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Abstract

Low-rank tensor factorization or completion is
well-studied and applied in various online settings,
such as online tensor factorization (where the tem-
poral mode grows) and online tensor completion
(where incomplete slices arrive gradually). How-
ever, in many real-world settings, tensors may have
more complex evolving patterns: (i) one or more
modes can grow; (ii) missing entries may be filled;
(iii) existing tensor elements can change. Existing
methods cannot support such complex scenarios.
To fill the gap, this paper proposes a Generalized
Online Canonical Polyadic (CP) Tensor factoriza-
tion and completion framework (named GOCPT)
for this general setting, where we maintain the CP
structure of such dynamic tensors during the evo-
lution. We show that existing online tensor factor-
ization and completion setups can be unified un-
der the GOCPT framework. Furthermore, we pro-
pose a variant, named GOCP T, to deal with cases
where historical tensor elements are unavailable
(e.g., privacy protection), which achieves similar
fitness as GOCP T but with much less computational
cost. Experimental results demonstrate that our
GOCPT can improve fitness by up to 2.8% on the
JHU Covid data and 9.2% on a proprietary patient
claim dataset over baselines. Our variant GOCPTg
shows up to 1.2% and 5.5% fitness improvement on
two datasets with about 20% speedup compared to
the best model.

1 Introduction

Streaming tensor data becomes increasingly popular in ar-
eas such as spatio-temporal outlier detection [Najafi et al.,
20191, social media [Song et al., 2017], sensor monitoring
[Mardani er al., 2015], video analysis [Kasai, 2019] and
hyper-order time series [Cai et al., 2015]. The factoriza-
tion/decomposition of such multidimensional structural data
is challenging since they are usually sparse, delayed, and
sometimes incomplete. There is an increasing need to main-
tain the low-rank Tucker [Sun et al., 2006; Xiao et al., 2018;
Nimishakavi et al., 2018; Fang et al., 2021; Gilman and
Balzano, 2020] or CP [Du et al., 2018; Phipps e al., 2021]
structure of the evolving tensors in such dynamics, consider-
ing model efficiency and scalability.
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Several online (we also use “streaming” interchangeably)
settings have been discussed before. The most popular two
are online tensor decomposition [Zhou et al., 2016; Song et
al., 2017] and online tensor completion [Kasai, 20191, where
the temporal mode grows with new incoming slices. Some
pioneer works have been proposed for these two particular
settings. For the factorization problem, [Nion and Sidiropou-
los, 2009] incrementally tracked the singular value decompo-
sition (SVD) of the unfolded third-order tensors to maintain
the CP factorization results. Accelerated methods have been
proposed for the evolving dense [Zhou er al., 2016] or sparse
[Zhou et al., 2018] tensors by reusing intermediate quantities,
e.g., matricized tensor times Khatri-Rao product (MTTKRP).
For the completion problem, recursive least squares [Kasai,
2016] and stochastic gradient descent (SGD) [Mardani et al.,
2015] were studied to track the evolving subspace of incom-
plete data.

However, most existing methods are designed for the grow-
ing patterns. They cannot support other possible patterns
(e.g., missing entries in the previous tensor can be refilled
or existing values can be updated) or more complex scenarios
where the tensors evolve with a combination of patterns.

Motivating application: Let us consider a public health
surveillance application where data is modeled as a fourth-
order tensor indexed by location (e.g., zip code), disease
(e.g., diagnosis code), data generation date (GD) (i.e., the
date when the clinical events actually occur) and data load-
ing date (LD) (i.e., the time when the events are reported in
the database) and each tensor element stands for the count
of medical claims with particular location-disease-date tu-
ples. The tensor grows over time by adding new locations,
diseases, GD’s, or LD’s. For every new LD, missing en-
tries before that date may be filled in, and existing entries
can be revised for data correction purposes [Qian et al.,
2021]. Dealing with such a dynamic tensor is challenging,
and very few works have studied this online tensor factor-
ization/completion problem. The most recent work in [Qian
et al., 2021] can only handle a special case with the GD di-
mension growing but not with data correction or two more
dimensions growing simultaneously.

To fill the gap, we propose GOCPT — a general framework
that deals with the above-mentioned online tensor updating
scenarios. The major contributions of the paper are summa-
rized as follows:

* We propose a unified framework GOCPT for online tensor
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factorization/completion with complex evolving patterns
such as mode growth, missing filling, and value update,
while previous models cannot handle such general settings.

