointwise estimates:
Lemma 2.16 Ifk > —3 then we have
k
fR daVI@lp —al ~ (") (2.84)
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Also, for (2.14) we have

ve < 1. (2.85)

~

In addition, if the collision kernel o (g, 0) is supported only when cos 0 > 0, then we
have

g~ g (2.86)
For (2.70) we have
Sh (3 ~4
< L)géx <1, (2.87)
sa®(ga)ga
and
se@g | L FWIP+1-D) 258
sa®(en)gn |~ Za ’

for both hard and soft interactions (2.21) and (2.22). Also, using (2.8) we have
P’ = p”+4q" <2p°" (2.89)
and
Plau=r"q,, p"au=r"q,,, P"pu=3q"qu (2.90)
We remark that (2.90) directly implies that

/IL

" =q")(p, — pw) =0.

These pointwise estimates above will be used crucially for main upper-bound and
lower-bound estimates in the rest of this paper. We now also introduce a lifting of the
6-fold integral below into a 8-fold integral:

Lemma 2.17 (Claim (7.5) of [80]) Let g = g(p*, g™ and s = s(p'*, q'*). Recall
(2.51). Then we have for a function G = G(p*, q*, p'*, q'*) that

dp/ dq/ " 1 yn yn 1 > /i 2 1 s o
0 —aGW".q" pT, g )= de(p™, q") G(p", 9", p*, q"),
r3 PV Jr3 ¢ 16 Jraxr4

where
dO(p™, q") £ dp"dg" u(p+q ) u(s—4)(s—g> 8 (" +4")(p),—4q))) -

Note that g§=g under (2.8).
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We will also need to use the following alternative integral formula’s in our estimates.
We define the following integral

Ig = / dp / dgq / dwveo (g,0)G(q, p', p, q"). (2.91)
]R3 ]R3 SZ

Here we use the variables (2.15) and (2.16), and we assume that G(q, p’, p, q/o) isa
Schwartz function for which the integral above is well defined.

Lemma 2.18 For I from (2.91) we can alternatively represent the integral as

I

dq 5 dz
/ OT —SAU(gA:QA)G(C]y p/v P/+A, qO+A0)7
P Jr3q® & Jre P11

(2.92)

where we assume that G = G(q, p', p'+ A, ¢°+ A°) is a Schwartz function for which
the integrals (2.91) and (2.92) are well defined. The constant satisfies ¢’ > 0. This
is the case if the function G has suitable cancellation so that the integral in (2.92) is
finite.

On the other hand, more generally (for ¢’ > 0) we have that I from (2.91) can be
alternatively expressed as

dg 5 dz
/ / gT ————570(8A, 9A)[G(6], PP +A, " +A%)
r PV IR 47 & Jr2 |z + 1
SP(g)g
_%G(q, p/, p/,qo):|. (2.93)
sa®(ga)ga

The formula above may be used in the case that G may not have enough cancellation
by itself to make the integral above well defined.

The transformation from (2.91) to (2.92) or (2.93) has the following mapping prop-
erties for the variables p, q, p’, and q’ in (2.91) from (2.15) and (2.16) etc: It sends
gt = g* p*t = ptp = p 4+ A g0 = g"+ A% g > ga, s = sp, 0 — 04,
g — gL, where we use the definitions (2.70) or (7.17), (2.71) or (7.18), (7.20) and
(7.19).

Lemma 2.18 is proven in §7.2. In the next subsection, we introduce additional
conventions of notations that we use throughout the paper.

2.11 Further Notations

We call the change of pre- and post-collisional momentum variables (p, ¢) — (p’, ¢")
as the pre-post change of variables. It is known from [39] that the Jacobian for this
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change of variables is equal to

_ p/Oq/O
p°q°

’ o', q) (2.94)

a(p,q)

We note that this Jacobian is calculated in [39] in the Glassey—Strauss coordinates as
written in [38, Page 98, Equation (3.359)]. Then it is explained in [82, Equation (23)]
how to also use this change of variable in the center-of-momentum coordinates (2.15)
and (2.16) that are used in this paper.

We further introduce the following notation. Given h; = h1(p, q), we define the
function & = h(p) as an integral on R> as

h(p) =/ hi(p, )dg.
R3

In this case, for A > 0 we split the integral into

Jom Lt
B Jigiza  Jigl<a

and abuse the notations to denote each term as

aion = [hligisa & f hi(p. @)dg. and
lq1=A (2.95)

[A]ig1<a = |Alig1<a gf hi(p,q)dq.
lgl<A

This convention of the notations will be used in a few convenient places in the rest of
this paper.

3 Frequency Multiplier Estimates

The existence theory for the Boltzmann equation without angular cutoff was devel-
oped in the class of weak solutions via the method of renormalization [1]. Further
the existence and uniqueness theory was developed using the energy method via lin-
earization nearby Maxwellian equilibrium in [4-6, 44]. This current paper is mainly
concerned with the energy method nearby equilibrium. One of the most crucial parts
in the proof via the energy method is to create a positive dissipation term in the energy
inequality. It turns out that the coercivity estimates for the dissipation term crucially
depends on the asymptotics of the frequency multiplier (2.30) whose explicit form
will be introduced later on (3.16) and (3.17).

Regarding the Newtonian Boltzmann equation (1.4), the estimates on the asymp-
totics of the frequency multiplier have been proved by Pao [70] using the symmetry
of the linearized operator and using the sharp pointwise estimates of certain special
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functions. This can also be proven using the procedure outlined in §3.1. These asymp-
totics have been crucially used in the coercivity estimates and the spectral theory for
the linearized Boltzmann operator in [69]. These coercivity estimates, and in addition
the Newtonian cancellation lemma from [2] has been crucially used for the proof of
the global in time wellposedness in [4, 6, 44] nearby equilibrium.

In this section, we are interested in proving analogous results for the relativis-
tic Boltzmann equation (1.1). Namely, we would like to establish the estimates on
the asymptotics of the relativistic frequency multipliers for the linearized Boltzmann
operator. However, in the relativistic case, it turns out that the collisional structure is
substantially different [21], and the crucial change of variable p’ — p in the non-
relativistic cancellation lemma does not hold in the relativistic case (which is explained
in Remark 2.10). This also shows the major difficulty in the relativistic case versus the
non-relativistic case (in regards to the lack of the change of variables from p’ — p)
and in regards to the inability to use the standard proof of the behavior of the frequency
multiplier term ¢ from the non-relativstic case.

We believe that this estimate can be useful to study many problems in the relativistic
Kinetic theory. The sharp asymptotic leading order estimate in Theorem 2.3 should
be useful in mathematical studies of relativistic fluid limit problems, the Newtonian
limit, the relativistic Boltzmann equation coupled with relativistic matter models to
name a few.

Remark 3.1 Throughout this section, based upon (2.40), we call aterm A(p) a leading

order term, if A(p) ~ ( po)%. In addition, we call a term B(p) a lower order term

if for some positive constant € > 0 there exists a finite constant C. > 0 such that
oty

IB(p)| < Cc(p”) > <.

3.1 Comparison to the Newtonian Case

In contrast to [70], one can prove the asymptotic behavior of the non-relativistic
frequency multiplier in the following simple way.

In the non-relativisitic case (1.4) the analog of the collision frequency multiplier
(2.30) is given [44, Page 11] by

i(v) = /3 dv, /sz dw B(v — vy, 0) (\/M(U*) - \/u(v;)) Vi, (3.0
R‘
where the Newtonian Maxwellian equilibrium is given by
) £ @) exp (<vP/2).

Note the similarity to E in (2.30). In the non-relativistic case, due to symmetry the
following decomposition of the frequency multiplier is very useful:

1 2 1]
(V@) = V@D ) Vi = 5 (Ve = Vie@D) + 3 (@) = nw)).
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This decomposition allows the splitting

V() = v() + v ),

where

ol
vy & 1 / dv*/ do B — v.,0) (Virto) —ul))

Now v(v) is clearly non-negative and it can be quickly shown that v(v) has the expected
leading order asymptotic behavior as |v| — o0.
On the other hand from (3.1) we have

1
ve(v) = 3 /]R3 dv, /82 dw B(v — vy, @) (1(vs) — p(v})) .

Now one can use the Newtonian cancellation lemma [2], the change of variable from
V), — Uy, to show for some C’ > 0 that

v (v) = C’/ dvy ()W (Jv — vil).
R3

This expression directly implies that vi (v) has lower order asymptotic behavior as
|[v] = oo. This decomposition is crucial to designing a norm that captures the sharp
behavior of the linearized collision operator and to further prove the global in time
existence of solutions nearby equilibrium.

Unfortunately in the relativistic case this approach fails as we now explain. We
recall that the main difference in the integrand of E in (2.30) is

VI@QWT(@) —IT@)).

The analogous splitting in the relativistic case is

1 2 1
WI@ =VI@WT@ = 5 (VI@) ~VI@) +3 (@ - I(a)).

(3.2)

However, this decomposition does not help in the relativistic case and it is also closely
related to the fact that the crucial change of variables ¢’ — ¢ in the cancellation
lemma [2] is problematic in the relativistic case [21] even in the case with an angular
cutoff. We now provide the sketch of the argument.

We ignore the positive square term, («/ J(@q)—+JI(@q ) and focus on the second
term on the right side in (3.2). We can write this term from (2.30) as

P qu/dwvw(g,e)u(q) J@)) =21 (p) —Tr(p).
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We can further assume that the angular kernel o from (2.19) is just pointwise bounded
(we do not need to assume that it is mean-zero) with an angular cutoff. Then the term
on the right side of (3.2) containing J (¢) in (2.30) corresponds to (8.17) in §8.3. Then
(8.17) is transformed into (8.20) so that

1 (p) = */dqezq/ rdr_ o (gn.00)
1 \p ,—r2+SA 8A, A
q 2 gs Ip x ql
XeXp( ) ( gs )

Above ¢’ > 0, and we further use the notations (3.6) below with » = y./s in addition
to the Bessel function (2.47). We point out that the above is a finite integral since it
contains exponential decay in both the ¢ and the r variables in (8.20). However, if
we look at the new loss term with J(g’) only, then if we follow the same derivation,
then we obtain (8.20) without the exponential term and without the Bessel function
Ip. Indeed following the transformation procedure in §8.3 we obtain

i ( )= c / dq e foo rdr (2n. 60)
p SAO (A, On).
: PPleid® ¢ Jo SrZts

Thus we see following this procedure that the dr integration becomes infinite in Ef (p),
since this term no longer contains sufficient decay in the r variable. Therefore, the
whole integral becomes infinity unless we artificially assume that the kernel o decays
very rapidly for large r. (We mention that this can be directly justified using standard
approximation procedures.)

If the cancellation lemma were true then the integrand in ¢ f (p) would be integrable

and g:f (p) would be finite. Indeed, the expression Ef (p) integrates to infinity by this
argument. The factor J(g") does not provide sufficient decay to control the integral.
That is why such a decomposition, which was very effective in the Newtonian case,
does not help in the relativistic case. It is adding and subtracting a term which is
infinity.

3.2 Main Decomposition

Instead we perform in §8 the following transformation of (2.30) as { = Lo+ ¢ where
for ¢’ > 0 we have

def C s<1>(g)g

; _/ dge? \/_/ s o (gn. Bn) B8
T e g «/y ATIER IS B (gn)gh
x[l—exp <1(1— y2+1)> I (jy)], (3.3)
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and

w € dq e_qoﬁ /Oo ydy (gAs0n)
== = SA0(8A, Oa
Pled® ¢ Jo 21

. (g)g*
- 2+1>1 S8 )
XeXp<( y ) ) 1o (jy) (sACD(gA)gj‘\ )

(34)

We recall the modified Bessel function from (2.47). These expressions arise by apply-
ing the change of variables r — y = JLE’ to the expressions (8.14) and (8.15). Above

we use the notations / and j that are defined as

0

0
(e'P +q . . ef |pXQ|
I=1(p.q) = cand j = j(p.q) = ——. (3.5)
4 Zg
We also further define the notations
K
ga =g+ 32 H1-D, s =gi+4, (3.6)

and from (8.11) we have

2g° 2o 5(/y24+1-1)

—1

S S]]

It is shown in §3.6 that {7 (p) in (3.4) has lower order asymptotic behavior, and in
§3.5 we see that the main part of {y(p) in (3.3) has a leading order upper bound.

We remark that the dynamics of each decomposed piece of £ in (3.3) and (3.4) are
essentially depending on the integral domain for the ¢ and y variables, and the Bessel
function Iy(jy) from (2.47), which makes them extremely complex. It turns out that
the major difficulty involves the difference inside the inside the integrand in (3.3):

cosfp =

[1 —exp <l(l -2+ 1) +jycos¢>].

This expression is zero at y = 0 and converges to one as y — oo. However this
expression also has it’s negative minimum at

| cos |
y = 1O 3.7
12— j2cos? ¢

and the difference above remains negative, for say cos ¢ > 0, until

21j cos ¢

L 3.8
12 — j2cos? ¢ (3:8)

Vs =
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where 0 < y,, < y; — 0 asl — oo. Thus the whole integral in (3.3) is negative
in a large region nearby the minimum of the difference and nearby the singularity
of the kernel o (ga, 0x) at y = 0. This region where the integrand is negative and
close to it’s minimum makes it extremely problematic to prove the required leading
order asymptotic positive lower bound. Therefore, it is unclear from this point of view
whether or not (2.30) or (3.3) is positive or a leading order term. It is essential to have
a positive leading order term for the collision frequency multiplier in order to obtain
the sharp behavior of the linearized collision operator.

For this reason we needed to derive another representation of E from (2.30). As in
(8.21), we can alternatively write E as

. ' dq e~ © v
;(p):c/ ge T \s ydy

T
— SAG(gA:QA)/ do
mp Jri q® g 0 Vyr+1 0

x[exp(Zl — 21/ y2 4+ 14+2jycos¢) —exp(l —I,/y%2 +1 +jycos¢)],

where we use the notations (3.5) and (3.6) and ¢ > 0. Then ¢ can be decomposed
into twoterms { = §g + {1 as

Fo(p) = / dge= /s [*  ydy (8n.8 )/” s®(g)g?
p) = — SAO (A, OA . . 4
0 0w g ¢ Jo ¥+ 0o sa®(ga)gh
x[exp(ZZ —21/y2+1+2jycosp) —exp(l —[/y2+1 +jycos¢)],
(3.9)
and

E()—i/ dqeqf/ 610 (gn On) sP(g)g"
L= 0 \/; A Y P
x[exp(zz—zl 24+ DIp(2jy) —exp(l —1 y2+1)10(jy)]. (3.10)

The expression (3.9) looks like a better candidate for the leading order term because
the difference

[exp(Zl —20/y2+1+2jycosp) —exp(l —I\/y>+ 1+ jy cos¢>)]

now has it’s maximum, y,,, at (3.7) and it is positive on 0 < y < ys from (3.8).
However this difference is negative for y > y; and still remains large and negative in
a significantly sized region after y passes y; which causes further extreme difficulties
in proving a leading order positive lower bound.

Instead the key point will be that when we add o and 7, then the resulting term
is clearly positive and leading order. And we will later show that ¢ 1, from (3.10)
and ¢y, from (3.4) are lower order terms. In particular we can take the summation of
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%§O(P)1|p\zl from (3.3) and %Eo(p)l|p|21 from (3.9). By adding an additional term
(p)P+)/21) <1, we obtain that

i) [(0(1?)4—4“0(17)} et + ()21

2
0
:C/llpzlf dq e /s ydy oS0 a0 ———— s0@)s" / do
27p° Jrag® ¢ Jo J/y2 T sad(ga)gh

x[exp(Zl —21,/y2+14+2jycosp) —2exp(l —1,/y> + 1+ jycos¢) + 1]
+(p)(p+3/)/21‘ <1

_ C/l|p‘21 s@(g)g

LB [ 00
2 p0 Jgs g0 ATIBN IS B (gn)gh
x/o d¢[exp(l—l,/y2+1+jycos¢)—1] F ()P (BT

Note that ¢/(p) is then automatically positive for all p. The term (p)®@+7)/ 21‘ pl<l
guarantees that {(p) > 0 near p = 0 (if necessary).

However, unfortunately it turns out that there is an additional severe difficulty to
obtain the sharp pointwise asymptotic upper bound of the expression (3.11) for ¢(p).
The problem is that the following term

exp(—q®) exp(2l — 21,/ y2 4+ 1+ 2jycos )

does not in general have uniform decay in the ¢° variable when we are close to the
singularity in the dy integral at y = 0. Here we recall the definitions (3.5). Therefore
while the expression ¢’(p) in (3.11) appears good for obtaining a positive asymptotic
lower bound, it is extremely difficult to obtain the required sharp upper bound. There
is the same difficulty for £ £ (p) in (3.10). To overcome this situation we split the dg
integral into the two regions |g| > %|p|l/’” and |g| < %|p|l/’".

Remark 3.2 The derivations of the alternative formula’s in (3.3), (3.4), (3.9) and (3.10)

of (2.30) in §8 still hold under the restrictions to the region such as [g: P and
qlz51plHm

[E]I <Ll using the convention (2.95). This is straightforward from the proofs in
ql=zlpl'/™

With these splittings, we are then able to obtain the sharp asymptotic upper bound
estimates of ¢ (p) and ¢ ; (p) on the region |g| < %|p|1/’”. Andon|g| > %|p|1/’" from
(2.30) using (2.95) we further define

ACERD] (3.12)

1
pl>1
lgl=%1p|t/m
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We will prove that Z | (p) has low order asymptotic behavior in Proposition 3.9. Then
these estimates together will be enough to prove our main theorem.
To this end, from (3.3) and (3.4), we also define the following two terms

é‘Om(p) [CO(P)]|q|< ‘p|1/m1\p|>la L, m(p) [CL(P)]|q|< |p‘l/ml|p‘>17

(3.13)
In (3.13) above we use the notation convention from (2.95). For example
Com (D) c// dqe_qf/ ( NELIC s®(g)g’
0.m(p) = — SAU gn,oa
" PY Jigi=dipivm a \/ sA®(gn)gh
x[1-exp (l(l — 1)) Io (jy)], (3.14)

Similarly, from (3.9) and (3.10), we further define

g(),m(l’) = [CO(P)]|q|< \p|1/m]\p|>l’ ng(p) [Q'L(P)]\qk |p|1/m1|17|>1’
(3.15)

With these definitions instead of (3.11) we define the modified frequency multiplier

def 1 s
£) 2 3 [e0mP) + LoD + (1)1

_ C/1|p|21/ dg e Js [ ydy s@(g)g?
lql<31plt/m

S0 (g, 0n)
27 p° 1 sa®(gn)gh

=2
™ 2
x / delexpt = 1/y2 + 1+ jycosd) — 1]+ (n) 72141,
0
(3.16)
Again this is automatically positive.
As such, we introduce the construction of a positive leading order term and a lower
order term in the frequency multiplier ¢ (p) from (2.30), which is highly non-trivial.
We suggest the following novel decomposition of ¢ = ¢ + {x as

¢(p) = ¢(p) +¢xc(p)

where ¢ is given by (3.16), using also (2.30), (3.4), (3.10) and (3.12) we have

o £EP iz + 81+ 3 (s +Er) = 0PNzt G

Then we will show that ¢ and ¢ satisfy the asymptotics from (2.40). In particular the
main positive term is (3.16).
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Lastly, we also introduce two additional representations of  (p) from (2.30). In
particular it is shown in §8 that we have the following splitting of { = ¢o + {1 in
(8.14) with ¢’ > 0 as

‘ W C e%/‘ dq e_%qo /00 rdr 580 (2a. ) sq)(g)g4
0= —( Y A AsUAN)— g
PP Jrg® g Jo 2+ sa®(ga)gr

0_|_ 0 0_|_ 0
oo (255 on(Z ) ()
(3.18)

and ¢y, is further given in (8.15). Here g, is given by (8.9), s5 by (8.6), and 6 by
(8.7). Note that (3.18) and (8.15) can alternatively be obtained by applying the change
of variables y — r = /sy to the expressions (3.3) and (3.4). We will use the formula
(3.18) in the proof of Proposition 3.4.

We can also write (3.18) in a further alternative form with other variables by using
the following change of variables

ris k& zﬁ(\/ﬁ— J5). (3.19)
Then this gives
1 rdr
dk = Eﬁx/rz—T
Also, we have
r2+s - 2k
Vs s’
and
2K +ks
= —ﬁ )
Here g from (8.9) and 64 from (8.7) now take the form
gx =8> +k, (3.20)
and
cosfOp = —k 1-2 k
+k g*+k
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Therefore, we have

(3.21)

With respect to the new variable k, then (3.18) can be re-written as

o & c/ﬁ/ dg e~ 19" /00 2dk o (en. 6n) s®(g)g
0= —"7 — —=SA AON)————
o Jes q° g Jo s sa®(gA)gn
fon(22
/

0 0
)—exp(—ip Iq (1+ )) ('pqux/k2+k)}
_c/dqeq/ va( e)sﬂb(g)g
PO Jrs g NG sa®(gn)gh

0
X[l_exp<_(p +q )k>10<|p><q| /;k”ks)]’
8s

2s

where sp = g?\ + 4 with (3.20). This representation of ¢y in the k variables above
will be used in the proof of Lemma 3.5, which is one part of the leading order upper
bound estimate of .

3.3 Outline of the Proof of Theorem 2.3

Specifically, in the rest of §3, in order to prove Theorem 2.3 we will make upper- and
lower-bound estimates for ¢ in (3.16) and will conclude that it is a leading order term.
In addition, we will show that ¢x in (3.17) is a lower-order term.

We will first prove that ¢ (p) from (3.16) has a leading order positive lower bound
in Proposition 3.3. Then we will prove that ¢y from (3.3) has the leading order upper
bound in Proposition 3.4. Then in Proposition 3.7 we prove that {7 (p) from (3.4) has
a lower order upper bound. We further prove in Proposition 3.8 that £ L.m(p) from
(3.15) with (3.10) has a lower order upper bound. We then prove in Proposition 3.9
that 21( p) from (3.12) has a lower order upper bound. Note that both Z (p)1 Ipl<1 and
(p)(p+y)/21|p|§1 have lower order upper bounds since 1,|< trivially makes PP <1,
All of these estimates combine to prove that ¢ has a lower order upper bound, and
that £ (p) from (2.30) has a leading order asymptotic upper bound.

We remark that we have not estimated the asymptotic upper bound of g:o( p) from
(3.9) or more accurately we have not estimated g:o’m( p) from (3.15) and this is not
necessary because from the splittings above we have

Com(P) = (6D g2t pm Lpl=1 = Em(P) = Som(P) + ELm(P) = L (P)-

Therefore using the estimates discussed in the previous paragraph we obtain that
£o.m(p) and ¢(p) both have the leading order asymptotic upper bound. All of the
estimates discussed in this sub-section together give the proof of Theorem 2.3.
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3.4 Leading Order Lower Bound Estimate

The main result in this section is the following leading order lower bound.

Proposition 3.3 Suppose y € (0,2) in (2.20). Then for both hard (2.21) and soft
(2.22) interactions, using the notation (2.23), for (3.16), we have

Pty
cpz (P
This uniform lower bound also holds for (3.11).

Proof of Proposition 3.3 In order to obtain the lower-bound estimate for ¢ (p), we first
study the lower bound of the perfect square term

[exp(l — /Y2 + 1+ jycose) — 1]2

in (3.16). We first observe that, if y € [0, y*] with

2lj cos ¢
12— j2cos? ¢’

% def

(3.22)

then we have

I —1/y2+ 1+ jycos¢ > 0.

Notice that we also have

1
I—1y/y*+ 1+ jycos¢ > Ejycosd),

if 0 <y < y;, where

w  2ljcos¢
N=qr - j2cos?g’

Also % <cos¢ < “/TE for ¢ € [m/4, w/3]. Recalling (3.22), we remark that y* < 3
because

. . 2
y 2jcos¢p V2] Sﬁl <2v3

2_ 2co2d — 2 2 =
[ — jecos=¢ ~ 2 _ = £
as j <land 2\51/]2 is an increasing function in j. Recalling again (3.22), then 0 <
121

2
y*

n=<g= ‘/TE Since in particular with ¢ € [ /4, w /3] we have

l_lm+jycos¢zo, 0<y=<wy.
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Then by the Taylor expansion

2
[exp(l 1 /y2 + 1+ jycose) — 1] > (= 1/y2 + 1+ jycose)?.

We will use this lower bound in the following developments.

Now we start by proving the stated lower bound for (3.11). Now we split each
integral representation of the decomposed pieces based on a restriction of the y and ¢
domains. We will now define the term

N lo<y<y| and ¢eln/4,7/31»

where ¢, is ¢’ when the integrals inside (3.11) are only on the restricted domains
0 <y <y;and ¢ € [r/4, w/3]. This notation is similar to (2.95). Note that of course
'(p) > ¢4(p). We will show that ¢,(p) has a high-order lower bound. Note that
inside this integration region, 0 < y < yj and ¢ € [ /4, /3], the integral is still
non-negative.

First of all, we note from (3.11) that

L) = = / dg 1" \f5 d¢ : a0 (2 0a)
2npY Jrs ¢° g \/
x(l —1 /y2+1+ijOS¢)2Lg4+<p)(p+y)/21|p\51
SA cI)(gA)gA
¢’ /’ dg e f/ /‘y
> — SAG(gA,QA)
27 p0 Jp3 ¢° /4 Vy?
[ ®(9)g* (p+7)/2
X~ (JyCOS¢)2 = (PR, 4
4 @(gA>g1 ’
L [
> SAO (g, On)
27 pY Jgs ¢° /4

1/jy\> s®
X — (Q) ngl =+ (p)(p+7’)/21\,,|51,
4\ 2 ) sp®(gr)gi

where we used that cos ¢ > % when ¢ € [/4, 7 /3].
Now we will estimate the kernel o (g4, 04) from (2.19). Here, by (2.20) with (3.6),
(3.19), (3.20) and (3.21) we have

5 “1—y/2

00(0a) ~ ) (3.23)

0 ~ . .
sy +2¢2(/y*+1+1)
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Next using (3.6) we have that

2
S N
gA g2+§<\/y2+1—1>=g2+;

2(\/y2+1~|-1>
sy? + 2g2(,/y2 +1+ 1)
= . (3.24)
2(Vy?2+141)
Thus, also recalling (2.23) and (3.24), we have
s®(g) 4 4
500 (ga. 00 ——25 — 50 (g)on(0a) 1
SA(D(gA)gA 8A
—1—y/2
2
S 1
msCD(g)g4< 5 5 4 > ) -
sy-+2g°(Vy +1+1D g
Thus
—1—y/2
s®@gt sy?
SAO(ZA, ON) ———— ~ 58 5
sAP(gAIgA Y2 4+282(/Y2+1+1)
-2
y sy2 +2g2(/y2+1+1)
2/Y2+1+1) '
We conclude that
s®(g)g*
520 (g, 0n) ——28
sa®(ga)gy
¢t
= 5®(g)a0(0n) 5
8A

—1+y/2

A s TV PPty T 2y + 1+ 1)) (sy2 +2¢8°(/y2 + 1+ 1)) (3.25)
Thus, since y € (0, 2), we have

segt o 1y

p+4
sa®(ga)gr ™

SAO(gA,0n) 8

el

where weused y/2 — 1 < 0Oand y < y; < 5. Therefore,

0
c dge=? /s [T/3
c*<p>z—0/ 4 f/ de
P”JR3 4 8 /4
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.2S—1 —yg4+p+(p>(p+y)/21‘p|§1'

/y] ydy
X -/ y
0o Vyr+1

Then we have

C/ dqe l] f _ 1 _
2 1 4+p/ yl ydy+<p>(p+)/)/21|p|§1
0

a2 5. o g
PO Jrs ¢° g
c dqe g’ N 2
=l B et R G TR AR TR

We further have on ¢ € [/4, m/3], using also j <, that

oy [ 2jcose 2—V> 1j SR AN
o \ar—rese)  T\ar—jra) ~\0) o

as cos ¢ > % Altogether, we have

¢’ dqe” 9" N i\
t(p) Z Of J’s 1g4+”< ) + (PP 4
3qY g l
> < dqe i \/_ Tlghte A2y gy 2y
T Jr g g "=

Now we recall (3.5), (2.56), (2.59) and note that y € (0, 2). Then we obtain
1 d
9 =q° g=14740 | 5 g7 5~ 12(p0 4 027 4 ()2,

&(p) 2 —
: P Jes q°

1 dqg _,o _ _ _ -
> — | e s 2gr el p s g1 FY (00T 4 (p) et o,

P° Jrs ¢°
(3.26)

above we also used (2.63). Further, since (2.57), we have

sV2 > (p0g0~ 112,

If y + p — 1 > 0, then from (2.59) and (2.62) we have

P 0\ Yte-1
gy+p_1>(|p—q|> >(Ip - I)
~\V/p%q° - /p0g0
Otherwise, when y + p — 1 < 0, using (2.57) with (2.56) we have

g7l > (p0g0) e/ 2112,
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Finally, we use the spherical-coordinate representation of g > (v, 6, ¢,). We let the
z-axis be parallel to the direction of p such that ¢, is the angle between p and g. Then
we have

- 1 00 2,~VI+r? pw
t(p) 2 —/ dr ———= | d¢4 sin¢
" P° Jo NZ-a !

