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Abstract. With the proliferation of IoT devices, securing the IoT-based network is of paramount importance. IoT-based
networks consist of diversely purposed IoT devices. This diversity of IoT devices necessitates diverse dataset analysis to
ensure effective implementation of Machine Learning (ML)-based cybersecurity. However, much-demanded real-world IoT
data is still in short supply for active ML-based IoT data analysis. This paper presents an in-depth analysis of the real-time
I0T-23 dataset [9]. Exhaustive analysis of all 20 scenarios of the IoT-23 dataset reveals the consistency between feature
selection methods and detection algorithms. The proposed ML-based intrusion detection system (ML-IDS) achieves
significant improvement in detection accuracy, which in some scenarios reaches 100%. Our analysis also demonstrates that
the required number of features for a high detection rate of greater than 99% remains small, i.e., 2 or 3, enabling ML-IDS
implementation even with resource-constrained IoT processors.

1 Introduction

Today, we live in a world where there are more IoT-connected devices than humans. The projected growth
of IoT devices over the next five years is expected to be ten times the growth in the past five years, reaching 55
billion, i.e., more than four devices per person on earth'.

The IoT is transforming how we perceive and interact with our surroundings. As the number of connected
IoT devices grows, the threat of cyberattacks exploiting constrained resources and the vulnerability of IoT devices
also rises. Enhancing the security of IoT devices is a critical issue, as [oT security is about securing IoT devices
and protecting the integrity of the data and the networks to which IoT devices are connected. Inadequate security
would hinder the growth of the IoT industry. A recent increase in the frequency, extensiveness, and complexity
of cyberattacks affecting thousands of organizations illustrates the persistent challenge of securing connected
devices.

The intrusion Detection System (IDS) monitors network traffic flow to identify attacks to protect network
infrastructure. The IDS is classified broadly as either signature or anomaly-based [1]. The signature-based IDS
compares the traffic flow to the existing attack patterns to detect potential intrusions. The anomaly-based IDS
creates a normal profile from the usual behavior of the network and considers any deviations from the normal
profile as attacks. Although the signature-based IDS is employed [2] in the cloud at the expense of the
communication cost between the cloud and IoT devices, it still cannot detect any unknown attacks, including zero-
day attacks. Due to IoT devices' diversity and resource constraints, the detection based on predefined attack
patterns is unsuitable for IoT networks. Therefore, recent anomaly detection research has demonstrated the
promise of Machine Learning (ML) in identifying malicious Internet traffic [1][3][4]. The IDS with ML
categorizes ML into supervised and unsupervised learnings [4]. However, little effort has been made to engineer
ML models with features geared towards IoT device networks [1]. Adopting ML into the IDS requires high
computation power; however, the required computation can be significantly reduced by selecting a minimum set
of attack features.

The anomaly-based IDS can be categorized as either one-class learning or a multi-class learning method. In
the one-class learning method, ML uses only benign data to learn the common behavior to build the model of the
normal traffic pattern. The threshold for attacks is determined based on the common behavior and a cost (loss)
function, e.g., the Mean Square Error, is adjusted to reduce the false alarm [5]. Once the decision point is
established, the detection process determines an attack if a new data value is greater than the threshold. Otherwise,
the new data value is normal (binary classification). While the one-class learning method uses only benign data
to build the traffic pattern model, the multi-class learning method simultaneously employs normal and attack data
during the training period. The multi-class learning is categorized as either binary classification or multi-class
classification. As described above, the binary classification determines whether there is an attack or not, whereas
the multi-class classification considers not only attack attempts but also what the most vulnerable attack profile is
for further in-depth defense planning [6].

One of the challenges of utilizing ML in cybersecurity is effective feature selection that enhances threat
detection capability. The effectiveness of ML depends on the accumulation of useful data, but an excessive amount
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of unwanted data may result in undesirable outcomes [1]. As a result, ML trained with unwanted data deteriorates
the quality of the detection algorithm. A feature selection algorithm can select wanted data to feed into a detection
algorithm. However, a feature selection algorithm has its characteristics. For example, the correlation feature
selection (CFS) refers to minimum redundancy among the features by ruling out high correlation features.
Minimum Redundancy Maximum Relevance (MRMR) feature selection considers both the correlation and
relevance to the parameters (e.g., importance). Note that CFS and MRMR can be either supervised or
unsupervised. On the other hand, the feature selection in Bot-IoT [3] adopted unsupervised learning, while the
detection algorithm was based on supervised learning. The inconsistency in feature selection and detection
algorithm degrades the detection rate.

