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1 | INTRODUCTION

Wolfgang Bangerth? © |
| Patrick D. Shipman® |

Derek R. Handwerk® |
Richard G. Finke3

Abstract

In order to quantitatively predict nano- as well as other particle-size distributions,
one needs to have both a mathematical model and estimates of the parameters that
appear in these models. Here, we show how one can use Bayesian inversion to
obtain statistical estimates for the parameters that appear in recently derived
mechanism-enabled population balance models (ME-PBM) of nanoparticle growth.
The Bayesian approach addresses the question of “how well do we know our param-
eters, along with their uncertainties?.” The results reveal that Bayesian inversion sta-
tistical analysis on an example, prototype Ir(0), nanoparticle formation system allows
one to estimate not just the most likely rate constants and other parameter values,
but also their SDs, confidence intervals, and other statistical information. Moreover,
knowing the reliability of the mechanistic model's parameters in turn helps inform
one about the reliability of the proposed mechanism, as well as the reliability of its
predictions. The paper can also be seen as a tutorial with the additional goal of
achieving a “Gold Standard” Bayesian inversion ME-PBM benchmark that others can
use as a control to check their own use of this methodology for other systems of
interest throughout nature. Overall, the results provide strong support for the
hypothesis that there is substantial value in using a Bayesian inversion methodology

for parameter estimation in particle formation systems.

KEYWORDS
Bayesian inversion, kinetics and mechanism, nanoparticles, nucleation and growth, particle
size distribution, population balance modeling

Fundamentally, control of nanoparticle size and PSDs requires

two basic items: (i) an understanding of particle formation mechanisms

Nanoparticles are widely used in homogeneous and heterogeneous
catalysis,l’4 as light-emitting diodes,”® and in solar cells,”*2 to mention
just a few among many more important examples.’® In nearly every case,
the desired application is dependent on the particle size and particle-size
distribution (PSD).2**® It is perhaps not surprising, then, that attempts at
developing conceptual and mathematical models for nanoparticle PSDs

date back at least 56 and likely more than 100 years.241”

that is, the mechanisms of nucleation, growth and agglomeration and,
then, (ii) a mathematical model that allows computation of PSDs in a
way that is consistent with that experimentally derived mechanistic
knowledge. Presently, the first requirement is satisfied by the avail-
ability of five classes of disproof—based,18 hence more reliable, deliber-
ately minimum particle-formation mechanisms developed over the

past 25 years expressed in composite, pseudo-elementary step
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form.2~2* (For more information on and the use of pseudo-
elementary steps [PESteps], the reader is directed to Watzky and
Finke,'? Field and Noyes??). Little appreciated at present is that a total
of 296 separate PEStep mechanisms are now available if one also
includes important work on the role of nanoparticle ligands from
Karim's group.?® The second requirement of a mathematical way to
compute PSDs has been available for some time and is known as a
“population balance model” (PBM). The general approach of con-
structing a PBM is based on its successful use in chemical engineering
and statistical physics any time a distribution of objects is pre-
Sent.17,27730

However, what has not been available until recently was the com-
bination of the experimentally based, minimum mechanisms for parti-
cle formation with the PBM methodology, what we have recently
labeled as a “mechanism-enabled” population-based model and
modeling (ME-PBM and ME-PB modeling).3~3* ME-PBMs are derived
using the law of mass action and faithfully represent a particular,
experimentally determined, pseudo-elementary step mechanism. ME-
PBMs yield realistic PSDs, including the shape of the PSD.32733 These
models have parameters, such as reaction rate constants and a
particle-size-distinguishing (“cut-off”) parameter, that are a priori
unknown and need to be determined with a sufficient degree of cer-
tainty to ensure predictions of useful accuracy. Determining if the
parameters are well defined can also serve as a critical test of the pro-
posed mechanism. It is determining these crucial parameters of the
ME-PBM, and what they in turn tell about the input mechanism, that
are the focus of the present contribution.
19,31,32 is

A prototypical Ir(0), nanoparticle formation system

n

where we first developed a ME-PBM able to describe how the con-
centrations of nanoparticles evolve over time, specifically how the

PSD, not just the average particle size, evolves over time. We showed

that for the Ir(0), system, only a “4-step mechanism”2*

31

and a newly
discovered “3-step mechanism”>" are capable of producing PSDs that
reasonably matched experimental data. Eleven other hypothesized
mechanisms were tested but found unable to match the experimental
PSD, thereby disproving their applicability to the Ir(0), system. A key
finding in our prior work is that it was possible to predict the observed
narrow PSDs when (i) inputting the experimental finding that nucle-
ation is continuous, and (ii) when the growth rates of the small parti-
cles are faster than those of larger particles.31"3® Given this success
with the iridium nanoparticle model system, our efforts in the rest of
this paper will be based on this prototype, Ir(0), system.

In our previous work,32~3% we proceeded by asking what set of
parameters vyields predictions that are as close as possible to actual
measured PSDs? This is an optimization problem which is readily
solved once we define exactly what we mean by “as close as possi-
ble.” Noteworthy here is that finding a “best-fit set of parameters”
does not tell us anything about how certain we can actually be about
those parameters. It is possible that the data allow us to determine
parameter values to just a few percent accuracy; but it is also possible
that a wide range of values would all have yielded essentially the same
predictions. In these latter cases, the data are uninformative about the

values of certain parameters because the (observed part of the) model

is insensitive to variations in their values. Yet, even though a particular
set of parameters might have had little effect on the quantities we
measured, it is also possible that these parameters are important in
other situations (say, at higher or lower reaction temperatures, or if
one were to run the reaction for substantially longer times). Being able
to accurately predict reaction outcomes for a broad range of condi-
tions requires us to at least know which parameters we know well
and which are poorly determined.

Herein we therefore address this critical question of how well do
we know our parameter estimates, along with their error estimates? We
adapt techniques from the statistical and mathematical sciences that
help us seek a probability distribution in parameter space that does
not just identify the one most likely set of parameter values or that
which gives the best fit, but instead a probability distribution that tells
us how likely different parameter values are. In other words, we do not
just want to know the most likely parameter values, but also their
SDs, confidence intervals, and other statistical properties such as the
presence of long tails when desired. In particular, we want to quantify
the uncertainty in our parameter estimates. The approach we will dis-
cuss below is typically called a “probabilistic” or “Bayesian inverse”
problem. Bayesian inversion is a key statistical way to enforce
Ockham's razor,® a critical component of disproof-based, hence more
rigorous construction, development, and refinement of a minimum,
more reliable chemical mechanism. Bayesian inversion such as what
we present below has proven to be very useful over the last twenty
or so years in other disciplines, including the geosciences,®
hydrology,®® and astronomy.®” As a consequence there are now intro-

ductory textbooks3837

as well as tutorial-style articles available to
interested readers who wish to know more about Bayesian inversion
methodology.*®~#2 A literature review*3~#’ teaches that the Bayesian
inversion framework has been used in chemistry, specifically in com-
bustion chemistry and associated mechanisms as well as in
chemometrics, forensic sciences, medical testing, microbiology/DNA
analysis, chromatography and mass spectrometry, environmental
chemistry, and occupational health and safety, among other areas as
detailed by Hibbert and Armstrong in their highly recommended
reviews.’>>! However, the Bayesian inversion approach is still not
widely employed in mechanistic chemistry in general and there is little
to no use in nanoparticle chemistry and mechanisms to the best of
our knowledge.”

Herein we apply the Bayesian inversion method to the analysis of
the experimental kinetics and PSD data according to the previously
developed ME-PBM models.3"3% The key points we demonstrate in
this paper are the following:

1. The use of the Bayesian inversion method with ME-PBM models.
In particular, we demonstrate that we can not only infer model
parameters  quantitatively, but also provide parameter
uncertainties—and hence parameter reliability estimates—while
performing a global analysis and fitting all of the available particle
formation kinetics and PSD data.

