Propagating geometry information to finite element computations

LUCA HELTAI, SISSA - International School for Advanced Studies, Italy
WOLFGANG BANGERTH, Colorado State University, USA

MARTIN KRONBICHLER, Technical University of Munich, Germany
ANDREA MOLA, SISSA - International School for Advanced Studies, Italy

The traditional workflow in continuum mechanics simulations is that a geometry description - for example obtained using Constructive
Solid Geometry or Computer Aided Design tools — forms the input for a mesh generator. The mesh is then used as the sole input for the
finite element, finite volume, and finite difference solver, which at this point no longer has access to the original, “underlying” geometry.
However, many modern techniques — for example, adaptive mesh refinement and the use of higher order geometry approximation
methods - really do need information about the underlying geometry to realize their full potential. We have undertaken an exhaustive
study of where typical finite element codes use geometry information, with the goal of determining what information geometry tools
would have to provide. Our study shows that nearly all geometry-related needs inside the simulators can be satisfied by just two
“primitives”: elementary queries posed by the simulation software to the geometry description. We then show that it is possible to
provide these primitives in all of the frequently used ways in which geometries are described in common industrial workflows, and

illustrate our solutions using a number of examples.

CCS Concepts: « Mathematics of computing — Mathematical software; Partial differential equations; « Computing method-

ologies — Mesh geometry models.
Additional Key Words and Phrases: Finite element meshes, geometry description, Computer Aided Design

ACM Reference Format:
Luca Heltai, Wolfgang Bangerth, Martin Kronbichler, and Andrea Mola. 2021. Propagating geometry information to finite element
computations. ACM Trans. Math. Softw. 1, 1, Article 1 (January 2021), 29 pages. https://doi.org/10.1145/3468428

1 INTRODUCTION

The traditional workflow of finite element, finite volume, and finite difference simulations of physical processes consists
of three phases: what is called “preprocessing”; the actual numerical solution of a partial differential equation; and what
is called “postprocessing”. In this workflow, preprocessing generally means the generation of a geometric description of
the domain on which one wants to solve the problem - either through the use of Computer Aided Design (CAD), or

by combining simpler geometries into one via constructive solid geometry (CSG) — and the use of a mesh generator

Authors’ addresses: Luca Heltai, luca.heltai@sissa.it, SISSA - International School for Advanced Studies, mathLab, Mathematics Area, Via Bonomea, 265,
34136 Trieste, Italy; Wolfgang Bangerth, bangerth@colostate.edu, Colorado State University, Department of Mathematics, Department of Geosciences,
1874 Campus Delivery, Fort Collins, CO, 80524, USA; Martin Kronbichler, kronbichler@Inm.mw.tum.de, Technical University of Munich, Institute for
Computational Mechanics, Boltzmannstr. 15, 85748 Garching b. Minchen, Germany; Andrea Mola, mola.andrea@sissa.it, SISSA - International School for
Advanced Studies, mathLab, Mathematics Area, Via Bonomea, 265, 34136 Trieste, Italy.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

2 Heltai, Bangerth, Kronbichler, Mola

that uses the geometry to create the computational grid on which the simulation is then run. On the other end of
the pipeline, postprocessing consists of the visualization of the computed solution and the extraction of quantities of
interest.

Overall, this “traditional” workflow can be visualized through the following graph in which information is only

propagated from one box to the next:

[Geometry description]—»[Mesh generation

[Quantities of interest]

The fundamental issue with this workflow is that geometry information is only passed on to the mesh generator, but
is, in general, not available at the later stages of the pipeline. This approach — which to our knowledge is used in all
commercial and open source simulation tools today - is appropriate if the simulator is relatively simple; specifically,
if (i) simulation and postprocessing tools only rely on a single, fixed mesh as their sole information on the geometry
of the domain on which to solve the problem under consideration, and (ii) if one uses lowest-order finite-element,
finite-volume, or finite-difference discretizations for which it is sufficient to use the piecewise linear approximation
of the boundary that is generally obtained by replacing the “underlying” geometry of the problem by a fixed mesh
characterized solely by its vertices and assuming straight edges. In practice, the limitations of the workflow mentioned
above imply that to most finite element analysts, “the mesh is the domain”, even though to the designer the mesh
is generally an imperfect approximation of some underlying geometry typically understood to be a CAD or CSG
description.

Yet, simulation tools have become vastly more complex since the formulation of the workflow above several decades
ago, and as we will show below, we can not make use of their full potential unless geometry information is propagated to
the simulation and analysis tools, as well as to the postprocessing tools. For example, geometry information is important

in the following contexts:

e Modern simulators no longer use only a single mesh, but create hierarchies of meshes. Two typical applications are
the generation of a sequence of refined meshes to enable the use of geometric multigrid solvers or preconditioners
[10, 15]; and the use of adaptive mesh refinement to obtain a mesh that is better suited to the accurate solution
of the underlying equation [5, 12], without a-priori knowledge of how the final mesh will look like. In a similar
vein, for large-scale computations with more than a few tens of millions of elements and massively parallel
systems, the I/O related to creating and accessing the mesh data structure is often a serious bottleneck. Much
better performance can be obtained by reading smaller meshes that get refined as part of the simulation. In all of
these cases, refining the mesh involves the computation of new grid points from inside the simulation, and these
points need to respect the same geometry used for the original mesh.

e Accurate simulators use curved cells and higher order mappings both at the boundary and in the interior of
the mesh. How exactly these curved cells should look requires information about the underlying geometry. To
illustrate the importance of this point, let us mention that it has been understood theoretically for a long time
that one loses the optimal order of finite element discretizations with polynomial degrees greater than one, if one
does not also use higher-order approximations of the boundary [6-9, 13, 17, 32]. This is also known from practical
experience; for example [22] presents experimental evidence, and [34] and the references therein provide an
excellent example of the lengths one needs to go to to recover higher-order accuracy if the underlying geometry
is not available. (Table 1 and Fig. 6 below also illustrate the issue.) In other words, a finite element solver that

Manuscript submitted to ACM

Propagating geometry information to finite element computations 3

does not know about the underlying geometry will compute a solution with an unnecessarily large error or
use an unnecessarily large amount of computational work. Alternatively, additional points for a high-order
representation need to be computed as a separate workflow step between the meshing and the simulation, as
used, e.g., in [26, 30, 38].

In many contexts — during the simulation, but also during accurate visualization and evaluation of quantities of

interest — it is important to know the correct normal vector to faces of cells. An approximation can be obtained
by simply taking the location of vertices as provided in the mesh file and their connection into cells, as the
ground truth. But the vectors so computed are not consistent with the true, underlying geometry from which
the mesh was originally generated. As a consequence, visualizations are often not faithful representations of
the actual computations, and quantities of interest are not evaluated to the full accuracy possible. For example,
accurate evaluation of mass or energy fluxes across a boundary requires accurate knowledge of the normal
vector. For fourth order equations, accurate knowledge of the normal vector may also be required to retain
optimal convergence order of finite element schemes if it is necessary to construct C! approximations of a curved

boundary (see [32] and the references therein).

We will provide more examples below where geometry information is used in finite element simulations.

These considerations point to a need to propagate geometry information not only to the mesh generator, but indeed
also to the simulation engine. This raises the question how this can best be done. To the best of our knowledge, no
commercial or open source tools do this in a consistent way today. Furthermore, we have to realize that geometries are
often described through complex CAD systems that are either not open source, complicated to interact with, or can
only be accessed in proprietary ways; as a consequence, it makes sense to ask what kinds of queries a generic geometry
engine has to be able to answer to satisfy the needs of simulation software. In order to address all of these points, we

have undertaken a comprehensive study with the following goals:

(1) Identify a minimal set of operations — which we will call “primitives” — that geometry tools need to be able to
perform to satisfy the needs of simulation tools.

(2) Provide a comprehensive review of geometry operations performed in a widely used finite element library and a
large application code that is built on the former, with the aim of verifying that the minimal set of operations
outlined above is indeed sufficient.

(3) Discuss ways in which geometry tools can implement the minimal set of operations, given the kinds of geometries

and information that is typically available in industrial and research workflows.

We will state the primitives in the form of oracles, i.e., as blackboxes that given certain inputs produce appropriate
outputs, without specifying how exactly one would need to implement this operation. This reductionist approach is
often appropriate when one wants to interface with one of many possible geometry engines, each of which may have
its own way of implementing the operations. In such cases, it is often useful to only specify a minimal interface that all
engines can relatively easily implement. A common way of representing oracles in object-oriented codes is by providing
an abstract base class with unimplemented virtual functions; the base class is then the oracle, whereas derived classes
provide actual implementations.

The result of our work is the realization that only two geometry primitives are sufficient. We will discuss these in
Section 2 and will empirically show in Section 3 that they can indeed satisfy (almost) all needs of simulators. (The sole
exception requiring additional information from the geometry engine is discussed in Appendix A). Section 5 is then
devoted to the question of how one would implement these two operations in the most common situations, namely

Manuscript submitted to ACM

4 Heltai, Bangerth, Kronbichler, Mola

where the geometry may be described explicitly (for example, if the geometry is a sphere or a known perturbation of it)
or where it is described implicitly (e.g., through a collection of NURBS patches in typical CAD engines). We demonstrate
the practical benefits of the integration of geometry and simulation in Section 6. We briefly discuss periodic domains in
Appendix B.

The practical implication of our work is the identification of a minimal interface that allows the coupling of geometry
and simulation engines. We have tested these interfaces via the widely used finite element software DEAL.II [2, 3] and
the Advanced Simulator for Problems in Earth ConvecTion AspECT [23, 31] with geometry descriptions that are either
given explicitly, or via the OpenCASCADE library that is widely used for CAD descriptions [41]. All of the results of
our work are available in the publicly released versions of DEAL.II and AspEcT. The verification of our approach using
these examples, and the fact that the sufficient interface is so small, should provide the certainty necessary to follow a
similar path for integrating other simulation and geometry software packages.

We end this introduction by remarking that one may also wish to provide geometry information to the postprocessing
stage. For example, this would allow visualization software to produce more faithful graphical representations of the
solutions generated by simulators, free of artifacts that result from incomplete knowledge of the domain on which the
simulation was performed. We are not experts in visualization and consequently leave an investigation of the geometry
needs of visualization software to others. We will, however, comment that the evaluation of quantities of interest —
such as stresses at individual points, heat and mass fluxes across boundaries, or average and extremal values for certain
solution fields — may be most efficiently done from within the simulator itself, given that geometry information as well
as knowledge of shape functions and other details of the discretization are already available there; indeed, this is the

approach chosen in the AsPECT code mentioned above.

