2022 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) | 978-1-6654-5818-4/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICAIIC54071.2022.9722625

Graph Neural Network-based Clustering
Enhancement in VANET for Cooperative Driving

Hang Hu, Myung J. Lee
Department of Electrical Engineering
City College, City University of New York
New York, NY, USA, 10031
Emails: hhu002 @citymail.cuny.edu, mlee @ccny.cuny.edu

Abstract—The significantly increasing number of vehicles
brings convenience to daily life while also introducing significant
challenges to the transportation network and air pollution. It
has been proved that platooning/clustering-based driving can
significantly reduce road congestion and exhaust emissions and
improve road capacity and energy efficiency. This paper aims to
improve the stability of vehicle clustering to enhance the lifetime
of cooperative driving. Specifically, we use a Graph Neural
Network (GNN) model to learn effective node representations,
which can help aggregate vehicles with similar patterns into
stable clusters. To the best of our knowledge, this is the first
generalized learnable GNN-based model for vehicular ad hoc
network clustering. In addition, our centralized approach makes
full use of the ubiquitous presence of the base stations and edge
clouds. It is noted that a base station has a vantage view of
the vehicle distribution within the coverage area as compared to
distributed clustering approaches. Specifically, eNodeB-assisted
clustering can greatly reduce the control message overhead
during the cluster formation and offload to eNodeB the complex
computations required for machine learning algorithms. We
evaluated the performance of the proposed clustering algorithms
on the open-source highD dataset. The experiment results demon-
strate that the average cluster lifetime and cluster efficiency of
our GNN-based clustering algorithm outperforms state-of-the-art
baselines.

Index Terms—vehicular ad hoc network (VANET), graph neu-
ral networks (GNNs), clustering algorithm, stability, cooperative
driving

I. INTRODUCTION

With the rapid development of the Automobile Industry
and Urbanization, there are more and more vehicles on the
roads. It is well-established that more than one billion ve-
hicles have been registered globally, expected to grow in the
following decades. Consequently, the problems associated with
the increased number of vehicles have become more severe,
including traffic congestion, traffic accidents, energy waste,
and air pollution. In the United States, traffic congestion costs
drivers more than $100 billion annually due to wasted fuel and
lost time [1]. In addition, exhaust emissions caused by traffic
congestion are considered a key contributor to air pollution
and a major haze component in many cities. For instance, the
most significant source of greenhouse gases in the USA comes
from the transportation sector, which accounts for 29% of total
greenhouse gas emissions [2].

While the construction of roads can increase traffic capacity
and reduce traffic congestion to some extent, it is unsustainable
due to the enormous construction costs and limited land
availability, especially in urban areas. An effective way to
solve these problems is to change the driving pattern from
individual driving to platoon driving [3] [4]. In general, a
platoon-based driving pattern is a cooperative driving pattern
of a group of vehicles with common interests, where one
vehicle follows another and keeps a small and almost constant
distance from the preceding vehicle to form a platoon.

978-1-6654-5818-4/22/$31.00 ©2022 IEEE 162

The cooperative platoon-based driving pattern can signifi-
cantly enhance road capacity, safety, energy efficiency, and col-
laborative environment. However, establishing and maintaining
stable clusters or platoons in Connected Vehicles Networks
are challenging because of the heterogeneous and drastically
changing traffic scenarios. Moreover, in order to maintain
multicast group communication in cooperative platoon-based
driving among cluster members (CMs), the stable clustering
algorithm is crucial. As all future vehicles can access base
stations (BS or eNodeB), more efficient clustering is possible
but yet to be prevalent with the help of cellular infrastructure,
ie., BS.

Most vehicular clustering algorithms have taken a dis-
tributed approach based on Dedicated Short-Range Communi-
cations (DSRC) without infrastructure support. Thus, they rely
mainly on periodic HELLO messages exchanged among vehi-
cles. Moreover, the most vital part of the clustering algorithm
is Cluster Head (CH) selection [5] [6] [7], which is essential
for the stability of the cluster lifetime and the control message
overhead involved in forming and maintaining these clusters.
Weight-based algorithms are widely used for CH selection [8]
[9]. Each vehicle calculates a metric according to messages
received from its neighbors. The metric represents the fitness
to serve as a CH and broadcast to each vehicle’s neighbors.
The vehicle with the highest metric weight will act as a CH
among nearby vehicles. The metric can generally be related to
network metrics, such as degree of connectivity, link stability,
and density, and mobility metrics, such as position, velocity,
acceleration, and destination.

