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Many statistical settings call for estimating a population parameter, most typically the population mean, based on
a sample of matrices. The most natural estimate of the population mean is the arithmetic mean, but there are many
other matrix means that may behave differently, especially in high dimensions. Here we consider the matrix har-
monic mean as an alternative to the arithmetic matrix mean. We show that in certain high-dimensional regimes,
the harmonic mean yields an improvement over the arithmetic mean in estimation error as measured by the opera-
tor norm. Counter-intuitively, studying the asymptotic behavior of these two matrix means in a spiked covariance
estimation problem, we find that this improvement in operator norm error does not imply better recovery of the
leading eigenvector. We also show that a Rao-Blackwellized version of the harmonic mean is equivalent to a linear
shrinkage estimator studied previously in the high-dimensional covariance estimation literature, while applying a
similar Rao-Blackwellization to regularized sample covariance matrices yields a novel nonlinear shrinkage estima-
tor. Simulations complement the theoretical results, illustrating the conditions under which the harmonic matrix
mean yields an empirically better estimate.

Keywords: Matrix means; positive definite cone; covariance estimation; shrinkage Estimators

1. Introduction

Matrix estimation problems arise in statistics in a number of areas, most prominently in covariance
estimation, but also in network analysis, low-rank recovery and time series analysis. Typically, the
focus is on estimating a matrix based on a single noisy realization of that matrix. For example, the
problem of covariance estimation [25] focuses on estimating a population covariance matrix based
on a sample of vectors, which are usually combined to form a sample covariance matrix or another
estimate of the population covariance. In network analysis and matrix completion problems, the goal is
typically to estimate the expectation of a matrix-valued random variable based on a single observation
under suitable structural assumptions (see, e.g., [17] and citations therein). A related setting that has
received less attention is the case where a sample of matrices is available and the goal is to estimate an
underlying population mean or other parameter. This arises frequently in neuroimaging data analysis,
where each matrix represents connectivity within a particular subject’s brain and the goal is to estimate
a population brain connectivity pattern [10,55].

The most direct approach to estimating the underlying population mean from a sample of matrices
is to take the arithmetic (sample) mean, perhaps with some regularization to ensure the stability of the
resulting estimate. The arithmetic matrix mean is the mean with respect to Euclidean geometry on the
space of matrices, which is often not the most suitable average for a given matrix model. A simple
example can be found in our recent work [39], where we showed that in the problem of estimating
a low-rank expectation of a collection of independent random matrices with different variances, a
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weighted average improves upon the naive arithmetic matrix mean, analogously to the scalar analogue,
in which a weighted average can improve upon the unweighted mean in the presence of heterogeneous
variances. Somewhat surprisingly in light of the rich geometry of matrices, fairly little attention has
been paid in the literature to other matrix geometries and their associated means. An exception is
work by Schwartzman [53], who argued for using the intrinsic geometry of the positive definite cone
[7] in the problem of covariance estimation, and showed that a mean with respect to this different
matrix geometry can, under certain models, yield an appreciably better estimate. Recent work has also
considered Fréchet means in the context of multiple-network analysis [42]. Continuing in this vein,
the current work aims to better understand the sampling distribution of matrix means other than the
arithmetic mean under different matrix geometries.

Computing means with respect to different geometries has been studied at some length in the signal
processing and computer vision communities, mostly in the context of the Grassmann and Stiefel man-
ifolds [1,23,45]. See [54] for a good discussion of how taking intrinsic geometry into account leads to
estimators other than the arithmetic mean. Recent work has considered similar geometric concerns in
the context of network data [31,42]. Kolaczyk and coauthors [31] considered the problem of averaging
multiple networks on the same number of vertices, developed a novel geometry for this setting and
derived a Fréchet mean for that geometry. Recent work by Lunagémez, Olhede and Wolfe [42] consid-
ered a similar network averaging problem, and presented a framework for both specifying distributions
of networks and deriving corresponding sample means. Unfortunately, most of these matrix means are
not amenable to the currently available tools from random matrix theory that could help analyze their
properties.

In this paper, we consider the behavior of the harmonic mean of a collection of random matrices,
a matrix mean that arises from a markedly different eometry than the matrix arithmetic mean. The
harmonic mean turns out to be well-suited to analysis using techniques in random matrix theory, and
it is our hope that results established here will be extended to other related matrix means in the fu-
ture. Building on random matrix results developed by the first author [41], we show how the harmonic
matrix mean can, in certain regimes, yield a better estimate of the population mean matrix in spectral
norm compared to the arithmetic mean. We also show that this improvement does not carry over to
recovery of the top population eigenvector in a spiked covariance model, making an important distinc-
tion between two measures of estimation performance that are often assumed to behave similarly. We
characterize the settings in which the harmonic matrix mean improves upon the arithmetic matrix mean
as well as the settings in which it does not, and show the implications of these results for covariance
estimation.

Our focus in this work is on estimating the population mean of a collection of Wishart matrices,
which can be thought of as sample covariance matrices. There is an extensive literature on estimating a
population covariance matrix on p variables from n observations based on a single covariance matrix.
The sample covariance matrix is the maximum likelihood estimator for Gaussian data, and when the
dimension p is fixed, classical results fully describe its behavior [2,47]. In the high-dimensional regime,
where p is allowed to grow with n, the sample covariance matrix is not well-behaved, and in particular
becomes singular as soon as p > n. There has been extensive work on understanding this phenomenon
in random matrix theory, starting from the pioneering work of [44] and followed by numerous more
recent results, especially focusing on estimating the spectrum [24,60]. Much work in random matrix
theory has focused on the spiked model, in which the population covariance is the sum of the identity
matrix and a low-rank signal matrix. [6,12,26,30].

The problem of covariance estimation is now several decades old (see, e.g., [56], and refer to [22]
for a thorough overview of early work). In the past two decades, literature on covariance estimation
in high dimensions (see [25] for a review) has focused on addressing the shortcomings of the sample
covariance, mainly by applying regularization. James-Stein type shrinkage was considered in early
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Bayesian approaches [19] and in the Ledoit-Wolf estimator [36], which shrinks the sample covariance
matrix towards the identity matrix using coefficients optimized with respect to a Frobenius norm loss.
Subsequent papers presented variants with different estimates of the optimal coefficients and different
choices of the shrinkage target matrix for normal data [18,28], as well as for the more general case of
finite fourth moments [57]. A related line of work has focused on estimation with respect to Stein’s loss
[21,38,56].

More recent work introduced the class of orthogonally invariant estimators [22], which unifies many
of the regularization approaches outlined above. Given a covariance matrix, an orthogonally invariant
estimator produces an estimate of the population covariance matrix with eigenspace identical to that
of the sample covariance, and spectrum that is a function @ of the spectrum of the sample covariance.
Donoho and coauthors [22] showed how choices of loss function yield different (asymptotically) op-
timal choices of ®. Nonlinear eigenvalue regularization approaches in this vein have been explored
extensively [24,32,35,37,40,51,58]. Typically, the eigenvalues of the sample covariance matrix are ad-
justed either according to the asymptotic relation between the limiting spectral distribution of a spiked
covariance and its Stieltjes transform or based on the method of moments applied to the limiting spec-
tral distribution. Approaches such as these tend to improve upon the linear shrinkage estimates intro-
duced in [36] by accounting for nonlinear dispersion of the sample eigenvalues with respect to their
population analogues.

