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We study variance estimation and associated confidence intervals for parameters

characterizing genetic effects from genome-wide association studies (GWAS) mis-

specified mixed model analysis. Previous studies have shown that, in spite of the

model misspecification, certain quantities of genetic interests are estimable, and con-

sistent estimators of these quantities can be obtained using the restricted maximum

likelihood (REML) method under a misspecified linear mixed model. However, the

asymptotic variance of such a REML estimator is complicated and not ready to be im-

plemented for practical use. In this paper, we develop practical and computationally

convenient methods for estimating such asymptotic variances and constructing the

associated confidence intervals. Performance of the proposed methods is evaluated

empirically based on Monte-Carlo simulations and real-data application.

Key Words. asymptotic approximation, confidence intervals, GWAS, heritability, mis-

LMM, variance, unbiasedness

1 Introduction

Genome-wide association studies (GWASs) have proved successful by scanning the

genome for genetic variations, e.g., single nucleotide polymorphisms (SNPs), that are asso-

ciated with disease status and traits across study subjects. Tens of thousands of SNPs have

been identified to be associated with various diseases and traits. For a review of the GWAS

remarkable discoveries, see Visscher et al. (2017). Researchers can use GWAS results to

further medical research, such as to determine a person’s risk of developing a disease or

http://arxiv.org/abs/2101.06638v1
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treat/prevent the disease. It is well known that genetic factors may account substantially

for disease risk or various traits, which can be quantified as heritability. Historically, heri-

tability was inferred from resemblance among different degrees of related individuals (e.g.,

twin studies) without studying specific genetic variations, but today there is an emerging

interest in quantifying how much variation can be accounted for from GWAS data due to

the recent development of efficient genotyping and sequencing technology and the success

of the GWAS strategy. However, when GWAS significant variants were considered, they

only explained a small fraction of the genetic component of the phenotypes. The gap be-

tween the phenotypic variance explained by significant GWAS results and that estimated

from classical heritability methods is known as the “missing heritability problem.”

More precisely, the problem refers to the concept that SNPs that are significant in

GWASs cannot fully account for heritability of many diseases and traits. One explana-

tion for missing heritability is that many SNPs jointly affect the phenotype, and SNPs

with smaller effects that have not been identified may contribute to heritability as well.

To address this issue, Yang et al. (2010) used an approach involving linear mixed models

(LMMs) to show that a large proportion of heritability is not missing but rather captured

by SNPs with weak effects that do not reach genome-wide significance level. The general

idea is to use an LMM to treat the effects of all SNPs as random effects rather than relying

on single-SNP association analysis. This approach has been widely used for heritability

estimation in the genetics community via the GCTA software (Yang et al. 2011).

In an attempt to make the modelling more accurate, others have proposed extensions

of this LMM approach. For instance, Heckerman et al. (2016) proposed to add an en-

vironmental random effect (along with a genomic random effect) in the LMM to reduce

heritability inflation, and Zhou et al. (2013) proposed to use a hybrid of LMM and spare

regression models to learn the true genetic architecture from the data to estimate heritabil-

ity. To improve heritability estimation compared to GCTA, Speed et al. (2017) developed
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the LDAK model to factor in minor allele frequency (MAF), linkage disequilibrium (LD),

and genotype certainty. Speed et al. (2020) extended their LDAK model to handle more

complex heritabiltiy models by proposing an approximate model likelihood to be computed

by GWAS summary statistics. Comprehensive comparisons of heritability estimation meth-

ods [Yang, Manolio, et al. (2011), Yang et al. (2015), Speed et al. (2017), Speed et al.

(2012), Zaitlen et al. (2013), Bulik-Sullivan et al. (2015)] can be found in Evans et al.

(2018). Zhu and Zhou (2020) also provides a review of statistical methods for heritability

estimation.

Consider an LMM which can be expressed as

y = Xβ + Z̃α + ǫ, (1)

where y is an n×1 vector of observations; X is an n×q matrix of known covariates; β is a

q×1 vector of unknown regression coefficients (the fixed effects); and Z̃ = p−1/2Z, where

Z is an n× p matrix whose entries are random variables. Furthermore, α is a p× 1 vector

of random effects that are distributed as N(0, σ2
αIp), Ip being the p-dimensional identity

matrix, and ǫ is an n × 1 vector of errors that is distributed as N(0, σ2
ǫ In), and α, ǫ and Z

are independent. The heritability parameter is defined as h2 = σ2
α/(σ

2
α + σ2

ǫ ).