This distributed clustering strategy tends to increase the
control message overhead compared with centralized strategy.
Additionally, the weight-based algorithm of CH selection
needs to manually adjust the combination of hyper-parameters
among multiple metrics. Last but not least, existing vehicular
clustering algorithms are not intelligent and learnable to adapt
to different traffic scenarios. As a result, they are not easy to
satisfy the requirement of the evolving Intelligent Transporta-
tion System (ITS).

In this paper, we propose to use Graph Neural Network
(GNN) [10] [11], which fits naturally to solve clustering type
of graph problem. To the best of our knowledge, applying
GNN to solve the clustering problem in Vehicular Ad hoc
Network (VANET) is the very first attempt. GNN uses both
feature and graph information and usually achieves better
performance than methods leveraging single feature or graph
structure such as k-means [17] or Spectral Clustering [12].
Our proposed algorithm is a centralized approach and off-
loads the computation of GNN to BS instead of executing it at
individual vehicles, alleviating the computational burden from
vehicular nodes. We note that a base station has a vantage view

ICAIIC 2022

Authorized licensed use limited to: City College of New York. Downloaded on August 02,2022 at 14:09:03 UTC from IEEE Xplore. Restrictions apply.

of the vehicle distribution within the coverage area compared
to distributed approaches. Specifically, eNodeB-assisted clus-
tering can greatly reduce the control message overhead during
cluster formation. In practice, a trained GNN model located at
BS or edge cloud utilizes the collected vehicle information to
perform clustering and informs CHs to formulate cooperative
driving patterns to improve traffic efficiency. Fig. 1 illustrates
the framework of vehicular network clustering.

Infrastructure and Database

gNodeB Database
((())) o— 7 aggregator |
d aggregator 2
pos] e e
a s
Input Graph Representation
Cluster
= = = = -l Formation
-~ N
04 ~
7 M N
@D 1 (o) 0 S 1(om) AN
— ! CH X
COD @©D @D | @D j
X \ _CM_ Vehicle /
V2V Domain D \\ D) cruster
\\ ’/

Fig. 1. Architecture of Vehicular Network Clustering.

II. RELATED WORKS

Clustering is introduced to improve routing scalability and
reliability and enhance the stability of the collaborative envi-
ronment by exploiting the formation of hierarchical network
structures. By grouping vehicles together in the consideration
of correlated spatial distribution and relative velocity, these
cluster groups can serve as the foundation for accident or
congestion detection, information dissemination, and entertain-
ment in the applications of ITS.

A. Distributed Clustering Approaches

The earliest VANET clustering methods are derived from
Mobile Ad hoc Network (MANET) clustering approaches to
facilitate the distribution of network resources. A majority
of them have taken a distributed approach based on DSRC
without infrastructure support. Many existing VANET clus-
tering algorithms focus on optimally selecting CHs because
the stability of a cluster depends primarily on the selection
of the CH. Weight-based metrics are the key to the most
clustering strategies: position [13], speed [14], destination
[15], and multiple metrics [16]. Most conventional distributed
approaches still incur high communication overhead and prove
inefficient in a highly dense and dynamic environment.

B. Machine Learning based Clustering Approaches

Clustering algorithms began adopting machine learning to
overcome the required complex computation in distributed
clustering. K -means algorithm [17] is the most frequently used
machine learning algorithm in VANET. Some k-means variant
algorithms [18] are proposed to enhance initial centroid selec-
tion to boost performance. Often, the fuzzy logic inference
is integrated with a machine learning algorithm to enhance
the stability of a cluster [19] by predicting the future speed
and the positions of CMs. Nevertheless, the design of fuzzy
rules needs much domain knowledge, and fuzzy logic does not
have the learning ability as is well-known. Some researchers
recently proposed using Spectral Clustering, which is related
to Eigenvalue Decomposition (EVD) on the normalized graph
Laplacian matrix, to enhance clustering stability in VANET
[20].