One shortcoming of orthogonally invariant estimators is that they do not in any way change the
estimated eigenvectors, which are not consistent in the high-dimensional regime [5,30]. An alternative
approach that overcomes this limitation is to regularize the sample covariance matrix by imposing
structural constraints. This class of methods includes banding or tapering of the covariance matrix,
suitable when the variables have a natural ordering [8,59], and thresholding when the variables are not
ordered [9,11,52]. Minimax rates for many structured covariance estimation problems are now known
[14-16]; see [13] for an overview of these results.

The remainder of this paper is laid out as follows. In Section 2 we establish notation and introduce
the random matrix models under study. In Section 3, we establish the asymptotic behavior of the har-
monic matrix mean under these models. In Section 4 we compute a Rao-Blackwellized version of the
harmonic mean of two random covariance matrices, illuminating connections between the harmonic
mean and a family of regularized covariance estimators. In Section 5, we analyze a spiked covariance
model and the behavior of the top eigenvector of the harmonic mean estimator under that model. Fi-
nally, Section 6 briefly presents numerical simulations highlighting the settings in which the harmonic
matrix mean does and does not have an advantage in covariance estimation. Section 7 concludes with
discussion.

2. Problem setup

We begin by establishing notation. We denote the identity matrix by I, with its dimension clear from
context. For a p X p matrix M, ||M|| denotes its operator norm and ||M ||r denotes its Frobenius norm.
Foraset A, let 14(x) = 1if x € A and 14(x) = 0 otherwise. We denote by S;,(R) and S,,(C) the spaces
of p X p symmetric and Hermitian positive definite matrices, respectively. For a p X p symmetric or
Hermitian matrix M, the eigenvalues of M are denoted A1(M) > A>(M) > --- > A,(M) and their corre-
sponding eigenvectors are denoted vi(M),...,v,(M). We use < for the positive semidefinite ordering,
so that M| < M, if and only if M, — M| is positive semidefinite.

Suppose that we wish to estimate the population mean X of a collection of N independent identically
distributed self-adjoint positive definite p-by-p random matrices. The most commonly used model
for positive (semi)definite random matrices is the Wishart distribution, which arises in covariance
estimation and is well-studied in the random matrix theory literature.
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Definition 2.1 (Wishart Random Matrix: Real Observation Model). Let X be a random p X n matrix
with columns drawn i.i.d. from a centered normal with covariance ¥ € RP*P . Then

XX
n

W =

is a real-valued random Wishart matrix with parameters X and n.

Many of our results are also true for the complex-valued version of the Wishart distribution, which
we define here for the special case of identity covariance.

Definition 2.2 (Wishart Random Matrix: Complex Observation Model). Let X be a random p X n
matrix with i.i.d. complex standard Gaussian random entries, i.e., entries of the form

Z1+N-12,
7\/2 s

where Z| and Z, are independent standard real Gaussian random variables. Then W = XX*/n is a
random matrix following the complex Wishart distribution with parameters I and n.

Let {Xi}il\i , be a sequence of independent identically distributed p X n matrices with columns drawn
i.i.d. from a centered normal with covariance X. Then foreachi =1,2,...,N,
Xi X!
Wi = 2.1)

n

is the sample covariance matrix, which follows the real-valued Wishart distribution with parameters
and n. The aim of covariance estimation is to recover the population covariance X, with estimation error
most commonly measured in Frobenius norm or operator norm, the latter of which is more relevant in
some applications since, by the Davis-Kahan theorem [20], small operator norm error implies that one
can recover the leading eigenvectors of X. This is of particular interest in covariance estimation when
the task at hand is principal component analysis (see Section 5), but is also relevant in other problems
when X is low-rank. For example, in the case of network analysis [39], the eigenvectors of £ encode
community structure.

Even in the modestly high-dimensional regime of p/n — 7y € (0, 1), estimating X is more challenging.
When X =T, the spectral measure of each W; satisfies the Marcenko-Pastur law with parameter y in the
large-n limit. In fact, we have the stronger result (see Proposition 3.1 below) that

[W; =I|| >y +2+fy as.

A straightforward estimator of X in this setting is the arithmetic mean of the N matrices,

N
A = —2[:1 Wi
: N
which can be equivalently expressed as

*

[Xls"'7XN:| [Xl,"' 7XN]
Nn

A=

The arithmetic mean is a sample covariance based on a total of T = nN observations in this case, since
we center by the known rather than estimated observation mean, and every covariance matrix is based
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on the same number of observations. Note that in the present work we assume that the observed data
are mean-0, and thus there is no need to center the observations about a sample mean. This assumption
comes with minimal loss of generality, since the centered sample covariance matrix of a collection of
normal random variables is Wishart distributed with parameter n — 1 in place of n, which has no effect
on the asymptotic analyses below.

Remark 2.3. In practical applications, there are situations where pooling observations is not appro-
priate, and the arithmetic mean may be ill-suited to estimating X as a result. For example, in resting
state fMRI data, pooling observations from different subjects at a given brain region is infeasible, as
the response signals at a particular brain location are not time-aligned across subjects. Nonetheless,
combining sample covariance or correlation matrices across subjects via some other procedure may
still be valid for estimating the population covariance or correlation matrix.

Throughout this paper, T will denote the total number of observations of points in p-dimensional
space. The regime of interest is that in which p/T — I, and we will consider T = nN where N is
a fixed number of matrices, and n will be tending to infinity with p. It will be convenient to define
v =1lim p/n, which satisfies I' = y/N. In this setting (see Proposition 3.1),

IA-I| >T+2V[  as.

That is, the arithmetic mean is not a consistent estimator of X, even in the simple case where £ =1.
As an alternative to the arithmetic mean A, we can consider the matrix harmonic mean

N -1
H:= N(Zw;l) , 2.2)
i=1

provided that n > p (so that the W; are invertible almost surely). In past work [41], the first author
analyzed the behavior of the harmonic mean of a collection of independent Wishart random matrices
in the regime p/n — 7y € (0,1). While the harmonic mean is also inconsistent as an estimator for X,
we will see below that its operator-norm bias is, under certain conditions, smaller than that of the
arithmetic mean seen above.

3. Improved operator norm error of the harmonic mean

When the W; are drawn from the same underlying population, the harmonic mean can be a better
estimate of the population mean X in operator norm than the arithmetic mean [41]. This improvement is
best understood as a data-splitting result,in which we partition a sample of p-dimensional observations
and compute the harmonic mean of the covariance estimates computed from each part. This is certainly
counter-intuitive, but we remind the reader that our intuitions are often wrong in the high-dimensional
regime.

Let D be a set of T points in RP and let # be a partition of D into N > 2 disjoint subsets D;,

N
?’::{D,-}l.l\i1 such that D:UDi.

i=1

Define the Wishart random matrix associated with each sujbset D; as
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and define the arithmetic and harmonic means associated with P as, respectively,

A(P):% > WD) and HP) =N ( Y W(Di)_l)_l,

D;cP DieP

provided that W(D;) is invertible for all i.