10— g\
0 0\—1/2 . - 0 _0\y/24+p/2—1/2
Nyl
x| pI*=Y P4 sint Y @, (p0g0) Y+ (p) T2
~ |p|4—V(po)—1—1/2+V/2+P/2—1/2—2+V + <p>(0+y)/21|p|51

~ |p|4—y(p0)—4+3y/2+p/2 + (p)(p+’”)/21|p\51- (3.27)

Now we remark that if | p| > 1 then we have |p| ~ pO. We conclude

£'(p) = Cu(p) 2 (pO) 55

This completes the proof for the high-order lower bound of ¢’(p).

Similarly, we can obtain the high-order lower bound of ¢ (p) from (3.16). Note that
the only difference between ¢ (p) and ¢’(p) from (3.16) and (3.11) is that the domain
R with respect to ¢ variable in (3.11) is now restricted to |¢| < %|p|1/m in (3.16).
Then we note that the proof for the high-order lower bound of ¢ (p) is exactly the same
as ¢’(p) until (3.26) above except for the change from [i; dg into flq|<%\p|1/’” dg.Then

in the spherical-coordinate representation of g — (r, 64, ¢,) for (3.27), we change

1) 11/m
the integral domain /OOO drin(3.27)to [ P 4r Then analogous to (3.27) we have

1/m _ 2
r2€ 1+4r b4

1
1 §|P\
() 2 —/ dr———— d¢, sin
“r P°Jo r2+1 Jo P4 S0 Py

10— g0\
« (%) ~1/2 min ( ) (pOg)yr/2He2-172

vV r°q°

x| p[*7 4 sin* Y ¢, (p0g0) T2 4 (p) P21 4.

Now in the region |g| < %|p|1/’”

(3.27) we have

with |p| > 1 and m > 1 sufficiently large inside

10—\
min (p0g0yr/2el2-172

/quO

> (pO)y/2+p/2—l/2 min {(qO)—y/Z—p/2+1/2’ (qO)y/2+p/2—l/2}
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We further have on |p| > 1 with ¢° = /1 + r2 that

R ON=y/2=p/2 ( Ovy/24p/2—1] [, 0y=2
/0 A T min {0 O (R ()
p

1

> 2 /1412
Z /2 dr———* min {(qo)”’/z”’/z, (qo)”/”"/z’]} @) Z e,
0 r2 41 :

for some constant c; > 0if | p| > 1. Therefore, the same proof with the modifications
2

above works for the leading-order lower bound of ¢(p) from (3.16). In particular the
estimate (3.27) continues to hold, and this completes the leading-order lower-bound
estimates. O

This completes the leading order lower bound estimates of ¢(p). In the next two

sections, we will use the decomposition E(P) = ¢o(p) + ¢ (p) from (3.3) and (3.4)
to obtain the leading order upper bound of ¢ (p), and the lower order upper bounds of

¢.(p) and Z; (p) from (3.10).

3.5 Leading Order Upper Bound Estimates

We now prove the following leading order upper bound estimate for ¢y from (3.3)
using the alternative representation (3.18):

Proposition 3.4 Suppose y € (0,2) in (2.20). Then for both hard (2.21) and soft
(2.22) interactions, for (3.18) when |p| > 1, we have

oty
()l S (")
This consequently implies the same uniform bound for ¢y, (p) from (3.14).

For the proof, we decompose ¢y from (3.18) as ¢y = ¢ + ¢{» where

3.0
a2 e [ A [T o o 28"
P Jed® g Jo Pt T sAd(ga)gh
0 0 0 0
P’ +gq P’ +4° >
S S _rTq , 328
ol 2 i om
T L ST L
P Jed® g Jo it T sa®(ga)gh
0 0
P +q /5 lp % ql
_rTa 1—1 . 3.29
p( a5 *)[ °<2gﬁ’ 529

Clearly, ¢ is positive. We estimate ¢ in Lemma 3.5 and then we will estimate ¢> in
Lemma 3.6; Proposition 3.4 then follows directly. First, we have
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Lemma 3.5 Assuming either (2.21) or (2.22) with (2.20), then we have the following
uniform asymptotic bound for ¢ from (3.28):

a(p) <P

Proof The change of variables (3.19) on the representation (3.28) yields that

et [ dae Mf 2dk s®(g)g*

C
e 7SACT(gA,9A)7
p° rq° g NG sa®(ga)gh

0 0 2%k
() o (7))
4 s
= [ [T g RO g (00
S q° g Jo s T sA®(ga)gh 2s
00(cos ) [1 exp (_ (p° +q0)k)]

c4 _q[
- o(9)g° / dk
0 Jrs q0 g4 2s

Here ¢4 = 2¢’. We start by showing the upper-bound estimates of ¢;. By the funda-
mental theorem of calculus, we have

R _ 00(cos 05) (P° +q"k
gl__O/R}q o [k PESI) p (U )

p 8
c _ op(cosby)
- /50 (g)g> / dk 2008
p° Jr3 q 8A
1 0 k 0 0 k
x/ 4 exp(—(p t4) z?) (P +q)k (3.30)
0 2S ZS

Note that using (2.20), (2.21), (2.22), (2.23), (3.20), and (3.21), we have

vz
k+g2) ~ gAHkilfy/z- (3.3D)

®(g) ~ g” and op(cos Oy) ~ (

We will use this equivalence in the following developments.
We split into two cases: k < 4 and k > 4. First consider k < 4. We use

exp (—%ﬁ) <landg < gp = (g2 + k)l/2 from (3.20), then when £ < 4 we

have

2+y 0 0
1 - _r (pY + 4"k
mp)s—of QIg%(g)/ dx® 4 S R AR
PV Jr3 g 2s

g/ dq e—qocb(g)s%f dk k5. (3.32)
R3 0

Here we used gao < /s when k < 4. Since y € (0, 2), the integral converges.
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Now we use g < +/p%q0 from (2.56) and (2.57) in the hard interaction (2.21) case.
Alternatively we will use g > Ap=dl from (2.59) in the soft interaction (2.22) case,
~/ p%4°

and s < pYq° from (2.57). Then on k < 4 we further have
—q" aty aty
a(p) S /3 dg e (p°") T S ()7
R‘

for the hard interactions, and

—b
a5 [ da e—q°('”_"') (P4"F £ ()7

p°q°

for the soft interactions.
On the other hand, when k > 4, we still have (3.31) and (3.30). Hence

_ _ (+gNk
ap < -~ e /g @@ | " dk [ ew ()]
S0 Jes K72 (k + g2)1-7/2

1 d O+ ¢
< _O_/ —zefqox/;glﬂ/q)(g)/ dk k*I*V/Z[l —exp GM)]
pP” IR q 4 2s

00 0 0 k
5 f dq e—qoqug(g)/ dk k—l—y/2[1 —exp <_ (p"+4q°) )]
R3 4 2s

o0
5/ dq e_qogytb(g)/ dk k=172, (3.33)
R3 4

Above we used g < /5 < v/pOq0 from (2.56)~(2.57) and [1 —exp( m)] <
1.

Then, also using g < /pYY for hard interactions (2.21) and (2.59) for the soft
interactions (2.22), when k > 4, we have

o0
a5 [ dge e [Carit R g [ aged g
R3 4 R3
_0 aty aty
§/R%dqe %" T < ()
in the hard interaction case, and

o0
ap) < f dq et g / dk k1 < / dg g0
R3 4 R3

b —al —bt+y ,
S/ dqeqo(p q) <N
R3 /poq()

in the soft interaction case. This completes the upper-bound estimate of ;. O

@ Springer



20 Page 52 of 167 J.W. Jang, R.M. Strain

On the other hand, we have the following upper-bound estimate for ¢»:

Lemma 3.6 Suppose y € (0, 2) in (2.20). Then for both hard (2.21) and soft (2.22)
interactions with (2.23) we have the following uniform upper bound for (3.29) when
Ipl = 1:

(] < PO

Proof We use the change of variables r > y = JL; on (3.29). This yields

Q“é"c—/e’ff S fy Lsao(gn o) 208"
p° rq’ ¢ Jo H?2 sa®(ga)gh

0 0
+ X
X exp <—¥\/y2 + 1) |:l — Iy ('ngq|y>] .

Recall (3.5). Note that o (ga, 0p) = ®(ga)oo(@p) > 0. Then we have

3.0
o ¢ 0 [ dgeT3 [ /sydy 8
o s el — ——=5P(g)o0(0r)
p wa' g Jo V241 gA

X exp (—l\/ ¥+ 1) [1—To(jy)]l. (3.34)

Note that Iy > 1 so that &, < 0. By (3.23), using g2 < s from (2.56) we have

00(0p) < (V2 + /Y2 + DIFY/2y=2r,

Plugging this into (3.34), we have
Lo [ dge it y~'77dy L4y/2
1621 S —5e - Sfd>(g) "+ ¥+ D
p R3 ¢ \/;
X exp <—l\/ y2 + 1) [lo(jy) — 11, (3.35)

where we also used £- < 1 from (3.6). Also note that
A

exp (—l,/y2 + 1) = exp(—I) exp (—l( y2 41— 1))

—pO—qO

—e 3 exp(—l( y2+1—1)>.
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Plugging this into (3.35), we have

1 d
CEEY QT (.0, (336)

where we define
_1 -vd
e y 2 I+y/2
Y(p.q) = =0 +y2+ DY
0 Yy
X exp (—l( y2 41— l)) [To(jy) — 17. (3.37)

For the upper-bound estimate of Y (p, g) we split the region [0, 00) into two:

Y(p.q) =Yi(p,q) + Ya2(p, q),

wherq Y 1(p, q) is the integral in (3.37) restricted to the integration region y > 1 and
then Y5 (p, ¢) is the expression in (3.37) on the integration region 0 < y < L.
First we consider the case Y {(p, ¢) that y > 1. When y > 1, we have

—1-y —1-y

Yy 1+y/2 M 1+y/2 Y
—<y+y+)y<—<> S =
/y2+ / 2+ / 2+1

Therefore, on the region y > 1, using (2.78) we have

o0
It y . .
71(p.q) Sex (0[ dy —2— exp(—1,/y? + DIo(jy) < exp)dadl. ).
o) | T p
By (2.82) we then have
_ /=)
V1(p.q) < exp() Y7 s J
_]

Since p° — ¢° < |p — ¢| from (2.62), we have

o_ 0 __ _
exp<p g 4"’ q')sl. (3.38)

Thus, using (2.61), (2.66), (2.67) and (3.38) we have
P’+q° _£|p_q|>4—g
4 4g Vslp —ql

#
<exp<£>exp<p0_q L q')_ eXp(2
~ 2 \/— °

4 4 S

Yi(p,q) S exp <
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Now we will use ®(g) ~ g” from (2.21)—(2.23). In the hard interaction case (2.21)
we use (2.59) and (2.58) in (3.36) to conclude that

0
exp (Tq> a+l a_ 1

[62]y=1 S / dg———=("")"F S (P22 (3.39)

R3 lp —ql

Then in the soft interaction case (2.22), using b < 2, we use (2.57) and (2.59) to

obtain

1

(%) < (PO ih. (3.40)

[§Z]y>1 5/ d @
= R

q
lp —ql|'*?

Here [¢2]y> 1 is {2 restricted to the integrationregion y > 1 using the convention (2.95).
This completes the proof for the upper bound of > when y > 1.

Alternatively, using (3.37) we will show that |{>] on 0 < y < 1 is bounded
uniformly from above by (p°) 55 We prove this using the known Taylor expansion
of the modified Bessel function of the first kind I [42] as follows:

o0

. 1 iv\™
Io(jy) = Z 2 (7) .

M=0

Now, since y < 1, recalling (3.37) we have

y o 14+y/2 1
=07+ 2 DIy
vy +1

and

2 2

y y
exp | —I( y2+1—1)>:ex ——— | <ex (—l—).
p( P V4141 ARV

Therefore, by (3.37), we have

2

3 . 1 . y © 1 i\
Y , dy v~ —1 —
2(”‘”N[o yy exp( ﬁ+1)Z<M!)2<2>

M=1

o0

1 1
< . oM —l—y+2M _ 2
<3 Gl |yt exp (=),

where we define

(3.41)
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For M > 1, we further define
ol
Yy & / dy y 177 2M exp (—clyz) .
0

Here we take a change of variables y — z = [y? with dz = 2/ydy and obtain

[5—M
2
[5—M
2

Y
12~ M \M-1 z *
M1 < _z / dz 77V/? —(c—1/3
2 zes[(l)l,go){(3) exp< 3)} 0 o o199
M

ci31 sup {(g)Mlexp<—§)}lg_ ;

z€[0,00)

Yy <

I
/ dz 77177V PM exp (—c2)
0

IA

o
f dz 277V PHM exp (—c2)
0

IA

IA

where the constant C| is uniformly bounded since y € (0, 2) as

lef 1 o
c, = 8/ dz z77?exp (—(c — 1/3)2) < oo.
0

This holds because ¢ > % from (3.41). We use the Stirling formula error bounds to
obtain

P R BN B

Alternatively if M = 1 we have the bound

sup {exp <_§>} <1, ifM=1.

z€[0,00)

Therefore we have the general bound

M! y
Yy < C13M 27M  M>1. (3.42)
M

We will use this bound to estimate [$2]0<y<1 using the convention (2.95).
First we notice that using (3.5) we have

MM < (M7 (3.43)

@ Springer



20 Page 56 of 167 J.W. Jang, R.M. Strain

where to prove (3.43) we used j2/I < ¢° which follows from (2.60) as

) 2 0.0
Jo_ _lpxal”  _ Py 0

L < 4" 3.44
I =20 +4¢% ~ pO+q0 1 G4

Now we plug (3.42) and (3.43) into (3.36) with 172(p, q), to obtain

1 d Sl | 3\ M
[©2)o<y<1 S =5 /R dg¢” sf S (g)l? Z—(—) @)™

0 Jrs q° = MM \4
0
1 dg e 1 3
< — f B s Jso(g)l% exp <—q°).
PO Jr g g 4

We use @(g) ~ g” with —2 < p from (2.23). In the hard interaction case (2.21), we
will use (2.65), (2.59) and (2.58) to conclude that

=

q

dge ¥ 1,7, 14a a, v
[&2]0<y<1 5/ ”‘ﬁ—q'@ g")ItITE < (pOits, (3.45)

And in the soft interaction case (2.22) we will use (2.59) and (2.57) to obtain

=]

q

yi)
[©2l0eyer S / dg—— (PO S (O EE, (34)
R3 | |1+b

where we recall that 1 +5b < 3. This proves that [{2]o < has the leading order upper
bound. O

Thus we obtain Proposition 3.4 by combining Lemmas 3.5 and 3.6. In the next
section, we will prove that the remainder terms ¢, from (3.4), and ¢ ,, from (3.13)

have lower order upper bounds. We will also prove that 4:1( p) from (3.12) has a lower
order upper bound in Proposition 3.9.

3.6 Lower Order Upper Bound Estimates

In this section, we study the upper bound estimates of ¢, from (3.4), ¢ L.m from (3.13)

and {1 (p) from (3. 12), which together form part of {xc in (3.17). Our goal will be to
prove that [{7(p)], |§L m(P)], and |;“ 1(p)| have lower order upper bounds.

3.6.1 Lower Order Upper Bound for {; (p)

For the proof of the lower order upper bound of | | we will use the representation in
(3.4). We have the following uniform asymptotic bound:
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Proposition 3.7 Suppose y € (0,2) in (2.20). Then for both hard (2.21) and soft
(2.22) interactions, for (3.4) when |p| > 1, we have

(I S (p7.

This bound then automatically also holds for |¢r 1 (p)| from (3.13).
Proof By (3.4) and the definition of / and j of (3.5) we have

3.0
/ 0 d — 14
@t C P~ qe
¢L=—0e4/ dg e 5
R

3q° g

(9)g*
SAO’(gA 9A)exp( —1\/y +1>10(j )( s® _1>_

D(g A)g A
(3.47)
a
In the hard interaction case (2.21), we have f((gg)) = (i) witha < 2.Since g < ga

8A
P(8)
D(ga) —

from (3.6), we have

g—z Then this implies
8A

s@@gt | s®@st | sg® _ sagy — g
sa®(gn)gh sa®(ga)gh — sagl 588
Further note that we have

sngd — g% = (g5 — g% + 48 —¢%
= (gx — &%) ((gi +8Y(gh +85) +4gh +4gigt + 4g4)

S
SSW 41— Dghsa.

since g3 — g% = §(/y2+ 1 — 1) from (3.6), sp = g3 + 4 and again g < ga.
Therefore, we have

s@@)gt | _sagf —sg® 5GP H1-D) (3.48)
SACD(gA)gf\ B SAgA S gA

This is the main estimate for this difference in the hard interaction case.
We now consider the same estimate in the soft interaction case (2.22). Since g < ga

—b
and f(g\)) = <g§_/\> with b € [y, 2), then we have <I§I>((gé:\)) > 1. Then b € [y,2)

further implies

_ et st sagh —se’

sa®(ga)gr ~ SAgh sagh
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In this case we also have

Y= (g8 - g% +4t - gh

= (g3 — &) (g?\ +gigt gt +4gk + 4g2)

SAgA — 58

= (g3 — &) (gj‘\ +gagt+gt +4gi + 4g2)

S
(/Y +1-1)(3Bg% +8¢%)

<
=3
)
S 5 y2 41— 1Dgisa,

because again glz\ — gt = %(\/ vyZ 4+ 1 — 1) from (3.6). Therefore, we have

(3.49)

s@@)gt | _sagd—sgt 3G/ 41D
sa®(ga)gn sagh "~ g

Note that in both the hard interaction case and the soft interaction case the final upper
bounds are the same in (3.48) and (3.49).
In both cases, then plugging (3.48) and (3.49) into (3.47) we have

3
0 0

1 p° dg e 31
|<;L|5Fe4fR3q—§ o PKap.g). (3.50)

where we define K» = K»(p, q) by

o [ yd AW+ -D
K> = / 250 (gn. 6n) exp (—l\/ ¥+ 1) Iy (jy) 25—,
0 Vyr+1 8A

(3.51)

We will split into two cases: y < 1 and y > 1. We write K» = K7 <1 + K2 >1 below
where K7 <1 and K> > denote K> ony < 1 and y > 1, respectively.

First let us generally estimate the kernel. We will use the product form (2.19) with
the estimates (2.21)—(2.22)—(2.23) to obtain

)%(Vy2+1—1)
2
8

SAgNST0(0n)?

~ sagh 500 (On)(y2+1-1) & A
galvy +1+1)

SAO(gA, O

Additionally using (3.23) with (3.24) we have

2 1+y/2

—1-y/2 2
s o 8
00(64) w( y—1+1)> Sy IR (f)

822G/ +
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We plug this into the previous estimate to obtain

SA0 (g, 0n) .

14y/2
) _ p 2
ASYA ‘*2‘1 D 5y,,,(]_i_yz)y/ztsAngs (g_A>

8A

8A

g2 v/2
Sy A4y spgh (f‘) :
We conclude from (2.68) and the above that in general we have

N
SWyP+1-1 _ _
SAO (g, On) F——F— e Sy A+ Psagl Sy A+ yH I sl
A

In particular, recalling (2.21)—(2.22)—(2.23) and using (3.48), (3.49), and (2.68), then
in general we have

1) 4
520 (gn, 01) L)g“ —1SSy 7 +yH'2 o<y < o0
sAP(ga)gA
(3.52)
This holds in particular since a < 2 in (2.21). Here we define
S & §1*3 for hard interactions (2.21),
(3.53)

= sg*b for soft interactions (2.22).

These are the specific estimates that we will use on the kernel of (3.51).
Now we return to estimating (3.51) on the region when y < 1. Then using the above
calculations we have the following bound for |K2, <1 |:

1
|K2<1] S S/O dy y'7r (1 4+ yH T 2 exp (—l\/ y2 + 1) Io(jy)
1
S S/ dy y'7 exp (—l\/ y2 4+ 1) Io(jy) S SK, (. ),
0 Y

where we used (1 + yz)(1+y)/2 Slasye€ (0,1),and y > 0. Since y € (0, 2), this
integral converges. In the last upper bound we used (2.77). From (2.81) we conclude

|K2.<1l S Sexp (—\/12—7]2) : (3.54)

This completes our estimate on the region when y < 1.
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On the other region when y > 1, using (3.52) and (3.53), for the integral defined
in (3.51) we have for both hard and soft interactions, that

o0
|K2211 S S/ dy y(y* + 1) exp (—l\/y2 + 1) Ih(jy) < SKa(l, j).
1

Here 122(1, J) is defined in (2.79). The formula for 122 is (2.83) and we have

Ko, j) < (JI2 = j) D exp(—/12 — j2)(I% — j> + DI, (3.55)

By (2.66), we have [* — j* = %gﬂp — ¢|*. Thus, we obtain

K2, j) <

12 1
—_ /]2 _ 2
VEEEE (Hﬂ—jz)exp( rD

(P° +¢%)? ( 4g )3 ( 4g )2 )
< 14— — e .
~ 16 Vslp —ql Vslp —ql expt 7

We point out that due to (2.61) the above is not singular when |p — ¢g| = 0.
Note that using (2.56) and (2.61) we have

4g 2 16
1+(—> <l+—51. (3.56)
Vsip —ql s

Also using g < /s, which follows from (2.56), we have

> . (pO 6]0)2 < 4g >3 .
K->(l, < —J]2 — j2

0 042 3
<P +aq) 4 exp(—/1% — 72)
S 16 =l p J

042
N (Terq ) exp(—y/1? — j2). (3.57)

We will use estimate (3.57) to control the size of | K2 >1| below.
We will now to use the region |g| < %| p|Y/™and |p| > 1to complete our estimate
of |K2 >1|. Then later we will do separate estimates on the complementary region:

lg| = $1pI'/™. Now since |g| < |p|'/™, m > 1 and |p| > 1, then we have
p’ _Ipl 3
po_lpl <3 3.58
7 =5 =lp—ql=3lpl (3.58)
and
1<¢% <20p)m. (3.59)
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Thus we have

0 042
ey oL
lp—ql® =~ p°
Hence we obtain from (3.57) that
& ; 1 2_ 2
Rall. ) S g exn(—12 = ). (3.60)
We therefore conclude from (3.60) that
K2 >1] < S— exp( 12— j2> . (3.61)

By (3.53), (3.54) and (3.61), using (2.95) we finally obtain

1 dg /s _3,0
[|§L(P)|]|q|<1|p‘1/m 5 _Oe 4 —O—e —14 Sexp 12 — ]
-2 p lgl<iplt/m 4~ 8
1 d 0 /s 0_ ,0
<L _gea_Sexp(p ]
P Jigi<tiplvm 4 g 4

We will use the inequality above to obtain the final upper bounds.
In the hard interaction case (2.21), we use (2.57), (2.59) and (2.67) to obtain

(P2 0 (p"—q°—Ip—q
S dg ———e™ 2 .
€Lyt i < /R ¢ e e -
(3.62)
Therefore, from (3.38) we have
[|§L(p)|]|q|5%|p|l/m ~ (P )2
In the soft interaction case (2.22), we use (2.59) and (2.67) to obtain
[|§L(P)|]‘q|5%|p|1/m
0,003+1 o 0 _ 40 _1p_
S// dq %67% exp <p ¢ —Ip ql) . (3.63)
lql<31pttm 1P —ql 4

By (3.38), since b < 2, we then have

iy 40 b _b
L <t S POF [ da1p = g7 e T @O 5 0K,
=7 R3
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This completes the desired estimates on the region || < 5| p|l/m

Next we perform the estimates on the complementary region where |g| > | pl
|pl > 1 and m > 1. Therefore, in this region we have

&= lal =+ (1pF)™ ;(;) ()"

Then, for some ¢ = ¢, > 0, we have additional exponential decay from

l/m

o 1" — 412,412 < efqo/zefc@o)l/m, (3.64)

Then with (3.64) we have exponential decay in p°.

Now we need to replace the estimates on K 2(l, j) above, which is defined in (2.79).
Recalling the estimates (3.55) and (3.56), instead of (3.57) we use (2.56) and (2.61)
to obtain

T . ’ .
Kol ) 5 == (5, o) oy = 7

S P+ ") exp(—y/12 — j2). (3.65)

We conclude from the above estimate, recalling also (3.53), that
K221 S S(° + )% exp(—/12 = j2).
Then by (3.50), (3.51), (3.53), (3.54) and the above, we further obtain

[|§L(P)|]|q|2%|p‘1/m
< 1.2 _z£ -

]

’S(p° + ¢°)2 exp (— 12— j2>

p lg|=5Iplt/m 4~ 8§
1 d 0 Vs 0_40
P° Jigl=4ipl/m q 8 4
< pOE—C(pO)”'”/ dg ¢%e qT‘/_—
lg|=3|p|'/m 8

where in the last inequality we used (2.63), (2.67), (3.38) and (3.64). Then from the
same procedures we used to prove (3.62) and (3.63), using the exponential decay in
p? above, we obtain for some uniform ¢’ > 0 that

O)I/m '

[|§L(P)|]|q|2%‘p|1/m f, e (3.66)
Combining the previous estimates, this completes the proof. O
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This completes the proof of the lower order upper bound estimates for ¢z, from
(3.4). Next, we prove that ¢, from (3.15) has a lower order upper bound.

3.6.2 Lower Order Upper Bound for ZL,,,,

We now prove the following proposition:

Proposition 3.8 Suppose y € (0, 2) in (2.20), and recall (2.23). For any given small
e > 0, assume that m is sufficiently large such that % < ¢. Then for both hard
(2.21) and soft (2.22) interactions there exists a finite constant C. > 0 such that for
(3.15) we have the following uniform asymptotic estimate

ELn(p)] = CcP .

We recall (3.10) and (3.15) with (2.95). Then we use the following representation
in this section (implicitly assuming |p| > 1):

!

£ () dq e“’”ﬁ/“ ydy o (1 s®(g)g?
m\P) = —5 -0 SAO(8A,UA il s—
b PO Jigi<tipim @° g Jo K241 sa®(gn)gh

x (exp(zl —20,/y2 + DI2jy) —exp(l — 1,/ y* + l)lo(jy)) S -t

The splitting of ¢, into Ez and Z‘i allows us to realize Ei = —¢r.m from (3.13)
with (3.4) and the lower order upper bound estimate for {; was already given in
Proposition 3.7.

Proof Based on the above discussion, in this proof we only need to give the asymptotic

upper bound for ¢ lL We start with

;! ¢ dq e‘qo«/E/C"’ ydy o [ 1 sP(g)g?
L= —_— SAO(ZA, UA -
PO Jgi<tipnm @ g Jo Y21 sa®(gn)gh

x exp(2l — 21,/ y2 + 1) 1p(2jy).

We recall that we have the kernel estimate (3.52) with the notation (3.53).
Thus when y < 1, since 0 < y < 2, we have

0

~1 1 dg e s'/? _

[Crly<1 S —/ ————exp(2DK, (21, 2)S,
EE 0 Jai<hipim 4° g 7

where we defined K y(, j)in (2.77). In particular from (2.81) we have

K, (21,2)) S exp(—/ (2D% = 2.
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Thus, when y < 1, we have

0
~ 1 d —q° o 1/2
[E1ly=<1 S F/ B exp2l — 42 —4jDS.  (3.67)

lgl<zlpl'/m 4 8
Above we are using the convention from (2.95).