The LMM (1) is the model used by Yang et al. (2010) where it is assumed the effects

of all the SNPs (random effects) are nonzero. The restricted maximum likelihood (REML)

estimator of the heritability is given by ĥ2 = σ̂2
α/(σ̂

2
α + σ̂2

ǫ ), where the estimates of the

variance components σ̂2
α and σ̂2

ǫ are based on the REML method [e.g., Jiang (2007), Section

1.3.2], which is implemented in the GCTA software. In reality, however, only a subset of

the SNPs are potentially nonzero. Specifically, we have α = {α′

(1), 0
′}, where α′

(1) is the

vector of the first m components of α (1 ≤ m ≤ p), and 0 is the (p − m) × 1 vector of

zeros. Correspondingly, we have Z̃ = [Z̃(1); Z̃(2)], where Z(j) = p−1/2Z(j), j = 1, 2, Z(1) is
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n×m, and Z(2) is n× (p−m). Therefore, the true LMM can be expressed as

y = Xβ + Z̃(1)α(1) + ǫ, (2)

With respect to the true model (2), the assumed model (1) is misspecified. We call the latter

a misspecified LMM, or mis-LMM.

Jiang et al. (2016) showed that even under a mis-LMM, σ̂2
ǫ and ĥ2 are consistent by

investigating the asymptotic behavior of the estimators as the sample size and the number

of SNPs increase to infinity, such their ratio converges to a finite, nonzero constant. How-

ever, the asymptotic variances of the REML estimators have complex forms that are not

ready to be implemented for practical use. This issue is important, from a practical point

of view, because the asymptotic variance is used to obtain the standard error of the estima-

tor, and confidence interval for the associated parameter, in applications. The main goal

of the current paper is to propose accurate estimators of the variance of σ̂2
ǫ and ĥ2 along

with confidence intervals that are robust even under the mis-LMM. The proposed variance

estimators are derived based on asymptotic approximation; they have analytic expressions

and are simple to use. Using the variance estimators and in results Jiang et al. (2016), we

constructed approximate 100(1 − α)% confidence intervals for the associated parameters.

We also considered a nonparametric approach to construct bootstrap confidence intervals.

Particularly, let F be the true distribution of θ(F ) ∈ {σ2
ǫ , h

2}, and let θ̂ ≡ θ(F̂ ) ∈ {σ̂2
ǫ , ĥ

2}

be the REML estimate of θ(F ). Let F̂ ∗ denote a bootstrap approximation to F̂ . Since

the sampling distribution of θ(F̂ )/θ(F ) ≈ θ(F̂ ∗)/θ(F̂ ), we constructed an approximate

100(1−α)% confidence interval for θ as
(

θ̂
q∗
1−α/2

, θ̂
q∗
α/2

)

, where q∗t is the t-th quantile of the

bootstrap sampling distribution of θ(F̂ ∗)/θ(F̂ ). Since the first method of confidence inter-

val construction performed better based on empirical coverage probabilities, we present it

in this paper.

There have been studies in recent literature regarding uncertainty measures associated
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with the GCTA method of Yang et al. (2010). Kumar et al. (2016) showed that the

confidence intervals produced by the GCTA method overwhelmingly underestimated the

uncertainty in the variance component estimates even when the LMM model assumptions

are satisfied. Also, see Lohr et al. (1997) and Burch (2007) regarding inaccuracy of the

confidence intervals. We carried out empirical studies regarding the performance of our

proposed variance estimators and associated confidence intervals as well as those of GCTA

variance estimator. In our simulation studies under misspecification, we found that the

GCTA method is satisfactory in terms of variance estimators and associated confidence

intervals. In fact, the two methods, our proposed method and GCTA method, performed

similarly in our simulation studies. Note that our method is supported by the theory estab-

lished in Jiang et al. (2016). Thus, in a way, our findings also restore confidence in GCTA

in terms of measures of uncertainty even under misspecification.

In Section 2, we derive the variance estimators and associated confidence intervals. In

Section 3 we demonstrate performance of the methods using simulation studies. Section 4

contains a real data example using the UK Biobank data. Technical details are deferred to

the Appendix.

2 Derivation of variance estimators

As noted, Jiang et al. (2016) showed that REML estimators of certain variance compo-

nents of genetic interest are consistently estimable and asymptotically normal; however, the

corresponding asymptotic variances do not have expressions suitable for implementation.