* We propose GOCPTE, i.e., a more memory and computa-
tional efficient version of GOCPT, to deal with cases where
historical tensor elements are unavailable due to limited
storage or privacy-related issues.

* We experimentally show that both GOCPT and GOCPTg
work well under a combination of online tensor challenges.
The GOCPT improves the fitness by up to 2.8% and 9.2%
on real-world Covid and medical claim datasets, respec-
tively. In comparison, GOCPTg provides comparable fit-
ness scores as GOCPT with 20%+ complexity reduction
compared to the baseline methods.

The first version of GOCPT package has been released in
PyPI' and open-sourced in GitHub?. Supplementary of this
paper can be found in the same GitHub repository.

2 Problem Formulation

Notations. We use plain letters for scalars, e.g., x or X,
boldface uppercase letters for matrices, e.g., X, boldface low-
ercase letters for vectors, e.g., x, and Euler script letters for
tensors or sets, e.g., X'. Tensors are multidimensional arrays
indexed by three or more modes. For example, an N;-order
tensor X is an /N-dimensional array of size I; X Is X - - - X I,
where x;,;,...;, 1 the element at the (i1, 42, - - - , i) location.
For a matrix X, the r-th row is denoted by x,.. We use ® for
Hadamard product (element-wise product), ® for Khatri-Rao
product, and [-] for Kruskal product (which inputs matrices
and outputs a tensor).

For an incomplete observation of tensor X', we use a mask
tensor €2 to indicate the observed entries: if x;,,...;, 1S Ob-
served, then €2;,4,...., = 1, otherwise 0. Thus, X ® 2 is the
actual observed data. In this paper, €2 can also be viewed as
an index set of the observed entries. We define ||(-)q||% as
the sum of element-wise squares restricted on {2, e.g.,

(X =Palr= D @iy

(i1, iN)EQ

- yilmiN)27

where X and ) may not necessarily be of the same size, but
 must index within the bounds of both tensors. We describe
basic matrix/tensor algebra in appendix A, where we also list
a table to summarize all the notations used in the paper.

2.1 Problem Definition

Modeling Streaming Tensors. Real-world streaming data
comes with indexing features and quantities, for example, we
may receive a set of disease count tuples on a daily basis, e.g.,
(location, disease, date; count), where the first three features
can be used to locate in a third-order tensor and the counts
can be viewed as tensor elements.

Formally, a streaming of index-element tuples, e.g., repre-
sented by (41, - ,iN; Z4,...ix ), can be modeled as an evolv-
ing tensor structure. This paper considers three typical types
of evolution, shown in Fig. 1.

Uhttps://pypi.org/project/ GOCPT/
*https://github.com/ycq091044/GOCPT

* (i) Mode growth. New (incomplete) slices are added along
one or more modes. Refer to the blue parts.

e (ii) Missing filling. Some missing values in the old tensor
is received. Refer to the green entries in the figure.

e (iii) Value update. Previously observed entries may
change due to new information. Refer to yellow entries.

To track the evolution process, this paper proposes a general
framework for solving the following problem on the fly.
Time t-1 Time t

(i) Mode growth
(|| Mlssmgﬂl\mg

&l

Figure 1: Illustration of Online Tensor Evolution

Problem 1 (Online Tensor Factorization and Completion).
—1 —1

Suppose tensor X'7! ¢ RN admits a low-

rank approximation Y*~1 at time (t — 1), parametrized by

rank-R factors ng"’t_l € RIIXEIN e, Y1 =

[ALEY o D AN Given the mask Q1™ 1, it satisfies

Qt—l Qt 1 yt—l- (1)

Following the evolution patterns, given the new underlying
tensor Xt € RI<*IN and the mask QO at time t, our
target is to find N new factor matrices A™ € RIn %R
IL > It7' Vn and define Y* = [AYt,-.. AN, 50 as
to minimize,

Loo(X5VY = >0 Ial,.

(i1, in)€EQ?

th

iN?ZJfl...iN)a (2

where [(-) is an element-wise loss function and the data and
parameters are separated by semicolon.

2.2 Regularization and Approximation

This section expands the objective defined in Eqn. (2) with
two regularization objectives.

* Regularization on Individual Factors. We add a generic
term L,cq({A™'}) to Eqn. (2), and it can be later cus-
tomized based on application background.