2 FUNDAMENTAL GEOMETRIC PRIMITIVES

As we will discuss in detail in the following section, it turns out that the geometric queries needed by finite element codes
- such as finding locations for new vertices upon mesh refinement, or computing vectors normal to the surface — can be
reduced to only two “primitive” operations: (i) finding a new point given a set of existing points with corresponding
weights, and (ii) computing the tangent vector to a line connecting two existing points. This realization of a minimal
set of operations allows us great flexibility in choosing software packages that actually provide these primitives, and
minimizes the dependency a finite element code incurs when using an external geometry package.

In the literature, implementations that can answer a small number of very specific questions - i.e., provide certain
simple operations — are typically referred to as “oracles”. The point of postulating the existence of an oracle is that it
allows us to separate the design of a code from its actual implementation. In the current case, all that matters for the
purposes of the current section is that an oracle exists that can answer two specific questions, and whose answers can
be used throughout a finite element code.

In order to motivate the two geometric primitives that we postulate are sufficient for almost all finite element
operations, let us first provide two scenarios of relevance to us. First, consider a d-dimensional surface embedded into a
higher dimensional space; one might think of this surface as the boundary of a volume within which we would like to
simulate certain physics. The second setting is a d-dimensional volume geometry in d-dimensional space for which we
would like to consider interior cells to also deviate from the simplest, d-linear shape; an example would be a volume
mesh that extends away from a curved wing around which we would like to simulate air flow. We will use these two

scenarios for the examples below.

Manuscript submitted to ACM

Propagating geometry information to finite element computations 5

2.1 Statement of primitives

Given this background, the two operations we have found are necessary are the following:

PRIMITIVE 1 (“NEW POINT”). Given N > 2 existing pointsxi, . ..,xnN and weightswi, ..., wn that satisfy ZnNzl wp =1,

return a new point X*(x1, ..., XN, Wi, . . ., WN') that interpolates the given points, weighting each x,, with wy,.

PRIMITIVE 2 (“TANGENT VECTOR”). Given two existing points X1, X2, return the (non-normalized) “tangent” vector t at

point x1 in direction x3, defined by

o XN(x1, %2, (1 - w),w) —x1
t(x1,Xx2) = hmO .
w—>

1)

We will give many examples below of how these two operations are used. As we will show, all other geometric

w

questions a typical finite element code may have can be answered exactly, without approximation, with only these two

operations. For the moment, one can think of use cases as follows:

e When adaptively refining a mesh, one needs to introduce new vertex locations on edges, faces, and in the interior
of cells. This is easily done using the first of the two primitives above, using the existing vertex locations on an
edge, face, or cell as input.

e Computing the normal vector to a face at the boundary of a three-dimensional domain can be done by taking
the cross product of two tangent vectors that pass through the point at which we need the normal vector. These

tangent vectors are computed via the second primitive.

A concrete implementation that describes a particular geometry will be able to provide answers to the two operations
based on its knowledge of the actual geometry. For example, and as discussed in Section 5, the wing of an airplane
would be described using a CAD geometry that can be queried for the primitives above at least on the boundary of the
domain. More work — also described in Section 5.4 below — will then be necessary to extend this description into the
interior. In other cases, however, the description of the geometry may be available everywhere — for example, if the

geometry of interest is an analytically known object such as a sphere.

REMARK 1. As we will see below, the operations that finite element codes require can be implemented by only querying
information from objects that describe an entire manifold, without having to know anything about the triangulation that
lives on it, or in particular where the triangulation’s boundary lies. This greatly simplifies the construction of oracles because
they do not need to know anything about meshes, or the domain on which we solve an equation. For example, we will be able
to use a CAD geometry of, say, the entire hull of a ship even if we want to solve an equation on only parts of the surface;
that there is a boundary to the domain on which we solve, and where on the hull it lies, will be of no importance to the
oracle that will answer our queries.

Information about the domain, its boundary, and the mesh that covers it, will of course be used in constructing the inputs

to the queries, but is not necessary in computing their outputs.

REMARK 2. Given the definition of the tangent vector in (1), it is possible to implement this second query approximately
through finite differencing with the help of the first, using

X*(x1,%2,(1 - ¢),6) — x1

t~
&

with a small but finite ¢. In other words, one could in principle get away with only one primitive if necessary. At the same
time, and as discussed in Section 5, we have found that in many cases, good ways to directly implement the TANGENT VECTOR
primitive exist, and there is no need for approximation.

Manuscript submitted to ACM

6 Heltai, Bangerth, Kronbichler, Mola

REMARK 3. The two primitives mentioned above are the only ones necessary to implement the operations discussed in the
next section, exactly and without approximation. As such, they are truly primitive, but that does not mean that one could
not come up with a larger set of operations geometry packages could provide, possibly in a more efficient way than when
implemented based on the primitives. We did not pursue this idea any further, primarily because (i) we have not found it
necessary in practice, and (ii) because these additional operations would have to be implemented for all of the different

ways discussed in Section 5. (That said, see also Remark 4 in the appendix.)

3 A SURVEY OF GEOMETRY USES IN FINITE ELEMENT CODES

In our initial attempt to understand what kinds of primitives suffice to implement typical finite element operations, and
later to support our claim that the two primitives mentioned above are indeed sufficient for almost all operations, we have
undertaken a survey of a large and modern finite element library to find all of the places in which finite element codes
make use of geometric information. Specifically, we have investigated the DEAL.II library (see https://www.dealii.org,
[2, 3]), consisting of more than a million lines of C++. DEAL.II provides many modern finite element algorithms, for
example fully adaptive meshes, higher order elements and mappings, support for coupled and nonlinear problems,
complex boundary conditions, and many other areas. We have also surveyed the more than 150,000 lines of C++ code
of the AsPECT code that simulates convection in the Earth mantle [23, 31].

We have found a large number of places in which these codes use geometric information, but most of them can
be grouped into general categories. In the following subsections, we present a summary of use cases along with a
description of how each of these uses of geometric information can be implemented in terms of only the two primitive
operations outlined above. We have found only one exception of an operation — rarely used in finite element operations
— that can not be mapped to the two primitives and would need additional information from the geometry engine that
underlies the computation; we discuss it in Appendix A.

The intent of this summary is to show the capabilities enabled by these two primitives. Given their simplicity, we
expect them to be deliverable by any software package that provides information about the domain on which a partial
differential or integral equation is to be solved. This includes, in particular, the many CAD packages that are used today

to model essentially every object around us.

3.1 Mesh refinement

When refining a mesh, either adaptively or globally, one typically splits each edge into two children, and then proceeds
with faces and cell interiors in ways that depend on whether we use triangles/tetrahedra or quadrilaterals/hexahedra;
both cases follow essentially equivalent schemes.

For breaking an edge, the new midpoint needs to respect the geometry of the underlying domain. For example, if the
existing edge is at the boundary of a domain, then we will want the new point to also lie on the boundarys; its location
should then not simply be at the mean of the Cartesian locations of the existing vertices of the edge. The same is often
true for interior edges: if refining a mesh for a domain around an obstacle, e.g., a wing, then one typically also wants to
refine interior edges so that they use properties of the geometry — in other words, we want the entire mesh to follow
the geometry of the wing, not just the faces or cells actually adjacent to the wing. We illustrate this using a simpler
example: refining a mesh in a spherical shell geometry (see Fig. 1). There, we will want to introduce new points on
interior edges so that they have radius and angle equal to the average of the existing points. A similar strategy must
be used for the new point at the center of each triangular or quadrilateral facet, whether at the boundary or interior,

Manuscript submitted to ACM

Propagating geometry information to finite element computations 7

Fig. 1. Illustration of the importance of taking geometry into account when refining meshes. Starting from a discretization of an annulus
that contains ten coarse cells, we choose new points either ignoring the geometry description, i.e., computing the location of a new vertex by
simply averaging the locations of the surrounding points (left), or choosing new points on boundary edges so that they have the correct
radius from the origin, and new points of interior edges and cells as the Cartesian mean of the surrounding vertices (second from left). The
latter procedure works well when the number of coarse elements is sufficient to resolve the geometry, but leaves some kinks in the grids,
where one is still able to identify the original ten coarse cells. However, it may lead to very distorted grids if the coarse mesh is not fine
enough, e.g., if the coarse mesh consisted of only four cells (second from right). The ideal case (right) is independent of the number of coarse
cells that one may start with, and it exploits full knowledge of the underlying geometry. In this case, this is done by choosing all new points
on edges and cells so that they average the radius and angle of the adjacent points.

and then again for the new point inside each tetrahedral or hexahedral cell if in 3d; in these cases, the interpolation
happens between more than just two adjacent vertex locations.

In all of these cases, the new point on edges, faces, and cells can clearly be satisfied with the NEW POINT primitive
of Section 2. (The different meshes shown in Fig. 1 then simply correspond to different ways of implementing the
primitive.) In the case of isotropic refinement of edges, one needs to call the primitive with the two existing points
and equal weights w; = wyp = % For the new point at the center of a quadrilateral, we first compute the new points
on the edges, and then call the NEw POINT primitive for the new center point with the 8 surrounding points (the four
pre-existing vertices of the quadrilateral plus the four new points on the now split edges). Assigning the existing vertices
a weight of —1/4 and the new edge centers a weight 1/2 leads to high-quality meshes, as opposed to putting equal
weights on all points. These weights correspond to the evaluation with a transfinite interpolation [21] in the center
of the edges. Similarly, for hexahedra, we call the NEw POINT primitive with the 8 existing vertices, the 12 new edge
points, and the 6 new face centers, with weights 1/8, —1/4, and 1/2, respectively. Similar considerations can also be

applied to triangles and tetrahedra.

3.2 Polynomial mappings

Many finite element codes use “iso-parametric” mappings in which cells consist of the area of the reference cell (e.g.,
the unit square) mapped by a polynomial mapping of degree equal to that of the finite element in use. (One may of
course also use lower, “sub-parametric”, or even higher order, “super-parametric”, mappings.)

When using quadratic or higher order mappings, cells are bounded by polynomial curves or surfaces. In general, for

quadrilaterals and hexahedra, a cell K is defined by
K= xeRd:x=FK(ﬁ)=Zvi(pi(ﬁ), xeK=1[0,19}. @)
i

Manuscript submitted to ACM

8 Heltai, Bangerth, Kronbichler, Mola

Fig. 2. Hlustration of biquadratic mapping of a quadrilateral (shown in red) onto the surface of a sixth of a sphere (blue), with interpolation
nodes represented as black squares.

Here, ¢; are the usual d-linear, d-quadratic, or higher order shape functions, and v; are the (p + 1)¢ support points of
cell K when working with mappings of degree p. (Similar constructions apply to triangles and tetrahedra.)

