


form.19–24 (For more information on and the use of pseudo-

elementary steps [PESteps], the reader is directed to Watzky and

Finke,19 Field and Noyes25). Little appreciated at present is that a total

of ≥96 separate PEStep mechanisms are now available if one also

includes important work on the role of nanoparticle ligands from

Karim's group.26 The second requirement of a mathematical way to

compute PSDs has been available for some time and is known as a

“population balance model” (PBM). The general approach of con-

structing a PBM is based on its successful use in chemical engineering

and statistical physics any time a distribution of objects is pre-

sent.17,27–30

However, what has not been available until recently was the com-

bination of the experimentally based, minimum mechanisms for parti-

cle formation with the PBM methodology, what we have recently

labeled as a “mechanism-enabled” population-based model and

modeling (ME-PBM and ME-PB modeling).31–34 ME-PBMs are derived

using the law of mass action and faithfully represent a particular,

experimentally determined, pseudo-elementary step mechanism. ME-

PBMs yield realistic PSDs, including the shape of the PSD.31–33 These

models have parameters, such as reaction rate constants and a

particle-size-distinguishing (“cut-off”) parameter, that are a priori

unknown and need to be determined with a sufficient degree of cer-

tainty to ensure predictions of useful accuracy. Determining if the

parameters are well defined can also serve as a critical test of the pro-

posed mechanism. It is determining these crucial parameters of the

ME-PBM, and what they in turn tell about the input mechanism, that

are the focus of the present contribution.

A prototypical Ir 0ð Þn nanoparticle formation system19,31,32 is

where we first developed a ME-PBM able to describe how the con-

centrations of nanoparticles evolve over time, specifically how the

PSD, not just the average particle size, evolves over time. We showed

that for the Ir 0ð Þn system, only a “4-step mechanism”
24 and a newly

discovered “3-step mechanism”
31 are capable of producing PSDs that

reasonably matched experimental data. Eleven other hypothesized

mechanisms were tested but found unable to match the experimental

PSD, thereby disproving their applicability to the Ir 0ð Þn system. A key

finding in our prior work is that it was possible to predict the observed

narrow PSDs when (i) inputting the experimental finding that nucle-

ation is continuous, and (ii) when the growth rates of the small parti-

cles are faster than those of larger particles.31–33 Given this success

with the iridium nanoparticle model system, our efforts in the rest of

this paper will be based on this prototype, Ir 0ð Þn system.

In our previous work,31–33 we proceeded by asking what set of

parameters yields predictions that are as close as possible to actual

measured PSDs? This is an optimization problem which is readily

solved once we define exactly what we mean by “as close as possi-

ble.” Noteworthy here is that finding a “best-fit set of parameters”

does not tell us anything about how certain we can actually be about

those parameters. It is possible that the data allow us to determine

parameter values to just a few percent accuracy; but it is also possible

that a wide range of values would all have yielded essentially the same

predictions. In these latter cases, the data are uninformative about the

values of certain parameters because the (observed part of the) model

is insensitive to variations in their values. Yet, even though a particular

set of parameters might have had little effect on the quantities we

measured, it is also possible that these parameters are important in

other situations (say, at higher or lower reaction temperatures, or if

one were to run the reaction for substantially longer times). Being able

to accurately predict reaction outcomes for a broad range of condi-

tions requires us to at least know which parameters we know well

and which are poorly determined.

Herein we therefore address this critical question of how well do

we know our parameter estimates, along with their error estimates? We

adapt techniques from the statistical and mathematical sciences that

help us seek a probability distribution in parameter space that does

not just identify the one most likely set of parameter values or that

which gives the best fit, but instead a probability distribution that tells

us how likely different parameter values are. In other words, we do not

just want to know the most likely parameter values, but also their

SDs, confidence intervals, and other statistical properties such as the

presence of long tails when desired. In particular, we want to quantify

the uncertainty in our parameter estimates. The approach we will dis-

cuss below is typically called a “probabilistic” or “Bayesian inverse”

problem. Bayesian inversion is a key statistical way to enforce

Ockham's razor,18 a critical component of disproof-based, hence more

rigorous construction, development, and refinement of a minimum,

more reliable chemical mechanism. Bayesian inversion such as what

we present below has proven to be very useful over the last twenty

or so years in other disciplines, including the geosciences,35

hydrology,36 and astronomy.37 As a consequence there are now intro-

ductory textbooks38,39 as well as tutorial-style articles available to

interested readers who wish to know more about Bayesian inversion

methodology.40–42 A literature review43–49 teaches that the Bayesian

inversion framework has been used in chemistry, specifically in com-

bustion chemistry and associated mechanisms as well as in

chemometrics, forensic sciences, medical testing, microbiology/DNA

analysis, chromatography and mass spectrometry, environmental

chemistry, and occupational health and safety, among other areas as

detailed by Hibbert and Armstrong in their highly recommended

reviews.50,51 However, the Bayesian inversion approach is still not

widely employed in mechanistic chemistry in general and there is little

to no use in nanoparticle chemistry and mechanisms to the best of

our knowledge.*

Herein we apply the Bayesian inversion method to the analysis of

the experimental kinetics and PSD data according to the previously

developed ME-PBM models.31–33 The key points we demonstrate in

this paper are the following:

1. The use of the Bayesian inversion method with ME-PBM models.

In particular, we demonstrate that we can not only infer model

parameters quantitatively, but also provide parameter

uncertainties—and hence parameter reliability estimates—while

performing a global analysis and fitting all of the available particle

formation kinetics and PSD data.

2. The use of the resultant parameters from the Bayesian inversion

ME-PBM method, specifically their use to judge the apparent
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reliability/correctness of the input mechanistic model. Our results

are consistent with and strongly supportive of the notion that

Bayesian inversion methods are critical for judging whether or not

one has a model with too many, poorly determined parameters

(e.g., if overfitting is an issue) or if one has the desired minimalistic,

“Ockham's-razor-obeying” model according to the Bayesian inver-

sion statistical method, and also if significant parameter correla-

tions exist. In short, the results which follow demonstrate that

Bayesian inversion methodology is a significant help in selecting

the “correct” parameters as well as the “correct” underlying mech-

anism from among those considered.