If the sets making up the partition # are all of the same size, then A(%) is in fact simply the sample
covariance of the vectors in D and does not depend on . The convergence of the spectrum of A(P) is
classical [44]. The statement as given here can be found in [3, Theorems 3.6—7 and Theorems 5.9-10].

Proposition 3.1 (Marcenko-Pastur law). Suppose D is a collection of T i.i.d. p-dimensional real or
complex Gaussians with zero mean and covariance 1, with p and T tending to infinity in such a way
that p/T — T € (0,1/2), and let P be a deterministic sequence of partitions of D such that |D;| are
equal for all D; € P. The spectral measure of A(P) converges weakly almost surely to the measure with
density

1
2nlx

(S+ = x)(x = S)1is_ 5,7(%),
where
Sy = (1 VD)™ 3.1)

Further, we have the convergence

IAP)-I| > T +2VT as.
The following result describes the limiting behaviour of H(#) under similar conditions.

Proposition 3.2. Let D be a collection of T i.i.d. p-dimensional real or complex Gaussians with zero
mean and covariance I, with p and T tending to infinity in such a way that

r | < K
T T p?

where K > 0 is a constant and T € (0,1/2). Let N > 2 be fixed with T divisible by N, and let P be a
deterministic sequence of partitions of D of size N < | T~ | such that |D;| are equal for all D; € P. The
spectral measure of H(P) converges weakly almost surely to the measure with density

1
5y VE — 00— EDLie g, (%),
where
Eii=1-(N-2)L +2VT\/1 - (N - I)T. 32)

Further, we have the convergence
IH(P) - 1|| = (N =2)T +2NTy/1 = (N - 1)

Proof. For the complex Gaussian case, the above result is a restatement of [41, Theorem 2.1], since
if the Dy, D;,...,Dy are disjoint and equal sized, then W(D;) are a collection of N growing Wishart
matrices of the same dimension p and shared parameter n, with p/n — y = NT'. As discussed in [41,
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Remark 3], the extension of this result to the real Gaussian setting requires the strong asymptotic free-
ness of real Wishart random matrices, which was established in recent work [27]. Details are supplied
in Appendix B. ([

We remark that the case where |D;| are permitted to vary in i, while still feasibly handled by the
tools of the paper [41], is more complicated. The limiting spectrum of the harmonic mean in this
setting depends on the roots of a high-degree polynomial, whence comparison of the harmonic and
arithmetic mean requires a more subtle analysis. In contrast, when the cells of the partition are of equal
size, the limiting spectral measure of the harmonic mean is characterized by the roots of a quadratic
and thus admits an explicit solution. Thus, for the sake of concreteness and simplicity, we will assume
that P is a partition with cells of equal size for the remainder of the paper. With the interpretation of
H(#) as a mean formed by splitting D into equal parts, we have the following Theorem.

Theorem 3.3. Under the assumptions of Proposition 3.2, the operator norm ||H(P) —1|| is minimized
for a partition P of size N = 2. Further, for such a partition,

lim IH(P) - 1| =2VIV1 -T < lim IA(P)-1I|| =T + 2VT.
p, T —x p,T—o0

Proof. The function

f(x)=(x =2)VT +2VTy/1 = (x = )T, x<1+%

has derivative

T

F1@)= VT - ——e
VI+(&x=-Dr
which is greater than 0 whenever
>1+T !
X T

For I € (0,1/2), this region includes the point x = 2 so that the minimizer of f(x) on the interval [2, o)
is 2. O

We note that for N=2, E, =1 + 2VIVI-T < S, so that E, is closer to 1. That is, at least in the
case where the true covariance matrix is the identity, the harmonic mean is shrunk toward the true
population covariance when compared with the arithmetic mean. The above result suggests that given
a collection D of T > 2p observations, it is better asymptotically (as measured in operator norm error)
to estimate the covariance by splitting D into two equal parts D| and D, and computing the harmonic
mean of W(Dy) and W(D,) than it is to directly compute the sample covariance matrix of D. The
requirement that the vectors have identity covariance is partially addressed by [41, Corollary 2.1.1],
which we restate here.

Proposition 3.4. Under the same assumptions as Proposition 3.2, let N = 2 and suppose X is a positive
definite matrix such that

i == HEEP) 1)
1mSsu

p <las
p.T—c0 IAP) 1]




Matrix means and high-dimensional shrinkage 2585

Then

lim sup IVEHP)VE - 3| <las
T |[VEA(P)VE - 2|

Since multiplying H() by VZ on both sides gives a Wishart model with population covariance =
(see Remark 5.2 below), the bound in Proposition 3.4 holds so long as the condition number of X lies
in a certain range. For example, when I' = 1/4, Proposition 3.4 requires that the condition number be
(asymptotically) smaller than 5/ 23 ~ 1.44 (see Remark 2 in [41] for further details). Thus, in a certain
sense, Proposition 3.4 applies in the setting that is the opposite of most results on the spiked covariance
model. Namely, the harmonic mean is best suited to the case where the signal is spread over many
eigenvectors, with the extreme case of this being the setting where ~ = 1.

This leaves open the question of whether or not it is reasonable to assume that such a bound holds,
given real data. One heuristic for checking this assumption is to simply examine the spectra of H(%)
and A(P), but of course this runs into a circular problem, in which one must appeal to concentration
of eigenvalues in order to motivate a result on operator-norm concentration. Ultimately, the decision
as to whether or not the condition number bound required by Proposition 3.4 is reasonable lies with
the practitioner. Nonetheless, an appealing approach would be to develop a method for estimating the
population condition number rather than the full spectrum. This would in turn give a good indication
of which of the arithmetic or harmonic matrix means are better suited to the observed data. We leave
the further exploration of this line to future work.

Beyond the above operator norm results, the harmonic mean has an interesting additional property
with respect to the Frobenius norm. The arithmetic matrix mean is usually motivated as minimizing the
squared Frobenius norm error. A similar objective motivates many existing shrinkage estimators for the
covariance matrix [28,36]. Under the setting considered above, the harmonic matrix mean, despite not
being optimized for this loss, matches the Frobenius norm error of the arithmetic mean asymptotically.

Lemma 3.5. Under the conditions of Proposition 3.2, when N = 2 we have
lim < [H®P)-I[2= lim L|A®)-I|2 =T
im — - = - - =T a.s.
p,T—oo p F p,T—oo p F

Proof. Since H(#) -1 is symmetric, by the almost sure weak convergence of H(%), it suffices to show

1 Ey V(E;L —x)(x—E-)
lim — Tr[(H(P) - 1)? -1)
Jlim e[y -7 - [ P R
where E. are defined in Equation (3.2), and compare with
1 S+ Sy —x)(x-=S.)
lim — Tr[(A(P) - 1)? —-1)?
p,THEoop r[(A®)-D7] - ‘/S_ -1 2aTx dx,

where S, are defined in Equation (3.1). Note that

E,-E_ E,+E_
=2VIV1 -T, =1
E.+E_ \a 2

and

S, —S.  2VT S.+8-

_ 2T — 14T,
S, +S. 1+T 2 *
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Using Lemma A.1 in the Appendix,

E. E.—x)(x—E_
/ 2o Y OB 2i-T)+1=T,
E_ 2alx

while

S S, - (x-S
2o VSO =S) oy 0
S 2nl'x

4. Rao-Blackwell improvement of the harmonic mean

The results in Section 3 are somewhat unexpected, and raise the question of whether other matrix
means have similar properties. Analyzing other matrix means such as the geometric mean or more
complicated Frechét means [7,53] under the high-dimensional regime poses a significant challenge
since these operations currently fall outside the scope of known results in free probability theory.
Random matrix techniques do, however, allow us to extend our analysis of the harmonic mean by
computing its expectation conditioned on the arithmetic mean. By the Rao-Blackwell Theorem, using
this conditional expectation as an estimator yields an expected spectral norm error no worse than the
unconditioned harmonic mean.

