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Abstract: Without assuming any functional or distributional structure, we select collections of
major factors embedded within response-versus-covariate (Re-Co) dynamics via selection criteria
[C1: confirmable] and [C2: irrepaceable], which are based on information theoretic measurements.
The two criteria are constructed based on the computing paradigm called Categorical Exploratory
Data Analysis (CEDA) and linked to Wiener–Granger causality. All the information theoretical
measurements, including conditional mutual information and entropy, are evaluated through the
contingency table platform, which primarily rests on the categorical nature within all involved
features of any data types: quantitative or qualitative. Our selection task identifies one chief collection,
together with several secondary collections of major factors of various orders underlying the targeted
Re-Co dynamics. Each selected collection is checked with algorithmically computed reliability against
the finite sample phenomenon, and so is each member’s major factor individually. The developments
of our selection protocol are illustrated in detail through two experimental examples: a simple one
and a complex one. We then apply this protocol on two data sets pertaining to two somewhat related
but distinct pitching dynamics of two pitch types: slider and fastball. In particular, we refer to a
specific Major League Baseball (MLB) pitcher and we consider data of multiple seasons.

Keywords: CEDA; conditional entropy; conditional mutual information; heterogeneity; informa-
tion gain

1. Introduction

Two news articles have recently been published on the topic of Major League Baseball
(MLB) pitchers’ performance being drastically empowered or caused by baseball’s spin
rate increases. One is a FiveThirtyEight article published in 2019 and titled “How Gerrit
Cole Went from So-So to Unbeatable?”, and the other is a 2021 New York Times article with
the title, “Once Again, MLB Faces a Crisis of Its Own Making”. The connection between
the two articles is the MLB pitcher Gerrit Cole. In fact, from the 2017 season to 2018 and
2019, his spin rate significantly increased, and this increase has been indicated as the cause
of his drastically improved performance. In fact, it is known that MLB pitchers have been
using various kinds of substances to enhance their grip on baseballs and consequently
improve their performance. The New York Times article discusses the MLB’s ban of Foreign
Substances—also called sticky substances—in June 2021, and confidently echoes that the
increase in spin rate has indeed immensely improved MLB pitchers’ performance, which is
seemingly unfair to all batters in MLB.

Have such cause-and-effect relationships been rigorously established based on MLB
databases, such as PITCH/x and Statcast? The answer is likely negative. In fact, if we take
a collection of pitches delivered by an MLB pitcher in a single season as a data set observed
from a pitcher-specific pitching dynamics with complexity [1,2], then one fundamental
problem called the Many System Problem (MSP) underlies both news articles. An MSP
can be concisely depicted using the following question: How can one rigorously study a
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collection of somewhat similar but different complex dynamics or systems? Indeed, no
such MSP has been well-studied and reported in the scientific literature yet.

A complex system can be intuitively characterized as a system composed of multiple
interacting constituent mechanisms that generate macroscopic collective behaviors of
temporal, spatial or functional structures. In other words, from all structural aspects, its
whole is greater than the sum of its parts. This characteristic should naturally proclaim
more discoveries to be found within each complex system in this Big Data era. Then, this
[more data]-[more discoveries] phenomenon ideally should mirror what was described
by Nobel laureate physicist P.W. Anderson [3] in his 1972 Science paper titled “More
is Different”.

Is this proclamation of more discoveries also true for MSPs in general? The answer
to this seemingly straightforward question is indeed complicated because of the hetero-
geneity of the involved complex systems. For example, the above two MLB-related MSPs’
temporal- and spatial-free functional complex systems are all governed by the same prin-
ciples, but they are all somehow heterogeneously distinct. Such heterogeneity naturally
induces multi-scale and hierarchical structures across all individual systems. Therefore,
the complications in the answer to the above question are tied to a fundamental issue:
How would such system heterogeneity impact the evaluation of key features pertaining
to the shared principles in a collective fashion? We study the MSP consisting of three
season-based systems in this paper, but defer the study of the MSP with many hundreds
of systems to a separate report. In other words, in this paper, we primarily focus on
computational developments for data-driven MSP study.

Our computational developments begin with treating a collection of complex sys-
tems as a meta-complex system with one categorical ID as one of its observable features.
By keeping this aspect of the meta-complex system in mind, we see that the computational
issue underlying the foundation of all MSPs can generically be stated as follows: How can
one coherently study a system’s dynamics characterized partly or entirely by categorical
features?

This fundamental computing issue is not classic, especially when the system under
study is too complex to afford an analytical description, such as the pitching dynamics of
an MLB pitcher. As such, the dynamics of interest are often depicted in terms of response-
versus-covariate (Re-Co) dynamics, in which the response variable might involve multiple
response features, not merely one, and the number of covariate features might be large.
The categorical features could be on the response side as well as on the covariate side.
Without an available analytic representation of such Re-Co dynamics, this fundamental
issue becomes especially critical in this Big Data era, since no model is expected to be
coherent within a big data setting. This fact is guaranteed by Anderson’s “More is Different”
phenomenon [3].

Specifically speaking, in this paper, we computationally develop a resolution to this
fundamental issue. Under the setting of imposing no assumed functional structure upon a
targeted Re-Co dynamics that characterizes an MSP under study, we construct a selection
protocol by employing information theoretic measures, such as conditional entropy and
mutual information, to identify one chief collection and several alternative collections of
major factors underlying the targeted Re-Co dynamics. Such a computational resolution in
the form of a collection of major factors aims to realistically discover constituent parts or
mechanisms pertaining to a complex system under study. Although this concept of major
factors seems intuitive, the authors are not aware of any available discovery protocols in
the literature. In fact, as will be seen below, the goal of discovering collections of major
factors induces rather interesting fundamental computational complexity.

In order to avoid confusion in names, we remark that our major factor of complex
dynamics is intrinsically distinct from the “factor” of the popular “factor analysis”, common
in the psychology literature. Factor analysis has no Re-Co dynamics, and its computations
rely entirely on Principle Component Analysis, which is primarily built on linearity and
normality assumptions [4]. The resultant factors cannot offer direct and straightforward
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interpretations. In contrast, our data-driven major factors have a clear meaning and
offer transparent interpretations, leading to the understanding of the complex systems
under study.

In sharp contrast, our major factor selection protocol is developed based on a newly
developed computational paradigm called Categorical Exploratory Data Analysis (CEDA) [5,6],
which works for all structured data types: continuous, discrete and categorical. In other words,
CEDA makes good use of the categorical nature contained in data types.

The rest of this paper is organized as follows. In Section 2, relevant background materi-
als are reviewed and discussed. In Section 3, information theoretic measures are discussed,
as well as our computational developments for the major factor selection protocol. They are
illustrated and motivated through two experimental systems, a simple one and a complex
one, with large simulated data sets. In Section 4, our selection protocol is applied to select
multiple collections of major factors of Gerrit Cole’s slider and fastball pitching dynamics
across the 2017, 2018 and 2019 seasons. Based on the computed collections of major factors
of various orders, we are able to make a conclusion regarding the roles of spin rate in Cole’s
slider and fastball pitching dynamics across the three MLB seasons.

2. Background

Baseball pitching dynamics is governed physically by the Magnus effect of aerody-
namics and biomechanically by pitchers’ idiosyncratic pitching gesture [7]. The Magnus
effect, a special version of Netwon’s second law of force, depicts how a spinning object
travels through a medium, such as air. Though this aerodynamic principle is, in general,
well-known in baseball pitching, its functional structures for each single pitch of one sin-
gle pitcher could vary in many ways. In addition to the already complicated details of
biomechanics exerted from pitching gesture, including horizontal (X−), vertical (Z−) and
pitcher-to-catcher (Y−) directional forces (or accelerations), starting speeds and releasing
point coordinates, the environmental conditions, such as wind speed and humidity in the
stadium and the surface conditions of the baseball, all need to be taken into account. Hence,
realistically building an analytical system of differential equations for the Magnus effect
is a rather difficult task. As such, a complex system of pitching dynamics is practically
impossible to acquire for each individual pitcher, and there are no grounds to pursue a
unified analytical system description or model for one pitcher across multiple seasons.
For this reason, this analytic direction and other model-based approaches are not pursued
or even included for comparison in this paper.

Before our methodological developments, we very briefly depict all features involved
in the common theme used in the MLB examples. The horizontal and vertical movements
are denoted by {p f xx, p f xz}, and horizontal (X−) and vertical (Z−) directional accelera-
tions denoted as {aX, aZ}. Both pairs are designated 2D response variables, respectively,
for the first and second phases of analysis. In contrast, the covariate features include
the following: the pitcher-to-catcher directional acceleration aY; spin direction (spinD);
spin rate (spinR); releasing point’s coordinates: x0, z0; three directional releasing speeds:
vX0, vY0, vZ0; and, lastly, pitcher name (pitN). All response and covariate features are
quantitative, except for the pitN, which is categorical.

As for the computational paradigm called Categorical Exploratory Data Analysis
(CEDA), it has been recently developed [5,6]. Its fundamental idea is stated as follows: let
all features’ natural categories assemble freely in order to shed light on the true pattern
information contained in data. Though the name EDA was coined by John Tukey [8],
the categorical nature-based CEDA with the above idea is fundamentally independent of
the data analysis approaches and methodologies in Tukey’s works on EDA.

The first step of CEDA is to categorize each response and covariate feature via its
histogram, which can be properly built via an effective algorithm developed in [9]. This
step is to reduce noise embraced by all measurements in order to reveal its intrinsic cat-
egorical structure. The second step employs the contingency table for all developments
involving information theoretic measures. It is used as a platform for coupling multiple
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categorized features together to form and define a new composite variable. This contin-
gency table platform also serves as a platform for visualizing and evaluating possibly
non-linear associations between any two variables. The two directional associations are
numerically evaluated via conditional (Shannon) entropy. By properly re-scaling with
respect to the corresponding marginal (Shannon) entropy, the mutual conditional entropy
(MCE) [10] is calculated. This association measure is the appropriate one when handling
categorical features.