2. The use of the resultant parameters from the Bayesian inversion

ME-PBM method, specifically their use to judge the apparent



LONG ET AL.

Journal of

_WILEY_L_2®

reliability/correctness of the input mechanistic model. Our results
are consistent with and strongly supportive of the notion that
Bayesian inversion methods are critical for judging whether or not
one has a model with too many, poorly determined parameters
(e.g., if overfitting is an issue) or if one has the desired minimalistic,
“Ockham's-razor-obeying” model according to the Bayesian inver-
sion statistical method, and also if significant parameter correla-
tions exist. In short, the results which follow demonstrate that
Bayesian inversion methodology is a significant help in selecting
the “correct” parameters as well as the “correct” underlying mech-
anism from among those considered.

3. The approach we develop below to estimating the model's param-
eters is more general and equally applicable to other systems as
well, systems that are a focus of additional work in progress that
will be published separately in due course.

4. As such, the present work also goes far toward the important goal
of achieving a “Gold Standard” benchmark (i.e., a “Ground Truth”)
in ME-PBM fortified by Bayesian statistical methods that others
can, therefore, use as a control to check on their own use of the

Bayesian methodology.

Our results strongly support the hypothesis that Bayesian inver-
sion expands significantly on the use of ME-PBM for nanoparticle for-
mulation and one's ability to examine in a critical and reliable way the
many plausible models and their parameters.

Outline of this paper. First, in Section 2, we will briefly explain the
chemical background of the formation of iridium nanoparticles, a
corresponding mathematical model, and the kind of experimental data
we have for the nanoparticle formation, especially PSD versus time
data. This section also briefly discusses the parameters that appear in
the mathematical model. Section 3 will cover the techniques we use
to infer both the most likely values for these parameters, as well as
statistical uncertainties. Section 4 will then show what we find with
these techniques and then discuss how the results can be interpreted
to meaningfully relate to the iridium nanoparticle system. Finally, Sec-
tion 5 contains our conclusions of how these statistical results provide
evidence that a 3-step mechanism is the minimal chemical mechanism
required to predict the PSDs observed in at least the prototype irid-
ium nanoparticle system. Information available in Appendix: First, in
Appendix A we discuss an alternative formulation of the so-called
“likelihood” described in Section 3.2.1; Appendix B contains a detailed

account of how our Bayesian inversion analysis was conducted.

2 | IR(O)y NANOPARTICLE FORMATION

Let us start our discussions by outlining the chemical basis for our
mathematical models of nanoparticle formation. Specifically, we
examine a nanoparticle system in which {(1,5—COD)Ir'~POM}87 is
reduced under H,. (Here and below, POM = polyoxometalate,
P,W15Nb3O4,°~ and 1,5—COD is 1,5-cyclooctadiene, CgHqp.) Our
ME-PBM approach to accurately accounting for the PSD entails

breaking the reaction down into pseudo-elementary steps describing

HEMISTRY

nucleation, growth, and any agglomeration of the nanoparticles. We
will address these in the following two subsections along with a con-
crete, mathematical ME-PBM model followed by a discussion about

the data we have available to estimate the model's parameters.

2.1 | Nucleation of nanoparticles
Using the experimental finding of continuous nucleation®—as opposed to
the now disproved®>~4” theory of classical nucleation theory as employed

for so-called “burst nucleation models”®

—we are able to start the particle
formation process off with the correct critical first steps at a nearly ele-
mentary step level, notably via the experimentally identified “alternative
termolecular” nucleation mechanism.®” We can then use that known
nucleation mechanism with different combinations of pseudo-elementary
steps for growth and any agglomeration.32 The previously deduced mini-
mal mechanism, dubbed the “alternative 3-step” mechanism, was previ-
ously shown to be capable of matching the shape of experimental
PSDs.®! The nucleation mechanism of Ir(0),, so identified is illustrated
by the following reactions, consisting of a fast, prior equilibrium step,
and continuous nucleation that is overall third-order in iridium:

k
2[(COD)Ir- POM]®~ +4so|vké 2[(COD)lr(solv),] " +2POM’,
b

2 [(COD)Ir(soIv)z} " +[(COD)Ir- POM]S’ +7.5H; LN Ir(0); + POM?~ 4+ 3H*
+3cyclooctane + 4solv.

For brevity, we will in the following denote the precursor
[(COD)Ir-POMJ®” by “A,” the solvated complex, [(COD)Ir(solv),]",
as A(solv),, the ligand, POM?~, as “L,” and (small) particles consisting
of iridium(0) atoms generally as “B.” The nucleation mechanism above

can, then, equivalently be written as

k
2{A~ L+2so|vk:’A(so|v)2 + L},
b

2A(solv), +A-L % By + L+ 4solv.

In the formulas above, the symbols k- indicate reaction rate con-
stants. It will be important for the following to note that k and kj, are
not independent; rather, their ratio can be determined by measuring
the equilibrium concentrations of the quantities involved in the reac-
tion, and has been determined experimentally to be k¢/k,~5 x
107" molL! (25°C); see reference 70 of Handwerk et al.3?

2.2 | Nanoparticle growth and agglomeration
mechanisms

The nucleation mechanism described in the previous section provides an
experimentally based model for the critical question of how does a particle
form in the first place? But, we also need to model what happens to each

and every particle after it is formed. Here we assume, consistently with
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experimental evidence, that growth and possibly agglomeration
(i.e., aggregation) can occur, but that the reverse reactions do not occur.

Our ME-PBM model is then formed from the following processes:

1. Growth: A precursor reacts with a particle of size n (that is, con-
sisting of n precursor molecules), resulting in a particle of
sizen+1.

2. Agglomeration: A particle of size n reacts with a particle of size m,
resulting in a particle of size n+m.

Among the many possibilities of combining these steps, we will in
the following consider only what we will refer to as the “3-step” and
“4-step” mechanisms—see References 31-33 for the evidence that
these are the only models from among twelve considered that can
accurately fit the measured data.

Specifically, the 3-step model is based on our earlier, critical finding
that different size particles grow at different rates.3133 For this, let us
denote by “B” a “small” particle (which we define as having at most M
atoms, including the ones that result from the nucleation mechanism dis-
cussed above) and by “C” a “large” particle (with more than M atoms).
The growth mechanism that augments (1) then reads as follows:

A+B2coL
A+CX15CcHL

The 3-step model above is a simplified, 1-step less, condensed
version of a more complex, 4-step model in which agglomeration due
to small particles does have a substantial influence on the resulting
PSD. This augmented model would then add the following reaction to
(1) and (2)

B+BXcC. (3)

In both of these mechanisms, it is important to remember that both B
and C represent particles of different sizes via a sharp, delta-function at
the size-cutoff parameter, M, an admittedly zeroth-order approximation
of the true growth kernel. The parameter M and its use will become
clearer in the following section where we derive a mathematical description
of these models. For a comprehensive chemical account of these mecha-
nisms, the reader is directed to the References 19-24, 31-33, 69, 70.

2.3 | The mathematical model

As discussed in the Introduction, an important component of being
able to predict nanoparticle properties resulting from a system of
reactions is having a mathematical model that faithfully obeys the
experimental mechanistic evidence. Based on the conceptual model
described in the previous subsection, let us next outline a mathemati-
cal transcription of these ideas. More details about this transcription

can again be found in References 31-33.

The models for both the 3- and 4-step mechanisms are formu-
lated by describing the number (or concentration) of particles of size j
with a function n;(t) and asking how these functions n;(t) evolve over
time. In the data we will use (see Section 2.4 and Figure 1 below), we
observe no particles larger than 4 nm, and consequently only consider
variables n; with j<J=2500. Using the conversion function
—0.3000805;"3, based on published size data for Ir(0);
particles (see figure S1 in Handwerk et al.3Y), a particle size of J=

diameter(})

2500 corresponds to a particle diameter of about 4.0 nm.

