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A B S T R A C T 

Recently, particle-in-cell (PIC) simulations have shown that relativistic turbulence in collisionless plasmas can result in an 

equilibrium particle distribution function where turbulent heating is balanced by radiative cooling of electrons. Strongly 

magnetized plasmas are characterized by higher energy peaks and broader particle distributions. In relativistically moving 

astrophysical jets, it is believed that the fow is launched Poynting fux dominated and that the resulting magnetic instabilities 
may create a turbulent environment inside the jet, i.e. the regime of relativistic turbulence. In this paper, we extend previous PIC 

simulation results to larger values of plasma magnetization by linearly extrapolating the diffusion and advection coeffcients 
rele v ant for the turbulent plasmas under consideration. We use these results to build a single-zone turbulent jet model that is 
based on the global parameters of the blazar emission region, and consistently calculate the particle distribution and the resulting 

emission spectra. We then test our model by comparing its predictions with the broad-band quiescent emission spectra of a 
dozen blazars. Our results show good agreement with observations of low synchrotron peaked (LSP) sources and fnd that LSPs 
are moderately Poynting fux dominated with magnetization 1 � σ � 5, ha ve b ulk Lorentz factor � j ∼ 10–30, and that the 
turbulent region is located at the edge, or just beyond the broad-line region (BLR). The turbulence is found to be driven at an 

area comparable to the jet cross-section. 

Key words: acceleration of particles – radiation mechanisms: non-thermal – turbulence – BL Lacertae objects: general –
quasars: general. 

1  I N T RO D U C T I O N  

In many astrophysical plasma fows, including those in supernova 
remnants, pulsar wind nebulae (PWNe), or active galactic nuclei 
(AGNs), a broad-band emission spectrum of electromagnetic radia- 
tion is often observed. AGNs, with a jet closely aligned to our line of 
sight, are referred to as blazars (Urry & P ado vani 1995 ). Blazars hav e 
a characteristic double-peaked spectral energy distribution (SED). 
The frst peak is attributed to synchrotron emission by ultrarelativistic 
electrons, and the second is likely to be the result of inverse Compton 
(IC) scattering off the same particles (Ghisellini et al. 1998 ). Blazars 
also exhibit intense faring on short time-scales followed by quiescent 
intervals. Both the quiescent and faring blazar SEDs are routinely 
explained by an extended, non-thermal, electron distribution that is 
usually modelled with a power law or broken power law (Ghisellini 
et al. 1998 ). 

For the inferred non-thermal tails of the particle distribution to 
de velop, an ef fcient particle acceleration mechanism needs to be 
in place, i.e. where the acceleration time-scale is shorter than, or 
of the order of, the variability time-scale in the emission region. 
The variability in the emission, especially for fast-evolving fares, 
puts strong constraints on the acceleration time-scales and the 
size of the emitting regions. There is an active debate on the 
particle acceleration mechanisms responsible for blazar faring where 
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shocks inside the jet fow (e.g. Spada et al. 2001 ; B ̈ottcher & 

Dermer 2010 ; Mimica & Aloy 2012 ) or magnetic instabilities that 
result in magnetic reconnection in the jet (e.g. Giannios 2013 ) are 
commonly invoked. Regardless of the mechanism that powers the 
faring events, at their non-linear stages, the dissipative mechanisms 
can be expected to drive turbulence within the jet fow (Baring, 
B ̈ottcher & Summerlin 2016 ; Marscher 2016 ; Comisso & Sironi 
2019 ). Turbulence in a strongly magnetized plasma (with magnetic 
energy density exceeding the plasma enthalpy density; also referred 
to as relativistic turbulence ) has long been suspected to be an 
acceleration process for relativistic particles (Schlickeiser 1989 ). 
With recent magnetohydrodynamic (MHD) simulations suggesting 
that jets are launched as magnetically dominated plasma fows 
(Komissaro v et al. 2007 ; Tchekho vsk o y, McKinney & Narayan 
2009 ; Barniol Duran, Tchekhovsk o y & Giannios 2017 ), we may 
expect relativistic turbulence to drive part of the emission inside 
these outfows. In this work, we focus on a scenario where the 
more effcient particle acceleration processes operate at the onset 
of the jet instabilities and may power blazar fares while the resultant 
turbulence may be able to drive the quiescent and slo w-e volving 
emission observed in blazars. 

Our understanding of relativistic turbulence has substantially 
advanced recently thanks to particle-in-cell (PIC) simulations that 
explore particle acceleration in highly magnetized, turbulent plasmas 
(Comisso & Sironi 2018 ; Zhdankin et al. 2019 ). These simulations 
have shown that particles undergo an initial rapid acceleration phase 
from the current sheets created by the turbulence. After this, Alfv ́en 
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wave scattering, a second-order Fermi process (Fermi 1949 ), begins 
to dominate the acceleration and produces a non-thermal tail in the 
particle distribution (Comisso & Sironi 2018 , 2019 ). 

In the absence of substantial particle cooling, PIC simulations 
fnd that relativistic turbulence energizes particles to the system size- 
limited energy (Zhdankin et al. 2017 ). Inside the blazar emission 
region, ho we ver, we expect radiative losses to ef fecti vely cool the 
plasma resulting in a steady-state particle distribution as seen in 
Uzdensky ( 2018 ). The effects of radiative losses are particularly 
important to understand when studying the particle distribution 
in relativistic jets where radiative cooling time-scales are short. 
Currently, there are only a handful of PIC simulations that have 
studied relativistic turbulence that also include radiative cooling in 
the simulation ( radiative relativistic turbulence ). In particular, the 
results reported by Zhdankin et al. ( 2020 ) confrm the analytical 
results in Uzdensky ( 2018 ), concluding that steady states can 
be formed in a turbulent radiative plasma. In the same manner, 
N ̈attil ̈a & Beloborodov ( 2021 ) show in their simulations that non- 
thermal tails develop in the particle distribution. Furthermore, the 
hard tail diffusion seems well described by Alfv ́en wave scattering 
theories (see Schlickeiser 1989 ). The previous works in relativistic 
turbulence mentioned abo v e giv e ke y insights into the turbulent 
plasma properties inside of a blazar jet or similar environments. 
Though PIC simulations have greatly extended our understanding 
of relativistic plasmas, due to their computational cost, have only 
studied a small range of plasma magnetization and usually only 
include a few, if any, radiation mechanisms operating in jets. 

In this work, we use the latest PIC fndings for particle acceleration 
in relativistic turbulence, generalize the description of the accel- 
eration terms for arbitrary magnetization σ , incorporate radiative 
cooling, and calculate the equilibrium particle distribution. We then 
proceed to build a simple single-zone model for the bulk properties 
of the turbulent region as expected in blazars and apply the model to 
a dozen sources with broad-band SED spectra. The target is twofold: 
(i) e v aluate the feasibility of the model in accounting for the quiescent 
blazar SED; and (ii) extract important properties of the blazar zone 
such as bulk Lorentz factor, magnetization, and distance of the blazar 
zone from the central engine. This paper is organized as follows. 
Section 2 outlines our turbulent model. In Section 3 , we describe 
the initial set-up and operation of the ftting algorithm used to test 
our model, as well as the best-ftting results. In Section 4 , we further 
discuss our results in the context of blazar jet modelling. Finally, in 
Section 5 , we present the conclusion from our fndings. 

2  EQUILIBRIU M  PA RTICLE  DISTRIBU TI ON  

F RO M  T U R BU L E N T  AC C E L E R AT I O N  A N D  

R A D I AT I V E  C O O L I N G  

In this section, we build the model that describes the particle distribu- 
tion of the fuid in the blazar emission region. The particle distribution 
is found as an equilibrium between the turbulent acceleration of 
particles and the radiative cooling mechanisms operating in these 
sources. 