Thus, our first objective is to derive (simple) estimators of those asymptotic variances. Let

us begin with estimation of var(σ̂ǫ). By Jiang et al. (2016), we have the expression

σ̂2
ǫ =

y′P 2
γ̂ y

tr(Pγ̂)
, (3)
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where γ̂ = σ̂2
α/σ̂

2
ǫ . Some technical (see Subsection A.1 of the Appendix) derivations lead

to the following approximation:

σ̂2
ǫ ≈

E(Uγ,y)

E(Uγ,y)− E(Sγ,y)
·
y′P 2

γ y

tr(Pγ)
+

E(Uγ,y)

E(Sγ,y)− E(Uγ,y)
·

y′Qγy

tr(PγZ̃Z̃ ′)
, (4)

where γ = γ∗, which is the asymptotic limit of γ̂ according to Jiang et al. (2016). Denote

the right side of (4) by σ̃2
ǫ , then, we have

var(σ̂2
ǫ ) ≈ var(σ̃2

ǫ ) = E{var(σ̃2
ǫ |Z)}+ var{E(σ̃2

ǫ |Z)}. (5)

It can be shown that the second term on the right side of (5) is of lower order than the first

term; therefore, we have

var(σ̂2
ǫ ) ≈ E{var(σ̃2

ǫ |Z)}. (6)

To obtain a further approximation, define

A =
tr(QγZ̃Z̃

′){tr(P 2
γ )tr(QγZ̃Z̃

′)− tr2(Qγ)}

tr2(Pγ)tr2(PγZ̃Z̃ ′)
,

B =
tr(QγZ̃Z̃

′)

tr(PγZ̃Z̃ ′)
−

tr(Qγ)

tr(Pγ)
.

Then, it can be shown (see Subsection A.2 of the Appendix) that the right side of (6) can

be approximated by 2σ2
ǫE(A)/{E(B)}2. Thus, in conclusion, we obtain the following

estimator of var(σ̂ǫ):

v̂ar(σ̂2
ǫ ) = 2σ̂2

ǫ

Â

B̂2
, (7)

where Â, B̂ are A,B with γ replaced by γ̂, respectively.

Next, we consider estimation of var(γ̂). Using similar arguments (details omitted), it

can be shown that

var(γ̂) ≈
E(C)

{E(B)}2
, (8)
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where

C = tr





{

Pγ

tr(Pγ)
−

PγZ̃Z̃
′

tr(PγZ̃Z̃ ′)

}2


 .

Thus, an estimator of var(γ̂) is given by

v̂ar(γ̂) =
Ĉ

B̂2
. (9)

The variance estimator (9) is used to obtain a variance estimator for ĥ2, the REML

estimator of the heritability, h2. Using the expression ĥ2 = γ̂/(1+ γ̂), and the delta-method

(e.g., Jiang 2010, sec. 4.2), we obtain

var(ĥ2) ≈
var(γ̂)

(1 + γ)4
, (10)

where, again, γ = γ∗, the limit of γ̂. Thus, an estimator of var(ĥ2) is given by

̂var(ĥ2) =
Ĉ

(1 + γ̂)4B̂2
. (11)

Note that all of the variance estimators obtained here are guaranteed to be nonnega-

tive (and positive with probability one), a desirable property for a variance estimator. In

particular, one can take square root of the variance estimator, and use it to construct a large-

sample confidence interval for the corresponding parameter. Let θ denote a parameter of

interest, such as σ2
ǫ , h

2, and θ̂ be its estimator. Let
̂
var(θ̂) be a variance estimator for θ̂

that is guaranteed nonnegative. Given α ∈ (0, 1), by Theorem 2 of Jiang et al. (2016), an

approximate 100(1− α)% confidence interval for θ is given by

[

θ̂ − zα/2

√

̂
var(θ̂), θ̂ + zα/2

√

̂
var(θ̂)

]

, (12)

where zα/2 is the α/2 critical value of N(0, 1) [i.e., P(Z > zα/2) = α/2 for Z ∼ N(0, 1)].
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3 Simulation Studies

We simulate scenarios similar to that in Jiang et al. (2016). Specifically, we simulate the

allele frequencies for p SNPs from the Uniform[0.05, 0.5] distribution, and denote fj as the

allele frequency of the jth SNP, for j = 1, 2, . . . p. The genotype matrix U ∈ {0, 1, 2}n×p

has rows corresponding to the individuals and the columns corresponding to the SNPs.