On the other hand, if y > 1, we again use the kernel estimate (3.52) with (3.53).
Then, for both hard and soft interactions, we have

0

-1 1 dge 1 s'/?

b1 S5 [ dae 77T expans
EPE 0 Jgi<tipnm a° g

o0
X / dy y(3* + D2 exp(=21,/y2 + D1p(2jy).
1

Then note that
o0
f dy y(y* + D'Zexp(=21,/y2 + D1o(2jy) < K2(21,2j),
1

where K> is defined in (2.79). Then by (3.60), on the region |g| < %|p| 1/m we have

8 1
K>21,2)) < - exp(—/412 — 42). (3.68)

Hence if y > 1, we have

0
~1 1 dg e s1/2 :
[Crly=13 F/I‘ o —g—OSeXp(Zl —J4? -4, (3.69)
ql=zlpl*/™m

q 8p
Thus, combining (3.67) and (3.69), we obtain
0
5 1 d —q° 1/2
£ < —0/ 2 Sexp(al — \J412 — 4)?).
P” Jigi<hiplVm 4 8

We will now split this estimate into the hard (2.21) and soft (2.22) interaction cases.
In the hard interaction case (2.21), we use (2.59), (2.57) and (2.67) to obtain

P’ —4q°—1p—gql
. .

~1 _ a
§L§/ dq |p —ql 1(poqo)”ww(
lgl<5plt/m
Then by (3.58), (3.59), and (3.38), we have

& 5/ dg 1p1~ (T +5)
lgl<31pl!/m
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.3 1+4)(1+L ayat8
S Ipl ”m(po)( 2( "’)§(p°)2+2m, (3.70)

since |p| > 1. Then for any given small ¢ > 0, we choose m sufficiently large such
that % < &. This yields Proposition 3.8 in the hard interaction case on the region

lg] < 5Ipl'/m.
In the soft interaction case (2.22), we use (2.59) and (2.67) to obtain

po—qo—lp—ql)

~1 1 b
QS/ dq|p—ql™! b(p°q°)2“e><p<
lgl<Lipt/m 2

Now we use (3.58), (3.59), and (3.38) to obtain for |p| > 1 that
~1 - 1+2)(1+L
s‘LS/ dq |p|™! b(p°)< B
lgl<3(plt/m

b L
S p e oD 48) < (poy-te, (3.71)

For any given small ¢ > 0, we choose m sufficiently large such that % < ¢. This
yields Proposition 3.8 in the soft interaction case. This completes the proof. O

3.6.3 Low-Order Upper-Bound for & 1

Lastly, we introduce the following proposition on the lower-order upper bound estimate
for |£ ] from (3.12).

Proposition 3.9 Suppose y € (0,2) and m > 0. Then for both hard (2.21) and soft
(2.22) interactions, for some ¢ > 0, we have the uniform upper bound for (3.12):

| g

Proof Note that on |g| > %| p|'/™, then we will prove that each decomposed piece o

from (3.18) and ¢;, from (3.4) of E is lower order as above.
In §3.5, in both (3.32) and (3.33), if we restrict the domain to the case |g| >

%| p|1/ " then we have the bound (3.64) for some uniform ¢ > 0. Therefore, ¢ in
this subregion is lower order in p°, as it has additional exponential decay e—eHm,

Similarly, for &3, in (3.39), (3.40), (3.45), and (3.46), can again use (3.64) on the region
lg| = %|P|1/ . Thus, &; is also lower order in this region, and hence ¢y is lower order
when |g| = §|p['/m.

On the other hand for ¢; from (3.4), we have (3.66) in §3.6 which is exactly the
desired estimate. Thus, Z;, is also lower order in p°, and hence ¢ is also lower order

in this sub-region. This completes the proof. O

This concludes our discussion on the sharp asymptotics of the frequency multipliers.
In this next section, we provide upper-bound estimates on the nonlinear linearized
Boltzmann operator I'.
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4 Main Upper Bound Estimates

In this section we prove the main upper bound estimates on the linearized (2.28) and
non-linear collision operator (2.27). In particular in §4.1 we dyadically decompose
the singularity and perform size estimates on the decomposed pieces of (2.27). In
§4.2, we perform the upper bound estimates that incorporate the cancellation when
we are nearby the singularity. Then in §4.3, we perform upper bound estimates that
incorporate cancellation on the dual expression from (4.33). In §4.4 we give some
additional estimates on the decomposed pieces that will be useful in proving in partic-
ular Lemma 2.6. In §4.5, we explain the main Littlewood—Paley inequalities that we
will use to prove our main estimate. Then in §4.6, we use triple sum estimates together
with all the previous estimates in the section in order to prove the main estimates from
§2.6.

4.1 Estimates on the Single Decomposed Pieces
In this section, we mainly discuss about the estimates on the decomposed pieces of

the trilinear product (I'(f, k), n). For the usual 8-fold representation, we recall (2.27)
and obtain that

(w2 T(f, h),n) = / dp / dq / dw ve0 (g, Hw (P)n(p)v/JI (@)
R3 R3 S2

x (f(@Hh(p") — f(@h(p))
=7l -1, (4.1)

where the gain term TJIr and the loss term T are defined as

ricsnn 2 [ ap [ dg [ dowo o pne)T@ @

risnn [ ap [ g [ do ot 00w oo Ta fan.

And when [ = 0 we denote T = 7.
In the following, we will use the dyadically decomposed pieces TJ[r and 7! around
the angular singularity. We let {xx};2 _ be a partition of unity on (0, co) such that

Ixx] < 1 and supp(xx) C [27%=1, 27K, Then, using (2.19) we define

ok (g,0) = o (g, 0)xx (), 4.2)

where we recall § = g(pH, p'*) defined in (2.6). The reason that we dyadically
decompose around g is that we have 8 ~ £ for small 0 using (9.2). We refer to
Remark 2.1 and (2.11) for further explanations of this cancellation.
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Then we write the decomposed pieces Tf’l and T as

TS o) & /R dp fR da /S o va0u(g, Ow (Pn(p)VT (@) £ (gHh(p')

TECf ) = /R dp /R da /S o vg0r (g, 0)w* (Pn(p)VT (@) f(@h(p).
(4.3)

Thus, for f,h,n e S (R3), where S (R3) denotes the standard Schwartz space on R3:

(W T(f, h). n) Z (T (fohom) = T (F ).

k=—00
We will also use the definitions
- ar SO(g,0) e - e
6r = — xe(@. g=gp". p™,  g=g(™.q"), 4.4)

where we further recall (2.5), (2.6) and (2.7).

Now, we start making some size estimates for the decomposed pieces 75! and T_’ﬁ’l
for Schwartz functions. Then the estimates can be justified in general by approxima-
tion.

Proposition 4.1 For any integer k € Z and for any | > 0 and m > 0, we have the
uniform estimate for both hard- and soft-interactions (2.21) and (2.22):

ITE o S 21 f12, |wh|Lz 2wl .5)

2

Proof The term 7%/ is given as in (4.3). Then the condition g ~ 27¥ is equivalent to
saying that the angle 6 is comparable to 27X g~! by (9.2). Given the size estimates for
o(g, w) @(g)oo(cos 0) with (2.20) and the support of x;, we obtain

/ dw o (g, ) < B(g) / de 00(cos 0) i (3)
2 )

27kg71
S @(g) d@ oo(cos ) sin O
27l (4.6)

21(71

<d><g>f L d 91+y
< @(g)2 g7

Thus, under kernel assumptions (2.21) and (2.22), we have

T < 2 /R dp /R dq " vl f @11V T @) In(p)lw? (p) £ 1
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In the hard-interaction case (2.21) with p +y > 0, we use (2.58) and (2.85). Then,
we obtain

152 /R dp /R dq (P°0") S 1 f @I DIV T @ n(p)w? (p).

By the Cauchy—Schwarz inequality,

s\
152 </R dp fR} dq | f @ 1w'h(p)*V/T (@) (p°) )

1

x (/R ap ' (p) PP fR dq\/Tq)(qO)"”)z

4.7)

Since [3 dg/T(@)(q")" "7 ~ 1, we have

1
<20 (/Hé dp /H; dg |f<q>|2|wlh<p>|2\/J<q)<p°>2)2

1
2
x (/H; dp W'n(pP(*) T ) (4.8)

<2kV|f|Lz |wh|Lz |wn|Lz ., foranym>0.
2

On the other hand, in the soft-interaction case with (2.22), we have —% < p+y <O0.
Then we use (2.59) to obtain

1529 /R dp /R dq |p—q”*” (P°") T 1 F @ IR(PIVT @ () 1w (p).

With the Cauchy—Schwarz inequality, we have

1
1 o 2
1520 (/de”fdeq F@ P h(p) VT @) (p) 2 (g% 7 V)

—3(p+y)
x (fR dp [w'n(p)P(p*) PN V/ dgT(@)\p - q|2<p+y>>

Now we use (2.84) to obtain

1

152 ( f dp f dq |f<q)|2|w’h(p)|2\/J<q>(p°)W*”(q")”)2
R3 ]R3
1
1 2
x ( /R dp |w’n<p>|2<p°)2“’+”)
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< 2kV|f|L2 |w! hi2 lw!n| for any m > 0.
2(p+y) 2 (p+y)

This completes the proof. O

Before we do the size estimates for the Tf’l term, we first prove a useful inequality
as in the following proposition.

Proposition 4.2 Suppose k is any integer. Then, we have

gvs 50 / A U @FTS P 4 g — p — ) <2,
~ def ~ def ~

where g = g(p'*, p*) from (2.6) and g = g(p'*, ") and § = g + 4 from (2.7).

Proof Define

ka(p', q) def/ / —= W e @F T8O+ g — p — g,

By Lemma 2.17, we have

| -
(. q) £ = / dO(p", ") (@3> 8D (P + g — p — g,
16 JRr4xR4
where
dO(p*, q") = dp"dg" u(p® + ¢ )u(s — Hs(s — g* — s ((p" +¢")(pp — q))) -

with g = g(p*, ¢’*) and s = ¢2 + 4. Notice that g = g(p", g'*) = g(p'*, q"*) = §
from (2.7) using (2.8). Here, u(x) is defined in (2.51). We make the change of variables
from (p*, g’*) to

pr=p"+4q™, q" = p"—q".

Then we have

ka(p',q) = dO (", " x (g7 8W(g" — p™ + M),
256 R4><R4
where now
dO(p*, g") = dp"dg" u(p")u(—p" p, — HS(—p"p — §"q, — M8 (p"d,) -

Here, g originally from (2.6) is now redefined as

_ pr+q* Putq
gt =" =", — pu) = (p”‘ - T) (p; - % .
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Then we carry out the delta function 8 (¢g* — p’* 4+ §*) and obtain

1
k(P 9) = ¢ / dO(P") (8§77,

where now

def

dO(p") = dp"u(p)u(—p"p,, — H8(—p"p,, — &> — D8 (p" (), — qw)) .

where ¢ = g(p’*, g*). Above, g is now redefined as

- pt+ g ]
g’ = (p/“ -—— ) (r- % (p/“ +q" = p")(py 4 qu — Pp)-

Since § = g2 + 4, we have

u(pHS(—p"p, — & — 4 = u(pH8(—p"p, — 5

S(ﬁo—\/|ﬁ|2+§).

= u(p")8((p")? — 1p1* —5) = Y
2J1p12 +5

(4.9)

Now note that u(—p*p, —4) = 1 because —p"p, —4 = §2 > 0. By carrying out
the delta function §(p° — /| p| + §), we have

1 dp _ JE, S -
ka(p', q) = ——=8(p" (P, — @& T Xk (D).
512 ® V|pl>+35 L
We will further change variables inside this integral to evaluate the delta function. For
the reduction we move to a new Lorentz frame as below.
We recall Definition 2.13 and then consider the Lorentz transform A = A(p/, q)

of (2.55) where we exchange the role of p in (2.55) with p’. As in (2.54), with p
replaced by p’, this transformation maps into the center-of-momentum frame as

AV = A, (P, +q) = (¥/5,0,0,0), B” = —A",(p), —qu) = (0,0,0, ).

After applying this change of variables, we have

k
2Pl q) = 512 Ju ﬁplz

is a Lorentz invariant measure. Here, g is now redefined as

_ p —
=3 = \/| 2+5 - V5.

(P BE Y xi(8),

dp

A1 P12 +5

where
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We write p in the polar coordinate system (y, ¢, ¥) € [0, 0o) x [0, 2) x [0, ) such
that we have

k(. q) = = /zndfb/nsinwdw/m—yZdy 8(ygcosy)g > x(®)
2P »q) = y8 8 Xk(8),
512 Jo 0 0 yr+3s

where g is now

§2=§< y2+§—\/§).

We carry out the delta function at y» = 7 and obtain

o0

ydy __,_
ka(p',q) = ——= g7
2568 Jo 2+

Note that the support condition x;(g) implies that g € [27%1 27K]. Then this is
equivalent to

xk(2).

2—2k—l _ 2—2k+l wr

<P +i=Vi+ = 1.

Ylg\/g‘i‘ \/: < \/:
S K

Then we consider the change of variables y > y' = \/y% 4 § with ydy = y'dy’ and
obtain

Y2 o/ g4/ )
T ydy' __,5_ _ b4 _
k(. q) = —— 227 () ~ 2K DT / dy 3@
256g Jy, vy [
—2k+1 —2k—1

< H Ly _y)y a kT (2 2 ) ~ 2kyL'

~ g g\ V5 V3 gvs
Therefore, we obtain

gVika(p' q) S 2V,

and this completes the proof for the proposition. O

We are now ready to estimate the operator Tf’l. This is more difficult and requires
more refined techniques because it contains the post-collisional momenta. By taking
a pre-post change of variables (p, g) — (p’, ¢’) as in (2.94), we obtain from (4.3)
that the term T_{f’l is equal to

i = [ dp [ da [ dooieonf @hoT@me o)
(4.10)
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where oy (g, w) is defined in (4.2) with (2.19). We note that no momentum weight is
gained for the plus term Tf’l in |w! f|, 2 in this proposition below.

Proposition 4.3 For any integer k € Z and |l > 0, we have the following uniform
estimate for both hard and soft-interactions (2.21) and (2.22):

T b S 29 ! f|Lz|wh|Lz Jwhnlz @.11)

2

Proof Using (2.21) and (2.22), we have

TS )
A@*dp/u@dq/ dw g ve00 Xk @Lf @R (P T (@) In(pHlw? (p) =

def

(4.12)

We will separately estimate the hard and soft interactions cases.
We start with the hard-interaction case (2.21) with p 4+ y > 0. We first note that

w?(p) S w'(pHw' (pw' (@),
as! > 0and p’° < p¥ 4 4. By the Cauchy—Schwarz inequality,

1
oty \ 2
15(/ ap [ dq [ dov ~%§';(g)| @Rl (ORI @ (") )
R3 R3 S?
1

—p=y \ 2
X (./]1&3 dp /]RS dq /SZ dw vﬂgPUOXk(§)§p+yleh(p)|2\/Tq/)(p0)2)

def

=11, (4.13)

where g = g(p'*, g*). We estimate I first. We can rewrite I, as follows:

1

—p=y \ 2
k= ([Rs dp /R3 dq/ do Uesgp(fo)(k(é)é”ﬂ’Iw’h(p)\z\/m(po)T)

(LBLSL%L

I R e q")) "

/R3 =58P o0xk (@& [w'h(p) PV T (@) (p") T

Then, we take a pre-post change of variables (p,q) +— (p’,q’) and use g =
g(p™, g") = g(p*, g'*) to obtain

L = (/ / / / —sg GOXk(g)gp+y|wlh(p)|2W
R3 R3 R3 R3 ¢
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1

2
x(p) T 8D (pt 4 gt — pf —q’“))

(/ f 44 20242l () 2 T () () 5
R3 R3

1

2
/R / OXk(g)g 2D (ph 4 g p“—q’“)) . (419

where we used g ~ g, s ~ § with § = gz +4,and 0g(0) ~ 6727 ~ (%)_2_7 by
(2.20), (2.86), and (9.2). Then we use Proposition 4.2 and obtain that

1

12<22 (/ / dq \/:~2p+2y+l|wlh(p)| /J(q (p/O) )2
R3 R3

We further use § < /p/0¢0 and § < p/¢° from (2.58) and (2.57) to conclude that

l
k 10 LY
ng2? (/R dp' (,,o)pzqwzh(,,fﬂsz dg (qo)f’*V\/J(q)) ~2F ke

2

This completes the estimate for /5.
Now we estimate /;. We first observe that

(P T VI £ P TV £ TV S 0
for some « € (0, 1) by (2.89) and p + y > 0. Thus, we obtain that

1
R3

We raise the 8-fold integration into 12-fold integration like (4.14) without the pre-post
change of variable this time. Then we obtain

(f f 53w @ Plwn(pHP(p) "
R3 R3 4
1

2
/R / —0 9 @ET O+ g — p —q/’“‘)> :

where we used g ~ g, s & § with § = g2 +4,and 0g(0) ~ 6727 ~ (%)_2_7 by
(2.20) and (9.2), as in I case. By Proposition 4.2, we have

1

I <2z (/H; / qu|w F@OPwn(p)] (p/o)p;y>z‘
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Then, using (2.57) and (2.58) we obtain

L <27 2 </
R3
s2% ( L v @ uta o [ dqlwlf(q)|2> (19

<A I
S27 |w fle|w 77|L2pﬂ
2

1

f 0| L@ Plw'n(phR(p®) 2 0)

by the Cauchy—Schwarz inequality. Thus, from (4.13) we have

1 <25 [l flpaw! hpz lw! Mz,
T

This completes the proof for the hard-interaction case (2.21).
On the other hand, in the soft-interaction case (2.22) when 0 > p +y > -3, we
have the following by the Cauchy—Schwarz inequality for / defined in (4.12):

1

oty \ 2
Is (f dp/Rqu/ do vy 2%, ¢ 2w 2l(p/)w(q’)<p/°)7>

grty
1

—p— 2

i (/Rg » /R 4 fs do vﬁngOXk(g)g/H_y|wl'7(l7/)|2\/-](q/)(l7/0)%>
=1 DL (4.16)
For I, we split the region of p’ into two: p¥ < %(p0 +¢% and p"? > %(p0 +49).

If p° < 2(p° +¢%), P +¢° — ¢ < L(p° + ¢°) by the conservation laws (2.8).
1/4
Thus, —¢0 < —L(p°+¢%) and J (¢) < VTINT@ = (J (0T (@)J (P)I ()"

by using the conservation laws (2.8). Since the exponential decay is faster than any
polynomial decay, we have

w (p")(p) 2P VT < () (")

for any fixed m > 0. On the other region, we have p0 > %(p0 + ¢°) and hence
0~ (p° + ¢°) because p° < (p° + ¢°). Then w?(p’) < w? (p)w?(g) asl > 0.
Also, we have (p/o)%("“”) < (po)%(“'”) because p + ¥ < 0. Thus, we obtain

1 1
w? (P (p*) 2P JT(q) S w (pyw? (g)(p®)T ).

After computing dw integral as in (4.6) in both cases above, we obtain

1

,o ky 2
N( / dp / g 82 8 f @) Pin(p) Pw 2’(p>w2’<q>(p°>%@+y>)
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1

(/ dp/ dq 27w @) P1w'h(p)] <p°>z(f’+”) <2l flwth,

2

by the Cauchy—Schwarz inequality.
Next we estimate I, from (4.16). Note that vy = ;'8{;) by (2.14). By a pre-post

change of variables (p’, ¢') — (p, ¢) as in (2.94), we have
3
g =Py
I = (/3dp/3dq /Sz dow vﬁngOXk(g)gp+V|wln(p)|2 J(C])(po) > )
R R
Then by (4.6), we have

1

-\ 2
2 ) . @17

12§</ dp / dq ve2" g2 !y (p) P T (@) (p
R3 R3

Using (2.59) for0 > p+ y > —% and (2.85), we have

l

TEBS f dp f dq v d 7T ar PPV I @) T
~ \Jrs R3 (pOq0)rt+y
Also (¢*)™777 /T (q) < /T%(q) for some a > 0. Then using (2.84) we have

1
/Ja 2
L< f dp 2% [wn(p)2(p°) 2P / dq _ITD
R} RS |p—ql?=P7)
1

3(—p— 2 ky
S (/zdp 2 wln(p)P (p") 2 V><p°)2“’+”) =27 iz, - (418)
R 27

2

Together, we obtain that

1< 2’<V|wlf|Lz|w’h|L2 |w! M,
T

This completes the proof. O

Remark 4.4 For future use in the proof of Proposition 4.9 we point out that estimate
(4.18) also holds for the hard potentials (2.21) when p 4+ y > 0. Indeed in this case
we use (2.85) and (2.58) in (4.17) to obtain

1

—p—y \ 2
ns ( /ﬂ; dp /R dg 2ky<p°q°)”+y|w’n<p>|2/Tq><p°>2)
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Again (¢°)**7 /T (q) < /T%(q) for some o > 0, and using (2.84) we have

1
2 k
hs ([ dp 2kV|w’n(p>|2(p°>5<P+”) S2Fphil, o @19)
R3 Pty

And this is the desired estimate.

This concludes our discussion of the upper-bound estimates for the collision oper-
ators away from the angular singularity. In the next section we will make upper-bound
estimates for the same operators nearby the angular singularity. The key point for that
is to utilize the cancellation properties between the gain and the loss terms.

4.2 Cancellation Estimates

In this section we will establish uniform upper bound estimates for the difference
Tf’l — T%!in the case when k > 0. We will need our upper bound estimates to have a
dependency on a negative power of 2% so we have a good estimate after summation in
k > 0. Before we move onto the actual estimates, we will now introduce the following

useful inequality:

Lemma 4.5 Suppose § < 1. Then, we have q"° ~ ¢° and p" ~ p°. In particular if
g ~ 27% for some k > 0, we then have p® < /5p" and p’® < V/5p°.

This equivalence is one of the advantages that we take on this region g < 1 nearby
the angular singularity. We prove the case p® & p’® and the case for ¢° &~ ¢’ is the
same because g = g(p'*, p*) = g(¢'*, ¢"*) < 1 in the same region.

Proof Recall the inequality lp—p] < g from (2.59). If § < 2%, we have

N

PO =1+1p P <1+20p - pP +1p»
< 14227 %p%p0 +1p1%) < 20N> +27%*pp").  (4.20)

By Young’s inequality, we have
272k 0 50 < o=k (0)2 4 %(pxo)z'
We put this into (4.20) and obtain that
(P = 2D 24N + L),
Thus,
(P2 =401+ 2790 < L0, (421)
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as k is a positive integer. Therefore, (p'®)? < 5(p°)? holds and hence p”© < V5po.
The same proof works if we interchange the roles of p and p’. Therefore, p° ~ p°. 0

For the upper-bound estimates of the difference Tf’l — T8 we also define paths
from p to p’ and from ¢ to ¢’. Fix any two p, p’ € R3 and consider « : [0, 1] — R3
given by

def

k(@) =09p+ (1 —0)p ford €l0,1]. (4.22)

Similarly, we define the following for the path from ¢’ to g;

def

Kkqg(9) =g + (1 —9)q' for ¥ € [0, 1].

Then we can easily notice that k (9) + k4 () = p' +q¢' = p+gq.
We also define the length of the gradient as:

IVI'H(p) £ max_ sup ’(X-V)"H(p)(, i=0,1,2, (4.23)

0=j=i|x|=1

where x € R3 and || is the usual Euclidean length. Note that we have IVI°H = |H|
and we will write |V|' H = |V|H without ambiguity.

Now we start estimating the term |Tf’l -7k ’l| under the condition g < 1. We recall
from (4.3) and (4.10) that |(T" — T*")(f, h, )| is defined as

I(Ti’l—Tf’l)(f,h,nN:‘ / dp / dg f de o1 (g. )ve f(@h(P)
R3 R3 SZ

x (w? (p)/ T (@ n(p") — w? (p)V/T(@n(p))|,
(4.24)

The key part is to estimate |w? (p')/J (g )n(p") — w ()T @n(p)|.
We have the following proposition for the cancellation estimate:

Proposition 4.6 For any k > 0 and for 0 < y < 1 and m > 0, we have the uniform
estimate:

(TE = TENC bl S 207K 1wl VI (4.25)
2

2
Loty
2

Proof We want our kernel to have a good dependency on 2% so we end up with
the negative power on 2 as 20V =Dk We first split the term w? (p')/J (¢ )n(p’) —

w? (p)/T(q)n(p) into two parts as

w (P W I @)@’ = w? (p)V I @n(p)
= 0 ()T@) (1) = 1) + w2 () (VI @) =T @ ) np)
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+w? (p") — wH (P I (@)n(p) =T+ 10+ 111 (4.26)

For part I, we define the whole integral with part I (TJ];ZZI - Tf:ll) as

T - T = / dp /ﬂ; g / dw va01(8, ) f (@h(P)w? (p)
x\/J(q’)(n(p ) — n(p)>-

For the cancellation terms, we obtain
1
n(p) —n(p) = (' —p) /0 dv (V) (k (D)).

We first note that under g < 1 we have w? (p’) ~ w?(p) by Lemma 4.5. Also note

that |p' — p| =19’ —q| < g(¢", ")/ q°¢"° = /q0¢"0 ~ 27%/40¢"0. In addition,
we have that (¢°¢")2 /7(q") < (J(q)J(¢))¢ for a sufficiently small € > 0. This is

because Lemma 4.5 implies that ¢ + ¢’° &~ ¢’ if g < 27 for a positive integer k.
Thus, we obtain that

74— 78| < 2 /dz?/ a’p/ dq/ de vy01 (3. )| F(@IA()]
R3 R3
xw? (p) (T (@) (@) IVIn(c(9)).
We thus conclude

1
1Tfii—Tf:i\52‘k</ dﬁ/ dpf dqf de vyor(g, )| f (@ P 1h(p)]?
0 R3 R3 S2

1

2
szz(p)u(q),(q/))e>

1
x(/ dz‘/‘/ dp/ dq/ dw vgak(g,w)wy(p)
0 R3 R3 S?

def

1
2
x(J(q)J(q/)f||V|n(x<z9)>|2) 27k P n? @427

where the second inequality is by the Cauchy—Schwarz inequality. For the first part
I1, we use J(¢)¢ < 1 and follow exactly the same argument as in the estimate for
|75 | as in (4.6) and (4.5) to obtain that

L <27 f13, (w'hl3, . forany m > 0.
o o

For the second part I, we recall that « () = 9 p + (1 — ) p’. Following Lemma 2.11
we first recover the integrals with respect to the post-collisional momenta p’ and ¢’
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and write /> as a 13-fold integral as follows:

= by = / v / / / / U (g, )8 ("
R R3 R3 R3

—q")
szl(p)u(q)](q NEIVIn@ p + (1 —9)p)|*. (4.28)

_ —2—y
We recall ox(g, ®) < g°00(w) k(@) ~ g° (g) xx(2) as in (9.2) for both hard

and soft-interactions (2.21) and (2.22). Then, we have

e[ [ L ()

)8 (4 g — p — g (p) (T (@) (@) |IVIn@ p + (1 —9)p))|*.

Here, we split g2 = g 377" x g V™17 for some constant y’ > 0 to be chosen.
Then note that —y + 1 + y’ > 0 for any ' > 0. For the first component 2377, we
use

/
/,L)_Iq q'l _Ip'—pl

= TN — S M
g". p")=¢4".q NZ N
and obtain that
G I@IGN Sl =TT T @I @)

for some € > ¢’ > 0. For the second component g“ry/—V, we use g &~ 27X from the
support condition yx(g) to obtain that g'*7 =7 ~ 2(=1=¥)*+D Thys, we obtain

FET (@I (@) S 20D S (1 (g))e

where we also used .l(q/)el < 1. Hence,

(y—1-y")(k+1D) p+V+2
I <2017 f dﬁ/ f / f (@
R? R? R3 rd IP Py

)8 (p 4 g — p — g (p)(T (@) |IVIn@ p + (1 —9)p))|*.