Turbulence is generated by large-scale fuctuations 1 that create 
a driving current at the boundary of the turbulent region, where 
energy cascades down to smaller scales via Alfv ́en waves with 
equi v alent outgoing and incoming energy fuxes (see Goldreich & 

Sridhar 1995 ). The energy injected into the system through this 
process is a fraction of the stochastic magnetic energy that propagates 

1 Defned as scales much larger than the scales of dissipation. 

the wav es. F ollowing Zhdankin et al. ( 2020 ), we will consider 
turbulence in the strong regime, where the fuctuations in magnetic 
feld strength are comparable to the underlying background magnetic 
feld, i.e. δB rms ≈ B 0 . The energy stored in the turbulent magnetic 
feld will be dissipated into the particles o v er an Alfv ́en crossing 
time τa ≡ R T /v A , where R T is the scale of the turbulence and 

v A ≡ c 
√ 

σ
σ+ 1 is the Alfv ́en speed. Here, σ = 

B 2 rms 
4 πh 

is the plasma’s 

magnetization or the plasma’s ratio of magnetic energy to enthalpy 
h . With this, we parametrize the mean injected power as 2 

〈 ̇E inj 〉 = ηinj 
B 

′ 2 
0 

8 πn 0 τa 
, (1) 

where ηinj is the fraction of turbulent magnetic energy deposited into 
the fuid and n 0 is the fuid’s particle number density. The injected 
energy (equation 1 ) will heat the fuid until it escapes the turbulent 
area, or radiative losses balance the heating and create a steady state 
(Uzdensky 2018 ). 

2.1 The particle acceleration model 

The evolution of a particle energy distribution is described by the 
kinetic equation 

∂ n ( γ, t) 

∂ t 
= 

1 

2 

∂ 2 

∂ γ 2 
[ D( γ, t) n ( γ, t) ] + 

∂ 

∂ γ
[ ̇γ ( γ, t) n ( γ, t) ] 

+ Q ( γ, t) − n ( γ, t) 

t esc 
, (2) 

also known as the Fokker–Planck equation, where Q ( γ , t ) is the 
particle injection rate, D ( γ , t ) the particle dif fusion coef fcient, n ( γ , 
t ) the differential particle distribution function, γ̇ ( γ, t) the energy- 
loss rate, γ the particle Lorentz factor, t the time variable, and t esc is 
the particle escape time, i.e. the average time it takes for a particle 
to leave the system. This paper works under the assumption that 
the particle distribution starts and evolves isotropically. Though it 
should be noted that anisotropies in the particle distribution have 
been observed in PIC simulations (Comisso & Sironi 2019 ). We 
are interested in studying the steady-state particle distribution with 
negligible infuence from particle injection or particle escape. Thus, 
we consider the case where Q ( γ , t ) = 0, and t esc → ∞ . 

In this work, we are using the code PARAMO (Rueda-Becerril 2020 ) 
to solve the Fokker–Planck equation and calculate the emissivity. 
This code uses the Fokker–Planck in the same form as equation ( 2 ) 
and necessitates fnding equi v alent dif fusion and cooling terms to the 
ones described in Zhdankin et al. ( 2020 ), which chooses to introduce 
the Fokker–Planck in the form 

∂ n ( γ, t) 

∂ t 
= 

∂ 

∂ γ

�
γ 2 D pp 

∂ 

∂ γ

�
n ( γ, t) 

γ 2 

��
− ∂ 

∂ γ

�
A p n ( γ, t) − γ 2 

γ0 τc 
n ( γ, t) 

�
. 

(3) 

The last two expressions can be made equi v alent by making the 
substitution 

D( γ, t) = 2 D pp (4) 

for the diffusion, and 

γ̇ = −
(

A p + 

1 

γ 2 
∂ γ

(
γ 2 D pp 

) − γ 2 

γ0 τc 

)
(5) 

2 Variables in the comoving frame of the plasma will be referenced with a 
prime symbol ( 

′ 
). Non-primed variables are assumed to be in the black hole 

rest frame unless explicitly stated. 
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for the energy-loss term. Where the term 

γ 2 

γ0 τc 
is the radiative cooling 

term discussed in Section 2.3 , γ 0 is the mean Lorentz factor, and τ c 

is the cooling time-scale. 
Following the work done by Zhdankin et al. ( 2020 ), we model the 

dif fusion coef fcient quadratically in momentum and the advection 
coeffcient linearly in momentum, 

A p = ( � h γ0 + � a γ ) /τc , 

D pp = 

(
� 0 γ

2 
0 + � 2 γ

2 
)
/τc . 

(6) 

Here γ 0 represents the mean Lorentz factor of the particle distri- 
bution, τc represents the cooling time discussed in Section 2.3 and 
� i are constants that are contributing to the diffusion and advection 
coeffcients discussed below. 

The particle energy distribution is initialized set-up with a 
Maxwell–J ̈uttner distribution profle (J ̈uttner 1911 ), 

f 0 ( γ ) = 

γ 2 β


K 2 (1 /
 ) 
exp 

−γ


 

, (7) 

with 
 = K B T /m e c 
2 , K B is the Boltzmann constant, and 
 is related 

to the mean Lorentz factor, in the ultrarelativistic limit, by 
 ≈
γ 0 /3. Since we are working to a steady state, the initial injection 
temperature will have little effect on the fnal distribution (Zhdankin 
et al. 2020 ). Thus, the initial distribution is given a temperature very 
close to γ 0 /3. We then allow the distribution to evolve for t = τc at 
which point the steady state has been reached. 

To introduce the latest fndings on turbulent particle acceleration 
from PIC simulations in our model, we use data from Zhdankin 
et al. ( 2020 ). The data contain the particle distribution for different 
values of magnetization ranging from σ ∼ 0.04 to 12. For a given 
simulation, we time average the distribution after a steady state 
has been reached. The resultant time-averaged distributions are then 
ftted to the Fokker–Planck steady-state equation ( 8 ) (Zhdankin et al. 
2020 ) using a Markov chain Monte Carlo (MCMC) method, 

f ss ( γ ) ≈ k 

(
γ

γ0 

)2 
( 

1 + 

(
γ

γ0 

)2 
) � a / 2 � 2 

× exp 

(
− γ

γ0 � 2 
+ 

� h + 1 

� 2 
tan −1 

(
γ

γ0 

))
, (8) 

where k is a normalization constant. To maintain consistency 
with w orks lik e Comisso & Sironi ( 2019 ) and Wong et al. ( 2020 ), 
where the dif fusion coef fcient is expected to scale linearly with 
the magnetization D γ ∼ 0 . 1 σ

(
c 
l 

)
γ 2 (here l is the system size), we 

model the results for � i linearly with magnetization, arriving at 3 

� 0 = � 2 = 0 . 05 σ + 2 . 09 , 

� a = 0 . 124 σ − 9 . 5 , 

� h = −0 . 42 σ − 2 . 46 . (9) 

2.2 Blazar emission region 

In this paper, the jet composition is an electron–ion plasma with 
relativistic electrons and cold ions that dominate the plasma’s 
enthalpy. This results in a magnetization given by 

σ = 

2 u 

′ 
B 

n p m p c 2 
, (10) 

where the ion particle density in the comoving frame n p is expected to 
be in equal partition with the electron particle density n e i.e. n e = n p = 

3 A comparison between the linear extrapolation done here and the PIC 

simulations done by Zhdankin 2020 can be seen in Fig. 1 . 

n 0 . 4 In an electron–ion plasma, the energy partition between the two 
species of particles is still poorly understood. Previous works have 
shown that a signifcant portion of the turbulent energy is injected 
into the ions (Zhdankin et al. 2019 ). These results, ho we ver, are 
for low magnetization σ < 1. For σ > 1 we do not expect ions to 
necessarily have a dominant effect on the distribution since works like 
Howes ( 2010 ) predict a low ion to electron heating ratio for highly 
magnetized plasmas. In order to leave this effect for future works, we 
replace ηinj with ηinj e , where ηinj e specifcally represents the amount 
of energy injected into the electron distribution. The magnetic feld, 
as previously mentioned, is assumed to be strongly turbulent so 
that B 

