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ABSTRACT
Mining algorithms for relationship-based access control policies
produce policies composed of relationship-based patterns that jus-
tify the input authorizations according to a given system graph.
The correct functioning of a policy mining algorithm is typically
tested based on experimental evaluations, in each of which the
miner is presented with a set of authorizations and a system graph,
and is expected to produce the corresponding ground truth policy.
In this paper, we propose formal properties that must exist between
the system graph and the ground truth policy in an evaluation test
so that the miner is challenged to produce the exact ground truth
policy. We show that failure to verify these properties in the exper-
iment leads to inadequate evaluation, i.e., not truly testing whether
the miner can handle the complexity of the ground truth policy. We
also argue that following these properties would provide a compu-
tational advantage in the evaluations. We propose algorithms to
identify and correct violations of these properties in system graphs.
We also present our observations regarding these properties and
their enforcement using a set of experimental studies.
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1 INTRODUCTION
Mining access control policies is an automated process of construct-
ing high-level access control policies from low-level authorization
information. Such a process is useful in refactoring existing poli-
cies or migrating existing policies to a system that uses a di�erent
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policy model than the current one. Various mining approaches
have been proposed in the literature for role-based access control
(RBAC) [22, 23], attribute-based access control (ABAC) [12, 21, 25],
and relationship-based access control (ReBAC) [4, 8, 9, 18]. In the
context of ReBAC, the focus of this paper, a policy miner is given a
set of authorizations (which entity can/cannot access another en-
tity) and a system graph (graph of entities and their relationships in a
system). Researchers need to evaluate and establish the correctness
of their proposed policy mining algorithms. Proving the correctness
of any policy mining algorithm theoretically would be extremely
challenging. Therefore, the alternative approach that is taken is
testing the correctness experimentally using simulated/synthetic
test cases. Ideally, the set of test cases is comprehensive enough
to truly test a miner. For example, test cases with various levels of
policy complexity can be given to a miner.

The goal of a test case evaluation is to see whether the tested
miner canmine an expected ground truth policy based on a given set
of authorizations. The set of authorizations itself is produced based
on the ground truth policy on a given system graph. We note that
it is only fair to expect a miner to produce a semantically equivalent
policy to the ground truth policy, i.e., a policy that produces the
same authorizations that were given to it as an input. For example,
if there are semantically equivalent policies to the ground truth
policy, a policy miner should not be faulted for producing any of
those policies. However, we also note that the semantic equivalency
is also conditioned on the system graph that is given to the miner.
As an extreme case example, a system graph with no edges does not
produce any authorizations regardless of the ground truth policy. A
miner that is presented with a ground truth policy alongside such
a system graph, may mine any policy (including an empty policy
that does not authorize anything) and still be correct semantically
since all produce the same empty set of authorizations! Therefore,
even when a range of policies is tested it is critical to ensure that
those tests are each truly challenging for the miner.

In this paper, we propose that the pairing of ground truth policies
and system graphs should be carefully considered for an e�ective
experimental evaluation of ReBAC miners. We characterize the
properties for such e�ective pairings that demand the miner to
produce the exact ground truth policies, and present experimental
evaluations to support our theoretical results. That is, we show
that if these properties are violated in an evaluation scenario, the
miner will not be truly tested to reconstruct the intended policy.
Moreover, meeting these properties can be advantageous in large-
scale experiments since correctness can be tested by matching the
syntax of the policies rather than their semantics. We summarize
our contributions (and their organization) as follows:
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• We provide an abstract de�nition of ReBAC miners, and for-
malize semantic and syntactic equivalence of ReBAC policies
accordingly. We de�ne the notions of graph-based semantic
equivalence andmining evaluation case (MEC) which are fun-
damental in interpreting the miners’ correctness (Section 3).

• We propose the notion of strong MEC as those MECs that
challenge a miner to produce a syntactically equivalent pol-
icy to ground truth (Section 3). We characterize strong MECs
by de�ning two formal properties for them: minimality and
maximality (Section 4). Those properties ensure that a policy
cannot, respectively, shrink and grow, without changing the
authorizations relative to a system graph.

• We propose algorithms for identifying violations of minimal-
ity/maximality (Section 5) and updating the system graph
to address them (Section 6). For this purpose, we consider a
system graph schema in our reference model that supports
restrictions to produce realistic synthetic graphs for a given
application domain (Section 2).

• We conduct extensive experiments using two system graph
generation methods and three miners from the literature. We
report our results on the chance of generating strong MECs
based on di�erent sizes of system graphs and policy. We also
report the performance of proposed algorithms in testing
and correcting minimality/maximality violations (Section 7).

2 REFERENCE REBAC MODEL
The fundamental idea of ReBAC is to employ relationship informa-
tion between the entities (users and resources) of a system to make
access decisions. Accordingly, the system data model is based on the
idea of a labelled graph, in which nodes represent entities within
the system and edges represent relationships between entities, and
sequences of edges within the graph are used when processing the
authorization decisions. In this section, based on existing ReBAC
models [11, 13–15, 24], we present a reference model for ReBAC
that captures the necessary features in the context of this paper.

2.1 System Model/Schema
A system consists of a set of entities, which includes the sets of
subjects and objects. The authorization information in a system is
captured as a directed graph called system graph [13].
De�nition 1 (System Graph). A system graph is a directed graph
denoted as⌧ = h+ , ⇢i where+ = ([$ is the set of nodes consisting
of subjects and objects in a system, ! is the set of edge labels and
⇢ ✓ + ⇥+ ⇥ ! is the set of edges (relationships) labelled from !.

In a typical system, subjects indicate users and objects indicate
protected resources. We employ dot notation to indicate an element
within a concept (e.g., ⌧ .+ refers to the nodes in system graph).

In order to form meaningful system graphs, we need to follow
some restrictions based on the knowledge in a particular domain. To
this end, we de�ne a graph schema to constrain the types of nodes
and edges that can be speci�ed in a system graph. We adopt ideas
from the OWL Web Ontology Language [2] to describe restrictions
on the relationships between various types of nodes in the schema.
These restrictions are su�cient for describing the schema in the
case study in this paper. Our proposed approaches for e�ective
evaluation are applicable irrespective of the expressiveness of a

schema, and so it is straightforward to extend our approach to work
with a more expressive schema.

De�nition 2 (Graph Schema). We de�ne graph schema as a tuple
G = hV, �i, whereV indicates the set of node types and � indicates
the restrictions on the graph edges.

We employ the notation g(E) to denote the type of a node E . If a
node E does not have a type, then we indicate that as g(E)=null. A
restriction speci�es what kinds of and how many edges can exist
from a given node type to other node types de�ned in the schema.

De�nition 3 (Graph Restrictions). A graph restriction, or simply
a restriction, is de�ned for a node type g(E) and represented as
a triple hlabel, restr_type, target_node_typei, where label 2
!, restr_type 2 {EXACTLY_ONE, ONLY}, target_node_type 2 V ,
and target_node_type < g(E). We denote the set of graph restric-
tions as � = {hg (E8 ), hlabel, restr_type, target_node_typeii}.