To describe all of the species in Equations (1)-(3), let us denote by
ny the concentration of the precursor A, ns the concentration of the
disassociated precursor A(solv),, p the concentration of the ligand L,
n; the concentration of particles of size j, s the concentration of sol-
vent (solv), used in the reaction, and r; = 24677i°'72/i, a function which
limits interactions to the surface atoms of a particle.”> Our models
then lead to the following set of ordinary differential equations for

the 3-step mechanism (1)-(2):

dnq
P 7kfn1s +kypnsp — k1n1n 7k2nizlr,n, kanq Z irin;,
i=3 i=M+1

dns 2

i 7k,:n1s —kpnsp — 2kqnqn,

dt—kfnm 7kbn5p+k1n1n +k2n121r,n,+k3n1 Z irin;,

i=3 i=M+1 (4)

% = klnlnsz — 3’(2”1"3”3,

dn; .

dt =kony {ri-1(j— 1)nj_y —riin; }, 4<j<M,
LUVE Sy ksny(M+1

dr — KemMrvnm — 3m(M+1rmianmet,

dn;

d—g:ksm{rpﬂf*1)"}4*0‘]";}, M+2<j<).
Similarly, for the 4-step mechanism in Equations (1)-(3) the equa-

tions are

dn,
— 7kfn15 +kynsp — k1n1n 7k2nlzlr,n, kanq Z irin;,

dt i=3 i=M+1

% =k¢n15% —kpnsp — 2kqnqn?,

dp
E—kmln kbn5p+k1n1n +k2n121r,n +kzny Z irin;,
i=3 i=M+1
dns
—_k1n1n 3k2n1l’3n373’(4!’3”32",(/(”;(7/(4(3!’3'13) ,
dt P
dn; =kony {r_1(j—1)mj_y —rijn;} — k4r]m12rkknk—k4(ﬂn,) , j=4,5,
dt p
anj -1 i} — karij kni — ks (rijn;)?
P 2n {ria(j—)nj_g —rjin } — 40’1”;;@ i —Ka (riin;)
+kq Z rupn,r,un,, 6<j<M,
pv=j
dn
(;’?1 =kaoniMrynm —ksni (M + 1)rpeanmer +ka Z rupun,rn,,
p+v=M+1
2323
dn; .
d =kany {ri-1(j— 1)nj_1 —r;jn; } +ka Z rupnrun,,  M+2s<js<).

ptv=j
n23.23

©)
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FIGURE 1 Histograms showing the number of Ir(0), particles measured via transmission electron microscopy at different time points of the

reaction (based on Watzky et al.”%). Particle counts for particles smaller than 1.4 nm are unreliable and are shown in a lighter color. For
comparison, nanoparticles composed of J = 2500 iridium atoms have a size of 4.0 nm

Both Equations (4) and (5) are accompanied by the known initial con-
ditions of ny(0) =0.0012molL1, ny(0) = p(0) =n3(0) =---=n,(0) =0,
matching our initial reaction state in which only precursor, but no
nanoparticles, are present.

The question we would like to answer is what are the values of
the parameters ky,,k1,ko,k3,k4 (reaction rates) and M (the size cut-off
between “small” and “large” particles)? (The solvent concentration s is
a known quantity in this analysis and k¢ is determined by the fixed
ratio k¢/ky ~5x 107" Lmol™! (25°C), see reference 70 in Handwerk
et al.%?) The purpose of this paper is, then and as noted earlier, to
employ Bayesian inversion techniques for determining the values and
the uncertainties in the unknown parameters.

To simplify notation, we will group all of these parameters into
sets Ka_step = {kb,k1,k2,k3,M} and Ka_gtep = {kp,k1,k2,k3,ks,M}, and
use the vector K to represent a set of parameters when we are talking
about a generic mechanism. In the following, whenever we report
concrete numbers for these parameters, we will imply the following
ko) =L2mol2h7,  [kq]=L%mol2h7?, [ky] =L mol th72,
lks] =L mol *h™?, [ka] =L mol *h~%, [M] = 1. The units here are the

same as published previously.31~32 From here forward all rate and

units:

equilibrium constants will be given without these (known, implied)

units for the sake of simplicity.

24 | Experimentally determined nanoparticle size
distributions

Figure 1 shows measured size distributions for the Ir(0), system

n
described above, for samples taken at different times during the reac-
tion. These data come from the experimental work first provided else-
where.”! The figure shows how many particles fall into size bins of
1 x 10~ nm width, based on measuring the sizes of a sample of parti-
cles as seen in transmission electron microscopy (TEM) images.

The key feature of the data is that the final size distribution is
unimodal and surprisingly narrow, especially if nucleation is continu-
ously occurring and thousands of steps are involved in particle forma-
tion. Understanding the origins of this narrowness continues to be an

important driver of past research, as it would enable many

applications of nanoparticles if their sizes could be predicted and con-
trolled.141567.73

2.5 | How reliable are these data?
In the end, we will want to use the data shown in Figure 1 to infer the
values of the parameters associated with the reactions discussed in
the previous subsections. At the same time, it is clear that we will not
be able to determine parameters more accurately than the accuracy
of the data used for this purpose.

The errors associated with the size distributions shown in the fig-

ure fall into at least three categories:

1. Sampling error: The data shown in the figure represent a random
sample of particles for which transmission electron micrographs
were used to determine their sizes. However, the number of mea-
sured particles is relatively small (246 at 0.918 h, 61 at 1.17 h,
150 at 2.336 h, and 213 at 4.838 h) and it is clear that there is sto-
chastic noise associated with having such a limited number of par-
ticles. Consequently, the PSDs may not adequately represent the
overall, “true” size distribution. In practice, this error manifests in
“jumpy” (as opposed to smooth) histograms, most notably for time
1.17 h where there is limited data to represent what the true size
distribution likely looks like.

2. TEM size threshold: Particles that are too small are not visible in
TEM images. The fact that such particles seem absent in Figure 1
does not imply that they don't exist. A realistic assessment of the
measurement methodology used for the data in Figure 1 suggests
that we can only accurately see particles with sizes greater than
1.4 nm (equivalent to about 100 atoms). As a consequence, our
methodology to match models against measurements will only
include particles of size greater than this threshold, ignoring any
predicted particles below the size threshold that appear absent in
the data.

3. Inaccurate size determination: We measured particle sizes by
assessing their diameter in TEM images. But these images can be

fuzzy, and electron beams may also not be absorbed sufficiently in
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the outer parts of a nanoparticle to clearly delineate the particle
edge. We therefore believe that our determinations of diameters
are only accurate to within £1x 10" nm accuracy at the

very best.

As a consequence of this consideration, all figures in this manu-
script use histograms of particle counts that have bin widths of
1 x 10~1 nm, starting at the threshold of 1.4 nm mentioned above.

We will take all of these sources of error into account in the statis-

tical framework for parameter identification that we will present below.

3 | THEINVERSE PROBLEM

Section 2.3 introduced the mathematical model describing nanoparti-
cle nucleation and growth. It contained reaction rate and cut-off
parameters K which we would like to know accurately so that we can
predict and control the system. Determining these parameters is called
an “inverse problem” or “parameter estimation problem,” and in the
following we will first briefly introduce the traditional “deterministic”
approach to estimating parameters, and then the more general

“Bayesian” perspective we want to follow herein.

3.1 | The “deterministic” inverse problem

Having a model and having data allows us to ask what the values of
the parameters K step and Ki_step in Equation (4) or (5) might
be. Traditionally, this parameter estimation problem is formulated as a
“deterministic inverse problem”—namely, by asking for that set of
parameters that minimizes a function that is often chosen as the
least-squares “misfit™:

(D(K) = Hdatapredicted(K) - datameasured H2 (6)

Here, datapredicted(K) involves solving the forward model for one
of (4) or (5) for the PSD given a set of parameters, and then computing
from it what we would measure—in our case, how many particles we
would find in each size bin.