Therefore, in our proposal, the consistency of the learning method, feature selection, and detection algorithm
is maintained for a high detection rate. Both feature selection and detection algorithms use supervised learning,
and the character of the feature algorithm is reflected in the detection algorithm. The feature selection is performed
by Information Gain (IG) in the Tree detection algorithm; IG is calculated with entropies, upon which the Tree
algorithm is built. Artificial Neural Network (ANN) utilizes Sequential Forward feature Selection (SFS), in which
the metrics of both ANN and SFS are misclassification.

Our main contribution is as follows. First, we align the metrics of the feature selection scheme with those of
the detection algorithm to improve the overall detection accuracy. Maintaining the consistency between feature
selection and detection algorithm improves the performance by using the same metrics for both. Second, the
computational complexity of ML decreases as the number of features used in ML is reduced. Our comprehensive
analysis of the [oT-23 data offers the minimum number of features necessary to maintain a high detection rate,
e.g., 99%. Last, we analyze and generalize the uncertainty (diversity) of different attack types and time periods in
large-scale 10T-23 dataset scenarios. The authors of [6] investigated only a select few individual and combined
scenarios that may not support many practical IoT applications.

2 Related Work

Related work is discussed in view of whether a work maintains the consistency between feature selection and
detection algorithms among the IoT datasets designed specifically for anomaly-based IDS in IoT networks. Bot-
[oT [3] mimics IoT data in a testbed network while projecting Botnet malware attacks into IoT-mimicked devices
in the VM-based testbed network. The feature selection is made with the correlation coefficient and the joint
entropy while choosing the ten bests out of 30 features. There are a total of 44 features, in which 14 features
engineered by the authors are added to 30 original flow-based analyses (e.g., Argus tool) without evaluating 44
features at once. Bot-1oT performs feature selection of both CFS and joint entropy through unsupervised learning,
while the detection algorithms were evaluated through supervised learning.

The N-BaloT [5] dataset performs an empirical evaluation with real traffic data from nine commercial IoT
devices infected with authentic botnets from Mirai (virus/worm attack due to lack of update mechanism) and
BASHLITE (firmware-based malware). 12 features, including 8 features for packet size (inbound and outbound),
4 for packet count, and 3 for packet jitter were extracted. Instead of applying a feature selection algorithm, the
extracted feature is used directly, and the detection algorithm is based on unsupervised learning for binary
classification.

The Random Forest (RF) algorithm based on a wrapper feature selection was developed by N. Moustafa [7]
from 44 features using the Mean Squared Error (MSE) between the node of a tree and its children’s nodes to
determine how the performance is related to the MSE. The most important features were scaled in a range of [0,1],
where the value 1 refers to the highest correlated attribute (e.g., src_IP) and 0 denotes the lowest correlated
attribute (e.g., duration). Utilizing RF in both feature selection and detection algorithms improves detection rate
due to the consistency between feature selection and detection algorithms for binary classification.

IG for the Waikato Environment for Knowledge Analysis (Weka) is calculated by Hegde et al. [6] to rank
the most important features in both binary and multi-classification among 22 features using one-hot encoding.
The IG and Multi-class Decision Forest (MDF) show consistency as both is based on entropies. However, the
number of features increases due to a one-hot encoding, and that increase may offset the benefit from the
consistency due to the increase in the computation complexity.

3 IoT-23 Dataset

The scarcity of available data leads to bias in Al, and an extensive dataset is required to ensure objective
decision-making in Al applications. One significant research challenge in IoT-based networks is the lack of



comprehensive network-based datasets that reflect modern network traffic scenarios [8]. Nonetheless, the IoT-23
dataset [9] provides data obtained from an IoT-based network with 23 scenarios involving Windows and Linux
OSs in diverse IoT-related attack types. There has not been such extensive network data collection for the real
environment as the IoT-23 dataset.

The IoT-23 data were collected for at least one hour and up to 112 hours depending on how quickly the pcap
file size increased. The 16™ scenario containing over 73 million records, is the largest scenario. The second-largest
scenario is the 2" scenario with 67 million records. The third-largest scenarios are the 10" and the 12%, each with
54 million records. The data size for a single scenario in the IoT-23 is larger than the size of the Bot-IoT dataset
[3]. A broad range of ratios of the number of attacks to the amount of normal data exists due to diverse scenarios
that occur in real-world networks. The data size for each scenario, including attacks and normal data, ranges from
237 records (3™ scenario) to over 73 million records (16" scenario). We analyzed all 20 scenarios using Matlab.