The genotype value of each individual for the jth SNP is sampled from {0, 1, 2} with

probabilities (1− fj)
2, 2fj(1− fj), f

2
j , respectively. Let the standardized genotype matrix

Z be such that each column of U is standardized to have zero mean and unit variance, and

then let Z̃ = p−
1

2Z. We express the relationship between the phenotypic vector y and the

standardized genotype matrix Z̃ in the LMM in (1).

As previously noted, (1) assumes that αj ∼ N(0, σ2
α) for all j ∈ {1, 2, . . . , p} when

in reality, only a subset m of the SNPs is associated with the phenotype. Thus, a correct

model is (2) and the heritability should be

h2
true =

(m/p)σ2
α

(m/p)σ2
α + σ2

ǫ

(13)

Since it is not possible to identify all of the m SNPs in practice, we follow model (2) to

simulate the phenotypes and use all of the SNPs in Z to estimate the variance components,

σ2
α and σ2

ǫ , in model (1). We therefore estimate the heritability as

ĥ2 =
σ̂2
α

σ̂2
α + σ̂2

ǫ

, (14)

where the estimates of the variance components are their REML estimates.

In the simulations, given n, p, and m, we set the true parameters as µ = 0, σ2
ǫ = a, and

σ2
α = b p

m
, for (a, b) ∈ {(0.8, 0.2), (0.6, 0.4), (0.4, 0.6), (0.2, 0.8)}, where the heritability

parameter is varied. We performed simulations with those true parameters under misspec-

ifications of ω ∈ {0.005, 0.01, 0.05, 0.1, 0.5}. Note that γ =
σ2
α

σ2
ǫ

. We simulated the data
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under model (2), but found REML estimates under model (1). For each scenario, we carried

out 300 replications, and report the results (see below).

Let var(θ̂) be the sample variance of all of the simulated θ̂s for θ ∈ {σ2
ǫ , h

2}, v̂ =

̂var(θ̂), and E(v̂) be the sample mean of all of the simulated v̂s. The percentage of risk bias

(%RB) is defined as

%RB = 100×

{

E(v̂)− var(θ̂)

var(θ̂)

}

.

We also look at the sample standard deviation of all of the simulated v̂s, denoted as s(v̂).

The Nλ for λ ∈ {0.01, 0.05, 0.1} is the empirical coverage probability for large sample

confidence intervals of θ at level λ. Since θ is bounded, we also consider the large sample

truncated confidence intervals of θ and denote the empirical coverage probability by Tλ for

λ ∈ {0.01, 0.05, 0.1}. To find the truncated confidence intervals of θ ∈ {σ2
ǫ , h

2}, we use

the quantiles of the truncated normal distribution, where the mean is the REML estimate of

θ and the variance is the variance estimate of REML estimate of θ. In particular, since the

lower bound of θ = σ2
ǫ is 0, we truncate the lower bound by 0 but not the upper bound. For

θ = h2, we truncate the lower bound by 0 and the upper bound by 1. The quantiles of the

truncated normal distribution at levels λ/2 and 1− λ/2 are the lower and upper bounds of

the confidence interval, respectively.

Tables 1 and 2 showcase some results for θ = σ2
ǫ , and Tables 3 and 4 show a few for

θ = h2. Other simulations are given in the supplementary materials.
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Table 1: σ2
ǫ0 = 0.8, σ2

α0
= 0.2

p

m
for θ = σ2

ǫ , (n, p) = (2000, 20000)