We have followed this paradigm in Handwerk et al.*2 and found

that for the data shown in Figure 1, the best-fit parameters are’

Kistep = {kp =7.27 x 10%, k3 =6.55 x 10%, k; =1.65 x 10,
ky=5.63x10°, M" =274}

Kistep = {kp =7.27 x 10%, ky =6.40x 10%, k; =1.61x 10,
ky=5.45x10°, k,=1.20x 10", M"=265}.

These “optimal” parameters correspond to the “best fit” of the
model to the data, but this does not mean that the fit is actually
“good.” Indeed, in Handwerk et al.3? we visually determined that only

the 3- and 4-step mechanisms used here can adequately describe the

data, whereas for other proposed mechanisms, the best fit was so
poor that the mechanism could not be considered realistic.

That said, even in cases where we can visually determine that a
given set of optimal parameters leads to a good match between pre-
diction and measurements, we still do not know how accurately we

know these parameters. We will address this in the following section.

3.2 | The “Bayesian” inverse problem
An alternative perspective on the inverse problem is the so-called “Bayes-
ian approach.”38*! |n it, we seek a probability distribution p(K|data)—that
is, the probability that K are the correct parameters given the measured
data. This approach makes intuitive sense given that the data them-
selves are fundamentally stochastic: for example, the size bin data
shown in Figure 1 is based on a randomly chosen subset of particles
whose sizes we have then measured, with the size measurement itself
subject to measurement uncertainties. In other words, if we repeated
measurements we would get different data, and we need to transform
this uncertainty in data space into uncertainty in parameter space.

In order to compute the probability distribution p(K|data), we
make use of Bayes' theorem that states that (see References
38 and 39)

p(K|data) o p, (data|K)ppr (K), (8)

“likelihood”  “prior”

where the “likelihood” describes how likely it would be to observe the
measured data if K were the “true” set of parameters, and the “prior”
encodes what we know a priori about the parameters. The probability
distribution p(K|data) is typically called the “posterior probability”
since it is informed by our measurements, as opposed to the prior.
Since our data is static, we will simplify our notation for the likelihood

function to be

L(K) = p, (data|K).

The posterior in Equation (8) is defined as a proportionality rather
than an equality—that is, the computable right-hand side is a non-
normalized probability density. In practice, this proportionality is suffi-
cient: it allows for comparisons of relative probability density—that is,
is p(K1|data) > p(K;|data) or p(Ki|data) <p(K;|data)—and that is all
our algorithms will need.

In the following subsections, we will discuss the construction of
the likelihood and prior, and then how one can use p(K|data) to make

inferences about parameter values.

3.21 | Thelikelihood
Computing the “likelihood” L(K) implies solving the forward model (4)
or (5) with K, and then comparing its predictions with the measured

data. In the current context, we do this as follows:
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1. Given a particular K, we can solve the forward model (4) or (5)
numerically using a standard ODE integrator to obtain values
njpred(t;;K) for the predicted concentrations of nanoparticles of size
jatt; =0.918, t, =1.170, t3 =2.336, and t4; =4.838 h, where we
choose a notation that makes it explicit that njp'ed depends on the
set of parameters K used to run the forward simulation.

2. From these predicted concentrations nJPred(t,-;K) at time t;, we can
infer the concentrations bf;ed(K) of particles at time t; that fall
within the size range of the #th bin, where we use the size bins
defined in Section 2.5 above. Using these binned concentrations,

we can easily calculate the fraction of particles in the #th bin:

Nbins -1
pis(K (Z bPe (K ) bE(K). %)

where Ny;ns is the number of bins used to group particle sizes.

3. For the likelihood, we then need to determine how likely it is that a
given measurement of particle sizes results from these relative prob-
abilities p; . If a measurement consists of N; particles' sizes grouped
into bins (as in Figure 1), then this process can be understood in
the same way as drawing N; balls of different colors from an urn
with a very large number of balls with known color distribution
(corresponding to p; ).

Our measured data is a set of values measured The question for us
to answer is: How likely is it to get ﬁ{'}e““md particles in bin # at
time i if the probabilities of particles being in these bins are given
by p; »? This likelihood can be computed by the analogy to drawing

balls from an urn, and is given by

Ntotal -

N Nbins Nbins measured
L,(K) o ( total! 'H measured]> H (p'f(K))ﬁ:/ (10)

normalization factor computable
where Niota is the total number of particles in the chemical solu-
tion. The first term cannot be computed because we do not know
Niotal, but is independent of K. Akin to the discussion following
Equation (8), we can ignore this normalization factor, and we are
left with

mes /}msasured

Li(K) o H(P;f(K)) ”
7=1

(11)

4. Finally, we model the likelihood L(K) as the product of the proba-
bilities for finding bins as measured at each of the times as mea-
sured. That is:

L(K) o HL;(K). (12)

Underlying this product structure is the assumption that the measurements
at different times and their errors are statistically independent. This

assumption is justified given that the data obtained at each time point

CHEMISTRY

resulted from the removal of a small amount of reaction products from the
ongoing reaction, and subsequent independent analysis of these samples.
This likelihood can be computed for a given set of parameters K with a bit
of effort, but in a relatively straightforward way. It requires solving
the system of differential Equations (4) or (5), plus the statistical evalu-
ations in Equations (11) and (12).

We end this section by noting that one could have defined the likeli-
hood also in ways that do not use binning. We explore this possibility
in Appendix A.

3.2.2 | The prior probability

The prior probability p,. in Equation (8) encodes what we know a
priori about the parameters. This is often very little. In the current
context, all we really know is that all of these parameters must be

non-negative, and that M = 3. We describe this as follows:

1 ifO<kp < kpmaxandO < k1 < k1 max
andO < ky < kg maxandO < kg < k3 max
and3 <M £ Mpay,

0 otherwise

ppr(KS—step) = (13)

and similar for Ka.step. Kpmax,K2,max;K2,max;Kamax, and Mmay are chosen
large enough that their concrete value does not affect results. In fact,
they could be chosen as infinity.

The prior py(K) is also not normalized, that is, the integral over all
parameter values does not add up to one—and would not even be
finite if the maximal values are chosen as infinity. However, as dis-
cussed previously, the missing normalization constant is of no

consequence.

3.2.3 | Evaluating the posterior probability

The function p(K|data) is, in general, difficult, high dimensional, and
without a closed-form expression (because it involves the solution of
a differential equation). As a consequence, we cannot easily evaluate
quantities of interest such as the mean value and SD of each parame-

ter in K. For example, the mean value k;, in K3.step is

Eb:J J J J j Ky D(kp,k1, ka,ks, M|data) dk, dks dk, dksdM,
(14)

—0o

but this integral cannot be evaluated for lack of a closed-form expres-
sion for p(K|data).

Since such integrals cannot be computed exactly, we must
approximate them. The typical approach to do this is through sampling
using Markov Chain Monte Carlo methods such as the Metropolis-
Hastings sampler or variations thereof. All of these methods
fundamentally start at a point K© and then repeatedly perform the

following steps:
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1. Propose a trial sample Ktrial typically chosen near the current sam-
ple Kcurrent

2. Evaluate the ratio of probabilities,

p (Ktrial |data)

and based on this ratio and other information, either “accept” or
“reject” K. If accepted, it becomes K<™ if rejected the previous
Keurrent is kept. In both cases, K™ is appended to the list of samples
in the chain.

A concise definition of how the Metropolis-Hastings and other
samplers define trial samples, and when they accept them, can be
found in references®’; we will provide an outline of specific choices
we made for the implementation in Appendix B. In any case, because
only the ratio of probabilities is used, it is now clear why the normali-
zation constants in Equations (10) and (13) do not matter, and why in
the definition of (8) it was sufficient to state a proportionality, rather
than an equality.

The end result is a chain of samples, {K(O),K(l),K(z),K(S),...} that
is constructed in such a way that there are many samples where
p(K|data) is large, and few samples where p(K|data) is small. Through
this process we have a representation of the approximate posterior
distribution. It can then be shown that we can approximate

p
Ebz%; k) p<K(”)\data) (15)

using P samples, with similar approximations for the mean values of
the other parameters, as well as for the SDs or other statistical
quantities.