The third step of CEDA is the focal point of this paper. To effectively depict this step
with simplicity, we consider that each complex (meta-)system’s dynamics is coherently
captured by a Re-Co association between possibly multiple response features, denoted by
Y , and many 1D covariate features, denoted by {Vk|k = 1, . . . , K}. The available structured
data set is an ensemble of vectors: (Y , V1, . . . , VK). Each component feature of the data
vector can be of any data type: continuous, discrete or categorical. All quantitative features
would be categorized in the first step of CEDA. Since there exists no risk of confusion
throughout this paper, all categorized features will retain their original notations.

In the second step of CEDA, the contingency tables would facilitate all marginal and
conditional entropy evaluations. We propose to compute the conditional entropies of Y
given all possible covariate feature combinations or feature sets, since features’ structural
categories are allowed to reassemble freely upon all these response-versus-covariate con-
tingency tables, without being subject to man-made constraints. As such, this collection
of all possible directional associations ideally should contain all vital associative patterns
that can indicate all constituent mechanisms underlying the designated Re-Co dynamics
of Y against {Vk|k = 1, . . . , K} within an MSP. However, this collection of directional
associations is a huge trove of information. It is likely too large to be properly processed
without an effective feature selection protocol.

Since each of its categories of categorized Y can be taken as a label, we can seem-
ingly treat the Re-Co dynamics of Y against {Vk|k = 1, . . . , K} as a classification problem.
There exists extensive literature on feature selection under a classification problem set-
ting [11,12] that employs information theoretic measures, such as mutual information and
other variant entropies [13,14]. For instance, various popular filter versions of feature
selection methods can generically be stated as means of finding an optimal feature subset
S∗ ⊆ {Vk|k = 1, . . . , K} such that S∗ achieves the optimal value with respect to various
pre-determined goal functions. These typically consist of one relevancy term and one
redundancy term [12,15]. The relevancy of feature subset S ⊆ {Vk|k = 1, . . . , K} is defined
through joint mutual information between feature subsets S and Y , denoted as I[S;Y ],
and cardinalities |S|, while the redundancy of a feature Vk is evaluated through marginal
mutual information of Vk and a selected feature subset S. The optimal feature subset
is meant to balance between relevancy and redundancy in order to achieve the goal of
minimizing the training time and maximizing the classification accuracy.

However, the goal of achieving classification accuracy is not equal to the goal of
achieving the understanding of complex dynamics as a whole by discovering all its con-
stituent parts. Furthermore, the concept of redundancy obviously misses the potential of
interacting effects of multiple marginally independent features that are indeed condition-
ally dependent given Y . This conditional dependency given Y is one major construct of
constituent parts or mechanisms embraced by a complex Re-Co dynamics. Therefore, it is
clear that we need goals that are different from mere classification, and we need to consider
the perspectives of discovering the true characteristics of a complex system.

In this paper, we attempt to identify all feature sets that correspondingly manifest all
constituent mechanisms of the targeted Re-Co dynamics. Each mechanism-specific feature
set is called a major factor. Our construction of a major factor selection protocol is designed
to achieve this goal with reliability. This is the chief computational contribution of this
study. We briefly elaborate on the concept of a major factor and our selection criteria here.

A major factor, say A∗, of Y is a subset of covariate features with an order being equal
to its cardinality |A∗|(= k). Intuitively speaking, an order-k major factor must contain
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the predictability of Y . Such predictability is visible upon a contingency table as the
exact platform displaying a (covariate-category)-versus-(response-category) framework.
For instance, let all categories of A∗ be arranged along the table’s row axis, and all categories
of Y along its column axis. The predictability can be seen on a row-by-row basis and
evaluated via row-wise Shannon entropy, which is specifically termed conditional entropy
(CE) of Y given a category of A∗ [13,14]. It must be, in general, much smaller than the
marginal Shannon entropy of Y calculated from the vector of column sums. In other words,
the overall conditional entropy of Y given A∗ must achieve a significant drop. How large
must a CE drop be in order to be claimed as significant? This seemingly simple issue
indeed is complicated by the sample size at hand. We develop an algorithm for the first
part of the necessary condition for A∗ to be declared as a major factor of Y with reliability.

The second part of the necessary condition is also obvious, but much more involved.
If A∗’s order k is greater than 1, then A∗ is required to also achieve the so-called “ecological
effect”. From the confirmation aspect, the ecological effect here specifically means that the
CE drop achieved by A∗ as a whole must be significantly larger than the sum of its chief
subset’s CE drop and many times its secondary subsets’ individual CE drops. Meanwhile,
from the underlying dynamics perspective, member features of A∗ must form a unique
and “irrepaceable” conditional dependence conditioning on Y . As we will demonstrate
in the next section, this ecological effect indeed can be measured by feature members’
“conditional mutual information” given Y minus its marginal one. The third part of the
necessary condition is that any identified major factor A∗ can couple with other covariate
features to become a new higher-order major factor if its reliability check holds.

By satisfying the above three parts of the necessary conditions, if an identified major
factor A∗ is also chronologically preceding the response variable Y , then A∗ is basically
fulfilling the two components of Wiener–Granger causality mentioned in C. W. J. Granger’s
2003 Nobel Lecture [16]:

(1) the cause occurs before the effect; and
(2) the cause contains information about the effect that is unique, and is in no other variable.

This simple and concise concept of Wiener–Granger causality has been widely used
in many scientific areas beyond economics, such as physiology [17], neuroscience [18]
and meteorology [19], to name just a few. In the physics literature, the popular concept
of information flow is closely linked to “causality”, when two systems’ dynamics are
represented via two or two sets of time series, by using another entropy measure called
transfer entropy, developed in [20]. This linkage has been popularly explored and used [21],
and their equivalent relation has also been established [22,23]. Outside of causality, various
definitions of entropy are also created and employed within many topics in physics—
for instance, the intrinsic predictability of a time series concerning how to predict future
values [24].

In this paper, we make use of information theoretical measures, but refrain from
exploring causality. On the one hand, our computational developments aim at accommo-
dating a universal setting whereby the response variable Y is simply represented by a
completely unknown global function of multiple unknown mechanisms constituted by ma-
jor factors of various orders. In other words, Y and all covariate features {Vk|k = 1, . . . , K}
are not necessarily in chronological order. Without assuming any man-made structures,
our focal issue of discovering major factors of various orders fundamentally does not align
well with Wiener–Granger causality based on modeling, mathematical logic, graph theory,
Bayesian probability, etc. [25].

On the other hand, the information theoretic measures, such as mutual information
and conditional entropy, in fact match the data’s categorical nature well and have played
key roles along CEDA developments from its beginning [5,6,10]. In the MLB example, we
do not consider evolutions of pitching dynamics along the temporal axis here.
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3. Methods

In this section, we first briefly review some popular concepts of information theoretic
measures used in this study. Then, we illustrate our data-driven computational develop-
ments for our CEDA-based selection protocol for major factors. Such CEDA developments
rely on the categorical nature of all involved features: response and covariate. We empha-
size once more that the response variable Y possibly involves multiple features of any data
types: continuous, discrete or categorical or their combination. If Y involves continuous
or discrete features, each feature is categorized with respect to its own histograms [9].
For expositional simplicity and without concerns of notational ambiguity, we still use Y to
denote its categorized version. All covariate features, denoted as Vk with k = 1, . . . , K, are
either categorical or categorized 1D covariate features.

Here, we also make use of capital letters A or B to denote different subsets of covariate
features when there is no need to specify their feature memberships. Based on the cate-
gorical nature of all the features, Y , A and B can be treated as 1D composite categorical
variables with each occupied hypercube as a category. From the perspective of a 1D com-
posite categorical variable, the information of original neighboring systems of categorized
features is not entirely lost.

Any pair of 1D categorical features defines a contingency table, as do pairs of cate-
gorical variables such as (Y , A), (Y , B) and (A, B). Once a contingency table is available,
information theoretic measurements are natural tools for discovering associative patterns.
Take (Y , A) as an example. Let all categories of Y be arranged along the column axis, while
all categories of A are arranged along the row axis. Then, the resultant contingency table,
denoted as < Y , A >, is constructed as a rectangle array of cell counts. If we apply suitable
permutations on the column and row axes, by aggregating unoccupied zero cells as much
as possible, associative patterns and relations between Y and A become graphically visible.
All information theoretic measurements used here are invariant with respect to row and
column permutations. Further, even though the size of the contingency table can be very
large, we still can visualize the global and large-scale pattern formations contained in
< Y , A > if we tune the zooming.

The aforementioned associative patterns in fact can be numerically evaluated via
various versions of conditional entropies (CE)s by basically treating < Y , A > as a 2D
histogram of bivariate (Y , A). Given a column, say Y = y, we define a discrete conditional
variable. Its Shannon entropy is calculated on this column’s vector of proportions, i.e., cell
counts divided by its column sum, and is denoted as H[A|Y = y]. Across all columns,
we calculate the weighted sum of H[A|Y = y] with respect to the weighting scheme
of column-sum proportions. This is the overall or expected conditional entropy (CE)
denoted as H[A|Y ]. Likewise, along the row axis, each row of < Y , A >, say A = a,
defines a conditional random variable with a CE denoted H[Y|A = a]. Then, we calculate
the expected CE H[Y|A] as a properly weighted sum of the collection of row-wise CEs
{H[Y|A = a]}. The column-wise and row-wise marginal entropies are denoted by H[Y ]
and H[A], respectively.

The intuitive meaning of H[A|Y ] and H[Y|A] is visible through their contingency
tables. This CE H[Y|A] conveys the amount of expected remaining uncertainty in Y
after knowing A [13]. Conversely, by knowing Y , the CE H[A|Y ] conveys the amount of
remaining uncertainty in A. In other words, the two conditional entropy drops, i.e., the
differences H[Y]− H[Y|A] and H[A]− H[A|Y ] indicate the amount of information shared
between A and Y (see also the review paper [18]):

H[Y ]− H[Y|A] = H[A]− H[A|Y ]
= H[A] + H[Y]− H[A,Y ]
= I[Y ; A].
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where H[A,Y ] is the joint Shannon entropy of bivariate variable (Y , A), while I[Y ; A] is
the mutual information between Y and A. It is worth emphasizing the fact that I[Y ; A] is
the CE drop of A from the CE of Y .