* Regularization on the Reconstruction. Usually, from
time (¢t — 1) to ¢, the historical part of the tensor will not
change much, and thus we assume that the new reconstruc-
tion ), restricted on the bound of previous tensor, will not
change significantly from the previous Y*~1.

‘Crec(yt_l;yt) - Z

1<i, <IF ' Vn

l(y’Ll 7«N7y11 N)'

Considering these two regularizations, the generalized objec-
tive can be written as,

L= EQ‘(Xt; yt)+a£rec(yt71; yt)+ﬁﬁreg({An7t})7 3)

where «, 8 are (time-varying) hyperparameters.

2349



Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

Approximation. In Eqn. (2), the current tensor data
masked by Q¢ consists of two parts: (i) old unchanged data
(indicating dark elements in Fig. 1), we denote it by Q%°ld,
which is a subset of Q~1; (ii) newly added data (blue part,
green and yellow entries in Fig. 1), denoted by set subtraction
Ot = Ot \ Qtold

The old unchanged data can be in large size. Sometime,
this part of data may not be entirely preserved due to (i) lim-
ited memory footprint or (ii) privacy related issues. By re-
placing the old tensor with its reconstruction [Song et al.,
2017], we can avoid the access to the old data. Thus, we
consider an approximation for the first term of Eqn. (3),

Lot (X5Y") = Lo (X5Y") 4 Larea (X5 D")
= L¢ t(xf,yt)+5m o (XH Y
N Lo(X5 V') + Lowaa (VD) “)
= Lae(X5V) + D Ui i i Vi ein)-
Qt,old

In the above derivation, the rationale of the approximation
is the result in Eqn. (1). In Eqn. (4), we find that the term
D o gteold l(yfl_lw syt ;) is part of the reconstruction regu-
larization L,c.(Y!~1; V) and thus can be absorbed. There-
fore, we can use La. (X% V") to replace the full quantity
Lot (X V) in Eqn. (3), which results in a more efficient
objective for streaming data processing,

L= Lai(X V") + aLrec V'V + BLreg({A™}). (5)

For this new objective, the unchanged part Q%4 is not
counted in the first term (only the new elements (¢ counted),
however, it is captured implicitly in the second term.

In sum, £ and Lg are two objectives in our framework.
They have a similar expression but with different access to
the tensor data (i.e., the former with mask Ot and the latter
with Q). Generally, £ is more accurate while Lg is more
efficient and can be applied to more challenging scenarios.

2.3 Generalized Optimization Algorithm

Structure of Parameters. For two general objectives de-
fined in Eqn. (3) and (5), the parameters {A™! € RIn xR}
are constructed by the upper blocks {U™! € RZ %R} and
the lower blocks {L™! € RUn =1 DxBY e

n,t
An,t - |:gn,t:| ) vn7

where U™* corresponds to the old dimensions along tensor
mode-n and L™ is for the newly added dimensions of mode-
n due to mode growth. To reduce clutter, we use “factors” to
refer to A™? and “blocks” for U™? L™¢,

Parameter Initialization. We use the previous factors at
time (¢ — 1) to initialize the upper blocks, i.e.,

Ut AL v, ©)

Note that, we use hat ~ to denote the initialized block/factor.
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Each lower block is initialized by solving the following ob-
jective, individually, V n,

arg min E
Ln,t

(i1, ,in)EQ!
1<ip<IP7 1, k#n
I}7 <ip<If, k=n

cn init
| Uty in i Y i) (D

Here, V! is constructed from the parameters {AW}, and 7y,
is the row index of the mode-k factor A**. The summation is
over the indices bounded by the intersection of £2* and an N-
dim cube, where other N — 1 modes use the old dimensions
and mode-n uses the new dimensions. Thus, this objective
essentially uses {U**};, to initialize L™".

Parameter Updating. Generally, for any differentiable loss
1(-), e.g, Frobenius norm [Yang et al., 2021] or KL divergence
[Hong er al., 2020], we can apply gradient based methods,
to update the factor matrices. The choices of loss function,
regularization term, optimization method can be customized
based on the applications.

3 GOCPT Framework

3.1 GOCPT Objectives

To instantiate a specific instance from the general algorithm
formulation, we present GOCPT with

e Squared residual loss: (z;y) = (v — y)?;
o L2 regularization: Locq({A™}) = SN |

o Alternating least squares optimizer (ALS): updating factor
matrices in a sequence by fixing other factors.