3. The approach we develop below to estimating the model's param-

eters is more general and equally applicable to other systems as

well, systems that are a focus of additional work in progress that

will be published separately in due course.

4. As such, the present work also goes far toward the important goal

of achieving a “Gold Standard” benchmark (i.e., a “Ground Truth”)

in ME-PBM fortified by Bayesian statistical methods that others

can, therefore, use as a control to check on their own use of the

Bayesian methodology.

Our results strongly support the hypothesis that Bayesian inver-

sion expands significantly on the use of ME-PBM for nanoparticle for-

mulation and one's ability to examine in a critical and reliable way the

many plausible models and their parameters.

Outline of this paper. First, in Section 2, we will briefly explain the

chemical background of the formation of iridium nanoparticles, a

corresponding mathematical model, and the kind of experimental data

we have for the nanoparticle formation, especially PSD versus time

data. This section also briefly discusses the parameters that appear in

the mathematical model. Section 3 will cover the techniques we use

to infer both the most likely values for these parameters, as well as

statistical uncertainties. Section 4 will then show what we find with

these techniques and then discuss how the results can be interpreted

to meaningfully relate to the iridium nanoparticle system. Finally, Sec-

tion 5 contains our conclusions of how these statistical results provide

evidence that a 3-step mechanism is the minimal chemical mechanism

required to predict the PSDs observed in at least the prototype irid-

ium nanoparticle system. Information available in Appendix: First, in

Appendix A we discuss an alternative formulation of the so-called

“likelihood” described in Section 3.2.1; Appendix B contains a detailed

account of how our Bayesian inversion analysis was conducted.

2 | IR(0)N NANOPARTICLE FORMATION

Let us start our discussions by outlining the chemical basis for our

mathematical models of nanoparticle formation. Specifically, we

examine a nanoparticle system in which 1,5�CODð ÞIrI �POM
� �8�

is

reduced under H2. (Here and below, POM = polyoxometalate,

P2W15Nb3O62
9� and 1,5�COD is 1,5-cyclooctadiene, C8H12.) Our

ME-PBM approach to accurately accounting for the PSD entails

breaking the reaction down into pseudo-elementary steps describing

nucleation, growth, and any agglomeration of the nanoparticles. We

will address these in the following two subsections along with a con-

crete, mathematical ME-PBM model followed by a discussion about

the data we have available to estimate the model's parameters.

2.1 | Nucleation of nanoparticles

Using the experimental finding of continuous nucleation19—as opposed to

the now disproved65–67 theory of classical nucleation theory as employed

for so-called “burst nucleation models”68—we are able to start the particle

formation process off with the correct critical first steps at a nearly ele-

mentary step level, notably via the experimentally identified “alternative

termolecular” nucleation mechanism.69 We can then use that known

nucleation mechanism with different combinations of pseudo-elementary

steps for growth and any agglomeration.32 The previously deduced mini-

mal mechanism, dubbed the “alternative 3-step” mechanism, was previ-

ously shown to be capable of matching the shape of experimental

PSDs.31 The nucleation mechanism of Ir 0ð Þn so identified is illustrated

by the following reactions, consisting of a fast, prior equilibrium step,

and continuous nucleation that is overall third-order in iridium:

2 CODð ÞIr �POM½ �8�þ4solvÐ
kf

kb

2 CODð ÞIr solvð Þ2
� �þ

þ2POM9�,

2 CODð ÞIr solvð Þ2
� �þ

þ CODð ÞIr �POM½ �8�þ7:5H2 !
k1 Ir 0ð Þ3þPOM9�þ3Hþ

þ3cyclooctaneþ4solv:

For brevity, we will in the following denote the precursor

CODð ÞIr �POM½ �8� by “A,” the solvated complex, CODð ÞIr solvð Þ2
� �þ

,

as A solvð Þ2, the ligand, POM9�, as “L,” and (small) particles consisting

of iridium(0) atoms generally as “B.” The nucleation mechanism above

can, then, equivalently be written as

2 A �Lþ2solvÐ
kf

kb

A solvð Þ2þL

� �

,

2A solvð Þ2þA �L!
k1 B3þLþ4solv:

ð1Þ

In the formulas above, the symbols k* indicate reaction rate con-

stants. It will be important for the following to note that kf and kb are

not independent; rather, their ratio can be determined by measuring

the equilibrium concentrations of the quantities involved in the reac-

tion, and has been determined experimentally to be kf=kb ≈5�

10�7molL�1 (25�C); see reference 70 of Handwerk et al.32

2.2 | Nanoparticle growth and agglomeration

mechanisms

The nucleation mechanism described in the previous section provides an

experimentally based model for the critical question of how does a particle

form in the first place? But, we also need to model what happens to each

and every particle after it is formed. Here we assume, consistently with
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experimental evidence, that growth and possibly agglomeration

(i.e., aggregation) can occur, but that the reverse reactions do not occur.

Our ME-PBMmodel is then formed from the following processes:

1. Growth: A precursor reacts with a particle of size n (that is, con-

sisting of n precursor molecules), resulting in a particle of

size nþ1.

2. Agglomeration: A particle of size n reacts with a particle of size m,

resulting in a particle of size nþm.

Among the many possibilities of combining these steps, we will in

the following consider only what we will refer to as the “3-step” and

“4-step” mechanisms—see References 31–33 for the evidence that

these are the only models from among twelve considered that can

accurately fit the measured data.

Specifically, the 3-step model is based on our earlier, critical finding

that different size particles grow at different rates.31–33 For this, let us

denote by “B” a “small” particle (which we define as having at most M

atoms, including the ones that result from the nucleation mechanism dis-

cussed above) and by “C” a “large” particle (with more than M atoms).