Next, we consider the CE drop of bivariate (A, B) from the CE of Y . Their conditional
mutual information given Y is calculated as:

I[A; B|Y ] = H[A|Y ] + H[B|Y ]− H[(A, B)|Y ].

Then, we can decompose the CE drop of (A, B) from the CE of Y into the following
two key components: (1) the sum of the individual CE drops of A and B and (2) the
difference in the conditional and marginal mutual information of A and B:

H[Y ]− H[Y|(A, B)] = H[(A, B)]− H[(A, B)|Y ];
= H[A] + H[B]− I[A; B]− {H[A|Y ] + H[B|Y ]− I[A; B|Y ]};
= {H[Y ]− H[Y|A] + H[Y ]− H[Y|B]}+ {I[A; B|Y ]− I[A; B]}.

This simple difference {I[A; B|Y ] − I[A; B]} indeed conveys the essence of inter-
pretable meaning of conditional mutual information and plays a key role in our selection
protocol for major factors. We first consider the case of A and B being marginally stochas-
tically independent, in which case the marginal mutual information I[A; B] = 0. Then,
the positivity of I[A; B|Y ] indicates that A and B obtain some degree of dependency under
the constraint posed by the values of Y . The larger I[A; B|Y ] is, the higher the degree
of conditional dependency of A and B is. A high degree of conditional dependency of
A and B given Y can occur via two scenarios: either the union A

⋃
B forms an essential

constituent mechanism, or so-called major factor, within the dynamics of Y , or A and B
indeed work as two separate mechanisms within the dynamics of Y . The former scenario
requires a higher degree of conditional dependency than the latter one does.

The exact same interpretation is valid if the difference {I[A; B|Y ]− I[A; B]} is signifi-
cantly larger than zero even when the pair A and B are marginally stochastically dependent.
This positivity of I[A; B|Y ]− I[A; B] acts as the so-called “ecological effect”: the whole is
larger than the sum of its parts. The implications of such ecological effects are particularly
essential in this paper because we make use of the process of identifying a vital collection
of major factors of Y as an avenue for understanding the mechanisms underlying Y .

On the other hand, this difference I[(A, B)|Y ]− I[A; B] could be nearly zero or even
negative when A and B are highly associated. For example, A = C

⋃
D and B = C

⋃
E,

where {C, D, E} are mutually stochastically independent. For example, let Y = G(A, B)
with G(.) defined by an “additive operation” acting on two separated “multiplicative
operations” among member features of A and B, respectively. Then, we have the following:

I[A; B] = H[C]

I[A; B|Y ] = H[Y , A] + H[Y , B]− H[Y ]− H[Y , A, B]

The negative sign of I[(A, B)|Y ]− I[A; B] is very likely if C plays an overwhelmingly
more dominant role than D and E do in Y , since I[A; B|Y ] is around zero. In this case,
at most, either A or B is a candidate for the major factor of Y , but not both. This choice of
major factor is a conservative means of decision-making.

However, as will be described in the subsection after the next one, it is realistic that
Y = G(A, B, . . .) with G(.) being a rather complicated structural function of many other
feature sets beyond A and B. When encountering a negative sign of I[(A, B)|Y ]− I[A; B]
and knowing A and B being rather distinct, we would still adopt the above conservative
decision-making in determining whether either A or B is a potential candidate for the
major factor. This decision-making is meant to avoid redundant complexity along the
avenue of understanding the dynamics of Y . It is not equivalent to a declaration that both
A and B cannot be a major factor simultaneously in theory.
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With the above concepts of CE, CE drop and their relations with conditional mutual
information, we next turn to a description of the criteria underlying our selection protocol.
The task of understanding Y via {V1, . . . , VK} is defined by finding a collection of major
factors of Y , denoted as {A∗m|m = 1, 2, . . . , M}, such that each A∗m individually is “con-
firmable” and “irrepaceable” regarding information about Y . Let the cardinality of A∗m
be denoted as |A∗m|, so that A∗m is an order-|A∗m| major factor. Below, we define the two
criteria, “confirmable” and ”irrepaceable”, for a feature set A to be a major factor of Y :

[C1: confirmable ]: A feature set A is confirmable if a feature set Ã is obtained by substi-
tuting any feature member of A with a feature that is completely independent of Y
and A; we have I[Y ; A], which is significantly larger than I[Y ; Ã].

[C2: irrepaceable ]: A feature subset A is replaceable if I[Y ; A] ≤ I[Y ; A1] + I[Y ; A2] for
any compositions of A, i.e., A = A1

⋃
A2 and A1

⋂
A2 = ∅. For A to be considered

irreplaceable, we require that A is not replaceable and simultaneously satisfies the
following two extra conditions: (a) its CE drop is larger than the sum of the top-
ranked CE drop and at least |A|-times its complementary feature subset’s CE drop;
(b) the candidate A joins with any already identified major factor A∗m, and their CE
must achieve I[Y ; A

⋃
A∗m] ≥ I[Y ; A] + I[Y ; A∗m].

The criterion [C1: confirmable] is mainly used as a reliability check. It would be carried
out via two algorithms developed later in this section. As for criterion [C2: irrepaceable],
we elaborate as follows. The condition (a) ensures that some kind of structural dependency
among all subsets of A is embraced under the constraints imposed by Y , not merely the
occurrence of ecological effects. This condition indeed allows the following case to happen:
A∗m ⊂ A∗m′ for (m, m′) with |A∗m| < |A∗m′ | and A∗m′ − A∗m = B in the sense that B is the
complementary of A∗m in A∗m′ . This selection of A∗m′ is realistic only when the CE drop
of A∗m′ minus the CE drop of A∗m is many times larger than B’s CE drop. In other words,
A∗m and B have to form some “strong” bonds under the conditioning of Y in order to
jointly become a higher-order major factor. In summary, these two criteria are designed to
drastically reduce, or even avoid, the possibility of overestimating the significance of any
candidate features and feature sets.

For the convenience of checking this condition, we routinely calculate and report the
CE drop of A minus the top-ranked CE drop of its feature subsets and call this CE drop
difference the “successive CE drop”. This quantity of “successive CE drop” is calculated
and reported in tables under the name “SCE drop” for distinguishing with a CE drop
referred to a feature set when developing our selection protocol throughout this paper.

The condition (b) again ensures the ecological effect among identified major factors.
It is obvious but worth mentioning the difference between the conditions (a) and (b).
Condition (a) sets a very high bar for building up any high-order major factors, such as
order-3 or higher, while condition (b) simply requires the fulfilment of the ecological effect
for any two major factors to coexist. In other words, there still exists potential for the
union of two identified major factors to become a high-order major factor. However, the
requirement via condition (a) is rather difficult to fulfil.

3.1. A Simple Illustrative Example for a Single System

In this subsection, we illustrate how to use the two criteria [C1: confirmable] and
[C2:irrepaceable] for selecting major factors underlying a designated response variable Y .
We begin with a rather simple example, with Y = Y being a 1D feature Y specified by the
following analytic structure:

Y = V1 + sin(2π(V2 + V3)) + ε,

where the continuous response variable Y is defined by an additive operation acting on
two mechanisms respectively specified by two major factors: {V1} and {V2, V3}, and a
normal noise ε ∼ 1

10 N(0, 1) [14]. There are 10 covariate features, denoted by {V1, . . . , V10}.
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They are mutually independent and identically distributed according to Uni f orm[0, 1].
The simulated data set is an ensemble of one million (106) of 11D vectors of (Y, V1, . . . , V10).
After each variable has been categorized with respect to its own histogram with 10 uniform
bins, we correspondingly retain their notations for expositional simplicity.

We illustrate the identifications of these two major effects and their ecological effect
in terms of CEs and CE drops. For this goal, we first calculate the CEs for all possible
210(= 1024) feature sets, on which our decision-making is based. However, due to the large
size of the resulting file, we only report two tables of CEs and successive CE drops (SCEs):
(1) Table 1, with the 10 top-ranked CEs; (2) Table 2, with the 10 top-ranked SCE drops
of feature combinations across one-feature through four-feature settings. As a reminder,
an SCE drop of a feature set is calculated as the amount of CE drop from the lowest CEs
among all its possible feature subsets. Such an SCE drop is convenient for determining
the amount of conditional mutual information when identifying potential candidates for
major factors. The CE of Y, or the so-called 0-feature CE, is calculated as being equal
to 2.0077. The observed CE-related patterns are listed below to motivate our selection
protocol. A flowchart of this protocol will be given in the next subsection.

Table 1. Ten top-ranked CEs of feature sets across 1-feature to 4-feature settings. Y = V1 +

sin(2π(V2 + V3)) +
1
10 N(0, 1). CE of Y is 2.00773.

1-Feature CE 2-Feature CE 3-Feature CE 4-Feature CE

V1 1.63636 V1_V9 1.63607 V1_V2_V3 1.07110 V1_V2_V3_V8 1.05480
V2 2.00768 V1_V8 1.63609 V1_V3_V9 1.63357 V1_V2_V3_V9 1.05483
V9 2.00768 V1_V4 1.63610 V1_V2_V9 1.63359 V1_V2_V3_V4 1.05487
V4 2.00769 V1_V7 1.63610 V1_V9_V10 1.63362 V1_V2_V3_V10 1.05488
V5 2.00769 V1_V2 1.63610 V1_V3_V8 1.63363 V1_V2_V3_V6 1.05495
V8 2.00769 V1_V10 1.63611 V1_V4_V7 1.63363 V1_V2_V3_V5 1.05496
V7 2.00769 V1_V5 1.63611 V1_V5_V7 1.63363 V1_V2_V3_V7 1.05504
V10 2.00770 V1_V3 1.63612 V1_V4_V5 1.63364 V1_V4_V7_V9 1.61027
V6 2.00770 V1_V6 1.63612 V1_V2_V8 1.63364 V1_V5_V9_V10 1.61028
V3 2.00770 V2_V3 1.71415 V1_V7_V9 1.63365 V1_V3_V8_V9 1.61028

Table 2. Ten top-ranked “’successive CE drops” of feature sets across 1-feature to 4-feature settings.
Y = V1 + sin(2π(V2 + V3)) +

1
10 N(0, 1). CE of Y is 2.00773.