For p = 1, i.e, the bi-/trilinear mappings, the support points are simply the vertices of the cell, for which we know that
they are already part of the manifold, whose locations are fixed, and which are generally provided as part of the mesh
description. On the other hand, for higher order mappings, we need to evaluate the locations of these support points
between vertices. For example, for cubic mappings with equidistant support points, one needs these points at relative
distances of 1/3 and 2/3 along each edge. This is easily done using the NEw POINT primitive, using the two vertices
at the end of the edge as existing points, and weights wi = 2/3, wy = 1/3 for the first support point, and reversed
weights for the second. Following the computation of edge support points, we proceed with the evaluation of support
point locations inside each face using the already computed points at the vertices and on the edges as pre-existing
points; finally, we compute locations for points inside cells. The weights within the entities might again be derived from
transfinite interpolation [21], propagating the information from surrounding edges into the interior. Figure 2 illustrates
the construction of such an approximate, polynomial representation of a part of a sphere. The support points for the
mapping that are not existing vertices are generated using the NEw POINT primitive; consequently, they lie exactly on
the curved (spherical) manifold, whereas there is a (small) gap between the polynomial approximation and the original
sphere everywhere else.

All operations outlined in the previous paragraph only require the first of our two primitives. In Section 3.6, we

analyze the requirements for implementing C!-mappings that are needed in certain finite element applications.

3.3 Computing the Jacobian of a mapping

The computation of integrals in the finite element method generally involves the transformation Fg : K + K from the
reference cell K to the concrete cell K. The transformation of the integrand then implies that we need the “Jacobian”
Jk = ﬁFK()”() or its inverse for all vector quantities, and the determinant, det(Jx), as an additional weight factor. The
Jacobian matrix Jg is also necessary when using a Newton iteration to find the reference coordinates x = FI}I (x) that
correspond to a given point x; this operation is key in particle-in-cell methods and methods based on characteristics. In
the following, let us assume that Fx maps to the “true” domain of interest, not a polynomial approximation of it; we
will comment on the latter case at the end of the section.

Manuscript submitted to ACM

Propagating geometry information to finite element computations 9

}A{Q X2
’ /_\
Lo x; = Fr (%)
[~
X0 X1
&~ — — —po y
Ly 1

Fig. 3. Computing the Jacobian of a mapping (at point %) using only the NEw POINT and TANGENT VECTOR primitives.

The construction of the matrix Jx (%) at a specific quadrature point %o given in reference coordinates uses an algorithm
that first builds a basis for the tangent space at xo = Fx(Xo). There are of course many bases for this tangent space, but
we choose the one whose basis vectors are the images of unit vectors é; centered at X¢ as the images of these vectors
will correspond to the partial derivatives %F(f{o) and consequently form the columns of J. The algorithm proceeds in

three steps:

(1) Use the NEW POINT primitive with arguments given by the vertices of the concrete cell, and weights equal to the
reference coordinates of X, to obtain the image x(€ K of the point %o € K;

(2) Select d points {f{i}?zl in the reference cell K, aligned with the ith reference coordinate axis, and compute their
images in K using again the NEW POINT primitive with arguments given by the vertices of the cell K, and weights
equal to the coordinates of the points X;;

(3) Call the TANGENT VECTOR primitive d times, with arguments (xo, X;), divide the result by L; = e; - (%X; — %Xo) =

(Xi — %X0)i, to obtain tangent vectors t;.

These vectors t; form a basis of the tangent space (though they may neither be orthogonal nor normalized) and are
then arranged to form the columns of Jx (Xo).

While one might in principle choose the points X; arbitrary in either +é&; from %o, in practice one wants to choose
them as far away from % as possible in the reference cell to obtain a well conditioned algorithm (see Fig. 3).

We note that in many cases, finite element codes do not use the exact mapping Fx from the reference cell K to a
real cell K, but only a polynomial approximation (see Section 3.2). In those cases, it is of course trivial to compute the

Jacobian matrix since it is simply the gradient of the mapping presented in (2), i.e.,
Jk®) = Y viVei(%).
i
It is an exercise to show that the two methods indeed result in the same matrix for polynomial mappings.

3.4 Computing vectors normal to lower-dimensional manifolds

In our survey of existing uses of geometric information, we have found many instances where normal vectors to
lower-dimensional surfaces embedded in higher dimensional space were required. These could either be the normals to
(d — 1)-dimensional faces of d-dimensional cells in d space dimensions, or the normals to d-dimensional cells embedded

in a d’-dimensional space where d’ > d. Examples of such situations include the following:

o In the evaluation of boundary conditions: Across applications, there exist a wide variety of boundary conditions
that require normal vectors. Among these are:

Manuscript submitted to ACM

10

Heltai, Bangerth, Kronbichler, Mola

- “No flux” boundary conditions on a vector velocity field u have the form n - u = 0. These require knowledge of

the normal vector in the implementation because one typically imposes a constraint that determines one vector

_ njui+naup

0 at the support

component in terms of the others, for example by evaluating the identity u3 =
points of the shape functions.

— In other cases, one may want to prescribe a particular tangential velocity in addition to no-flux conditions
such as the one above. An example is the classical lid-driven cavity. In this case, one needs to also constrain
the tangential part of the velocity, (I - n ® n)u.

— For hyperbolic equations, boundary conditions can only be imposed on inflow boundaries. Whether a part of
the boundary is in- or outflow depends on the sign of n - u where u is either an externally prescribed velocity,
or the solution of a previous time step or nonlinear iteration. Again, an explicit construction of the normal
vector to the boundary is required.

— In fluid-structure interaction problems, traction boundary conditions on the solid are common where the
traction T is given by T = pn in terms of the fluid pressure p. It may also contain a viscous friction component
2ne(u)n where 7 is the viscosity, u is the fluid velocity and &(u) its symmetric gradient.

— In external scattering problems, one often only solves for the scattered, instead of the total field. The boundary
conditions on the scatterer then involve the incident field U, and depending on the type of scatterer often
contain terms of the form Uson.

In discontinuous Galerkin (DG) discretizations: When using the discontinuous Galerkin method, one generally
applies integration by parts on each element individually, resulting in face integrals of some quantities times
the normal vector on the face. The numerical fluxes that weakly impose the continuity of solutions between
the elements also often involve the normal vector [25]. One example are upwind formulations for hyperbolic
equations, which consider the sign and magnitude of the quantity n - u where again u is a velocity field. Thus,
the normal vector explicitly appears in the bilinear form that defines the discretization.

In error estimation: Many error estimators for finite element discretizations contain terms that measure the “jump”

from one cell to the next of the normal component of the gradient of the discrete solution. An example is the

widely used “Kelly” error estimator for the Laplace equation [19, 28] that requires evaluating

L , |2
nK = (ﬂ /6K [n- Vug] dS)

for every cell K, where [-] denotes the jump across a cell interface. Similar terms appear in almost all other
residual-based error estimates (see, for example, [1, 4, 5]).

In boundary element methods: Boundary integral formulations hinge upon the availability of a fundamental
solution for the PDE at hand; i.e., an (often singular) function G, such that the solution u of a PDE at a point

x ¢ I' can be written as a function of the jump of the solution and of its normal derivative on the boundary I':

u(x) + /r ny - VyGlx - y)u(y) Ly = /F [y - Vyu(y)1G(x y)dTy:

see, for example, [20, 36, 37, 42].

In postprocessing solutions: Computer simulations are typically done because we want to learn something from
the solution, i.e., we need to evaluate or postprocess it after it is computed. Many of these postprocessing steps
involve normal vectors at the boundary. For example, in ASPECT alone, we evaluate the normal components of a

flow field (or of the stress tensor) at the boundary to displace the boundary appropriately; we may compute the

Manuscript submitted to ACM

Propagating geometry information to finite element computations 11

gravity field and its angle against actual surface topography to determine the direction of water and sediment
transport; and we compute the normal component of the gradient of the temperature field to determine the heat
flux through surfaces. Many other postprocessing applications come to mind that require the normal vector
to the boundary. In other contexts, we require the normal vector to an embedded surface on which we solve

equations, for example to assess the evolution of surfaces such as soap films or the membranes of cells.

In all of the cases above — typical of many complex finite element simulators — we require computing the normal
vector to faces or cells. The construction of the normal vector n € R¥ follows in essence the construction outlined in
Section 3.3 for the Jacobian matrix, except that we map a lower-dimensional object (namely, a face of a cell) and can
consequently only generate d — 1 basis vectors. The algorithm then finds a set of d — 1 tangent vectors t; to the manifold
(this involves using the TANGENT VECTOR primitive), and we compute the normal vector using the wedge product,

ti A Aty

n=+—87— 4"
It A= Atg_qll

®)

The sign is typically chosen so that n points outward from whatever object we are currently considering. The algorithm
in Section 3.3 chooses a particular basis, that is, in particular neither orthogonal nor normalized. Neither is a problem
here because the definition of n above is invariant under the choice of basis.

There are two situations that require additional thoughts:

o If one asks for the normals of faces of cells that are themselves embedded in a higher dimensional space:

For example, a user code may require the jump of the normal derivative across the one-dimensional edges
of two-dimensional cells, where the cells form a triangulation of a two-dimensional manifold embedded in
three-dimensional space. In such a case, two orthogonal normals exist to the edge, and the one required in the
code will likely be the one that is tangent to the manifold.
In general, objects of dimensionality d; < djs that are part of a triangulation of a manifold M of dimension dys
embedded in d > djs dimensional space allow for a system of d — d; mutually orthogonal normal vectors. In
applications, we typically seek those that also lie in the djs-dimensional tangent space to the manifold, leaving
us with a choice of d — di — (d — dpr) mutually orthogonal normal vectors.

o In a similar case, we frequently seek the normal vector to a triangulated manifold of dimension dj; embedded in
a d > d)r dimensional space. An application is to determine the direction of growth for the two-dimensional
membrane surrounding a three-dimensional biological cell. In other applications, however, we consider embed-
dings in even higher dimensional spaces, d > dy + 1, in which case there is again a system of d — dj; mutually

orthogonal normal vectors that we will need to be able to compute.

In both of these situations, we can only compute a subset of the complete set of tangent vectors t;,i = 1,...,d — 1; the
normal vector appropriate for the application can then generally be computed by providing the remaining tangent

vectors from the context to complete the wedge product in (3).

3.5 Computing vectors tangent to lower-dimensional manifolds

There are also cases where computing tangent vectors to a boundary is necessary. For example, in electromagnetics
applications, one often requires that the tangent component of the electric field vanishes. Mathematically, this is often
expressed by requiring that n(x) x E(x) = 0 for all points x on the boundary of a domain, but actual applications
generally implement this by requiring that t;(x) - E(x) = - -+ = ty_1(x) - E(x) = 0, where the vectors t;(x) form a

Manuscript submitted to ACM

12 Heltai, Bangerth, Kronbichler, Mola

complete (but otherwise arbitrary) basis of the tangent space to the boundary at the point x. Each of these conditions is
then imposed in the same way as the constraints corresponding to n - u = 0 in the previous section.