Speci�cally, in this paper, we de�ne two types of restrictions as:

De�nition 4 (ONLY Restriction Type). The graph restriction spec-
i�ed as hlabel, ONLY, target_node_typei, on node type g(E8 ), re-
quires that for all nodes E8 , if there exists an edge hE8 , E 9 , labeli in
the graph, then it must hold that g(E 9 ) = target_node_type.

De�nition 5 (EXACTLY_ONE Restriction Type). The graph restric-
tion, hlabel, EXACTLY_ONE, target_node_typei, on node typeg (E8 )
requires that for all nodes E8 , there must exist exactly one edge
hE8 , E 9 , labeli in the graph such that g(E 9 ) = target_node_type.

For instance, consider the following set of restrictions based on
an excerpt of the graph schema from the project management case
study that we use for our experiments:

� = { hManager, hprojects, ONLY, Projectii,
hManager, hdepartment, EXACTLY_ONE, Departmentii,
hBudget, hproject, EXACTLY_ONE, Projectii,
hProject, hdepartment, EXACTLY_ONE, Departmentii}

Here, Manager, Budget, Project, and Department are some
node types de�ned in the graph schema of the application. In the
above example, the ONLY restriction speci�es that managers can
only be associated to projects through the projects relationship.
Note that this restriction does not require a Manager node to have
a projects relation; if it does have one or more, they must all be
associated to Project nodes. On the other hand, the EXACTLY_ONE
restriction on a Manager node speci�es that a manager must be
associated with exactly one department. Similarly, the EXACTLY_ONE
restrictions on the Budget and the Project node types indicate
that a budget must be associated with exactly one project, and a
project must be associated with exactly one department.

De�nition 6 (GraphWell-Formedness). Given schemaG = hV, �i,
we say a system graph⌧ = h+ , ⇢i iswell-formed if for each node E 2
+ , it holds that g (E) 2V , and for every edge hE, E 0, ;i 2 ⇢, it holds that
either hg (E), h;, ONLY, g (E 0)ii 2 �, or hg (E), h;, EXACTLY_ONE, g (E 0)ii
2 � and there is no E 00 2 + such that g(E 00)=g(E 0) and hE, E 00, ;i 2 ⇢.

In the rest of the paper, well-formedness is implied when we
discuss system graphs.



2.2 ReBAC Policy Model
ReBAC policy rules use the relationship information in system
graph for making access decisions. A ReBAC authorization policy
grants accesses based on relationship patterns that specify di�erent
arrangements of labeled edges between entities in a system graph.

De�nition 7 (Relationship Pattern). A relationship pattern q is
a sequence of relationship labels [;1, ;2, . . . , ;=], where ;8 2 ! and
1  =  # . Here, # denotes the maximum allowable length of a
relationship pattern that is determined by the target application.
We denote the domain of relationship patterns by R.

We use the notation �; to represent an edge with label ; 2 !
traversed in the inverse direction. In this paper, we assume that all
authorization rules are about granting the same right (or action).
So, to help simplify our discussions, we use relationship patterns
and authorization rules interchangeably. Accordingly, we de�ne a
ReBAC policy as follows:

De�nition 8 (ReBAC Policy). A ReBAC policy d = {q8 } consists
of a set of ReBAC authorization rules, i.e., relationship patterns, q8 .

We alternatively use the term permitted pattern to refer to an
authorization rule q . Also, we refer to any pattern q 0 that is not part
of authorization policy as a non-permitted pattern, i.e., q 0 2 R \ d .

An access request, denoted by tuple hB,>i 2 ( ⇥$ , consists of the
requesting subject B and the requested object > . An access request
will be permitted if it matches one of the authorization rules (i.e.,
relationship patterns) in policy d , and will be denied otherwise. An
access request hB,>i matches a relationship pattern q if and only if
there is a path from B to > in⌧ such that the sequence of edge labels
in the path matches the sequence of the labels in q . Alternatively,
we say that the pattern q applies to the request hB,>i in such a case.

We can characterize a ReBAC policy on a given system graph
by enumerating its permitted access decisions or authorizations.

De�nition 9 (Authorizations). We de�ne a function _ that takes
system graph ⌧ and ReBAC policy d as inputs and produces the
corresponding complete set of authorizations, denoted by A =
_(⌧, d). Formally, 8B,> 2 ⌧ .+ , hB,>i 2 A if and only if access
request hB,>i is permitted by d .

3 REBAC MINING AND MINING
EVALUATION CASES (MECS)

A ReBAC mining algorithm mines a ReBAC policy based on a given
set of authorizations and a system graph. We formally de�ne a
ReBAC miner as follows:

De�nition 10 (ReBAC Miner). A ReBAC miner is a function ` that
takes system graph⌧ and authorizationsA as inputs and produces
a ReBAC policy d as the mining output. We denote this by d = `(⌧ ,
A). A ReBAC miner assumes that authorizationsA are correct and
complete with respect to graph ⌧ , i.e., 8B,> 2 ⌧ .+ , hB,>i 2 A if
and only if access request hB,>i is supposed to be permitted.

The above de�nition expects a ReBAC miner algorithm to be
a function, and hence deterministic. It means that a miner must
produce the same output d for the same inputsA and⌧ . While not
a hard requirement, such deterministic behavior is embedded in
the design of most mining algorithms. This property also facilitates

our formal discussion of miner evaluation in the rest of this section.
We also emphasize that the input authorizations to a miner are
required to be complete and correct. Correctness of a miner cannot
be formalized and established in presence of incorrect or missing
authorization information.

For evaluating the correctness and performance of ReBAC min-
ers, we need to set the expectations of their output, i.e., ReBAC
policies. In particular, we de�ne the syntactic and semantic equiva-
lence of ReBAC policies for the purpose of evaluation as follows.

De�nition 11 (Syntactic Equivalence). Policies d1 and d2 are syn-
tactically equivalent (or simply, equal), denoted by d1 = d2, if and
only if they contain the exact same set of rules.

The authorizations that a policy enforces in a system can be
considered as the semantics of that policy. Two policies that might
not be syntactically equivalent could be semantically equivalent if
they enforce the same set of authorizations.

De�nition 12 (Graph-Based Semantic Equivalence). Policies d1
and d2 are semantically equivalent based on system graph ⌧ , de-
noted by d1 ⌘⌧ d2, if and only if they both produce the same
authorizations when evaluated on ⌧ :

d1 ⌘⌧ d2 () _(⌧, d1) = _(⌧, d2)

De�nition 13 (Semantic Equivalence). Policies d1 and d2 are se-
mantically equivalent, denoted by d1 ⌘ d2, if and only if they are
semantically equivalent based on any system graph:

d1 ⌘ d2 () 8⌧, d1 ⌘⌧ d2

Note that two policies that are not semantically equivalent in
general can be semantically equivalent based on speci�c system
graphs. As an extreme example, every pair of policies are semanti-
cally equivalent based on a system graph that has no edges. Since no
paths exist in such a graph, _() produces an empty set of authoriza-
tions regardless of the policy. Also, note that semantic equivalence
does not necessarily correspond to syntactic equivalence for poli-
cies. However, that is the case in the context of the policy model
used in this paper (De�nition 8).