Then, the general objectives in Eqn. (3) (5) becomes

) AN’t}])Q‘

2 al n,t||2
o, +8 35 1A

while the form of £ is identical but with a different mask Q.
Here, Lg has only access to the new data {xﬁlw b but £
has full access to the entire tensor {x} _,; }or up to time ¢.

In this objective, the second term (regularization on
the reconstruction defined in Sec. 2.2) is restricted on
{(iy,+++ yin) : 1 < i, < I!71¥n}, so only the upper
blocks U™t € R %R of factors A™t € RIXE | Wn, are
involved. Note that, £ and L, are optimized following the
same procedures.

Lr = H(Xt —[AM,-

®)

+a Hyt—l _ [[Ul’t, o ,UN’t

3.2 GOCPT Optimization Algorithm

For our objectives in Eqn. (8), we outline the optimization
flow: we first initialize the factor blocks; next, we update
the upper or lower blocks (by fixing other blocks) following
this order: UM LYt ... UNt LNV

Factor Initialization. As mentioned before, the upper
blocks, {U™!}N_, are initialized in Eqn. (6). In this specific
framework, the minimization problem for initializing lower
blocks {L™*}N_, (in Eqn. (7)) can be reformed as

Srn—1,t n,t fin+1,t
7U 7L 7U 1'“]])0"'«t

2
)
F

. t
argrxfEEH(X -
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where Q™! denotes the intersection space in Eqn. (7). The
initialization problem in Eqn. (9) and the targeted objectives
in Eqn. (8) can be consistently handled by the following.

Factor Updating Strategies. Our optimization strategy de-
pends on the density of tensor mask, e.g., QF in Eqn. (8).
For an evolving tensor with sparse new updates (for example,
covid disease count tensor, where the whole tensor is sparse
and new disease data or value correction comes irregularly at
random locations), we operate only on the new elements by
sparse strategy, while for tensors with dense updates (for ex-
ample, multiangle imagery tensors are collected real-time and
update slice-by-slice while each slice may have some missing
or distortion values), we first impute the tensor to a full ten-
sor, then apply dense operations by our dense strategy. For
example, we solve Eqn. (8) as follows:

* Sparse strategy. If the Q! (the index set of newly added
data at time ?) is sparse, then we extend the CP completion
alternating least squares (CPC-ALS) [Karlsson et al., 2016]
and solve for each row of the factor.

Let us focus on aZ;t € RY™E, which is the 4,,-th row of

factor A™?. To calculate its derivative, we define the inter-
mediate variables,
k t)

n,t kN\NT s
P = > (Orzna)) (Orznaj;
(11, in—1,0nt1, - in ) EQEIn
T .
+ a(@;ﬁénU’“’t U’”) + BL, Vn, Vi,
n,t
q; = E
(i1, in—1,0nt1, - ,in ) EQEIn

+ aal' ™t (B ARTTTUR) v, Vi

in

k.t
le S LIN (Qkinaik )

Here, Qtin (we slig,htly abuse the notation) indicates the
in-th slice of mask Q¢ along the n-th mode, and

kit 1t —1,t 1.t
Moalto..oal Moalt

Nt
Qkina Gn—1 Tn41 @0 Ay

The same convention works for &®. Here, P?’t € REXE ig
a positive definite matrix and qzzt € RIXE,
Then, the derivative w.r.t. each row can be expressed as,

OLE , _
8a7L7t = 2aZ:tPZ;t B Qq?,;tv vn7 V'Ln € [15 e ’I’fL 1]7
in

and it applies to V i,, € [I!~1 +1,--- [ I] with o = 0.

Next, given that the objective is a quadratic function w.r.t.
n,t

a,;’", we set the above derivative to zero and use the global

minimizer to update each row,
amt PR Gt Pl v i, (10)
Note that, this row-wise updating can apply in parallel. If
Q% is empty, then we do not update a?f.
* Dense strategy. If Q' is dense, then we extend the EM-

ALS [Acar et al., 2011] method, which applies standard
ALS algorithm on the imputed tensor. To be more specific,
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we first impute the full tensor by interpolating/estimating
the unobserved elements,

XA't:Qt®Xt+(1_Qt)®[[A1,t7.” 7AN’tﬂ,

where we use X! to denote the estimated full tensor, and
{A™*}N_, are the initialized factors. Then, the first term
of the objective in Eqn. (8) is approximated by a quadratic
form w.r.t. each factor/block,