Since the concrete choice of basis vectors t; is unimportant, we can again fall back to the construction discussed in
Section 3.3 in order to impose t;(x) - E(x) = 0. On the other hand, for stability purposes, it may also be convenient to

orthonormalize these vectors, which is of course easily done using, for example, the Gram-Schmidt process.

3.6 C! mappings

As mentioned above, one frequently uses polynomial mappings from the reference cell K to each concrete cell K of
the mesh. In practice, this implies that curved boundaries are approximated by piecewise polynomials. The common
construction of these mappings guarantees the continuity of the individual pieces of this boundary approximation at
vertices, but the approximate boundary is not C! continuous at vertices (in 2d) and edges (in 3d). On the other hand, in
some applications, it is desirable or necessary that curved boundaries are approximated with C! continuity.

One possible way to achieve this is to use cubic mappings, and to construct their face support points such that the
mapping interpolates the actual manifold at the face vertices in such a way that the resulting mapping’s tangent space
in vertices coincides with the tangent space of the underlying, original, curved boundary. If the boundary itself is
continuously differentiable across face boundaries, this will guarantee that the resulting mapping is also continuously
differentiable. To achieve this, we need to require that the cubic mapping Fx on cell K satisfied the following conditions

in each vertex v;,i =1,..., 291 of the face:
Fx (Vi) = vi, Jx(¥i)h; = ny, (4)

where the normals n; are computed as in Section 3.4, while the normals fi; are unit vectors perpendicular to the faces
of the reference cell.

The above conditions can then be used to fix the locations of the (non-vertex) support points of the cubic mapping
on the face, by providing 2¢ conditions on the 2¢ support points on the faces. (However, these non-vertex locations will,
in general, not actually lie on the original boundary.) The remaining support points can be set using the NEW POINT

primitive, as in Section 3.2, completing the information necessary for the construction of a cubic mapping Fg.

4 GEOMETRY SPECIFICATION FORMATS

In order to understand how the two primitives can be implemented in common, industrial use cases, let us use this section
to discuss the ways in which geometry information is typically available: namely, either in the form of combinations
of simple geometries, or in the form of a collection of analytically known patches that together provide a boundary

representation for the domain of interest.

4.1 Constructive Solid Geometry

In some cases, the shape of the computational domain admits an analytic representation for which it is straightforward
to implement the primitives described in Section 2. For example, if the domain corresponds to a cube, a parallelogram,
or a sphere, then it can be described in the language of differential geometry where each local portion of the domain (a
“chart”) is the image of a Cartesian space under an analytically known “push-forward” operation. In such cases, the NEW
POINT operation is easily represented by applying the “pull-back” to the surrounding points, averaging in the Cartesian
domain, and “pushing forward” the resulting point. The TANGENT VECTOR operation follows the same idea. We discuss

these algorithms in more detail in Section 5.1.
Manuscript submitted to ACM

Propagating geometry information to finite element computations 13

\\§§§\§\\\\\\\\\\\\\\\\\\\\\\

N
= NN

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

€ ot
|

i
I
ity
(i
i
]
i

i
b,
il
m\\b\l\m‘i‘ \\\\“““\‘\‘\‘\‘\‘\““\\\“‘“\“
T il
T
D

it
il

Fig. 4. Example of geometry constructed using simple Constructive Solid Geometry primitives and shapes, taken from the DEAL.II tutorial
program step-49 [24]. Left: Coarse mesh. Right: A refined mesh that uses the underlying geometry description of the domain’s pieces to
place new vertices.

It is straightforward to generalize this procedure for shapes that are further transformed from relatively simple
original geometries — for example, when using a true topographic model of the Earth instead of a sphere; in those
cases, the pull-back and push-forward operations are simply concatenations of the Cartesian-to-simple-geometry and
simple-to-transformed-geometry operations.

A generalization of this approach is commonly known as “Constructive Solid Geometry” (CSG): Here, solids are
expressed as as the union, intersection, or set difference of simpler solids (e.g., cubes, prisms, spheres, cylinders, cones,
and toruses, possibly subject to transformations). An example involving boxes and cylinders is shown in Figure 4.
The implementation of our primitives then requires keeping track of which part of the geometry one is on, and the
primitives are implemented by falling back to the case of a single, analytically known geometry for which we have

provided a description above.!

4.2 Boundary Representation Models

In the vast majority of industrial cases, domains are specified through a boundary representation model (B-REP or
BREP), used to combine topological and geometrical information to provide a complete description of the boundary of
the domain. A solid (or surface) is then represented as a collection of connected surface (or curve) elements: this set of
d — 1-dimensional surface(s), embedded into d-dimensional space, represents the boundaries of the domain.

There are two general ways in which these boundaries are often provided: (i) In CAD applications, curves and
surfaces are generally parameterized as Non-Uniform Rational B-Splines (NURBS); (ii) The surface of the domain is

given as a triangulated surface, often obtained from a point cloud derived from measurements on an actual object.?

4.2.1 Boundaries represented through NURBS. Here, individual patches are defined as parametric surface patches that
have an analytical representation. In three space dimensions, this representation is often provided by a mapping from a
“reference domain” with coordinates u, v to a NURBS surface. So, within each patch, one might think that all information
!In practice this generally requires that the mesh respects the boundaries between the original elementary geometry building blocks so that the primitives
are only ever called with points belonging to the same geometric part. Most mesh generation programs do not provide such a guarantee unless provided
surfaces separating pieces of the geometry, for example if the combined geometry is a non-overlapping union of elementary geometrical shapes.

2In actual practice, both the NURBS “patches” and the triangles produced by widely used software often overlap, contain gaps, or leave holes, leading to
difficult questions of interpretation that we will ignore here. See also [34].

Manuscript submitted to ACM

14 Heltai, Bangerth, Kronbichler, Mola

associated with the primitive operation is easily obtained using this mapping from u-v space to R3. In practice, however,
this mapping may map equal areas in u-v space to rather unequal areas on the surface in R3; one also encounters
difficult issues if one needs to cross from one NURBS patch to another when evaluating our two primitives. We will
therefore discuss the practical implementation of the primitives in Section 5 below, and for the moment simply state
that the primitives can be implemented based on NURBS B-REPs.

Practical realizations need to read and properly interpret the content of CAD data structures. This is made possible
through open source libraries such as OpenCASCADE [41], which provide tools for importing and interrogating
vendor-neutral CAD file formats such as IGES and STEP [27, 33, 40].

4.2.2 Boundaries represented by triangulated point clouds. In many other cases, the boundary is described by points:
a polygonal chain in 2d, or a triangulation in 3d. These are often used to represent the most topologically intricate
domains, and are for instance used by software which extracts geometrical models from MRI images or 3d laser scans.
Several CAD modeling tools can also export triangulated surfaces. A popular file format is STL, which originated in the
stereolithography community but is now widely used in industrial continuum mechanics applications and 3D printer
geometry specifications.

Despite their wide usage, triangulated surfaces also pose several problems in the implementation of suitable primitive
operators. In principle, the primitives can locate new points and compute tangent vectors based on the planar surfaces
associated with each triangle. However, there is typically no guarantee that the triangles form a closed surface — models
may have holes or gaps in which a new point or a tangent vector cannot be identified. More importantly, in order to
provide effective information to a finite element algorithm, the diameters of triangles must be significantly smaller than
those of the finite element mesh: Only then will the triangulated surface appear smooth compared to the finite elements
mesh. Such requirements lead in most situations to surfaces triangulated by extremely large numbers of elements,
resulting in high storage costs and expensive computations to identify new points and tangent vectors as both require

looping over the many triangular faces.

5 POSSIBLE IMPLEMENTATIONS

Section 3 has shown that essentially all geometrical queries required in finite element codes can be implemented by
only using the two operations described in Section 2. However, we have not discussed how these primitives can be
implemented for the kinds of geometries one frequently encounters in simulations. Section 4 might have given some
hints, but also outlined some of the difficulties. This section discusses common approaches.

It is important to note that the way this is done is not unique, and there are often different possible implementations
of the primitives. For example, in Section 6 we will show results where x* is chosen as the directional, orthogonal, or
closest point projection onto a surface. These choices may result in meshes of different quality, but this is immaterial to
the key point of this paper as they only affect how an oracle implements a query, not the kinds of queries it has to be

able to answer.

5.1 Implementing primitives for analytically known charts

The simplest way to implement the two primitives is if we have direct and explicit access to an atlas that describes the
actual manifold of which the domain is a part. We can then rely on the language and methods of differential geometry.

An atlas for a manifold M of dimension d is a collection of coordinate “charts” (also called coordinate patches, or local
frames): homeomorphisms @, from an open subset U, of M to an open subset U, of the Euclidean space of dimension

Manuscript submitted to ACM

Propagating geometry information to finite element computations 15

d, such that U, U, = M. By definition, the sets U, and U;; are connected by push-forward and pull-back functions,
$o : Ul — Uy € Mand ¢! : Uy — US.
With these definitions, if a point x7 lies in the same set U, of the point x; (i.e., if they lie on the same chart), then the

parametric line that connects them is the image of the straight line ¢! (x1) + 1 (¢51(x2) — ¢51(x1)) in U under ¢, ie.,
s(t) = da (x] + 1t [x5 —x}]) = ¢a (¢;l(x1) +1 [y (x2) - ¢;,1(x1]) :

Therefore, when the push-forward and the pull-back are explicitly available, a straightforward implementation of

the NEW POINT primitive with any number of points that belong to the same set Uy is given by the following
N
X*(Xl, e XN, WL, .. ,WN) = ¢a (Z Wnﬁb;l(xn)) .
n=1

That is, we simply take the weighted average of the pulled back points ¢!(x,) and push the average forward.

Furthermore, the tangent vector primitive is also easy to compute using the formula

tx1.x2) = V' (x5) [x5 = xi] = Vg (62" 0c0)) [0 (o) = g (xo)]

where V*¢,(x*) is the gradient of the push-forward function for the chart around x*.

5.2 Implementing primitives based on geodesics

The formulas available for analytically known charts suggest that the quality of the implementation depends on whether
or not ¢ is constructed in a “reasonable” way. In order to produce the least distorted grids upon refinement, one would
like ¢ to map straight lines in U}; to geodesic paths on M. In general, the construction of explicit geodesics is only
possible on simple manifolds, and even there, subtle problems lurk.