Inspired by the above de�nition of semantic equivalence we
devise a fair expectation for the correctness of a ReBAC miner:

De�nition 14 (Correctness of ReBAC Miner). Consider inputs ⌧
and A to ReBAC miner `. We say that mined policy d< = ` (⌧,A)
is correct if and only if d< preserves the authorizations given in A
with respect to input system graph⌧ , i.e., _(⌧, d<) = A. A ReBAC
miner is correct if it always produces correct mined policies, i.e.:

8h⌧,Ai(d< = ` (⌧,A) =) _(⌧, d<) = A)

The above de�nition of correctness ensures that the mined poli-
cies will have no over-assignment or under-assignment of autho-
rizations compared to the input authorizations. Deviation from this
requirement results in policies that are not capturing the exact au-
thorizations as expected, and hence, incorrect policies. However, we
note that proving the above correctness property for any proposed
miner is very challenging.

In the absence of a proof of correctness for a miner, the next best
option is to evaluate its correctness experimentally. The correctness
of a ReBAC miner can be experimentally evaluated using test cases



where the miner is provided an input pair of a system graph and a
set of authorizations, and is expected to produce the corresponding
ground-truth policy. We call such tests mining evaluation cases.

De�nition 15 (Mining Evaluation Case (MEC)). We capture a
mining evaluation case (MEC) as a tuple h⌧, d) i where ⌧ and d)
are a system graph and a ground truth policy, respectively. Set of
authorizations A corresponding to MEC h⌧, d) i can be generated
using the _ function, i.e.,A = _(⌧ ,d) ). Miner ` passes MEC h⌧, d) i
if it produces a correct output for input h⌧,Ai, i.e., after mining
policy d< = ` (⌧,A), we must have _(⌧, d<) = A. Alternatively,
we can express passing MEC h⌧, d) i as a graph-based semantic
equivalence: ` (⌧, _(⌧, d) )) ⌘⌧ d) .

Therefore, an MEC can be used to experimentally evaluate a
ReBAC miner by �rst, generating the corresponding authorizations,
then, running the miner to produce a mined policy, and �nally,
comparing its semantics against those of the ground-truth policy.
While experimental evaluations cannot prove the general correct-
ness of a ReBAC miner, they provide experimental assurance by
demonstrating correctness for the particular MECs that are tested.

We should highlight a major characteristic of an experimental
evaluation using anMEC as indicated in De�nition 15. One can only
expect a correct miner to produce a semantically-equivalent policy
to the ground truth policy, not a syntactically-equivalent policy.
This distinction is very important when evaluating a miner. During
an evaluation, one might assume that the miner is being tested
based on the complexity of the ground truth policy that is provided
in an MEC. However, in reality, an MEC is only challenging a miner
to produce a semantically equivalent policy to the ground truth
policy relative to the provided system graph.

Let us demonstrate this distinction using a small example. Con-
sider MECs 21 = h⌧1, d) i and 22 = h⌧2, d) i where ground truth
policy d) has only two simple rules (single-edge patterns), and
system graphs ⌧1 and ⌧2 have a few edges as follows:

d) = {[0], [1]}
⌧1 .+ = ⌧2 .+ = {D, E,F}
⌧1 .⇢ = {hD, E,0i, hD,F ,1i}
⌧2 .⇢ = {hD, E,0i, hD,F ,0i, hD,F ,1i}

The set of authorizations produced by both MECs is the same:

A1 = _(⌧1, d) ) = {hD, Ei, hD,Fi}
A2 = _(⌧2, d) ) = {hD, Ei, hD,Fi}

Observe that, in the case of 21, a miner needs to mine policy d<1 =
d) in order to produce the same authorizations. But, in the case of
22, in addition to policy d<1, policy d<2 = {[0]} will also produce
the expected authorization since _(⌧2, d<2) = A2. In fact, between
the two alternatives, d<2 is usually the preferred result of a mining
algorithm since it achieves the expected authorization using a less
complex policy. Therefore, in the case of 22, wemiss to fully evaluate
the capability of a miner to produce the more complex policy d) .

We refer to MECs that challenge a miner to produce a syntac-
tically equivalent policy as strong MECs. Conversely, weak MECs
may not challenge a miner enough. In the above example, 21 and
22 are strong and weak MECs, respectively.

De�nition 16 (Strong MEC). MEC 2 = h⌧, d) i is strong if and only
if for every ReBAC policy d< : d< ⌘⌧ d) =) d< = d) .

The above de�nition ensures that a miner that works correctly
produces d< that is syntactically equivalent to the given d) . In the
case of a weak MEC, however, there could be multiple alternative
d< ’s semantically equivalent to d) based on ⌧ . In that case, it is
fair to consider a miner that produces any of the alternative d< ’s as
correctly functioning. Since the intended (ground-truth) policy can
be any of the semantically-equivalent policies, it becomes unclear
on what basis the miner can be fairly evaluated. Therefore, if we
intend to evaluate a miner on policies with varying degrees of
complexity, we can only assure it is tested on truly di�erent inputs
if the corresponding MECs are strong.

In addition to truly testing the capability of a miner, strong MECs
have a computational advantage in the evaluation process compared
to weak MECs. As mentioned in De�nition 14, the correctness of a
miner’s result needs to be established based on the authorizations it
produces. Let us consider MEC 2 = h⌧, d) i, and the corresponding
input that is provided to miner `: h⌧, _(⌧, d) )i. Suppose the miner
has mined policy d< . If 2 is a weak MEC, in order to evaluate the
correctness, we need to produce _(⌧, d<) and compare it against
_(⌧, d) ). Note that this is true for testing correctness in general.
However, for a strong MEC, we simply need to establish the syntac-
tic equivalence between d< and d) (i.e., check whether d< = d) ).
This will be arguably a much more e�cient test. Therefore, large-
scale evaluation of miners will be more e�cient and realistic if we
ensure that we evaluate them against strong MECs.

4 PROPERTIES OF STRONG MECS
As discussed in Section 3, strong MECs are advantageous for both
true and e�cient evaluation of miners. In this section, we propose
two formal properties that characterize strong MECs:

Property 1 (Minimality of MEC). Given an MEC, we say that its
ground-truth policy is minimal with respect to its system graph i�
there is no subset of the policy that is semantically equivalent to it
based on the system graph. We also call such an MEC a minimal
MEC. Formally, MEC 2 = h⌧, d) i is minimal i� öd ⇢ d) , d ⌘⌧ d) .

Property 2 (Maximality of MEC). Given an MEC, we say that its
ground-truth policy is maximal with respect to its system graph i�
there is no superset of the policy that is semantically equivalent to
it based on the system graph. We also call such an MEC a maximal
MEC. Formally, MEC 2 = h⌧, d) i is maximal i� öd � d) , d ⌘⌧ d) .

It follows from the above de�nition that if anMEC is not maximal
then the authorizations as result of some non-permitted expres-
sion(s) are included in the MEC’s authorizations. More formally,
for some non-permitted pattern q 0 8 d) , it holds that _(⌧ , {q 0}) ✓
_(⌧ , d) ). Such patterns create ambiguity for miners as they can be
inferred as valid policy rules based on MEC authorizations, while
they are not included in the ground truth policy.

Next, we show that simultaneous minimality and maximality of
an MEC leads it to be a strong MEC.

Theorem1. Assume that aminer has produced d< based onMEC 2
= h⌧, d) i, where d< ⌘⌧ d) . If MEC 2 is both minimal and maximal,
then d< and d) must be syntactically equivalent. Formally, d< ⌘⌧
d) ^ (2 is minimal and maximal) =) d< = d) .