′ 2 
rms = B 

′ 2 
0 + δB 

′ 2 
rms = 2 B 

′ 2 
0 is true. Here B 

′ 
0 is related to the jet 

luminosity by 

B 

′ 
0 = 

√ 

L j 4 π

�j R 

2 
j � 

2 
j c 

, (11) 

where �j = 2 π(1 − cos (1 / � j )) ≈ π/ � 

2 
j is the jet’s solid angle (the 

approximation is not used in this paper), L j is the jets luminosity, R j 

is the distance from the black hole, � j is the jets bulk Lorentz factor, 
and we assume the jet opening angle is 1/ � j . Further, the turbulent 
scale, R T , is fraction of the jets cross-section, 

R T = R TM 

R j 

� j 
, (12) 

where R TM 

is the aforementioned fraction. 
The particles accelerated by the jet are subject to radiation felds 

produced elsewhere in the blazar environment. Here, we assume the 
material is exposed to a radiation feld from within the broad-line 
region (BLR). The BLR radiation feld is assumed to be isotropic, 
monochromatic with frequency ν0 = 10 15 Hz and in the comoving 
frame, ν ′ 

0 = � j ν0 . We parametrize the BLR radiation in the lab frame 
using Ghisellini ( 2013 ), 

u ph = 

L BLR 

4 πcR 

2 
BLR 

, (13) 

where L BLR ≈ ηph L disc and R BLR ≈ 10 17 
√ 

L disc 
10 45 cm (Ghisellini 

2013 ). Further, our jet luminosity L j is modelled here to be directly 
proportional to the accretion power, i.e. L j = ηj Ṁ c 2 . Similarly, 
we model the disc luminosity as directly proportional to the jet 
luminosity such that L disc = 

ηdisc 
ηj 

L j . For the coeffcients ηdisc and 
ηj we refer to Rueda-Becerril ( 2021 ) where ηj ≈ 1 and ηdisc ≈ 0 . 1. 
Combining this information we get 

u ph ≈ ηph 0 . 26 erg cm 

−3 , (14) 

where ηph quantifes the amount of energy from the BLR photons 
that enter the emission region and u 

′ 
ph = � 

2 
j (1 + β2 

j / 3) u ph is its value 
in the comoving frame (Dermer & Menon 2009 ). Here, β j is the jet’s 
bulk velocity. This description suffces so long as the emission region 
is within the BLR. Outside of the BLR the photon density drops 
precipitously. To model this we follow Sikora et al. ( 2009 ), where 
inside the BLR we use the expression in equation ( 14 ). Ho we ver, 
outside the BLR, the photon energy density drops with the cube of 
distance, 

u ph = ηph 0 . 26 erg cm 

−3 ×
{ 

1 for R j � R BLR , (
R j 

R BLR 

)−3 
for R j > R BLR , 

(15) 

4 In this work, we focus on cold ion plasmas to maximize the magnetic energy 
per particle available at a given σ . Because of this, one can expect pair plasmas 
to require more extreme values of σ to recreate similar results as seen in this 
paper. 
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with 

R BLR = 10 17 

√ 

L disc 

10 45 erg s −1 
cm = 10 17 

√ 

ηdisc L j 

ηj 10 45 erg s −1 
cm . (16) 

2.3 Cooling and emission 

So far, we have discussed how the particles are accelerated in the 
turbulent region. The particle acceleration is eventually balanced 
by radiati ve losses. Relati vistic electrons in the blazar environment 
suffer from synchrotron and Compton losses. Here, we consider both 
the synchrotron self-Compton (SSC) and external inverse Compton 
(EIC) processes but limit our discussion to scattering in the Thomson 
limit (i.e. relativistic corrections to the electron scattering cross- 
section are ignored). For a relativistic plasma, the power lost per 
particle via synchrotron and EIC is (Rybicki & Lightman 1979 ) 

Ė syn = 

4 
3 σT cu 

′ 
B γ

2 , (17a) 

Ė eic = 

4 
3 σT cu 

′ 
ph γ

2 , (17b) 

where u 

′ 
B is the magnetic energy density and is given by 

u 

′ 
B = 

B 

′ 2 
rms 

8 π
= 

B 

′ 2 
0 + δB 

′ 2 
rms 

8 π
= 

2 B 

′ 2 
0 

8 π
. (18) 

The plasma cooling is assumed to be dominated by synchrotron and 
EIC but the SSC component is added for completeness, 

Ė rad = Ė eic + Ė syn + Ė ssc . (19) 

For the SSC cooling we follow Schlickeiser ( 2009 ) (deri v ation in 
Appendix A ), 

Ė ssc ≈ 3 πσT c 1 q 0 ε
2 
0 R T 

2 h 

2 
γ 2 

∫ ∞ 

0 
d γ γ 2 n ( γ, t) 

= 

3 πσT c 1 q 0 ε
2 
0 R T n 0 

2 h 

2 
γ 2 

〈
γ ( t) 2 

〉
. (20) 

The constant c 1 is found in Schlickeiser ( 1989 ), 

c 1 = 

∫ ∞ 

0 
d x x C S ( x ) = 

32 

81 

√ 

3 = 0 . 684 , (21) 

where ε0 and q 0 are given by 

ε0 ≈ heB 

′ 
rms 

2 πm e c 
, 

q 0 = 

4 πe 2 √ 

3 c 
, (22) 

and h is the Planck constant. Since we are interested in the quiescent 
emission from a turbulent plasma that will reach a steady state, we 
assume that the SSC has maximum effect once the steady state is 
reached. With this assumption equation ( 20 ) becomes 

Ė ssc ≈ 3 πσT c 1 q 0 ε
2 
0 R T n 0 

2 h 

2 
γ 2 

〈
γ ( τc ) 

2 
〉
. (23) 

To fnd the equilibrium energy ( γ0 m e c 
2 ), we balance the injected 

power with the radiated power, 

〈 ̇E inj e 〉 = 〈 ̇E rad 〉 , (24) 

where 〈 ̇E rad 〉 is the summation of all radiative losses: 

〈 ̇E syn 〉 = 

4 

3 
σT cu 

′ 
B 

〈
γ 2 

〉
, 

〈 ̇E eic 〉 = 

4 

3 
σT cu 

′ 
ph 

〈
γ 2 

〉
, 

〈 ̇E ssc 〉 ≈ 3 πσT c 1 q 0 ε
2 
0 R T n 0 

2 h 

2 

(〈
γ 2 

〉)2 
. (25) 

Since the steady states formed in PIC simulation Zhdankin et al. 
( 2020 ) can be approximated by a Maxwell–J ̈uttner distribution, 
we use the mean squared relation 〈 γ 2 〉 = 

4 
3 〈 γ 〉 2 = 

4 
3 γ

2 
0 . With this 

equation ( 25 ) becomes 

〈 ̇E syn 〉 = 

16 

9 
σT cu 

′ 
B γ

2 
0 , 

〈 ̇E eic 〉 = 

16 

9 
σT cu 

′ 
ph γ

2 
0 , 

〈 ̇E ssc 〉 ≈ 64 π2 
√ 

3 σT c 1 e 
4 R T n 0 u 

′ 
B 

m 

2 c 3 
γ 4 

0 

= A 0 R T n 0 u 

′ 
B γ

4 
0 . (26) 

Plugging equation ( 26 ) into equation ( 24 ) we get a quadratic for γ 2 
0 , 

A 0 R T n 0 γ
4 
0 + 

16 

9 
σT c 

(
1 + 

u 

′ 
ph 

u 

′ 
B 

)
γ 2 

0 −
ηinj e v a 

2 n 0 R T 
= 0 , 

a 1 γ
4 
0 + b 1 γ

2 
0 + c 2 = 0 . (27) 

Solving for γ 0 leads to 

γ0 = 

⎛ 

⎝ 

(
b 2 1 − 4 a 1 c 2 

) 1 
2 − b 1 

2 a 1 

⎞ 

⎠ 

1 
2 

. (28) 

Solving for 1 
τc 

= 

〈 ̇γ 〉 
γ0 

, 

τc = 

(
16 σT c( u 

′ 
B + u 

′ 
ph ) 

9 m e c 2 
γ0 + 

A 0 n 0 u 

′ 
B R T 

m e c 2 
γ 3 

0 

)−1 

, (29) 

where the τ c is the cooling time-scale of an electron with a 
Lorentz factor γ 0 . Furthermore, 〈 ̇γ 〉 = 

〈 ̇E rad 〉 
m e c 2 

and γ 0 is found using 
equation ( 28 ). 