For example, it is tempting to construct the NEw POINT primitive with two points directly in terms of geodesics.
If we parameterize a geodesic that connects x1, x2 as s(t) so that x; = s(0), x2 = s(1), and assume that s(¢) moves at
constant speed (as measured by the metric), then this suggests the following implementation: given x1, x2 and weights

w1, wy = 1 — wq, define
X" (x1,%X2, wi, 1 = wy) = s(wy),
Similarly, we can construct the TANGENT VECTOR primitive for two points x1, X2 connected by the geodesic s(t) as
t =s’(0).

While reasonable, this construction solely based on geodesics is only useful if geodesics connecting two points are
unique. In general, this requires that the points are “close together” in some sense — which in the finite element context
means that the mesh is already sufficiently fine since we generally call the primitives with points that are located on
the same cell. Moreover, its generalization to more than two points is not at all trivial. Indeed, consider a recursive

implementation for the NEW POINT primitive with more than two points: Given x1, ...,XN, Wi, ..., Wn, N > 2, define

w1

* *
X (X1,X2,.. ., XN, WL, W2,...,WN) =X (512(),X3~~-,XN,W1 + W2, W3, ..., WN

Wi+ Wy
where, without loss of generality, we have assumed that point x; has a nonzero weight wy > 0, and where s12(t) is the
(presumed unique) geodesic connecting x1, 2. It is not difficult to show that, in general, the algorithm above depends
on the order in which points and weights are given. Furthermore, the operation is not associative in the following sense:

Manuscript submitted to ACM

16 Heltai, Bangerth, Kronbichler, Mola

Consider, for example, a situation with the four vertices of a quadrilateral cell and four equal weights w; = ‘—11. Using the

recursive definition of x* above, one can compute

X1234 = X*(X1,X2,%3,%4, 1. §. 5. §)
%1234 = X" (X12,X34, 3, 3) with x15 = x"(x1, %2, 3. 3) and x34 = x"(x3,%4, 3.).
In general, X234 # X1234, contrary to expectation. However, both are “reasonable” intermediate points, and it is not
clear which option to prefer. This ambiguity suggests that this may not be a useful algorithm.
A commutative alternative algorithm is to take the average over all possible permutations of the pairs (x;, w;):
1 N!
X* (Xl,Xz, e XNLWLL, W2, ..., WN) = ﬁ Z X:ecursive(sk(x’ W)),
T k=1

where Si.(x, w) is the kth permutation of the N pairs {x;, wi}f\il and x*

.. is the recursive implementation from
recursive

before. Of course, such an algorithm is, in general, quite expensive given that, for example, one already has to consider
8! = 40, 320 permutations for finding the point that interpolates the vertices of a hexahedron.

There is also the issue of how exactly one finds the appropriate point on a geodesic. In many practical applications, a
geodesic is easy to describe geometrically, but parameterizing it is more complicated; in those cases, one may be tempted
to first average the input points in the ambient space and only then project onto the geodesic — avoiding to provide
the geodesic with an arc-length that can be used to find intermediate points. But this yields yet another complication:

Consider, for example,

x12 = X' (x1,%2, 3, 1), X12 = x* (x1, X" (X1, X2, 3. 3)» 3 3)- (5)

The first formula represents the point at 1/4 of the geodesic between x; and x3, whereas the second first computes
the mid point X, between x; and X3, and then the mid point between x; and xp,. Unfortunately, the definition of x*
based on the projection onto geodesics does not always provide that the two points are the same. It is not difficult to
construct examples where this ambiguity has concrete, detrimental effects on the accuracy of finite element operations.
For example, when interpolating a finite element solution from a parent cell K (say, the image of the interval (0, 1)
under a transformation ®g) to its first child K child 0 (the image of (0, %) under Ok), then we will want that the point
with reference coordinates ¢ on the child cell equals the point with reference coordinates £/2 on the parent cell when
evaluating finite element shape functions. This can, in general, be ensured for d = 1, but not for d > 2: There, the
construction above (where we have considered ¢ = %) shows that that the two points may be different, and one can
observe that this affects the convergence order of some algorithms.

For the sphere, where the construction of geodesics is trivial, [11] provides exhaustive discussions that show that
various possibilities for evaluating x* with three or more input points yield results that differ by quantities of order
O(D*) where D is a measure of the distance between the input points. Table 1 shows the result of an experiment in this
vein: Given a subdivision of a spherical shell in R? with inner and outer radii 0.5 and 1.0 into hexahedra, we define a

finite element field uj, of polynomial degree p whose nodal values are chosen so that uy, interpolates a known smooth

3 An example is the unit circle embedded into R?, where x* first averages the input points in the ambient space with their weights, and only then projects
back onto the circle. In this context, consider x; = (1, 0), X2 = (0, 1). Then x*(x1, X2, %, %) first computes the weighted average of the input points,
yielding (%, % , which is then projected onto the circle: x;2 ~ (0.9487, 0.3162). On the other hand, x,,, = x*(x1, X2, %, %) = (0.7071, 0.7071) and
X12 ~ (0.9239, 0.3827) - a different point. A similar situation of course happens on the surface of a sphere embedded in 3d.

Manuscript submitted to ACM

Propagating geometry information to finite element computations 17

Table 1. Effect on the numerical error for interpolation between two successive mesh levels in a spherical shell, using a spherical manifold
with spherical averages as the NEW POINT oracle.

Polynomial degree p = 4 Polynomial degree p = 7

NDoFcoarse €ITOr coarse error after refine NDoFcoarse €ITOr coarse error after refine
490 7.25-1072 6.92-1072 2,368 2.92-1073 9.70-1073

3,474 2.42-1073 4.16-1073 17,670 1.16-107> 3.28-1073
26,146 1.05-107¢ 2.74-107% 136,474 6.68-107% 2.56-107%
202,318 3.38-107° 1.66-107° 1,072,626 2.21-10710 1.62-107°
1,597,570 1.06-1077 1.02-107° 8,505,058 8.71-10713 1.02-107°

function u. We show |lu — uy, ||, in the columns labeled “error coarse” for p = 4 and p = 7 in the table. We can observe
the error decrease approximately as O(hP*!) as the mesh is chosen finer and finer, as expected.

For each of these meshes, we then perform one isotropic refinement and interpolate uj, onto uy/; by using the
embedding of the two spaces on the reference cell (rather than interpolating u onto uy, ;). Of course, one would expect
the difference |lu — up ;|| to be the same as before since we expect that uy;, = uy. But this equality assumes that the
support points of the child cells of size h/2 (when computed using the interpolation between the vertices of the child
cell) are located at the positions where one would have expected them to be when interpolating the (child cell’s) support
points using the vertices of the parent cell. Given considerations such as in (5), this is not the case, and due to this
difference, the error |lu — up/,|| is actually substantially larger than |lu — up|| and, instead of the optimal convergence
rate O(hP*1), only converges as O(h*).*

These, and the examples below, demonstrate that the implementation of x* is not obvious even in situations where
we have reasonable pull-back and push-forward operations. Indeed, the message of this section is that there are no
obvious solutions, but a variety of approaches that yield reasonable implementations good enough for many cases - the
fact that they might affect convergence rates when used without a deeper understanding notwithstanding.

There are also cases where not even the definition of pull-back and push-forward functions is easily possible.
For example, if the points x, do not fall within the same set Uy, it may not be possible to construct a single chart
parameterized by ¢, that encompasses all points x,. This may lead to unpleasant ambiguities, such as in the case of
periodic domains (see Appendix B) or where only piece-wise descriptions of the geometry are available (e.g., CAD

geometries via collections of NURBS patches).

5.3 Implementing primitives based on projections onto CAD geometries

For CAD geometries, any two points may fall across two different (non-overlapping) NURBS patches U, and Ug. But

there are more difficulties that make it difficult to implement the primitives based on pull back/push forward approaches:

(1) NURBS patches do not always satisfy the requirements of a chart in the topological sense, i.e., they may be
non-invertible in some points, and they may be non-smooth (i.e., contain corners and edges within a single Uy).

(2) The metric ¢, that results from mapping u-v space to a NURBS patch U, may be ill-formed: Its derivative
may be close to zero near some points, and large at others — equally spaced points in u-v space (or points
x*(x1, X2; w1, (1 — wy)) for equally spaced values of w;) would then be mapped to highly unevenly spaced points.

41t will not surprise readers that one can spend many hours on “debugging” a code as the identity wp, = uy, is clearly “obvious” given how 1,/ was
constructed. One can restore optimal convergence by directly interpolating uy onto up/, using the node points on the actual child cells of the sphere,

instead of pulling uy, back to the reference cell for each cell, computing the interpolation to its children, and then pushing forward from the child cell in
reference coordinates to the child cells of the refined mesh.

Manuscript submitted to ACM

18 Heltai, Bangerth, Kronbichler, Mola

Fig. 5. Comparison of three different implementations of the NEw POINT primitive for CAD geometries. The red end points (coarse vertices)
of the blue line (coarse cell) form the inputs x1, X3 for which we want to use the NEW POINT primitive to find a new mid-point (i.e.,
wip =wy = %). The blue point is the average of the original vertices to be projected onto the curved geometry. Left: Projection normal to the
geometry. Center: Projection in a direction chosen a priori. Right: Projection normal to coarse mesh.

(3) The evaluation of the pull-back ¢,!(x) is computationally very expensive for NURBS patches.

As a consequence, useful implementations of our primitives will not be based on the concepts of differential geometry,

but will rather be projection-based. Indeed, a possible implementation of the NEW POINT primitive for (multi-patch)

CAD-based geometries is provided by the following algorithm: Given x, ..., XN, W1, ..., Wwn, N > 2, define
N
x* (X1,X2,...,XN, W1, Wa, ..., wN) = Pcap (Z wnxn) ,
n=1

where Pcap(x) is a projection of the point x onto the CAD surface (or curve). We will discuss various choices for the
projection operator Pcap below, given that the choice will influence the quality of the result. We note that projection-
based strategies have been proposed in [18] and are used in a basic variant for a high-order finite element code in
[30]. Many CAD programs, and specifically the OpenCASCADE library [41] that we use for the examples shown here,

implement all of the operations necessary for the three approaches to implementing a projection discussed below.

5.3.1 Projection in a fixed direction. The cheapest way to compute a projection is if the direction of the projection
d € R? is known a priori - for example, because we know that the surface in question has only minor variation from
being horizontal. In that case, one might choose

N

X*(X1,Xz,-..,XN,W1,WZ,...,WN)=ICAD(wnxn,d),

n=1
where Icap(x, d) is the intersection of the line s(¢) = x + sd and the CAD surface (or curve). In other words, we first

average all points x; and then move the average back onto the surface along direction d.

5.3.2 Projections taking into account the normal vector. In more general situations, however, choosing a projection
direction a priori is not possible. Rather, one needs to take into account the geometry of the CAD surface in the vicinity
of the point to be projected, for example by considering the normal vectors to either the existing mesh, or to the surface.