P����. We prove this by contradiction. Suppose that mined
policy d< and ground truth policy d) are semantically equivalent
based on ⌧ but are not syntactically equivalent:

_(⌧, d<) = _(⌧, d) ) (1)
d< < d) (2)

Based on eq. (2) and since 2 is minimal, we have d< 6 d) . Therefore,
d< has at least one rule that is not in d) :

9A1 2 d< : A1 8 d)

Since A1 2 d< , by de�nition we have _(⌧, {A1}) ✓ _(⌧, d<). There-
fore, considering eq. (1), we have:

_(⌧, {A1}) ✓ _(⌧, d) ) (3)

Let us compose policy d 0) = d) [ {A1}. Given eq. (3), the authoriza-
tions of d 0) based on ⌧ can be calculated as:

_(⌧, d 0) ) = _(⌧, d) ) [ _(⌧, {A1})
= _(⌧, d) )

Note that we just showed that d 0) (� d) ) is semantically equivalent
to d) based on⌧ , which contradicts with the maximality of 2 . ⇤

5 IDENTIFYINGWEAK MECS
In this section, we describe our algorithms for detecting whether a
given MEC, consisting of a system graph and a ground-truth policy,
satis�es the minimality and the maximality properties discussed in
Section 4. The algorithms output the relationship patterns in the
system graph that violate those two properties.

Identifying Minimality Violations. We de�ne the check-min()
function that determines the set of minimality vaiolating rules in a
policy, i.e., those that do not result in distinct authorizations from
the rest of the rules in the policy. Given an MEC 2 =h⌧, d) i, for
each rule q 2 d) , we check whether the set of authorizations based
on the policy produced after removing q , i.e., _(⌧, d) \ {q}), is the
same as the complete set of authorizations, i.e., _(⌧, d) ). If positive,
that rule will be part of the violating set returned by the function.
We need to loop over all the rules in the policy once, and for each
rule we need to calculate the _ function for all the remaining rules.
Thus, the time complexity of check-min() is the time complexity
of constructing the _ for an MEC multiplied by a factor of ⇥( |d) |),
where |d) | indicates the number of rules in the ground-truth policy.

Identifying Maximality Violations. We de�ne the check-max()
function that determines the set of maximality violating patterns,
i.e., those non-permitted patterns that spuriously behave like an
authorization rule (i.e., applies to only permitted access requests)
in the ground-truth policy with respect to the system graph. Given
an MEC 2 =h⌧, d) i, we loop over all non-permitted patterns q 0
in the set R \ d) , where R is the domain of relationship patterns
(De�nition 7). Then, for each q 0, we check whether the set of au-
thorizations corresponding to ⌧ and the policy consisting of only
q 0, i.e., _(⌧ , {q 0}), is a subset of the complete set of authorizations,
i.e., _(⌧ , d) ). If positive, that pattern will be part of the maximality
violating set returned by the function. The time complexity for
checking the maximality of an input MEC depends on the number
of non-permitted patterns in the system graph. The upper bound for
the number of di�erent relationship patterns of maximum length

# that can exist in ⌧ = h+ , ⇢i is $ (⇢# ). Since we loop over all
the non-permitted patterns q 0 once to calculate _(⌧ , {q 0}), the
time taken by our check-max() function is, thus, the time taken for
calculating the _ for an MEC multiplied by a factor of $ (⇢# ).

Generating Set of Authorizations. In both of the above functions,
check-min() and check-max(), we need to calculate the set of autho-
rizations corresponding to every relationship pattern in the system
graph. That is, we need to calculate _(⌧ , {q}) = {hB,>i} for every
pattern q that is present in graph⌧ during the check-min() and the
check-max() procedures. To this end, we employ a graph traversal
strategy such as the breadth-�rst search. Speci�cally, for obtaining
access requests hB,>i corresponding to a given relationship pattern
q , we systematically explore the given system graph ⌧ = h+ , ⇢i
for various relationship patterns de�ned on the set of labels !. For
every path between a subject B 2 ( and an object > 2 $ encoun-
tered during graph traversal, we record the mapping between the
relationship pattern q that matches the traversed path and the
access request hB,>i. For a given node, there are $ (!+ ) adjacent
nodes in the system graph. Since the length of the paths during the
traversal is constrained by # , the total number of paths that can
be enumerated from a single node will be $ (!#+# ). Therefore,
considering all source nodes in the system graph ⌧ = h+ , ⇢i, the
time complexity for obtaining the mapping between relationship
patterns and their corresponding access requests is O(!#+#+1).

6 UPDATINGWEAK MECS TO STRONG MECS
In this section, we discuss our methodology for producing a strong
MEC corresponding to a given weakMEC and graph schema. Specif-
ically, we transform the system graph component of a weak MEC to
convert it to a strong MEC while ensuring that the resulting graph
is well-formed with respect to the given schema. We also refer to
this process as the correction of the violating patterns. At a high
level, our correction algorithm creates a new path corresponding
to every violating pattern as a separate component in the system
graph. A major challenge involved during a path insertion is ensur-
ing that the nodes and edges on the inserted path conform with the
restrictions de�ned in the schema. However, it can be, and usually
is, the case that a node type has a set of restrictions (De�nition 3),
whose target node type in turn has another set of restrictions, and
so on. For instance, in the example discussed in Section 2.1, the
Manager and Budget node types have di�erent kinds of restrictions
de�ned on them whose target node type is Project. The Project
node type, in turn, has a restriction de�ned on it with Department

as target node type. As a result, it may seem that the enforcement
of restrictions never terminates while inserting a new path. To
tackle such problem, we assume that there is at least one “sink” in
the graph schema that is a node type for which no restrictions are
de�ned. Thus, the process of restriction enforcement will terminate
when it reaches such a “sink” node type.

6.1 Min./Max. Violation Correction Algorithm
Algorithm 1 describes the steps of our correction process. We re-
trieve the set of minimality/maximality violating patterns using
check-min() and check-max() functions, described in Section 5.



Algorithm 1: Correcting Min./Max. Violations
Inputs :Weak MEC 2 = h⌧, d) i, Graph Schema G = hV, �i
Result:Minimal and Maximal MEC 2 = h⌧, d) i

1 foreach q 2 check-min(h⌧, d) i) [ check-max(h⌧, d) i) do
2 new_nodes [];

/* Constructing new path for pattern q */

3 Create vs ;
4 new_nodes.append(vs);
5 for i = 1 to len(q) do
6 Create vt ;
7 new_nodes.append(vt );
8 ⌧ .⇢ ⌧ .⇢ [ {hvs, vt ,q [8]i};
9 vs  vt ;

/* Assigning types to new nodes */

10 vs  new_nodes[1];
11 vt  new_nodes[2];
12 foreach hg (E8 ),Wi 2 � do
13 if W .label = q [1] then
14 g (EB ) g(E8 );
15 g (EC ) W .target_node_type;
16 break;
17 vs  vt ;
18 for i = 2 to len(q) do
19 vt  new_nodes[i+1];
20 foreach W2 get-restrictions(g(EB )) do
21 if W .label = q [8] then
22 g (EC ) W .target_node_type;
23 break;
24 if g (EC ) = null then
25 Go to Line 10;
26 vs  vt ;
27 if g (EC ) = null then
28 exit;