1-Feature SCE-Drop 2-Feature SCE-Drop 3-Feature SCE-Drop 4-Feature SCE-Drop

V1 0.371372 V2_V3 0.2935 V1_V2_V3 0.5650 V5_V7_V8_V10 0.0387
V2 0.000051 V5_V10 0.0004 V2_V4_V9 0.0043 V4_V8_V9_V10 0.0386
V9 0.000048 V3_V4 0.0004 V8_V9_V10 0.0043 V3_V4_V5_V9 0.0385
V4 0.000040 V3_V9 0.0004 V3_V4_V5 0.0043 V3_V6_V8_V9 0.0385
V5 0.000040 V8_V10 0.0004 V4_V9_V10 0.0043 V3_V4_V8_V10 0.0385
V8 0.000038 V7_V10 0.0004 V3_V4_V6 0.0043 V3_V5_V8_V9 0.0385
V7 0.000036 V4_V5 0.0004 V5_V9_V10 0.0043 V4_V5_V8_V9 0.0384
V10 0.000035 V5_V7 0.0004 V7_V8_V10 0.0043 V2_V4_V6_V7 0.0384
V6 0.000032 V2_V9 0.0004 V5_V7_V10 0.0043 V3_V5_V6_V7 0.0384
V3 0.000027 V8_V9 0.0004 V6_V8_V9 0.0043 V7_V8_V9_V10 0.0384

Selection of Major Factors in a Simple System

1 Based on the one-feature settings in Tables 1 and 2, V1 achieves the lowest CE of 1.6364
and the highest CE drop of 0.3703 (= 2.0077− 1.6364), while the rest of the features,
V2 through V10, have basically zero CE drops. It is important to note that V2 and V3
are jointly, but not individually, involved in Y. These observations confirm that V1 is a
candidate for an order-1 major factor of Y with high potential. It satisfies the criterion
[C1: confirmable], as seen in panel (A) of Figure 1, built based on Algorithm 1, which
is given in the next subsection.

2 With regard to the two-feature setting, V1_V9 achieve the lowest CE of 1.63607 with
a nearly zero SCE drop from V1. Hence, it is replaceable, and so are all the feature
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pairs: V1_Vk with k = 2, . . . , 8, 10. As seen in panel (B) of Figure 1, indeed, their CEs
can be achieved by coupling V1 with a random noise feature. Thus, they fail the test
of criterion [C1: confirmable] for order-2 major factors. These observations indeed
support V1 as a candidate for an order-1 major factor of Y.
In contrast, the feature pair V2_V3 has the highest SCE drop from the minimum
CEs of V2 and V3: 0.2935 (= 2.0077− 1.7142). This value is primarily due to the
conditional mutual information, I[V2, V3|Y]. A direct evaluation of I[V2, V3)|Y] via
H(V2|Y) + H(V3|Y) − H(V2V3|Y) = 2.3025 + 2.3025 − 4.3115 = 0.2935, which is
many times the CE drops of V2 and V3 . Condition (a) of criterion [C2: irrepaceable]
is fulfilled. Moreover, this feature pair passes the [C1: confirmable] test as, seen in
panel (C) of Figure 1. These facts confirm V2_V3 as a potential candidate for an order-2
major factor of Y.

3 In the three-feature setting, the triplet V1_V2_V3 simultaneously achieves the lowest
CE of 1.0711, and the highest SCE-drop: 0.5653. This triplet is confirmable, as seen
in panel (D) of Figure 1. Further, analytic and numeric relationships among the CE
drops of V1, V2_V3 and V1_V2_V3 are given as follows:

{H[Y]− H[Y|(V1, V2, V3)]} − {H[Y]− H[Y|V1]} − {H[Y]− H[Y|(V2, V3)]}
= I[V1; (V2, V3)|Y]− I[V1; (V2, V3)];

= I[V1; (V2, V3)|Y] = 0.2848.

where the marginal mutual information I[V1; (V2, V3)] of two mutually independent
variables, V1 and (V2, V3), is zero. Therefore, the extra CE drop is exactly equal to
the conditional mutual information I[V1; (V2, V3)|Y]. Thus, condition (b) of criterion
[C2: irreplaceable] is fulfilled. In other words, they can simultaneously be declared
as two identified major factors: V1 and (V2, V3). Moreover, we also conclude that,
with respect to condition (a), the triplet V1_V2_V3 is not an order-3 major factor
because its conditional mutual information I[V1; (V2, V3)|Y] is far from being “many
times” the minimum CE drops of V1 and V2_V3.

4 Considering the four-feature settings, the quartets constructed by coupling V1_V2_V3
with Vk with k = 4, . . . , 10 achieve the lowest CEs, with rather uniform SCE drops
of around 0.0162. Their CEs can be achieved by coupling V1_V2_V3 with a random
noise feature; see the quartet V1_V2_V3_V8 in panel (E) of Figure 1. This fact indicates
that none of Vk with k = 4, . . . , 10 can couple with triplet {V1_V2_V3} to produce
detectable effects on Y.
On the other hand, the largest SCE drop of 0.0387 is achieved by a quartet of knowingly
random features: V5_V7_V8_V10. In fact, any quartets of {Vk|k = 4, . . . , 10} achieve
nearly the same CE drops. By using Algorithm 1, we show that the CEs of all these
quartets can be achieved by replacing any one of the four features with a random
noise feature. Therefore, they are definitely not potential major factors. Such CE drops
are clearly due to the finite sample phenomenon.

5 Considering the five-feature through nine-feature settings, considerations similar to
those of the four-feature setting hold. All CE drops are confirmed as being attributed
to randomness and small row-sums.
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Figure 1. [C 1: confirmable] testings in the simple experiment: (A) V∗1 ; (B) V1_V∗9 ; (C) V2_V∗3 ; (D) V1_V2_V∗3 ;
(E) V1_V2_V3_V∗8 ; (F) V5_V7_V∗8 _V10. Each red dotted line indicates the conditional entropy given the feature set, and the
histogram is the conditional entropies of samples generated with the ∗-marked feature being replaced by a random
noise feature.

Based on the results from the above five feature settings, we declare a collection of
major factors, {V1, (V2, V3)}, underlying the dynamics of Y. It is necessary to note that
one order-1 and one order-2 major factors are declared simultaneously, not individually,
because of condition (b) of criterion [C2: irreplaceable]. After declaring a collection of
major factors, the understanding of Y = Y should be carried out through contingency
tables of individual major factors, as well as their union against the Y.

It is worth emphasizing here that the essential check via Algorithm 1, as will be given
in the next subsection, safeguards the reliability of all information theoretic measures used
in our selection protocol against the finite sample phenomenon in the contingency table
construction, which acts as the “curse of dimensionality” in distribution estimation. As a
final remark, we also report that popular statistical feature selection approaches, such
as AIC, BIC and MDL, which rely on structural and distributional assumptions, such as
linearity, all fail even in this simple experiment.

3.2. Structural Formation and Major Factors in Complex Systems

In this subsection, we postulate a generic structural formation for settings of one single
system as well as for a collection of systems. From each single complex system, a data
point is measured and collected in a L + KD vector format. Let the first L components be
measurements or categories of the response features denoted as Y = (Y1, . . . , YL)

′, and the
rest of the K components are measurements or categories of K one-dimensional covariate
features denoted as {V1, . . . , VK}. It is essential to note that one covariate feature, say VK, is
the categorical feature of system labels or IDs.
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An unspecified complex structural relation between Y and {V1, . . . , VK} consists of
a collection of M unknown constituent mechanisms, {Fm{A∗m}|m = 1, . . . , M}, in the
following fashion:

Y =


Y1
Y2
...

YL

 ∼= G(F1{A∗1},F2{A∗2}, . . .FM{A∗M}) + ε. (1)

Here, we do not have any a priori knowledge or assumptions of M, functional forms
of Fm{·}, the random noise ε or the governing structural function G(·). We only focus
on identifying the feature memberships of each A∗m(⊂ {V1, . . . ., VK}) with m = 1, . . . , M.
By acquiring these memberships, the layouts or patterns of constituent mechanisms within
the dynamics underlying Y are supposed to be visible and explainable through the contin-
gency tables of A∗m − vs−Y and

⋃
m∈S A∗m − vs−Y .

Therefore, our computational task can be simply described as discovering the col-
lection of major factors {A∗m|m = 1, . . . , M}. This computational task primarily relies on
information theoretic measures, reviewed in the previous subsection.

Next, we develop an algorithm, Algorithm 1, as a tool for reliability checking against
the finite sample phenomenon and for the testing of criterion [C1: confirmable]. By perform-
ing both checking and testing upon a candidate feature set via Algorithm 1, we simulate
the distribution of conditional entropies by substituting a member of this feature set by a
random noise feature that is supposed to be stochastically independent of all response and
covariate features. The idea of this algorithm is given as follows. Let a candidate feature set
be A = B

⋃{Vk} with the 1D covariate feature Vk having h categories. To substitute Vk by a
random noise feature, say ξ, we expand each row of the contingency table of B− vs−Y
into χ rows. This expansion is done by redistributing each cell count of any targeted row
via multinomial distribution with equal probabilities 1/χ. Then, the Shannon entropy is
calculated upon each of χ newly created rows.

By performing such entropy calculations in the above row-by-row fashion, the con-
ditional entropy is calculated for A′ = B

⋃{ξ}. We repeat this process many times and
then construct a histogram of conditional entropies, such as the histograms reported in
Figure 1. For instance, by applying Algorithm 1, it is clear that V1 and (V2, V3) are major
effects, while (V1, V9) and (V1, V2, V3, V8) are not, as in the previous subsection.