The growth mechanism that augments (1) then reads as follows:

AþB!
k2

CþL

AþC!
k3 1:5CþL:

ð2Þ

The 3-step model above is a simplified, 1-step less, condensed

version of a more complex, 4-step model in which agglomeration due

to small particles does have a substantial influence on the resulting

PSD. This augmented model would then add the following reaction to

(1) and (2)

BþB!
k4

C: ð3Þ

In both of these mechanisms, it is important to remember that both B

and C represent particles of different sizes via a sharp, delta-function at

the size-cutoff parameter,M, an admittedly zeroth-order approximation

of the true growth kernel. The parameter M and its use will become

clearer in the following section where we derive a mathematical description

of these models. For a comprehensive chemical account of these mecha-

nisms, the reader is directed to the References 19–24, 31–33, 69, 70.

2.3 | The mathematical model

As discussed in the Introduction, an important component of being

able to predict nanoparticle properties resulting from a system of

reactions is having a mathematical model that faithfully obeys the

experimental mechanistic evidence. Based on the conceptual model

described in the previous subsection, let us next outline a mathemati-

cal transcription of these ideas. More details about this transcription

can again be found in References 31–33.

The models for both the 3- and 4-step mechanisms are formu-

lated by describing the number (or concentration) of particles of size j

with a function nj tð Þ and asking how these functions nj tð Þ evolve over

time. In the data we will use (see Section 2.4 and Figure 1 below), we

observe no particles larger than 4 nm, and consequently only consider

variables nj with j≤ J¼2500. Using the conversion function

diameter jð Þ¼0:3000805j1=3 , based on published size data for Ir(0)j

particles (see figure S1 in Handwerk et al.31), a particle size of J¼

2500 corresponds to a particle diameter of about 4.0 nm.

To describe all of the species in Equations (1)–(3), let us denote by

n1 the concentration of the precursor A, ns the concentration of the

disassociated precursor A solvð Þ2 , p the concentration of the ligand L,

nj the concentration of particles of size j, s the concentration of sol-

vent (solv), used in the reaction, and ri ¼2:677i0:72=i, a function which

limits interactions to the surface atoms of a particle.72 Our models

then lead to the following set of ordinary differential equations for

the 3-step mechanism (1)–(2):

dn1

dt
¼�kfn1s

2þkbnsp�k1n1n
2
s �k2n1

XM

i¼3

irini�k3n1
XJ

i¼Mþ1

irini ,

dns

dt
¼ kfn1s

2�kbnsp�2k1n1n
2
s ,

dp

dt
¼ kfn1n

2
s �kbnspþk1n1n

2
s þk2n1

XM

i¼3

iriniþk3n1
XJ

i¼Mþ1

irini ,

dn3

dt
¼ k1n1n

2
s �3k2n1r3n3,

dnj

dt
¼ k2n1 rj�1 j�1ð Þnj�1� rj jnj

� �
, 4≤ j ≤M,

dnMþ1

dt
¼ k2n1MrMnM�k3n1 Mþ1ð ÞrMþ1nMþ1,

dnj

dt
¼ k3n1 rj�1 j�1ð Þnj�1� rj jnj

� �
, Mþ2≤ j≤ J:

ð4Þ

Similarly, for the 4-step mechanism in Equations (1)–(3) the equa-

tions are

dn1

dt
¼�kfn1s

2þkbnsp�k1n1n
2
s �k2n1

XM

i¼3

irini�k3n1
XJ

i¼Mþ1

irini,

dns

dt
¼ kfn1s

2�kbnsp�2k1n1n
2
s ,

dp

dt
¼ kfn1n

2
s �kbnspþk1n1n

2
s þk2n1

XM

i¼3

iriniþk3n1
XJ

i¼Mþ1

irini,

dn3

dt
¼ k1n1n

2
s �3k2n1r3n3�3k4r3n3

XM

k¼3

rkknk�k4 3r3n3ð Þ2,

dnj

dt
¼ k2n1 rj�1 j�1ð Þnj�1� rjjnj

� �
�k4rjjnj

XM

k¼3

rkknk�k4 rjjnj
� 	2

, j¼4,5,

dnj

dt
¼ k2n1 rj�1 j�1ð Þnj�1� rjjnj

� �
�k4rjjnj

XM

k¼3

rkknk�k4 rjjnj
� 	2

þk4
X

μþν¼j

rμμnμrννnν, 6≤ j≤M,

dnMþ1

dt
¼ k2n1MrMnM�k3n1 Mþ1ð ÞrMþ1nMþ1þk4

X

μþν¼Mþ1
μ ≥3,ν≥3

rμμnμrννnν,

dnj

dt
¼ k3n1 rj�1 j�1ð Þnj�1� rjjnj

� �
þk4

X

μþν¼j
μ≥ 3,ν≥3

rμμnμrννnν, Mþ2≤ j≤ J:

ð5Þ
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Both Equations (4) and (5) are accompanied by the known initial con-

ditions of n1 0ð Þ¼0:0012molL�1 , ns 0ð Þ¼ p 0ð Þ¼ n3 0ð Þ¼ �� � ¼ nJ 0ð Þ¼0,

matching our initial reaction state in which only precursor, but no

nanoparticles, are present.

The question we would like to answer is what are the values of

the parameters kb,k1,k2,k3,k4 (reaction rates) and M (the size cut-off

between “small” and “large” particles)? (The solvent concentration s is

a known quantity in this analysis and kf is determined by the fixed

ratio kf=kb ≈5�10�7Lmol�1 (25�C), see reference 70 in Handwerk

et al.32) The purpose of this paper is, then and as noted earlier, to

employ Bayesian inversion techniques for determining the values and

the uncertainties in the unknown parameters.

To simplify notation, we will group all of these parameters into

sets K3�step ¼ kb,k1,k2 ,k3 ,Mf g and K4�step ¼ kb ,k1,k2,k3,k4,Mf g, and

use the vector K to represent a set of parameters when we are talking

about a generic mechanism. In the following, whenever we report

concrete numbers for these parameters, we will imply the following

units: kb½ � ¼ L2mol�2h�1, k1½ � ¼ L2mol�2h�1, k2½ � ¼ L1mol�1h�1,

k3½ � ¼ L1mol�1h�1 , k4½ � ¼ L1mol�1h�1, M½ � ¼1. The units here are the

same as published previously.31–33 From here forward all rate and

equilibrium constants will be given without these (known, implied)

units for the sake of simplicity.