m % RB var(θ̂) E(v̂) s(v̂) N0.01 N0.05 N0.1 T0.01 T0.05 T0.1

20 5.442 0.010 0.011 0.001 0.990 0.970 0.910 0.990 0.970 0.910

200 -1.970 0.011 0.010 0.001 0.987 0.940 0.887 0.987 0.940 0.887

2, 000 12.302 0.009 0.010 0.001 0.997 0.960 0.900 0.997 0.960 0.900

20, 000 3.209 0.010 0.011 0.001 0.993 0.947 0.903 0.993 0.947 0.903

Table 2: σ2
ǫ0
= 0.4, σ2

α0
= 0.6

p

m
for θ = σ2

ǫ , ω = m/p = 0.1

(n, p) % RB var(θ̂) E(v̂) s(v̂) N0.01 N0.05 N0.1 T0.01 T0.05 T0.1

(1000, 10000) 0.828 0.018 0.018 0.002 0.990 0.933 0.893 0.993 0.937 0.900

(2000, 20000) 7.608 0.008 0.009 0.001 0.990 0.953 0.907 0.990 0.957 0.907

(3000, 30000) −6.494 0.007 0.006 0.0004 0.980 0.940 0.897 0.980 0.940 0.897

(4000, 40000) −6.731 0.005 0.005 0.0003 0.987 0.947 0.887 0.987 0.947 0.887

(5000, 50000) 1.433 0.004 0.004 0.0002 0.993 0.957 0.893 0.993 0.957 0.893

Table 3: σ2
ǫ0 = 0.8, σ2

α0
= 0.2

p

m
for θ = h2, ω = m/p = 0.05

(n, p) % RB var(θ̂) E(v̂) s(v̂) N0.01 N0.05 N0.1 T0.01 T0.05 T0.1

(1000, 10000) 20.046 0.017 0.020 0.0002 0.990 0.977 0.960 0.990 0.977 0.960

(2000, 20000) 2.164 0.010 0.010 0.0001 0.993 0.960 0.890 0.993 0.980 0.920

(3000, 30000) -7.961 0.007 0.007 0.00004 0.987 0.933 0.880 0.987 0.947 0.893

(4000, 40000) 3.595 0.005 0.005 0.00002 0.993 0.947 0.907 0.993 0.953 0.917

(5000, 50000) -8.444 0.004 0.004 0.00001 0.983 0.937 0.887 0.987 0.937 0.887
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Table 4: σ2
ǫ0 = 0.4, σ2

α0
= 0.6

p

m
for θ = h2, ω = m/p = 0.1

(n, p) % RB var(θ̂) E(v̂) s(v̂) N0.01 N0.05 N0.1 T0.01 T0.05 T0.1

(1000, 10000) −2.578 0.019 0.019 0.001 0.983 0.923 0.887 0.990 0.937 0.890

(2000, 20000) 4.057 0.009 0.009 0.0004 0.990 0.953 0.897 0.990 0.953 0.900

(3000, 30000) −8.355 0.007 0.006 0.0002 0.983 0.930 0.893 0.983 0.930 0.893

(4000, 40000) −4.804 0.005 0.005 0.0001 0.990 0.943 0.890 0.990 0.943 0.890

(5000, 50000) −0.360 0.004 0.004 0.0001 0.990 0.947 0.897 0.990 0.947 0.897

We can compare the results of our method with GCTA, where the comparisons occur

between Tables 5 and 6, Tables 7 and 8, Tables 9 and 10, and Tables 11 and 12. Note that

our method and GCTA perform similarly well.

Table 5: σ2
ǫ0
= 0.4, σ2

α0
= 0.6

p

m
for θ = h2, (n, p) = (2000, 20000)

m % RB var(θ̂) E(v̂) s(v̂) N0.01 N0.05 N0.1 T0.01 T0.05 T0.1

20 3.208 0.009 0.010 0.003 0.983 0.947 0.900 0.983 0.947 0.900

200 -10.250 0.010 0.009 0.001 0.983 0.930 0.860 0.983 0.930 0.860

2, 000 7.608 0.008 0.009 0.001 0.990 0.953 0.907 0.990 0.957 0.907

20, 000 -3.961 0.010 0.009 0.001 0.990 0.947 0.890 0.990 0.947 0.890
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Table 6: GCTA CIs: σ2
ǫ0 = 0.4, σ2

α0
= 0.6

p

m
for θ = σ2

ǫ , (n, p) = (2000, 20000)

m % RB var(θ̂) E(v̂) s(v̂) GCTA0.01 GCTA0.05 GCTA0.1

20 3.3062 0.0092 0.0095 0.0035 0.9867 0.9467 0.9067

200 -9.9262 0.0102 0.0092 0.0013 0.9833 0.93 0.8633

2, 000 7.6525 0.0085 0.0091 8e-04 0.99 0.95 0.91

20, 000 -3.7719 0.0095 0.0091 8e-04 0.99 0.9433 0.8933

Table 7: σ2
ǫ0 = 0.4, σ2

α0
= 0.6

p

m
for θ = h2, (n, p) = (2000, 20000)

m % RB var(θ̂) E(v̂) s(v̂) N0.01 N0.05 N0.1 T0.01 T0.05 T0.1

20 3.208 0.009 0.010 0.003 0.983 0.947 0.900 0.983 0.947 0.900

200 -10.250 0.010 0.009 0.001 0.983 0.930 0.860 0.983 0.930 0.860

2, 000 7.608 0.008 0.009 0.001 0.990 0.953 0.907 0.990 0.957 0.907

20, 000 -3.961 0.010 0.009 0.001 0.990 0.947 0.890 0.990 0.947 0.890

Table 8: GCTA CIs: σ2
ǫ0
= 0.4, σ2

α0
= 0.6

p

m
for θ = h2, (n, p) = (2000, 20000)