The last expressions for γ 0 and τc are simplifed when EIC 

or synchrotron are the dominant cooling processes. When SSC is 
negligible the cooling is dominated by EIC and synchrotron giving 

γ0 nossc = 

3 

4 

� 

ηinj e v a 

2 n 0 R T σT c(1 + u ′ ph /u 
′ 
B ) 

� 

1 
2 

−−→ 

σ�1 

3 

4 

� 

ηinj e 

2 n 0 R T σT (1 + u ′ ph /u 
′ 
B ) 

� 

1 
2 

, 

τc nossc = 

9 m e c 
2 

16 σT c( u ′ B + u ′ ph ) γ0 
. (30) 

In the limit that either synchrotron or EIC is the sole dominant 
radiation mechanism, 

γ0 i = 

3 

4 

(
ηinj e v a u 

′ 
B 

2 n 0 R T σT c( u i ) 

) 1 
2 

−−→ 

σ�1 

3 

4 

(
ηinj e u 

′ 
B 

2 n 0 R T σT ( u i ) 

) 1 
2 

, 

τc i = 

9 m e c 
2 

16 σT c( u i ) γ0 
, (31) 

where u i is u 

′ 
ph if EIC is dominant or u 

′ 
B if synchrotron is dom- 

inant. Using the synchrotron dominant case, the estimate for the 
synchrotron bolometric luminosity and synchrotron peak frequency 
are given below, 

L bol ≈ ηinj e L j46 R 

2 
tm 

� 

2 
j1 6 . 6 × 10 48 erg s −1 , 

νpk. syn ≈
ηinj e σ� 

2 
j1 

R tm 

√ 

L j46 
3 . 6 × 10 12 Hz . (32) 

Note that hereafter we adopt the notation Q = Q X × 10 X in CGS 

units. 
The radiative cooling of the particle distribution results in an 

observable emission signature. Synchrotron luminosity from the 
emission region is calculated from the emissivity j ′ ν , under the 
assumption that radiation in the comoving frame is emitted isotropi- 
cally (Gould 1979 ), while the emitting blob of plasma mo v es directly 
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Table 1. Initial ft parameter and ranges used in the ftting algorithm. Here 
R j = R j , 18 × 10 18 cm and L j = L j , 46 × 10 46 erg s −1 . 

Parameter Initial Min Max 

ηinj e 0.1 0.01 1 
R j , 18 0.1 10 −3 10 2 

R TM 

0.1 10 −4 1 
ηph 0.1 10 −4 1 
L j , 46 1 10 −3 10 3 

� j 10 1 50 
σ 3 1 30 

in line with the observer, i.e. the angle from the blobs motion to the 
line of sight of the observer θobs = 0, 

νL ν = 3 
f ( τ ′ 

ν′ ) 

τ ′ 
ν′ 

δ4 

(
4 π

3 

)
R 

3 
j ν

′ j ′ ν′ , (33) 

where δ ≡ [ � j (1 − β cos ( θobs ))] −1 is the Doppler factor, τν ≡ 2 R T κν , 
κν is the synchrotron self-absorption coeffcient, and 

f ( τ ) = 

1 

2 
+ 

exp ( −τ ) 

τ
− 1 − exp ( −τ ) 

τ 2 
(34) 

is the optical depth function (Gould 1979 ). Compton luminosity is 
calculated similarly but since the only absorption mechanism we 
are incorporating is synchrotron self-absorption (SSA), Compton 
luminosity takes the form of 

νL ν = δ4 

(
4 π

3 

)
R 

3 
j ν

′ j ′ ν′ c , (35) 

where j ′ ν′ c is the Compton emissivity. 

2.4 Fitting algorithm 

One of the main advantages of the model is the ability to test 
global parameters in a computationally effcient manner. To take 
full advantage of this, a ftting algorithm was developed in-house to 
compare the model predictions against other models or observations. 
This not only allows us to test the model by fnding a good ft to data, 
but also to infer parameters about the physical systems. 

The algorithm is a modifed gradient descent algorithm. Instead 
of taking the gradient of the error each iteration, it instead takes the 
partial deri v ati ve of a gi ven parameter for a set number of iterations 
before moving on to the next parameter, 

g = 

Error [ i] − Error [ i − 1] 

Parameter j [ i] − Parameter j [ i − 1] 
. (36) 

Here g is the numerical partial deri v ati v e and P arameter j [ i ] denotes 
the value of a given parameter with index j at the iteration i . For 
this work, Parameter j represents any one of the seven parameters 
found in Table 1 . The Error[ i ] is a user-defned error function that 
will compare the model to the ’true’ data. For the work of this paper, 
we use a chi-squared function (Arfken, Weber & Harris 2013 ) to 
compare values from the ’true’ data with values from the ft that have 
the closest x coordinate. We then use this deri v ati ve to indicate the 
new parameter for the next iteration, 

Parameter j [ i + 1] = Parameter j [ i] − c j g, (37) 

where c j is a constant multiple that slows down or speeds up the 
’learning’ process. It repeats this for a specifed number of iteration 

Figure 1. Comparison of the particle distribution found in the PIC simula- 
tions of Zhdankin et al. ( 2020 ) and our FP solver. The lines are FP solutions 
created using PARAMO (Rueda-Becerril 2020 ) with parameters to match the 
set-up in Zhdankin et al. ( 2020 ). The points depict the steady-state distribution 
found in Zhdankin et al. ( 2020 , fg. 17). Red, green, and blue curves show the 
σ = 0.19, 0.89, and 3.36 cases, respectively. The black dashed curve is the 
Maxwell–J ̈uttner distribution for 
 = 100. 

Figure 2. Steady-state particle distribution for varying σ from 1 to 30 with 
ηinj e = 1, R m 

= 1, R j , 18 = 0 . 4, L j , 46 = 1, � j = 1, and ηph = 0 . 1. The colours 
indicate the value of σ with solid lines representing the particle distribution 
and dashed lines are the power-law slope for the hardened part of the spectrum. 

and at the end shows the best ft. More details can be found at the 
GitHub page. 5 

3  RESULTS  

In this section, we explore the predictions of our model and how 

they compare with observations. First, we observe the effects of 
large values of magnetization ( σ > 10) on the underlying particle 
distribution. Then we test our model’s ability to reproduce a quiescent 
blazar SED. This is done by ftting our model to a dozen blazar SEDs 
found in Abdo et al. ( 2010 ). 

3.1 Particle distribution 

Turbulent acceleration is well modelled by resonant wave scattering 
or a second-order Fermi process (Schlickeiser 1989 ; Comisso & 

Sironi 2019 ; Demidem, Lemoine & Casse 2020 ; Zhdankin et al. 
2020 ). With this comes the expectation for a hardened particle 
distribution abo v e the thermal peak. The high-energy part of the 
distribution can be described by a power-law functional dependence 
with an index p . To analyse the particle distribution created by 
turbulent acceleration and its dependence on plasma magnetization, 
we computed several distributions by holding all model parameters 
constant except for σ , allowing it to vary in the range 1 ≤ σ ≤ 30. This 

5 ht tps://github.com/zkdavis/Base ModelFitt er.git 
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parametric study shows a hardening of the power-law spectra above 
the thermal peak for increasing magnetization. 6 Shown in Fig. 2 , we 
note that this turbulent model predicts hard tails for large values of σ . 
Ho we ver, the tails only span about an order of magnitude in particle 
energy. As discussed in Zhdankin et al. ( 2020 ), the steady-state 
distribution is mostly thermal at low σ but changes to include a non- 
thermal tail as � a increases with σ . One can note from equation ( 8 ) 
that if � a and � h are ne gligible, as the y are for low σ , we get back 
a Maxwell–J ̈uttner distribution. Furthermore, from equation ( 8 ), we 
can see the roles of the coeffcients: � h determines the exponential 
cut-off and the fraction � a 

� 2 
almost completely describes the power- 

law slope of the non-thermal particles. The particle power-law index 
is p ∝ 2 − � a 

� 2 
. Ho we ver, this dependence may break do wn for large 

σ when � a > 0 at which point it no longer describes an energy loss 
but rather a frst-order Fermi-like energy gain. 