/* Checking restrictions on new nodes */

29 for i = 1 to len(new_nodes) do
30 E  new_nodes[i];
31 foreach W2 get-restrictions(g(E)) do
32 if W .restr_type = EXACTLY_ONE then
33 +  {E8 | hE, E8 ,W .labeli 2 ⌧ .⇢ &

g(E8 )=W .target_node_type };
34 if + = ; then
35 Create node E 0 s.t.

g(E 0)=W .target_node_type;
36 new_nodes.append(E 0);
37 ⌧ .⇢ ⌧ .⇢ [ {hE, E 0,W .labeli};
38 if W .restr_type = ONLY then
39 V  {g(E8 ) | hE, E8 ,W .labeli 2 ⌧ .⇢ };
40 Check ifV ✓ {W .target_node_type };

Creating Paths for Violating Patterns. Lines 3-9 of Algorithm 1
create a new path component (i.e., a path graph consisting of both
nodes and edges) that includes the violating pattern q as a separate
component in the system graph. For a relationship pattern q of

length # , we create a path component using # + 1 new nodes and
sequence of # edges corresponding to the pattern q between them.
The time complexity of this step is ⇥(# ), where # is the maximum
allowable length of a relationship pattern.

Assigning Types to New Nodes. Lines 10-28 of Algorithm 1 de-
scribe the process for assigning types to the new nodes based on
schema G = hV, �i. Initially, for all E 2 new_nodes, it holds that
g (E) = null. So, we loop through all restrictions � until we �nd a
restriction W whose label matches the �rst relationship label in q .
Then, based on W , we assign the types for the �rst two new nodes.
In subsequent iterations, the source node type is simply initialized
as the target node type from the immediately previous iteration.
Then, we loop through all restrictions associated with the source
node type and repeat the above process to assign the type for the
next node in new_nodes list. If at any point, we are unable to �nd
a type for a new node, then we reset the whole process (Line 25).
This means that the sequence of type assignments that we had
estimated so far did not conform with the given schema. However,
if there is no feasible assignment of types to the new nodes, then
our algorithm terminates (Line 28). This can happen when a mini-
mality violating pattern is not compliant with schema restrictions
G.�, in which case we will not be able to correct the violation since
we cannot add paths not speci�ed in �. Overall, for processing
the type assignments, we need to iterate over every label in the
given violating pattern q , and then for each of those labels we need
to identify the restriction W containing that label as speci�ed in
the graph schema. Therefore, the total time taken will be $ (# |! |),
where # is the maximum length of a violating pattern and |! | is the
total number of relationship labels in the system.We note that more
sophisticated search algorithms can be used for systematic search
of the node type assignments. We follow the above procedure to
simplify our presentation on inserting a path component in the
system graph while consulting the associated graph schema.

Enforcing Restrictions on New Nodes. Lines 29-40 of Algorithm 1
demonstrate the process for checking and enforcing the restrictions
given in the graph schema G = hV, �i associated with the type
assignments determined in the previous step. For every node E in the
new_nodes list, we determine if all the restrictions W associated with
g (E) are enforced in system graph ⌧ . Speci�cally, if the restriction
type in W is EXACTLY_ONE, then we check whether there exists a
node E8 whose type is W .target_node_type and there is an edge
hE, E8 ,W .labeli in ⌧ .⇢. If there is no such node, then we create a
new node E 0 and add an edge between E and E 0 according to the
above speci�cations. Further, we append node E 0 to the new_nodes
list since we need to check/enforce restrictions on this new node.
Similarly, if the restriction type in W is ONLY, then we ensure that if
there is a node E8 such that edge hE, E8 ,W .labeli exists in ⌧ .⇢, then
the type of node E8 must be W .target_node_type. The time taken
by the restriction checking process is $ ((# + |V|2) ⇥ |! | ⇥ |V|).
Looping through the set of restrictions associated with node type
g (E) takes$ ( |! |⇥2⇥|V|), based onDe�nition 3. The number of new
nodes E 0 that can be created to satisfy the EXACTLY_ONE restriction
type is $ ( |V|2). As mentioned in the beginning of this section,
for convergence, we consider that there is a “sink” node type in
given schema G for which no restriction exists. Therefore, the total
number of new nodes is$ (# + |V|2), which also considers the new



nodes added while creating a new path component corresponding
to the violating pattern q .

Suppose the number of violating patterns be denoted as ? . Ag-
gregating the time taken by each of the individual operations in
our correction algorithm, in the worst case, the total time can be
bounded as $ (? ⇥ ((# |! |) + ((# + |V|2) ⇥ |! | ⇥ |V|))). We note
that the number of violating patterns ? is theoretically bounded as
$ (⇢# ). However, in practice, this value is much smaller, which we
will demonstrate through our experiments (Section 7).

6.2 Algorithm Correctness
In the following, we analyze the correctness of Algorithm 1 by
showing that: (1) our technique of introducing new paths corrects
MEC violations, (2) correcting one MEC violation does not lead to
another MEC violation, and (3) our correction algorithm produces a
system graph that is well-formed with respect to the given schema.
Let q 0 be a violating pattern in given MEC 2 = h⌧, d) i. Also, let⌧ 0
be the �nal system graph after processing violation q 0.

Adding new paths corrects minimality/maximality violations. For
correcting the violation, a new path component including q 0 is
added as a separate component to ⌧ resulting in, say,⌧8 . So, every
new node in the added path exists only in⌧8 and not in⌧ . If EB , EC 2
⌧8 .+ are end-points of the new path, then access request hEB , EC i
matches q 0 only in⌧8 and does not match q 0 in⌧ . While enforcing
restrictions on every node E corresponding to the new path in⌧8 , we
always add edges of the form hE, E8 , ;i to the current system graph,
say,⌧ 9 such that⌧ 9+1.+ \⌧ 9 .+ = {E8 }, where ; 2 ! and⌧ 9+1 is the
system graph resulting from adding edge hE, E8 , ;i. Since EC already
exists in⌧8 , it is impossible to have a sequence of nodes [EB , . . . , EC ]
in ⌧ 0 due to restrictions enforcement, where ⌧ 0 is the �nal system
graph. So, it holds that access request hEB , EC i matches only pattern
q 0 and no other patternq , whereq 0 < q , in graph⌧ 0. Therefore, the
minimality/maximality violation corresponding to q 0 is corrected
since: (1) if q 0 2 d) , then _(⌧ 0,d) ) \ _(⌧ 0, d) \ {q 0}) = {hEB , EC i}
(checking minimality violation), and (2) if q 0 2 R \ d) , then _(⌧ 0,
{q 0}) \ _(⌧ 0,d) ) = {hEB , EC i} (checking maximality violation).