In practice, the approximation gets better the more samples P one
has. We will often want to use many thousands or millions, despite
the fact that the creation of a sample requires the evaluation of the
ratio of probabilities which in turn requires the solution of the forward
model and some statistical evaluations, as discussed in Sections 3.2.1-
3.2.2. In the examples below, we have used several million samples,
each of which required in the range of 1-5s to compute. The overall
computational cost of these evaluations is therefore on the order of a

few CPU years, though one can run many computations in parallel.

4 | RESULTS

Using the data presented in Section 2 and the formalism of the previ-
ous section, we can represent the posterior probability distribution via
a large number of samples in a number of scenarios that we will dis-
cuss in the following. In particular, we will first use this approach to
identify the parameters in the “3-step” mechanism discussed in Sec-
tion 2.3, followed by a discussion of corresponding results for the

“4-step” mechanism.

41 | Inversion based on individual time points

The experiments of Watzky et al.”* and summarized in Section 2 pro-
vided particle counts at four different time points of the reaction, at
t; =0.918,t, =1.170,t3 = 2.336,t, = 4.838h. Yet, our previous explo-
ration of the reaction mechanism determined “best fit” parameters for
K3_step and K4_step Was based only on the last of these time points,
reasoning that all of these parameters must surely affect the outcome
at the last time point to the same or a larger degree as the first three
time points.

But one can question this: maybe one of the reactions is fast, and
the effect of its reaction rate would be visible in one of the earlier
times but its value is no longer important to explain the results at later
times. This reasoning suggests that each of the time points could pro-
vide complementary information that, taken together, would vyield a
better picture of the true parameter values than just considering one
time point.

The Bayesian approach allows us to test this. Instead of
defining the likelihood function in Equation (12) as the product of
likelihoods from all four time points, we can take into account
only one time point i. The first four columns of Figure 1 show the
one-dimensional marginal probability densities derived from the pos-
terior probability density based on just the data from one time
point each.

Indeed, reading each of the rows of the figure left to right shows
that the probability distributions we obtain using data from different
time points are substantially different both from each other, and from
the probability distribution obtained from all data together (shown in
the last column). In other words, each data set contains different,
independent information.

Also, the graphs of the second column (considering only the
data for t;) show marginal probability distributions for most
parameters that are so flat that they do not have substantial mass
within the horizontal range shown in the figure. This is easily
explained since, as discussed in Section 2 (see also Figure 1), we
have very little data at t, compared to the sampling noise,
and this is apparently not enough to substantially constrain
parameter values. As a consequence, using only this time point,
we cannot infer parameter values to any kind of certainty. In
contrast, the probability distributions obtained from time
points t; and t4, for which we have the most data, are narrow and
therefore provide estimates for the parameters with relatively small

uncertainties.

4.2 | Inversion based on all time points jointly

If, as indeed shown above, the data from different time points pro-
vides complementary information, it makes sense to use all of this
information to determine the parameters in our models. The last
column of Figure 2 shows the probability distributions using all time
points jointly by utilizing the likelihood function as originally described
in Equation (12).¥
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ke

0 2x10* 4x10* 0 2x10% 4x10* 0 2x10* 4x10* 0 2x10% 4x10* 0 2x10% 4x10*
k1

0 2x10° 4x10° 0 2x10° 4x10° 0 2x10° 4x10° 0 2x10° 4x10° 0 2x10° 4x10°
ko

0 3x10° 6x10° 0 3x10° 6x10° 0 3x10° 6x10° 0 3x10° 6x10° 0 3x10° 6x10°
k3

0 15 x10* 3x10* 0 1.5x10% 3x10* 0 15 x10* 3x10% 0 1.5x10% 3x10* 0 1.5x10% 3x10%

0 1x102 2x102 0 1x102 2x102 0 1x102 2x102 0 1x102 2x102 0 1x102 2x102

FIGURE 2 One-dimensional marginal probability densities for the parameters in the 3-step mechanism. The first four columns show
probability densities computed using only measured data from one of the four time points each (t; =0.918h, t; = 1.170h, t3 = 2.336h, and

t4 = 4.838h). The last column uses all data jointly. Each column is computed from simulations using 4.408 x 10° samples. All plots in a row use
the same vertical and horizontal scales; plots that look empty simply have a small and very broad probability distribution that may extend beyond

the left and right edges of the plot. (Appendix D and Figure S3 show alternate ways of visualizing the data that underlies this figure.)

The fact that the combined probability distributions are gen-
erally narrower than the ones obtained from the measurements at
individual time points illustrates that using more data helps nar-
row down the uncertainties in how well we know each of the
parameters. Moreover, from the information shown in the figures,
we can provide not only improved estimates of the parameters
(to be compared to those originally reported in Handwerk et al.32
and reproduced in Equation (7) in Section 3.1), but importantly

also their uncertainties:

Kjstep = {kp = (6.6240.75) x 10°, kj =(1.24+0.12) x 10°,
ky = (2.60+0.86) x 10°, k= (6.22+0.25) x 10°,
M" =107 +5}.

(16)

These values are the mean value and SD of the probability distribu-
tions shown in the rightmost column of Figure 1. We note that for all of
the parameters besides k, and k,, the SD is an order of magnitude
lower than the mean value. In other words, the data we have allows

us to infer the parameters with confidence to one digit of accuracy.
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A key conclusion from our previous work is that for the
observed narrow PSDs to form, smaller particles must grow more
quickly than larger particles—that is, k; >ks. The best fit of the
3-step model to the t4 data in Handwerk et al.3? (see Equation (7))
gave kp=1.65x10" and k3=5.63x10° so that 2=293. The
Bayesian approach supports the conclusion that k;, > k3. Indeed, for
the values shown in Equation (16) above, using all four time steps, the
lower bound of the confidence interval for k, namely 1.74 x 10°, is
larger than the upper bound of the confidence interval for k3, namely
6.47 x10%, and the ratio of these parameters’ mean values
is 12 = 26.89.

We can compare the previous data also against what the Bayes-
ian approach would yield when using only the fourth time step. In that

case, we obtain

K steponiyt, = 1k = (2.38£0.48) x 10%, kj =(2.17+£0.34) x 10°,
ky=(1.81+0.37) x 10°, k3 =(1.36+0.25) x 10,
M" =145+ 23}.

Again, the lower bound of the confidence interval for k;, namely
1.44x10°,is larger than the upper bound of the confidence interval
for k3, namely 1.61 x 10%, and the ratio of these values is %:8.94,

close to the previously reported ratio.

4.3 | Assessment for the 4-step mechanism

We can repeat the same process for the 4-step mechanism provided
previously. Figure 3 shows the results of inverting for parameter
values using all time points jointly, for the six parameters in Equa-
tion (5). As before, we can compute mean and SDs for these parame-
ters (again to be compared to those originally reported in Handwerk
et al.>2 and reproduced in Equation (7)):

b 1

0 1x10° 2x10% 0 2x10° 4x10°
kg k,

0 15x10%  3x104 0 3x10° 6x10°

Kistep = {kp = (1.37£:0.13) x 10°, k; =(7.69 +0.86) x 10°,
ky = (1.40+0.10) x 10%, k3 =(7.15+0.32) x 10°, (17)
k,=(174+0.78) x 10°, M =111+14}

Comparing Figure 3 to the rightmost column of Figure 2, we
see many similarities in the probability distributions between the
3- and 4-step models. In particular, the distributions for ky,k1,ks3
are all quite narrow, suggesting both models are sensitive to these
parameters. Conversely, parameters k, and M have qualitatively dif-
ferent probability distributions between the 3- and 4-step models.
Indeed, we see that the 4-step model is more sensitive to k, but
less sensitive to M. In addition to the visual representation of uncer-
tainty, the SDs in Equations (16) and (17) show similar levels of
accuracy for parameters k, and k3—the 4-step model's ki has an
inflated SD due to its heavy tail. Similarly, the SDs for k, and M reflect
the differences in parameter sensitivity between the 3- and 4-step
models.