m % RB var(θ̂) E(v̂) s(v̂) GCTA0.01 GCTA0.05 GCTA0.1

20 -33.6238 0.0142 0.0094 5e-04 0.95 0.8833 0.8133

200 -15.1985 0.0111 0.0094 5e-04 0.9767 0.9267 0.8467

2, 000 4.0708 0.009 0.0094 5e-04 0.9867 0.9567 0.9

20, 000 -1.8037 0.0096 0.0094 5e-04 0.99 0.9467 0.9033
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Table 9: σ2
ǫ0 = 0.4, σ2

α0
= 0.6

p

m
for θ = σ2

ǫ , ω = m/p = 0.01

(n, p) % RB var(θ̂) E(v̂) s(v̂) N0.01 N0.05 N0.1 T0.01 T0.05 T0.1

(1000, 10000) −8.854 0.020 0.019 0.003 0.990 0.927 0.877 0.990 0.940 0.883

(2000, 20000) -10.250 0.010 0.009 0.001 0.983 0.930 0.860 0.983 0.930 0.860

(3000, 30000) 5.450 0.006 0.006 0.001 0.997 0.957 0.907 0.997 0.957 0.907

(4000, 40000) -16.138 0.005 0.005 0.0004 0.983 0.917 0.870 0.983 0.917 0.870

(5000, 50000) 10.734 0.003 0.004 0.0003 0.987 0.967 0.923 0.987 0.967 0.923

Table 10: GCTA CIs: σ2
ǫ0
= 0.4, σ2

α0
= 0.6

p

m
for θ = σ2

ǫ , ω = m/p = 0.01

(n, p) % RB var(θ̂) E(v̂) s(v̂) GCTA0.01 GCTA0.05 GCTA0.1

(1000, 10000) -8.4776 0.0204 0.0186 0.0035 0.9933 0.93 0.8767

(2000, 20000) -9.9262 0.0102 0.0092 0.0013 0.9833 0.93 0.8633

(3000, 30000) 5.4081 0.0058 0.0061 7e-04 1 0.9567 0.9067

(4000, 40000) -16.1722 0.0055 0.0046 4e-04 0.9867 0.92 0.8667

(5000, 50000) 10.8681 0.0033 0.0037 3e-04 0.9867 0.9633 0.9233
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Table 11: σ2
ǫ0 = 0.4, σ2

α0
= 0.6

p

m
for θ = h2, ω = m/p = 0.01

(n, p) % RB var(θ̂) E(v̂) s(v̂) N0.01 N0.05 N0.1 T0.01 T0.05 T0.1

(1000, 10000) -12.968 0.022 0.019 0.001 0.987 0.913 0.873 0.990 0.917 0.877

(2000, 20000) -15.510 0.011 0.009 0.0004 0.980 0.927 0.850 0.980 0.927 0.850

(3000, 30000) -2.363 0.006 0.006 0.0002 0.993 0.957 0.893 0.993 0.957 0.893

(4000, 40000) -22.084 0.006 0.005 0.0001 0.983 0.910 0.860 0.983 0.910 0.860

(5000, 50000) 5.989 0.004 0.004 0.0001 0.993 0.950 0.920 0.993 0.950 0.920

Table 12: GCTA CIs: σ2
ǫ0
= 0.4, σ2

α0
= 0.6

p

m
for θ = h2, ω = m/p = 0.01

(n, p) % RB var(θ̂) E(v̂) s(v̂) GCTA0.01 GCTA0.05 GCTA0.1

(1000, 10000) -12.6111 0.0216 0.0189 0.0014 0.99 0.91 0.87

(2000, 20000) -15.1985 0.0111 0.0094 5e-04 0.9767 0.9267 0.8467

(3000, 30000) -2.3934 0.0065 0.0063 3e-04 0.9933 0.9567 0.8933

(4000, 40000) -22.1093 0.0061 0.0047 2e-04 0.9833 0.91 0.8567

(5000, 50000) 6.1401 0.0036 0.0038 1e-04 0.9933 0.95 0.9233

Remark: The GCTA method is based on the standard LMM analysis (e.g., Jiang 2007),

which does not take into account (i) that the LMM is misspecified (see Section 1); (ii) that

the design matrix, Z, for the random effects is random; and (iii) the asymptotic framework

is different than the standard assumption that the number of random effects is, at most, of

the same order as the sample size. In typical GWAS, the number of random effects, which

correspond to the SNPs, is typically of higher order than the sample size. On the other

hand, our method is fully supported by the recently established theory on high-dimensional

mis-LMM analysis (Jiang et al. 2016), based on which, the variance estimators are derived
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in the current paper. Thus, in a way, the results of this paper have provided justification for

the use of the GCTA method for inference.