2.4 | Experimentally determined nanoparticle size

distributions

Figure 1 shows measured size distributions for the Ir 0ð Þn system

described above, for samples taken at different times during the reac-

tion. These data come from the experimental work first provided else-

where.71 The figure shows how many particles fall into size bins of

1�10�1 nm width, based on measuring the sizes of a sample of parti-

cles as seen in transmission electron microscopy (TEM) images.

The key feature of the data is that the final size distribution is

unimodal and surprisingly narrow, especially if nucleation is continu-

ously occurring and thousands of steps are involved in particle forma-

tion. Understanding the origins of this narrowness continues to be an

important driver of past research, as it would enable many

applications of nanoparticles if their sizes could be predicted and con-

trolled.14,15,67,73

2.5 | How reliable are these data?

In the end, we will want to use the data shown in Figure 1 to infer the

values of the parameters associated with the reactions discussed in

the previous subsections. At the same time, it is clear that we will not

be able to determine parameters more accurately than the accuracy

of the data used for this purpose.

The errors associated with the size distributions shown in the fig-

ure fall into at least three categories:

1. Sampling error: The data shown in the figure represent a random

sample of particles for which transmission electron micrographs

were used to determine their sizes. However, the number of mea-

sured particles is relatively small (246 at 0.918 h, 61 at 1.17 h,

150 at 2.336 h, and 213 at 4.838 h) and it is clear that there is sto-

chastic noise associated with having such a limited number of par-

ticles. Consequently, the PSDs may not adequately represent the

overall, “true” size distribution. In practice, this error manifests in

“jumpy” (as opposed to smooth) histograms, most notably for time

1.17 h where there is limited data to represent what the true size

distribution likely looks like.

2. TEM size threshold: Particles that are too small are not visible in

TEM images. The fact that such particles seem absent in Figure 1

does not imply that they don't exist. A realistic assessment of the

measurement methodology used for the data in Figure 1 suggests

that we can only accurately see particles with sizes greater than

1.4 nm (equivalent to about 100 atoms). As a consequence, our

methodology to match models against measurements will only

include particles of size greater than this threshold, ignoring any

predicted particles below the size threshold that appear absent in

the data.

3. Inaccurate size determination: We measured particle sizes by

assessing their diameter in TEM images. But these images can be

fuzzy, and electron beams may also not be absorbed sufficiently in
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F IGURE 1 Histograms showing the number of Ir 0ð Þn particles measured via transmission electron microscopy at different time points of the

reaction (based on Watzky et al.71). Particle counts for particles smaller than 1.4 nm are unreliable and are shown in a lighter color. For

comparison, nanoparticles composed of J¼2500 iridium atoms have a size of 4.0 nm
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the outer parts of a nanoparticle to clearly delineate the particle

edge. We therefore believe that our determinations of diameters

are only accurate to within �1�10�1nm accuracy at the

very best.

As a consequence of this consideration, all figures in this manu-

script use histograms of particle counts that have bin widths of

1�10�1nm, starting at the threshold of 1.4 nm mentioned above.

We will take all of these sources of error into account in the statis-

tical framework for parameter identification that we will present below.

3 | THE INVERSE PROBLEM

Section 2.3 introduced the mathematical model describing nanoparti-

cle nucleation and growth. It contained reaction rate and cut-off

parameters K which we would like to know accurately so that we can

predict and control the system. Determining these parameters is called

an “inverse problem” or “parameter estimation problem,” and in the

following we will first briefly introduce the traditional “deterministic”

approach to estimating parameters, and then the more general

“Bayesian” perspective we want to follow herein.

3.1 | The “deterministic” inverse problem

Having a model and having data allows us to ask what the values of

the parameters K3�step and K4�step in Equation (4) or (5) might

be. Traditionally, this parameter estimation problem is formulated as a

“deterministic inverse problem”—namely, by asking for that set of

parameters that minimizes a function that is often chosen as the

least-squares “misfit”:

Φ Kð Þ¼ datapredicted Kð Þ�datameasured









2: ð6Þ

Here, datapredicted Kð Þ involves solving the forward model for one

of (4) or (5) for the PSD given a set of parameters, and then computing

from it what we would measure—in our case, how many particles we

would find in each size bin.

We have followed this paradigm in Handwerk et al.32 and found

that for the data shown in Figure 1, the best-fit parameters are†

K*

3-step ¼fk*b ¼7:27�104, k
*

1 ¼6:55�104 , k
*

2 ¼1:65�104,

k*3 ¼5:63�103 , M* ¼274g

K*

4-step ¼fk*b ¼7:27�104, k
*

1 ¼6:40�104 , k
*

2 ¼1:61�104,

k*3 ¼5:45�103 , k*4 ¼1:20�101, M* ¼265g:

ð7Þ

These “optimal” parameters correspond to the “best fit” of the

model to the data, but this does not mean that the fit is actually

“good.” Indeed, in Handwerk et al.32 we visually determined that only

the 3- and 4-step mechanisms used here can adequately describe the

data, whereas for other proposed mechanisms, the best fit was so

poor that the mechanism could not be considered realistic.

That said, even in cases where we can visually determine that a

given set of optimal parameters leads to a good match between pre-

diction and measurements, we still do not know how accurately we

know these parameters. We will address this in the following section.

3.2 | The “Bayesian” inverse problem

An alternative perspective on the inverse problem is the so-called “Bayes-

ian approach.”38–41 In it, we seek a probability distribution p Kjdatað Þ—that

is, the probability that K are the correct parameters given the measured

data. This approach makes intuitive sense given that the data them-

selves are fundamentally stochastic: for example, the size bin data

shown in Figure 1 is based on a randomly chosen subset of particles

whose sizes we have then measured, with the size measurement itself

subject to measurement uncertainties. In other words, if we repeated

measurements we would get different data, and we need to transform

this uncertainty in data space into uncertainty in parameter space.