Finally, we note that the uncertainty in k4 is relatively large, and that
k4 is associated with the agglomeration reaction that distinguishes the
3- and 4-step models. The fact that we have a large uncertainty in this
reaction's rate suggests that this additional reaction is not particularly
important in describing the observed PSD. One can interpret this as
suggesting that the 3-step mechanism is the minimal mechanism that
can explain the data, and that the 4-step mechanism is an unnecessary
complication for the present iridium nanoparticle system.’

44 | Assessing accuracy and uncertainty in model
predictions

It is conceivable that one can obtain narrow parameter distributions

yet the model with these parameters does not reproduce the

2
2x10* 4x10*
M

FIGURE 3 One-dimensional
marginal probabilities for the
parameters in the 4-step mechanism,
using measured data at all four time
points. These probability distributions
are computed using 4.408 x 10°

1x102 2x102

samples
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0 2 4 0 2 4 0 2 4 0 2 4
Size (nm) Size (nm) Size (nm) Size (nm)

4 0 2 4 0 2 4

Size (nm) Size (nm) Size (nm) Size (nm)

FIGURE 4 Comparison of simulation results using (top) the 3-step mechanism with previously published parameters determined using the
deterministic approach (7), (middle) the 3-step mechanism with parameters determined using the Bayesian approach, and (bottom) the 4-step
mechanism with parameters determined using the Bayesian approach. Recall that the previously published values shown in Equation (7) only
considered t4, and so it is no surprise that the top-right figure shows an excellent fit, with worse fits for the other time points. For the bottom
two rows, the orange curve represents particle size predictions obtained using the mean parameters provided in Equations (16) and (17),
respectively. The many black curves represent predictions using 100 parameters K randomly chosen from the probability distribution p(K|data);
this visualization provides an indication of the uncertainty in predictions. As in Figure 1, particles smaller than 1.4 nm are shown in a lighter color

observed PSD—this would be the case if the model is simply unable to
reproduce reality even with the “best” values for the coefficients.
Therefore, it is important to test this possibility. In Figure 4, we com-
pare the simulated PSD using the previously published values for
K;_Step (see Equation 7) to the simulated PSD using the mean values
obtained in our Bayesian analysis for the 3- and 4-step mechanisms
(see Equations 16 and 17).

Our predictions are all reasonably close to the measured data,
and reasonably accurately represent the observed, narrow nano-
particle PSD. Visually, it is difficult to assess whether the 3- or
4-step mechanisms provide better matches for the data,
supporting our conclusion above that the 4-step mechanism may
be an unnecessary complication of the 3-step model. At the same

time, from the lack of fit in the first row for times other than tg, it

is clear that it is important to use all of available data in the fitting pro-
cedure.”

The figure also shows, in thin black lines, predicted PSDs com-
puted with a random subset of 100 parameter values chosen from our
Markov chains. These lines provide a visualization of the spread of
predictions, corresponding to the spread in parameter values, and
illustrate that the parameter distributions result in relatively uniform

predictions.

5 | CONCLUSIONS

In this contribution, we have discussed the use of a Bayesian method-

ology for the estimation of parameters in a mathematical model of



Journal of

LONG ET AL.

2 | WILEY- CHEMISTRY

iridium nanoparticle formation; that is, we have performed “Bayesian
inversion assisted, mechanism-enabled population-balance modeling”
(BIA-ME-PBM).

The Bayesian inversion approach we employ is more complicated
and substantially more computationally expensive than our previous
deterministic approach described in Section 3.1 and previously
reported in References 31-33. At the same time, the BIA-ME-PBM
approach provides valuable insights not available from the determinis-
tic method. Specifically, the deterministic inverse problem does not
provide us with a way to quantify the uncertainty in parameter esti-
mates. Through our discussion in Section 4, we have seen that the
Bayesian approach provides this missing knowledge. Furthermore, the
method not only provides a best-fit value for the parameter k; that
appears in the equation that distinguishes the 3- and 4-step mecha-
nisms, but also a large uncertainty for it. In other words, the details of
the agglomeration reaction (3, vide supra) do not seem to matter
much for fitting the available data; hence, we can interpret this as fur-
ther evidence that the 3-step mechanism, rather than the 4-step
mechanism, is the minimal mechanism able to describe the formation
of Ir(0),, nanoparticles. As a consequence, the Bayesian approach can
also be used as a tool in model selection here mechanistic model
selection.

Quantitatively, the probability distributions for all parameters that
appear in the model, taking into account all available data (see the
rightmost column of Figure 2), are narrow enough to determine all
parameters to approximately one digit of accuracy. Furthermore, our
assessment of the uncertainty in predictions of the model using
uncertain parameters in Figure 4 shows that the parameter ranges we
have identified for all components of K all yield relatively similar pre-
dictions. Together, this allows us to draw two important conclusions

that one cannot obtain from the deterministic inverse problem alone:

1. While the experimental nanoparticle size data shown in Figure 1
contain substantial noise, it is not entirely inadequate for a reason-
able determination of parameter values. Clearly, one always wishes
for better data, in particular more measurements at time t,; better
data generally leads to smaller uncertainties in parameter esti-
mates, and would allow us to determine them to more than around
one digit of accuracy. At the same time, the data shown in Figure 1
allows for reasonably accurate estimates of reaction parameters.

2. The uncertainty in parameters leads to relatively small variability in
predictions, and this enables the important application of optimiz-
ing the reaction conditions for specific outcomes. More specifically,
optimization of initial conditions or reaction temperatures is only
meaningful if model predictions are relatively stable with regard to
the uncertainty in estimated parameters—as is indeed the case

here, based on the results shown in Figure 4.

These conclusions show that there is substantial value in using a
Bayesian methodology to parameter estimation. To the best of our
knowledge, Bayesian methods similar to the one we presented are
not widely used in this part of the chemistry community. Indeed, the

Bayesian framework is a highly generalizable approach that can be

used in many parameter estimation problems. The construction of the
likelihood function in Section 3.2.1 and the prior distribution in Sec-
tion 3.2.2 will differ between problems, but the interpretations we
make of the resulting probability distributions are the same insights
one would seek for a general parameter estimation problem: narrow,
unimodal distributions are indicative of an adequate mathematical
model and sufficient data. We hope to see more use of the Bayesian
approach within the chemistry community. We will report our own
efforts expanding the BIA-ME-PBM methodology to a second iridium
system where more data is present and where the mechanism of
especially nucleation is currently not 100% clear, as well as in semi-

conductor and other nanoparticle systems.
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ENDNOTES

" In our literature search, we found a number of uses of Bayesian inversion
in chemistry.1843-49:52-64 Armstrong and Hibbert®®>! also provide a
comprehensive, albeit now decade-old survey of the uses of Bayesian
methods in chemistry. However, our attempt at a comprehensive litera-
ture search revealed no uses of Bayesian methods for nanoparticle
mechanistic chemistry nor evidence for its deserved, more extensive use
in mechanistic chemistry in general.

T The actual methodology used in References 31-33 replaced the mea-
sured data (shown in Figure 1) by a smoothed version to mitigate the
problem of sampling error mentioned in Section 2.5 at least to some
degree. The method there also tried to fit the entire particle size distri-
bution, rather than only for those particles with a diameter of more than
1.4 nm as explained above. This is equivalent to assuming that measure-
ments simply found no small particles. Finally, our methodology used
only the final PSD data at t4, deliberately ignoring the data at t4,t,,t3 in
that initial ME-PBM effort.

+

Indeed, looking at the form of (12), we recognize that the combined like-
lihood is the product of the likelihoods obtained from the four time
points individually. Furthermore, the specific form of the prior in Equa-
tion (13) then implies that the combined posterior probability density
p(K|data) is simply the product of the posterior probability densities we
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get if we only consider a single time point—that is, the plots shown in
the last column of Figure 2 would simply depict the product of the prob-
ability densities for individual time points, shown in the preceding four
columns, if we had infinitely many samples.