In this section we restrict ourselves to the model of Definition 2.1, so as to ensure the availability of
explicit integrals for our quantities of interest. We expect the same results can be established for the
complex model in Definition 2.2, but doing so would require reworking the results of [33] (restated
in the Appendix for ease of reference) for the complex Wishart ensemble, which is outside the scope
of the present article. Further, we restrict our attention to 7 = 2n > p to facilitate comparison with the
N =2 case studied in the previous section. To this end, let # = D U D, where D and D, are disjoint,
and

xeD xeDy
Wy :=W(Dy)= — Z xx*=— Z xx*
|D2| xeDy xeDy

The matrices W and W, have densities [2, Theorem 7.2.2]
Sw,(wi)=Cup det(wi)%("_p_l) exp ( - gTrZ_lwi) ,

where
pn
nz

T 2d ger(s) 3T, (2)

Cp,

T,(x) p(zrl)ﬁr i—1
T,(x)=nr X - )
g i=1 2

These densities are supported on the space S,(R) of p X p symmetric positive definite real matrices.
As before, define

_ Wi+ W,
=0
H=2(w;'+w;")™"

A
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and note that

is a Wishart random matrix with parameter X and 2#n, and thus
£a(@) := Cop det(@)2@ P~V exp(—nTr ), @.1)
where a takes values in all of S, (R).

Recall that the matrix A is a sufficient statistic for the covariance matrix X, and note that the loss
function

{M.5) =M -X]|,
is convex in the variable M. By the Rao-Blackwell Theorem [50, 5a.2 (ii)], we have
E ¢(E[HIALZ) <E((H,X),
which is to say that as an estimator, H is outperformed by the conditional expectation E[H|A], which
we now compute.
Observe that the harmonic mean satisfies [7, Section 4.1]
H=2W, - W,A"'w,
H=2W, - W,A™'W;.

Averaging these two equations gives
1 -1 1 -1
H=2A - EWIA W - EWZA Wa,
and taking the conditional expectation yields
1 -1 1 -1
E[H|A] =2A - EE[WIA W1lA] - EE[WzA W, |A].

To compute the matrix-valued integrals

E[W;A™'W;|A] and E[W,A"'W;|A],

we proceed by directly computing the conditional density of W; given A.
We begin with the joint density of W and W5:

F 1) fiwy (92) = €2, det(w) 2P~ det(w2) 2P~ exp [ - STe{Z v+ w)} |

We will use this formula to obtain an expression for the joint density of W; and A. For a symmetric
matrix M with entries m; ;, let dm; j denote Lebesgue measure over that entry and define

(dM) = /\ dm,-’j,

1<i<j<p
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that is (dM) is the volume form of the matrix M. The “shear” transformation

w1 +wy
(wi,wo) = (wr,a), a:= —

maps the domain S, (R) x S, (R) to the region
{MeS,(R): 0= M <2a}xS,(R),

where we remind the reader that < denotes the positive semidefinite ordering. The Jacobian of this
mapping is

pp+l)

(dwi) A(dwp) =272 (dwy) A (da),

hence the joint density is

(p+1)
fwrawia)=C2,255 det(wn) 2P~V det(2a - w1) 2P~V exp[-n Tr= ).

To obtain the conditional distribution, we divide by (4.1), yielding

n-p-1 n-p-1
C2, det(w))" % det(2a—wi)™ >

Con,p det(2a)"~ Byt

Swyalwila) = , 4.2)

where w is supported on the region
D(a):={meS,(R):0=<m=2a}.

Evaluating this density at a = A, for w; € D(A) yields

C2, det(wy)™2 det2A — w)) "2~
Jfwia(wilA) := c g ,
n.p det(2A) ™2

a multivariate Beta distribution B(p;n,n;2A) (see Definition A.2 in the Appendix). With this notation,
we have

E[W A~ Wi[A] = /@ AT A Y

the integration over w; can be done using Theorem A.3 in the Appendix, with n; = n, ny = n, and
setting A = 2A yields the following Lemma.

Lemma 4.1. For any F that is a function of A taking value in the space of p X p matrices,

{(n(2n+ 1) = 2}AFA + n{(AFA)T + Tr(AF)A}

E[W;FW;|A] = @n-1(n+1)

Setting F = A~! yields

2n(n+1)—2+pn
Cn-1m+1)

E[W;A”'W,|A] =
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The same calculation can be carried out for E[W,A~'W,|A] to give

E[HlA]:zA_{Zn(n+l)—2+pn} B n(2n - p)

@n-1Dn+1) S @2n-Dn+1)

which is simply a rescaling of A by a deterministic constant. We summarize this result as a theorem.

Theorem 4.2. Let T =2nand D be as in Definition 2.1. If P is a partition of size 2 with |Dy| = |D;| =n,
then

n(2n —p)

EHPIAP] = 5 0D

AP).

Note that as p/T = p/(2n) — I € (0,1/2), the limiting spectral measure of the above conditional
expectation converges to

(1-1)Z,

where Z is a random variable distributed according to the limiting spectral distribution of A.
The above calculations can be further extended by making a few adjustments to the matrices Wy, W5.
A number of matrix estimators take the form

A :=c(A +dA),

where ¢,d are positive scalars and A is a positive semidefinite matrix, all depending only on A. Es-
timators of this form have been extensively studied in the covariance estimation literature [28,34,36].
One could take the extra step of applying the same regularization procedure to the matrices Wy and W,
before computing their (Rao-Blackwellized) harmonic mean. Suppose we replace W and W, with

W] = C(W] + dA) and Wz = C(W2 + d/A\),

respectively. Letting H be the harmonic mean of W; and W, we can compute a Rao-Blackwell im-
provement of H in much the same way that we did for H above. Indeed, we still have

We can compute the conditional expectation with respect to A as follows

2
E[A|A] = 2A — % (B[W, A" W, |A] + E[W,A~'W;,]A]) ws
~?d(AATTA + AATTA) — (cd)*?AATTA.
Using Lemma 4.1, we have
C2 1-1 1-1
5 (BIW\A™IWi |A] + E[W,A” W3|A])
(4.4)

) {2n(n+1)-2}AA"'A + n Tr(AA"HA
- ¢ 2n—-Dn+1) '
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Combining Equations (4.3) and (4.4), we have

o[ 2n(n +1) - 2}AATA + n Tr(AAHA
2n-Dm+1)

~?d(AATTA + AATTA) — (cd)*AATTA,

E[H|A] = 2A

which we can write solely in terms of A and A by substituting cA with A — cdA, obtaining

B[FIIA] = 24 - [2n(n + 1) = 2][A — 2¢dA + (cdA)A~' (cdA)]
2n-Dn+1)

[np — ncd T((AA~D)](A - cdA)
B 2n-1)n+1)

—2cdA + (cdA)A™ (cdA).