Algorithm 1 Simulate a contingency table with adding a random noise feature.
Input: The number of categories of a random noise feature is χ, and the

contingency table CT0 of size p× q, where p is the number of outcomes of
the feature set and q is the number of category of the response variable Y

Output: A contingency table with adding a random noise, CT1 of size pχ× q
1 for each row in CT0 do
2 Initial a χ by q temporary table CT2 with all cell values being 0.
3 for each nonzero cell of the row do
4 Distribute the value of this cell into the corresponding column by the

uniform multinomial distribution.
5 Insert CT2 into CT1.

At the end of this subsection, we present a flowchart (Figure 2) of our selection protocol
for major factors. This protocol will be used throughout the entire paper.
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the conditional entropy (CE). 

 For each k, calculate the CEs of each k-tuple feature set. 
 A CE is the amount of uncertainty not explained by the feature set.  
 For each k, the top ranked k-tuples’ CEs are potential candidates to explain the 

response, while the top ranked k-tuples’ successive CE-drops are potential candidates 
of major factors. 

Check potential candidate 
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criterions for major factors. 
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explain the response. 
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[C1: confirmable] checks whether a potential candidate feature set contains any redundant 
features or not.   
[C2: unreplaceable] checks whether a potential candidate feature set offers unique 
information of the response variable that is not in no other potential candidate feature sets.  

A low order major factor provides concise information of the response, while a high order 
one provides delicate information. Multiple major factors jointly provide vital information. 

Each major factor provides visible and explainable patterns of its association with the 
response variable through a contingency table, so does an union of multiple major factors.  

Figure 2. Flowchart of CEDA-based selection protocol for major factors.

3.3. A Complex Illustrative Example for One System

In this subsection, we consider another illustrative example with only eight covariate
features, but having a much more complex analytic structure than the previously discussed
simple example. Again, the response variable Y = Y is still single-dimensional, i.e., L = 1.
The goal of this illustrative example is to further demonstrate our feature selection protocol
via the use of CE and CE drops when discovering high-order major factors. The complex
analytic structure of Y is given as follows:

Y = V2 + 2V1V7 + sin(2π(V3 + V6)) + 6V1V3V6 + sin(2π(V1 + V6 + V7 + V8)) + ε,

where V1 through V8 are mutually independently Uni f orm[0, 1] distributed, and a normal
noise ε ∼ 1

10 N(0, 1). The V4 and V5 play the role of pure random noises with respect to Y.
With Algorithm 1, there is no need to know this fact in our computational protocol.

There are 5(= M) major factors of Y. They are: (1) {V2}(= A∗1); (2) {V1, V7}(= A∗2);
(3) {V3, V6}(= A∗3); (4) {V1, V3, V6}(= A∗4) and (5) {V1, V6, V7, V8}(= A∗5). The members
of major factors A∗2 and A∗3 overlap with major factors A∗4 and A∗5 . Such overlapping
characteristics create the intended complexity contained in this example.

Again, we simulate one million 9D continuous data vectors. The one million values
of Y are then categorized into 18 categories indexed as 1 through 18. In this experimental
example, we compute conditional entropies (CE) for all possible combinations of eight
features and their SCE drops. In Tables 3 and 4 , we respectively report the eight top-ranked
CEs and SCE drops across one-feature to five-feature settings. The CE of Y is 1.9945 as the
0-feature CE. All computed patterns via our selection protocol are based on all possible
feature combinations and summarized below in a step-by-step fashion:

Selection for Major Factors in a Complex System

1 Based on the one-feature setting in Tables 3 and 4, the one-feature CEs of V4 and V5,
as expected, are very close to the CE of Y. In contrast, the four features V1, V2, V3 and
V6 have sizeable CE drops, so they are tentatively taken as potential candidates for
order-1 major factors and await further confirmation. The remaining two features, V7
and V8, seem less likely to be order-1 major factors. Though their CE drops are small,
there are many folds of CEs of V4 and V5. All individual CE drops interestingly reflect
their degrees of involvement in Y.

2 In the two-feature setting, both feature pairs, (V3, V6) and (V1, V7), pass their tests
for criterion [C1: confirmable] when applying Algorithm 1. The feature pair (V3, V6)
achieves the lowest CE of 1.8543, which is far below the range of the simulated CE
distribution of (V3, ξ), with mean 1.9666 and sd 2.534020 × 10−5. The CE of feature
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pair (V1, V7) is ranked third, with a value of 1.8812, which is also far below the range
of the simulated CE distribution of (V1, ξ), with mean 1.9400 and sd 2.4143 × 10−5.
The feature pair (V3, V6) also achieves the largest CE drop, 0.1402(= 1.9945− 1.8543),
which is much larger than the sum of their individual CE drops, 0.0652(= 0.0327 +
0.0325). This fact implies that the feature pair V3_V6 is likely an order-2 major factor
due to their large conditional mutual information I[(V3, V6)|Y]. In order to further
satisfy the compositional components of the criterion [C2: irreplaceable], we do not
declare either V3 or V6 as order-1 major factors. Via a similar argument, (V1, V7) is also
a potential candidate for an order-2 major factor when both V1 and V7 are declared
not order-1 major factors.
In contrast, all the other feature pairs are not major factors primarily because they
fail to satisfy criterion [C2: irreplaceable]. For example, (V1, V2) achieves the second-
highest CE with an SCE drop of 0.1268, which turns out to be very close to the sum of
their individual CE drops: 0.1188. Therefore, the feature pair (V1, V2) is not a major
factor. Based on this line of reasoning, our feature selection protocol suggests that
(V3, V6) and (V1, V7) are the only potential candidates for order-2 major factors.

3 With regard to the three-feature setting, using Algorithm 1, the triplet feature (V1, V3, V6)
passes the test of criterion [C1: confirmable] by having a CE of 1.6042, which is far beyond
the range of the simulated CE distribution of (V1, V3, ξ) with mean 1.9007 and sd 6.825321
× 10−5. It achieves an SCE drop of 0.3903. Thus, its CE drop is much larger than the
sum of the CE drops of pairs (V3, V6) and V1, 0.1941 = 0.1402 + 0.0539. In other words,
their conditional mutual information I[{V1}, {V3_V6}|Y] = 0.3354(= 0.3903− 0.0539)
is many times the individual CE drop of V1: 0.0539. Condition (a) of criterion [C2:
irreplaceable] is fulfilled.
In comparison, it is also essential to observe that the SCE drop of (V2, V3, V6) is only
0.0903, so the conditional mutual information I[{V2}, {(V3, V6)}|Y] is calculated as
0.0324(= 0.0903− 0.0579), which is approximately half of the CE drop of V2 and one
quarter of the CE drop of (V3, V6). These observations together strongly support that
(V1, V3, V6) is the only potential candidate for an order-3 major factor, even if it is
overlapping with major factor (V3, V6). These reasons once again indicate that V1
should not be an order-1 major factor.

4 In the four-feature setting, Algorithm 1, (V1, V3, V6, V7) passes the test of [C1: con-
firmable] by having a CE of 1.4262, being far beyond the simulated CE distribution
of (V1, V3, V6, ξ) with mean 1.5748 and sd 1.7478 × 10−4. However, its CE drop is
indeed very close to the sum of the CE drops of (V1, V3, V6) and V1_V7. Likewise,
the CE drop of (V1, V2, V3, V6) is smaller than the sum of the CE drops of the major
factors: (V1, V3, V6), (V3, V6) and V2. Due to their overlapping in feature members, we
can conclude that their corresponding values of conditional mutual information are
nearly equal to their marginal values of mutual information. In other words, these
quartets do not achieve the ecological effects when conditioning on Y. Therefore, they
are not order-4 major factors. This fact is coherent with criterion [C2: irreplaceable].
As for the feature quartet (V1, V6, V7, V8), it is a different case. This feature quartet
passes the test criterion [C1: confirmable] since, via Algorithm 1, its CE of 1.7012 is far
below the range of the simulated CE distribution of (V1, V6, V7, ξ) with mean 1.785142
and sd. 1.937145 × 10−4. Although it achieves a CE value that is not ranked among
the top eight, its SCE drop for (V1, V7) is 0.1800, which is more than three times the
individual CE drop of V1, six times the CE drop of V6 and many times the CE drop of
V8. Further, the inclusion of V8 indicates that (V1, V6, V7, V8) satisfies the criterion [C2:
irreplaceable]. Thus, this quartet is a potential candidate for a order-4 major factor.
The rest of the feature quartets in both tables are not order-4 major factors.

5 It is noted that V2 does not appear in any of the four identified potential candidates
for major factors of various orders, (V3, V6), (V1, V7), (V1, V3, V6) and (V1, V6, V7, V8),
and has a larger individual CE drop than V1. Thus, V2 is likely an order-1 major factor,
but not V1, V3 or V6, from the perspective of criterion [C2: irreplaceable].
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6 Across five-feature to eight-feature settings, except for (V1, V2, V3, V6, V7, V8), none
of the subsets of variables passes the the test of [C1: confirmable] criterion when
applying Algorithm 1. For instance, the feature set (V1, V3, V6, V7, V4) achieves the
lowest CE, 1.2152, in the five-feature setting. This CE falls within one sd of the mean,
1.2157, of the simulated CE distribution of (V1, V3, V6, V7, ξ), with sd 4.4982 × 10−4.
As for the feature set (V1, V2, V3, V6, V7, V8), it fails criterion [C2: irreplaceable] because
it is a union of all the already identified major factors.

Here, we conclude that [C1: confirmable], aided by Algorithm 1, and criterion [C2:
irreplaceable] work well as the backbones of our feature selection protocol for identifying
the collection of major factors even in this example of complex dynamics.

Table 3. The 8 top-ranked CEs across 1-feature to 4-feature settings with Y = V2 + 2V1V7 +

sin(2π(V3 + V6)) + 6V1V3V6 + sin(2π(V1 + V6 + V7 + V8)) +
1
10 N(0, 1). The CE of Y is 1.9945.