4 Real data example

We applied this method to a real data example using a subset of indviduals with height data

from the UK Biobank (UKBB) database. We consider n = 4,986 Caucasian individuals

who are unrelated up to the 3rd degree using KING (Manichaikul et al. 2010) to avoid

inflating the heritability estimate. The UKBB performed genotype imputation using IM-

PUTE4 and the Haplotype Reference Consortium reference panel (Bycroft et al. 2018).

We retained imputed SNPs with INFO scores greater than 0.8. Then, we removed imputed

SNPs with a missing call rate exceeding 0.05, a Hardy-Weinberg equilibrium exact test

p-value below 1×10−10, or a minor allele frequency below 0.05. After quality control, p =

6,133,110 SNPs remained for analysis.

Then, we applied the LMM approach described in model (1) to obtain REML estimates

of the variance components, and then estimated their variances and construct confidence

intervals for the parameters of interest. For the matrix X of fixed effects, in addition to

the intercept, we accounted for sex, age, and population stratification using the first twenty

principal component scores derived from genotype data provided by the UKBB.

We obtained REML estimates σ̂2
ǫ = 20.150, γ̂ = 1.003, and ĥ2 = 0.5009. Us-

ing our approach, we got the following variance estimates for our parameter of interests:

v̂ar(σ̂2
ǫ ) = 7.117, and

̂var(ĥ2) = 0.0045. The variance estimates from GCTA are compara-

ble: v̂ar(σ̂2
ǫ ) = 7.242,

̂
var(ĥ2) = 0.0046. The corresponding 95% confidence intervals for

σ2
ǫ are (14.921, 25.379) and (14.875, 25.424) for our method and GCTA, respectively. The

95% confidence intervals for h2 are (0.3697, 0.6321) and (0.3685, 0.6332) for our method

and GCTA, respectively. The heritability of height estimated by LMM/REML have similar
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results in other data sets (e.g., Yang et al.(2010), Zhou et al. (2013), Golan et al. (2014)).

Appendix

A.1 Derivation of (4)

Using the identity B−1 = A−1+A−1(A−B)B−1, the following first-order approxima-

tions can be derived: Pγ̂ ≈ Pγ − (γ̂ − γ)Qγ , where γ = γ∗ which is the limit of γ̂, and

Qγ = PγZ̃Z̃
′Pγ . With those, and (3), the following approximation can be derived:

σ̂2
ǫ ≈

y′P 2
γ y

tr(Pγ)
− (γ̂ − γ)Sγ,y, (A.1)

where

Sγ,y =
y′Rγy

tr(Pγ)
−

tr(Qγ)

tr2(Pγ)
y′P 2

γ y (A.2)

with Rγ = PγQγ +QγPγ .

Next, we obtain an expansion for γ̂ − γ. From (3) of Jiang et al. (2016), we have

yPγZ̃Z̃
′Pγy

tr(PγZ̃Z̃ ′)
=

yP 2
γ y

tr(Pγ)
. (A.3)

The RHS (righthand side) of (A.3) is approximated by (A.1). As for the LHS (lefthand

size) of (A.3), one can derive Qγ̂ ≈ Qγ − (γ̂ − γ)Tγ , where Tγ = PγZ̃Z̃
′Qγ +QγZ̃Z̃

′Pγ .

Furthermore, using the elementary expansion of Jiang 2010 (p. 103), we have

1

tr(Pγ̂Z̃Z̃ ′)
≈

1

tr(PγZ̃Z̃ ′)
+

(γ̂ − γ)tr(QγZ̃Z̃
′)

tr2(PγZ̃Z̃ ′)
.