4  Feature Selection Algorithms

Feature selection is an optimization problem that can be categorized into two parts: search strategy and
evaluation strategy. The two parts are further categorized into optimal and heuristic for the search and filter and
wrapper methods for the evaluation. The major difference between the filter and the wrapper methods is that the
filter is independent of the classification (i.e., detection) algorithm, while the wrapper is related to a classification
algorithm, where the feature selection uses the same metrics as the detection algorithm. Among 18 features
(normalization in Fig.1.), the smallest possible number of features is selected for efficient implementation in
resource-constrained IoT devices. Refer to [9] for details attributes of 18 features used in the IoT-23 data set.
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Two feature selection algorithms were investigated: IG and greedy-based SFS. As the Tree algorithm is built
along with the entropies of features, i.e., IG, the Tree algorithm provides the best detection rate. The most
important feature, i.e., the highest IG, becomes the parent of the Tree, from which the rest of the Tree is constructed
based on the IG rank. SFS easily adopts the consistent feature selection and detection as it is a computationally
efficient sub-optimal solution [10]. The greedy-based SFS uses ANN related to misclassification. Thus, SFS
would be favorable to ANN detection algorithm as SFS performs feature selection on detection algorithm metrics.
Our primary concern is the consistency of the feature selection method and detection algorithm to maximize the
overall detection performance.

The Information Gain (IG) is calculated as presented in Egs. (1-3).
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IG (A;) = Info(D) — Info(T) 3

Note that even with the same number of data records and features, the IG values for binary and multiclass
classifications should be different due to the term fireq (C)) in Eq. (1). D is the number of data records. The 1G
depends on the number of attributes in the labeled class (C)), in which each attribute (7) in the label is calculated
as its probability of occurrence in Eq. (2) [11]. Furthermore, the IG is also influenced by the number of features
and the number of data records. Based on the IG, those features in the top 10 to 20% of the IG values are selected
above the line [12] for each scenario that has different the IG values, and the line threshold varies as well. The
evaluation, starting from the highest IG feature to the lowest IG feature, shows that the performance diminishes
rapidly beyond the 20% IG.

The SFS as a wrapper approach includes a learning/classification algorithm, under which misclassification
rate can be used as performance metrics. During the feature selection in SFS, a classification algorithm to
determine misclassification is used in ANN. The procedure for SFS is as follows (refer to Fig. 2). First, the best
single feature is selected for the least misclassification rate among all features. Then, pairs of features are formed
using one of the remaining features, and the best pair is selected. Next, triplets of features are formed using one
of the remaining features, and the best triplet is selected. This procedure continues until one of the stopping
conditions is met. The stopping conditions are: the iteration reaches the 1000" epoch, zero misclassification,
gradient 109, or six consecutive verification checks. From this algorithm, the minimum number of attack features
is determined. For example, the least one is just one feature for scenarios 6, 7, 13, and 18, as shown in Table 1.
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Fig. 2. The PseudoCode of the SFS algorithm.

5 Performance Evaluation

The detection algorithms are performed after the feature selection by IG and SFS with a minimal set of attack
features. The experiment scenario or setting and conditions are as follows. The Tree algorithm uses the
hyperparameter-tuned Tree due to the variety of scenarios. After identifying the hyperparameters (e.g., maximum
depth, minimum sample leaf, and minimum sample split) for each scenario, the Tree algorithm is performed for
detection accordingly. Hyperparameters for ANN are also predetermined while using cross-entropy for the
activation function. The ANN we use has two hidden layers, in which the first layer has 32 neurons and the second
layer has 16 neurons. The input layer relies on the number of features. The output layer is associated with the
labeled classes for each scenario. The data is divided into three groups: training, verification, and test data. We
used five cross-validation folds where the validation check is completed after each epoch (iteration) to determine
whether the model is appropriate. Computation time refers to training and detection time.

All 20 scenarios are analyzed via IG and SFS algorithms for feature selection, and Tree and ANN for
detection, and these 20 scenarios are divided into three groups, simple, intermediate, and complex in terms of the
number of records, and one scenario from each group is presented below with in-depth analysis due to space
constraint.