By Lemma 2.12, we can reduce this integral to the integral on the set £ Z_ » and obtain

p+y+2
(r=1=y)+) Ty S8 _
h52 / dﬂ/ma /]R /Eff , 824" i — prer @)

xw? () (T (@) |IVIn@p + (1 —9)p")|*
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Page 80 of 167
) We use another g~! < 2+1

20

e (&8, 9" Wu—p)
P78 (7 + Tﬂ

where dn, = dq u(p® +q
and reorder terms to obtain that
drr
Eq

I < 20— y)(k+1>/ dﬁ/ /
R3 R3

xw? (p)(J (@) [IVIn@p + (1 —0)p )|

Y / . / i [ ap' |Vin@p+ 0 =0p)*
R3 R3

lp — p'IPt
<w? (p) f s 2@

We use that p + y + 2 > 0 for both hard and soft-interactions (2.21) and (2.22) and

Sgp+y+2

0 [p— p Pt T Xk (8)

(2.57), (2.58), and Lemma 4.5 to obtain
d7q  pty+2 € < (1,0\242 dmg o402 ¢
—5 58 J(g)® < () —5 @) (@)
EY, q EY,
r'-p r'-p
Pty dm ”
ST Lol T
EZLP q

where €” is some uniform constant such that 0 < €¢” < ¢
Then we claim that
(4.29)

dm, ”
f —L (@) 1.
ql q
p'—p

This can be seen by a direct computation. We can justify the claim as follows

4 d M( )
L))" —/Sq—‘éu(p°+q°—p/°)8<2 R )(J( D

dm,
EY, qo
p'=p

We take the change of variables on ¢ into angular coordinates as ¢ € R? > (r, 6, ¢)
and choose the z-axis parallel to p — p’ such that the angle between ¢ and p — p’ is

equal to ¢. The terms in the delta function can be rewritten as

q*(pu

L) Ly, — g
5 2 = 52 (&" +2¢"(pu — 1,

P +2¢-(p—p))

1
—g(g2 —2¢°(p° -

1 _
—g(g2—2¢1+r2(p°—p

) +2r|p — p| cos §).
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Thus, we obtain that

d?Tq &
f T4 @)
E 4

p=r

o] dr /n 2 5 0
= —— dqb/ dO r-sing u(p V142 -
/0 V1+7r2Jo 0
1 "
X3 <—_(§2 - 2\/1—0-;#(170 - +2rp—pl cosqb)) e VI’

= d(— cos¢)/ dor? u(p® + V14712 —
/0 V1+r? /
g —2+4/1 —p0 ”
x—28 s COS¢+g +r(lf P eV
rlp—p'l 2rip — p/|
o0 2 =
< | ——= | doup’+ V142 p0) VI
/0 \/1+r2/o Ip pl
< [T
0 V1472 ~

where we have used g < |p — p’| and u(x) < 1. Thus we obtain

1
I <20 )(k+1>/ dﬁ/%dp// dp (° 5w (p)
R

|IVIn(ﬁp+ a—opH
lp— p'|PtY

Xk (8).

Now we define u = p — p’ and consider the change of variables p — u = p — p’.
Then we have ¥ p + (1 — #)p’ = p’ + Yu. Note that the support condition x4 (g)
gives p® ~ p'0 and w!(p) ~ w!(p’). Also, the support condition x;(g) indicates that
lul = |p — p'| = § > 2% and that |u| < 27%5'/4p/0. This is because we can use
p? < +/5p"0 from Lemma 4.5 to obtain that

u| = |p — p'l <275/ pOp0 < 27ks1/4p0.
Then we have

I <20~ y)<k+1)/ dﬁ/ dp' (") ()

2
/ [IVIn(p’ + du)|

X U ——————

2—k=1<|y|<2—k51/4 /0 lu)3tY

We will consider this expression briefly and estimate some of the terms in the integrand.
In a moment we will use the change of variables p’ — v = p’ + Yu.
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We first claim that p'0 ~ v° £ /1 + |v|2. This can be proved as follows. We show
that v < p'® first. Note that we have

W2 =1+l =1+1p +0ul =1+ 1p 1P+ ul>+209p - u
7
<20/ +20%ul® < 2p") +20°27512(p0)? < S0

as ¥ is in (0, 1) and k is a positive integer. So we have v° < p. On the other hand,
in order to prove p’® < v?, we recall that v = p’ + Y u and obtain

PO’ =14 1pP =1+ v=2u> =0+ |v|>) —20v-u+9|ul*. (4.30)

By Young’s inequality, we have 29 |v - u| < 4|v|> + %02|u|2. We plug this back into
(4.30) to obtain that

5 5 12

because k is a positive integer and ¥ € (0, 1). Therefore, we obtain ( p’o)2 < 20(v%)2.
We conclude that p’® ~ 9.

We plug in these estimates, and then we use Fubini’s theorem to change the order
of integration to obtain

1
I <20- V)<k+1>/ dﬁ/ du—— / dp' )5 w? ) IV In ()
kg uPtY

Now we consider the change of variables p’ — v = p’ + Yu. We obtain

1
L < 2(y—y’>(k+1>/ dﬁ/ du ——
~ 0 P S PR 171 el

x/ dv(@*) 5 w2 (v) |V n()
]R3

< 2(V—V/)(k+1) w1|v|n / dﬂ/
p+y 2—k- 1<|u\ |u|3+y
: Ju|?
< =¥k w’IVIn / dﬁ/
,0+y 2—k=1 |u|3+}/
< 20=10+D [yl g P 2ty < gty
Lisy Ly
2 2
< 2k 4.31)
2.
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From (4.27) and (4.31), we obtain

—k1/2 1/2
(T8 =T (ool S 275017 x 1/

+
< lr=Dk w'h w' |V .
N |f|L2_m| |L2,,+y| | |n|L2,,+y
=

This completes the estimate for part I.
For part II of (4.26) in (4.24), we use the fundamental theorem of calculus and
obtain that

1
JI@) —T@) = /O 49 (¢ — q) - (VT (g (9)).

Thus, we have

1
(VI@) ~T@) 0| < [ a0 14’ = g9V T )il

Now we observe that |¢’ — ¢| < g(g", ¢"™)v/q°"° = gv/q°¢"° ~ 27%/q0¢"0. For
[V|+/J, we use that

VIV T (kg (1)) S VT (kg (D).

Also, we have that (qoq/o)%,/J(Kq(ﬁ)) < (J(g)J(g"))¢ for any ® € [0, 1] for suf-
ficiently small € > 0. Thus, using w?(p’) ~ w? (p) by Lemma 4.5, the difference

‘Tf:il — TE’H of the part II of (4.26) in (4.24) is bounded above as

k,l k.l
‘TJr,II - Tf,ll‘

s27f fR dp /R dg /S do vyor (8. )| f (@ 1h(P)I(J (@) ] (@) In(p)[w? (p).
(4.32)

Now the rest of the proof follows exactly the same as in the estimate for |Tf’l| as in
(4.6) and (4.5), and we obtain the upper bound in the right-hand side of the proposition

because | 7| is less than or equal to ||V|n| by the definition of the length of the gradient
(4.23). Thus,

k.l k,l (y=Dk i 1
T —T ‘ <2V w'h w'|V .
) w1 R NAVER |L2,);y| | |n|L2”§V

The term III is then handled the same way as the term II. Together with the previous
estimates, we obtain the proposition. O
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4.3 Dual Cancellation Estimates

We will also derive the following cancellation estimates that have the momentum
derivative acting on % instead of 7.

Proposition 4.7 For any k > 0 and for 0 < y < 1 and any m > 0, we have the
uniform estimate:

k,l kl
(Tyg = TN )| S 207D f1 fu! |V|h|Lz Iwnle :
T

For the proof of Proposition 4.7, we will have to derive and use the Carleman dual
representation of the trilinear form (w?I'(f, h), n). The dual representation of the
trilinear term is derived in (7.21) in §7.

If we consider the dyadic decomposition of the region g < 1 into g ~ 27 in the
original representation as in (4.2), then this decomposition corresponds to the dyadic
decomposition of g; &~ 27K in the new representation (7.21) after we applied the

Lorentz transformation. As before (4.2), we let { Xk};fi_ oo De the partition of unity on

(0, 00) such that | x| < 1 and supp(xx) C [2=%=1 27%]. Then we define

/

c o
EU(gA, Oa)xk(gL) = ok(ga, On)-

Here % > (is the constant that comes from (7.21), and g is defined in (7.17). We can
now write the decomposed pieces of the dual formulation as Tf:fi = Tf:ld( fyoh,n)
and T = T (£, 1, ) from (7.21) as

kl def/ dQ“/_ dz
R3 r q° & Jre /|22 +
X
x h(A(p'.q.2) + p') exp (—T(\/Iz|2+1—1)+ p2§q|z1)
kl det/ dq«/_
R3

® q° & Jr2 \/|z|2

50 (3)8*
_ 4.33
sad(ga)gh hp). 39

sm(gA OV I (@w? (P n(p') f(q)

sAok<gA,9A> J(@uw (phn(p) f(q)

From the calculations in §7 we have that

(Tl = TR b = (TE" = T (v,
also using the definitions (4.3). The rest of the notation used above is defined in (2.70)
or (7.17), (2.71) or (7.18), and (7.20). This notation will also be defined the first time

we use it in the proof below. Thus, again, for f,h,n € S (R3) Schwartz functions, we
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have:
(T (f, h), n) = ZN L) = TEL (R

Since this dual representation is written in (p’, ¢, z) variables as above, instead of
the standard (p, ¢, w) variables, we will first check what the condition g ~ 27k of
the dyadic decomposition of the angular singularity would correspond to in the new
variable g; which is defined in (2.70). The rest of this section is devoted to the proof
of Proposition 4.7.

In order to estimate the trilinear terms in (4.33) nearby the singularity, for the
difference of (4.33), we split up the difference of the integrands as follows

h(A(P/aq,Z)—Fp/)exp( (\/T 1+ szzl)

5oz h)
sa®(ga)gh

= exp (—%(\/ zZ2+1-1)+ |P2>; qul) (h (AP q.2)+ p') — h(p))
B 0
e (exp (— Wi ri-n+ 2 X‘”zl) E 1);,(,,/)
SA<D(8A)gA 28

R
+exp( (\/Izl2 l)+ q'm) (1 - Sq)(g)g> h(p")

2g sa®(gn)gh

=1+11+111.

In the rest of this section, we will make an upper-bound estimate for each part of the
trilinear term Tf’l — Tf’l which involves the parts I, /1, and 1. Thus we define

G“—ﬂbqhm

def / dq «/_E dz
R3

— - ,0 J 2l 1 /
e g g Jwe \/msmk(gz\ VI (@Qw= (pn(p') f(q)

X exp (—l(\/lzlz +1-1)+ jzl) [h (A(p'.q.20+ p') —h (D) } (4.34)
where we recall the notation (2.69). We also define

k.l k.l
(T+’11 - T_,II)(fv h» 7])

def d ! / / / d 7’“ d
< [ neu @me [ J(q)f(q)“{E/ o —=5A0(8. 62)
R3 P R3 4 8 Jr {/|z2 +1
o a4
X%(g;p(—l( P+ 1-1+ja) - 1), (4.35)

saD(ga)g,
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and lastly

k,l k.l
Ty =T hm)

def dp’ NP , / dq \/§/ dz
2 £ —JJ = = N
/R3 0 (PHwW(PHn(p") s g0 (@) f(@) i Je Jip g lsmk(g/\ A)

st (3 54
xexp (<P 1= 1)+ jai) (1 - “”(g)g) . (4.36)

sa®(ga)gh

k,l k,l k,l k,l k,l k,l k,l
ThennotethatT+,d—T_’ =T —T I+T+” ’”—{-T+1” T NIIE For our

estimates of each of these terms We will make use of these dual representatlons that
are written in the variables (p’, ¢, z). Therefore we will next study which conditions
in the z variable corresponds to the correct dyadic decomposition.

We first note that the condition 2%~ < gL < 27k is equivalent to

27T o (JIzE 41— 1) < 272G (4.37)

by (2.70). In the rest of this section, we will denote the condition (4.37) simply as
Iz 4+1—1) = 27251
We also note that (4.37) implies that

0 <27F 15712 <) < 27MHI57 12 [ -2k < o712 <

(4.38)

since k > 0 and s > 4.
Proof of Proposition 4.7 We will split the proof into three parts I, 1, and I11. In each
part we estimate each of the terms in (4.34), (4.35), and (4.36) respectively.

Estimates on part /. For the estimate of the first part in (4.34), we use the Cauchy—
Schwarz inequality to obtain that

(T =T hm)

dz .
< - = .0 J /2,201 0\m
N(~/]R /R ( ) R? |Z|2+15A0k(gA AT (@) Zw™ (p (g™
2\ 1/2
X exp (—l( lz2+1-1) +j21> [h (A g, +p)—h (p/):| )

0 J 12 2L 1 N2 2

(/R /R B WsAok(gA W @) 2w PO F @)
12

xexp (/1P + 1= 1)+ jz1) (qo)_’”> = pi*p}”, (4.39)
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for a sufficiently large m > 0. We note that the spltting with the term (¢°)” above is
important because the term D> needs the extra |g| decay and the term D; has plenty
of exponential |g| decay.

The representation of D1. We can recover the original representation of Dj in the
following way. Specifically we notice that D is of the form (2.92) with G in (2.92)
given by

G = %(q‘))mgm(gmu(q))l”w”(p@ exp (~1W/IZP+ 1= 1)+ jz)
2
x [h (Ap'.q.2)+p') —h (p/)} ,

Thus since (2.92) is also equal to (2.91), we obtain that D corresponds to
s =\, 2 n1/2 / ? 0\m
Dy %/ dp/ dq/ do ——50(8,0)xx(@w™ (p)J(q) [h(p)—h(p)} ()",
R3 R3 s? P q

where we used (2.86) such that vg,‘/?? ~ p+w' We use the fundamental theorem of
calculus to obtain

Dy S / dp / dq / do —5—50( 0@ () ()"
R3 R3 S? pPq
1 2
x|p/—p|2</0 dvo(|V|h) (M))) ("™

1
S -
5/ dz?/ dpf dq/ do ——0 (8.0 (@w* (p))J (g
0 R3 R3 S? pPq

2
x|p' — p|2<<|V|h> <K<0)>) @™,

where k (9) = 9 p+(1—19)p’. Note that | p’ — p|2 = |¢’ —q|* < g(g*, ¢"")*¢%"° =
3%2q°q"° ~ 27%4% 0 by (2.59). And w(p’) ~ w(p). Also, we have that

@™ (q°¢") I (@' < T (@I @))E

for a sufficiently small € > 0 by Lemma 4.5. Then this term D has an upper bound
of 272K I, where I, is defined in (4.28), but the notation 7 is replaced by /; in other
words in (4.28) we use I = I>(h). Then by the same arguments leading to (4.31) we
obtain the upper bound of D; as

2
Dy < 2k (w’wm )

2
Pty
2

This completes our estimate for Dj.
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The estimates for D,. The term D> is given by

> / / SAUk(gA, GA)(J(q))1/2w2l(p/)
R3 R3 q R2 |Z|2

x[n(p)P1f @) exp (—z(mz 1= D+ jz1) @)™,

0 0
where = 2 Iq

we have

and j = |p/2§q| from (2.69). Note that sp = g3 +4, and from (7.17)

=2+ %(\/|z|2+ - 1. (4.40)

Above we recall (2.7). Also from (2.20) and (7.18) we have

4.41)
I

- —1-y/2
o SW/IzP+1-=1)
o) ~ 0 ~ <—> .

Therefore, we have

. —1—y/2
sao(gn. 0a) ~ sagh 72 (VP T - 1)
“—y)2
ST (Vieri-1) (4.42)

by (4.38). Then we further note using (4.37) and (4.38) that

dz
D [ —
g N/R /R / VIPH=1)2272%570 ]z 4 1
xgh SR (Vi 1 - 1)_H/2 (@) 0 )
<[ (pOPIF@F exp (1P +1 =1+ jz1) @7

Nzk(y+2)f / / d|Z| | |( 0) m
R3 R3 VIiPH=1)~272%57 2] +

xgh 5 @) Pw 2’<p>|n(p>| |f(q)|2exp( l(x/|z|2+l—l)> Io(jlz])
520 / W L max {exp (-1 +1) 10(]|Z|)}(610)_m
r: PV Jr3 q 0<|z|<1
dlz|

X./&«/Izlzﬁ")%zml \/ﬁ| zlg

PRSI @) 2w (phIn(pH P F (@)
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In the following we further use the modified Bessel functions from (2.47). In the
inequality above we also used Ip(j|z]) from (2.47). Using (2.80) with (2.69) we have

max exp (<1v/[2P + 1+ jlzl) S exp(—/12 = j2). (443)

0<lz|=

The estimate (4.43) is earlier proven in [40]. Then, by (2.75) we have

2 4

0

0 _ I
SeXp<p 4q —|p4‘”)51, (4.44)

/0 r
(J (@) exp(~ 12_,)<exp< @ P+ |p4q|>

by (2.62). Thus,

dp’ dq . _
Dy < 240+ / @ / 5w (o) n(p P @) P ()"
w P Jr g

|Z| | | p+y+2

def

We make the change of variables |z| > K =[(y/|z]?> + 1 — 1) with

lz|d]z|

VIZP+1

Since p + y + 2 > 0, we use (2.57), (4.38) and (4.40) to obtain

dK =

p+y+2 ~p/24+y/2+1 0 _0\p/24y/2+1
gn T S S S (pg Ry 2

Then we have

Dy < 2K+ / / (p0g0yp /2ty /2
r3 PO Jrs k~2- 2"“'1

5w (PHIn(PPIf @) P g™
S 27 /R L’ /R Lda (P g TP O IO (@) )"

Thus we obtain

k 2

for any m > 0.
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Therefore, altogether for any m > 0 we have

k.l k.l -
(T2 = T2l S 20V f 1,
b

* w'nlgz - (445)

+V
5 2

This completes our estimate of Tk ! Tf lI
Estimates on Part /7. We now estlmate the upper-bound of the term (4.35) nearby
singularity when k > 0. Inside (4.35) we define

o dz
Kii(qg, p) = \/J(CI)/ ————=5A0%(gA, 6A)
R? /|22 +1

XM (exp (1P +T= D+ ju) =1), @446

sADP(gA)EA

To estimate the differerence, by the fundamental theorem of calculus we have

exp (—l(\/|z|2 Fi-1 +jzl) 1
1
=(IW|z2+1 - 1)+jzl)/ dd exp (—ﬂl(\/|z|2+ 1— 1)—|—15‘jzl)
0

l|z)? . ! .
= —#+J|Z|COS¢ / dv exp(—ﬁl(\/lzlz—i-l —1)+19]zl>,
VIzZP+1+1 0

(4.47)

where we use (2.69). Now we will use the angular variable ¢ € [0, 2r) for z, with
z1 = |z] cos ¢ and we recall the modified Bessel functions (2.47). We will use the
known Bessel function inequality /1 (x) < xIo(x) for x > 0, we have that

11 (@ jlz]) < 9 jlzl1o(¥ jlz]).

In order to estimate (4.46) using (4.47) we will split the integral fol di into two as
¥ € (0,1/2] and ¥ € (1/2, 1). In particular we define

§p(9)3"

K =N ,
11(4 P) (q) 2 JiSAUk(gA ON) ————— Aq)(gA)gA

1 v2 1/2
X —L—o—ﬂdcomp / dv exp(—ﬁl(\/lzlz—i-l—1)+19jzl>,
VizP+1+1 0

(4.48)

and

§p(9)g

K7, (q. p) = VI / J_sAok(gA, Op) ——— b
A
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l 2 1
x(— L +j|z|cos¢> / dv exp (— HE|zZ2+1-1)+ ﬂjzl>
VIZP+1+1 12

(4.49)

Then we have K;/(q, p') = K},(q. p') + K7,(q. p').
The first case with v € (0, 1/2] in (4.48). Using (2.70), (2.71), and (4.41) we have
that the kernel satisfies

§d(g)gt
SAO(8A, 9A)¢4
saP(ga)ga
% 3
=5P(g)oo(a) = = 5P (Q) (sin(0r)) > =
8A 8A

—~1-y/2 _4

. S g
~FPE@) | 5 I+ 1-1) -
8A 8A
- . .
~5 @t (VilP+1-1) e
~ 2 ~\ ~4 717}//2 ~2 1~ )//2_1
~5729(3)8 (\/ |z|2+1— 1) (g + Es(\/ |z]2 +1— 1)) )

Therefore, since y < 2 and § 2 gz, we have

y/2=1

o, 1 vt I ~
<g2+55<¢|z|2+1—1>) 5gV*2(1+5<¢|z|2+1—1>> S§

and we have

508 | _ o p IR
580 (8a, 00 —— | SFTRO@F (WP +1-1)
sa®(ga)ga
N 5_V/2(D(§)§2+y|2|_2_y(1 + |Z|2)1/2+y/4. (4.50)

We will use these kernel estimates to further estimate K}I (g, p") and K121 (g, p).
Therefore, for K}I(q, p’) using (4.50) and |z| < 1 from (4.38), we have

I (@)K} (g, )

dz

< / _ %
WIzP+1-Da2-%571 \/]z]? + 1

1
2 llz|? - .
x | d0 | ————— + %" )exp (2 I(WVIz2P+ 1= 1) + 0z

/0 <\/|z|2+1+1 ( )
1

<+ 25T Po@dt / * v
0

STYRO@E TP (A 4 (2P A
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dz |27 exp (—z?l(\/|z|2 -1+ wZI) .

X
~/(\/|22+1—1)%22k§1
So that

J_”z(q)‘K}z(q, p/)‘

1

S+ jH57Pog)er / "D exp (91])
0

x dizl 121" exp (~01VIz2 + 1) Io(@ j2])
L/W —Da2!

Then finally using (4.38) we have

—1
T2 S RODFT (4 5Pt

K}/(q.p)

2
x/ do exp (91) , dlel exp (—ﬁl\/|z|2+l) Io(®j)z),
0

|z|~27k5™

Now we recall (2.47) and (4.43). We use those with (2.75) to obtain

VI@ exp@D exp (=01v/12P +1) To(@ jlzD

0 04 0 r
5(3)({)(_(174_15l117 ta  lp ql)

4 4

0 0 _ 0 r_ 0
Sexp(—a—ﬁ)%w(” 4q —'p4q')>5exp(—<1—z9>"—),

by (2.62). We further have

1 0 0
2 q 1 q
fo dﬁexp<_(l_ﬁ)2> qoeXp(_4)'

Also note that
dlz] |z|" ~ (2 kg 1/2ymL, 4.51)
|z|~2 k512

Thus, collecting all of these estimates for (4.48) we have

1 0
S22+ jz>s—1<b<g>g2+yq—0 exp (—%) :

‘Klll(% p)

Then we can plug the estimate above into (4.35) on the region where 0 < < 1/2
using the convention (2.95), also using [, j> < p¢® and § < V5 from (2.73) and
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(2.56), to obtain

k.l k.l
‘(TJF‘II - T,J[)(f’ h,m)

v<1/2
< g0 z>/ / Y | ) (@)
R3 R34

Vil VR R
X =75 &Xp (—"—) 1+ 55 o)t
g8 q 4

/ ~ 1 0
2 / dp’ / da oy () £ @)| 874 = exp (——q )
R3 R3 q 4

We next use the Cauchy—Schwarz inequality to obtain that

5 2k(y—2) []1/2121/27

k.l k.l
‘(T+,11 - T_J[)(f’ h,m)
9<1/2

where

. _ 1 _ q"
= / dp'|h(p")*w? (p') f dq | f (@178 = (p0¢°) " exp (——>,
R3 R3 q 4

and

. 32 1 q°
I 2/ dp'In(p"Pw? (p) | dq "= (p"0") * exp (——)-
R3 R3 q 4

We will see below that it was important to add the term such as §_3 2 p0¢%)3/% above.

The choice of the power 3/4 here is sharp in the sense that this is the only possible
value that makes both /; and I, above can be controlled. We will now estimate both
I and 1.

For the estimate of I, note that we have p + y + 3/2 > 0 from (2.20)—(2.23) and

g,p+y+3/2 < (p/OqO)p/2+y/2+3/47

where we used (2.58). Then we have

2 lp2
Il 5 |f|L%’)l|w h|L2p+y )

2

for any m > 0.
For the estimate of I, if p +y — 3/2 < 0, from (2.84) we have that

0
- _ q

/ dq (p0q%)* 732 exp <_7>
R3 4
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0
' - q
< /1;‘3 dq (p/0q0)3/4|p _qlp‘H/ 3/2(p/0 0) p/2—y/[2+3/4 exp (_Z> ~ (P,O)p/2+y/2,

On the other hand, if p + y — 3/2 > 0, then we have

0
e q
/ dq (P/Oqo)3/4gp+y 3/2 exp <——>
R3 4
0
S [ g (OGO e <_q_) ~ (PO,

Therefore, in general we have

LS |w 77|2 .
Loy

2
Altogether, we conclude that we have

S22 fe ! h|L2 Iw Mz, . (452)

k.l k.l
‘(T_;_,][ - T_J])(f9 h,m)
9<1/2 oty

This completes our estimate of Tf: II I fll ; when 9 < 1/2.
The other case with ¥ > % In this case, we recall (4.49) and then we have

SAUk(gA A)M
R2 ‘/Izlz sa®(gn)gh

X/ldﬁ 7”1'2 + 2122
: VizP+ 141
exp (—9I/ P+ 1= 1) +9jz1)

rl/z(q)‘

! dz §p(@)3!
<A+ / do / ————|zI% a0k (g, On) ——
3 R? |z + 1 sa®(ga)gh
X EXp (—ﬂl(\/lzlz Fi-D+ m'zl)

st
<+ 2 / Op)—
d+j9) Wlﬂ SAOk (A, ON) —— IO

X exp (—l(m— 1)+ jz1)
1
xﬁ v exp (—(19 IV EP =D+ @ — l)jzl) .

Plugging this into (4.35) on 1/2 < ¥ < 1 using the convention (2.95) we have

k.l
‘(Tf;l,, — 1M D

9>1/2
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dp' P -
S /R3 e h(pyw? (pn(p') /3 —z\/Tq)f(q)é

(58

[+ 2/ .0
x(+j°) \/||27|Z| SAOK(A, ON) ————F ACD(gA)gA
X exp (—l(\/ IzZ2+1-1) +jZ1)

1
x/ 4o exp (—(19— DI +1=1) + @ — l)jzl). (4.53)
2

Then by the Cauchy—Schwarz inequality, we have

<DV x D2,

k,l k,l
'(T+:11 - T_:”)(fy h,m)
9>1/2

where for any m > 0 we define

2 7
. 1 dp’ d \/? /0 0\ 4
D; = / dv / P (p) P (p') / 5] @ (P
1 R3 P R3 ¢ 8 s

dz
————sa0u(ga, On) exp (WP + 1= 1)+ jai).
22 /2P + 1

and

def d ! / / d
D2 [ Eome)Pu? o) [ SHr@PVI@
R3 P R3 ¢4

7

2
®(2)g 5 \*
I+ f ,0 ° ( )
x(l + j?) WM saok(ga A)( ACD(gA)gA) 2040
xﬁ a9 exp (—@0 — DIGRE 1= 1)+ @9 = Dja) @) "
2

The choice of the power 7/4 here is sharp in the sense that this is the only possible
value that makes both D3 and D4 above can be controlled. We will now estimate the
terms D3 and Dy.

For the estimates of D3, we notice that Dj3 is of the form (2.92) and so it can also be
written in the form (2.91) using Lemma 2.18. Thus we obtain that up to an unimportant
constant D3 corresponds to

< /0 0
D3%/ dp/ dq/ dwvgﬁ(pf]
R3 R3 S2 8 N

)
) o (g, ) xe@w (p) I @) (PP @)™,
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By taking the pre-post change of variables (p, ¢) — (p’, ¢’) as in (2.94), and using
Lemma 4.5, we have

i
< 0.0\ 7
Dam/ dp/ dq/ do vy (”? ) o (8.0 @w (p) T (@) 2 1h(p) R (g")™.
R3 R3 S2 g A

Then using (2.14), Lemma 4.5 and (2.86), we further have

3
0.0\ 2
D3 ~ / dp / dg / do (ﬂ> o (3.0 0@ w (9@ 21 (p) ()"
R3 R3 S2 S
Next using (2.56) and (4.6), we have

0,0

3
I
D3 52 /R _dpw? (p)lh(p)P /R g (” ! ) J@)' g7 ()"

3
i 3
S 2 / dp w (p)lh(p)P® / dq (p°4°)" I @' 2”71 @")".
R3 R3

(4.54)

Nowif p +y — % > 0, then we use (2.58) and obtain

3
7 pty 3 2
2 [ apw? o [ da (1°0°)" 5@ 0000 F GO <2 [l
R3 R3 LP+V

f-3<p+y-— % < 0, then we use (2.59) and obtain

0,0

3
27 [ apw i) [ da (p°q°)4J<q)”2<
R3 R3 pPq

2
< kv )wlh

p—al)"
) (q""

2
pty

Therefore in either case we have

k 1 2
D; < 2k ‘wh Lo (4.55)

pty
=r

This completes our estimate for the term Dj3.
On the other hand, for the estimates of D4, we note that

i
dp’ d s \*
Dy < / Pl Pw (p) / S r@PVI@ @™ (5=
R3 P R3 q p q
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dz 4 §o(2)gt
X ———1z|"sA0 (@A ON) | ————
/(\/|z|2+1—1>~22k§‘ VIzZP +1 sa®(gn)gh

1
xﬁ a9 exp (—0 — DIGEE+1- 1+ @9 = Dja) @™,
2

where we used (2.73) and (2.87). Also, we note that 29 — 1 > 0if 9 > 1/2. Then
using (4.38) and (4.44) with / and j in (4.44) replaced by (29 — 1)/ and 29 — 1)
and (2.62) we have

VI(g) max exp (—(213 DI =)+ 20 — 1)]Z1>

<T@ exp(— (20 — 1)y/12 — j2)

0 /0 0 ;o
< (@) exp ((219— 3 <_%+ Pt q|)>

/0

_ 40 /_
5<J<q>>1—l’exp<<2ﬂ—1>(” 4" —'p4q'>>5<1<q>)‘—l’.