We summarize the above results in the following Theorem.

Theorem 4.3. The Rao-Blackwell improvement of H, the harmonic mean of the regularized matrices
c(Wi + dA) and c(W, + dN), where ¢ and d are positive constants that only depend on A and A is a
positive definite matrix that only depends on A given by

2n— Tr(AA)] ; -n+1 Ao .
n—p+cdTr( )] [ n+ (cdMA- (cdA)

2n-D(mn+1) 2n-Dn+1)
2n+np -2 —ncd Tr(/A\A_l)] cdA

E[A|A] = n[

2n-Dn+1)

Remark 4.4. For linear shrinkage estimators of the form
A=(1-DA+1L
as in [36], setting A =1, ¢ = (1 — 1), and cd = A in our formula gives

2n—p+ ATr(A™ 1)} -n+1

Cn-1)(n+1) [(2n—1)(n+1)

2n+np—2-nATr(A™") I
2n-Dmn+1) ]

2A—1

E[H|A] =n[

4.5)

The results outlined above are unexpected, and somewhat odd. The implication of Theorem 4.2 is that
the Rao-Blackwellization of H(P) is a deterministic constant multiple of A(%). This suggests that the
expense of computing H(#) is not warranted, since while H(#) may improve upon A(%) as an estima-
tor, a scalar multiple of A(#) improves still further upon H(#). Figure 4 in Section 6 explores this point
empirically in the finite-sample regime. On the other hand, the form of the Rao-Blackwellized estima-
tor in Equation (4.5), obtained from Theorem 4.3, bears noting. In contrast to the Rao-Blackwellized
version of H considered in Theorem 4.2, this estimator involves a linear combination of A, A~! and
I. As a result, this estimator differs from the linear shrinkage estimators considered elsewhere in the
literature [28,36,57]. The estimator in Theorem 4.3, which has not been proposed previously to the best
of our knowledge, falls under the heading of orthogonally invariant estimators, as discussed in [22].
Thus, in particular, there should exist some orthogonally invariant loss function for which the estimator
in Equation (4.5) is the optimal estimator. We leave further study of this estimator and its properties to
future work.
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5. Eigenvector recovery

A major motivation for working with the operator norm is to obtain guarantees on convergence of
eigenvectors, which are often the main object of interest in covariance estimation, as in when the
covariance is used for principal component analysis. This is done via the Davis-Kahan theorem, which
bounds the distance between the leading eigenvectors v{(2) and v;(Z) in terms of ||£ — Z||. For example,
it can be shown [61, Corollary 1] that

218 -3

1 (Z) =il < N BN

it (nE)v(2)>0 5.D)

In this section, we show that under a spiked covariance model, the leading eigenvector of H(%) carries
information about the leading eigenvector of the population covariance matrix X in the regime p/T —
I' € (0,1/2), and we compare its performance with that of the leading eigenvector of A(P).

Definition 5.1. Let D be a set of T i.i.d. p-dimensional centered multivariate real or complex Gaussians
with population covariance matrix

T =1+ 6w, (5.2)

where 6 > 0 and v is a p-dimensional (real or complex) unit-norm vector. As in Proposition 3.2 assume
that

where I' € (0,1/2) and K > 0 is a constant that does not depend on p or T.
Remark 5.2. Let D° be a collection of multivariate real or complex Gaussians with zero mean and
covariance I. If we define

D={V=x:xeD’ = VDO,

where X is given in Definition 5.1, then D has the same distribution as the model in Equation (5.2).
Moreover, by this same transformation, we may take a partition £° of D? and generate a partition ? of
D by replacing each D? in P% by D; := \/ED? With this definition we have the equality

H(P) = VEH(®P")VE and A(P)=VZAP)VE.
The Theorem below follows from well-established results in the literature and can be generalized
without any change to higher-rank perturbations of the identity. We focus here on the simple case of

one spike in order to get more explicit insight into the performance of H(P).

Theorem 5.3. Let D be a spiked model as in Definition 5.1, and suppose P is a partition satisfying the
conditions of Proposition 3.2, with N = 2. Then we have the almost sure convergence

r ) [ T
/ll{H(SD)}—> 1+§+(1—1")0 ifo > 1T

1+2VIV1-T otherwise,
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s 6+1 6*(1-TI)-T o> /L
|(v1{H(P)},V>|—> 9 2(1-T)+6+T -

0 otherwise.

and

Proof. To prove this result we will use the general framework [5], which considers multiplicative spikes
of the form

M := VI + 0vv* MVI + Ovv*.

Here 6 and v are as in Definition 5.1 and M is a symmetric (or Hermitian if M has complex entries)
matrix whose eigenvalue distribution converges weakly to a spectral measure v almost surely, and
v is supported on the interval [a,b]. Assume further that the convergence of the largest (smallest)
eigenvalue of M is the right (left) edge of the support of v and that the distribution of M is invariant
under conjugation by an orthogonal matrix (unitary if M has complex entries). Recall that this implies
that the matrix of eigenvectors of M is Haar distributed on the orthogonal group (unitary group for the
complex case). Define for z € C\[a, b]

. v(dx)
mV(Z)._‘/]R; Z_X’

t(2):= /R xv(d))i) =—1+zm,(2),

7 —

and let £, 1 (z) be the functional inverse of #,,. By [5, Theorem 2.7] we have the almost sure convergence
;! ( ! ) 6> !
LHM)—=1{Y \e t,(b*)’
b otherwise.

Here #,,(b*) is the limit as z — b of 1,,(z), well defined when v has a density with square root decay near
b [5, Proposition 2.10]. Furthermore, by [5, Remark 2.11] we have the almost sure convergence

6+1

[ (M),v)* > { 0%pt(p)
0 otherwise,

it 0> 1/t,(b),

where

Applying these results using Remark 5.2 and taking M = H(P°) where PV is the partition of a data
set DO with population covariance I, we see that M satisfies the required convergence properties by
Proposition 3.2 and is unitarily invariant. Letting v equal to the limiting spectral measure of H(P?),
and noting for N =2

L =1+2VTVI-T,

the proof now proceeds by calculation. From the results of [41, Equation (18)], m, (z) satisfies the fixed
point equation

Tzmy(2)> + (1 =2 = 2)m, () + 1 = 0.
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Inserting the definition of #,(z) and simplifying yields
T6,(2)* + (1= )i (z) + 1 =T =0.

Taking the limit as z goes to E, and utilizing the square root decay of v at E, yields

2
(ma% %i)ﬂhﬁM&F =

Hence, a phase transition in the largest eigenvalue of H(#) occurs for 8 > 4/T'/(1 —T'). We can solve
for the inverse of 1,(z) by substituting z = £, ' (w) into the polynomial fixed point equation for 7,(z),

1-T
6 w)=1+Tw+ .