. 2
HXt _ HA17t7 e ’AN’t]]H )
F
To calculate the derivative, let us define
Py = (@rpn A" AN ) da (@2 UM UM 4L
Qﬁ't :(Xi)u (@k#nAk’t) + aAn,t—l (®k¢nAk,t—1TUk,t) ,
PL = (@hzn AT ANT) 4 L,
QL =X)L (Orzna®")
where X! is the mode-n unfolding of X*, and (XL)y €
I UL, IRt . t—1 St ;
R~ n#kin o is the first I;7" rows of X!, while
A t t—1 k,t ..
(Xt € RUn=In )XIluze 1o i the the remaining (1! —
It=1) rows of X!,. Here, Py;', Py € REXE are positive
. -1 -1
definite, Q5" € R'» ¥R and Q" € RUn—Tn xR,

We express the derivative of the upper and lower blocks by
the intermediate variables defined above,

8aijcit = 2Un)tP%t _2Q%ta vn,
;fft = 2Ln)th’t _2Q7£’t’ vn.

Here, the overall objective Ly is a quadratic function w.r.t.
U™t or L™!. By setting the derivative to zero, we can ob-
tain the global minimizer for updating,

date b ron,ty—1
Ut EE QP T, v
U U 9 9
(11
dat _
Lvt E QP .

To sum up, the optimization flow for L, is summarized in
Algorithm 1. For optimizing £, we simply modify the algo-
rithm by replacing the input {z} ; }a. with {zf _; }or.
We analyze the complexity of our GOCPT in appendix B.

Algorithm 1: Factor Updates for Ly at time ¢

1 InplIt: {An’til }71:]:17 {mfl'LN }Qt y & /8’7
2 Parameters: {U™ )}, {L™*}0 5

3 Initialize parameters by Eqn. (6) and (9);;
4 forne[l,---,N]do

5 update unt using Eqn. (10) or (11);;
6 update L™ using Eqn. (10) or (11);;
7 end

n,t N
8 Output: new factors {A"’t = {E”t} }

n=1
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4 Unifying Previous Online Settings

Several popular online tensor factorization/completion spe-
cial cases can be unified in our framework. Among them,
we focus on the online tensor factorization and online tensor
completion. We show that those objectives in literature can
be achieved by GOCPT. Our experiments confirm GOCPT can
obtain comparable or better performance over previous meth-
ods in those special cases.

4.1 Online Tensor Factorization

-7|T||

Common
Setting

L

1 vy A ’
Multi- t
ot B B

Time t-1 Timet

Time t+1
Figure 2: Online Tensor Factorization

Online tensor factorization tries to maintain the factoriza-
tion results (e.g., CP factors) while the tensor is growing,
shown in Fig. 2. Zhou et al. [Zhou et al., 2016] proposed
an accelerated algorithm for the common setting where only
the temporal mode grows. [Song et al., 2017] considered the
multi-aspect setting where multiple mode grows simultane-
ously. We discuss the multi-aspect setting below.

Problem 2 (Multi-aspect Online Tensor Factorization). Sup-
-1 -1 -1
pose tensor X'~ € RN 17 %1577t fime (t — 1) admits
a low-rank approximation, induced by U'~! € RIrlXR,
Vitle RE <R Wi-l e RIS R, such that
th [[Utlvtlwt 1ﬂ

At time t, we want to learn a new set of factors, Ut €

t t t
ROXE Vi ¢ REXE Wt ¢ REBXE 1o approximate the

t t t
growing new tensor Xt e RO} 2x1s ywhich satisfies,
-1
x§1i2i3 l112137 Vip, € [1,--+ , It7Y, ¥n € [1,2,3].
Unification. To achieve the existing objective in the litera-
ture, we simply reduce our Lg by changing the L2 regular-
ization into nuclear norm (i.e., the sum of singular values),
t t t
Lreg = M [[U[ + 22 [ VE, + 3 [W7,
where ~,,, Vn € [1,2,3] are the hyperparameters and they

sum up to one. This regularization is the convex relaxation of
CP rank [Song et al., 2017]. Then, the objective becomes

Lo =|(x [0V Wl
a1 - ULV W e ||
+ 8 (n [U, + 2 [[VI], + 3 W)
where ' and Q'~! are the bounds of the new and previous
tensors and Qf = Qf \ Q*~! (in this case, Q04 = Q1)
indicates the newly added elements at time t. This form is
identical to the objective proposed in [Song ef al., 2017].
In experiment Sec. 5.3, we evaluate on the temporal mode

growth setting. Our methods use the L2 regularization as
listed in Sec. 3 and follow Algorithm 1.