Therefore, we have

7
dp’ d o 5 \3
Dis | L P ) | S @P e @) (=
0 0 0,0
RS P R q P

125D @) 12172 (1 + |21 /2 /4,

dz
« _ 4z
f(\/\z|2+1—1)z24kr‘ VizIF+1

where we used (4.50) and

1
/ dv (J(g)'™" 5 io
i q

Then by (4.38), using (2.56) and (4.51) we further have

dp’ dq o s 3
Dy / —5mHPw? (p') / —S1F@P@P " @)™ =5
R} P R} 4 p”q
X/ dlZ' |Z|3—y§—y/2g2+/7+7/
|z|~2 k512

3
.3 Tz
S 2409 /R AP In(pHPw? (p) /R dalf @@ g (p0°)

Then since % 4+ p +y > 0, we have
G < (g% T,
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by (2.58). Therefore, we have

Dy S 2KV F2, ! ,

—m’

2

for any m’ > 0. Thus, together with (4.55), we have

k,l k,l
‘(TH, —TE (o) S22 Se whle w'le

9>1/2 2 o

Then altogether, combining the estimate for > 1/2 with the one for ¥ < 1/2 in
(4.52) for any m’ > 0 we have

(T =T D | S 20 pe s, Jw'nlgz o (4.56)
2

This completes the estimate for Part /1.

Estimates on Part /7. Finally, we estimate the last part from (4.36). Note that in
(4.36) Tf [111 Tf:llll is non-negative since we have (2.87). Then, using (2.88) and
(4.37) we first note that

L Sew@st ||, se@g 7< SW/IP+1-1)
sa®(ga)gh| T | sa®ea)er| © ga e
Therefore, we obtain
dp’ dq NG
T =T <27 /R —5hpHw (pn(p") /R 2$¢J(q)f(q)?

dz
———=5A0(gA,01)
/«/zﬂ —hR2s g2+
1
exp (—z(\/|z|2 Fi-D+ jZ1) o
A

Then using the Cauchy—Schwarz inequality we have

k.l k.l
(T+,III - T,,”])

dp’ d i\
S
52‘k</ —{)o|h<p’>|2w”<p/>f N () @"" (" q)
R3 P R3 4 8 g
dz . . 12
o W - SO SR EYD)
dp’ d
x(/ o) [ Hr@PT@
R} P R 9
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3
[ dz (2a. 0) 2\
X —F———=5A0 AN | oo -
(WP =Da2-25 ]z + 1 poq° ) g%
1/2
xexp (~I(W/RP+ 1= 1)+ ja1) (qo)*”’) =27 D52 x D2,

We estimate Ds5 similarly to how we estimated for D3 just below (4.53). Note that D5

0,0\7 0,0\
and 2 D5 are the same except for the term (%) in D3 replaced by (p g;] ) in Ds,

since f Ldo = l . By the same argument, D5 has exactly the same upper-bound in

(4.54) by observing that the additional term p'OqO in Ds satisfies ,0 7 < 1(by (2.57))
3

3
and that the term (1 ) in (4.54) was treated as (1)* < (g ) . Therefore, as in (4.55),
we have

Ds <2’<V)wh

(4.57)

ﬂ+V
&y

This completes our estimate for the term Ds.
For the estimates of Dg, we use (4.37) and (4.42) to observe that

520 (gn, 9A)g SETTETVRW 2P+ 1 = )T m kAR 0T

Thus using (2.70) we have

dp’ d
Dg S 240+ f —5 I 1Pw? (p') / X\ @ PVI@)
R3 P R3 4

dZ gp+y+2§( 1 )4
(WREFT-Dr2-2571 /|72 + p"q°
X exp (—l(\/ z2+1—-1)+ j11> ¢H™"

Note that p + y + % > 0 and hence

by (2.70) and (4.38). Next using (4.43) and (4.44), we have
VI@) max exp (I +1- D+ ja) S1
0<lz|=1
Thus, using (2.57), we conclude that

dp’ dq
D6 S 2/(()/4‘2)/ _/Oln(p/)|2w21(p/)f _0|f(q)|2
R3 P R3 4
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3
<[ e (—3 o> @)
WIPF1-Da2-2%571 (/|72 4+ 1 P"q

Thus using (4.51) we have
dp’ dq
Dg 5 240+ / —5 (" Pw (p') [ 5 @P
R3 P R3 4
NJ 7 1 % ON—m
dV1ZP+1-D57 % (=) @

%
0) @)™

dp’ +y
<27 f ) P (p)) / A @PE ) @
R3 P R3 4

X /
(W IzP+1-1~2-2%k5!

1
%2’”/ LA 21(,,)/ X\ p@pstT 3‘(,3/06,

Since m > 0 can be any number arbitrarily large, we have

’

k 2 12
D6§2 y|f|L2 /|w 77|L2

Pty
51

for any m’ > 0. Thus, together with (4.57), for any m’ > 0 we have

k.l k.l k(y—1
T — Tog| 290 )|f| 2 |w h|L2 |w ez,

T_l

This estimate combined with (4.45) and (4.56) thus completes the proof of Proposi-
tion 4.7. O

This concludes our cancellation estimates for the differences involving three arbi-
trary smooth functions.

4.4 Additional Estimates

We will also need estimates when we have a more specific Schwartz function satisfying
the following uniform estimate

(IVI$)(p) < Cpe™P", Cy >0, c=0. (4.58)

With this in mind, we have the next estimates:

Proposition 4.8 We assume (4.58), then for any k > 0 we have
(T = TE) (g b §)| S Cp 27 Mgl 2 Ao
The above inequality holds uniformly for any m > 0 andl € R.
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Proof We decompose the cancellation term as in (4.26), with terms 7, 11, and 111,
except that n in (4.26) is replaced by ¢. Then ¢ satisfying (4.58) has rapid decay as
does J from (2.12). In particular, in this case all the terms I, /1, and 111 can now be
estimated exactly as in the estimate from (4.32), also using the exponential decay as
in (4.58) and (2.12). We thus obtain directly Proposition 4.8. O

Proposition 4.9 Fix! € R. Assume (4.58). We have the uniform estimates

TS ¢am| S Co 2 il whnlg (459)
gt My

2

for any k < 0. Additionally for any m > 0 and any k we obtain

T @+ T () S Co 2 12 1Rz o (460)

Proof We first explain the proof of (4.60). If ¢ is as in (4.58), then both T_]ﬁ’l(f, h, ¢)

and T*! (£, h, ¢) have rapid decay in both p and ¢ variables in (4.10) and (4.3). By
applying the Cauchy—Schwarz inequality to (4.3) and (4.10) and using (4.6), we obtain
(4.60).

We will now prove the upper bound of ‘T_]ﬁ’l( f, 0, r])‘ as in (4.59). We consider 1
as in (4.12) with ¢ = h. By the Cauchy—Schwartz inequality we have

P00 Xk (8) bty V2
15 ( / dp / dg / P If(q)|2|¢(p)|2\/1(q/)(p/°)7wz’(p/))
R3 R3 S2
x ( / dp f dq / do v¢gﬂao;<k(§)g"”|w’n(p’)|2\/J(q')(p’°);”z’”)
R3 R3 SZ
=1 -b. 4.61)

First we will estimate 1> in (4.61). We have the following uniform estimate for /»:

[<2k2y|l|
wny2
2 lpy

This estimate is given in (4.18) for the soft potential case (2.22) and in (4.19) for the
hard potential case (2.21).
For the estimate of /1 in (4.61), it suffices to show the following claim:

[ v [ da [ oS00 PP VTG0 w )

p+y
< ky 2
9} |w f| (4.62)

p+y 1
2

Then together with (4.18), we obtain (4.77) after summation of S; and S3, since
O<y <l
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The claim (4.62) can be proved as follows. Let the left-hand side of (4.62) be I}..
By recovering dp’ and dq’ measures from dw, we obtain that

dq’ g"o0x(8) ) 5
/R /R /R /R PEEE — 1 @1l

</ T@) () T w2 (phs@ (p* + g™ — pt — g*).

We make the change of variables (p, ¢, p’, ¢") — (q, p,q’, p"). Then we obtain

dq’” g"o0x(8) ) 5
/R /R /R /R ght — 1 (Il

<V/T(P)(a) T w? (gD (p" + g — pt — g*).
Using the energy conservation law from the delta function, we obtain that
@) T wl(g) = (@) T = (p0 +¢° — p) T,

Now we use the relativistic Carleman representation, in Lemma 2.12, to reduce the
integral as

dnq sg”UoXk(g) 2 2
w5 % /E B e
TP’ +q —p’o)ﬁy”l

where dr, is defined in (2.50). Using (2.20), (9.2), (2.57), and (2.58), we have

5 800Xk (@) _ iy (P°9°)°
g gt v g

xk(8).
We further have that

(P° +4° — p/o)%wl < (poqop/o)%m
and that

16() 2T (p) (%) T2 () T2 < (1 (ph T (g))F,

for some sufficiently small € > 0 because ¢ (g) is the product of a polynomial in ¢
and /J(q). Altogether we obtain

p+ dp’ 1 d
1, 52 / dp | £ () 2(p°) FE+2+ f TR / T 1),
R3 R3 E1, q

p=p
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Now we use (4.29) to obtain

+ dp’ 1
I, $2F /R 3dp|f<p>|2(p°>"Ty+”+l fR ’,’0 3(J( ).

Here we note that, if k < 0, we have g ~ 275 > 1. Thus, g3 ~ (g% + 1)73/2. We

further use that = = < % to obtain that

2 —-3/2
55 (k)
g p°p

Then if |p| < 1 we have

/

Pty dp’ 1 o4Y o dp o4V o
(p% = /R . ﬁ?(np/»f S /R ORI (p% =

for any m > 0. On the other hand, if |p| > 1, then we further split the region p’ € R?
into |p’| < % and |p/| > % If|p/| < %,thenwehave

J(pHE S TPHI ()<,

for some 0 < €’ < €. Thus, we have
oty dp’ 1 oty ;[ dp , _
(p% 2+ / =5 UEN S @D (p) / —STENT S EH ™,
g PP g R3 P

for any m > 0. Lastly, if |p’| > L , we have

[P

>
2p’

lp—=p'1=Ipl=1p1=

which leads us to

dp' (Ip—p'I? |
s pO \ p0p0

Therefore, we can conclude that

32
Tl IR AL

I 52" / dp | f(p)P(p%) T 1 = ok

p+y 1
L

This finishes the proof for the claim (4.62). O

This concludes our discussion of the cancellation estimates nearby the angular
singularities. In the next sub-section we briefly introduce the standard 3-dimensional
Littlewood—Paley theory which allows us to make sharp estimates of the linearized
Boltzmann collision operator.
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4.5 Littlewood-Paley Decompositions

We now introduce the 3-dimensional Littlewood—Paley theory. We will see in (4.65)
that the sum of weighted L?-norm of the Littlewood—Paley pieces is bounded above by
our fractional derivative norm from (2.37). We further bound the sum of the weighted
L?-norms of the derivatives of the Littlewood—Paley pieces above by the fractional

derivative norm in (4.66).
We choose a real valued function ¢ (p) € C gO(R;) such that it satisfies ¢ (p) = 1

if |p| < 1/2and ¢(p) = 0if |p| > 1. Also define ¥ (p) = ¢(p) —23¢(p/2). Using
the standard scaling, we further define

di(p) =2%¢2p), j >0,
Vi(p) =22y @2 p), j=>1.

Now define the partial sum operator
Si(f)=fx*o¢;= /R3 2992/ (p — ) fl@)dg, j=0,

and the difference operator
M =rxvi= [ e o -anf@da. =0

For j = 0 we define Ag(f) = So(f). We suppose that fR3 ¢(p)dp = 1, so that

Aj(D(p) = xyj)(p) = /11{3 Vj(g)dg = 0. (4.63)

Throughout this sub-section, the variables p and p’ are independent vectors in R3 and
we will not assume the variables p and p’ are related by the collision geometry as in
(2.15) and (2.16).

We further have for all sufficiently smooth f as! — oo that

[
38N = SIHP) = fp),

Jj=0
and that
([ aviscowre®) < ([ airore?y).
R3 R3

uniformly in j > O for any fixed p € R and any r € [1, oo]. This L"-boundedness
property also holds for the operators A ;.

@ Springer



Relativistic Boltzmann Equation without Cut-Off Page 1050f 167 20

We are now interested in estimating the upper bound for

o0
22”/ dp |A; fI7(p0)”,
=0 E
when 0 < y < 1 and p € R. To this end, for any j > 1, we have

1
3 f dp f dp' / dz (f(p) = F D = Py = pHE”
R3 R3 R3
= /H;{ AP (A F(PD* ()" + fR v fR A2 (F(P)*j( = P)Aj(D@E

=— /R dp (A IFEN2PY?, (4.64)

which follows from A ;(1)(z) = 0in (4.63). Also 20 =1+ |z)? etc.
On the other hand, from the support condition for ¥ ;(z — p)¥;(z — p’) on z, we
have p® ~ p" ~ z0. Also notice that |/;(z — p)| < 2°/. Thus, we obtain that

fRa dz Y@ = I = I < (0 /R} dz |y = pPHlIv;( = p)l

2708 / 2= Pl S 29 (PR
R
Now |/;(z — p))||¥j(z — p)| is supported only when |p — p| < 27/*!. Hence
vig] fR dz i@ = pPOIIYj e = pIE)” S 29 P2, -

Since there exists jo > 0 such that 270 < |p — p/| < 270F! we have

00 Jo
D25 g = Y 28T i S 2001,
, j=1

< _lp=pist

~ lp — p/|y+3

When j = 0, the term fR3 dp | Ao f12(p%)? is bounded above by |f|i2. Combining
these estimates we obtain that ’

1 .
3 22” /R3 dp /R3 dp’ /R3 dz (f(p) — F(N* Wiz — p)j(z — pH(E°)?

o0 (F(p) = f(p')?
/dP/ dp’ (p°p)2 f“: pﬁylj; Lip—pri<t-
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Therefore using (4.64) we have shown, for any y € (0, 1) and any p € R, that the
following inequality holds:

> 2 f3 dp |8, f1P(p%)
=0 R (4.65)

N2
<IfE +/ dp/ dp’ (p° /O)z%w_mﬁ < 1B

This holds uniformly for any smooth function f.

To use the cancellation estimates obtained in §4.2, it is also necessary to obtain an
analogous inequality to (4.65) for the derivatives of the Littlewood—Paley pieces. We
need to establish a similar inequality when A ;’s are replaced by 2ki VA Where V is

8“ ).
P’ pz’
For any partial derivative %Aj f, it holds that Bip,-A if =2/A; f where A~ is the
j™-Littlewood—Paley cut-off operator associated to a new cut-off function ¥ which

also satisfies the cancellation property (4.63) that A (1) (p) = 0. Thus, for a multi-
index «, we can write

the standard 3-dimensional gradient. We denote a derivative by V¥ = (8

27UVEA; f(p) = AY(F)(p)

where A€ is the cut-off operator associated to some ¥“.

Then, we can repeat the same proof as for (4.65) by considering the following
integral instead and make an upper-bound estimate on the weighted L?-norm of the
derivatives of each Littlewood—Paley decomposed piece:

1
3 / dp f dp' f dz(f(p) = F(P VU @ = )Y (= P
R3 R3 R3
= —/R} dp|AS (N (PP ().

This follows from the same condition as in (4.63) that A‘}‘(l)( p) = 0. Similarly the
analogous estimates can be multiplied by 27/ and summed over j to get

> o / dp |AS(H (PP (P
—0 R3

2
Suy+ [ [ ap o0p0s SOZLE,

Therefore, for any multi-index «, for any fixed p, [ € R, it follows that we have
o0
> 2lr-ledi / dp IV A f ()P T w (p) S [flpr- (466)
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This holds uniformly since p® ~ p®if |p — p’| < 1 by Lemma 4.5.

This concludes our introduction to the standard Littlewood—Paley theory. In the next
sub-section we will make our final upper-bound estimates of the linearized Boltzmann
operator by utilizing the previous propositions.

4.6 Upper Bound Estimates
We begin with the proof of Theorem 2.4. We first decompose
[e¢) [e¢)
h=Ach+ ) AihZ Zh and 7 = A0n+ZA,n =3 )
i=1 j=0

Also we consider the dyadic decomposition of the gain and the loss terms and write
the trilinear product as

(WX T(f, hi)sny)

M

(WT(f, h),n) =

Mz 10
Me T

WHT(f o hip)n)+ Y > (WD ) mig)).

0 i=0 j=0

L
We further split this up using (4.3) as
o oo o0
WT(f )= >y Z{Tf%f, hivjo ) = TS (F b))

k=—00 l:] =0
oo

+ > ZZ{Tf’l(f,hj,mﬂ)—Tf”(f,hj,m+j)}-(4-67)
k=—00 i=0 j=0

We first consider the sum over k for fixed i as the following

oo 0

DI ATE Fohivjn) = TE(f b))
k=—o00 j=0
o0 J
k,l k,l
=Y > AT (fohigjon)) = TS higj, )
j=0k=—00
o0 o0
A Y AT i) = T (F b n)) = S+ Sa. (4.68)
=0 k=j+1

When f, h, n are Schwartz functions, the order of summation may be rearranged
because the sum will be seen to be absolutely convergent. Then by (4.11) and (4.5),
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we obtain
o
i ! 1
it 2 |wlg| | fwthisy] L [w'n]
L L L
j=0 oty oty
2 2
1 1
00 2 [ o 2
—r i+ )1, 2 T
STl (D2 b3, > 2wl 2,
L? Loty Loty
j=0 e j=0 -
_vi| oy
S5 w'r| | g nljpr, (4.69)

where the second inequality is by the Cauchy—Schwarz inequality and the last inequal-
ity is by (4.65). Regarding the sum S», we use the cancellation estimates from §4.2.
By (4.25), we can sum in k from k = j + 1 to 0o, since y — 1 < 0. Then we obtain

o0
—1)j 1 I
1520 S 3220V p 1 fwlhin] , [w!9Ing]

=0 pty pty

2 2
1 1
. 00 2 o0 2 2

2z i) | 2 ) |1
S2F W, (27 w2 | 20207 |l 1viny |
P20 oty 20 oty

—yi
<272 |f|Lz_m |h|,1m/ |77|1[I>~V, (4.70)

where the third inequality is by (4.66). Finally, we take the sum in i fromi = 1 to co
on both S and S5 to obtain that

or
M

Il
~

Il

(=]

WIS hie)on) S |w'f| | Lo . (“.71)

This completes the estimate for the first term in (4.67).
Now we move onto estimating the second part of (4.67). We consider the sum over
k of the terms (w*T'(f, hj), niy;) for fixed i as

o o0
3T oy ) = TECE Ry i)
k=—o00 j=0
o ]
— k,l k.l
=Y D AT by mie ) = TENCF hymig )Y
j=0k=—00
o0 o0 )
A Y T oy ) = T (F Ry i )Y E S+ Sas (472)
j=0k=j+1
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Then by (4.11) and (4.5), we obtain

o0
Yi|w! Iy . L
|Sz|§22 )waz w'h; L2 (Wit
—0 oty oy
Jj= 3 7
1 1
2 2
yi
$272 szwh 2., Zzy“ﬂnw nl+,|L2 :

Jj=0

where the second inequality is just the Cauchy—Schwarz inequality. Then we use (4.65)
to obtain

1551 277

1
wa2

[l 0l o (4.73)

Regarding the sum S4, we use an alternative cancellation estimate from §4.2. By
Proposition 4.7, we can conduct the sum in k from k = j + 1 to 0o, since y — 1 < 0.
Then we obtain

1S4l S Zz‘V DI fle
j=0

<2F fl2 ZzW 2i )w V|h;

p+y
-
< ZT |f|L2—m |h|11/w |17|II/W, 4.74)

where the third inequality is by (4.66). Finally, we take the sum in i from i = 0 to co
on both §3 and S4 and obtain that

S DTS iy S [w' ] 1l Il (475)

i=0 j=0

Then (4.71) and (4.75) with (4.67) completes the proof of Theorem 2.4 as a special
case when [/ = 0.

Lemma 2.5 can also be proven as follows. We first take a spatial derivative 9% on
the non-linear collision operator I with |o| < N for some N > 2 to observe (2.39).
We multiply %7 on both sides of (2.39) and integrate with respect to x and p. Then
by (4.71) and (4.75), we obtain

(T @ = .0 1, 0n) | S W' gy gy gpr 101
This proves Lemma 2.5 for the both hard (2.21) and soft-interactions (2.22).
Furthermore, we would like to mention a proposition that contains other useful

compact estimates.
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Proposition 4.10 Let ¢ be a function satisfying (4.58). Then we have that

(W T (@, h), I S [kl 0l (4.76)
Further, for any fixed € > 0 small enough, we have that

(W T(f @) S W' fle Tkl (4.77)
7€

Additionally, for any m > 0, we have
(W T(f 1), @) S 112, 1hlp2 (4.78)

Proof First of all, we note that (4.67) with (4.71) and (4.75) immediately imply (4.76)
because |w!@| 12 1s bounded.

We now prove (4.77). In this case we also use the splitting (4.67) with (4.68) and
(4.72). For the terms S, and S4, we follow (4.70) and (4.74) to obtain

—yi
52, 1Sal S 272 1 f 12, Ikl ey

Here we used that |¢|1/"V <1
For the upper-bound estimate of |Sj| and |S3|, we use the upper bounds of

T8 (£, 0.y and |T5] (7,6, ). We further split Sy as §; = S — ST where
from (4.68) we have

oo
SEEY Y TENF iy ).

Jj=0k=—00

We similarly split S3 = S;’ — 83 where from (4.72) we have

oo
SEEN Y T by hig ).

j=0k=—00

For the upper bound of ‘Tf’l( f, ¢, h)) we use (4.5) and obtain that, similar to (4.69)
and (4.73), §| and S5 are bounded as
_ _ _yi
ISP+ ]85 <272 |f|L2_,,,|wlh|sz+ :

Y
2

Note that |w!¢| ;2 S 1as before. Now we further use (4.59) to obtain that

pty
2

pTy

|S1+| + |S;L| S 2_%|wlf|L2p+y—1 |wlh|L2+ ’
B =
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This yields (4.77) since € > 0 can be chosen sufficiently small such thaty — 1 < —2e.
For (4.78), we write the trilinear form as the sum

o0 -1
WIT(f ), ¢y =D (T = TEN(F h gy + Y (8 = TE)(f, h 9)
k=0 k=—00

def

=S5+ Se.

Note that here ¢ has rapid decay using (4.58). We obtain the upper bound for Sg from
(4.60) and summing over k < —1 since y > 0. Our estimate for S5 follows from
Proposition 4.8 because y — 1 < 0. This completes the proof. O

Note that (4.76) implies Lemma 2.7 together with the frequency multiplier asymp-
totics (2.31). Also, Proposition 4.10 further implies the following lemma:

Lemma 4.11 We have the uniform estimate

(WS IS W' Sl g (4.79)
2

From (2.32), this lemma is a direct consequence of (4.77) and the estimate on
[¢ic(p)| by choosing ¢ € (0, y/4) in (2.31). Note that (4.79) implies Lemma 2.6 by
letting & = f. More precisely, we see that for any small € > 0, the upper bound of
(4.79) is bounded above by

1 € .2 142
|w fleglflllw < §|f|1,W + Celw flep~
2

For the term C5|w1f|i2 , we split the region into |p| < R and |p| > R. When
P
2
L2(Bg)’
R > 0 sufficiently large enough so that CGR_% < 5. Then we obtain Lemma 2.6.
This concludes our discussion of upper-bound estimates for the linearized Boltz-
mann operator. In the next section we will make coercive lower-bound estimates.

|p| < R, the term is bounded above by C¢| f]| Outside the ball, we choose

5 Main Coercive Estimates
In this section, for any Schwartz function f, we consider the quadratic difference aris-
ing in the inner product of the norm part A/ f with f. Our goal is to prove Lemma 2.8.

The key point is to estimate the norm | f|3 which arises in the inner product (N f, f)
from (2.34) and will be defined as follows:

def 1 /
s = EfR} dp /R dg /S do vyo (g.0)(f(P) = F(P)*V T (@) (@)
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5.1 Pointwise Estimates

The norm | f |% can be further estimated using Lemma 2.11 as

IRk /O(f(p)—f(p))

/
xf —0/ —‘,]0 S+ g — p — gM)s0(g.0)e”
R

R3
~1 / / L) = 1)
R3
/ / 5(4)(17/# + 6] — pt —g"M)sg” <g>—2—l’ e_M’
R3 R3 8

where we used (2.22) and (2.20) and (9.2). We conclude that

L~ / / dp (f(p) — f(p)?
B R —3+y

0, /0
f / 5(4)(19’“ 4 gt — pt— gM)sgP Y gem I
R3

O+q/0

Then we define a kernel K (p, p’) as follows:

/0

K(p.p der/ / 0 5(4)(1/“ +q" = pt —q)sgP T P ge”
R3 R3 4

Thus we have

dn’ _ 2
2 ~ /' P (f(P) = f(p) Y P) = TP oy ). G.1)

RS P /0 -3+y
We will prove a pointwise lower bound for the kernel K (p, p) as follows.

Proposition 5.1 The kernel K (p, p') is bounded from below as

Y4

K(p.p) 2 lg=<ilj0_p0,<z(p°p")

Proof We use (2.56), (2.59), and p + y + 4 > 0 for both hard- and soft-interactions
to obtain that

4
,0+V+4 |p - Q|p+y+

(r%q%)

Sgﬂ+}’+2 > g

p+y+4 .
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Also, note that g2 > g2 by (9.1). Therefore, using (2.7) and (2.90) we obtain

4
. lp—q'17 "
Sgp+y+2 > gp+y+4 > gp+y+4 > .
(p%q") >

With the extra assumption that g < 1, using Lemma 4.5, we obtain qo ~ q/O ~

q°% + ¢'°. Thus, we have

[ e =g 1P 2p— (g + g

pHY+2 > P —q v
oty

2 > (5.2)
(PO ES (PO FFT T (pO(g0 + ¢70) 7

S8

We then raise the kernel K (p, p’) to the 8-dimensional integral in g* and ¢’* using
Lemma 2.17 with dg* and dq'* as below:

q0+q/0

1 _
K(p.p)=— [ dg" | dg"™sD(p" +q"™ — p' —q")sg"t 7 Pge” 2
16 R4 R4

xu(q’ + g G — 958G — g2 — H8((g" + 9" 4 — q,))

where 5 = s(gt, ¢’*) and g = g(g*, g’*). By (5.2), we have

K(p,p) 2 / dq“/ dq"™ 8D (p'" + g — pt
R4 R4

i 129 = (g + )Pt 00
- ) pty+4 :

(P°(q° + q%)) 2
xu(@® +q")uG — 986 — 87 — D" + 4" — a)) 1 g=1)-

Now apply the change of variables
P =q"+q", §" =q" —q".

This transformation has Jacobian equal to 16. With this change of variable the integral
becomes

= - o 2p—pletrtt g0
K(p.p)z | dg" | dp"sPp*—pt—g")y—"—F——
R e (P05 ">

xu(PYu(—p"p, — HS(—p"p, — 3"d, —H8(p"q,)1(z=1)-

Note that g did not change under this change of variables. We next carry out the delta
function argument for §* (p’* — p"* — ") to obtain

0

2p = pIrtr 2

K(p,pH)z | dp* liz<n1g
(P p) ,-\.,‘/]R4 p (pol_)o)p+;2/+4 {g<1}8¢€
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xu(pOyu(=p"p, —H8(=p"p, — & — 8" (p), — pp))-
Since § = g° + 4, using (4.9) with g replaced by g we have

8(p° = VIpI* + 9

215 +5

u(pHS(=p*py — 8 =4 = u(p)S(=p*p, — ) =

Again using § = g> + 4, we have -pl'p,—4=5—-4= g% = 0 to guarantee that
u(—p*p u —4) = 1by (2.51). We evaluate one integral using the delta function:

dp |2p — p|Ptrte o 2
K(p,p) 2 f? P 2T liz<88(p" (P, — pu)e” 7,
2P (pPp7) 2

where p° = /|p|2 + 5.