3.2 Blazar fits 

To test our model’s ability to reproduce the quiescent emission of 
blazars, we use data from 12 sources from Abdo et al. ( 2010 ) that are 
representative populations of the total 48 quiescent SEDs reported 
in that work. The results of the blazar fts are best split into two 
categories. The frst contains high synchrotron peaked (HSP) and 
intermediate synchrotron peaked (ISP) sources, while the second 
consists of the low synchrotron peaked (LSP) sources. Here LSP is 
defned as having a synchrotron peak frequency νpk � 10 14 Hz , ISP 

has a peak synchrotron frequency of 10 14 � νpk � 10 15 Hz , and HSP 

has νpk � 10 15 Hz (Abdo et al. 2010 ). All blazar SED and optical 
classifcations are adopted from Abdo et al. ( 2010 ). Further, for 
discussion purposes, we will group ISP and HSP into one category 
referred to as HSP for all sources with νpk � 10 14 Hz . 

To fnd the best ft for the seven free parameter used in our model, 
we apply the model ftter described in Section 2.4 . This algorithm 

requires an initial guess and bounds for the parameters. The closer 
the initial guess, and the bounds around the guess, the less iterations 
are needed to get a ft. Ho we ver, the bounds are usually left very 
large so as to account for any unique possibilities. All of which can 
be seen in Table 1 . Parameters ηinj e , R TM 

, and ηph are all defned 
as a fraction of a whole so each of their maximum values are 1. 
The initial guess of 0.1 for each is based on the expectation that 
these will be a fraction and not an order of unity. The minimum 

of 10 −4 for ηph is because we consider the case of negligible EIC 

cooling. The minimum of 0.01 for ηinj e is due to the fact that too little 
energy injected into the acceleration region would result in negligible 
emission. R TM 

s range is large so that its dependence in this model 
can be studied. As can be seen in synchrotron limit (equation 32 ), 
R TM 

plays large role in dictating the peak frequency and bolometric 
luminosity. With the expectation that faring events are caused by 
instabilities in the jet, and further that these instabilities later drive 
the turbulence, we expect the distance from the central engine to be 
related to the turbulence scales and thus related to the variability of 
the jet (B ̈ottcher 2019 ), 

R j ≈ δ2 ct v obs � j R 

−1 
TM 

(1 + z) −1 , (38) 

where t v obs is the observed variation time, and z is the redshift. For 
� j = 10, θobs = 0, R TM 

= 1, � j = 1, z = 0, and t v obs = 1 d from X-ray 

6 The power laws are computed by averaging the slope from the peak to two 
standard deviations past the peak Lorentz factor, i.e. it is averaged from γpk 

to a Lorentz factor γ2 , where γ2 satisfes the condition: n ( γ2 > γpk ) = n ( γpk ) 
− standard deviation( n ( γ )) ∗2. 

variability (Wagner & Witzel 1995 ), we get R j ≈ 10 17 cm. Thus, for 
an initial guess of R j we adopt similar values but left large bounds for 
model exploration. � j max constraints come from radio observations 
of � j � 40 being extremely rare (Lister 2016 ). Here, we limit our 
analysis to relativistic turbulence and so, adopt σ ≥ 1. The initial 
guess of σ = 3 is comfortably in the relativistic plasma regime with 
the max of 30 to co v er an y e xtreme magnetization possibilities. L j 

range and initial guess is chosen to correspond with blazar luminosity 
range found in Ghisellini et al. ( 2017 ). 

For each SED we ft the data from Abdo et al. ( 2010 ) by allowing 
the ftter to iterate 1000 times. At which point, they are rerun with 
the resultant best-ftting parameter as the initial values and the max 
and min bounds are shrunk around these new values. This process 
repeats until there is no noticeable reduction in error for a maximum 

of 4000 iterations. The best-ftting parameters are found in Tables 2 
and 3 and the best-ftting SEDs can be found in Figs B1 and C1 . 

3.2.1 Low synchr otr on peaked sources 

LSP sources make up seven out of the 12 sources used in this paper 
and include BL Lacertae objects (BL Lacs) and fat spectrum radio 
quasars (FSRQs). The resulting best-ftting SEDs for LSP sources 
can be seen in Fig. B1 . These results are well described by our model. 
Generally, the fts exhibit a three-peaked structure with the SSC and 
EIC creating distinct peaks in what is generally the second peak in the 
typical double-peaked structure (Ghisellini et al. 2017 ). In Table 2 , 
we can see that these sources exhibit a range of � j ∼ 10 –30. A result 
that is consistent with most radio observations of LSP sources (Lister 
2016 ). Magnetization for these fts operates in a modest range of σ ≈
1–4.5. With σ ≈ 4, according to Fig. 2 , this would indicate a rather 
modest power-la w inde x of about 3.6 for the underlying particle 
distribution. For the majority of LSP sources, we infer a turbulent 
region that is a fraction of the jet’s cross-section with R TM 

� 0 . 5, 
while the rest are close to 1. When comparing with Ghisellini et al. 
( 2017 ), our LSP sources demonstrate a jet luminosity comparable to 
most blazars with L j between 10 45 and 10 46 erg s −1 . 7 The emission 
region for most of these sources is just outside of the BLR with the 
magnetic energy density staying comparable to BLRs photon feld 
energy density (see Fig. 3 ). Still, all emission regions remain within 
a parsec from the central engine. The mean particle Lorentz factor 
range is γ 0 ≈ 100–200. 

3.2.2 High synchr otr on peaked sources 

Contrary to the LSP fts, almost all of the HSP sources display 
double-peaked spectra (Fig. C1 ). Where the second peak is usually 
much broader and dominated by SSC emission. The model accurately 
describes the Compton peak but does not seem to be able to create 
as broad a synchrotron peak. HSP best-ftting parameters are much 
more extreme than that of the LSP. 8 This is perhaps best shown in 
Fig. 4 , where one notices a large jump in baryon number μ separating 
the HSP sources from the LSP sources. Here, we defne the jet baryon 
number as μ = � j (1 + σ ), which also corresponds to the asymptotic 
bulk Lorentz factor of the jet provided that all the magnetic energy 

7 An exception is made here for J1719.3 + 1746. Though it is an LSP according 
to Abdo et al. ( 2010 ), our fts would better describe this as an HSP source. 
8 It should be noted that of this group, J2000.2 + 6506 is a clear outlier in our 
results. Though Abdo et al. ( 2010 ) initially categorized this as an HSP our ft 
is that of an LSP and thus the resulting ft being much closer to that of LSP 
sources is due to phenomenological ftting. 
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Table 2. Best-ftting parameters found after a maximum of 4000 iterations. 

Object SED type Optical type ηinj e R j , 18 R TM 

ηph L j , 46 � σ

J0238.4 + 2855 LSP FSRQ 0.65 0.341 0.434 0.964 1 14.09 2.08 
J0137.1 + 4751 LSP FSRQ 0.767 0.288 1 0.581 0.317 10.67 4.15 
J1159.2 + 2912 LSP FSRQ 0.885 0.105 0.684 0.436 0.145 13.61 1.56 
J1256.1 −0547 LSP FSRQ 0.212 0.998 0.3 0.612 3.295 17.57 3.82 
J0238.6 + 1636 LSP BL Lac 0.307 2.609 0.886 0.991 1.584 21.62 1.23 
J0855.4 + 2009 LSP BL Lac 0.201 0.412 1 0.162 0.245 12.7 4.56 
J1719.3 + 1746 LSP BL Lac 0.989 3.111 1.97E-03 0.731 127.544 30.39 1.07 
J1058.9 + 5629 ISP BL Lac 0.425 1.06E-03 0.481 0.179 7.98E-03 23.29 8.47 
J1221.7 + 2814 ISP BL Lac 0.323 0.047 9.51E-03 0.781 14.571 36.61 3.33 
J0449.7 −4348 HSP BL Lac 0.284 0.018 0.124 0.198 1 21.92 14.38 
J2000.2 + 6506 HSP BL Lac 0.051 10.563 0.274 0.076 3.194 13.01 4.98 
J2158.8 −3014 HSP BL Lac 0.082 9.67E-03 0.049 0.992 7.087 46.06 14.02 

Table 3. Best-ftting results found after a maximum of 4000 iterations. All values are in CGS units. 