The first of these options (shown in the right panel of 5) would use the following implementation:

N
*
X (X1,X2,...,XN, W1, W2,...,WN) = IcAD (Z wnxn,n) ,
n=1

where the direction n is now (an approximation) to the normal vector of the area identified by the points x,. n is clearly

defined if one only has d input points in d dimensional space; if there are more points - e.g., the four vertices of a face
Manuscript submitted to ACM

Propagating geometry information to finite element computations 19

of a hexahedron in 3d - then one will want to define some useful approximate vector, e.g., the vector normal to the
least squares plane that approximates the point locations. As is clear from the figure, if this implementation is chosen
for mesh refinement, one generally ends up with refined meshes with cells of rather uniform sizes.

To use this approach, one needs to have at least d input points in d dimensions in order to define a unique direction
normal to the existing points. But we also need to be able to use the NEW POINT primitive when finding a new midpoint
for an edge in 3d. Thus, we need an additional condition to identify a unique direction among all of those perpendicular
to the line connecting the existing edge end points. We do this by averaging the CAD surface normal at the vertices of
the edge (both of which we know are on the surface), and then projecting it onto the edge’s axial plane.

An alternative, often implemented in CAD tools but expensive to evaluate, is to use a direction vector n that is
perpendicular to the actual geometry, rather than to the current mesh. This is shown in the left panel of Fig. 5 and may
lead to child cells of different size. Ultimately, however, once the mesh is already a good approximation to a surface,

both of the approaches mentioned here will yield very similar results.

5.3.3 Implementing the TANGENT VECTOR primitive for CAD surfaces. In all three of the project-based cases above, the
implementation of the TANGENT VECTOR primitive may be constructed using a finite differences approximation as

already mentioned in Remark 2. A more accurate approach pushes forward the tangent vector at the pulled-back point.

5.4 Extending boundary representations into volumes

The previous sections only dealt with finding points and tangent vectors on a lower-dimensional surface, given points
already on that surface. On the other hand, finite element codes typically use volume meshes for which the CAD
geometry only provides information about the boundary. Thus, one still needs a way to extend this information into
the interior of the domain - the importance of this step is apparent by looking at Fig. 1.

A general mechanism for this task is based on transfinite interpolation [21]. A transfinite interpolation maps points
from some reference space % € K = [0, 1]¢ to points in real space x by a weighted sum of information on the geometry

of the faces of the image of K. For example, for a quadrilateral in two dimensions

X(X1, %2) = (1 — X2)co(Xq) + Xze1(X1) + (1 — K1)ea(%z) + X1e3(X2)

= [(1 = %1)(1 = x2)x0 + X1 (1 — X2)x1 + (1 — X1)X2X2 + X1X2X3].

Here, co(s), c1(s), ca(s), c3(s) are the four parameterized curves describing the geometry of the edges of the deformed
quadrilateral and x¢, X1, X2, x3 are the four vertices. The evaluation on each edge is done via the NEW POINT primitive
x*, ie., co(s) = x*(x0,X1,1 — s, s) and similarly for the other curves. If an edge is straight, then co(s) = (1 — s)x¢ + sx1.
Similar formulas extend to the three-dimensional case. The important point is that transfinite mappings exactly respect
the geometry of the boundary, while extending it smoothly into the interior of the domain.

We visualize this approach using higher order mappings. We recall that finite element error estimates on curved
cells depend on the product of a Sobolev norm of higher order derivatives of Fx times a norm of the derivatives of
Fl}l (see, e.g., [14] or [43, Sec. 3.3]), which we visualize by the ratio between the largest and smallest singular value
of Ji. Figure 6 compares the singular values for two variants of computing the interior points from the surrounding
11 points per line, i.e., a mapping of polynomial degree 10, on a quarter of an annulus with inner and outer radii 0.5
and 1, respectively. If the weights for the interior points are derived from solving a Laplace equation in the reference
coordinates, the representations becomes distored, as is visible from the point distributions. This leads to a ratio of up

Manuscript submitted to ACM

20 Heltai, Bangerth, Kronbichler, Mola

s

8
8
Jacablon_shaucr_voke_l

7
s

—
g
8

p——
o

jacobian_singulcr_volue_0
jacobian_sngular_volue_0

Jacabian_sngular_value_1

002400

Fig. 6. Illustration of the two singular values of Jx = VFk (%) for a quarter of a two-dimensional annulus; here, Fxc is a polynomial
mapping of a single element of degree 10. The ratio of the largest over the smallest singular value appears in the interpolation error estimate
of the Bramble—Hilbert lemma, and consequently also in all error estimates for partial differential equations. Left two panels: Maximal
and minimal singular value for point placement based on Laplace smoothing. Right two panels: Maximal and minimal singular value for
point placement using a transfinite interpolation. (See the main text for interpretation.) The figures also include the positions of 11% points
equidistantly placed onto the reference cell and then mapped by Fx to the cell K shown here, to illustrate the distortion.

to 100 between the largest and smallest singular value of the Jacobian Jg = @FK()A(), and theory suggests a break-down
of convergence; in experiments, Ly errors of the solution to the Laplacian converge at best at third order. Conversely,
using weights from transfinite interpolation results in a minimal singular value of 0.5 throughout the whole domain in
this example. The resulting point distribution with transfinite interpolation in this particular example is equivalent
to an explicit polar description of the whole domain, but applicable to generic situations with optimal convergence
if the coarse cells are valid. We note that these and similar concepts are established in high-order meshing, but with
algorithms typically acting on the points of associated polynomial descriptions, see e.g. [16, 26, 30, 34, 35, 39, 44] and
references therein, rather than the abstract definition used here.

We associate the transfinite interpolation with the the initial (“coarse”) mesh of a finite element computation: each
coarse mesh cell is used to define the reference coordinate system x, and this is kept fixed even after many generations
of descendants. Interior edges between refined cells are then curved, ensuring high mesh quality, assuming that the
initial coarse cells reasonably approximate the geometry. Some of the computations involved in this process can be

expensive, and we have therefore implemented caches that mitigate the cost for the case of polynomial mappings.

6 APPLICATION EXAMPLES

In the following, let us illustrate the ideas of the previous sections using concrete applications. In particular, we will show
how the implementation of the two primitives affects the meshes one obtains for an industrial application (Section 6.1)
and an example of how one can choose metrics to generate graded meshes. In addition, let us refer to Fig. 1 for an

illustration of the transfinite interpolation approach for extending surface descriptions to volume interiors.

6.1 Surface meshes described by CAD geometries

As discussed in detail in previous sections, CAD surfaces consist of patches that are the images of simpler domains in
a two-dimensional u-v space. Let us first consider a case where the geometry is described by a single, albeit rather
complex, patch. The issue in even this simplified case is that a patch can be parameterized in many different ways, not
all of which imply a more or less constant metric. Thus, it is unwise — although very common - to generate a mesh in
u-v space to obtain the corresponding three-dimensional surface grid, even though this of course has the advantage of

Manuscript submitted to ACM

Propagating geometry information to finite element computations 21

Fig. 7. Directional projection strategy with a horizontal direction of projection perpendicular to the axis of symmetry. The first two rows
show side views of the coarse grid and grids obtained from five successive refinements. The last row shows a front view of the same grids
shown in the second row. This strategy produces uniformly distributed cells away from areas where the projection direction is close to the
tangent to the shape (namely, at the bottom of the shape as well as the front of the bulb).

generating nodes directly on the desired surface. Yet, the resulting mesh will generally have cells of rather unequal
sizes and may show other severe deformations.

To illustrate how our approach can be used to generate better meshes, we will use an industrial application that
involves meshing a single parametric patch describing the bow portion of one side of the DTMB 5410 ship hull,
containing also a sonar dome. The presence of several convex and concave high curvature regions makes such a
geometry a particularly meaningful example.

Figures 7-9 show results for this model geometry with the three projection strategies. The directional projection
strategy with a horizontal direction of projection (Fig. 7) generally produces high quality meshes except in those places
where the geometry is tangent to the projection direction - i.e., in particular at the front of the bulb as well as the
bottom. In contrast, using the direction normal to the existing points (Fig. 8) generates high quality meshes everywhere.
Finally, the option to use a surface normal instead of a mesh normal vector (Fig. 9) is not only expensive to compute,
but here yields meshes that are grossly distorted wherever the geometry has large curvature (i.e., around the bulb); this
might also have been expected from the left panel of Fig. 5 that shows a similar effect.

Manuscript submitted to ACM

22 Heltai, Bangerth, Kronbichler, Mola

Fig. 8. Normal to mesh projection strategy. If the geometry does not intersect the direction normal to the existing points, then the closest
point on the shape to the original point — typically lying on the shape boundary — is selected. Panels as in Fig. 7. This strategy produces
uniformly distributed cells in all cases.

6.2 Refinement strategy based on local maximum curvature

The case of multi-patch geometries is more complicated as small gaps or superimpositions are typically present between
neighboring patches. Meshes directly generated from this parameterization will therefore often not be “water-tight”.
On the other hand, one can generate a coarse mesh by hand or by software that simply starts with a few points on the
surface that are then connected to cells without taking into account the subdivision into patches; such a mesh can then
be refined hierarchically to obtain a mesh of sufficient density.

In the following, let us show how we can use the results of the previous section towards building meshes for an
entire ship hull; we will also show how additional information can be extracted from CAD tools to drive the refinement
strategy on CAD based geometries. To this end, Figure 10 depicts a CAD model of a Kriso KCS ship hull - a common
benchmark for CFD applications of naval architecture [29]. In this production-like CAD model the patches are not
connected in a water-tight fashion and the surface parametrization is not continuous at patch junctions. These defects
prevent most mesh generators from obtaining a closed grid.

We start from a minimal initial surface grid composed of about 40 cells (top panel of Fig. 11) and refine it a number
of times using the strategy where we project in a direction normal to the existing points. Refinement of the initial grid
starts with an anisotropic refinement step in which cells with an aspect ratio larger then a threshold Apmax are cut along

Manuscript submitted to ACM

Propagating geometry information to finite element computations 23

Fig. 9. Normal to surface projection strategy. In cases where more than one surface normal projection is available, the closest of them is
selected. If the shape is composed by several sub-shapes, the projection is carried out onto every sub-shape and the closest projection point is
selected. Panels as in Fig. 7. This strategy is unable to produce well-shaped cells in areas of large curvature.