Now express p using polar coordinates p — (r, 6, ¢). We further choose the z-axis
parallel to p’ — p such that the angle between p and p’ — p is equal to ¢. Note that
the Jacobian that we get from this change of variables is equal to r2 sin ¢. Then the
terms in the delta function can be written as

PPy = pw) = =P =P+ 5P - p) =
—Vr2+5(p" = p*) +rlp’ = plcos¢.

By using [2p — | = [12p| — | pll, we have

oo d 2 b4 ) <(n0 _ ,0
K(p,p) 2z L do d¢ r’sing § | cosp — rot5ep P)
0o Vr2+5Jo 0 rip’ — pl

g Ppl—rprtret TS
{g=1}€ ’
rlp = pl (po T 555
PONrI+5)72

T

We define the set S, , as

V2 +5(p° = pY

rlp’ — pl

def

Sp,p = !r € [0, 00) :

-]

By a simple calculation, we can see that this set is equivalent to
Sl /0 02
51p"” = p°

Sp.p = {VE[O,OO):}’ZZ_—Z .
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Then by carrying out one integration with the delta function, and the change of variables
u = cos ¢, we get

f rdr g 12|p| — r|Pty+s ﬁhl
= — ot € {g=<1}-
Sp,p/\/r2+S|p/_p|(p0«/r2+s)p 5

K(p,p) 2z

Now we will make the extra assumption that

P - p’ <. (5.3)

We point out that this assumption (5.3) is necessary in the following sense: There is
a region in (p, p’) space where g < 1 and |p/® — p°| can be arbitrarily large, which

<10 012 .. . .
then makes S"’g_—zpl become similarly large. This would prevent the lower bound in

. o . RNV EE
this proposition due to the exponential decay ine™ " 2z .

This assumption, |p"® — p°| < g, further implies that
P = pP =8 +1p" - PP =28

and

Therefore, we have

® rdr  2|p| —r|PtYH s
K(p,p) >/5 Lg=nylypo—po<g)-

e
VITES (02 15t

. = r 1 0~ 0
Using s < 5, N > 5,and p p", we can further have that
©  RIpl =ttt s
K(p,p') 2 lig<1yly0_p0<z / dr e”
g=li H{Ip”-p°I=g} s (pom)ergJA
,0+y+4

pty
~ Tig=1y Lo po1< (P”) ~ Lg=nylypo_poj< (PP & F!

This completes the proof. O

Together with (5.1), Proposition 5.1 implies that
(f(p) = f(p)? oty
712 / f dp S P ) gz oo
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Since > = —|p"° — p°? + |p’ — p|?, the cutoff function 10
1 . Since g < |p’ — p|, we can conclude that

_pj<z is equal to

1PO=pI= 1P~
/(f(p)—f(p))z ;
|f| / ,/R3 |3+)/ ( 0 0) 1|p p\<11|p/0 0|< |p -l
(5.4)

However, this pointwise lower bound is not a sufficient coercivity estimate because of

the extra cut-off restricting 1‘ PO p0)|< % —pl" Recall that we want to show

I, + 115 21 f 1o (5.5)
2

in order to obtain Lemma 2.8 for the case [ = 0 using also (2.31).
A direct pointwise comparison is not possible for this desirable coercivity because

of the extra cut-off restricting 1, ,_ o,__1,, .. In the next section, we will use the
[pP=p°I= ﬁlp pl

technique called “Fourier redistribution” from [44] to get around this obstruction.

5.2 Fourier Redistribution

Essentially the key idea is to take an advantage from the Fourier transform in the
situation where the pointwise bound is not available. More precisely, we use the
following proposition of [44]:

Proposition 5.2 (Proposition 7.1 of [44]) Suppose K| and K, are even, nonnegative,
measurable functions on R> satisfying

/duK,(u)|u|2<oo, I=1,2.
]R3

Suppose ¢ is any smooth, non-negative function on R> and that there is some constant
Cy such that (V2 (u)| < Cy forall u. Forl = 1,2, consider the following quadratic
forms (defined for arbitrary real-valued Schwartz functions f):

|flk, £ [ dp f AP $(PISPHKp = P (P) = F(PD?.
R R
If there exists a finite, non-negative constant C such that, for all ¢ € R3,
f du K1 (u)|e?™ &0 — 12 < ¢ +f du K> (u)|e?™&m — 12,
R3 R3
then for all Schwartz functions f,

712, < £, +CCy /R dp 9,
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where the constant C' satisfies C' < 1+ C + fR3 du (K1) + Ko(u))|u|* uniformly
in Ky, Ky, ¢ and C.

In order to obtain the favorable coercivity estimates, we fix functions K; and K> on
R* given by

K1, u) = [u| 77 1<
and

0 —3—
Ko(u”, u) = |ul yl\u|511|u0\56|u|,

with u £ (1, uz,u3) € R3 u% € Rand |u|2 = u% +u% +u%. Note that the particular

choice of u® = p® — pO, u = p’ — p and € = - corresponds to the coercive lower

V2
bound (5.4) with ¢ (p) = (/1 + |p|?) ¥<§5(p“) where {¢(pH)} is a smooth partition
of unity in R* which will be defined just below.
In order to use Proposition 5.2, we need to establish that the estimates of the
derivatives of ¢ and the Fourier condition on K| and K». Let {¢} be a smooth partition
of unity of R* which is locally finite and such that their zeroth, first, and second

derivatives are uniformly bounded. Then the estimates on the derivatives of ¢ (p) =

W1+ Iplz)ﬁcf)(p“) are straight forward.

In order to prove the Fourier condition, we suppose further that each b is supported

only on a Euclidean ball of radius f—é for a small € > 0. Also, we consider a fixed
def

v € R3 such that (}(v“) # 0 with v‘f =Wl+ [v|2, v) for some fixed 55 We then
write p = v +u and p’ = v +u'. If ¢(p) and ¢(p") are both not equal to zero, then
both |ul, [u’| < § by the support condition of ¢. Then, we have

Ilp'|* — 1pI*|
1P = pOl= 1+ Ip2 =1+ 1pP =
/ / VI+IpP+V/1+1p'
_ P =p ) @ —w) - Qututu)
VIFIPP VIR VIt o +ul +y/1T+ o +u'?
|2U(u/_u)| |(M/—M)(M+M/)|
=
ViFv4ul?+/1+w+u?2 JI+w+u?+J1+v+u?
v (u — /
< [2v - (' — u)l |u+u||u_u/|‘ 56
VIt +uP+ 1+ v+u? 2

For the upper-bound estimate of the first fraction, we split into two cases: |v| < § and

[v] > ﬁ. In the former case, we have

2v- (u —u)|
VI+v+ul?+ /14 v+u?

€
< lvllu’ —ul < Zlu/ —ul.
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In the latter case, we have both |v + /|, |[v + u| > % because |v/], Ju] < § < %

8
Thus, we have

20 - ' — )| 2w —w)

VIt +ulP+ 1+ p+u? " 1+

In (5.6), we also recall that ‘“+T”,| < fT. Then in (5.6), the additional condition that
@' —w| _

V12 T

§lu" — u| further guarantees that

€
1p° - p¥ < Sl —ul.

Now the inequality above holds for any |v|. Therefore, we also have that

=17 N =t i e @R S Ka(p™ = PGP B (p"),
12 ~8 w

where p'* = (/1 + |v+u'|?2, v +u') and p* = (/1 + |v+ u|?, v + u). Then for

fixed v # 0, we define Ex = {u : |u| < %, |”—“|2 < §|u|} and we can choose a

A 14|

coordinate system such that this is the set E; in Proposition 5.3 below.

Proposition 5.3 (Proposition 7.2 of [44]) Fix any ¢ > 0, and let E| and E; be the sets
def

inR3 givenby Ey Z {u € R? : |u| < 2}and Ey Z {u € R3 : |u| < 3 and |uz| < elul}.
Then

/ du|e2ﬂi(§,u) _ 1|2|u|—3—y S 1 +/ du|€2ﬂi({,u) _ 1|2|u|—3—y’
Eq E>

uniformly for all ¢ € R3,

Thus Proposition 5.3 verifies the Fourier condition that is required in Proposi-
tion 5.2. Thus we have

/R dp /R A BB T Ka(p = P (p) = f (P
S /R \dp /R LAY HEIBEHP P T Ka(p = p(F () = f (P

+ /R dp ()T B ()

Then by summing over the partition and using Proposition 5.1 we obtain
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/ dp / dp' (P° ) T K1 (0" — P (p) — F (PN S(p)d(p)
R3 R3 J)

2 2
SR+, -

2

The above holds since ¢(p) is chosen to have compact support in a small ball so the
integral

/R dp ()T B (p))?

is not higher order than | |2,
Loty

Now let 0 < M < oo be %he maximal number of partition elements that can be
non-zero at any specific point. Then for any p, there must be an element of the partition
such that we have ¢( p) > % Then since the partition of unity was chosen in such
a way that we have uniform bounds on the first derivatives, then we can choose a
radius 8 > 0 such that ¢(q) > ﬁ for any ¢ in the ball of center p and radius 8. If
O<e< %8 then we then have that

;0 02 (f(p) — f(P/))z < 2 2
R R lp-pize SR +1/1-

Note that the integral of the lower bound above over € < |p — p’| < 1 is clearly
bounded by the upper bound above. Thus we conclude

2 2 2
1R+ 121 B
P‘;Y

This completes the proof for our main coercive inequality stated in Lemma 2.8 for the
case | = 0 using the Fourier redistribution.

5.3 Coercivity with Extra Weights w' for | > 0.

Notice that Lemma 2.8 for the case I = 0 has been proven above. Now we will prove
Lemma 2.8 when [ > 0.

Proof of Lemma 2.8 Suppose | # 0. Because of the presence of the weight w? (p) in
the integration, the change of variables (p, g) — (p’, q¢’) creates another difference
of w?(p) — w2 (p’) inside the inner product of (2.33) as seen below:

- /R dp /R da /S Ldow  (p)vo (2, 0)(F(P) = [P f(PIV I @)W T (@)
1
=3 /R dp /R da /S Ldow (p)vo (2, 0)(£(P) = F(P)f (P T @)W T (@)
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1
- 5/1;3 dl’/]R3 dq /82 dw w (pHveo (g.0)(f(p) — FPNFPIIT @V I(q)
1
= E/Dq{}dP/R_%dq/SZdw w2 (pyvgo (f(p)) = F(PNNT @V T (@)

1 21 20 1 ’
+§f dp/ dq/ do (W™ (p) —w” (pNvgo (f(p)
R3 R3 S2
— FN (PO I @DV I (@)

def

=1 fly 1"

Here we are also using (2.36). We express the inner product of (w?N f, f) from
(2.33) as

W'Nf. f) = fR dp ()W (DI fF PP+ fl3, +1'~ |wlf|2sz+y +1f15, + 1,
2

by (2.31). We notice that we already obtain the following coercivity by using the
methods in §5.2:

1 12 2 2
W fa A1y 21
2

as we can let % = HT}' + 2/ in §5.2.

We now estimate the upper-bound for the term I’. We first take the change of
variables (p’, ¢') — (p, ¢) from (2.94) again and use the Cauchy—Schwarz inequality

to obtain
w?(p) —w?(p))?
I < d d d
1S ([ [ da [ do P2

1
X090 (8, O (P @VI @) (5.7)

Now, by the fundamental theorem of calculus, we have

1
W (p) — w? (p) = /O dv (' = p) - (V) (¢ ()

where ¢(t) = p + 1(p’ — p). Since p’ — p = g — g’ from (2.8), we have that

VI+1ic@P < p%/1+1g — /12

Thus, we obtain

W (p) — w(p')?

iy VI @I@ Sl - PP () () (T (@) (@)
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Above § € (0, 1]is a small constant that satisfies § < 2/ which is possible since/ > 0;
if 2/ — 1 > 0 then we can take § = 1. We write |p — p'|> = |p — p'|" T€|q’ —q|> 7V —¢
for some small € € (0,2 — y). We recall from (9.2) that % = sin %. ‘We also use that

lp—p'l < 8v/q%"0 by (2.59) and p — p’ = g’ — q from (2.8). Then, we have
T vie e 1
P =P PU@I@NT =3 2 ld' =P (@I (@)?

< oVte | AV €
T sin > J(@)*,

where E: > 0 is sufficiently small and we also use |¢’ — g|>~7 ¢ (J(q)J(q’))%_S <1
forany é € (0, %). Then the extra powers on sin % will control the angular singularity
and we obtain that

6\ /
/ dw veo(g,0)g" ¢ (Sin —) (J(@)*
S? 2

ptyte ptyte

SePU@ 0% U@ 50D @),

if p+y+e€>0by(2.58).If p+ y + € < 0, then we use (2.59) to obtain

9 y+e ,
/;2 dw veo(g,0)g7 ™€ (sin 5) (J(g)
ot

/ _ y+e ’
ST U@) Slp—qlP TN T T (J(@)F .

We put these back into (5.7) to get for any small 1 > 0 and any small n, > 0 that

l ! 2 [ 12 [ 12
S el Fliz < mlf iy +mlw' 1+ Clo I,
2 2

where 8’ = 48 — e > 0 and C = C(n1, n2) > 0. This proves Lemma 2.8. O

This concludes our discussion of the main coercive estimates and Lemma 2.8. In
the next section we will prove the global existence and uniqueness of the solutions to
the Boltzmann equation by using the non-linear energy method.

6 Local and Global Existence

In this last section, we will establish global existence based on the modern method
of separating the needed space-time estimates. This methodology goes back to the
cut-off Boltzmann theory [46]. We will show that the sharp estimates proved in the
previous sections can be utilized for the method. The system of space-time relativistic
macroscopic equations (6.9) and the system of relativistic conservation laws (6.14)
will be derived and used to prove the coercive lower bound for the linear Boltzmann
operator L in our isotropic fractional derivative norm (2.37). In §6.1 we will explain the
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local existence argument, and then in §6.2 we establish the global existence, uniqueness
and asymptotic decay rates to equilibrium.

6.1 Local Existence

We now use the estimates that we made in the previous sections to sketch the local
existence proof for small initial data. Full details of a similar local existence argument
can be found in [29]. We will use the standard iteration method and uniform energy
estimates for the iterated sequence of approximate solutions. The iteration starts at
O, x, p) = 0. We solve for f™t1(z, x, p) such that

@ +p- Ve + N "L K™ =T, Y, N0, x, p) = folx, p).
6.1)

It can be proven with our estimates as the main tool that the linear equation (6.1) admits
smooth solutions with the same regularity in HIN as a given smooth small initial data
and that the solution has a gain of L2((0,T); I ll,) 1’\}’). We omit these standard details.
We will set up some estimates which are necessary to find a local classical solution as
m — 00. As mentioned before, we will use the norm || - || i for || - || HY for convenience
and also use the norm || - ||; for the norm || - || 1y Define the total norm as

t
Mf(@0) = IfO% +f0 dt | f()l3.

In this section we will also use the notation | f|;».» to denote (N f, f) to simplify the
notation below (this is justified by Lemmas 2.7 and 2.8).
Here we state our main energy estimate:

Lemma 6.1 Let { f™} be the sequence of iterated approximate solutions. There exists
a short time T* = T*(||fo||%_1) > 0 such that for ||f0||%1 sufficiently small, there is a
uniform constant Co > 0 such that

sup sup M (f™ (1)) <2Coll foll%;-

m>00<t<T*

Proof We will only write down the proof in the case / = 0. For / > 0 the proof is
analogous, using the weighted norm as in (6.27). We prove this lemma by induction
over k. If k = 0, the lemma is trivially true. Suppose that the lemma holds for k = m.
Let £+ be the solution to the linear equation (6.1) with given f™. We take the spatial
derivative 0% on the linear equation (6.1) and obtain

@ + p - VI« "4 M@ " + K@% f™) = 3*T (™, f™.
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Then, we take a inner product with 9% f m+1 The trilinear estimate of Lemma 2.5 and
(2.41) implies that

1d
Mna“f'"+1 12522+ 1% F" T + (0@ ), 0% £

A~ @UT ™, T, 8% Y S 3

We integrate over time to obtain that

1 t t
5||a°‘f’"“<z)||i;L§ + fo dz)|9% " (O30 + /O dT (K@ f™), 0% £

t

1
< 10 fols 2 + c/o dell £ a2, 62)

From the compact estimate (4.79), for any small € > 0 we have

t
'/ dT(/C(Bafm), aocfm—H)
0
t t
<c. / dt w207 f7 (@)%, + ¢ / 4t 19 F7 @)
0 0

We can interpolate for any small ¢’ > 0 there is a large C,s > 0 such that
lw?29% f™(T)[172 < Corlld® " (D172 + &' 119% F" ()17

We use these estimates in (6.2) and take a sum over all the derivatives such that |a| < N
to obtain

MO 0) < 1 foll3 +2C sup M(f™(x) sup MY2(f™(x))

0<t<t 0<t<t

t t
+20.Co /0 Al f (O + 2 /O de )l f" (o2

t
+2C.¢' /0 dell f7 ()2

<l foll3; +2C sup M(f™"(x)) sup M'2(f™(v))

0<t=<t 0<t<t
+2CcCert sup M(f™ (7))
0<t<t
+2¢ sup M(fm+l(r))+2C€8' sup M(f"(1)). (6.3)
0<t<t 0<t<t

Then by the induction hypothesis on M (f™(t)), we obtain that

M) <l folly +2CV2Col follw sup M(f™(x))

0<t<t
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+4CoCeCort || foll3 + 4CoCeé' || foll% + 2¢ sup M(f™+1(1)).

0<t<t

Thus we obtain

(1 —2¢ —2C2Col follw) sup M(f™ 1))

0<t<T*

< (1 +4CoC.CoT* +4CoCe)| foll -

Thus we choose || follg, € > 0, &’ > 0, and T* > 0 sufficiently small (in that order)
to obtain that

sup M(f" (1)) < 2Coll foll%-

0<t<t
This proves the lemma by induction. O
Now, we prove the local existence result with the uniform control on each iteration.

Theorem 6.2 For any sufficiently small My > 0, there exists atime T* = T*(Mp) > 0
and My > 0 such that if ||f()||2 < M, then there exists a unique solution f(t, x, p)
to the linearized relativistic Boltzmann equation (2.26) on [0, T*) x T x R3 such
that

sup M (f (1)) <= Mo.

0<t<T*
Also, M(f(t)) is continuous on [0, T™).
Proof Existence and Uniqueness. By lettingm — oo in the previous lemma, we obtain
sufficient compactness to obtain the local existence of a strong solution f (¢, x, p) to
(2.26). For the uniqueness, suppose there exists another solution 4 to (2.26) with the

same initial data satisfying supy<, <7« M (h(t)) < € for a sufficiently small € > 0.
Then, by the equation, we have

0 +p-Val(f =)+ L(f =) =T(f —h, )+ T, f—h). (64

Then, by the Sobolev embedding H 2(T3) ¢ L°°(T?), Theorem 2.4, and the Cauchy—
Schwarz inequality, we have

[T, f =) +T(f = h, )} f = D)
SWallz2 2 = B3 + 1 =Bl 1 Fg2n I f = Rllior =Ty + T,

For T}, we have

t t
fo dx T1(7) Sﬁ/o dllf(2) = (D) 20y
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because we have supy., .7+ M(h(t)) < €. For T;, we use the Cauchy-Schwarz
inequality and obtain

‘ ; 1/2
/0 dv Tr(1) <€ ( sup |1f () = h(D)IIZ; /0 drnf(r)—h(r)n%p,y)

O<t<t

13
Sve ( sup |1 f(r) —h(o)ll}; + /0 drnf(r)—h(r)n%p,y)

O<t<t

because f also satisfies supy—, <7+ M(f(t)) < €. For the linearized Boltzmann oper-
ator L on the left-hand side of (6.4), we use Lemma 2.9 to obtain

(L(f =h) f=h) zclf =hlTpy = CIf =hl 2, gy

for some small ¢ > 0 and some R > 0. We finally take the inner product of (6.4) with
(f — h) and integrate over [0, ¢] x T3 x R3 and use the estimates above to obtain

] t
SO = ROy + fo d || f(t) = h(D)|7ps

0<r<t

t
S \/E( sup || f(7) — h(T)”iz(@XRs) +/(; dr| f(r) — h(f)”%p.y>

t
+ /0 de|| f (@) = RO 3 sy

By Gronwall’s inequality, we obtain that f = h because f and /h satisfy the same
initial conditions. This proves the uniqueness of the solution.

Continuity. Let [s, t] be a time interval. We follow the simliar argument as in (6.2)
and (6.3) with the time interval [s, ¢] instead of [0, 7] and let f™ = f"+! = f and
obtain that

1 1 ¢
IM(f (1)) — M(f(s)| = ‘Ellf(t)ll?q - Ellf(s)llir + f dt | f(Ol3

t
< ( / dr ||f<r>||%) (1+ sup M1/2<f<r)>>.
s S<t<t

As s — t, we obtain that [M (f(t)) — M(f(s))] — 0 because ||f||% is integrable in
time. This proves the continuity of M. O

This concludes the proof of the local existence.

Remark 6.3 In this remark we will briefly outline two different approaches to proving
the positivity of a solution F(t,x, p) = J(p) + /J(p) f(t, x, p) > 0 when we
initially have that Fo = J + +/J fo > 0.
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One approach, which was used in particular in [44], is to use the approximation
of a solution to the cut-off relativistic Boltzmann equation where positivity is already
known. In this approach (a) one has a solution to the relativistic Boltzmann equation
with a cut-off angular kernel singularity that can be shown to be non-negative. Then
(b) one proves that you can choose an approximate cut-off kernel o;,, which converges
to the non-cutoff kernel o satisfying (2.20)—(2.22). Then (c) prove that the solutions
to the equation with the approximate kernel o, that are known to be positive converge
to the solutions to the equation with kernel ¢ in a strong enough sense to conclude that
the solutions remain positive in the limit. This was done in the non-relativistic situation
for instance in [3]. However all of the steps (a)—(c) contain substantial lengthy details
that would need to be worked out carefully and the existing literature does not contain
precisely what we would need for the relativistic Boltzmann equation.

In order to handle lower regularity solutions one may choose Fo = J ++/J fo = 0
and still need to approximate by Fp. = J + Na fo.e = 0 such that Fp . — Fp
in a suitable space. One elementary way to make this choice is as follows. Given
Fo=1J +JT fo > 0,thenlet¢. > 0be astandard mollifier. Then further define fo ¢ =
b * (fo—l—ﬁ) —/J.Then fo,¢ 1s smooth and we will have fo — foand Fp — Fo
as € — 0 in suitable spaces. Further Fp, = J + \/7f0’€ = ¢ x (fo + \/7) >0,
since fo + +/J > 0 by assumption.

Another approach was used in [5]. They used a maximum principle style argument
to prove the positivity without using approximation. We believe this method may also
work to to prove the positivity for the the relativistic Boltzmann equation without
angular cut-off.

However both methods would need to be worked out in full detail, and both
approaches require significant additional lengthy calculations. Due to the current
length of the present paper, we leave these developments for future work.

In the next subsection, we will show global existence using the nonlinear energy
method from [46]. We point out that this approach is substantially more difficult in
the special relativistic case as we will observe in the developments below.

6.2 Global Existence

In order to prove the global-in-time existence of solutions, we will have to prove the
global energy inequality. The main point for this is to obtain the uniform lower bound
estimate on the Dirichlet form, (Lf, f), of the linear operator L. Note that the linear
Boltzmann operator L has a very large null space Pf as it will be introduced below in
(6.5). To study this null space we will derive the system of macroscopic equations (6.9)
and balance laws (6.14) with respect to the coefficients appearing in the expression for
the hydrodynamic part Pf. Then we prove a coercive inequality for the microscopic
part {I — P} f. Using these coercivity estimates for the non-linear local solutions to
the relativistic Boltzmann system, we will show that these solutions must be global in
time by proving energy inequalities and using the standard continuity argument. We
will also prove the rapid time decay of the solutions to equilibrium in the later part of
this section.
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Now we use the relativistic Maxwellian solution J (p) from (2.12), and recall that
f]R; J(p)dp = 1. We introduce the following notations for the integrals:

2
2= [ paap 2= [ @*2aap = [ gotsap. 3l = [ Zaap.
R3 R3 R3 R3 P
The 5-dimensional null space of the linearized Boltzmann operator L is given by
nl(L) = span{~/J, pi~/J, pav/J, p3v/T, p°N T},

Then we define the orthogonal projection from L2(R3) onto nl (L) by P. Then we can
write Pf as a linear combination of the basis as

3
Pf = (Af(t, X+ Y Bl t.x)pi+ ¢, x)p0> Vi, (6.5)

i=1

where the coefficients are given by

0 0
;L C0nr ot e feiNTdp o fes fFONT =20V Ddp
A _fR} fIdp=atct, Bl =S ol = 00— GOy :

This choice of the basis was given in [86]. We now observe the null space (6.5) and
the positivity of the linear operator, as proven in [40].

Lemma6.4 (Lg,h) = (Lh,g), (Lg,g) >0.And Lg =0 ifand only if g = Pg.
Then we can decompose f(t, x, p) as
f=Pf+{l—-P}f. (6.6)
We start from plugging the expression (6.6) into (2.26). Then we obtain
{0 +p-V}Pf==0{l = PYf —(p- Ve + L){I = PYf+T(f, /). (67

Note that we have expressed the hydrodynamic part Pf in terms of the microscopic
part {I — P} f and the higher-order term I". We define the operator

I{I =P}y f)=—(p Ve +L){I — P}f).

Using the expression (6.5) of Pf with respect to the basis elements, we obtain that
the left-hand side of (6.7) can be written as

3 3
AT + 3 0 (A+CpOZEST 4 8,CpONT + 3 0BipinT

0
i=1 p i=1
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3 2 3 .
+Za,.s,~%ﬁ+ SN 08 p;fgf V7,
i=1

i=1i#j

where A = A/, B=B/,C =C/ and §; = dy;. For fixed (¢, x) we can write the
left-hand side with respect to the following basis, {ej} 1&11 , which consists of

Vi (BT) N () e (P
p 1<i<3 1=i<3 p 1<i<j<3

(6.8)

Then we can rewrite the left-hand side of (6.7) as

3 3
WAV + Z Bl-A%x/j +8,Cp°V I + Z(aiC + 8B pivJ

i=1 i=1

3 3
piDj
+ Z Z((l —3;;)0;Bj + 3]'Bi)p—0]\/7.

i=1 j=1
By the comparison of coefficients, we can obtain a system of macroscopic equations

A =—0my + 1, + G,
A= —0miq + lia + Gia,
0,C = —9m. + 1. + G, (6.9)
0;iC+ 0 Bj = —0mic + lic + Gic,
(1 =8;;)0;Bj +9;B; = —d;m;; +1;j + Gij,

where the indices are from the index set defined as D = {a, ia, c,ic,ij |1 <i <
Jj <3}andmy,1,, and G, for u € D are the coefficients of {{ — P} f,I({I — P}f),
and I'(f, f) with respect to the basis {ek}}(il respectively.

Also, we derive the local conservation laws. The derivation of the local conservation
laws for the relativistic Boltzmann equation has already been introduced in [86] and
we introduce the full details here for the sake of completeness. We first multiply the
linearized Boltzmann equation by VI, Di VI, pO J and integrate them over R3 to
obtain that

a,f fﬁdp+/ PV fJdp =0,

R3 R3

3 / i T pidp + / b Vo £V I pidp = 0, (6.10)
R R

3,/3fx/7p0dp+/%ﬁ-vxf\/7podp=O.
R R
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These hold because 1, p;, p° are collisional invariants using (2.17). We will plug the
decomposition f = Pf + {I — P} f into (6.10). We first consider the microscopic
part. Note that

1 3 1
~ Pj
[N A TR S R T o P
R3 0 m IR P 0

p p
P
3 0
=Zaj<{1—P}f,~/7 e > (6.11)
Jj=1 pj

We also notice that [p3{ — P}f~/J(p)pjdp = 0. Also, we have that

1 1
a,/ I -PyfJI | pi :8,<{1—P}f,«/7 i >=0. (6.12)
R3 pO pO

On the other hand, the hydrodynamic part Pf = (A + B - p + Cp°)V/J satisfies

1 A+B-p+Cp°
3:/2 pi Pfx/jdpzi%/2 Api+B'PPi+CPOPi2 VI (p)dp,
EAp B ANAp® + B pp° +C(p)

and

1 3 T5(A+B-p+Cp”
/ﬁ~Vfo«/7 P dp:Z/ 0 | Zra+B-p+cpd) | VI(pdp.
R3 0 —1 /R? P 0

p = pjA+B-ppj+Cp°p;

Thus we obtain

1 1

3zf Pi Pfx/jdp-i-/ p-ViPfVI | pi |dp
R3 0 R3 0
P p
A+ 299,C AV B
= A9, B; + [ 2'aA+atyc . (6.13)
209, A+ 2%, My, . B

Also, we have that L(f) = L{I — P}f. Together with (6.10), (6.11), (6.12), and
(6.13), we finally obtain the local conservation laws satisfied by (A, B, C):

A+ 2108,C+ 1! Vi - B = =V - <{1 - PIf, ﬁﬁo>,
p
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AMaB+ A VA+AIVC= -V, . <{1 — P VTE ®0p>7
p
209, A+1%,c+ 2V, . B=o0.