Assuming 6 > /T'/(1 —T') and inserting w = 1/6 gives the location of the spiked eigenvalue of H(P),

1 r
p:t;l(g) =1+5+(1—F)6.

Differentiating the fixed point equation of #,(z) gives the following fixed point equation for #,,(z)

2ty (2) + 1 = 2)t)(2) = t,(2) = 0.

Substituting p yields
1 1
P =50 0(1-p) T—-2(1-T)
and hence
0+1 0+1 02(1-T)-T
Cpr(p) 62 1+L+(1-D)
which concludes the proof. O

Remark 5.4. The same analysis has been performed on A(P) [4,29,48,49]. Under this setting, we have
the almost sure convergence [5, Section 3.2]

(9+1)(1+g) if 6 > VT,

L{AP)} —
(1+ \T ) 2 otherwise,
and
5
2 | —%  ife> T,
(m{ae)})| = 71+7
0 otherwise.

When0<T < %, we have \/I'/(1-T) > VT, and it is possible to choose 6 such that

VF<HSJT§?. (5.3)
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Comparing the phase transition for the harmonic mean given in Theorem 5.3 and that for the arithmetic

mean given in Remark 5.4, we see that when 6 satisfies Equation (5.3), Theorem 5.3 and Remark 5.4
imply the almost sure convergence

(v ) 0.

2 -5
(v {a@)o)f - .
6

This means that for low signal strength 6, v; {H(P)} fails to have any relationship with v.

On the other hand, when 6 > +/T"/(1 — I) the leading eigenvectors of both H(#) and A(#) have some
relationship with v in the limit as p/T — I'. We observe that

)
l-3 6+1 (1-D)-T (1 + )2 o
1+5 0 PA-D+0+T (1+5)0{62(1-T)+0+T}

(A

(vi{H®)}.v)

lim
p.T—o0

so that the leading eigenvector of A(#) functions as a better estimator, asymptotically, for all possible
values of 6.

Compare this result with the bound predicted by solely analyzing the upper bounds obtained from
the Davis-Kahan Theorem. That is, taking 1;(X) — 2,(X) = 6 in Equation (5.1), we have

“vl{H(P)} - VH < w when (vi{H(P)},v) >0, and
3
Hvl {A(P)} - VH < w when (vi{A(P)},v) > 0.

Since the condition number of X is 1 + 6, by Proposition 3.4 we have

: IH(P) - Z|| 2+NT
lim sup ———————— < 1 whenever 8 < - 1.
p.T—oo [|A(P) - X 2V1-T

In order for [(vi {A(P)},v)|? /> 0, we would need 6 > VT. Notice that as T — 1/2,

2 4T 1 1
im 22 il im vE= L
F—>%2V]—F 2 F—>% \/E

It follows that there exist values of # and I' for which the Davis-Kahan theorem predicts that the
harmonic mean yields better eigenvector recovery than the arithmetic mean, even though v {H(%)}
has no asymptotic relationship to v while v; {A(P)} does.

6. Experiments

Our theoretical results presented above are asymptotic, so we complement them here with a brief in-
vestigation of the empirical finite-sample performance of the harmonic and arithmetic matrix means
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Figure 1. Operator norm relative error || —Z||/||Z|| as a function of the condition number parameter b for different
choices of the data dimension p. The plot compares the arithmetic matrix mean (red), the Fisher-Sun estimator
(green) and the harmonic matrix mean (blue). Each point is the mean of 20 independent trials, with the shaded
regions indicating two standard deviations.

and related estimators. We begin by comparing the operator norm error of the arithmetic and har-
monic matrix means in recovering the true covariance matrix. We generate a random covariance matrix
Y = UDUT € RP*P by choosing U € RP*P according to Haar measure on the orthogonal matrices and
populating the entries of the diagonal matrix D with i.i.d. draws from the uniform distribution on the
interval [1,b]. The parameter b > 1 serves as a proxy for the condition number of X (e.g., b =1 cor-
responds to X =1I). We then draw T = 4p independent mean 0 normal random vectors with covariance
matrix X. Splitting these T random vectors into two equal size samples of size n = T /2, we compute the
harmonic mean of the two resulting sample covariances. We compare the performance of this estimator
to the sample covariance matrix of the full sample (i.e., the arithmetic mean of the two splits). We also
include, for the sake of comparison, the shrinkage estimator proposed by Fisher and Sun [28] specifi-
cally for normal data in the high-dimensional setting, which should improve on the sample covariance
matrix. Similar to the scheme originally proposed by Ledoit and Wolf [36], this estimator is a convex
combination of the sample covariance matrix and a target matrix, which we take here to be the identity.

Figures 1 and 2 display, for various choices of the dimension p and the condition number b, the
operator norm relative error in recovering X for these three estimators. Over a wide range of condition
numbers, the harmonic mean yields a better estimate of the population covariance X than does the arith-
metic mean, but does not manage to match the performance of the Fisher-Sun regularized estimator.
Unsurprisingly, when the regularization target matrix is close to the truth, as is the case when the con-

b=1 b=5 b=10 b=50
S0 i P D A method
'*_.__*—f——.—.—.
g e (Ee T e ® AM
= 05- _= o e < AMreg
° <« HM
4

0.0,._'\’\0—-0—-0—.—.
30 100 300 1000 30 100 300 1000 30 100 300 1000 30 100 300 1000
Data Dimension (log scale)

Figure 2. Operator norm relative error in recovering the true covariance matrix X as a function of the data dimen-
sion for different choices of condition number parameter b for the arithmetic mean (red), Fisher-Sun regularized
sample covariance (green) and harmonic mean (blue). Each point is the mean of 20 independent trials, with the
shaded regions indicating two standard deviations.
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Figure 3. Operator norm relative error in recovering the true covariance matrix X as a function of the number of
normal samples, parameterized by ¢, for different choices of the data dimension p and the condition number b. for
the arithmetic mean (red), Fisher-Sun regularization of the arithmetic mean (green), and harmonic mean (blue).
Each point is the mean of 20 independent trials, with the shaded regions indicating two standard deviations.

dition number b is close to 1, regularization yields an especially large improvement in estimation error,
but the gap between the harmonic mean and the Fisher-Sun estimator narrows substantially as soon
as the condition number becomes even moderately large, corresponding to the population covariance
matrix being far from the identity. In keeping with Proposition 3.4, which suggests that we should only
expect the harmonic mean to yield improvement over the arithmetic mean for suitably small condi-
tion numbers, the size of the improvement of harmonic mean over the (unregularized) arithmetic mean
does appear to shrink as the condition number increases. Note that performance stabilizes as b and p
increase because we are assessing the estimators according to relative error, not because the problem is
necessarily becoming easier for larger values of these parameters.

It is natural to ask how these estimators compare as the number of observations vary. Toward that end,
consider the same experimental setup discussed above, but taking [2¢gp] samples, with ¢ > 1 to ensure
that splitting the observations into two samples yields two invertible sample covariances. Larger values
of g correspond, roughly, to better-conditioned sample covariance matrices. Figure 3 shows how the
three estimators of the population matrix mean compare as a function of this parameter ¢ for different
choices of the dimension p and condition number 5. We see that as the number of samples increases
(i.e., as g increases), the improvement of the harmonic mean over the arithmetic mean decreases. This
is in keeping with Proposition 3.2 as well as the intuition that as the number of samples increases,
the sample covariance becomes a more stable (though still not consistent) estimate of the population
covariance.