Simple case (Scenario 8): In the 8" scenario with 4426 records and three classes, the features 9, 14, 15, 16,
17, and 18 are selected as these features exhibit exceeding the IG threshold above the line (threshold) in Fig. 3
[12]. Resp-ip-bytes (18) is shown to be the highest IG, as shown in Fig. 3. The Tree detection rate was 99.9%
while classifying two C&C File Download as File Download and all three File Download as C&C File Download
for a total of five misclassifications as shown in Fig. 4 (left). For the SFS, 3, 5, and 15 features had ANN detection
accuracy of 100% without any misclassifications as shown in Fig. 4 (right). Although feature 15 is common, the
feature set for IG and SFS varies wildly depending on the algorithm, and our study was motivated by the need for



careful selection of the proper algorithm through experimentation. The computation time for the Tree and ANN
was about 0.4 and 1 second, respectively. Note that C&C File Download occurs at the attacker’s C&C server for
a secondary attack.
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Fig. 4. Analysis of 8™ scenario: the left is Tree, and the right is ANN.

Intermediate Case (Scenario 15): In the 15" scenario, with more than 3 million records and six classes, the
features 2, 5, 10, and 14 are selected from IG with the top 10-20% features. Conn-state (10) achieved the highest
IG. The Tree had 1724 misclassifications with a computation time of 2618 seconds. The detection accuracy for
Tree was 99.9%. Surprisingly, for the SFS, 1, 3, 8, and 14 features had ANN detection accuracy of 100% with
just two misclassifications and a computation time of 1315 seconds. Again, feature 14 is the only common one in
this case. Note that the testing environment for the KDD dataset (presumably Internet router/switch) would differ
from the IoT dataset. The KDD dataset essentially shares the same traits regardless of the application. However,
the IoT dataset in varying domains and applications do not share the same traits, so each application of the IoT
dataset needs to be considered separately. This characteristic calls for “federated learning” more often in an IoT
environment than in a router/switch-based Internet. We plan to investigate federated learning in our future work.



Complex Case (Scenario 12): In the 12 scenario, with over 54 million records and four classes, features 2
and 4 are selected from the IG. Idresp, (4) achieved the highest IG, as shown in Fig. 5. The detection rate for Tree
was 100% (due to rounding off) for a total of 8660 misclassifications as shown in Fig. 6 (left). The computation
time for Tree took 55 minutes. For the SFS, features 2, 4, and 14 had ANN detection accuracy of 100% for a total
of 211 misclassifications as shown in Fig. 6 (right). The computation for ANN with the three selet features (2, 4,
and 14) took 1 hour and 15 minutes while that with all 18 features was 6 hours and 30 minutes.
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Fig. 6. Analysis of 12" scenario: the left is Tree, and the right is ANN.

Table 1 shows the results of the extensive computational analyses. The appropriate feature set by IG and SFS
for each scenario contributes to the reduction of computations complexity. The performance shown in Table 1 is
achieved through the consistency in feature selection and detection, without which the 100% or nearly 100%
accuracy would not have been possible. As seen in Table 1, the most frequent feature selections for IG are 2, 4,
and 14, while those for SFS are 3 and 14. Therefore, the most crucial feature in IG and SFS is 14, 'history’.



Table 1. Feature selections and performance comparison.

Scenario Features by IG Features by SFS Tree ANN
1 2.3.4.10,14 34,14 100% 100%
2 2.4 2,3,4,10,16 100% 100%
3 3,4,10,14 14,16 99.60% | 100%
4 2,4,10,14 4,8,14,17 100% 100%
5 2.5,8.10,14 2,68,11 100% 100%
6 5,14 3 100% 100%
7 4,5,14 3 100% 100%
8 9,14,15,16,17,18 35,15 99.90% | 100%
9 34,14 3,6 100% 100%
10 2,5,10,14 1,3,8,14 100% 100%
11 2.4 4,7 100% 100%
12 2.4 24,14 100% 100%
13 4,5,14 3 100% 100%
14 2,4,10,14 1,6,8,10,14 100% 100%
15 2,5,10,14 1,3,8,14 99.90% | 100%
16 10,14 4,10,14 100% 100%
17 2,4,5,14 34 100% 100%
18 4,5,15 14 100% 100%
19 8,9,10,14 10,14 100% 100%
20 245,14 4,14 100% | 99.90%