In order to compute the probability distribution p Kjdatað Þ, we

make use of Bayes' theorem that states that (see References

38 and 39)

p Kjdatað Þ/ pL datajKð Þ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

“likelihood”

ppr Kð Þ
|fflfflffl{zfflfflffl}

“prior”

, ð8Þ

where the “likelihood” describes how likely it would be to observe the

measured data if K were the “true” set of parameters, and the “prior”

encodes what we know a priori about the parameters. The probability

distribution p Kjdatað Þ is typically called the “posterior probability”

since it is informed by our measurements, as opposed to the prior.

Since our data is static, we will simplify our notation for the likelihood

function to be

L Kð Þ¼ pL datajKð Þ:

The posterior in Equation (8) is defined as a proportionality rather

than an equality—that is, the computable right-hand side is a non-

normalized probability density. In practice, this proportionality is suffi-

cient: it allows for comparisons of relative probability density—that is,

is p K1jdatað Þ> p K2jdatað Þ or p K1jdatað Þ< p K2jdatað Þ—and that is all

our algorithms will need.

In the following subsections, we will discuss the construction of

the likelihood and prior, and then how one can use p Kjdatað Þ to make

inferences about parameter values.

3.2.1 | The likelihood

Computing the “likelihood” L Kð Þ implies solving the forward model (4)

or (5) with K, and then comparing its predictions with the measured

data. In the current context, we do this as follows:
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1. Given a particular K, we can solve the forward model (4) or (5)

numerically using a standard ODE integrator to obtain values

n
pred
j

ti;Kð Þ for the predicted concentrations of nanoparticles of size

j at t1 ¼0:918, t2 ¼1:170, t3 ¼2:336, and t4 ¼4:838 h, where we

choose a notation that makes it explicit that npred
j

depends on the

set of parameters K used to run the forward simulation.

2. From these predicted concentrations n
pred
j ti;Kð Þ at time ti , we can

infer the concentrations b
pred
i,ℓ Kð Þ of particles at time ti that fall

within the size range of the ℓth bin, where we use the size bins

defined in Section 2.5 above. Using these binned concentrations,

we can easily calculate the fraction of particles in the ℓth bin:

pi,ℓ Kð Þ¼
XNbins

ℓ¼1

b
pred
i,ℓ Kð Þ

 !�1

b
pred
i,ℓ Kð Þ: ð9Þ

where Nbins is the number of bins used to group particle sizes.

3. For the likelihood, we then need to determine how likely it is that a

given measurement of particle sizes results from these relative prob-

abilities pi,ℓ. If a measurement consists of Ni particles' sizes grouped

into bins (as in Figure 1), then this process can be understood in

the same way as drawing Ni balls of different colors from an urn

with a very large number of balls with known color distribution

(corresponding to pi,ℓ).

Our measured data is a set of values βmeasured
i,ℓ . The question for us

to answer is: How likely is it to get βmeasured
i,ℓ particles in bin ℓ at

time i if the probabilities of particles being in these bins are given

by pi,ℓ? This likelihood can be computed by the analogy to drawing

balls from an urn, and is given by

Li Kð Þ¼
Ntotal!

Ntotal�Nið Þ!

YNbins

ℓ¼1

1

βmeasured
i,ℓ !

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

normalization factor

YNbins

ℓ¼1

pi,ℓ Kð Þ
� 	βmeasured

i,ℓ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

computable

ð10Þ

where Ntotal is the total number of particles in the chemical solu-

tion. The first term cannot be computed because we do not know

Ntotal, but is independent of K. Akin to the discussion following

Equation (8), we can ignore this normalization factor, and we are

left with

Li Kð Þ/
YNbins

ℓ¼1

pi,ℓ Kð Þ
� 	βmeasured

i,ℓ : ð11Þ

4. Finally, we model the likelihood L Kð Þ as the product of the proba-

bilities for finding bins as measured at each of the times as mea-

sured. That is:

L Kð Þ/
Y4

i¼1

Li Kð Þ: ð12Þ

Underlying this product structure is the assumption that the measurements

at different times and their errors are statistically independent. This

assumption is justified given that the data obtained at each time point

resulted from the removal of a small amount of reaction products from the

ongoing reaction, and subsequent independent analysis of these samples.

This likelihood can be computed for a given set of parameters K with a bit

of effort, but in a relatively straightforward way. It requires solving

the system of differential Equations (4) or (5), plus the statistical evalu-

ations in Equations (11) and (12).

We end this section by noting that one could have defined the likeli-

hood also in ways that do not use binning. We explore this possibility

in Appendix A.

3.2.2 | The prior probability

The prior probability ppr in Equation (8) encodes what we know a

priori about the parameters. This is often very little. In the current

context, all we really know is that all of these parameters must be

non-negative, and that M≥3. We describe this as follows:

ppr K3�stepð Þ¼

1 if0≤ kb ≤ kb,maxand0≤ k1 ≤ k1,max

and0≤ k2 ≤ k2,maxand0 ≤ k3 ≤ k3,max

and3≤M≤Mmax,

0 otherwise

8

>>><

>>>:

ð13Þ

and similar for K4-step. kb,max,k2,max,k2,max,k3,max, and Mmax are chosen

large enough that their concrete value does not affect results. In fact,

they could be chosen as infinity.

The prior ppr Kð Þ is also not normalized, that is, the integral over all

parameter values does not add up to one—and would not even be

finite if the maximal values are chosen as infinity. However, as dis-

cussed previously, the missing normalization constant is of no

consequence.