1 Feature CE 2 Feature CE 3 Feature CE 4 Feature CE

V2 1.9366 V3_V6 1.8543 V1_V3_V6 1.6042 V1_V3_V6_V7 1.4262
V1 1.9407 V1_V2 1.8678 V2_V3_V6 1.7640 V1_V2_V3_V6 1.4393
V3 1.9673 V1_V7 1.8812 V3_V6_V7 1.7930 V1_V3_V6_V8 1.5696
V6 1.9675 V2_V3 1.9031 V1_V2_V7 1.7970 V1_V3_V5_V6 1.5746
V7 1.9918 V2_V6 1.9033 V1_V2_V6 1.8198 V1_V3_V4_V6 1.5747
V8 1.9945 V1_V6 1.9052 V1_V2_V3 1.8198 V2_V3_V6_V7 1.6505
V5 1.9945 V1_V3 1.9054 V1_V3_V7 1.8216 V1_V2_V3_V7 1.6887
V4 1.9945 V2_V7 1.9326 V1_V6_V7 1.8217 V1_V2_V6_V7 1.6891

Table 4. The 8 top-ranked successive CE drops of feature sets across 1-feature to 4-feature settings.
Y = V2 + 2V1V7 + sin(2π(V3 + V6)) + 6V1V3V6 + sin(2π(V1 + V6 + V7 + V8)) +

1
10 N(0, 1). The CE

of Y is 1.9945.

1 Feature SCE-Drop 2 Feature SCE-Drop 3 Feature SCE-Drop 4 Feature SCE-Drop

V2 0.057959 V3_V6 0.1130 V1_V3_V6 0.2501 V1_V3_V6_V7 0.1780
V1 0.053931 V1_V2 0.0688 V2_V3_V6 0.0903 V1_V2_V3_V6 0.1649
V3 0.027334 V1_V7 0.0594 V1_V2_V7 0.0709 V1_V6_V7_V8 0.1205
V6 0.027136 V1_V6 0.0355 V3_V6_V7 0.0613 V2_V3_V6_V7 0.1135
V7 0.002798 V1_V3 0.0353 V1_V3_V7 0.0596 V1_V2_V3_V7 0.1082
V8 0.000095 V2_V3 0.0336 V1_V6_V7 0.0596 V1_V2_V6_V7 0.1079
V5 0.000079 V2_V6 0.0333 V1_V2_V6 0.0481 V1_V3_V7_V8 0.0707
V4 0.000057 V3_V7 0.0084 V1_V2_V3 0.0480 V4_V5_V7_V8 0.0568

4. Gerrit Cole’s Pitching Dynamics

In this section, we apply the selection protocol developed and illustrated in the previ-
ous sections on Gerrit Cole’s slider and fastball pitching dynamics over three consecutive
MLB seasons: 2017, 2018 and 2019. Two structured data sets contain 2042 slider pitches
and 5328 fastball pitches obtained from PITCHf/x and Statcast, respectively. Upon each
pitching dynamics, we successively study two settings separately with 2D response vari-
ables Y = (p f xX, p f xZ) and Y = (aX, aZ). We denote a collection of biomechanical
and physical covariate features as {V1, . . . , VK−1}, with K = 12 for the former setting and
K = 10 for the latter setting. We commonly use the K-th feature VK = pitN to represent
the three categorical pitcher seasons. Within each of these two pitching dynamics, we
explore and evaluate the potential effects of heterogeneity across the three seasons as an
appropriate means of addressing the question raised at the beginning of the Introduction.

4.1. Gerrit Cole’s Slider Pitching Dynamics

At first, we evaluate the pairwise MCE associations among all 14 features: response
and covariate. As mentioned in the Introduction, this association of two categorized or
categorical features is evaluated on their contingency table. The heatmap based on the
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MCE matrix of Gerrit Cole’s slider pitches and its corresponding network are reported in
the two panels of Figure 3. It is noted that the associative patterns among the 14 features
pertaining to Gerrit Cole’s slider pitches appear simple. We see several disconnected small
communities and isolated nodes. Such disconnecting patterns indicate that, overall, fewer
associations are found among these 14 features. In particular, the spinR is disconnected
from pitN with respect to a threshold. These disconnecting patterns would exert effects on
our selection for major factors.
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Figure 3. Associative patterns among 14 features of Gerrit Cole’s slider: (A) heatmap based on MCE matrix; (B) network built
with linkages having thickness proportional to one minus pairwise MCE and subject to a threshold of 0.2 (= 1.0−MCE).

We first consider the slider case with the 2D response variable Y = (p f xX, p f xZ).
These two directional movements together with vY0 or startSp critically contribute to this
pitcher’s capability of successfully dealing with batters. Our selection results via CEs are
acquired based on all possible combinations of 12 covariate features. In Table 5, we report
the feature sets achieving the top 12 CEs across one-feature to four-feature settings. We
summarize and itemize our findings attached with reasoning as follows. The entropy of Y
or 0-feature entropy is calculated as 4.6623.

1 In the one-feature setting, the aX, aZ and spinD achieve the three top-ranked CEs.
Thus, they are natural candidates for order-1 major factors. It is noted that pitN is
ranked the lowest, while spinR is ranked the fourth.

2 With regard to the two-feature setting, the three top-ranked pairs, (aX, aZ), (aX, spinD)
and (aZ, spinD), achieve low CE values with CE drops that are all less than the
sum of their individual drops. Even though these pairs pass the test for criterion
[C1: confirmable]—see panel (A) of Figure 4—they fail on criterion [C2: irreplaceable].
In other words, only one of them could be an order-1 major factor. This conclusion is
further confirmed by the CE of triplet (aX, aZ, spinD), 0.5539, which only achieves a
very small SCE drop from (aX, aZ), proving insignificant in comparison with the top
eight triplets of the three-feature setting in Table 5.
The rest of the nine feature pairs are not order-2 major factors. Three collections of
two separate order-1 major factors, {aZ, x0}, {aZ, spinR} and {aZ, z0}, are selected,
since all candidate triplet collections fail either the test for criterion [C1: confirmable]
or the criterion [C2: irreplaceable] in the three-feature setting below. Further, these
three pairs achieve the lowest CEs and satisfy condition (b) of the criterion [C2: irre-
placeable].
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In sharp contrast, we found that pairs of {aY, vZ0, vX0, vY0, spinR, x0, z0}, excluding
(vX0, vZ0) and (x0, z0), achieve successive SCE drops that are larger than three times
another member’s individual CE drops. Thus, these pairs satisfy the criterion [C2:
irreplaceable]. They all satisfy the test for criterion [C1: confirmable]. However,
these pairs’ candidacy of order-2 major factors would fail if aZ is the choice for the
order-1 major factor because of criterion [C2: irreplaceable]. It is also noted that
none of the pairs including {pitN} × {aY, vZ0, vX0, vY0, spinR, x0, z0} satisfy the
criterion [C2: irreplaceable]. This is a striking manifestation of homogeneity within
the dynamics of Y = (p f xX , p f xZ) across the three seasons.

3 In the three-feature setting, the 10 top-ranked triplets all contain (aX, aZ). For instance,
the triplet (vY0, aX, aZ) achieves a CE drop from the SCE of (aX, aZ), which is
less than the individual CE drop of vY0: 0.4670. Moreover, note that the CE of
(vY0, aX, aZ) is somehow achievable by triplets (aX, aZ, ε); see panel (B) of Figure 4.
In other words, both criteria [C1: confirmable] and [C2: irreplaceable] fail, and so do
the rest of the nine triplets.
As for the 11th and 12th ranked triplet collections, {aZ, x0, aY} and {aZ, z0, aY},
they fail both criteria as well. Even though the two pairs (x0, aY) and (z0, aY) are
candidates for order-2 major factors, the choice of aZ as an order-1 major factor
fails both.
On the other hand, all the feature triplets of {aY, vZ0, vX0, vY0, spinR, x0, z0} achieve
successive CE drops of at least 1.6000. These seemingly large successive CE drops
indeed satisfy the criterion [C2: irreplaceable]. However, they all fail the test for [C1:
confirmable]. Thus, these high CE drops are primarily due to the finite sample phe-
nomenon.

4 Considering the four-feature setting, the CE of quartet (x0, aX, aY, aZ), which achieves
the lowest CE, is comparable with the CEs of (x0, aX, aZ, ε). Based on panel (C) of
Figure 4, we are certain that the major factor selection computations on the response
Y = (p f xX , p f xZ) should not go beyond the four-feature setting.

Table 5. Top 12 feature sets in selections for major factors in Gerrit Cole’s slider pitching dynamics
with a 2D response variable Y = (p f xX , p f xZ). The zero feature’s entropy is 4.6623.

1-Feature CE 2-Feature CE 3-Feature CE 4-Feature CE

aZ 2.6086 aX_aZ 0.6790 vY0_aX_aZ 0.2911 x0_aX_aY_aZ 0.0493
aX 2.6906 aX_spinD 1.5822 startSp_aX_aZ 0.2940 vY0_aX_aY_aZ 0.0518
spinD 3.1014 aZ_spinD 1.8457 x0_aX_aZ 0.3226 x0_vY0_aX_aZ 0.0534
spinR 4.1656 x0_aZ 1.9839 aX_aZ_spinR 0.3268 startSpeed_x0_aX_aZ 0.0551
vZ0 4.1742 aZ_spinR 1.9858 z0_aX_aZ 0.3287 z0_aX_aY_aZ 0.0557
x0 4.1798 z0_aZ 2.0045 aX_aY_aZ 0.3345 vX0_vY0_aX_aZ 0.0563
z0 4.1881 aY_aZ 2.0440 vZ0_aX_aZ 0.3468 startSp_aX_aY_aZ 0.0568
vY0 4.1953 vY0_aZ 2.0528 vX0_aX_aZ 0.3487 startSp_z0_aX_aZ 0.0570
startSp 4.1965 vX0_aZ 2.0590 aX_aZ_spinD 0.5539 z0_vY0_aX_aZ 0.0581
vX0 4.2031 startSp_aZ 2.0720 aX_aZ_pitN 0.5611 aX_aY_aZ_spinR 0.0619
aY 4.2224 vY0_aX 2.0798 x0_aY_aZ 0.7372 x0_aX_aZ_spinR 0.0624
pitN 4.3813 startSp_aX 2.0891 z0_aY_aZ 0.7430 vX0_aX_aY_aZ 0.0635

Based on the above computations, we identify three collections, {aZ, x0}, {aZ, spinR}
and {aZ, z0}, of two order-1 major factors for Y = (p f xX , p f xZ) of Gerrit Cole’ slider. aZ
plays a dominant role and bears significant effects on Y = (p f xX , p f xZ). In contrast, spinR
plays only an alternative minor role. Moreover, the homogeneity is evidently seen through
the abundance and diversity of candidates for order-2 major factors with detachment
with pitN. To further confirm the presence of homogeneity, we investigate slider pitching
dynamics with Y = (aX, aZ).