In Section 4, we saw that in the N = 2 case, the matrix harmonic mean H could be further im-
proved by Rao-Blackwellization. Thus, we have four possible estimates of the population covariance:
the arithmetic mean, the Fisher-Sun regularization of the arithmetic mean, the harmonic mean and the
Rao-Blackwellization of the harmonic mean. Figure 4 compares these four different estimators, under
the same experimental setup as the one described above. The plot shows that Rao-Blackwellizing the
harmonic mean does little to change its behavior. Indeed, the performance of the harmonic mean and
its Rao-Blackwellization are so similar that their lines overlap in the plot. As in the plots above, the
arithmetic mean performs more poorly as an estimator compared to the harmonic mean, but regular-
ization using the method of Fisher and Sun improves its performance over that of the harmonic mean,
if only slightly.

We close by briefly exploring the eigenvector recovery results discussed in Section 5. Recall that the
spiked eigenvector estimation problem considered in that section concerns Wishart matrices with co-
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Figure 4. Operator norm relative error in recovering the true covariance matrix X as a function of the condition
number b for different choices the data dimension p for the arithmetic mean (red), Fisher-Sun regularization of
the arithmetic mean (green), harmonic mean (blue) and Rao-Blackwellized harmonic mean (purple). Each point is
the mean of 20 independent trials, with the shaded regions indicating two standard deviations. Note that the lines
corresponding to the harmonic mean and its Rao-Blackwellization overlap.

variance X = I+ 60vv*, where 6 > 0 and v € RP has unit norm, and the goal is to recover the spike eigen-
vector v based on N =2 Wishart matrices, each constructed on n independent mean-0 covariance-X
normals. Theorem 5.3 and Remark 5.4 predict that (in the large-p limit) as 6 increases, the absolute
value of the inner products between v and the leading eigenvector of both the arithmetic and the har-
monic mean increase to 1. Further, this behavior undergoes a phase transition-like change, the location
of which is determined by I' = lim p/Nn. In particular the arithmetic mean undergoes its phase tran-
sition at 8 = VT, and the harmonic mean undergoing its phase transition at § = y/T/(1 — ). Figure 5
examines this behavior in the finite-sample regime.

Consider a pair of independent Wishart matrices, each based on n = 4000 independent normals of
dimension p = 2000 with mean 0 and covariance X =1 + 6vv* where 6 > 0 and v € R? has unit norm.
That is, we are under the setting of Theorem 5.3, with N =2 and I" = p/Nn = 1/4. Having generated two
such Wisharts, we can compute the arithmetic and harmonic means of these two covariance matrices
and compare, for each of these two different means, how well the leading eigenvector ¥ estimates
the true spike eigenvector v, as measured by |(7,v)|. Figure 5 summarizes this experiment. The plot
shows, for both the arithmetic (red) and the harmonic (blue) matrix means, the recovery of the spike
v by the leading eigenvector of the matrix mean, as a function of the signal strength 6 > 0. Each
data point is the mean of twenty independent trials, with error bars indicating two standard errors of
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Figure 5. Recovery of the spike eigenvector v, as measured by the absolute value of the inner product between v
and the leading eigenvector of the arithmetic matrix mean (red) and the harmonic matrix mean (blue), as a function
of the signal strength 6. Each data point is the mean of twenty independent trials, with error bars indicating two
standard errors of the mean.
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the mean. With T = 1/4, the theory presented in Section 5 predicts that in the large-p limit, below
6 = 1/v3 ~ 0.577, the inner product between the leading eigenvector of the harmonic mean with v
should be close to zero. Similarly, in the case of the arithmetic mean, the inner product between v
and the leading eigenvector of the arithmetic mean should be close to zero below 6 = 1/2. Of course,
Figure 5 reflects this inner product for the finite-sample setting p = 2000. Nonetheless, examining the
plot, we see that the predictions of Section 5 are borne out. Both the arithmetic and harmonic mean
improve in their detection of the spike as 6 increases, with the arithmetic mean appearing to detect the
spike eigenvector before the harmonic mean does. Also as predicted by the theory, the arithmetic mean
maintains better estimation of the leading eigenvector at all values of 6.

7. Discussion

The results presented here seem to contradict our intuition about matrix estimation under various matrix
norms. It is common in the literature to measure the quality of an estimator £ by the limit of the
Frobenius norm error || — X||, and shrinkage estimators such as [36] are designed to minimize this
quantity. Since the operator norm is bounded above by the Frobenius norm, controlling the Frobenius
norm error is sufficient to control the operator norm. However, in the high-dimensional regime, these
arguments become more subtle. One must often normalize the Frobenius norm by the matrix dimension
to ensure convergence and obtain a sensible asymptotic analysis. Typically, this normalization takes the

[N . Ll .
form p~2||X — Z||p. The analogous operator norm quantity, p~2||X — X||, converges to zero in many

common settmgs rendering the upper bound in terms of P~ 2 1% - 2|F (asymptotlcally) trivial. For
example, when £ is Wishart-distributed (as happens when £ is a sample covariance), || - Z|| = O(1).
Thus, obtaining non-trivial bounds on I -2 requires direct analysis rather than a Frobenius norm
bound.

Ultimately, the choice to analyze the operator norm error as opposed to the Frobenius norm error or
some other matrix norm is guided by the inference task at hand, and the available information about
the population covariance X that one wishes to capture in the estimator £. For the task of recovering
the leading eigenvector(s) of Z, the operator norm takes a more prominent role due to the Davis-Kahan
inequality, but here again the resulting bound need not be tight, and the resulting bound on eigenvector
recovery may be trivial.

In summary, our results highlight the ways in which the harmonic mean H(#) may outperform the
arithmetic mean A(#) as an estimator of the population covariance X:

e Under certain conditions on X, the operator norm error of H(P) is better than that of A(P).
In particular, when X = I, the normalized Frobenius norm error of H(P) matches that of A(P),
despite H(#) not being optimized for the Frobenius norm loss. We have observed similar behavior
empirically when X is close but not equal to the identity.

e For a spiked model £ =1+ 0vv*, there is a range of values of 6 for which the eigenvector recovery
using H(P) is always worse than that obtained using A(#), even though H(%P) provides a better
operator norm error than A(P).

We are not aware of any other estimators with these two properties, let alone of one that has the
interpretation of being a mean with respect to a different geometry. Moreover, the fact that H(#) can
be interpreted as the result of a data-splitting procedure suggests the possibility of other procedures
with similar interpretations that improve over classical estimators in the high-dimensional regime. The
Rao-Blackwellization of H(#) shows that, for the purpose of covariance estimation, a similar or better
improvement over A(%) can also be achieved by a suitably-chosen scalar multiple of A(#). While this
shows that H(#) has better-performing alternatives in practice, our results shed light on the behavior of
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different means in high dimensions, opening the door to future work and a better understanding other
measures of matrix estimation error.