3.2.3 | Evaluating the posterior probability

The function p Kjdatað Þ is, in general, difficult, high dimensional, and

without a closed-form expression (because it involves the solution of

a differential equation). As a consequence, we cannot easily evaluate

quantities of interest such as the mean value and SD of each parame-

ter in K. For example, the mean value kb in K3-step is

kb ¼

ð
∞

�∞

ð
∞

�∞

ð
∞

�∞

ð
∞

�∞

ð
∞

�∞

kb p kb,k1,k2,k3,M dataj Þ dkbdk1dk2dk3dM,ð

ð14Þ

but this integral cannot be evaluated for lack of a closed-form expres-

sion for p Kjdatað Þ.

Since such integrals cannot be computed exactly, we must

approximate them. The typical approach to do this is through sampling

using Markov Chain Monte Carlo methods such as the Metropolis–

Hastings sampler or variations thereof. All of these methods

fundamentally start at a point K 0ð Þ and then repeatedly perform the

following steps:
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1. Propose a trial sample Ktrial, typically chosen near the current sam-

ple Kcurrent.

2. Evaluate the ratio of probabilities,

p Ktrialjdata
� 


p Kcurrentjdata
� 	

and based on this ratio and other information, either “accept” or

“reject” Ktrial. If accepted, it becomes Kcurrent, if rejected the previous

Kcurrent is kept. In both cases, Kcurrent is appended to the list of samples

in the chain.

A concise definition of how the Metropolis-Hastings and other

samplers define trial samples, and when they accept them, can be

found in references39; we will provide an outline of specific choices

we made for the implementation in Appendix B. In any case, because

only the ratio of probabilities is used, it is now clear why the normali-

zation constants in Equations (10) and (13) do not matter, and why in

the definition of (8) it was sufficient to state a proportionality, rather

than an equality.

The end result is a chain of samples, K 0ð Þ,K 1ð Þ,K 2ð Þ,K 3ð Þ,…
n o

that

is constructed in such a way that there are many samples where

p Kjdatað Þ is large, and few samples where p Kjdatað Þ is small. Through

this process we have a representation of the approximate posterior

distribution. It can then be shown that we can approximate

kb ≈
1

P

XP

p¼1

k
pð Þ
b

p K pð Þjdata
� 


ð15Þ

using P samples, with similar approximations for the mean values of

the other parameters, as well as for the SDs or other statistical

quantities.

In practice, the approximation gets better the more samples P one

has. We will often want to use many thousands or millions, despite

the fact that the creation of a sample requires the evaluation of the

ratio of probabilities which in turn requires the solution of the forward

model and some statistical evaluations, as discussed in Sections 3.2.1–

3.2.2. In the examples below, we have used several million samples,

each of which required in the range of 1–5 s to compute. The overall

computational cost of these evaluations is therefore on the order of a

few CPU years, though one can run many computations in parallel.

4 | RESULTS

Using the data presented in Section 2 and the formalism of the previ-

ous section, we can represent the posterior probability distribution via

a large number of samples in a number of scenarios that we will dis-

cuss in the following. In particular, we will first use this approach to

identify the parameters in the “3-step” mechanism discussed in Sec-

tion 2.3, followed by a discussion of corresponding results for the

“4-step” mechanism.

4.1 | Inversion based on individual time points

The experiments of Watzky et al.71 and summarized in Section 2 pro-

vided particle counts at four different time points of the reaction, at

t1 ¼0:918,t2 ¼1:170,t3 ¼2:336,t4 ¼4:838h. Yet, our previous explo-

ration of the reaction mechanism determined “best fit” parameters for

K3�step and K4�step was based only on the last of these time points,

reasoning that all of these parameters must surely affect the outcome

at the last time point to the same or a larger degree as the first three

time points.

But one can question this: maybe one of the reactions is fast, and

the effect of its reaction rate would be visible in one of the earlier

times but its value is no longer important to explain the results at later

times. This reasoning suggests that each of the time points could pro-

vide complementary information that, taken together, would yield a

better picture of the true parameter values than just considering one

time point.

The Bayesian approach allows us to test this. Instead of

defining the likelihood function in Equation (12) as the product of

likelihoods from all four time points, we can take into account

only one time point i. The first four columns of Figure 1 show the

one-dimensional marginal probability densities derived from the pos-

terior probability density based on just the data from one time

point each.

Indeed, reading each of the rows of the figure left to right shows

that the probability distributions we obtain using data from different

time points are substantially different both from each other, and from

the probability distribution obtained from all data together (shown in

the last column). In other words, each data set contains different,

independent information.

Also, the graphs of the second column (considering only the

data for t2) show marginal probability distributions for most

parameters that are so flat that they do not have substantial mass

within the horizontal range shown in the figure. This is easily

explained since, as discussed in Section 2 (see also Figure 1), we

have very little data at t2 compared to the sampling noise,

and this is apparently not enough to substantially constrain

parameter values. As a consequence, using only this time point,

we cannot infer parameter values to any kind of certainty. In

contrast, the probability distributions obtained from time

points t1 and t4, for which we have the most data, are narrow and

therefore provide estimates for the parameters with relatively small

uncertainties.

4.2 | Inversion based on all time points jointly

If, as indeed shown above, the data from different time points pro-

vides complementary information, it makes sense to use all of this

information to determine the parameters in our models. The last

column of Figure 2 shows the probability distributions using all time

points jointly by utilizing the likelihood function as originally described

in Equation (12).‡
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The fact that the combined probability distributions are gen-

erally narrower than the ones obtained from the measurements at

individual time points illustrates that using more data helps nar-

row down the uncertainties in how well we know each of the

parameters. Moreover, from the information shown in the figures,

we can provide not only improved estimates of the parameters

(to be compared to those originally reported in Handwerk et al.32

and reproduced in Equation (7) in Section 3.1), but importantly

also their uncertainties:

K*

3-step ¼fk*b ¼ 6:62�0:75ð Þ�103, k*1 ¼ 1:24�0:12ð Þ�105,

k
*

2 ¼ 2:60�0:86ð Þ�105, k
*

3 ¼ 6:22�0:25ð Þ�103 ,

M* ¼107�5g:

ð16Þ

These values are the mean value and SD of the probability distribu-

tions shown in the rightmost column of Figure 1. We note that for all of

the parameters besides kb and k2, the SD is an order of magnitude

lower than the mean value. In other words, the data we have allows

us to infer the parameters with confidence to one digit of accuracy.