Object SED type Optical type L J R j R T γ 0 u B u ph n 0 

J0238.4 + 2855 LSP FSRQ 1.00E + 46 3.41E + 17 1.05E + 16 112.11 0.915 1.708 585.46 
J0137.1 + 4751 LSP FSRQ 3.17E + 45 2.88E + 17 2.70E + 16 230.69 0.407 0.175 130.53 
J1159.2 + 2912 LSP FSRQ 1.45E + 45 1.05E + 17 5.27E + 15 149.68 1.403 1.370 1.19E + 03 
J1256.1 −0547 LSP FSRQ 3.30E + 46 9.98E + 17 1.70E + 16 132.81 0.351 0.402 122.43 
J0238.6 + 1636 LSP BL Lac 1.58E + 46 2.61E + 18 1.07E + 17 137.93 0.025 0.018 26.67 
J0855.4 + 2009 LSP BL Lac 2.45E + 45 4.12E + 17 3.25E + 16 215.07 0.153 0.016 44.66 
J1719.3 + 1746 LSP BL Lac 1.28E + 48 3.11E + 18 2.01E + 14 305.9 1.399 11.419 1.74E + 03 
J1058.9 + 5629 ISP BL Lac 7.98E + 43 1.06E + 15 2.19E + 13 239.26 755.002 34.282 1.19E + 05 
J1221.7 + 2814 ISP BL Lac 1.46E + 47 4.72E + 16 1.23E + 13 149.01 694.979 370.475 2.78E + 05 
J0449.7 −4348 HSP BL Lac 1.00E + 46 1.79E + 16 1.01E + 14 179.44 330.33 33.642 3.06E + 04 
J2000.2 + 6506 HSP BL Lac 3.19E + 46 1.06E + 19 2.23E + 17 327.78 0.003 2.19E-5 0.81 
J2158.8 −3014 HSP BL Lac 7.09E + 46 9.67E + 15 1.04E + 13 61.7 8.04E + 03 744.511 7.63E + 05 

Figure 3. The y -axis displays how far a given source is from the central 
engine compared with the edge of the BLR region. In the x -axis we compare 
magnetic energy density to the BLR photon energy density. 

was to be converted into bulk motion. From the same Fig. 4 , we 
can see � j ranges from 10 to 50. The large � j was not expected 
since the sources are all BL Lac objects and do not typically exhibit 
large Lorentz boosted Compton peak like that of FSRQs (Ghisellini 

Figure 4. We plot a given source’s bulk Lorentz factor versus its magneti- 
zation. The dashed lines are baryon loading contours for values μ = 40, 60, 
80, 100, and 300. 

et al. 2017 ). As one might expect to have more energetic particles to 
account for the higher energy of emission in HSPs, the magnetization 
for these sources is much higher than the LSP sources, with σave ≈
9. This would also explain the higher magnetic energy density to 
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photon feld energy density seen in these sources in Fig. 3 . The jet 
luminosity of these sources varies from 10 44 to 10 47 erg s −1 . Emission 
regions for these sources are much closer to the central engine with 
R j ≈ 10 15 –10 16 cm. Following this, we infer more compact turbulent 
region and R TM 

about 10 times smaller than that of the LSPs. Particle 
number density for the sources also seems to be much larger than 
the LSP sources with some having n 0 ≈ 10 5 cm 

−3 . This is probably 
needed to create the large SSC emission that dominates these SEDs. 
With them being much closer to the central engine, these sources all 
have the emission region well within the BLR (see Fig. 3 ). 

4  DISCUSSION  

Our model of turbulent acceleration has a unique advantage in that 
the particle distribution is not picked by hand but, rather, arises 
from the physical properties of the large-scale emission region. 
Typically, modelling of the particle distribution inside relativistic 
jets is done by assuming the particles form a power law with an 
index p within a range γmin through γmax , or by more complicated 
particle distributions. Quantities such as p , γmin , and γmax are usually 
treated as free parameters. This non-thermal particle distribution is 
then injected into a region where it cools radiatively while slowly 
escaping the emission region. In works such as B ̈ottcher et al. ( 2013 ), 
a steady state can be reached by balancing the injection of non- 
thermal particles with radiative cooling and particle escape. Fits from 

B ̈ottcher et al. ( 2013 ) are able to constrain the Doppler factor and 
can be compared to ours. For the source J12561.1 −0547 (3C 279), 
B ̈ottcher et al. ( 2013 ) fnd δ = 17. Though δ is highly dependent on 
the observer angle, for our assumption of θobs = 0 we found a δ ≈
35. Putting our result within the bounds of superluminal studies such 
as Bloom, Fromm & Ros ( 2013 ) where the, admittedly broad, range 
is δ ≈ 20–80. 

This work considers a scenario where turbulence is generated at 
the non-linear stages of instabilities within the jet. The resulting 
turbulence energizes electrons that, at the same time, experience 
radiative losses. As a result of a balance of energization and cooling, 
the particles in the turbulent plasma acquire a steady-state distribution 
that has a distinctly non-thermal appearance. The emission of the 
electrons may be of rele v ance to the observed blazar emission, and 
in particular to the quiescent emission seen in these sources. As 
can be seen in Fig. 2 , the heating/cooling balance in the turbulent 
region results in a narrow particle distribution for modest particle 
magnetization σ ∼ 1. While, for suffcient high magnetization, the 
distribution broadens. In the case of high magnetization, we fnd 
extended particle distribution that can be approximated by a power 
law for about an order of magnitude in energy above the peak of 
the distribution. We can see in the SEDs found in Figs B1 and 
C1 that this translates into smooth emission spectra that describe 
the quiescent emission observed in blazars well. Aside from the 
quiescent emission, of focus in this work, this model may have 
implications for blazar variability. In Marscher ( 2014 ) turbulent 
plasma is used to account for observations of rapid variability 
in radiative fux and polarization seen in multiwavelength blazar 
observations by simulating turbulence with a large set of plasma 
cells that have a randomly oriented, but otherwise smooth, magnetic 
feld. The collective emission from these cells should be similar to 
the turbulent region model described here. 

The best-ftting values for the jet magnetization and bulk Lorentz 
factor inferred from the model show consistency with the model put 
forward in Rueda-Becerril, Harrison & Giannios ( 2021 ), where the 
majority of the sources appear to be launched with a similar baryon 
loading parameter μ ≈ 40–100. In Fig. 4 , this is shown with the noted 

exception of the HSP sources. HSPs appear to require signifcantly 
larger magnetization μ ≈ 350 from other blazar sources. Although 
the model does not ft the spectrum of the HSP sources well, there may 
still be some information to glean from the comparison. We fnd that 
the model generally fa v ours a dense emission region for HSPs that is 
close to the central engine. We can gather an understanding of how 

the fts reach different peaks in luminosity and frequency by looking 
at the synchrotron limit equation ( 32 ). In order to get to these high 
synchrotron frequencies, the turbulent scale needs to drop. Ho we ver, 
the smaller the emission region, the dimmer the source. Though most 
of the HSP sources tend to be dimmer, the squared dependence of 
the luminosity with R TM 

is a steep one. The ftted model parameters 
may turn out to be less extreme if one includes Klein–Nishina (KN) 
correction to Compton scattering, neglected in this study. The HSP 

sources are dominated by SSC cooling and the reduction of the SSC 

cooling effciency because of relativistic corrections would allow the 
particles to reach a higher γ 0 and broaden the synchrotron emission 
for the same parameters. The KN corrections will tend to result in 
smaller values for μ for HSP sources, since the drop in cooling 
effcienc y pro vided by the KN cross-section may drop the energy 
per baryon required to reach such high synchrotron peaks. It may 
also be the case that the extreme ft parameters simply suggest that 
HSP sources require more effcient acceleration than the turbulence 
prescription adopted here. 