6  Performance Analysis

As expected, ANN outperformed Tree in all scenarios, except for the 20" scenario with over one million
records and the 14" scenario with over 10 million records. During the feature selection by SFS in all scenarios,
the stopping condition was reached with ‘the gradient.” However, in the 20" scenario, the SFS was stopped by
‘the validation check,” which means that our ANN model is inappropriate for that specific scenario. The
inappropriate model means that the verification check happened six times. As a result, the detection algorithm for
ANN is also stopped by ‘the iteration’ rather than ‘the gradient’ as usual. The Tree had just four misclassifications
with a detection rate of 100%, whereas the ANN had 1437 misclassifications with a detection rate of 99.8575%.
The computations time for Tree and ANN was 28 seconds and 938 seconds, respectively.

During the analysis of the 14 scenario, the gradient values of the selected features were almost the same and
just below the limited gradient in which the contribution for each feature was equalized, resulting in decreased
detection rate and increased computation time. The Tree had only 14 misclassifications with a detection rate of
100%, while the ANN had 345 misclassifications with a detection rate of 99.9967%. The computation times for
Tree and ANN were 262 seconds and 1320 seconds (due to the increased number of features), respectively. The
SFS algorithm was stopped by ‘the gradient’ as usual.

Tree performs comparatively well, achieving an accuracy rate of nearly 100%, suggesting that the data may
be segmented for relatively small datasets. However, when the dataset is complex, the performance of the Tree
deteriorates while the ANN continues to show an excellent detection rate for all dataset sizes. In general, ANN
refers to its high complexity and computation time. Our prior study [13] supported that the NSL-KDD dataset
with increased inputs/features showed the highest detection performances. For example, for the KDD dataset, the
optimal number of features was 15, and the performance of ANN degraded when there were either less than or
more than 15 inputs. In contrast, the detection accuracy for ANN in the [oT-23 dataset with fewer features resulted
in higher performance than with all features. Note that the detection accuracy for the Tree algorithm in scenario
19 is higher with all 18 features than with the four selected features (8, 9, 10, and 14) as shown in Table 1, though
the difference is insignificant. The computation time for the ANN in scenario 19 was only 12 seconds with the
two selected features (10 and 14) whereas it was 64 seconds with all 18 features with the same performance. ANN
with a smaller number of features requires less computation time in some scenarios than that of Tree, which can
be the simplest ML classifier. Since the performance of ANN and computation time in the IoT-23 dataset rely on
the number of inputs, it is feasible for ANN to be implemented into IoT devices after selecting an appropriate
number of features.

The major claims of our study are as follows. One, the ANN outperforms the Tree in view of detection rate,
but its complexity hinders its implementation in IoT devices. The complexity of the ANN may be reduced by
selecting a minimal set of attack features. Two, we show the superiority of the ANN over the Tree, especially
when applying the consistent metrics in feature selection and detection algorithms. Finally, in IoT-23 data
analysis, selecting a fewer number of features achieves improved detection performance in the ANN algorithm
due to the use of the same metrics for feature selection and detection. This result is contrary to the KDD data in



the Internet router environment. Clearly, fewer features require less computation time to the point that even IoT
devices are fully capable of handling the required ANN computation, opening an opportunity to implement it in
IoT devices.

7  Conclusion and Future Work

This article analyzed the several-gigabyte IoT-23 dataset comprised of real environment-based data. With in-
depth analysis, we applied Machine Learning in Intrusion Detection systems for securing loT-based networks
while ensuring consistency between feature selection and detection algorithm. This consistency enhanced the
detection accuracy to nearly 100%. Furthermore, the computation time is reduced by selecting a minimal set of
attack features in the computation of the complex ANN. All 20 scenarios in the IoT-23 are analyzed for feature
selection and detection. One of the scenarios behaves differently than others; the Tree with 18 features in scenario
19 outperforms that with a fewer number of features while the performance of the ANN remains the same.
However, even in that scenario, the computation time for the ANN with a few select features drops to about five
times less than when all 18 features are selected. Due to the heterogeneity of IoT data inherent to diverse IoT
sectors, applying the domain knowledge to Artificial Intelligence during feature engineering and detection will
enhance overall detection performance. Our in-depth analysis of the [0T-23 dataset demonstrated the feasibility
of an ML-based Intrusion Detection System for securing a heterogencous IoT-device-connected home or
enterprise network. We will further study Federated Learning based on distributed model training using local
datasets from large-scale nodes without uploading the raw training data.
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