Our original reason for investigating other matrix means was the problem of misaligned observa-
tions, as happens in brain imaging data. In such settings, pooling the raw data is not feasible, (e.g.,
the underlying time series of resting state fMRI imaging), since observations cannot be aligned across
samples. We initially believed that H(#) outperforming A(#) empirically was a consequence of this
setting, but surprisingly found it to be the case even in the classic covariance estimation problem with
no misalignment. The results presented here are only a partial explanation of this phenomenon, and
a better understanding of the various matrix means in both the aligned and the misaligned settings in
high dimensions warrants further study.

Appendix A: Technical results

Lemma A.1. ForeveryO<a<bandk > 1,

=y .
a+b\kHt i 1 —1 2j\ (b-a\¥*? 1
2 = iJ\b+a) 22

Proof. This identity is a well-known expression for the moments of the Marcenko-Pastur law, aside
from changing the support of the distribution. We include a proof for the sake of completeness. The

change of variables
2 a+b
u= X -
b—a 2
makes the above integral equal to

(5 L (5

and expanding, this is equal to

S ) e

J=0 2 2

/ Vo -x)(x—a)dx=

N|=|

Each odd j vanishes by symmetry, yielding

S e L

This integral with respect to u is well-known and can be evaluated either through trigonometric substi-
tution u = sin @ and repeatedly integrating by parts, or by using evenness, changing variables to u = \/v
and relating the resulting integral to the Beta function. We obtain

1
/ IV1 —u? du—22/+l( )J—+1
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Inserting this into the previous expression, the quantity of interest becomes

ELEJ k=1) (b=a\¥?(a+b\*"¥ 2j\ 1 1 -
2 = 2j 2 2 J]j+12%°

The following are results from [33]. Let A be a fixed p X p positive definite matrix.

Definition A.2 (Multivariate Beta). A random p X p positive definite random matrix L is said to
follow a multivariate Beta distribution with parameters p, ny, np and A if its density obeys

nj-p-1 ny-p-1
det({)” 2 det(A-¢)" 2
fL(f) = Knl,nz ( ) (’\E—P—]) ) , 0<C€=xA,
det(A) ™ 2
K - FP(%)
ny,ny «— )
PR ()T () (A1)
P .
pp-1) i—1
Ipx):=n"1 l—llr(x— 7 )
i=
N :=ny +ny,

we denote this distribution as B(p;ny,no; A).
The following result appears as Corollary 3.3 (ii) in [33]. We restate it here for ease of reference.

Theorem A.3. Let T be an arbitrary p X p deterministic matrix. Suppose the matrix L is distributed
as B(p;ny,ny; A) then

ni

A N )

[{n1(N +1) = 2}ATA + m{(ATA)" + Tr(AT)A}], (A2)

where N = nj + ny.

Appendix B: Strong asymptotic freeness for real Wishart matrices

Let X; € RP*" with 1 <i < N be a sequence of random matrices with independent standard Gaussian
entries and define W; = Xl-Xl.T /n; as a sequence of i.i.d Wishart random matrices. Assume that p/n; —
vi >0 as p — co. We make use of free probability for what follows, for an overview see [46]. Let
(A, |l - ll.a,* ¢) be a non-commutative C*-probability space with faithful tracial state ¢ such that there
is a sequence of non-commutative freely independent free Poisson random variables {p;}i<j<y C A
whose marginal distributions are

¢(pf)=/kaﬂMp,yj(dx), 1<j<N, k=x1,

where pimpy; is the MarCenko-Pastur law with parameter y;. The space of non-commutative -
polynomials of N variables are non-commutative polynomials with complex coefficients in variables
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1, ..., 2N and zi‘, e, z;‘\,. We wish to show that for any non-commutative *-polynomial Q in we have
the following almost sure convergence

Jim [[OWr,. . W)l = 119, Pl

as discussed in the proof of Proposition 3.2, this is the only result needed to extend the result of
Proposition 3.2 from complex Wishart random matrices to real Wishart random matrices, the details
of which are in [41, Remark 3].

This result will the follow from the recent result [27, Theorem 3.2], which we restate here. Suppose

s, ..., 5N € A are a sequence of freely independent free semicircular elements, that is,
o= [ V=
i R 2 ’
and yy,...,yq € A are fixed with {s; }; <; < free from {y; }1<;<4 and G1,... Gy are ani.i.d sequence of

M x M GOE random matrices (real symmetric matrices with centered Gaussian entries with variance
1/M off the diagonal and 2/M on the diagonal) and let 1,. .. Y, be a sequence of M x M deterministic
matrices such that sup,, - sup; ., ||¥;|| < C for some constant C > 0 and for any *-polynomial P in g
non-commutative variables, we have

. 1
A/}]E]oo i TrP(Y1,....Y,) = ¢[P(y1,. . .,yq)] ,
Jim [[POG, X = 1PG- gl

then for any non-commutative polynomial Q in N + g variables, we have the almost sure convergence

. 1
lim —TrQ(Gy,....Gn. ... . Y) =[0G, . .58 Y14 g)] s
M—co M
A/}igloo 1Q(Gy,....Gn Y1, . X))l = ||Q(51,. SN Vs - .,yq)”ﬂ.
We now follow the method outlined in [43, Section 9.2] to obtain the result we need from the result

of [27] as follows. Let 04 be an s X s matrix of 0’s and let 0, ; be an s X ¢ matrix of 0’s and let the
parameter M =p + Y, ]N: 1 1; and define the sequence of M X M block matrices

M) _ 7 Ip 0p.01-p
0 ,OP,M—p Or—p
0,
0.1
M) = L= M 1<j<N,
J I,
OZII\'\]:jH Nk
where in the definition of e;M), 1 < j < N, the omitted entries are all 0. Let Gy,...,Gxn be a sequence
of i.i.d M x M GOE matrices. Now consider the matrices
1 . M
—X; = |—eG M, 1<j<N,
Vi N
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note that the only non-zero entries of the matrix X 7 1s a p X n; block matrix in the first p rows and the

columns from p+ 1+ Z;;ll ngtop+ Zi:l ny and the distribution of this block matrix is identical to that

of =X 7. We now use the result of the previous paragraph to show convergence of *-polynomials of

Vij
V%X i (with the matrices {eE.M)}l <j<N playing the role of the deterministic matrices ¥;). The remain-

ing part of the proof of strong freeness of Wy, ..., Wy follows from block matrix manipulations, where
the polynomials of V%X ;i are used to produce polynomials in W;. These calculations are essentially

the same as those described in [43, Lemmas 9.3-5] which did these manipulations for GUE (complex
Hermitian Gaussian matrices) matrices instead of GOE matrices and proved the strong freeness for
complex Wisharts as a Corollary to their main result [43, Theorem 1.6]. One additional adjustment
is needed, since the results of [43] concern Wishart matrices of the form p = rd and n; = s;d, where
d — oo and r and s; are fixed positive integers. These can be adapted to the present setting in the same

way that we adjusted the block matrices {e;.M)}o <j<N above, and the remaining arguments go through
similarly with only cosmetic changes to the original proof. Details are omitted for the sake of brevity.
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