With response variable Y = (aX, aZ), we acquire the major factor selection results
based on the CEs of all the possible feature sets of 10 covariate features, but we only
report the top 10 feature sets across one-feature to four-feature settings in Table 6 for Gerrit
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Cole’s slider. We summarize and itemize our findings attached with reasoning as follows.
The entropy of Y or 0-feature entropy is calculated as 4.6652.
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Figure 4. Determine when to stop CEDA-based selection for major factors: (A) (aZ, aX); (B) (aX, aZ, vY0∗);
(C) (aX, aZ, aY, x0∗) on Y = (p f xX , p f xZ); (D) (spinD, vX0∗); (E) (vZ0, spinR, aY∗); (F) (x0, vZ0, spinR, aY∗) on Y =

(aX, aZ). Each red dotted line indicates the conditional entropy given the feature set, and the histogram is the conditional
entropies of samples generated with the ∗-marked feature being replaced by a random noise feature.

1 In the one-feature setting, the spinD achieves the largest CE drop, 1.5694, while the
remaining features only achieve individual CE drops of less than 0.5000. Therefore,
spinD is an apparent candidate for an order-1 major factor of Y = (aX, aZ). It is
also noted that the CE and CE drop of pitN have the lowest rank in this one-feature
setting. This is a significant sign of the homogeneity in Gerrit Cole’s slider pitching
dynamics across the three considered seasons.

2 Regarding the two-feature setting, the top eight pairs are all related to spinD and
the 9th and 10th pairs are also related to spinR, but not spinD. Among the eight
pairs, we select three collections, {spinD, vZ0}, {spinD, vZ0} and {spinD, z0)}, as the
collections of two order-1 major factors of Y = (aX, aZ). In fact, they satisfy the
two criteria.
The top eight pairs achieve only slightly lower CE as compared to the 9th and 10th pairs,
while these two pairs indeed achieve very significant CE drops that are larger than the
sum of the two members’ individual CE drops. In fact, pairs of {aY, vZ0, vX0, vY0, spinR,
x0, z0}, excluding (vX0, vZ0) and (x0, z0), are candidates for order-2 major factors by
achieving significant CE drops that satisfy the two criteria, [C1: confirmable] (see panel
(D) of Figure 4) and [C2:irreplaceable]. This fact means that these six biomechanical
features together with spinR are tightly bonded together in constituting the dynamics
of Y = (aX, aZ), not merely the spinR. The pitN does not involve any candidates for
order-2 major factors at all.
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3 All triplets of {aY, vZ0, vX0, vY0, spinR, x0, z0} achieve significant CE drops and
three of them are in the top 10 list. However, they all neither satisfy the criterion
[C1: confirmable], based on panel (E) of Figure 4, nor the criterion [C2: irreplaceable].
Therefore, we can conclude that there are no order-3 major factors.

4 Indeed, based on panels (E) and (F) of Figure 4, we are confident that our selection
should stop at the three-feature setting.

Table 6. Top 10 feature sets in selections for major factors in Gerrit Cole’s slider pitching dynamics
with a 2D response variable Y = (aX, aZ). The zero feature’s entropy is 4.6652.

1-Feature CE 2-Feature CE 3-Feature CE 4-Feature CE

spinD 3.0958 vX0_spinD 2.2349 vZ0_aY_spinR 0.8346 x0_vZ0_aY_spinR 0.1287
spinR 4.1682 vZ0_spinD 2.2355 x0_vX0_spinD 0.8380 startSp_x0_vZ0_aY 0.1289
vZ0 4.1743 z0_spinD 2.3030 x0_vZ0_spinD 0.8396 z0_aY_spinD_spinR 0.1295
x0 4.1889 x0_spinD 2.3069 vZ0_aY_spinD 0.8406 x0_vY0_vZ0_aY 0.1299
z0 4.1897 spinD_spinR 2.3356 x0_aY_spinD 0.8517 z0_vZ0_aY_spinD 0.1308
vX0 4.1931 aY_spinD 2.3361 vX0_aY_spinD 0.8560 vZ0_aY_spinD_spinR 0.1316
vY0 4.2007 vY0_spinD 2.3651 z0_vZ0_spinD 0.8584 z0_vX0_aY_spinR 0.1337
startSp 4.2130 startSp_spinD 2.3788 z0_aY_spinD 0.8603 z0_vY0_vZ0_aY 0.1338
aY 4.2200 vX0_spinR 2.6619 z0_vZ0_aY 0.8683 x0_vY0_vZ0_spinR 0.1347
pitN 4.3800 vZ0_spinR 2.6624 x0_vX0_aY 0.8689 z0_vY0_vZ0_spinR 0.1357

Based on the above findings, spinD as an order-1 major factor definitely contributes
significantly to Y = (aX, aZ). The alternative choices, vX0, vZ0 and z0, help spinD
contribute slightly more toward Y as an alternative order-1 major factor. Regarding the
response Y = (ax, az), the three panels (D-F) of Figure 4 strongly indicate that we should
stop our major factor selection computations at the two-feature setting. This fact is primarily
due to the finite sample phenomenon.

As for spinR, it surely has its roles in Y = (p f xX , p f xZ) and Y = (aX, aZ). However,
its importance is only comparable with any biomechanical one of {aY, vZ0, vX0, vY0, x0, z0}.
Therefore, a fair and naturally true statement is that the increase in spinR observed in
Gerrit Cole’s slider pitches over the three seasons is likely transformed into other factors,
such as better control of (p f xX , p f xZ) in delivering slider pitches.

4.2. Gerrit Cole’s Fastball Pitching Dynamics

Next, we also perform MCE computations for Gerrit Cole’s fastball over the three
considered seasons. We build a heatmap for the 14 features and likewise construct a
network via the same thresholding scheme; see panels (A) and (B) of Figure 5. The degree
of disconnection among these feature nodes based on his fastball pitches is even more
so than that of his slider case. In other words, many nearly stochastic independencies
are observed here. Such independence would bear effects on the conditional mutual
information argument when checking the criterion [C2: irreplaceable].

Again, we perform our selection computations for all possible feature sets among the
12 covariate features. Only the 12 top-ranked feature sets on CEs are reported in Table 7. We
summarize and itemize our selection results regarding the dynamics of Y = (p f xX , p f xZ).
The entropy of Y is calculated to be 4.6710.

1 With regard to the one-feature setting, the three features spinD, aX and aZ achieve the
three lowest CEs, with CE drops being more than 1.3000. These three are candidates
for order-1 major factors.

2 In the two-feature setting, again, the pair (aX, aZ) achieves the lowest CE with a CE
drop of 3.0693, which is larger than the sum of their individual CE drops: 2.7730.
Thus, this pair fails condition (a) but satisfies condition (b) of [C2: irreplaceable]
by viewing it as a composition of two order-1 major factors: {aX, aZ}. In contrast,
the two pairs, (aX, spinD) and (aZ, spinD), have CE drops smaller than the sum of
their individual CE drops.
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The two feature pairs (vY0, aX) and (vY0, aZ) achieve SCE drops that are more
than three times the CE drop of vY0. In other words, criterion [C2: irreplaceable] is
satisfied for both pairs. They also pass the test for the criterion [C1: confirmable]. Thus,
(vY0, aX) and (vY0, aZ) are candidates for order-2 major factors. This involvement
of vY0 in these two pairs reveals the key aspect of fastball pitching dynamics, being
distinct from the slider pitching dynamics of this pitcher.
Again, all pairs of {aY, vZ0, vX0, vY0, x0, z0} and (vX0, spinR), (vY0, spinR) and
(vZ0, spinR) are declared as candidates of order-2 major factors since they achieve
significant SCE drops that are more than three times their individual CE drops. They
also all satisfy the two criteria [C1: confirmable] (see panel (A) of Figure 6) and [C2:
irreplaceable].

3 Upon the three-feature setting, as in the slider case reported in Table 5, the top-ranked
three-feature triplet, (vY0, aX, aZ), satisfies the criterion [C1: confirmable]; see panel
(B) of Figure 6. It fails condition (a), whereas it satisfies condition (b) of [C2: irre-
placeable], since it can be seen as a composition of one order-1 and one order-2 major
factors: {aX, (vY0, aZ)}. Thus, the triplet (vY0, aX, aZ) is not an order-3 major factor,
but {aX, (vY0, aZ)} is a collection of major factors of dynamics of Y = (p f xX , p f xZ).
This very interesting result is not seen in the slider case. Note that the collections
ranked third and fourth, namely {aX, (vZ0, aZ)} and {aX, (vX0, aZ)}, fail condition
(b) of [C2: irreplaceable]. As for all triplets of {aY, vZ0, vX0, vY0, spinR, x0, z0}, they
are not order-3 major factors, since they all fail criterion [C1: confirmable], even if
they have rather large SCE drops.