Correction does not create new MEC violations. Correcting vio-
lation q 0 in MEC 2 = h⌧, d) i leads to the addition of a separate
component in resulting graph ⌧ 0, without a�ecting either ⌧ .+ or
⌧ .⇢. As a result, the number of access requests that match a pattern
in MEC h⌧, d) i will be always less than or equal to the number
of access requests that match the same pattern in MEC h⌧ 0, d) i.
Thus, if an access request hB,>i matches only rule q (and no other
rule in d) ) with respect to graph ⌧ , then hB,>i will still uniquely
match q with respect to graph⌧ 0. That is, if rule q does not violate
the minimality property in MEC h⌧, d) i, then it will not violate
minimality in MEC h⌧ 0, d) i as well. Similar reasoning applies for
not creating new maximality violations based on the observation
that if hB,>i matches some non-permitted pattern q in⌧ then hB,>i
will match q in ⌧ 0 as well.

Correction produces well-formed system graph. Our correction
algorithm terminates only if there is a possible assignment of types,
based on restrictions � in schema G = hV, �i, to the nodes in the
newly added path for violation q 0. To show the well-formedness of
graph ⌧ 0, we need to ensure that every edge in the newly added

separate component violates neither an ONLY restriction nor an
EXACTLY_ONE restriction. On the contradictory, consider that there
is an edge hE, E 0, ;i 2 ⌧ 0.⇢ that does not satisfy an ONLY restriction.
However, this is not possible, since an ONLY-type restriction checks
the type of node E 0 only if the edge hE, E 0, ;i exists in⌧ 0. Speci�cally,
we assigned the types to the new nodes (for every new node, we
insert exactly one edge corresponding to the labels in q 0 in Lines 3-
9), including E 0, based on the schema restrictions G.�. Similarly,
it is not possible to violate an EXACTLY_ONE-type restriction for
any edge hE, E 0, ;i 2 ⌧ 0.⇢. This is because, along with the above
argument for ONLY restriction, the set of nodes {E 0} satisfying the
EXACTLY_ONE restriction on node type g (E) will be either empty
or a singleton set, since our approach always creates a new node
when {E 0} = ;, and also adds only one edge corresponding to every
new node. So, ⌧ 0 will be well-formed respecting given schema G.

7 EXPERIMENTS
We conduct three types of experiments in order to empirically: (1)
validate the theoretical contributions of this paper, (2) investigate
the violations in MECs based on varying system graph/ground-
truth policy sizes, and (3) examine the performance of the proposed
identi�cation/correction algorithms for violations. In Sections 7.2
and 7.3, we demonstrate the signi�cance of strong MECs in e�ec-
tively evaluating the performance of state-of-the-art ReBAC miners
and compare with another baseline from the literature that simpli-
�es the ground-truth policy in an MEC for evaluating miners. In
Sections 7.4 and 7.5, we study the e�ect of varying the two inputs
of an MEC on its strength, in order to have a better understanding
of the nature of an MEC and its generation. Speci�cally, we demon-
strate variation in the MEC violations caused by di�erent sizes
of the system graph and the ground-truth policy in an MEC. We
note that in all, but the experiment in Section 7.5, we only modify
the system graph while keeping the ground-truth policy constant
during the generation of an MEC. In Sections 7.6 and 7.7, we ex-
amine the overhead caused by our algorithms given in Sections 5
and 6 for identifying the violating patterns in weak MECs and then
correcting those violations to produce strong MECs. Speci�cally,
the former demonstrates the performance of running our identi�-
cation algorithm once for a given MEC, and the latter demonstrates
the impact on the size of the MEC caused by our correction algo-
rithm. We start by outlining the setup and con�gurations of our
experiments in Section 7.1, including the di�erent system graph
generation approaches and ReBAC miners used in our experiments.

7.1 Setup
We implemented check-min() and check-max() (Section 5) and
Algorithm 1 (Section 6) in Python, and our system graph schema
in OWL [2] using Protege [1], an open-source and widely used
ontology editor. All experiments are performed on a 64-bitWindows
10 machine using an Intel Core i7-7700 processor and 16 GB of RAM.
In all experiments, we report the average results over 10 runs. We
limit the maximum length of considered relationship patterns to 5.

Ground-Truth Policy. In order to substantiate our proposal re-
garding the use of strongMECs for an e�ective evaluation of ReBAC
miners, we consider a sample policy from a project management
application, which we adopted from the work by Bui et al. [8], as the



ground-truth policy for our evaluation. This policy controls access
by organization users to the resources associated with projects. We
slightly adapted the speci�cations of the policy to conform with the
reference policy model of this paper. An example authorization rule
in our adapted policy is “department,-department,-project”,
which means the managers of a department can access all resources
associated with the projects in their department. A second example is
“projects,-project” which means users can access all resources
associated with the projects that they are working on.

Graph Schema. Our graph schema for the project management
application consists of various node types corresponding to the
users, resources, and other logical entities in an organization. Exam-
ples of user types in this application include department managers,
project leaders, employees, contractors, auditors, accountants, and
planners. Similarly, the resource types include tasks, schedules, and
budgets. Other logical entity types include projects, departments,
and technical areas.We implemented the ONLY-type restriction (Def-
inition 4) and the EXACTLY_ONE-type restriction (De�nition 5) in our
graph schema model using the AllValuesFrom restriction and the
Cardinality restriction (with cardinality equal to 1) in OWL, respec-
tively. Earlier, in Section 2.1, we showed examples of restrictions
on various node types of the project management schema.

System Graph Generation. In order to demonstrate the applica-
bility of our approach irrespective of the graph generation tech-
niques, we implemented two approaches for generating system
graphs. The �rst one, which we refer to as heuristic approach, is
based on the strategy followed by Bui et al. for generating object
models in their work [8]. The second approach, which we refer to
as random approach, follows a random graph generation strategy
similar to Erdos-Renyi graphs. Both of these approaches gener-
ate system graphs that are restricted based on the graph schema
of the project management application. Additionally, both follow
the same methodology for creating nodes of various types in the
system graph based on an input parameter called graph size pa-
rameter. Speci�cally, for the node types de�ned in the underlying
graph schema, the number of nodes that is created for each type
is selected from a uniform distribution with a mean equal to the
inputted graph size parameter and a standard deviation of around
0.82. However, the approaches follow di�erent methodologies for
inserting edges between the created nodes. In the case of the heuris-
tic approach, for a particular source node and a relationship label,
we randomly choose the target nodes of those edges if such an edge
is allowed by the restrictions de�ned on the source node type. In the
case of the random approach, we rely on a second input parameter
called probability of edge insertion. For any potential edge with any
relationship label that is consistent with the schema, it is inserted in
the graph with the probability given by the mentioned parameter.

ReBAC Miners Studied. We experimented with three ReBAC min-
ers from the literature. The �rst miner, which we refer to as Greedy,
uses heuristic strategies to mine ReBAC policies [8]. The second
miner, which we refer to as DT, uses decisions trees [4]. The imple-
mentation of Greedy and DTminers takes as inputs a class model, an
object model, and access control rules. Along with a mined policy,
these two miners also produce a “simpli�ed ground-truth policy”
for comparing with and evaluating the mined policy. Given a policy,
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Figure 1: Impact of Strength of MEC on Performance of
ReBAC Miners with respect to Graph Size Parameter for
Heuristic Graph Generation Approach.

their simpli�cation strategy aims to produce another policy that has
a lower overall weight (in terms of the numbers of elements in the
policy) than the original. In other words, they convert their original
MEC into another MEC, which we refer to as the simpli�ed MEC.
These works [4, 8] report their performance metrics for Greedy and
DT miners based on simpli�ed MEC (instead of original MEC). The
third miner, which we refer to as Prism, utilizes a combination of
rule mining and pattern mining approaches to mine ReBAC autho-
rization policies [18]. The Prism miner is based on a similar policy
model as in this paper. There are two inputs to the implementation
of Prism miner, namely a system graph and an access control log.