F IGURE 2 One-dimensional marginal probability densities for the parameters in the 3-step mechanism. The first four columns show

probability densities computed using only measured data from one of the four time points each (t1 ¼0:918h, t2 ¼1:170h, t3 ¼2:336h, and

t4 ¼4:838h). The last column uses all data jointly. Each column is computed from simulations using 4:408�106 samples. All plots in a row use

the same vertical and horizontal scales; plots that look empty simply have a small and very broad probability distribution that may extend beyond

the left and right edges of the plot. (Appendix D and Figure S3 show alternate ways of visualizing the data that underlies this figure.)
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A key conclusion from our previous work is that for the

observed narrow PSDs to form, smaller particles must grow more

quickly than larger particles—that is, k2 > k3. The best fit of the

3-step model to the t4 data in Handwerk et al.32 (see Equation (7))

gave k2 ¼1:65�104 and k3 ¼5:63�103, so that k2
k3
¼2:93. The

Bayesian approach supports the conclusion that k2 > k3. Indeed, for

the values shown in Equation (16) above, using all four time steps, the

lower bound of the confidence interval for k2 , namely 1:74�105, is

larger than the upper bound of the confidence interval for k3, namely

6:47�103, and the ratio of these parameters' mean values

is k2
k3
¼26:89.

We can compare the previous data also against what the Bayes-

ian approach would yield when using only the fourth time step. In that

case, we obtain

K*

3-step,only t4
¼fk*b ¼ 2:38�0:48ð Þ�104, k*1 ¼ 2:17�0:34ð Þ�105,

k
*

2 ¼ 1:81�0:37ð Þ�105, k
*

3 ¼ 1:36�0:25ð Þ�104,

M* ¼145�23g:

Again, the lower bound of the confidence interval for k2 , namely

1:44�105, is larger than the upper bound of the confidence interval

for k3, namely 1:61�104, and the ratio of these values is k2
k3
¼8:94,

close to the previously reported ratio.

4.3 | Assessment for the 4-step mechanism

We can repeat the same process for the 4-step mechanism provided

previously. Figure 3 shows the results of inverting for parameter

values using all time points jointly, for the six parameters in Equa-

tion (5). As before, we can compute mean and SDs for these parame-

ters (again to be compared to those originally reported in Handwerk

et al.32 and reproduced in Equation (7)):

K*

4-step ¼fk*b ¼ 1:37�0:13ð Þ�105, k
*

1 ¼ 7:69�0:86ð Þ�104,

k*2 ¼ 1:40�0:10ð Þ�104, k*3 ¼ 7:15�0:32ð Þ�103 ,

k
*

4 ¼ 1:74�0:78ð Þ�103, M* ¼111�14g

ð17Þ

Comparing Figure 3 to the rightmost column of Figure 2, we

see many similarities in the probability distributions between the

3- and 4-step models. In particular, the distributions for kb,k1,k3

are all quite narrow, suggesting both models are sensitive to these

parameters. Conversely, parameters k2 and M have qualitatively dif-

ferent probability distributions between the 3- and 4-step models.

Indeed, we see that the 4-step model is more sensitive to k2 but

less sensitive to M. In addition to the visual representation of uncer-

tainty, the SDs in Equations (16) and (17) show similar levels of

accuracy for parameters kb and k3—the 4-step model's k1 has an

inflated SD due to its heavy tail. Similarly, the SDs for k2 and M reflect

the differences in parameter sensitivity between the 3- and 4-step

models.

Finally, we note that the uncertainty in k4 is relatively large, and that

k4 is associated with the agglomeration reaction that distinguishes the

3- and 4-step models. The fact that we have a large uncertainty in this

reaction's rate suggests that this additional reaction is not particularly

important in describing the observed PSD. One can interpret this as

suggesting that the 3-step mechanism is the minimal mechanism that

can explain the data, and that the 4-step mechanism is an unnecessary

complication for the present iridium nanoparticle system.§

4.4 | Assessing accuracy and uncertainty in model

predictions

It is conceivable that one can obtain narrow parameter distributions

yet the model with these parameters does not reproduce the

F IGURE 3 One-dimensional

marginal probabilities for the

parameters in the 4-step mechanism,

using measured data at all four time

points. These probability distributions

are computed using 4:408�106

samples
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observed PSD—this would be the case if the model is simply unable to

reproduce reality even with the “best” values for the coefficients.

Therefore, it is important to test this possibility. In Figure 4, we com-

pare the simulated PSD using the previously published values for

K*

3�step (see Equation 7) to the simulated PSD using the mean values

obtained in our Bayesian analysis for the 3- and 4-step mechanisms

(see Equations 16 and 17).

Our predictions are all reasonably close to the measured data,

and reasonably accurately represent the observed, narrow nano-

particle PSD. Visually, it is difficult to assess whether the 3- or

4-step mechanisms provide better matches for the data,

supporting our conclusion above that the 4-step mechanism may

be an unnecessary complication of the 3-step model. At the same

time, from the lack of fit in the first row for times other than t4, it

is clear that it is important to use all of available data in the fitting pro-

cedure.**

The figure also shows, in thin black lines, predicted PSDs com-

puted with a random subset of 100 parameter values chosen from our

Markov chains. These lines provide a visualization of the spread of

predictions, corresponding to the spread in parameter values, and

illustrate that the parameter distributions result in relatively uniform

predictions.