4.1 Future extensions to the model 

Currently, few PIC simulations have studied relativistic turbulence. 
This work is based on the PIC simulations in Zhdankin et al. ( 2020 ) 
in which only a handful of simulations, which co v er a small range 
of plasma magnetization, are reported. One could use Alfv ́en wave 
scattering to describe the diffusion in the plasma. Simulations have 
shown this to be a consistent description (Comisso & Sironi 2019 ) 
but without an analytic model for the advection coeffcient, our 
only means to impro v e our dif fusi ve model is to include more PIC 

simulation data at additional magnetizations. 
In this model, we focused on a plasma whose internal energy is 

dominated by cold ions. Further, we use the free parameter ηinj e to 
parametrize the energy injected into the electrons from the turbulent 
cascade. There is not much to suggest that this should be constant. 
In Zhdankin et al. ( 2019 ) the authors fnd that the energy in the 
non-thermal electrons gain scales with E nt ∝ ( ρe / ρ i ) 2/3 , where ρe 

and ρ i are the electron and ion gyroradii, respecti vely. Ho we ver, 
this result is from a PIC simulation whose plasma magnetization is 
less unity contrary to the focus of our work. Estimates for the ion 
to electron heating ratio (Howes 2010 ) do show an expectation for 
marginal ion heating for high plasma magnetization. Regardless to 
simulate a larger range of plasma composition, magnetizations, and 
energies, future works will need to model the ion heating and that of 
the electrons. 

In this work, we develop a simple single-zone model for the blazar 
re gion but e xtending this model to include multiple emission zones 
should be straightforward. The easiest approach might be one similar 
to that found in Boula, Mastichiadis & Kazanas ( 2021 ) where the 
cooling and heating take place in distinct regions. One can imagine 
having the steady state reached before exiting an acceleration region. 
The acceleration region could have minimum external photon cooling 
and create a steady state by balancing turbulent heating with the 
synchrotron losses alone. Once exiting the acceleration region, the 
particles would then be exposed to photon felds like those of the 
BLR. This would ef fecti vely separate the parameters of the jet that 
create the synchrotron peak from those that create the Compton 
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peak. This two-zone model would still use a particle distribution that 
arises from the global parameters of the emission region, reducing 
the assumption about the particle acceleration, but would also allow 

us to compute the synchrotron and Compton emission with model 
parameters that are independent of each other. 

Another natural extension to this model is to account for the time- 
dependent nature of blazar emission. For instance, one may recreate 
and build on a scenario similar to the minijet model proposed in 
Giannios, Uzdensky & Begelman ( 2009 ). Here, instead of a single 
turbulent region to represent the total acceleration region, one can 
envision several compact turbulent regions each resulting in non- 
thermal particle acceleration that contributes to the total emission. 
This picture may be particularly applicable to HSP sources with the 
smaller inferred values R TM 

possibly representing compact turbulent 
regions within the jet. Such regions may be driven by plasma 
outfowing from large-scale reconnecting current sheets. The fast- 
evolving fares originate in the current sheets (Christie et al. 2019 ), 
while slo wer e volving and quiescent emission is the result of the 
turbulent heating discussed here. 

5  C O N C L U S I O N  

In this paper, we have constructed a turbulent jet model that 
incorporates the plasma physics from PIC simulations while being 
computationally effcient enough to constrain the physical properties 
of blazars. By analysing work done by Zhdankin et al. ( 2020 ), we 
found diffusion and advection coeffcients that can describe a particle 
distribution at much larger scales and magnetizations than PIC 

simulations ha ve a vailable while retaining the crucial microscopic 
physics from the simulations. We then used this information to build 
a single-zone turbulent jet model where the emission comes from 

a blob of plasma in which particles are accelerated by turbulence 
and cooled radiatively. Since turbulence may not be a fast enough 
accelerator to account for, say, fast-evolving, intense faring blazar 
events, we focused on the model’s ability to recreate the observed 
quiescent emission. Using data from Abdo et al. ( 2010 ), we compared 
our model predictions against the broad-band SEDs of 12 blazars. 
We did this by performing a ft of the seven free parameters in the 
model o v er a large parameter domain. These seven parameters are 
key insights into the blazar’s emission region. For LSP sources we 
found that the emission region is typically at the, or slightly beyond, 
edge of the BLR region. The emission region’s size itself is typically 
a modest fraction of a cross-section of the jet but could be an order of 
unity. Perhaps hinting at distinct instabilities that trigger turbulence in 
different sources. The magnetization inferred by the model suggests 
that LSP sources are moderately Poynting dominated with σ = 1–5 
with a bulk Lorentz factor in the range of 10–30. Contrary to the 
LSP sources, the HSP and ISP sources are generally less satisfactory 
fts that require more extreme parameters. HSPs and ISPs require 
dense emission regions that are closer to the central engine. These 
jets are inferred to be largely Poynting fux dominated with σ = 

5–15 and hav e e xtreme bulk Lorentz factors up to 50. While the HSP 

and ISP fts are extreme, our model accurately reproduces quiescent 
emission from LSP blazars. It is able to do this with a successful 
turbulent model that accurately encodes e xpensiv e results from PIC 

simulations into a computationally effcient kinetic description of the 
turbulent plasma. 
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Particle distributions and emissions were calculated using the code 
PARAMO (Rueda-Becerril 2020 ). Additional PIC results from the 
paper Zhdankin et al. ( 2020 ) were acquired through pri v ate corre- 
spondence. Source data used to ft the SEDs in Figs B1 and C1 
were taken from Abdo et al. ( 2010 ). WEBPLOTDIGITIZER was used 
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/Base ModelFitt er.git . Results from the fts are available in the paper 
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APPEN D IX  A :  STEADY-STATE  SSC  C O O L I N G  IN  STOCHASTIC  MAGNETI C  FI ELDS  

Starting with power radiated via synchrotron (Rybicki & Lightman 1979 , equation 6.33): 

p s ( ν) = 

√ 

3 e 3 B sin θν

mc 2 νc 
F 

(
ν

νc 

)
erg s −1 Hz −1 , (A1) 

νc = 

3 γ 2 eB sin θ

4 πmc 
= 

3 

2 
ν0 γ

2 . (A2) 

Here, θ is the pitch angle of the particle, γ is the particles Lorentz factor, and F is 

F ( x) = 

∫ ∞ 

x 
sin θ

K 5 / 3 ( z ) d z . (A3) 

Combining ( A1 ) and ( A2 ) we get 

p s = 

4 πe 2 ν√ 

3 cγ 2 
F 

(
ν

νc 

)
erg s −1 Hz −1 . (A4) 

In a turbulent media the synchrotron power needs to be averaged over scattering angles. Here we follow Crusius & Schlickeiser ( 1988 ), 

p rs = 

q 0 ν

γ 2 

∫ 2 π

0 
d φ

∫ π
0 

d θ sin θ
∫ ∞ 

x 
sin θ

d z K 5 / 3 ( z) erg s −1 Hz −1 . 