Evaluating ReBACMiners. For Greedy and DTminers, we adapted
our graph schema and our generated system graph into their class
model and object model representations, respectively, and inputted
those along with the ground-truth policy. For Prism miner, we
inputted our generated system graph and the access log produced
using the system graph and ground-truth policy. The miners that
we experimented with are based on di�erent ReBAC policy models,
and so their mined rules have di�erent expressive power. In order to
fairly assess the policies produced by the three miners, we convert
their rules into our rule format speci�ed in Section 2.2. In particular,
we convert their path expressions into relationship patterns format.

7.2 Strong MECs Challenge Miners to Produce
Syntactically Equivalent Policies

We investigated the performance of the three ReBAC miners with
respect to the strength of MECs. Speci�cally, using the ground-truth
project management policy and employing the heuristic approach
for generating system graphs over di�erent graph size parame-
ters (both discussed in Section 7.1), we recorded the semantic and
syntactic equivalence of the mined policies with the ground-truth
policy for given MECs. In all cases, the mined policies were seman-
tically equivalent to the ground-truth policy. Figure 1 shows the
syntactic equivalence of policies produced by the three miners and
the ratio of MECs meeting the minimality/maximality properties,
with respect to di�erent sizes of the system graph (10MECs for each
size). In this experiment, we are just concerned with classifying an
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(b) Impact of Strength of MECs and Simpli�ed MECs on Perfor-
mance of Greedy and DTMiners.

Figure 2: Variations in Simpli�edMECs Strength and Impact
with respect to Graph Size Parameter for Heuristic Graph
Generation Approach.

MEC as strong (when meeting both min. and max.) or weak. In the
later experiments, we deal with the actual violating patterns that
need to be corrected in case of weak MECs. Observe that, for all
the three miners, the chances of producing a mined policy that is
syntactically equivalent to the ground-truth policy increases with
increasing strength of the input MEC. Therefore, strong MECs pro-
vide a systematic means for e�ectively evaluating a ReBAC miner.
Note that the miners perform di�erently since they are based on
di�erent underlying algorithms (as discussed in Section 7.1). Our
notion of strong MECs focuses on a fair assessment of a miner; a
strong MEC does not measure a miner’s performance itself.

7.3 Simpli�ed MECs Are Not Always Strong
We studied the strength of simpli�edMECs (discussed in Section 7.1)
in terms of violations of the minimality/maximality properties,
where the system graph was generated according to the heuris-
tic approach for di�erent values of the graph size parameter. We
also analyzed the impact of the strength of simpli�ed MECs on
the performance of Greedy and DT miners. Figure 2a demonstrates
the chances of meeting minimality and maximality by an MEC
and simpli�ed MEC as the system graph size increases. Figure 2b
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Figure 3: Variations in Strength of MECs with respect to
Graph Size Parameter and Probability of Edge Insertion for
Random Graph Generation Approach.

demonstrates the syntactic equivalence of the mined policies with
the original ground-truth policy as well as with the policy of sim-
pli�ed MECs, for both Greedy and DT miners. It can be observed
that simpli�ed MECs are not necessarily strong. This is evident as,
along with minimality violations, maximality violations are also
introduced in the case of simpli�ed MECs. Based on our manual
investigation, simpli�ed MECs usually have at least one rule less
than the original ground-truth policy, which causes an actual rule to
be considered as a non-permitted pattern. Furthermore, a simpli�ed
MEC is not actually evaluating the miner against ground-truth pol-
icy, rather against a policy obtained by simplifying the ground-truth.
Besides, the miners do not always produce policies that are syn-
tactically equivalent with the policies of simpli�ed MECs; similar
to the syntactic equivalence graph when comparing with ground-
truth policy (see solid lines in Figure 2b), the syntactic equivalence
graph when comparing with simpli�ed policy (see dotted lines
in Figure 2b) also increases as the strength of the corresponding
simpli�ed MEC increases (see dotted lines in Figure 2a).

7.4 Di�erent Types of Minimality Violations
We investigated the variation in the total number of violating pat-
terns (returned by check-min()/check-max()) for a given MECwith
respect to di�erent sizes of the system graph. Figure 3a demon-
strates the variation in the number of minimality violations with



respect to the graph size parameter and the probability of edge
insertion for the random approach. We did not observe any max-
imality violations corresponding to the inputted MECs. We can
observe that the violations generally increase as the probability of
edge insertions increases. They also generally grow slightly with
the graph size. However, we interestingly observe relatively high
violations for smaller graph sizes and lower edge probability. To be
able to get a better insight into the cause of these violations, we split
the total minimality violations into two: violations caused when
some rules are not applicable to any access request in the system
graph and violations caused when some rule’s authorizations are
overshadowed by another rule’s authorizations in an MEC. Fig-
ures 3b and 3c demonstrate these two kinds of violations. We refer
to the former as the case of non-applicable rules, and we refer to the
latter as the case of redundant rules. We can observe that when the
system graph size is smaller, the chances of getting non-applicable
rules is much higher than that for redundant rules. However, as
the system graph size increases, the redundant rules dominate over
the non-applicable rules during minimality violations. We also per-
formed the above experiment by generating the system graphs
based on the heuristic approach, and observed a similar trend.

7.5 Varying Ground-Truth Policy
In all previous experiments, we generated di�erent MECs where the
ground-truth policy element was �xed and only the system graph
element was changing. Here, we discuss our observations regarding
the impact of varying the ground-truth policy, including its size (i.e.,
the number of its rules), on the corresponding MEC being strong.
For every graph generated using the heuristic approach and a given
graph size parameter, we generate random policies of various sizes,
and record minimality/maximality violations in the resulting MECs.
We repeat this procedure for di�erent graph size parameters to
investigate such behavior over various system graphs. We initially
generate a set of all possible policies based on the graph schema and
maximum rule length, and then randomly utilize sampled policies
of various sizes as needed during the experiment. To construct a
rule pattern, we add the edge labels, or their inverses, in such a
sequence that does not violate any of the restrictions corresponding
to the source/target node types of any label in the pattern.

Figure 4 shows the number of patterns violating minimality/
maximality properties with respect to di�erent graph size param-
eters and ground-truth policy sizes. Observe that the number of
minimality violations (see Figure 4a) increases with increasing pol-
icy size. This is because, as the number of rules in the ground-truth
policy increases, the chances of a rule being redundant (i.e., its
authorizations overshadowed by another rule’s authorizations) also
increases, in turn increasing the chances of getting minimality vi-
olations. Also, observe that the number of maximality violations
(see Figure 4b, looking at the surface from below) decreases with in-
creasing policy size. This is because, the maximality property deals
with non-permitted patterns whose authorizations are included
in a given MEC’s authorizations. By increasing policy size, we in-
crease the chances of including such non-permitted patterns into
the ground-truth policy, in turn reducing the chances of getting
maximality violations. Based on our manual investigation of the
generated policies, we speculate that policies should be somehow
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Figure 4: Variations in Strength of MECs with respect to
Graph Size Parameter and Policy Size (i.e., Number of Rules)
for Heuristic Graph Generation Approach.