Comparing the first and the third conservation laws, we obtain the following local
conservation laws:

u10p A+ paVy - B ==V, - <{1_P}f \/—p>
A8+ A VA + 211V, C = —v, < P}f,ﬁp%p>, (6.14)
u30,C + p4Vy - B= -V, <{I—P}f ~/_p>

) 02 0
Above the constants are given by u; = (1 — (;03 ) > 0, uo = (K(l)l - Ak&;l)»

00 11
u3 = ()LO — );L—()) < 0and g4 = ()L(l)l — );»_0)

We also mention that we have the following lemma on the coefficients A, B, C
directly from the conservation of mass, momentum, and energy:

Lemma 6.5 Let f(t, x, p) be the local solution to the linearized relativistic Boltzmann
equation (2.26) which is shown to exist in Theorem 6.2 which satisfies the mass,
momentum, and energy conservation laws (2.25). Then we have

/ A(t,x)dx:/ Bi(t,x)dxz/ C(t,x)dx =0,
T3 3 3

where i € {1, 2, 3}.

We also list two lemmas that help us to control the coefficients in the linear microscopic
term / and the non-linear higher-order term I'.

Lemma 6.6 For any coefficient 1, for the microscopic term I, and for any m > 0 we
have

Ml gy—1 S I — PYo* fll;2 (134m3), Ym € D.
x m( )
le| <N

Proof In order to estimate the size for the HV~! norm, we use any e; from (6.8) to
observe that

(%L1 — PYf),ex) = —(p - Va({I — PYO* f), ex) — (LI — P}0“ f), ex).
For any |a| < N — 1, the L?>-norm of the first part of the right-hand side is
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B - Vel = PYo* f), e}z < /T dxdp lex||[{I — P}V,9* f|?
xR
S =PI ]2 s, 5,

On the other hand, by (2.28) and (4.78) we have

2
LU = PYo* 1), enlify < 1= P1o® f1gz 10 P12, |

S M= PYfIs

L2, (T3xR3)’

for any m > 0. This completes the proof. O

Lemma 6.7 Let || f|13, < My for some Mo > 0. Then, for any m > 0, we have

”GM”HN*1 S VMo ”aaf”[‘{ xRy, VM € D.
X V’l( )

la|=N—1

Proof In order to estimate the size the for HV =1 norm, we consider (I'(f, f), ex). By
(4.78), for any m > 0, we have

O el S 2 D 1077 12 107 fe

l¢|<N—-1a'<a

SUAI gyt Do 10 flp2,

la|<N—1

SVMo Y 10l r -

la|<N—1

This completes the proof. O

These two lemmas above, the macroscopic equations, and the local conservation
laws will together prove the following theorem on the coercivity estimate for the
microscopic term {I — P} f which is crucial for the coercivity of the linearized operator
L in the energy form and hence is crucial for the energy inequality which will imply
the global existence of the solution with the continuity argument.

Theorem 6.8 Given the initial condition fy € H which satisfies the mass, momentum,
and energy conservation laws (2.25) and the assumptions in Theorem 6.2, we can
consider the local solution f(t, x, p) to the linearized relativistic Boltzmann equation
(2.26). Then, there is a constant My > 0 such that if

2
| f Ol < Mo,
then there are universal constants § > 0 and C > 0 such that

dI(t)

D =PI FlTn (1) 28 30 1P flon () = C— =

le| <N le|<N
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where I(t) is an interaction potential defined as

= Y {IZO+IF0+ 120},

le|=N—1

Above, each of the sub-potentials I§ (t), I} (t), and 17 (t) are defined during the proof
in (6.16), (6.18) and (6.21).

Proof Since we have the expression Pf = (A +B-p+ Cpo) VJ as in (6.5), we
have that

1P f (D705 S 1B*AD N7z +18*B®72 + 18°COI7-
Thus, it suffices to prove the following estimate:

LA 3,y + IBO G + 1€

dl
S XM= PIESOL,, Mo 30 10Ol + 4O

oty dt
la|<N 2 la|<N
(6.15)

Then note that the term M Zla\<N [10% f(¢) ||i2 on (RHS) of (6.15) can be treated
= oty

2

by using
> ||a“f<r>||Lz
le| <N
<)Y ||P8"f(t)||L2 + > II{I—P}B"‘f(t)IILz
|| <N o la|<N
S TAOIy + 1BOIGy +ICOITy + D ||{zr—P}a°'f<r>||Lz+ :
la|<N T

and the terms in A, BB, and C can be absorbed by the (LHS) of (6.15) for a sufficiently
small My > 0. Therefore, we obtain Theorem 6.8 from (6.15).

In order to prove (6.15), we will estimate each of the 3% derivatives of A, B, C
for 0 < |a| < N separately. Later, we will use Poincaré inequality to estimate the
L2-norm of A, B and C to finish the proof.

For the estimate for .4, we use the second equation in the system of macroscopic
equations (6.9)2 which tells ;A = —d:mi, + lis + Giq. We take 9;0% onto this
equation for |¢| < N — 1 and sum over i and obtain that

3
—AD* A=Y (00:0Mia — 3:0%(ia + Gia))-

i=1
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We now multiply 8% A and integrate over T? to obtain

3
d
1Va* All7, <110% Ui + Gia) 2 IVO* All 12 + — Y / 3;0%miq 0 A(t, x)dx
x * * dt P T3

3

—E /BiaamiaataaA(t,x)dx.
—~ |3
i=1

We define the interaction functional
3
1%(1) = Z; /;FS 3;0%m;, 0% A(t, x)dx. (6.16)
1=

For the last term, we use the first equation of the local conservation laws (6.14); to
obtain that

3

/ Z 0;0%miqd,0% A(t, x)|dx < ¢|IV - ao‘Blle + CeI{I — P}Va"‘f|| ;
i=1 T

for any ¢ > 0, since m,, are the coefficients of {/ — P} f with respect to the basis
{ex}. Together with Lemma 6.6 and Lemma 6.7, we obtain that

> (VAR = <1V - 0BI%, )

la|<N—1

SC Y. II{I—P}B"fIILz + Z

la’'|<N 2 la|<N—1 la’|<N

f||L2
(6.17)

This completes our main estimate for A.

We now explain the estimate for C, we use the fourth equation in the system of
macroscopic equations (6.9)4 which tells 9;C + 9;8; = —9d;m;. + ljc + G;.. We take
0;0% onto this equation for [@| < N — 1 and sum over i and obtain that

3
d
—A0°C = (V- 0"B) + Y (0" mic — 0,0 (i + Gic).
i=1

We now multiply 3%C and integrate over T to obtain

d
||V8"‘C||i§ Sd—/ (V~8°‘B)8°‘C(t,x)dx—/ (V- 99B)0;0“C(r, x)dx

+ Z 18% (i + Gie)ll 2 IV0*Cll 2 + — Z/ 3;0%m;d*C(t, x)dx
i=1
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3

—E / 0;0%m;0;0%C(t, x)dx.
; T3
i=1

We define the interaction functional
3
I% (1) :/ (V- 3*B)a“C(t, x)dx + Z/ 0;0%m;.0%C(t, x)dx. (6.18)
T3 . T3
i=1

We also use the third equation of the local conservation laws (6.14)3 to obtain that
3
/ D 18;0%micd,0°C(t, )ldx SNV - 99BI7, + I — PYVA* f1I7,
T3 4 x oty
i=1 2
We use (6.14)3 again to estimate
/ |(V-3“B)d;0°C(t,x)|dx S |IV - 9“BI7, + I{I — P}V8°‘f||iz . (6.19)
T3 ¥ oty
2

Together with Lemma 6.6 and Lemma 6.7, we obtain that
> (Ivosens, =1V -0“BI2, )

le]<N—1
o
SCe Y WI=PR fIZ, + 3 —c+Mo o 1972
pty pty
2

lo/|<N 2" Jal=N-1 lo/| <N
(6.20)

dl
d

where above A > 0. This is our main estimate for the C terms.

Next we estimate the terms involving 3, we use the last equation in the system of
macroscopic equations (6.9)s which tells (1 —§8;;)0;B; +0;B; = —d;m;; +1;; + Gij.
Note that when i = j, we have

3J'Bj = —0mj; +1jj +Gjj.

We take 90 on (6.9)s for |@| < N — 1 and sum on j to obtain

AI“B;

3
(—8j3a(1 — Sij)ﬁiBj — a,a"‘a,mij + 3/3“[,’/ + aja"‘Gi,-)
j=1

3
— Zaja"‘a,-l’j’j + Z ( — 8j8°‘8,m,-j + 3j3alij + 3j3aGij>'
J# j=1

@ Springer



Relativistic Boltzmann Equation without Cut-Off Page 1350f167 20

Then by using 0;0;8; = —9;0,m; + 0;l;; + 9;G j;, we have

AB; =) (a“aiatm,-,- — 3%l — a“aiG,»j>
J#i
3
+y° ( — 0;0%,m;j + 0;0%L;j + a,-a“c,,-).
j=1

We now multiply 3 B; and integrate over T to obtain

3
d
”Va"‘Bi ||iz 5 E 2/? 30‘(3./-11’[[/‘ — B,mu(l - 8[]))3a8idx
X o T3

—Z/ 0% (@jmij — dymj; (1 — 8;1))3,0°Bidx + Y 9% (U + Gyl 2.

nebD

We define the interaction functional

I8() = ZZ/ 3% (d;m;; — dym (1 — 8;;))9%Bydx. (6.21)

i=1 j=1
We also use the second equation of (6.14); to obtain for any ¢ > O that

3

3
ZZfTS 10%(8;mi; — 0im ;; (1 — 8;;))9,0%Bi (¢, x)|dx
=1 j=1

< ¢V - 9% Al + IV - 8%ClI7y) + Ce (T — P}va“fnizw

Together with Lemma 6.6 and Lemma 6.7, we obtain for ¢’ > 0 sufficiently small
that

> (IVo"BIZ, — /(Y - 0" Al + 1V - a“cnig))

| <N—1

SCo Y. II{I—P}B"fIILz + Z

lo/|<N le|<N—1 le/|<N

(6.22)
T,
by

This is our main estimate for the B terms.

Now we first consider the lower bounds in the estimates of (6.17), (6.20), and
(6.22). We multiply the lower bound in (6.20) by a small constant € > 0 and then add
to it the lower bounds in (6.17) and (6.22) to obtain
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> (Vo AR, + 1V0“BIZ, +elVa“c|?,)

la|=N-1
= Y (SIVHBI + UV 0" AIR, + IV - 0°CIZ) + €AV - 67 BI2, )
lo| <N—1 ' :
~ 3 (||V8"‘A|\i%+||V8°‘B||i%—|—eHV8"‘C||i;>.
lef<N—1 ' '

The last line above is obtained by first choosing € > 0 small, and second choosing
¢ > 0 sufficiently small, and lastly choosing ¢’ > 0 sufficiently small. Then (6.17),
(6.20), and (6.22) imply that

VA -1+ 1VBIZ o + IV v
dl (6.23)

< I — P} f? — 4+ M, 3 f11?

S Y M -P) s, + 5+ Mo >l flizz,

le] <N 2 le|<N 2

On the other hand, with the Poincaré inequality and Lemma 6.5, we obtain that

2
1A 5 (1941+| [ Ac.nas]) > 194
T

This same estimate holds for 5 and C. Therefore, the inequality (6.15) holds and this
completes the proof for the theorem. O

We now use this coercive estimate to prove that the local solutions from Theorem 6.2
will be global-in-time solutions by the standard continuity argument. We will also
prove that the solutions have exponential decay in time for hard interactions (2.21)
and polynomial decay in time for soft interactions (2.22).

Before we go into the proof for the global existence, we would like to mention a
coercive lower bound for the linearized Boltzmann collision operator L which also
gives the positivity of the operator:

Lemma 6.9 Assume (2.20)—~(2.23) hold. Then there is a constant § > 0 such that

(Lf, f) = 81{I — PYf|3.

Proof We give the standard proof of Lemma 6.9 using the method of contradic-
tion. In this proof we denote |g|}v = (Ng,g) and (g, g)n = (Ng, g) recalling
(2.34). Assuming the lemma is false, we obtain a sequence of normalized functions

{g" (p)}n>1 satistying that |g"|ns = 1 for alln > 1. By Lemma 6.4 we also have

fR 8" (pydp = /Hé &"pid P (p)dp = /R &P (p)dp =0, (6.24)

@ Springer



Relativistic Boltzmann Equation without Cut-Off Page 1370f 167 20

and for some uniform constant C > 0 and Vi > 1 we have
(Lg", g") = WNg", g") +(Kg",g") < C/n. (6.25)
We denote the weak limit, with respect to the inner product (-, -)or, of g" (up to a

subsequence) by g°. Lower semi-continuity of the weak limit implies | g% < 1.
From (2.32) and (2.33) we have

(Lg", g") = Ig" [y + (Kg". g").
By Lemma 2.6 and (4.79), for any small € > 0, we have
2 2
[(KCg", &) < €lg" [ + Celg"Iap,. -

Here we use Lemma 2.7 and Lemma 2.8 to bound (Ng, g) ~ |g|%,,.y. Now by the
fractional-order Rellich-Kondrachov Theorem we have (up to taking a sub-sequence)

that |g" — g0|%2(BC y ™ 0 as n — oo. By first choosing € > 0 small and then letting

n — oo, we conclude that (Kg", g") — (Kg?, g%).
Letting n — o0 in (6.25), we have shown that

0=1+(Kg" g%.

Equivalently
0=(1-18"%) + (Lg" 8°).

Now both terms are non-negative by Lemma 6.4. Hence | g0|/2\/ =land (Lg", g% =0.
Again using Lemma 6.4 we have g” = Pg®. Alternatively, letting n — 00 in (6.24)
we deduce that g = (I — P) g” or g° = 0; this contradicts |g0|§\/ =1. O

Now, we define the dissipation rate D; as

Dr= ) 10°f Ol

la|<N

We will use the energy functional & () to be a high-order norm which satisfies

W~ Y 1w f Oz (6.26)
le|<N

This functional will be precisely defined during the proof. Then, we would like to set
up the following energy inequality:

d
E& O +Di(t) < CYVEDD(@). (6.27)
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We will prove this energy inequality and use this to show the global existence.

Proof of Theorem 2.2 We first prove the energy inequality for the / = 0 case. We
denote D = Dy and € = &,. By the definitions of the interaction functionals defined
in Theorem 6.8, for any C’ > 0 there exists C” = C”(C’) > 0 sufficiently large such
that

1Oy < €+ DIFON, 4y = € 1O S 1FOI -

We remark that C” doesn’t depend on f (¢, x, p) but only on C’ and the structure of
I. Here we define the energy functional £(¢) as

E() = (€ + DISOI3 w0 = C1).

Then, the above inequalities show that the definition of £ satisfies (6.26).

Recall the local existence Theorem 6.2, and Theorem 6.8, and choose My < 1 so
that both theorems hold. We choose 0 < M| < =2 and consider initial data £(0) so
that

E0) < M| < M.
From the local existence theorem, we define 7 > 0 so that
=sup{r = 0|E(r) < 2M,}.
By taking the spatial derivative 0% onto the linearized relativistic Boltzmann equation

(2.26), multiplying by 9% f and integrating over (x, p), and summing over «, we
obtain

1d
S IOy + D0 (LO“F.0%F) = 37 GT(f. ).0%F).  (6.28)

le|<N la|<N

By the estimates from Lemma 2.5, we have

> @°T(f. ). 97 f) SVED.

la|=N

Since our choice of M satisfies £(t) < 2M| < My, we see that the assumption for
Theorem 6.8 is satisfied. Then, Theorem 6.8 and Lemma 6.9 tell us that

D (L% F,0%f) = SIT — PYf 170

lo|<N
s8C dI(t)

8 o
z§||{1—P}f||m+ ZnPa Pl ) = ===

le|<N
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Let 8" = mln{‘S LIk -} and let C' = §C. Then, we have

3 (IO, — C10)) +5'D < VED.

We multiply (6.28) by C” and add this onto the last inequality above using the positivity
of L to conclude that

de(n)

TR +68"D() < CVEMD(),

for some C > 0. Suppose M| = min{2— M" }. Then, we have

8C2’

e

i +8"D@) < CVEMD(t) < C/2M1D(t) < S—D(t)

Now, we integrate over 7 for 0 < ¢ < 7 < T and obtain
8// T
E(t) + 3/ D(t)dr < E(0) < My < 2M;.
0

Since £(t) is continuous in 7, £(t) < M if T < oo. This contradicts the definition
of T and hence T = oo. This proves the global existence.
If we have [ > 0, we recall Lemma 2.9 and deduce that for some C > 0 that

1
(w20 £.5° 1) 2 510" F 30 = IO f 12 (6:29)

We also take the 3% derivative on the linearized Boltzmann equation (2.26), take the
inner product with w9 f, integrate both sides, and use Lemma 2.5 to obtain that

1d
3 (an 0" f DI, + w Lo £, B“f)) SVENDI®).
le|=N

Then we apply the lower bound estimate (6.29). Finally, we add the energy inequality
for I = 0 case multiplied by sufficiently large constant C’ > 0 to obtain

d
SO+ D) SVEaEODID), (6.30)

where we define the energy functional & as

gl 5 2 ' F 0l + C'E@).

Ia\sN
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Thus, we obtain the energy inequality for the case / > 0. In the hard-interaction case
with (2.21), note that & (¢) < D;(¢). This and the equation (6.30) show the exponential
time decay for & (¢) < &(0) sufficiently small.

On the other hand, in the soft-interaction case (2.22) we do not have &(¢) <
Dy(t) because p + y < 0. Instead, to obtain the rapid polynomial decay we use the

interplation technique from [84]. The inequality that we do have is &4 (p4)/4(t) S
Dy(t). Using that inequality, we perform the following interpolation for fixed / >
lo+y|/4andm > 0
TR e T e
80 S GO O S DT 06,0
lo+v|
< D2m+|ﬂ+y| (t)g 2mi‘\';oy+y\ (0) (631)

Thus from (6.30) we have

o4yl 2m+|p+y|

d _
TEWD + CLnkl,” OF 7 () =0

for some C; ;, > 0. Thus we have

lo+yl
d(5, 20 (t))

|p+J/I

>C 0
dr = Cm— = Ern” ( )-
By integrating over [0, #] we obtain
_lptyl p V\ |,0+)/| \p+y\
& 1 ze )+ 1C s L O,

Now we use that &(0) < &4, (0) to conclude the polynomial decay for the soft
potentials as in Theorem 2.2. This concludes the proof of our main theorem. O

In the following section we will establish the relativistic Carleman representation.

7 Relativistic Carleman Representation
In this Section we will introduce the relativistic Carleman representation for the gain
and loss terms which have arisen many times throughout this paper. We will introduce

two Carleman representations in §7.1 and §7.2 that are not the same. The one in §7.1
is based on the reduction of the space R; X R;, onto the hyperplane

El_,=1lqg eR®:(p" = p")(pyu +qu) = 0)

via the evaluation of the delta function of the energy-momentum conservation laws.
On the other hand, the Carleman representation that we introduce in §7.2 is based
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on the derivation of Hilbert-Schmidt operator via taking the specific choice of the
Lorentz transformation (2.55) and this derivation is similar to those introduced in [80,
Appendix A]. Each derivation has their own advantage; the former one in §7.1 is
more appropriate for the case when the unknowns are written in the variables of p
and p’ only (c.f., (4.28) and (4.62)), whereas the latter one in §7.2 is more explicit
and is powerful for a general situation especially when we need a dual cancellation
estimate (c.f. Proposition 4.7). In §7.1 we will prove Lemma 2.11 which allows us to
integrate over the surface of the collisional geometry (2.8). Then in §7.2 we will prove
Lemma 2.18 which allows us to present the dual representation (7.21) for the trilinear
form (w2 T (f, h), n) from (4.1) and more generally for (7.1).

7.1 Carleman Dual Representation

We consider the collision integral from (2.13). The purpose of this subsection will
be to prove Lemma 2.12. By Lemma 2.11 the integral (2.13) can be written in the
following form:

[ fo i [

where G can be defined to suitably represent (2.13). More generally we will assume
that the function G has a sufficient vanishing condition so that the integral in (7.1)
is well-defined. We will prove that we can write the integral (7.1) as one on the set
R? x R? x EZLP where EZ/*P is the hyperplane

0)8W (p* + ¢'* — p* —g"G(p.q. p),
(7.1)

EY ,=1lqg e R : (p" = p")(pyu +qu) = 0).

This will be the main result of this subsection.
To this end, we now use Lemma 2.17 to rewrite (7.1) as

/ / B(p.q.p"),
R3

where B = B(p, q, p’) is defined as

=

- / d0(g", ¢"M)55 (2, 08D (™ + g — p' — MG (p™, g, p'™,
R4 xR4

08P (p* + ¢'* — p* —¢")G(p.q. P

with as in

def

do(g", ¢") = dg"dq"u(g®)u(g”)s(s — g* — Hs((q" — ") (g" +q™)),
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and u(x) is defined in (2.51).
Next we apply the following change of variable

Then with this change of variable the integral becomes
B= [ 0@ "0l 00"+~ PG " ",
R4 xR*
where

de(g", ¢") = dg"dg"u@® + q")ug®)s(s — g% — H8@G" 2g" + g")).

This change of variables gives us the Jacobian = 1. Finally we evaluate the delta
function, §¥, to obtain

B= / d0(qM)sa (5. O)G(p*, g, p™),
R4
where we are now integrating over the four vector ¢g* and
dO(q") = dg"u(p® — p* + q"ug")s(s — ¢ = Hs((p" — P")24qu + pu — P}))-
Here, we note that
f dq®u(q®)s(s — g* —4)
R
=iéd¢%@%ﬂ—@”+qHUm+qw—%p“—wﬂ@u—%a—ﬁ
==];dq%dqow(—(p“%-q“Xpu-+qu)—(p“-—q“Xpu—-%J-—4)
_ 0 0 n
—-Aédq u(g )82 —2q"q, —4)
= /R dq®u(g")82(q° — \/1+191)(q" + /1 + Ig1?)
1 / dqo 0 < 0 0
=— | ——=u(@) (8" —/1+1q1>) + 8" +/1+1q>)
4 Jr 1+ g
1‘/ dq® 0 e 0
=— | ———=u(g)s(q —/1+Iq1».
4JR V1 + lgl?

We thus conclude that the integral is given by

dJTq /
B = —550(8.0)G(p.q,p), (7.2)
£, 8gq
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where dn, = dg u(pO +q0 /O)8< l] (Pu 9" (pu—ry) ) with qo “ a2 ¥ |q 2. This is
a 2-dimensional surface measure on the hypersurface EZ,_p in R3.

7.2 Dual Representation for a Trilinear Term

In this section we will prove Lemma 2.18. For concreteness, we focus on the derivation
of the Carleman dual representation of the trilinear term (w (£, h), n). We explain
how to generalize to the full proof of Lemma 2.18 at the end.

After applying the pre-post change of variables, as in (2.94), to the TJlr part of (4.1),
then this term is given by

I=w'T(f, h),n) = /R dp /R dq /S dew vy0 (g, 0) f (@)h(p)
x (W P WI@) = PnPVT@) = Tgain = loss- (1.3)

We initially suppose that sz dw |op(cos0)| < oo and that

/ dw og(cos ) = 0.
SZ

Then, under that condition, the loss term vanishes /;,;; = 0 and we obtain

I = ILguin = /R dp /R dq /S _dw vy (g, 0) f (@ h(p)w? (p ("W I ().

By applying Lemma 2.11 we obtain another representation of I:

/ / / / sa(g 0)s W (pH + ¢ — pt — g™
R3 R3 R3 R3 ¢4

xf(q)h(p)w”(p (P (@) (7.4)

— def

Here from (2.5), (2.56), (2.6), and (2.7) we have g = g(p*, q"),s = g> + 4,z =
g(p*, p'M) = g(g", q'*), and g = g(p*, g’*). Also from (9.1) and (9.2) we have

~2
cosf = 2g_2 — 1.
8
We further claim that
2 ~2 1 nw im ’ l
8 =8 —z(p +a )Py + au — Pu—q,)- (7.5)
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Recall that § f 5% + 4. Then, using (2.5) and (2.4), (7.5) is equivalent to
2 _ 1. 1L 1 1 w m /
gf=g —Es——(p +q") (P, +qu) = —g —2=5(P" 4Py +au)

1.,
= zg +g% +2pt g, — E(p“ + 4" (P, + qu)-

Thus we prove (7.5) by showing that

1. 1
S8+ 200 = S (" + ") (), + 90 = 0.

Expanding the left-hand side of this equation, we obtain

1 1 1
4" py = 5" — 59" qu-

1
—plg’ —14+2ptg, — —pHtp —
pqu +pqﬂ pp/,c 2 2 2

2

Therefore, using (2.90) we obtain

1 1 1 1
—1+ P 4 = 5" P = 5P a4 = 5" 4 = 54" ap

which by (2.8) is equal to

—1+ptqu — %(p“ +4")(py +4q,) =—1+plqu + %S =0.
This finishes the proof of the claim (7.5).
Remark 7.1 Combining (7.5) and (9.1), we see that g2 can be represented as

] 1
F=—50" +a") P+ au = Pu— 4}

In the rest of this section we will use this representation and follow the formula for g°
as we perform the changes of variables below.

Then exchanging p and p’ in (7.4), we have

= [ G B e as g - g
R3 P R3 R3 R3 ‘I

xf(q)h(p)w”(p)mpwuq ),

where the angle 6’ is now redefined as
cosf' =255 —1, (7.6)
8
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and from Remark 7.1 and (7.5) we have

) Lo 1
F=g+8 F=—50"+a") pu+au—p,— 4

And we further use § = g% + 4. As we change variables below we will refer to the
transformed g as gy.
We now define the functional i (p, q) as

w1 dp’ [ dq'.
i(p,q)gﬁ/ | 5030089 (0" + " — p — g (P I @),
P4 Jrs p0 Jrs ¢
(7.7)
so that we have
I= / / i(p. @) f(@w? (p)n(p)dqdp. (1.8)
]R3 R3

We first translate (7.7) into an expression involving the total and relative momentum
def

variables, p’* + q’“ and p* — g'"* respectively. Define u as in (2.51). Let g =
g(p'™, g™ and s = s(p'*, ¢'*). Then by Lemma 2.17 we have

. 1 . ,
i(p.9) =5 dO(p™, ¢"h(pVI(g)50 &, 008D (™ +¢" — p* —¢"™),
16p°¢" Jr4xmrs
where

de(p™, q") = dp™dq" u(p” + ¢ (s — Hs(s — g* — HS(P™ + ") (p), — q))).

Thus we have lifted to an integral over R* x R* from one over R? x R3.
Now we apply the change of variables p“ = p* +q*and g* = p’* — q'*. Then

the Jacobian is 16. Since ¢’ = p % and p/' =L ;q, we have

, c p+q\ =+

i(p. == / dO(p*, §"50 (3,08 (g" —p“+q“>h( ) T,
PYq° JrA w4 2

for some constant ¢’ > 0 (whose value below can change from line to line), where
de(p*, §") = dﬁ“dé“u(ﬁo)u(—ﬁ“ﬁﬂ —ds(=p"py—q"q, —Hs(p"q,).

We now carry out 8™ (g#* — p* + g*) to obtain

. c b+ p— — 50 4 p0 _ 40
i(p.q) =—5 of dO(p")50(3,6)h (M> exp (M»
P q 2 4
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where the measure d©® (p*) is now equal to
dO(p") = dp"u(p)u(—p" p, — HS(—p" p, — g — D8P (pu — qu))-
Since s = g2 + 4 from (2.4), we have

u(p)8(—p"p, — 8> — 4 = u(pH8(—p"p, —5) = u(pH((H°)* — |pI* — s)

_ 3G = VIpP +9)

2/1p1E+s

Then we carry out one integration using this delta function to obtain

/ —

c dp — = _ ~ =~ ol
W /IR3 F”(_pﬂpu —Hs(p" (P — qu))5o(g,0")

<ﬁ+p—q> (—\/IﬁI2+S+p°—q°>
xXh|———)exp 1 ,

2

where p° = /|p|? + 5. Using s = g> + 4 again, we have
_ﬁuﬁu_4:s_4:g220
to guarantee that u(—p* p,, —4) = 1. Thus

/

0 0 =
. c P —q dp . _ o e
i(p,q) = eXP( )/ —58(P" (P — qu))50(g.0")
2p%° 4 ® 0 S

2 4

where p° = /|p|? + s. In this representation we have that the angle 6’ is still given
by (7.6) but now we have

_ 1 ) 1 1
F=g+el 8i=—50"Putau— D) =—5"u+au) — 55

And again § £ 3% + 4.