(A5) 

In Crusius & Schlickeiser ( 1986 ) it was shown that ∫ π
0 

d θ sin θ
∫ ∞ 

x 
sin θ

d z K 5 / 3 ( z) = πCS ( x) , (A6) 

where 

CS ( x) = W 0 , 4 3 
( x) W 0 , 1 3 

( x) − W 1 
2 , 

5 
6 
( x) W −1 

2 , 
5 
6 
( x) , (A7) 

and W i,j denotes the Whittaker’s function. Giving us an expression for the emitted power via synchrotron in a stochastic magnetic feld ( A8 ), 

p rs ( ν) = 

q 0 ν

γ 2 

π

2 
CS 

(
ν

νc 

)
erg s −1 Hz −1 . (A8) 

It is easier to keep up with Schlickeiser’s deri v ation (Schlickeiser 2009 ) if we switch power from frequency dependence to energy 
dependence: 

p ( ν) = 

d ε

d ν d t 
erg s −1 Hz −1 −→ p ( ε) = 

d ε

d ε d t 
= 

1 

h 
p 
�
ν = 

ε

h 

�
s −1 . 

(A9) 

This turns equation ( A8 ) into 

p rs ( ε) = 

q 0 ε

γ 2 h 

2 

π

2 
CS 

(
ε

εc 

)
s −1 . (A10) 

Now let us take a look at what the power emitted via SSC should be (Schlickeiser 2009 , equation 4.2), 

p ssc ( εγ , γ ) = cεγ

∫ ∞ 

0 
d ε n s ( ε) σ ( εγ , ε, γ ) s −1 . (A11) 
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The total power can be found by integrating over the scattered energies, 

P ssc ( εγ , γ ) = c 

∫ ∞ 

0 
d εγ εγ

∫ ∞ 

0 
d ε n s ( ε) σ ( εγ , ε, γ ) erg s −1 . 

(A12) 

Here, n s is the number density of scattered photons, εγ is the scattered photon energy, γ is the electron’s Lorentz factor, σ is the interaction 
cross-section, and ε is the photons pre-scattered energy. The cross-section is given by Schlickeiser ( 2009 , equation 4.2.1): 

σ ( εγ , ε, γ ) = 

3 σT 

4 εγ 2 
G ( ε, �) cm 

2 erg −1 . (A13) 

The function G is beyond the scope of this deri v ation but accounts for KN effects and is described in Schlickeiser ( 2009 ). The parameter 
� = 

4 εγ
mc 2 

. Plugging in equation ( A13 ) and making the substitution q = 

ε

�( γmc 2 −εγ
, we are able to turn equation ( A12 ) into 

P ssc ( εγ , γ ) = 

3 cσT 

4 γ 2 

∫ ∞ 

0 
d ε

n s ( ε, t) 

ε

∫ ∞ 

0 
d εγ εγ G ( q, �) erg s −1 . 

(A14) 

Here we are going to focus on the sub-KN regime ( � < 1 where SSC has the strongest cooling and assume that � > 1 has a negligible effect). 
More precisely, G ( q , � > 1) = 0. This also puts a limit on ε ≤ mc 2 

4 γ . εγ is limited by the amount of energy it gain in a head-on collision 

εγ ≤ �γmc 2 

�+ 1 . Applying this and changing integration variable to q we get 

P ssc ( γ, t) = 12 σT cγ
2 
∫ mc 2 

4 γ

0 
d ε εn s ( ε, t) 

∫ 1 

0 
d q 

q G ( q , �) 

(1 + �q) 3 
erg s −1 . 

(A15) 

Here the rightmost integral can be approximated as ∫ 1 

0 
d q 

q G ( q , �) 

(1 + �q) 3 
� 

1 

9 
for � � 1 . (A16) 

Combining this result with equation ( A15 ), 

P ssc ( γ, t) = 

4 

3 
σT cγ

2 
∫ mc 2 

4 γ

0 
d ε εn s ( ε, t) erg s −1 . (A17) 

The synchrotron photon density spectrum is given by 

n s ( ε, t) = 

4 πR em 

cε
j s ( ε, t) cm 

−3 erg −1 , (A18) 

where R em 

is the size of the emission region and j s ( ε, t) is given by 

j s ( ε, t) = 

1 

4 π

∫ ∞ 

0 
d γ n ( γ, t) p rs ( γ, t) cm 

−3 . (A19) 

Combining equation ( A18 ) with equation ( A19 ) we get 

n s = 

R em 

cε

∫ ∞ 

0 
d γ n ( γ, t) 

q 0 ε

2 h 

2 γ 2 
πCS ( x) cm 

−3 erg −1 , (A20) 

where x = 

2 ε
3 ε0 γ

2 . Combining equation ( A20 ) with equation ( A17 ), and changing the integration variable to x we obtain 

P ssc = 

3 πσT cγ
2 q 0 R em 

ε2 
0 

2 h 

2 c 

∫ ∞ 

0 
d γ γ 2 n ( γ, t) 

×
∫ mc 2 

6 γ 3 ε0 

0 
d x x CS ( x) erg s −1 . (A21) 

To fnd a nice analytic solution we limit ourselves to regime where CS( x ) is dominant. This happens when γ ≤
√ 

mc 2 

6 ε . So here we assume 

CS( x ) = 0 for γ > γKN = 

√ 

mc 2 

6 ε0 γ
. With these assumptions equation ( A21 ) becomes 

P ssc = 

3 πσT cγ
2 q 0 R em 

ε2 
0 

2 h 

2 c 

∫ ∞ 

0 
d γ γ 2 n ( γ, t) 

×
∫ γKN 

γ

0 
d x x CS ( x) erg s −1 . (A22) 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/513/4/5766/6583293 by guest on 17 August 2022



Turbulent heating in blazars 5777 

MNRAS 513, 5766–5779 (2022) 

Equation ( A22 ) can equi v alently be described by 

P ssc = 

3 πσT cγ
2 q 0 R em 

ε2 
0 

2 h 

2 c 

∫ γKN 

0 
d γ γ 2 n ( γ, t) 

×
∫ ∞ 

0 
d x x CS ( x) erg s −1 , (A23) 

where the x -dependent integral is now given by Schlickeiser ( 2009 , equation 16), 

c 1 = 

∫ ∞ 

0 
d x x CS ( x) = 

32 

81 

√ 

3 . (A24) 

Finally, if we limit distribution to γ < γKN � 1 . 94 × 10 4 B 

= 1 / 3 , we can extend the limit to infnity. Resulting in 

P ssc = 

3 πσT cγ
2 q 0 R em 

ε2 
0 c 1 

2 h 

2 c 

∫ ∞ 

0 
d γ γ 2 n ( γ, t) erg s −1 , (A25) 

noting that 

∫ ∞ 

0 
d γ γ 2 n ( γ, t) = 

〈
γ 2 ( t) 

〉
n 0 , (A26) 

we get our fnal expression 

γ̇ssc = 

3 πσT cq 0 R em 

ε2 
0 c 1 n 0 γ

2 
〈
γ 2 ( t) 

〉
2 h 

2 c mc 2 
s −1 . (A27) 

To simplify remember that q 0 = 

4 πe 2 √ 

3 c 
, ε = 

eBh 
2 πmc 

, and u B = 

B 2 

8 π . Defning P 0 = 

e 2 

� 2 c2 
√ 

3 
and A 0 as 

A 0 = 

3 c 1 σT P 0 � 
2 e 2 8 π

m 

3 c 4 
, (A28) 

we can fnd γ̇ssc to be equation ( A29 ), 

γ̇ssc = A 0 R em 

n 0 u B γ
2 
〈
γ 2 ( t) 

〉
s −1 . (A29) 

APPEN D IX  B:  LSP  SEDS  
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Figure B1. Resultant best-ftting LSP SEDs. From left to right the sources are: J0238.4 + 2855, J0137.1 + 4751, J1159.2 + 2912, J1256.1 −0547, J0238.6 + 1636, 
J0855.4 + 2009, and J1719.3 + 1746. Solid blue line is the total emission. The dashed orange, green, and red lines are the synchrotron, SSC, and EIC components 
of emission, respectively. 
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Figure C1. Resultant best-ftting HSP and ISP SEDs. From left to right the sources are: J1058.9 + 5629, J1221.7 + 2814, J0449.7 −4348, J2000.2 + 6506, and 
J2158.8 −3014. Solid blue line is the total emission. The dashed orange, green, and red lines are the synchrotron, SSC, and EIC components of emission, 
respectively. 
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