4.2 Online Tensor Completion

& i

Timet

7?2 ’
Time t-1 Time t+1

Figure 3: Online Tensor Completion

Online tensor completion studies incomplete tensors, where
new incomplete slices will add to the temporal mode. The
goal is to effectively compute a new tensor completion result
(i.e., CP factors) for the augmented tensor. This problem is
studied in [Mardani et al., 2015; Kasai, 2016; Kasai, 2019].
We show the formulation below.
Problem 3 (Online Tensor Completion). Suppose X'~1 is
the underlying tensor at time (t— 1), which admits a low-rank
approximation, Ut~1 € RIXE vi-1 ¢ REXE Wi-1 ¢
R xR such that given the mask =1,

Qt—l ® Xt_l ~ Qt—l ® [[Ut—l Vt—l Wt_l]].
At the time t, given a new slice with incomplete entries, i.e.,
QL ® X% € RIX12 the new data is concatenated along
the temporal mode (the third-mode) by Qt = [Q'~1; QY] and
Xt =[x, X4Y]. We want to update the approximation
with Ut € RDXE, Vi ¢ REXE Wt e REXE where It =
I};_l + 1, such that

AeX'~0 e [U,V,W.

Unification. To handle this setting, we remove the recon-

struction regularizer (second term) from our £ and the re-
duced version can be transformed into,

L= i {oz H (Xt’k — Utdiag(w}i)Vﬂ—)
k=1

+B (07 + IV[I7) .

2
+5||wz||%}

Qt:kllp

(12)
where Q%% and X** indicate the k-th slices of the tensor
along the temporal mode, and wi is the k-th row of W*.
From Eqn. (12), we could make o exponential decaying w.r.t.
time steps (i.e., ap = '3 t*k) the [ within summation be
time-variant (i.e., B, = A\ x 713 k) and the S outside be
A 11> Where 7, {Ar} are hyperparameters. We then obtain the
identical objective as proposed in [Mardani et al., 2015]. The
experiments are shown in Sec. 5.4.

5 Experiments

In the experiment, we evaluate our model on various settings.
Our models are named GOCPT (with the objective £) and
GOCPTg (with objective Lg). Dataset statistics are listed in
Table 1. More details can be found in appendix C.

5.1 Experimental Setups

Metrics. The main metric is percentage of fitness (PoF)
[Acar et al., 2011], which is defined for the factorization or
completion problem respectively by (the higher, the better)

X — [A1... AN]lIF G- @& —[A1-..AnDlr

1- ;
€l e - & X|r

r 1 —
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Dataset Format

JHU Covid 51 x 3 x 8 x 209
Patient Claim 56 x 22 x 10 x 104

Setting

General (Sec. 5.2)
General (Sec. 5.2)

FACE-3D 112 x 99 x 400 Factorization (Sec. 5.3)
GCSS 50 x 422 x 362 Factorization (Sec. 5.3)
Indian Pines 145 x 145 x 200 Completion (Sec. 5.4)
CovidHT 420 x 189 x 128 Completion (Sec. 5.4)
Table 1: Data Statistics
Model JHU Covid Data Perturbed JHU Covid Data
Total Time (s) Avg. PoF Total Time (s) Avg. PoF
EM-ALS 1.68 £ 0.001  0.6805 £0.024 2.13 +£0.049 0.6622 + 0.047
CPC-ALS 2.14+0.002 0.6813 £0.028 2.50+0.013 0.6634 £+ 0.021
GOCPTg 1.32 £ 0.004 0.6897 £ 0.016 1.72+0.034 0.6694 + 0.045
GOCPT 2.68 £0.002  0.6920 £ 0.022 3.17 £ 0.041  0.6827 + 0.024
Model Patient Claim Perturbed Patient Claim
Total Time (s) Avg. PoF Total Time (s) Avg. PoF
EM-ALS 437 +0.056 0.4458 £0.023 5.35+0.066 0.4626 + 0.021
CPC-ALS 474 +0.036  0.5022 £ 0.021 5.58 +£0.009 0.5169 £ 0.019
GOCPTg 271 £0.033  0.5299 £ 0.019 3.27 +£0.024 0.5454 + 0.017
GOCPT 5.10 £0.037  0.5485 +£0.022 591 £0.042 0.5577 + 0.021

Table 2: Results on General Case

where ) and X are the mask and underlying tensor,
{A4,---, AN} are the low-rank CP factors. We also report
the total time consumption as an efficiency indicator.