We finish off our reduction by moving to a new Lorentz frame. We choose the
Lorentz transformation from (2.55) which importantly satisfies the condition (2.54).
Then, using the change of variables (2.55), with U* = (1, 0, 0, O)T, we have

dp . _ e (PP~ 2
/ 5" (P — 450 (3.0 (m)e( )
R3 p 2
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_ — plr o
dp, (A" izvzs + 0 — ) (22)
- / —58 (" Bu)sac (ga. Oa)h ( pE T=v= e\t
R3 p 2
We used that % is Lorentz invariant. Here 130 =./|p|*+sand sy, go > 0 are

. 1 1
=g+, = — P A= s = 5«/5(170 — V),

where
sa = g3 +4, (7.9)
and
def 82
cosfp £2°- — 1. (7.10)
8A

=L . . TH A no_ p°+q0 2|pxq| PO*q())
Also, U™ is glffen by U" = A U.U _.< NN ,0, 2 .
We now switch to polar coordinates in the form

dp = r2dr sin vdyde, p = r(sin Y cos ¢, sin y sin ¢, cos V).
Then we obtain
p¥B, = grcosiy.

Then the integral i (p, ¢g) is now equal to

¢ pO _ 6]0 21 b4
i@ =357 exp( Z )/0 d¢/0 diy sin

/O o ( Vf) ( )h
X S8(gr cos SAO , 0
5 8 A 8A>UA

<((A_1)Uﬂﬁ”)1§v§3 +p- q) ‘f(%&)

2

We evaluate the last delta function at ¥ = /2 to write i (p, ¢) as

/

) _ c p() _ qO 2 J 0 rdr 9
i(p.q) = 2¢p040 exp 2 ) ¢ A ﬁSAU(gAy A)

A1y s B 0, 0
><h<(( VW uP vz +p Q)exp(_ﬁop T4 + |pqurcostb),
2 4./s 2g./s
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where
pPr = (r?+s,rcosg,rsing,0).

Then we have for (i = 1, 2, 3) that
3
(AT mi = (AL P Yomi = Y AL B
n=0

. < )i |
=pl+q’m+Alircos¢+—(p q)lrsin¢>d=fa,-,
NG lp x gl

and we have
1,0 0 0 p’+q° 1
(A7) upt =Ny pt = ZAH ﬁ“:—Tx/rz—i-s—i-A 0 FCOS ¢

2|p x
_— r2+s+ur

7 o cos ¢ = a0,
Define x = (x1, x2) = (r cos ¢, r sin ¢), and denote

a’(p,q.x) =a’(p,q.x) = a’, (7.11)
and

a(p,q,x) = (ai(p,q,x),a2(p,q,x),a3(p,q,x)) = (a1, a2,a3).  (7.12)

Then we note that

ata, = —(@”? + |a|* = —s,
since A is a Lorentz transformation. Also note that

a(p.q,0) = (p+q) anda’(p, q.0) = =(p" +¢°).

Then we have

(poq) = —5 (”O_"O) dx (gA. 0a)
p,q)= exXp —F————SAO0(ZA,UA
2gpYq° 4 r2 /x| + s

a(p.q.x)+p—q P’ +4° Ip x q|
xh _ 2 .
=
Now, with (7.9) and (7.10), ga > 0 is given by
1
=g +g, &= SVIWIP +5 = V5). (7.13)
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So by (7.8) we obtain a new representation of our gain term

Il dp dq P’ —q dx
I = Igain = f/ 5= eXP< / sao(ga. 0w (p)n(p)
2 JJre PO q 4 R2 gy/|x|> +s

_ 0 0
Xf(q)h(W)ew(—p 433" |x|2+s+';’gi/§'x1>. (7.14)

This completes our transformation of the gain term /4y

We now return to the loss term ;5. We recall that [;,3; = 0 under the assumptions
that [, dw|og(cos8)| < oo and [ dwoy(cosH) = 0. We will now find a different
expression than /;,s; which also integrates to zero under the same conditions, that will
provide suitable cancellation for the term in (7.14) even when we no longer assume
that [o, dwlog(cos0)| < oo and [, dwog(cos ) = 0.

To this end, we recall the definition (7.10). This using (7.13) we have

T e NG G|
cosQA=—2—1: T . (7.15)
8A g2+ 5V/s(Wri 45— /s)

Differentiating cos 8, with respect to r, we have

d(cosfy) g>\/sr
dr g‘}\ /r2 +—s.

Since we have assumed that f _] 1 d(cosBp)op(cos0p) = 0, then we further have

00 2
g /sr
dr———09(cosHp) = 0.
/0 gVt +s

This follows since cosf#p = 1 and — 1 correspond to r = 0 and r = oo respectively,

using (7.15).
Thus we obtain

0 0 2 00 4

P’ —q / rdr g

d¢/ ————s5®(g)op(cos Op) —5

/R /R ( 4 ) 0 0 gVrr+s A

0 0
xw? (p)n(p) £ (@h(p) exp <—” —t ) —o.

The above is the same as

_ g0 4
/ ( 1 )/ dx sd>(g)ao(0080A)g—4
®s PO Jws 4 ’2 g/|x|2 + s gt
0 0
sxw? (p)n(p) £ (@)h(p) exp (—” Iq >=o.
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Subtracting this zero integral from (7.14), we further obtain

/

Y d d 0 —4° d
=5 %5 %exp(” 9 )/R = a0 (ga. O (PIN(P) f(@)

r PY Jr3 g 4 2 g /x> +s
a(p.q.x)+p—gq P’ +4q° Ip x q|
/3 S A S—— _ 2
(A (P e
1) 4 0 0
_%hwnxp(_u)], (7.16)
sa®(ga)gn 4

This is equal to the original integral / when the mean value of oy is zero.

Since we are working with the Schwartz functions, by a standard approximation
argument we can directly prove that (7.16) also holds even when the mean value of oy
is not zero and oy is not integrable such as in (2.19) with (2.20) and (2.21) or (2.22).
We refer to [44, Appendix A] and (8.12) for full details of analogous approximation
arguments.

Now by making the change of variables x — z = % with dz = s~ 'dx, we have

¢ dq /s dz ”
NNA
r3 p° /R% 9 g Jr2 \/WSA"(&\ MV I (@w™ (p)n(p) f(q)

_ sP(g)g! hp )}
sa®(gn)gh

Next we recover the original variables by relabelling p and p” above, we then have

W (f, h) n =1

C/ / dg V5 / s e 0V T@ 0 () @)
® PO Jrs g0 & Jre \/|z|2 ’
X[h<a(p,q,ﬁz)+p —q)exp( P’ +4° LA N 1)Jrlp qu )

2

= =\ =4
5O()g h /)]
sa®(gn)g,

where ga, sa, and 0, are defined as

. 1.
sx=8+sl. si=55IP+1-D), (7.17)
2
coseA“_“z——l, and sy = g3 + 4. (7.18)
gA
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Here we also have from (7.11) and (7.12) that

A q.V5z2) = —(p° + Oz + 1+ Aoz,

and

a(p'.q,N52) = (p' + V122 + 1+ Aoz + fzz,

where Al = Al(p', q9) = (AL (P, q), A(p'. q), A'3(p', q)) from (2.55). Further
define

', q,V52) + (0 + 4%

~ A=Ay q.2) =

2
/0 0 /
+ X
= _w( |Z|2+1— 1)4_%@ = =2I( /|Z|2+1— D+2jz1,
(7.19)
and
a(p',q,52) — (p' +q)
AZA /, N =
(r.q.2) >
+

_ & q)(VIzP -1+ A‘le +— sz (7.20)

Ip

Then we have
(W T(f.h).n)

dq f dz 20, 1 /
79 J
/R /IR3 q° ¢ Jre /)72 + sAa(gA VI (@Qw= (pOn(p') f(q)

AO 1) ~4
X [h (A(p'.q.2)+ p')exp (—7> - %h(ﬂ)} (7.21)
A

This is the main expression for the dual representation that we will use to prove our
cancellation estimates which land on the function 4.

We have actually proven a more general integral formula. Now we consider (2.91).
The transformation from (2.91) to (2.92) or (2.93) incorporates the series of changes
of variables discussed previously in this section. The transformation from (2.91) to
(2.92) follows exactly from the arguments between (7.3) to (7.14). Then to additionally
derive (2.93) we further follow the arguments between (7.14) and (7.16). This proves
Lemma 2.18.
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8 Collision Frequency Multiplier Derivation

We now explain a deriv~ation of an alternative form of g:( p) from (2.30), and give the
new decomposition of ¢ (p) that has been explained in §3.2.

8.1 Derivation of a new representation of 3 p)

Forafixed p € R3, recalling (2.30), we would like to have an alternative representation
of the following integral:

2t = [ ot OVI0 (VIG) = VI@) dado 2 s =l
X
Initially, suppose that sz dw |op(cosf)| < oo and that

/ dw op(cos6) = 0.
S2

Then, under that condition, the loss term vanishes /;,;; = 0 and we obtain

I'= Igain = fR3 dq fgz dw veo (8, 0)y/ J(9)/ I (q'). 8.1

By recovering the delta function involving the energy-momentum convervation laws,
we obtain another representation of /:

= [ [ s s+ = - N TDVT@.

Here g = g(p*. q"), s = g2+ 4,8 = g(p, p'™) = g(g". ¢'"), & = g(p™, q"),
and

~2
cosf = 2— -1,
by (2.10). We further claim that
2 __ 2 1 m m / _ 7
8 =8 — 5"+ a7 )Pyt 4qu— Pu—qu)- (8.2)
Let§ = gz + 4. Then (8.2) is equivalent to
2 ~2 1. 1 n i ’
8 =8 =355 " +a")(p,+qu)
1, | g
=58 -2- z(p +ag") (P, +qu)
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1. 1
= 38+ &+ 20" qu — (P + 4" W], + qw)-

Thus we prove (8.2) by showing that

1. 1
S8+ 20" qu = S (0" + 4" () + ) =0,

Expanding the left-hand side of this equation, we obtain

1 1 1 1
=Py = 1+ 2p"qu = 5Py = 54" P = 30" = 54" 4

By the result of the conservation laws p* + g#* = p'* + ¢'*, we have Prqu = p/uql/L
and p'*q, = P“‘I,&- Therefore, we obtain

1 1 1 1
—L+ P 4 = 5" P = 5P a4 = 5" 4 = 54" ap

which is equal to

1 1
—1+ ptg, — =(p" + 4" (), +q,) = -1+ p'q.+ =s =0.
2 w e 2

This finishes the proof of the claim (8.2).
By exchanging ¢ and ¢’, we have

1 d dp’ dq’ .
I= —Of —3\/J<q>f =5 | =gV I@)50 (3. 008D (p" + g — p — g™,
P IR q R PV JR3 4

where the angle 0’ is now defined as
2
cosf = 26:—2 -1,
and
=2 2 1 n m ’ ’
g8 =8 - 5(17 +4")(py +qu — P — 9.

We have the new argument in the delta function and § £ g* + 4.
We now define the functional i (p, q) as

def 1 dp’

. dq’ ..
ip. )= 5. =5 | . —5V7/@)30@ 08P " +q" - p* —q"),
pq° Jrd PR3 4

(8.3)
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so that we have
I = fR3i(p,q)v J(g)dq. (8.4)

We first translate (8.3) into an expression involving the total and relative momentum
variables, p’* + ¢'* and p’* — q'* respectively. Define u by u(x) = 0if x < 0 and
u(x) = 1ifx > 0.Let g’ = g(p*, ¢’*) and s’ = s(p’*, ¢'*). Then by the claim (7.5)
of [80], we have

0
) 1 e9 2

i(P,4) = —5 f dop™, q'") 502, 008W(p™ +q" — p* — "),
16pY%qY Jr4xpre 4

where

dO(p™, q") = dp™dg" u(p® + ¢ u(s' — H(s" — g% — HS(P™ +¢")(p), —q),).

Thus we have lifted to an integral over R* x R* from one over R? x R3.
Now we apply the change of variables p* = p'* 4+ ¢’* and g* = p'* — ¢'*. Then

0_-0
the Jacobian is 16. Since ¢’0 = £ 51—, we have

/

; __c 5 Mo (5. 0N8@ (gt — ph 4 Gt —7°+3°
ip.a)=—575 de(p”, "5 (8,098 (" = p" +q")exp | ————
P g7 JR4xR4 4

for some constant ¢’ > 0 (whose value can change from line to line), where
dO(p". q") = dp"dg" u(pO)u(=p" p, — HS(—p" b — 44, — D",

We now carry out 8™ (g#* — p* + g") to obtain

/

=0 0 0
. c e~ o~ —p +p -
l(p,q)z ﬂ/ d®(p”)so(g,9’)exp <M>,
P q° JRrR*

4

where the measure d©® (p") is now equal to

def

dO(p") = dp"u(PO)u(—p" p,, — HS(—p" b, — &> — DSG* (pp — qu)).
Since s = g2 + 4, we have

u(pHS(—p"p, —g* —4) = u(PHS(—p"p, —5)
_ 3 = VI + )
2P +s

=u(PH8((p°)* — 1pI* — )
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Then we carry out one integration using this delta function to obtain

) c dp o _ o
i(0.9) = 755 /R S B = 0 (= 0,050 . )

<—\/|I3|2+S+p0—q0)
X exp ) ,

where p° = /|p|? + 5. Using s = g* + 4 again, we have
—php,—d=5—4=¢">0
to guarantee that u(—p" p,, —4) = 1. Thus

/ pHuy

0 0 =
. e P’ —q N (e
i(p,q) = 35040 eXp< 7 )/R} 1305(17 (Pu —qu))so(g,0)e .

where p° = \/|p|2 + s and U* = (1, 0, 0, 0). We finish off our reduction by moving
to a new Lorentz frame. We consider a Lorentz transformation A which maps into the
center-of-momentum system as

def

Ay E A" (pu +qu) = (V5,0,0,0), B, = — A", (py —qu) = (0,0,0, g).

The explicit form of the matrix A was given p. 593 of [80], and also in [79]. More
precisely, we consider

P°+4° _pitar _ptar _ pitas

Vs s s s

i Ay A{l Af Aig

A =(A") = 0 (px@h (pxq)2  (pxq@)3 | > (8.5)

o o Ipxql  Ipxql  Ipxql
P’=4° _pi—q1 _pp-ap _p3i—gqs

g g g g

with the second row given by
_ 2lp xq]|

Ao =Al(p,q) = ==,

gv/s
and fori = 1, 2, 3 we have

2 (pilp® + 4" p qu) + 9ifq® + p°p"qu})

Ay=Al(pg) =
’ ’ g/51p % q|

Then, using this change of variables, we have

lm

dp dp P lu
/ P 5 5 (py — anio @ 00l ) = / _—IO’S(ﬁ“B,L)sAcf(gA,eA)e( ).
R3 P R3 p
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Note that ;—g is Lorentz invariant. Here p° = \/|p|2 + s and 55, go > 0 are

2 def

1 _ 1 -
gh =8 = APy — Aw) = &2+ VG V5),

where
sa = g% +4, (8.6)
and
2
cosf £25- 1. (8.7)
8A

— — 0 0 0 0
Also, U" is defined as U" = (p tq_ 2pxql o P ;q ) We switch to polar coordi-

NG gvs

nates in the form
dp = r’drsinydydy, = r(siny cose, sin sing, cos ).
Then we obtain

p¥B,, = grcosiy.

Then the integral i (p, g) is now equal to

) c pO _qO) 2 T ]
l(P,f])=—CXp< / d¢/ dyr sinyr
2p%° 4 0 0

00 r2dr (ﬁ“fu)
X ————48(grcosy)spo(ga,On)e .
/0 NI

We evaluate the last delta function at ¢ = 7 /2 to write i (p, g) as

/ 0 0
i(p.q) = - exp rF—q
' 2gp%g° 4

27 00 0 0
rdr op +4q° | |pxq]

X dd)/ sao(gn,0a)exp (—po + rcos¢ ).
/0 o s A A 45 25

By using the modified Bessel function of index zero given by (2.47) we have
= e (257)
2gp°¢" 4

rdr P0+qo Ip x ql >
e, ,0 £ 2 /2 I .

X[) r2 —{—sSAO(gA A)exp( 4./s d s) 0( 284/s "
(8.8)
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Now g > 0is given by

I =g2+%ﬁ(¢r2+s—ﬁ), (8.9)

with (8.6) and (8.7). So by (8.4) we obtain a new representation of our gain term

3.0
d dge 311 [ rdr
I = Iguin = ¢ 4 / - / sA0(gA,0n)
R 0

P 3q° g ViTts
0 0
+ X
xexp<—% r2+s) 10<|§g\/‘sf|r>, (8.10)

We recall that I,5s = 0. We will now find a different expression than [, which is
also equal to zero, that will provide suitable cancellation for the term in (8.10) when
we no longer assume that [, dw |o0(cos 0)| < oo and [ dw op(cos6) = 0.

To this end, we recall the definitions (8.9) and (8.7). This yields

2¢ P VWP Es =)
cosfp = — —

G @A)

(8.11)

using (8.9) above. Then we have

dga  Jsr

dr 22+
By differentiating cos 6 with respect to r, we have
d(cosbr)  d g8 —3/s(Vri+s—s)
dr  dr g

1 2 2 2_ 1 dg;
VS amn s — (8 Vst s = Tt

4
8A
s r @SS V) o
27Vt sgd gA 2/t +s
_ 2 2 e,
264 r2+s(_gA_(g BEARA ﬁ)))
sr (_Zgz)_ g fsr

- 2gi«/r2+s B g?\\/r2+s-

Therefore,

d(cosfp) g2 /sr

dr - g‘}\ 7'2+S'
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Since we have assumed that
1
/ d(cosBp)op(cosBp) =0,
-1

we further have

o0 2
/ drioo(cos 0p) =0,
0 gaVrt+s

ascosfp = 1 and — 1 correspond to » = 0 and » = oo respectively, by (8.11). Thus
we obtain

3.0
d dge 3 [ rdr gt PO+
—0e4/ — / ——sP(g)o0(cos O) - exp | — \/_ =0.
p R q’ g Jo rZ+s ga 4/s

Subtracting this zero integral from (8.10), we obtain

¢ P dq e=14° oo gy
I = —e# — SAO(gA,0n)
0

P g’ g rZ+s
0, ,0
P a5 lp x4l
x|exp| — re4s) I r
[ p( 4/s ) ° ( 2g4/s
0, .0 4
)
_exp<—p a ) sD(8)s 4]. (8.12)
4 sa®(ga)ga
This is equal to the original integral I = —Z (p) when the mean value of oy is zero.

We also note that (8.12) also holds for (2.30) even when the mean value of oy is not
zero. Suppose that [, dw |og(#)| < oo and that [, dw oo(f) = 27 co # 0. Define

o5 ©) = ap(0) — 11— 61](0050)/ ar 2 UO(”

Then, we have fi] 05 (6)d(cos @) = 0 vanishing on w € S2. Now, define

E%p)=1/ 2@ ()o§ OV @) (VI@) - VI(@)) dgdo.
R3xS?
Then, also using (2.30), we have

ORI

Ij1—e 0
o [ we@VT@ (VI - VI@)) M g,
R3 x§? €
(8.13)
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If cos® = 1, by Remark 2.1 and e.g. (2.11), (2.6) and (2.8) we have p* = p* and
g'* = g*. Thus, as € — 0, the difference term in (8.13) — 0 as /J(g) —+/J (¢’) has
a higher order cancellation and hence the integrand vanishes on the set cos ¢ = 1. By
the higher-order cancellation, an additional cutoff argument shows that the identity
(8.12) holds for the noncutoff kernel oq from (2.20).

8.2 First representation of &

We will now further split £ = o + 7. From (8.12) for simplicity we write

where

K def o rdr P
(p.q) = ﬁSAU(gA, A)
X[exp<_p°+q°) s(g)g* _exp<_p°+61° r2+g> IO(IPXqu)]
4 sa®(ga)gh 4/s 2g/s
Notice that both terms of the integral converge for large r > 1. We further split

04 0N sd(e)ed 04 0
eXp(_P +q> sP(g)g _exp<_P4j§q m)l(J(Ipqur)

4 sad(ga)gh 2g./s

(o ((2E9) (s (28 s
4 4s 28+/s sa®(ga)gh

0., 40 4
+exp<_P4-\;§q m)lo(qu'r)( sP(g)g _1>.

2g/s ) \sa®(ga)gn
This motivates the following splitting of = o + ¢ with

0

§0EC— K dge ™ / rdr sao(ga 6’A)—SCD(g)g4
PO Jrig® g Jo P T sa®(ga)gn

fon(232) on( ) ()

(8.14)

and

/
def £

¢ —C_ep40/ dq e / rdr sA0(gA,0n)
Sy R3 @ g Jo Smgs TEMT
P’ +4° ) ( p x4 ) s®(g)g*
X ex —1). (8.15)
P < 4S5 28/ sa®(gn)gh

@ Springer




20  Page 160 of 167 J.W. Jang, R.M. Strain

This completes the derivation of our first representation of  (p).

8.3 Derivation of an alternative representation of & (p)

For a fixed p € R3, we would like to have an alternative representation of (2.30):

i = [ ooV (VI ~VI0) dader = i, =l
X
(8.16)
Then exactly as previously we can derive (8.10) for the term /g4;,. We will now find
an alternative expression for ;g that will provide suitable cancellation for the term

in (8.10).
To this end, using the definition of I;,ss from (8.16) yields

Lioss 2/ dCI/ dw vy0(8,0)J(q). (8.17)
R3 S?

Since the gain term representation (8.1) results in (8.3) and (8.4), the loss term (8.17)
would yield

1055 Z/ iloss(P> q)dq,
R3

where

il0ss (P q) = P / J(q )§a (g,0)8D (p™ + g* — p* — '),
(8.18)

by following the same argument between (8.1) and (8.4). Note that we have exchanged
q and ¢’ variables in the procedure. Then we can easily see that the only difference
between (8.3) and (8.18) is the power on the term J(g'); i.e., the power on J(g’) in
i10ss (P, @) 1s twice of thatin i (p, g). Therefore, the same derivation results in the new
representation of the loss term similar to (8.8):

ilo.m(pv Q) = C; 0 exXp <p0 — qo)
8p°q 2

x/mlmcr(gzx Op) exp (—po—’—q0 r2+v> I()(Ip qur)
o VrZ+s ’ 2./s gV/s .
(8.19)

In particular we have

1.0
d dg e 29 [ rdr
Lipss = ¢ 2 / - / SAO'(gA7 On)
p R q° & Jo r2+s
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0., 0
X exp (—%\/ r2 + s> Iy <|I;i</§q| r) ) (8.20)

Subtracting this integral from (8.10), we obtain

/ c é dg e 14 /°° rdr (2n.60)
= —e — sao(ga, O
p° g’ g Jo VrZ+s

0, 0
x[exp (—%\/ﬂ —l—s) Iy (Ip * q'r)

284/
—exp P +d exp _p0+q0 r2+s) I Mr ]
4 2Vs gvs )
This is equal to the original integral I = —Z (p). The representation above also holds

when o does not have mean zero or does not have a bounded integral, as we discussed
in (8.13).
As in (3.3) and (3.4), we take the change of variables r +— y = % in [ above.

Then, we can write £ as follows

N ' dg e ©  yd
Py

g
SAU(gA’eA)/ d¢
p Jrq® g Jo Y241 0

x[exp(Zl —2I/y2+1+2jycosp) —exp(l — I/ y2 + 1 +jycos¢)],

(8.21)

where we use the notations (3.5) and (3.6). This completes the derivation.

9 Proofs of the pointwise estimates

In this subsection we give the proofs of Lemma 2.14, Lemma 2.15, and Lemma 2.16.

Proof of Lemma 2.14 The proof of (2.56) is direct, and (2.57) follows from (2.4) and
the Cauchy—Schwartz inequality. Then (2.59), (2.60) and (2.61) follow from (2.53).
For (2.62) notice that that

PP =19> (-9 -(p+9q
po_ 0: 0 0 = 0 0 S'p_ql
p°+q p’+q

Then (2.63) is automatic.

Now using (3.5) then equation (2.64) follows from (2.60). And (2.65) is automatic.
The proof of (2.66) requires some development and is from [40]. Now using (3.5) we
have

2
p_ o (P’ _(lpxdl 2" +4%%7 —4lp xql
4 2 16g2 '
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By the definition of g in (2.5), we have

(P° +q%%¢* —4lp x g
= (P° + 4" (=2 —2p"qu) — 4lp x qI
= Q+IpP +1g1* +2p°%") (2 +2p%° —2p - q) — 4Ip x qI?
=Q+1pP+1g1* +2p°%") (=2 — IpI* — 1g1* +2p°¢" + |p — q|) — 4lp x q*
=@2p°%")* — Q+1pP + g7 + @+ 1pl* +lg1* +2p°%")p — g — 4Ip x qI
=2p°%"* = Q+1pP +1g)* + P° + 4% p —q* — 4lp x g

We calculate that
2p°q"°)* —4lp x q> = 4+ 41plPlq* + 4lp|* + 4l — 4lp x qI?
=444(p-q)* +4Ip* +4iq°,
and
Q+IplP+1g* =4+ 1p|* +lqI* + 41p1* + 4lq1> + 2| pI*lq /.

Thus, using also (2.4), we have

2p%"%* = Q+1pP +1a)* + P° +4D%p — qI* — 4lp x qI?
=" +4"%p —q* —IpI* = lgI* +4(p - 9)* = 2Ip*Iq I
=+ % p — gl — UpP + 19 +4(p - 9)*
=" +4"%p —ql* = (pl* +1g* +2p - )Up* + 191> = 2p - @)
=P +4"%p—ql* —Ip+4qlPIlp —q)* =slp —ql*.
Therefore, we have (2.66). Then (2.67) follows from (2.66) and (2.56).

We will now prove (2.68). The upper bound of glz\ in (2.68) follows from (3.6) with
(2.56). The lower bound of gf\ in (2.68) follows from (3.24) and (2.56). O

Proof of Lemma 2.15 We will start with (2.81). From (2.47) and (2.77) we have

K, DI S [max exp(—Ivx2+ 1+ jx).
=X=

The maximum of the function £ (x) g V21 + jxoccursatx = 0,x = 1, or
X =Xxg= \/% where h'(xg) = 0. Note that h(xg) = —+/[2 — j2. Whenx = 1,
—J

we have
h(1) = =21 + j < =12 — j2.

Thus, we conclude (2.80) and (2.81).

Then (2.78) is a known integral that can be calculated exactly [42] as (2.82). Further
(2.83) is calculated during the proof of Corollary 2 in [40, Corollary 2, pp. 323]. In
particular we can obtain (2.83) from Igz(l, Jj) = 812J2(l, 7). m]
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Proof of Lemma 2.16 We remark that the proof of (2.84) follows from well known
pointwise estimates. Then (2.85) is a direct consequence of (2.57) and (2.58).
For (2.86), note that (2.11), [59, Proposition 2.7], or [57, pp.12 or pp.58] implies

2=+ 9.1)

and

sin? — & 9.2)
2 g

Then, since 6 € (0, %], we have g < g. Therefore,

@ <g? <28

This implies (2.86).
N
For (2.87), we first mention that % is clearly non-negative. On the other

saP(ga)gn
hand, using (2.70) we have

g <gn, and§ < sp.

Since ®(g) = Copg” and p € (—2.5, 2) for both (2.21) and (2.22), we have 4 — p > 0
and

se@gt st

4 4 =1
SAP(gAIEA SAgAi'O

The proof for (2.88) follows by (3.48) and (3.49).
For (2.90), we note that using (2.8) we have

—2+2p"q, =" + 4" P, +4q,) = P"+ ") (pu+q) = =2+ 2p"q,.
Similarly, also using (2.8) we have
-2 =2p™Mg" = (p"™ = ¢")(p), — q,) = P — ") (pu —q;,) = =2 —2p"q,,.

The proof that p’* p,, = g'*q,, is the same. This completes these proofs. O
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