$ The suggestion that the 3-step model is sufficient can be formally tested
with the help of “Bayes factors”’* to determine whether the 4-step
model yields a benefit that outweighs its greater complexity.

™ One can find quantitative ways to assess whether one model fits data
better than another model. If one were to simply fit parameters of a
model to a data set, then the R-squared criterion is often used. In Bayes-
ian models, this notion needs to be generalized and is often referred to
as “posterior predictive assessment,” see, for example, Gelman et al.”®
Visual inspection of the plots in the second and third row of Figure 4
suggests that the 3- and 4-step models yield fits that are not qualita-
tively different in their goodness-of-fit, and we consequently decided
not to go into the details of posterior predictive assessment.

REFERENCES

[1] I. E. Beck, V. I. Bukhtiyarov, I. Y. Pakharukov, V. I. Zaikovsky, V. V.
Kriventsov, V. N. Parmon, J. Catal. 2009, 268, 60. https://doi.org/10.
1016/j.jcat.2009.09.001

[2] M. R. Axet, K. Philippot, Chem. Rev. 2020, 120, 1085. https://doi.org/
10.1021/acs.chemrev.9b00434

[3] I. Favier, D. Pla, M. Gomez, Chem. Rev. 2019, 120, 1146. https://doi.
org/10.1021/acs.chemrev.9b00204

[4] F. P. da Silva, J. L. Fiorio, L. M. Rossi, ACS Omega 2017, 2, 6014.
https://doi.org/10.1021/acsomega.7b00836

[5] D. C. Gary, M. W. Terban, S. J. L. Billinge, B. M. Cossairt, Chem. Mater.
2015, 27, 1432. https://doi.org/10.1021/acs.chemmater.5b00286

[6] J. W. Stouwdam, R. A. J. Janssen, J. Mater. Chem. 2008, 18, 1889.
https://doi.org/10.1039/b800028;j

[7] V. L. Colvin, M. C. Schlamp, A. P. Alivisatos, Nature 1994, 370, 354.
https://doi.org/10.1038/370354a0

[8] Y. Shirasaki, G. J. Supran, M. G. Bawendi, V. Bulovi¢, Nat. Photonics
2012, 7, 13. https://doi.org/10.1038/nphoton.2012.328

[9] R. D. Schaller, V. I. Klimov, Phys. Rev. Lett. 2004, 92, 186601. https://
doi.org/10.1103/physrevlett.92.186601

[10] A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G.
Konstantatos, R. Debnath, L. Levina, |I. Raabe, M. K. Nazeeruddin, M.
Grétzel, E. H. Sargent, ACS Nano 2010, 4, 3374. https://doi.org/10.
1021/nn100335g

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H.

Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15,

3692. https://doi.org/10.1021/n15048779

I. Spanopoulos, I. Hadar, W. Ke, P. Guo, E. M. Mozur, E. Morgan, S.

Wang, D. Zheng, S. Padgaonkar, G. N. Manjunatha Reddy, E. A.

Weiss, M. C. Hersam, R. Seshadri, R. D. Schaller, M. G. Kanatzidis,

J. Am. Chem. Soc. 2021, 143, 7069. https://doi.org/10.1021/jacs.

1c01727

[13] D. Gielen, F. Boshell, D. Saygin, Nat. Mater. 2016, 15, 117. https://
doi.org/10.1038/nmat4545

[14] Q. N. Nguyen, R. Chen, Z. Lyu, Y. Xia, Inorg. Chem. 2021, 60, 4182.
https://doi.org/10.1021/acs.inorgchem.0c03576

[15] D. V. Talapin, J.-S. Lee, M. V. Kovalenko, E. V. Shevchenko, Chem.
Rev. 2009, 110, 389. https://doi.org/10.1021/cr900137k

[16] M. Smoluchowski, Z. Phys. Chem. 1917, 92, 129.

[17] H. M. Hulburt, S. Katz, Chem. Eng. Sci. 1964, 19, 555.

[18] R. Hoffmann, V. I. Minkin, B. K. Carpenter, Bull. Soc. Chim. Fr. 1996,
133, 117.

[19] M. A. Watzky, R. G. Finke, J. Am. Chem. Soc. 1997, 119, 10382.

[20] C. Besson, E. E. Finney, R. G. Finke, J. Am. Chem. Soc. 2005a, 127,
8179. https://doi.org/10.1021/ja0504439

11

[12

HEMISTRY

[21] C. Besson, E. E. Finney, R. G. Finke, Chem. Mater. 2005b, 17, 4925.
https://doi.org/10.1021/cm050207x

[22] B. J. Hornstein, R. G. Finke, Chem. Mater. 2003, 16, 139. https://doi.
org/10.1021/cm034585i

[23] E. E. Finney, R. G. Finke, Chem. Mater. 2008, 20, 1956. https://doi.
org/10.1021/cm071088j

[24] P. D. Kent, J. E. Mondloch, R. G. Finke, J. Am. Chem. Soc. 2014, 136,
1930.

[25] R. J. Field, R. M. Noyes, Acc. Chem. Res. 1977, 10, 214. https://doi.
org/10.1021/ar50114a004

[26] S. Mozaffari, W. Li, C. Thompson, S. Ivanov, S. Seifert, B. Lee, L.
Kovarik, A. M. Karim, Nanoscale 2017, 9, 13772. https://doi.org/10.
1039/c7nr04101b

[27] D. Ramkrishna, Population Balances: Theory and Applications to Partic-
ulate Systems in Engineering, Elsevier, 2000. https://doi.org/10.1016/
B978-0-12-576970-9.X5000-0.

[28] F. Sporleder, Z. Borka, J. Solsvik, H. A. Jakobsen, Rev. Chem. Eng.
2012, 28, 149.

[29] D. Ramkrishna, M. R. Singh, Annu. Rev. Chem. Biomol. Eng. 2014,
5,123.

[30] R. 1. Jeldres, P. D. Fawell, B. J. Florio, Powder Technol. 2018, 326, 190.

[31] D. R. Handwerk, P. D. Shipman, C. B. Whitehead, S. Zkar, R. G. Finke,
J. Am. Chem. Soc. 2019, 141, 15827. https://doi.org/10.1021/jacs.
9b06364

[32] D. R. Handwerk, P. D. Shipman, C. B. Whitehead, S. Ozkar, R. G.
Finke, J. Phys. Chem. C 2020, 124, 4852. https://doi.org/10.1021/
acs.jpcc.9b11239

[33] D. Handwerk, PhD Thesis, Colorado State University 2019.

[34] C. B. Whitehead, D. R. Handwerk, P. D. Shipman, Y. Li, A. . Frenkel,
B. Ingham, N. M. Kirby, R. G. Finke, J. Phys. Chem. C 2021, 13449.
https://doi.org/10.1021/acs.jpcc.1c03475

[35] A. Tarantola, Inverse Problem Theory, Elsevier, Amsterdam 1987.

[36] Y. Jiang, A. D. Woodbury, Geophys. J. Int. 2006, 167, 1501. https://
doi.org/10.1111/j.1365-246x.2006.03145.x

[37] I. Craig, J. Brown, in Bayesian Astrophysics (Eds: A. A. Ramos, |.
Arregui), Cambridge University Press, 1986, p. 31. https://doi.org/10.
1017/9781316182406.003

[38] A. Tarantola, Inverse Problem Theory and Methods for Model Parameter
Estimation, Society for Industrial and Applied Mathematics, Philadel-
phia, PA, 2005. https://doi.org/10.1137/1.9780898717921

[39] J. Kaipio, E. Somersalo, Statistical and Computational Inverse Problems,
Springer-Verlag, New York, NY, 2005. https://doi.org/10.1007/
b138659

[40] M. Allmaras, W. Bangerth, J. M. Linhart, J. Polanco, F. Wang, K.
Wang, J. Webster, S. Zedler, SIAM Rev. 2013, 55, 149.