Fig. 10. Owverall (left) and bow (right) view of the CAD model of a ship hull. The model is composed of approximately 120 parametric
patches, delimited by black lines.

their most elongated direction. We then refine the resulting quadrilateral mesh adaptively, using an estimate of the
local curvature of the CAD surface as a criterion. This estimate is obtained exploiting a technique essentially identical
to the one used in the “Kelly” error estimator [19, 28]. Elements in areas with higher curvature will have larger jumps
of the (cell) normal vectors across cell boundaries. The bottom panel of Fig. 11 shows the final grid generated.
Despite the fact that the original CAD surface is composed of several unconnected parametric patches, the projection

procedure is able to find, for each of the grid nodes, the best projection among those obtained onto individual patches.
Manuscript submitted to ACM

24 Heltai, Bangerth, Kronbichler, Mola

Fig. 11. Initial (top) and final (bottom) surface grids on the Kriso KCS hull, with 40 and” 11,500 quadrilateral cells, respectively.

Fig. 12. Bow (left) and stern (right) details of the adaptively refined surface grid on the Kriso KCS hull from Figures 10 and 11. The adaptive
refinement strategy results in finer cells in high curvature regions, ensuring uniform approximation of the geometry. In addition, the grid
is independent of the non-sharp edges separating the 120 parametric patches composing the underlying CAD model. In the final mesh,
hanging nodes are placed on the underlying geometry, leading to a non-watertight mesh. However, these artifacts are easily removed by
enforcing continuity of the geometry.

As aresult, the final mesh is water-tight, and independent of the CAD surface parametrization and patch distribution. In
addition, the adopted refinement strategy distributes a larger number of new nodes in high curvature regions, ensuring
a uniform quality of approximation of the geometry. We show this in more detail in Fig. 12, illustrating the bow and
stern portions of the final grid. Finally, it is worth pointing out that for the generation of the grids portrayed in Fig. 11
and Fig. 12, no smoothing stage was carried out in between refinements to enhance mesh quality. Yet, the projection in
a direction normal to the existing points allows for retaining the quality of the original coarse grid across more than 10

levels of refinement without any additional adjustment.

6.3 (Ab)Using primitives based on analytic charts for graded meshes

We end this section by outlining how else the primitives can be used to satisfy practical needs. In particular, we can
achieve graded mesh refinement strategies based on the explicit definition of a custom metric that describes the manifold
with associated push-forward and pull-back operations as discussed in Section 5.1.

Consider, as a simple example, the discretization of the unit square [0, 1]2. We can provide a non-flat local metric,

induced by the following (analytic, invertible) mapping:
$:10.1* > [0.1]°

() = (. y?).
Manuscript submitted to ACM

Propagating geometry information to finite element computations 25

Fig. 13. Example of graded meshes, obtained using simple diffeomorphisms of the unit square.

If we consider this mapping for the construction of the NEW POINT primitive as described in Section 5.1, we obtain,
upon refinement, a graded mesh like in Figure 13, left. But we are not restricted to refining towards left and bottom
edges in the figure. Rather, by using more complicated mappings, one can concentrate elements in regions of interest

by choosing ¢. For example, we can refine towards all four sides of the square (see Figure 13, right) by choosing
1 . 1 11 . 1 1
o(x,y) = (5 sin (7[(x— 5)) + 275 sin (7{ (y - 5)) + 5) .

7 CONCLUSIONS

The traditional workflow in finite element, finite volume, or finite difference simulations - split into preprocessing,
simulation, and postprocessing stages — is poorly suited to modern numerical methods because information about the
underlying geometry is typically not propagated beyond the mesh generation stage. To address this deficiency, we
have herein undertaken a comprehensive review of where geometry information is used in simulation software, and
what it would take to provide this from typical Constructive Solid Geometry (CSG) or Computer Aided Design (CAD)
tools. We have found that, despite the very large number of places in which geometry information is used, all uses
can be reduced to just two “primitive” operations: The generation of a new point that interpolates existing points, and
the computation of a tangent vector to a line connecting two points. We have then described in detail how these two
operations can be implemented for common CSG and CAD cases, and illustrated how these implementations can help
create meshes for complex geometries that are both of high quality and respect the underlying geometry.

The methods discussed herein are all available as part of the open source finite element library deal.Il [2, 3] and form

the basis of propagating geometry information to all parts of the library and application codes built on top of it.

A AN OPERATION THAT CAN NOT BE EXPRESSED VIA THE TWO PRIMITIVES

In our survey of uses of geometric information for Section 3, we have come across just one operation that can not be
expressed in terms of the two primitives introduced in Section 2: the computation of second or higher derivatives of
finite element shape functions when using the underlying geometry of the domain, rather than a polynomial mapping.

For most “common” finite elements, shape functions are defined on a reference cell and then mapped to each of
the cells of the finite element mesh. Let K be the reference cell (e.g., the reference triangle or reference square) and
¢i(X),i =1,..., N be the shape functions of a scalar finite element. For a given cell K of the mesh, let Fx : K — K be
the mapping, assuming that K is part of the underlying geometry, rather than a polynomial approximation of it. In that
case, Fx is, in general, not polynomial. The shape functions we will then work with are ¢;(x) = qb,-(FI_<1 (x)).

Manuscript submitted to ACM

26 Heltai, Bangerth, Kronbichler, Mola

By the chain rule, the derivatives, in real space, of shape functions at an evaluation point %4 are then given by

Voi(xq) = Jg' Vi(kq),

where Jg = % = 613;(’() is the Jacobian of the transformation. This matrix, and its inverse, are easily computed for

both polynomial mappings (see Section 3.2) and for exact mappings (see Section 3.3). However, for some applications, it
is also necessary to compute second or even higher derivatives of shape functions. An example is the evaluation of the
residual of a finite element solution for second or higher order operators. Others include the evaluation of the bilinear
form for the biharmonic equation, and the evaluation of the Hessian of (a component of) the solution for purposes of
defining anisotropic mesh refinement indicators. In these cases, we can compute (with appropriate contraction over the

various indices of the objects in the formula)
Ve0i(xg) = JR'V [T Vit
= TR gukg) + I |[VURM)| i)
= IR 0uke) = I IR VIOIE | 019

where we have made use of the equality 0 = @(]K]IEI) = WJK)]IEI + JKWUIEID'

This representation of second derivatives (and formulas for even higher derivatives) requires computing derivatives
of Jk. This is not a complication for the usual, polynomial mappings such as those discussed in Section 3.2, since all we
need to do is determine the appropriate interpolation points, construct the polynomial approximation, and then take
derivatives of this polynomial. On the other hand, for “exact” mappings, no explicit representation of the mapping is
available. We can only use the NEW POINT primitive to evaluate Fg, and use the TANGENT VECTOR primitive to compute

the derivative Jg = @FK, but we have no way of evaluating the derivative of Jx (i.e., the second derivatives of Fg).

REMARK 4. One could of course define a third primitive to also aid the computation of this information. (See also
Remark 3.) On the other hand, our goal in this paper is to point out a minimal interface that geometry packages have to
satisfy to support the most common finite element operations. Since all finite element packages we are aware of support
polynomial geometry approximations, we consider the two operations defined in Section 2 as sufficient and defer the
definition of additional primitives necessary for the operation discussed in this section to separate work.

Alternatively, one can approximate VJik by finite differencing the matrix Jx, which we already know how to compute.

B PERIODIC DOMAINS

In practice, one frequently encounters domains that are periodic in at least one direction, or for which at least the
push-forward function is periodic. An example is a domain that consists of the surface of a cylinder. Another would be
a situation where one only considers a segment of a cylinder surface — in that case, the domain itself is not periodic,
but both the image and pre-image of the push-forward function are. Such cases present interesting questions for the
implementation of the NEW POINT primitive. If we can answer these appropriately, we will know how to deal with the
TANGENT VECTOR primitive by using relationship (1).

In our implementation in DEAL.II, primitives based on pull-back and push-foward functions are provided by the
ChartManifold class that allows one to specify along which direction in the reference Euclidean patch U, periodicity
should be considered, and what the periodicity period L along that direction is. Specifically, periodicity affects the way
the NEW POINT oracle computes the middle point between two neighboring points: If two points are more than half a

Manuscript submitted to ACM

Propagating geometry information to finite element computations 27

Fig. 14. Effect of periodicity when computing the NEW POINT primitive with two points close to the gluing edge of a cylinder. If periodicity
is not taken into account, the path used to compute the averages does not cross the gluing edge (left), and new points would end up on the
line that turns around the cylinder. When taking periodicity into account, the shortest path is used when computing averages (right), and
new points end up on the line that crosses the gluing edge.

period distant in the Euclidean reference patch U, then their distance should be computed by crossing the periodicity
boundary, i.e., the weighted average of the two points should be computed by adding a half period to the sum of the
two. For example, if along a direction we have a periodic manifold, with period of 27, then the average of (27 — ¢) and
(e) along the periodic domain (computed with equal weights) should not return 7, but 27 (or, equivalently, zero). On
the manifold, these two points are truly at a distance 2e and not (27 — ¢€) (see Figure 14 for an example of this process).

The periodicity treatment becomes ill posed for cases in which the distance of two points is exactly a half period.
Then, either direction would be possible, and no unique solution exists. The straight forward way to solve this issue is

to ensure that there are no points at exactly this distance, by providing a slightly more refined initial grid.

ACKNOWLEDGMENTS
L. Heltai and A. Mola were partially supported by the PRIN grant No. 201752HKHS, “Numerical Analysis for Full and

Reduced Order Methods for the efficient and accurate solution of complex systems governed by Partial Differential
Equations (NA-FROM-PDEs)". A. Mola was also partially supported by the project UBE2 - “Underwater blue efficiency
2” funded by Regione FVG, POR-FESR 2014-2020, Piano Operativo Regionale Fondo Europeo per lo Sviluppo Regionale.
W. Bangerth was partially supported by the National Science Foundation under award OAC-1835673 as part of the
Cyberinfrastructure for Sustained Scientific Innovation (CSSI) program; by award DMS-1821210; by award EAR-1925595;
and by the Computational Infrastructure in Geodynamics initiative (CIG), through the National Science Foundation
under Awards No. EAR-0949446 and EAR-1550901 and The University of California — Davis. M. Kronbichler was
partially supported by the German Research Foundation (DFG) under the project “High-order discontinuous Galerkin
for the exa-scale” (ExaDG) within the priority program “Software for Exascale Computing” (SPPEXA), grant agreement
no. KR4661/2-1.

REFERENCES
[1] Mark Ainsworth and J. Tinsley Oden. 2000. A Posteriori Error Estimation in Finite Element Analysis. John Wiley and Sons.