Baselines. We simulate three different practical scenarios
for performance comparison. Since not all existing methods
can deal with the three cases, we select representative state-
of-the-art algorithms in each scenario for comparison:

* For the general case in Sec. 5.2, most previous models can-
not support this setting. We adopt EM-ALS [Acar er al.,
2011; Walczak and Massart, 2001] and CPC-ALS [Karls-
son et al., 2016] as the compared methods, which follow
the similar initialization procedure in Sec. 3.2.

* For the online tensor factorization in Sec. 5.3, we employ
OnlineCPD [Zhou et al., 2016]; MAST [Song et al., 2017]
and CPStream [Smith et al., 2018], which use ADMM and
require multiple iterations; RLST [Nion and Sidiropoulos,
20091, which is designed only for third-order tensors.

* For the online tensor completion in Sec. 5.4, we im-
plement EM-ALS and its variant, called EM-ALS (decay),
which assigns exponential decaying weights for historical
slices; OnlineSGD [Mardani et al., 2015]; OLSTEC [Kasai,
2016; Kasai, 2019] for comparison.

We compare the space and time complexity of each model
in appendix B. All experiments are conduct with 5 random
seeds. The mean and standard deviations are reported.

5.2 General Case with Three Evolving Patterns

Datasets and Settings. We use (i) JHU Covid data [Dong
et al., 2020] and (ii) proprietary Patient Claim data to conduct
the evaluation. The JHU Covid data was collected from Apr.
6, 2020, to Oct. 31, 2020 and the Patient Claim dataset col-
lected weekly data from 2018 to 2019. To mimic tensor value
updates on two datasets, we later add random perturbation to
randomly selected 2% existing data with value changes uni-
formly of [—5%,5%)] at each time step. The leading 50%
slices are used as preparation data to obtain the initial factors
with rank R = 5. The results are in Table 2.
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Figure 4: Performance Comparison on Special Cases

Result Analysis. Overall, our models show the top fit-
ness performance compared to the baselines, and the variant
GOCPTE shows 20% efficiency improvement over the best
model with comparable fitness on both datasets. CPC-ALS
and EM-ALS performs similarly and they are inferior to our
models in both fitness and efficiency.

5.3 Special Case: Online Tensor Factorization

Dataset and Setups. We present the evaluation on low-rank
synthetic data. In particular, we generate three CP factors
from uniform [0, 1] distribution and then construct a low-rank
tensor (I1, I, I3, R) = (50, 50,500, 5). We use the leading
10% slices along the (third) temporal mode as preparation;
then, we add one slice at each time step to simulate mode
growth. We report the mean values in Figure 4.

Also, we show that our GOCPT can provide better fitness
than all baselines and GOCPTg, outputs comparable fitness
with state of the art efficiency on two real-world datasets: (i)
ORL Database of Faces (FACE-3D) and (ii) Google Covid
Search Symptom data (GCSS). The result tables are moved
to appendix C.3 due to space limitation.

5.4 Special Case: Online Tensor Completion

Datasets and Setups. Using the same synthetic data de-
scribed in Sec. 5.3, we randomly mask out 98% of the en-
tries and follow the same data preparation and mode growth
settings. The results of mean curves are shown in Fig. 4.

We also evaluate on two real-world datasets: (i) Indian
Pines hyperspectral image dataset and (ii) a proprietary Covid
disease counts data: location by disease by date, we call
it the health tensor (CovidHT), and the results (refer to ap-
pendix C.4) show that GOCPT has the better fitness and
GOCPTg has decent fitness with good efficiency.

6 Conclusion

This paper proposes a generalized online tensor factorization
and completion framework, called GOCP T, which can support
various tensor evolving patterns and unifies existing online
tensor formulations. Experiments confirmed that our GOCPT
can show decent performance on the general setting, where
most previous methods cannot support. Also, our GOCPT
provides comparable or better performance in each special
setting. The GOCPT package is currently open-sourced.
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