Thus, the LHS of (A.3) can be approximated by

{y′Qγy − (γ̂ − γ)y′Tγy}

{

1

tr(PγZ̃Z̃ ′)
+

(γ̂ − γ)tr(QγZ̃Z̃
′)

tr2(PγZ̃Z̃ ′)

}

≈
y′Qγy

tr(PγZ̃Z̃ ′)
− (γ̂ − γ)Uγ,y, (A.4)
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where

Uγ,y =
y′Tγy

tr(PγZ̃Z̃ ′)
−

tr(QγZ̃Z̃
′)

tr2(PγZ̃Z̃ ′)
y′Qγy.

By equating the LHS to the RHS, i.e., (A.1) to (A.4), we obtain the following:

γ̂ − γ ≈
1

Sγ,y − Uγ,y

{

y′P 2
γ y

tr(Pγ)
−

y′Qγy

tr(PγZ̃Z̃ ′)

}

≈
1

E(Sγ,y)− E(Uγ,y)

{

y′P 2
γ y

tr(Pγ)
−

y′Qγy

tr(PγZ̃Z̃ ′)

}

. (A.5)

Combining (A.1) and (A.5), we obtain

σ̂2
ǫ ≈

y′P 2
γ y

tr(Pγ)
+

Sγ,y

E(Uγ,y)− E(Sγ,y)

{

y′P 2
γ y

tr(Pγ)
−

y′Qγy

tr(PγZ̃Z̃ ′)

}

≈
y′P 2

γ y

tr(Pγ)
+

E(Sγ,y)

E(Uγ,y)− E(Sγ,y)

{

y′P 2
γ y

tr(Pγ)
−

y′Qγy

tr(PγZ̃Z̃ ′)

}

=
E(Uγ,y)

E(Uγ,y)− E(Sγ,y)
·
y′P 2

γ y

tr(Pγ)

+
E(Uγ,y)

E(Sγ,y)− E(Uγ,y)
·

y′Qγy

tr(PγZ̃Z̃ ′)

= σ̃2
ǫ .

A.2 Further approximation to the right side of (6)

Note that σ̃2
ǫ = y′Dγy for some matrix Dγ . Thus, by the normal theory (e.g., Jiang 2007,

p. 238), we have

var(σ̃2
ǫ |Z) = 2tr(DγΣDγΣ) = 2tr







(

σ2
ǫDγ + σ2

α

m
∑

i=1

DγZ̃iZ̃
′

i

)2






,

where Σ = σ2
ǫ In + σ2

α

∑m
i=1 Z̃iZ̃

′

i is the true covariance matrix of y. Therefore, we have

E{var(σ̃2
ǫ |Z)} = 2{σ4

ǫE(D
2
γ) + 2σ2

ǫσ
2
αE(I1) + σ4

αE(I2)} with I1 =
∑m

i=1 tr(DγZ̃iZ̃
′

iDγ)

and I2 =
∑m

i,j=1 tr(DγZ̃iZ̃
′

iDγZ̃jZ̃
′

j). By the fact that Zi, 1 ≤ i ≤ p are i.i.d., it can be
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shown that E(I1) = ωE{tr(DγZ̃Z̃
′Dγ)}, and E(I2) ≈ ω2E{tr(DγZ̃Z̃

′DγZ̃Z̃
′)}, where

ω = m/p. It follows that the RHS of (6) is approximately equal to

2E
[

tr
{

(σ2
ǫDγ + ωσ2

αDγZ̃Z̃
′)2

}]

= 2σ4
ǫE

[

tr{(aPγ + bPγZ̃Z̃
′)2}

]

, (A.6)

where

a =
E(Uγ,y)

tr(Pγ){E(Uγ,y)− E(Sγ,y)}
, b =

E(Sγ,y)

tr(PγZ̃Z̃ ′){E(Sγ,y)− E(Uγ,y)}
.

Thus, we have

aPγ + bPγZ̃Z̃
′ =

1

E(Uγ,y)− E(Sγ,y)

{

E(Uγ,y)

tr(Pγ)
Pγ −

E(Sγ,y)

tr(PγZ̃Z̃ ′)
PγZ̃Z̃

′

}

. (A.7)

Furthermore, using, once again, the i.i.d. property, it can be shown that

E(Sγ,y) = σ2
ǫE

{

tr(Qγ)

tr(Pγ)

}

, E(Uγ,y) = σ2
ǫE

{

tr(QγZ̃Z̃
′)

tr(PγZ̃Z̃ ′)

}

. (A.8)

Combining (6), (A.6)–(A.8), it can be shown var(σ̂2
ǫ ) ≈ 2σ2

ǫE(A)/{E(B)}2, where A,B

are given below (6).
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