Manuscript submitted to ACM

28

(2]

(3]

(]
[10]
(1]
[12]
[13]
[14]
[15]
[16]
[17]

(18]

Heltai, Bangerth, Kronbichler, Mola

Daniel Arndt, Wolfgang Bangerth, Thomas C. Clevenger, Denis Davydov, Marc Fehling, Daniel Garcia-Sanchez, Graham Harper, Timo Heister, Luca
Heltai, Martin Kronbichler, Ross Maguire Kynch, Matthias Maier, Jean-Paul Pelteret, Bruno Turcksin, and David Wells. 2019. The deal.Il library,
Version 9.1. J. Numer. Math. 27, 4 (Dec. 2019), 203-213. https://doi.org/10.1515/jnma-2019-0064

Daniel Arndt, Wolfgang Bangerth, Denis Davydov, Timo Heister, Luca Heltai, Martin Kronbichler, Matthias Maier, Jean-Paul Pelteret, Bruno
Turcksin, and David Wells. 2021. The deal Il finite element library: design, features, and insights. Computers & Mathematics with Applications 81
(2021), 407-422. https://doi.org/10.1016/j.camwa.2020.02.022

Ivo Babuska and Theofanis Strouboulis. 2001. The Finite Element Method and its Reliability. Clarendon Press, New York.

Wolfgang Bangerth and Rolf Rannacher. 2003. Adaptive Finite Element Methods for Differential Equations. Birkhduser Verlag.

S. Bartels, C. Carstensen, and G. Dolzmann. 2004. Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis.
Numer. Math. 99, 1 (Sept. 2004), 1-24. https://doi.org/10.1007/s00211-004-0548-3

Francesco Bassi and Stefano Rebay. 1997. High-order accurate discontinuous finite element solution of the 2D Euler equations. J. Comput. Phys. 138,
2(1997), 251-285. https://doi.org/10.1006/jcph.1997.5454

Pulin K. Bhattacharyya and Neela Nataraj. 1999. On the combined effect of boundary approximation and numerical integration on mixed finite
element solution of 4th order elliptic problems with variable coefficients. ESAIM: Mathematical Modelling and Numerical Analysis 33, 4 (1999),
807-836. http://www.numdam.org/item/M2AN_1999__33_4 _807_0/

Dietrich Braess. 2007. Finite Elements. Cambridge University Press. https://doi.org/10.1017/cb09780511618635

William L. Briggs, Van Emden Henson, and Steve F. McCormick. 2000. A Multigrid Tutorial (second ed.). STAM.

Samuel R. Buss and Jay P. Fillmore. 2001. Spherical averages and applications to spherical splines and interpolation. ACM Trans. Graphic. 20, 2
(2001), 95-126. https://doi.org/10.1145/502122.502124

Graham F. Carey. 1997. Computational Grids: Generation, Adaptation and Solution Strategies. Taylor & Francis.

Philippe G. Ciarlet and Pierre-Arnaud Raviart. 1972. The combined effect of curved boundaries and numerical integration in isoparametric finite
element methods. In The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. Elsevier, 409-474.
https://doi.org/10.1016/b978-0-12-068650-6.50020-4

Philippe G. Ciarlet and Pierre-Arnaud Raviart. 1972. Interpolation theory over curved elements, with applications to finite element methods. Comput.
Meth. Appl. Mech. Engrg. 1, 2 (Aug. 1972), 217-249. https://doi.org/10.1016/0045-7825(72)90006-0

Thomas C. Clevenger, Timo Heister, Guido Kanschat, and Martin Kronbichler. 2021. A flexible, parallel, adaptive geometric multigrid method for
FEM. ACM Trans. Math. Softw. 47, 1 (2021), 7:1-27. https://doi.org/10.1145/3425193

Veselin Dobrev, Patrick Knupp, Tzanio Kolev, Ketan Mittal, and Vladimir Tomov. 2019. The target-matrix optimization paradigm for high-order
meshes. STAM Journal on Scientific Computing 41, 1 (2019), B50-B68. https://doi.org/10.1137/18M1167206

W. Dérfler and M. Rumpf. 1998. An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation. Math. Comp.
67 (1998), 1361-1382. https://doi.org/10.1090/s0025-5718-98-00993-4

Gerald Farin. 2002. Curves and surfaces for CAGD: A practical guide (5th ed.). Morgan Kaufmann, San Francisco, CA, USA.

[19] J.P.deS.R. Gago, Donald W. Kelly, Olgierd C. Zienkiewicz, and Ivo Babuska. 1983. A posteriori error analysis and adaptive processes in the finite

[20

[21

[22]
[23]

[24]

element method: Part Il — Adaptive Mesh Refinement. Int. J. Num. Meth. Engrg. 19 (1983), 1621-1656.

Nicola Giuliani, Andrea Mola, Luca Heltai, and Luca Formaggia. 2015. FEM SUPG stabilisation of mixed isoparametric BEMs: application to linearised
free surface flows. Engineering Analysis with Boundary Elements 59 (2015), 8-22. https://doi.org/10.1016/j.enganabound.2015.04.006

William J. Gordon and Linda C. Thiel. 1982. Transfinite mappings and their application to grid generation. Appl. Math. Comput. 10 (1982), 171-233.
https://doi.org/10.1016/0096-3003(82)90191-6

R. Hartmann. 2002. Adaptive Finite Element Methods for the Compressible Euler Equations. Ph.D. Dissertation. University of Heidelberg.

Timo Heister, Juliane Dannberg, Rene Gassmoéller, and Wolfgang Bangerth. 2017. High accuracy mantle convection simulation through modern
numerical methods. II: Realistic models and problems. Geophysical Journal International 210 (2017), 833-851.

Timo Heister, Yuhan Zhou, Wolfgang Bangerth, and David Wells. 2013. The dealll tutorial: step-49.
https://www.dealii.org/developer/doxygen/deal II/step_49.html.

[25] Jan S Hesthaven and Tim Warburton. 2007. Nodal discontinuous Galerkin methods: algorithms, analysis, and applications. Springer. https:

[26]

[27]

[28]

[29]
[30]

//doi.org/10.1007/978-0-387-72067-8

Florian Hindenlang, Thomas Bolemann, and Claus Dieter Munz. 2015. Mesh curving techniques for high order discontinuous Galerkin simulations.
In Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Springer International Publishing, 133-152. https://doi.org/10.1007/978-3-319-
12886-3_8

US Product Data Association IGES/PDES Organization. 1996. Initial Graphics Exchange Specification: IGES 5.3. US Product Data Association (1996).
Donald W. Kelly, J. P. de S. R. Gago, Olgierd C. Zienkiewicz, and Ivo Babuska. 1983. A posteriori error analysis and adaptive processes in the finite
element method: Part I-Error Analysis. Int. J. Num. Meth. Engrg. 19 (1983), 1593-1619.

WJ. Kim, S.H. Van, and D.H. Kim. 2001. Measurement of flows around modern commercial ship models. Experiments in Fluids 31 (2001), 567-578.
Nico Krais, Andrea Beck, Thomas Bolemann, Hannes Frank, David Flad, Gregor Gassner, Florian Hindenlang, Malte Hoffmann, Thomas Kuhn,
Matthias Sonntag, and Claus-Dieter Munz. 2021. FLEXI: A high order discontinuous Galerkin framework for hyperbolic—parabolic conservation
laws. Comput. Math. Appl. 81 (2021), 186-219. https://doi.org/10.1016/j.camwa.2020.05.004

Manuscript submitted to ACM

Propagating geometry information to finite element computations 29

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]
[44]

M. Kronbichler, T. Heister, and W. Bangerth. 2012. High accuracy mantle convection simulation through modern numerical methods. Geophys. J. Int.
191 (2012), 12-29.

Lois Mansfield. 1978. Approximation of the boundary in the finite element solution of fourth order problems. SIAM j. Numer. Anal. 15, 3 (June 1978),
568-579. https://doi.org/10.1137/0715037

Suziyanti Marjudi, Mohd Fahmi Mohamad Amran, Khairul Annuar Abdullah, Setyawan Widyarto, Nur Amlya Abdul Majid Majid, and Riza Sulaiman.
2010. A review and comparison of IGES and STEP. In Proceedings Of World Academy Of Science, Engineering And Technology. 1013-1017.
Gianmarco Mengaldo, David Moxey, Michael Turner, Rodrigo C. Moura, Ayad Jassim, Mark Taylor, Joaquim Peiro, and Spencer J. Sherwin. 2020.
Industry-relevant implicit large-eddy simulation of a high-performance road car via spectral/hp element methods. (2020). arXiv:cs.CE/2009.10178
Ketan Mittal and Paul F. Fischer. 2019. Mesh smoothing for the spectral element method. Journal of Scientific Computing 78, 2 (2019), 1152-1173.
https://doi.org/10.1007/s10915-018-0812-9

Andrea Mola, Luca Heltai, and Antonio Desimone. 2013. A stable and adaptive semi-Lagrangian potential model for unsteady and nonlinear
ship-wave interactions. Engineering Analysis with Boundary Elements 37,1 (2013). https://doi.org/10.1016/j.enganabound.2012.09.005

Andrea Mola, Luca Heltai, and Antonio DeSimone. 2017. Wet and dry transom stern treatment for unsteady and nonlinear potential flow model for
naval hydrodynamics simulations. Journal of Ship Research 61, 1 (mar 2017), 1-14. https://doi.org/10.5957/JOSR.61.1.160016

David Moxey, Chris D. Cantwell, Yan Bao, Andrea Cassinelli, Giacomo Castiglioni, Sehun Chun, Emilia Juda, Ehsan Kazemi, Kilian Lackhove,
Julian Marcon, Gianmarco Mengaldo, Douglas Serson, Michael Turner, Hui Xu, Joaquim Peird, Robert M. Kirby, and Spencer J. Sherwin. 2020.
Nektar++: Enhancing the capability and application of high-fidelity spectral/hp element methods. Comput. Phys. Commun. 249 (2020), 107110.
https://doi.org/10.1016/j.cpc.2019.107110

David Moxey, Dirk Ekelschot, Umit Keskin, Spencer J. Sherwin, and Joaquim Peiré. 2016. High-order curvilinear meshing using a thermo-elastic
analogy. Computer-Aided Design 72 (2016), 130-139. https://doi.org/10.1016/j.cad.2015.09.007

Michael J. Pratt. 2005. ISO 10303, the STEP standard for product data exchange, and its PLM capabilities. (2005), 86 pages. https://doi.org/10.1504/
IJPLM.2005.007347

Open Cascade S.A.S. 2010. OpenCASCADE Technology. (2010). http://www.opencascade.org.

Stefan A. Sauter and Christoph Schwab. 2011. Boundary element methods. Springer Series in Computational Mathematics, Vol. 39. Springer Berlin
Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68093-2

Gilbert Strang and George F. Fix. 1988. An analysis of the finite element method. Wellesley-Cambridge Press, Wellesley, MA, USA.

Pavel Solin, Karel Segeth, and Ivo Dolezel. 2004. High-order finite element methods. Chaptman & Hall/CRC, Boca Raton, FL, USA.

Manuscript submitted to ACM