“informed” by graph schema, and it would be interesting to explore
such an association for reducing violations in the generated MECs.

7.6 Increase in Min./Max. Checking Time
Proportional to Number of Edges

We examined the time taken by check-min() and check-max() for
identifying minimality/maximality violating patterns in a given
MEC. We also studied how the number of edges varies in the sys-
tem graphs corresponding to the input MECs. Figures 5a and 5b
demonstrate, respectively, the number of system graph edges across
di�erent MECs and the time taken for checking the minimality/
maximality of those MECs for the random graph generation ap-
proach with respect to the graph size parameter and the probability
of edge insertion. We can observe that both graphs follow a similar
pattern, which can be attributed to the fact that the graph traversal
cost increases with the number of edges in the system graph. In
our prototype implementation, graph traversal is usually the most
costly phase while identifying minimality/maximality violations.
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Figure 5: Increase inMin/MaxCheckingTime similar to Incr.
In Number of Edges with respect to Graph Size Parameter
and Probability of Edge Insertion for Random Approach.

Therefore, the time taken for identifying the minimality/maximality
violations in an MEC is proportional to the number of edges in the
system graph of the corresponding MEC. Again, we observed a
similar trend between the minimality/maximality checking time
and the number of edges in case of the heuristic graph generation
approach (not presented in the paper to avoid repetition of content).

7.7 MEC Correction Grows System Graph
Proportional to Number of Violations

We studied the e�ect of our correction algorithm, which generates
a strong MEC for a given weak MEC, on the system graph size. In
particular, for every graph size parameter and the probability of
edge insertion in case of the random graph generation approach,
we recorded the increase in the number of nodes and edges in the
system graph. Such an increase is caused due to the creation of
new paths corresponding to the patterns violating the minimal-
ity/maximality properties. Figure 6 demonstrates our results. We
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Figure 6: Increase in Number of Nodes due to Correction of
Weak MECs with respect to Graph Size Parameter and Prob-
ability of Edge Insertion for Random Approach.

can observe that the increase in the number of nodes (and similarly
for the number of edges) follows almost the same trend as the graph
shown in Figure 3a. This is because, based on our Algorithm 1, we
create new nodes and edges only for those patterns that violate
the minimality/maximality properties. Therefore, we can infer that
the increase in the system graph size is proportional to the number
of violating patterns for a given MEC. Additionally, for all given
MECs, executing check-min() and check-max() on the corrected
MECs did not return any violations, which manifests our correction
algorithm’s e�ectiveness in producing a strong MEC for a given
weak MEC. We observed that the results for the heuristic graph
generation approach follow a similar pattern as in Figure 6.

8 RELATEDWORK
ReBAC Miners. A ReBAC miner aims to extract concise, high-

level rules in terms of relationships between users and resources
from given lower-level authorizations and entity relationships. Bui
et al. presented two algorithms, namely a greedy algorithm guided
by heuristics [7] and a grammar-based evolutionary algorithm [8].
The authors have also proposed combining neural networks and a
grammar-based genetic algorithm to support additional policy lan-
guage features such as set-equality and subset-equal set comparison
operators [6]. More recently, they presented a simpler algorithm
based on decision trees and its variant that can mine policies with
negation conditions [4] and unknown attribute values [5]. Iyer and
Masoumzadeh proposed a solution for mining ReBAC authoriza-
tion rules in an evolving system based on rule mining and frequent
graph-based pattern mining concepts [18]. Recently, researchers
considered the problem of detecting the feasibility of ReBAC policy
mining [9, 10]. Given the set of lower-level authorizations and the
relationship graph for system entities, their approach loops through
every permitted access request, identi�es all possible paths between
the request nodes, and deems it infeasible if the set of identi�ed
paths between the permitted request is completely satis�ed by any
unauthorized access request. If rule generation is feasible for every
permitted request, then the mined policy is returned. The authors



have also studied this problem in the context of di�erent ReBAC
policy languages, with varying expressiveness, which di�er in the
relationships, inverse relationships, and non-relationships used to
build the policy. Recently, researchers have proposed to learn the
authorization behavior of a black-box system by actively submit-
ting access requests to and observing the corresponding decisions
from the system [19]. They aim to minimize the amount of access
control observations required to learn the authorization behavior.

Evaluating ReBAC Miners. For all the above works, their evalua-
tions do not necessarily test the mining of the intended, ground-
truth policies. They test their mining on di�erent MECs, but those
MECs do not follow well-de�ned properties for e�ective evaluation,
which we establish in this paper. In the works by Bui et al. [4–8],
the relationship data is generated by policy-speci�c pseudo-random
algorithms that creates objects (users and resources) and selects
their attribute values using appropriate probability distributions.
In their works, relationships are expressed using �elds that refer
to other objects, and path expressions are used to follow chains
of relationships between objects. The desired number of instances
for the various object types is selected from a normal distribution
whose mean is linear to a size parameter, which is an input of
the object model generators. The values of di�erent �elds within
an object are randomly chosen object(s) of the appropriate type.
Due to the above procedure, there is no systematic means of deter-
mining if their generated MECs are strong. As a result, the miner
may not have a fair chance of observing the policy from the given
object model and lower-level authorizations; for example, if one
rule overshadows another rule in the generated object model, the
miner might simply ignore the latter rule. This, in turn, can cause
misleading evaluation results when the mined policy is not syn-
tactically equivalent to the ground-truth policy. To support our
theory, this issue of their MEC being weak and their evaluation
not testing the mining of the intended policy, is evident when the
authors convert their MEC into simpli�ed MEC whose policy is
produced by simplifying the ground-truth policy. In the works by
Iyer and Masoumzadeh [18, 19], the relationship data is generated
pseudo-randomly by considering the information about entities
and edge types, and the domain-speci�c constraints in place. In the
works on mining feasibility detection [9, 10], determining if there
exists a “mine-able” ReBAC ruleset corresponding to a weak MEC
can lead to producing a policy that is di�erent from the intended
policy. Moreover, compared to their proposal, our work presents de-
�ned properties for strong MECs, which provide a more systematic
understanding of the mining inputs and ensure e�ective evaluation.

9 CONCLUSION AND FUTUREWORK
In this paper, we consider the �rst-of-its-kind problem of e�ectively
evaluating a ReBAC policy miner. In particular, we introduced the
notion of a strong MEC that challenges a miner to produce a pol-
icy that is syntactically equivalent to the ground-truth policy. We
propose two properties to formally characterize a strong MEC,
and through theoretical and experimental results we demonstrate
the signi�cance of strong MECs for a fair assessment of a ReBAC
miner’s performance. Another sphere of policy mining that has
been receiving great research interest deals with the problem of
mining ABAC policies from lower-level authorizations and entity

attributes [12, 16, 17, 20, 21, 25]. Moreover, researchers have formu-
lated ReBAC as an “extension” of ABAC, in which the relationships
are represented through the attributes of an entity that refer to other
entities [3, 8]. It would be an interesting future work to explore
the problem of e�ective evaluation in the domain of ABAC policy
mining using our theory of MECs proposed for ReBAC miners.
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