4 According to panel (C) of Figure 6, our major factor selection endeavors should stop
at the three-feature setting.
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Figure 5. Associative patterns among 14 features of Gerrit Cole’s fastball: (A) heatmap based on MCE matrix; (B) network
built with linkages having thickness proportional to one minus pairwise MCE and subject to a threshold of 0.2 (=1.0−MCE).
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Figure 6. Determine when to stop CEDA-based selection for major factors: (A) (aX, aZ∗); (B) (aX, aZ, vY0∗);
(C) (aX, aZ, vX0, vY0∗) on Y = (p f xX , p f xZ); (D) (spinD, aY∗); (E) (spinD, vZ0, aY∗); (F) (startSp, x0, vZ0, vX0∗) on
Y = (ax, az). Each red dotted line indicates the conditional entropy given the feature set, and the histogram is the
conditional entropies of samples generated with the ∗-marked feature being replaced by a random noise feature.

Table 7. Top 12 feature sets in selections for major factors in Gerrit Cole’s fastball pitching dynamics
with a 2D response variable Y = (p f xX , p f xZ). The zero feature’s entropy is 4.6710.

1-Feature CE 2-Feature CE 3-Feature CE 4-Feature CE

spinD 3.1393 aX_aZ 1.6017 vY0_aX_aZ 0.7397 vX0_vY0_aX_aZ 0.2046
aX 3.1472 aZ_spinD 2.0316 startSp_aX_aZ 0.7472 startSp_vX0_aX_aZ 0.2057
aZ 3.3218 aX_spinD 2.1719 vZ0_aX_aZ 1.0378 startSp_vZ0_aX_aZ 0.2080
spinR 4.2977 vY0_aX 2.5007 vX0_aX_aZ 1.0405 vY0_aX_aY_aZ 0.2123
aY 4.3491 startSp_aX 2.5092 x0_aX_aZ 1.0607 vY0_vZ0_aX_aZ 0.2126
x0 4.3706 vY0_aZ 2.5849 z0_aX_aZ 1.0709 x0_vY0_aX_aZ 0.2129
z0 4.3743 startSp_aZ 2.5961 aX_aY_aZ 1.0783 startSp_aX_aY_aZ 0.2160
pitN 4.4082 aX_spinR 2.6144 aX_aZ_spinR 1.0846 z0_vY0_aX_aZ 0.2177
vZ0 4.4247 aX_aY 2.6322 vY0_aZ_spinD 1.1731 startSp_x0_aX_aZ 0.2227
vX0 4.4597 vZ0_spinD 2.6681 startSp_aZ_spinD 1.1774 startSp_z0_aX_aZ 0.2236
vY0 4.4761 aY_spinD 2.6700 vY0_vZ0_aX 1.3215 startSp_aX_aZ_spinR 0.2635
startSp 4.4860 x0_aX 2.6725 startSp_vZ0_aX 1.3295 vY0_aX_aZ_spinR 0.2637

Similarly to the slider case, we investigate whether spinD and spinR bear major effects
on Y = (aX, aZ). We perform our major factor selection computations for all possible
feature sets of 10 features. Only the top 10 feature set on CEs are reported in Table 8. We
summarize and itemize our findings across one-feature to four-feature settings. The zero
feature’s entropy is 4.6913.



Entropy 2021, 23, 1684 22 of 24

1 In the one-feature setting, the spinD achieves the largest CE drop that is more than
the second-highest CE drop of spinR, 0.4233, by 1.0000. Thus, spinD is a natural
candidate for an order-1 major factor of Y = (aX, aZ).

2 Upon the two-feature setting, the top nine pairs are all involved with spinD and
only the 10th pair, (vZ0, spinR), does not involve spinD. These top nine pairs
achieve much smaller CE drops than that of the 10th pair. In fact, the three pairs,
(vX0, spinR), (vY0, spinR) and (vZ0, spinR), together with all pairs from the feature
set {aY, vZ0, vX0, vY0, x0, z0}, are candidates for order-2 major factors. They achieve
significant CE drops and satisfy the two criteria: [C1: confirmable] (see panel (D) of
Figure 6) and [C2: irreplaceable].

3 All triplets in the top 10 list and triplets from {aY, vZ0, vX0, vY0, spinR, x0, z0} fail
to satisfy the criterion: [C1: confirmable], based on panel (E) of Figure 6. There are
neither order-3 major factors nor triplet collections of major factors.

4 Similarly, based on panels (E) and (F) of Figure 6, our major factor selection should
stop at the three-feature setting.

Table 8. Top 10 feature sets in selections for major factors in Gerrit Cole’s fastball pitching dynamics
with a 2D response variable Y = (ax, az). The zero feature’s entropy is 4.6913.

1-Feature CE 2-Feature CE 3-Feature CE 4-Feature CE

spinD 3.1776 aY_spinD 2.6820 vZ0_aY_spinD 1.4493 startSp_x0_vX0_vZ0 0.3130
spinR 4.2681 vZ0_spinD 2.6894 vY0_vZ0_spinD 1.4529 startSp_z0_vX0_vZ0 0.3142
aY 4.3476 spinD_spinR 2.6915 startSpeed_vZ0_spinD 1.4591 x0_vX0_vY0_vZ0 0.3150
x0 4.3833 vX0_spinD 2.7231 startSpeed_vX0_spinD 1.4784 startSp_x0_vZ0_aY 0.3164
z0 4.3851 startSp_spinD 2.7502 vX0_vY0_spinD 1.4838 z0_vX0_vY0_vZ0 0.3211
pitN 4.4106 vY0_spinD 2.7556 vX0_aY_spinD 1.4843 x0_vX0_vZ0_aY 0.3213
vZ0 4.4387 x0_spinD 2.7664 vX0_vZ0_spinD 1.4849 x0_vY0_vZ0_aY 0.3247
vY0 4.4532 z0_spinD 2.8026 vZ0_spinD_spinR 1.4969 z0_vX0_vZ0_aY 0.3255
startSp 4.4548 spinD_pitN 2.9914 startSp_x0_vX0 1.5085 vX0_vY0_vZ0_aY 0.3295
vX0 4.4712 vZ0_spinR 3.2976 x0_vZ0_aY 1.5097 startSp_vX0_vZ0_aY 0.3318

4.3. Summary of Gerrit Cole’s Slider and Fastball Pitching Dynamics

We summarize all of our findings on Gerrit Cole’s slider and fastball across three MLB
seasons in Table 9. Based on the findings listed in this table, we are confident that the
Magnus effect through spinD has significant effects on Y = (aX, aZ), and consequently, it
has major impacts on Y = (p f xX , p f xZ). In other words, the major role of spinD in Gerrit
Cole’s slider and fastball pitching dynamics is evident.

Table 9. Comparison of major factors of Gerrit Cole’s slider and fastball with respect to Y =

(p f xX , p f xZ) and Y = (aX, aZ).

Pitch Type Y Order-1 MF Order-2 MF Alternative MF Alternative MF

slider (p f xX , p f xZ) aZ, x0 none confirmed {aZ, spinR} {aZ, z0}
slider (aX, aZ) spinD, vX0 none confirmed {spinD, vZ0} {spinD, z0)}
fastball (p f xX , p f xZ) aX (aZ, vY0) {aX, aZ} {aX, vY0}
fastball (aX, aZ) spinD, aY none confirmed {spinD, vZ0} {spinD, spinR}

As for the roles of spinR in both pitching dynamics of Gerrit Cole, there exists an evi-
dent difference. In his slider case, spinR couples with aZ in the setting of Y = (p f xX , p f xZ)
as an alternative order-1 major factor having relatively minor effects. Meanwhile, in the
fastball case, spinR couples with spinD and serves as an alternative order-1 major factor
having minor effects on the dynamics of Y = (aX, aZ). These two pieces of evidence
clearly reveal and reflect the minor role that spinR plays in Gerrit Cole’s slider and fastball
pitching dynamics. Furthermore, it is clear that the effects of pitcher season via pitN do not
exist in both Gerrit Cole’s slider and fastball pitching dynamics. The homogeneity in both
Gerrit Cole’s slider and fastball pitching dynamics are established. Once again, we reiterate
that the abundance and diversity of confirmed candidates of order-2 major factors reflect
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that this pitcher’s pitching dynamics is apparently free from the effects of heterogeneity
induced by pitN.

5. Conclusions

In this paper, we demonstrate the merits of a CEDA-based selection protocol for
collections of major factors as a brand new means of studying the dynamics underlying a
single complex system as well as multiple complex systems in a collective fashion. We also
show that the categorical nature of all features indeed is capable of revealing the governing
principles underlying the system dynamics of interest, without any man-made structural
modeling assumptions. In the real data analysis, we realistically see the complexity of Gerrit
Cole’s pitching dynamics by using all selected collections of major factors of various orders.
The major factor analysis reveals such complexity to a great extent and it reliably confirms
the absence of any heterogeneity across the three considered MLB seasons. Such merits,
capabilities and applicability support our CEDA paradigm as a fundamental approach for
studying complex systems.

Our data-driven understanding is indeed supported by visible and explainable re-
lational patterns found on the simple platform of contingency tables. Each contingency
table of one or multiple major factors against the response variable will reveal conditional
associative relations from the covariate categories to response categories. A collection
of such pattern information will sustain and expand our knowledge about the complex
systems under study. This fact is essential and important for data analysis in this Big
Data era.

Furthermore, we once again emphasize that our CEDA computations work for all data
types. This is an essential virtue of data analysis, since the categorical nature is present in all
features of any data type. By employing such a categorical nature in data, the contingency
table platform is natural, and so are information theoretic measurements. Consequently,
the pattern formation brought out by conditional entropy and mutual information is
authentic, and so is the understanding derived from these measurements.

By resolving the two real-world cases of pitching dynamics, we illustrate how to
successfully implement the two criteria, [C1: confirmable] and [C2: irreplaceable], together
with reliability checks. The CEDA-based methodology could prove critical when sub-
jected to the finite sample phenomenon, even in the Big Data era. Finally, we reiterate the
chief concept underlying our CEDA-based selection of major factors: “Let data’s categori-
cal nature assemble freely and naturally to shed light on complexity, heterogeneity and
homogeneity embedded within a collective of complex systems”.
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