[41] O. Aguilar, M. Allmaras, W. Bangerth, L. Tenorio, SIAM Rev. 2015, 57, 131.

[42] M. Dashti, A. M. Stuart, The Bayesian Approach to Inverse Problems.
2015.

[43] J. Prager, H. N. Najm, K. Sargsyan, C. Safta, W. J. Pitz, Combust. Flame
2013, 160, 1583. https://doi.org/10.1016/j.combustflame.2013.
01.008

[44] L. Cai, H. Pitsch, S. Y. Mohamed, V. Raman, J. Bugler, H. Curran, S. M.
Sarathy, Combust. Flame 2016, 173, 468. https://doi.org/10.1016/j.
combustflame.2016.04.022

[45] L. Hakim, G. Lacaze, M. Khalil, H. N. Najm, J. C. Oefelein, J. Eng. Gas
Turbine. Power 2016, 138, 112806. https://doi.org/10.1115/1.
4033502

[46] E. Cisneros-Garibay, C. Pantano, J. B. Freund, Combust. Flame 2019,
208, 219. https://doi.org/10.1016/j.combustflame.2019.06.028

[47] K. Braman, T. A. Oliver, V. Raman, Combust. Theory Model. 2013, 17,
858. https://doi.org/10.1080/13647830.2013.811541

[48] L. Hakim, G. Lacaze, M. Khalil, K. Sargsyan, H. Najm, J. Oefelein, Com-
bust. Theory Model. 2018, 22, 446. https://doi.org/10.1080/
13647830.2017.1403653



Journal of

LONG ET AL.

“ | WILEY- CHEMISTRY

[49] J. Zador, |. G. Zsély, T. Turanyi, M. Ratto, S. Tarantola, A. Saltelli, J. Phys.
Chem. A 2005, 109, 9795. https://doi.org/10.1021/jp053270i

[50] N. Armstrong, D. Hibbert, Chemom. Intell. Lab. Syst. 2009, 97, 194.
https://doi.org/10.1016/j.chemolab.2009.04.001

[51] D. Hibbert, N. Armstrong, Chemom. Intell. Lab. Syst. 2009, 97, 211.
https://doi.org/10.1016/j.chemolab.2009.03.009

[52] W. Shao, X. Tian, Chem. Eng. Res. Des. 2015, 95, 113. https://doi.org/
10.1016/j.cherd.2015.01.006

[53] M.-Y. Fan, Y.-L. Zhang, Y.-C. Lin, J. Li, H. Cheng, N. An, Y. Sun, Y. Qiu,
F. Cao, P. Fu, Environ. Sci. Technol. Lett. 2020, 7, 883. https://doi.org/
10.1021/acs.estlett.0c00623

[54] E. Gallicchio, M. Andrec, A. K. Felts, R. M. Levy, J. Phys. Chem. B
2005, 109, 6722. https://doi.org/10.1021/jp045294f

[55] H. O. Lloyd-Laney, N. D. J. Yates, M. J. Robinson, A. R. Hewson, J. D.
Firth, D. M. Elton, J. Zhang, A. M. Bond, A. Parkin, D. J. Gavaghan, Anal.
Chem. 2021, 93, 2062. https://doi.org/10.1021/acs.analchem.0c03774

[56] A. Puliyanda, K. Sivaramakrishnan, Z. Li, A. de Klerk, V. Prasad, React.
Chem. Eng. 2020, 5, 1719. https://doi.org/10.1039/d0re00147¢

[57] R. H. Johnstone, E. T. Chang, R. Bardenet, T. P. de Boer, D. J. Gavaghan,
P. Pathmanathan, R. H. Clayton, G. R. Mirams, J. Mol. Cell. Cardiol. 2016,
96, 49. https://doi.org/10.1016/j.yjmcc.2015.11.018

[58] D. J. Gavaghan, J. Cooper, A. C. Daly, C. Gill, K. Gillow, M. Robinson,
A. N. Simonov, J. Zhang, A. M. Bond, ChemElectroChem 2017, 5, 917.
https://doi.org/10.1002/celc.201700678

[59] N. Galagali, Y. M. Marzouk, Chem. Eng. Sci. 2015, 123, 170. https://
doi.org/10.1016/j.ces.2014.10.030

[60] R. D. Berry, H. N. Najm, B. J. Debusschere, Y. M. Marzouk, H.
Adalsteinsson, J. Comput. Phys. 2012, 231, 2180. https://doi.org/10.
1016/j.jcp.2011.10.031

[61] F.T. Bolle, A. E. G. Mikkelsen, K. S. Thygesen, T. Vegge, I. E. Castelli,
NPJ Comput. Mater. 2021, 7. 41. https://doi.org/10.1038/s41524-
021-00505-9

[62] H. Kaneko, K. Funatsu, Chemom. Intell. Lab. Syst. 2014, 137, 57.
https://doi.org/10.1016/j.chemolab.2014.06.008

[63] N. Sun, R. J. Carroll, H. Zhao, Proc. Natl. Acad. Sci. USA 2006, 103,
7988. https://doi.org/10.1073/pnas.0600164103

[64] K. Sargsyan, H. N. Najm, R. Ghanem, Int. J. Chem. Kinet. 2015, 47,
246. https://doi.org/10.1002/kin.20906

[65] C. B. Whitehead, S. Ozkar, R. G. Finke, Chem. Mater. 2019, 31, 7116.
https://doi.org/10.1021/acs.chemmater.9b01273

[66] C. B. Whitehead, S. Ozkar, R. G. Finke, Mater. Adv. 2021, 2, 186.
https://doi.org/10.1039/d0ma0043%a

[67] C. B. Whitehead, M. A. Watzky, R. G. Finke, J. Phys. Chem. C 2020,
124, 24543. https://doi.org/10.1021/acs.jpcc.0c06875

[68] V.K. LaMer, R. H. Dinegar, J. Am. Chem. Soc. 1950, 72, 4847.

[69] S. Ozkar, R. G. Finke, J. Am. Chem. Soc. 2017, 139, 5444. https://doi.
org/10.1021/jacs.7b00958

[70] W. W. Laxson, R. G. Finke, J. Am. Chem. Soc. 2014, 136, 17601.
https://doi.org/10.1021/ja510263s

[71] M. A. Watzky, E. E. Finney, R. G. Finke, J. Am. Chem. Soc. 2008, 130,
11959. https://doi.org/10.1021/ja8017412

[72] A. F. Schmidt, V. V. Smirnov, Top. Catal. 2005, 32, 71. https://doi.
org/10.1007/s11244-005-9261-4

[73] J. M. Lee, R. C. Miller, L. J. Moloney, A. L. Prieto, J. Solid State Chem.
2019, 273, 243. https://doi.org/10.1016/j.jssc.2018.12.053

[74] R. E. Kass, A. E. Raftery, J. Am. Stat. Assoc. 1995, 90, 773. https://doi.
org/10.1080/01621459.1995.10476572

[75] A. Gelman, X.-L. Meng, H. Stern, Stat. Sin. 1996, 6, 733.

[76] D. Long, W. Bangerth, dklong-csu/mepbm: ME-PBM version 1.0
2021, https://zenodo.org/record/4970247.

[77] A. Gelman, G. O. Roberts, W. R. Gilks, Bayesian Stat. 1996, 5, 599.

[78] G. O. Roberts, J. S. Rosenthal, Stat. Sci. 2001, 16, 351. https://doi.
org/10.1214/ss/1015346320

[79] A. Sokal, Functional Integration, Springer, Boston, MA 1997, p. 131.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version

of the article at the publisher's website.

How to cite this article: D. K. Long, W. Bangerth, D.
R. Handwerk, C. B. Whitehead, P. D. Shipman, R. G. Finke, J.
Comput. Chem. 2021, 1. https://doi.org/10.1002/jcc.26770