5 | CONCLUSIONS

In this contribution, we have discussed the use of a Bayesian method-

ology for the estimation of parameters in a mathematical model of

F IGURE 4 Comparison of simulation results using (top) the 3-step mechanism with previously published parameters determined using the

deterministic approach (7), (middle) the 3-step mechanism with parameters determined using the Bayesian approach, and (bottom) the 4-step

mechanism with parameters determined using the Bayesian approach. Recall that the previously published values shown in Equation (7) only

considered t4, and so it is no surprise that the top-right figure shows an excellent fit, with worse fits for the other time points. For the bottom

two rows, the orange curve represents particle size predictions obtained using the mean parameters provided in Equations (16) and (17),

respectively. The many black curves represent predictions using 100 parameters K randomly chosen from the probability distribution p Kjdatað Þ;

this visualization provides an indication of the uncertainty in predictions. As in Figure 1, particles smaller than 1.4 nm are shown in a lighter color
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iridium nanoparticle formation; that is, we have performed “Bayesian

inversion assisted, mechanism-enabled population-balance modeling”

(BIA-ME-PBM).

The Bayesian inversion approach we employ is more complicated

and substantially more computationally expensive than our previous

deterministic approach described in Section 3.1 and previously

reported in References 31–33. At the same time, the BIA-ME-PBM

approach provides valuable insights not available from the determinis-

tic method. Specifically, the deterministic inverse problem does not

provide us with a way to quantify the uncertainty in parameter esti-

mates. Through our discussion in Section 4, we have seen that the

Bayesian approach provides this missing knowledge. Furthermore, the

method not only provides a best-fit value for the parameter k4 that

appears in the equation that distinguishes the 3- and 4-step mecha-

nisms, but also a large uncertainty for it. In other words, the details of

the agglomeration reaction (3, vide supra) do not seem to matter

much for fitting the available data; hence, we can interpret this as fur-

ther evidence that the 3-step mechanism, rather than the 4-step

mechanism, is the minimal mechanism able to describe the formation

of Ir 0ð Þn nanoparticles. As a consequence, the Bayesian approach can

also be used as a tool in model selection here mechanistic model

selection.

Quantitatively, the probability distributions for all parameters that

appear in the model, taking into account all available data (see the

rightmost column of Figure 2), are narrow enough to determine all

parameters to approximately one digit of accuracy. Furthermore, our

assessment of the uncertainty in predictions of the model using

uncertain parameters in Figure 4 shows that the parameter ranges we

have identified for all components of K all yield relatively similar pre-

dictions. Together, this allows us to draw two important conclusions

that one cannot obtain from the deterministic inverse problem alone:

1. While the experimental nanoparticle size data shown in Figure 1

contain substantial noise, it is not entirely inadequate for a reason-

able determination of parameter values. Clearly, one always wishes

for better data, in particular more measurements at time t2; better

data generally leads to smaller uncertainties in parameter esti-

mates, and would allow us to determine them to more than around

one digit of accuracy. At the same time, the data shown in Figure 1

allows for reasonably accurate estimates of reaction parameters.

2. The uncertainty in parameters leads to relatively small variability in

predictions, and this enables the important application of optimiz-

ing the reaction conditions for specific outcomes. More specifically,

optimization of initial conditions or reaction temperatures is only

meaningful if model predictions are relatively stable with regard to

the uncertainty in estimated parameters—as is indeed the case

here, based on the results shown in Figure 4.

These conclusions show that there is substantial value in using a

Bayesian methodology to parameter estimation. To the best of our

knowledge, Bayesian methods similar to the one we presented are

not widely used in this part of the chemistry community. Indeed, the

Bayesian framework is a highly generalizable approach that can be

used in many parameter estimation problems. The construction of the

likelihood function in Section 3.2.1 and the prior distribution in Sec-

tion 3.2.2 will differ between problems, but the interpretations we

make of the resulting probability distributions are the same insights

one would seek for a general parameter estimation problem: narrow,

unimodal distributions are indicative of an adequate mathematical

model and sufficient data. We hope to see more use of the Bayesian

approach within the chemistry community. We will report our own

efforts expanding the BIA-ME-PBM methodology to a second iridium

system where more data is present and where the mechanism of

especially nucleation is currently not 100% clear, as well as in semi-

conductor and other nanoparticle systems.
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ENDNOTES

* In our literature search, we found a number of uses of Bayesian inversion

in chemistry.18,43–49,52–64 Armstrong and Hibbert50,51 also provide a

comprehensive, albeit now decade-old survey of the uses of Bayesian

methods in chemistry. However, our attempt at a comprehensive litera-

ture search revealed no uses of Bayesian methods for nanoparticle

mechanistic chemistry nor evidence for its deserved, more extensive use

in mechanistic chemistry in general.

† The actual methodology used in References 31–33 replaced the mea-

sured data (shown in Figure 1) by a smoothed version to mitigate the

problem of sampling error mentioned in Section 2.5 at least to some

degree. The method there also tried to fit the entire particle size distri-

bution, rather than only for those particles with a diameter of more than

1.4 nm as explained above. This is equivalent to assuming that measure-

ments simply found no small particles. Finally, our methodology used

only the final PSD data at t4 , deliberately ignoring the data at t1 ,t2 ,t3 in

that initial ME-PBM effort.

‡ Indeed, looking at the form of (12), we recognize that the combined like-

lihood is the product of the likelihoods obtained from the four time

points individually. Furthermore, the specific form of the prior in Equa-

tion (13) then implies that the combined posterior probability density

p Kjdatað Þ is simply the product of the posterior probability densities we

12 LONG ET AL.



get if we only consider a single time point—that is, the plots shown in

the last column of Figure 2 would simply depict the product of the prob-

ability densities for individual time points, shown in the preceding four

columns, if we had infinitely many samples.

§ The suggestion that the 3-step model is sufficient can be formally tested

with the help of “Bayes factors”74 to determine whether the 4-step

model yields a benefit that outweighs its greater complexity.

** One can find quantitative ways to assess whether one model fits data

better than another model. If one were to simply fit parameters of a

model to a data set, then the R-squared criterion is often used. In Bayes-

ian models, this notion needs to be generalized and is often referred to

as “posterior predictive assessment,” see, for example, Gelman et al.75

Visual inspection of the plots in the second and third row of Figure 4

suggests that the 3- and 4-step models yield fits that are not qualita-

tively different in their goodness-of-fit, and we consequently decided

not to go into the details of posterior predictive assessment.
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