C. GNN based Clustering Approaches

Recently, research on analyzing graphs with machine learn-
ing has been receiving more attention because of the great
expressive power of graph data, which contains rich relation
information among elements. Hence, GNNs have been pro-
posed to solve the non-Euclidean domain problem. In GNNg,
node clustering divides the nodes into several disjoint groups
where similar nodes should be in the same group. [21] has
applied graph autoencoder (GAE) to node clustering (citation
network) by an unsupervised learning framework. Even though
GNNs have many applications across different tasks and
domains, applying GNN to solve the clustering problem in
VANET is the very first attempt.

In this paper, our goal is to enhance the vehicle system’s
stability and optimize the average lifetime of all clusters. The
problem of clustering is innovatively transformed into aggre-
gating vehicles with similar node representations (embeddings)
in the same cluster as learned by the GNN model. Specifically,
a partitioning method optimally divides the vehicle nodes into
groups with a minimum intra-cluster dissimilarity. Our pro-
posed algorithm coincides with the goal of VANET clustering,
which is to encourage vehicles with similar motion patterns,
such as similar position, velocity, acceleration, etc., to form a
cluster.

III. GNN-BASED CLUSTERING IN VANET

In this section, we demonstrate how to develop a GNN-
based clustering scheme that collects vehicle feature as its
input and node representation as its output.

A. Graph Construction

The interconnections among vehicles driving on the road
can be formulated as an undirected homogeneous dynamic
graph. To this end, we propose to use GNN, which fits
naturally to solve clustering type of graph problem and uses
both feature and graph information. We use the raw vehicle
feature as the node feature of the graph. A vehicle feature of
vehicle node v; at time t is x;(t) = {s;, p;, @i, l;, w;}, where
s; 1s the speed, p; is the position, a; is the acceleration, /; and
w, are the length and width of vehicle v;. In the following,
we use the subscript ¢ to denote vehicle node v;.

The vehicle interconnection metric is designed to weigh the
similarity between the movement patterns of two vehicles. In
our model, the vehicle interconnection metric is calculated
by the improved force-directed algorithm designed based on
virtual forces [22], which is inspired by Coulomb’s Law
to select CH and create stable clusters. The force-directed
algorithm assigns the forces on the edges in the VANET
graph. Note that the force also represents the weight between
any two connecting vehicle nodes. The most straightforward
way is to assign force as if the edges were springs and the
nodes were electrically charged particles. The entire network
is modeled as a physical system. The forces are applied to
the vehicle nodes, pulling them closer together or pushing
them further away. Every vehicle node exerts a force F' on
its neighbors according to their distance and relative velocities.
Fig. 2 shows the neighbored vehicle nodes apply relative forces
to the vehicle v;.

A positive force between two nodes indicates that the pair of
nodes are moving in the same direction. In contrast, a negative
force between two nodes means that the vehicles are moving in
opposite directions. In our model, the relative force is always
positive since we only consider the vehicles are moving in the

163

Authorized licensed use limited to: City College of New York. Downloaded on August 02,2022 at 14:09:03 UTC from IEEE Xplore. Restrictions apply.

Vehicle vy, Vehicle v;
- -
& B 3% 3
F; F;;
\\ % Vehicle v; ”,’
-
. £
»# Fim Fil\\
- -
) B B, ()
Vehicle v, Vehicle v,

Fig. 2. Neighbored forces applied to vehicle v;.

same direction, which facilitates the stability of VANET. The
greater the positive forces among nodes are, the more similar
the moving pattern is.

Here we explain how to calculate the pairwise relative force
F;; for every neighbor applied. Naturally, the relative force is
decomposed along the x-axis and the y-axis. We can obtain
relative force Fj; according to equations defined as:

4iq; qiq;
Fijo = kijo—33 Fijy = Kijy 5 ey
J J DZQJ JY JY Dz2]
D,]x(t) =T; — xj; D”x(t + dt) =T + dl‘i — Ij — dl‘j (2)

D;jy(t) =yi — yj; Dijy(t +dt) = yi +dy; —y; —dy; (3)
1

kiiw = 4
J 1+ |Dyjo(t + dt) — Diju(t)|dt “)
kiiy = L 5)
YY1 4 | Dyjy (t + dt) — Dijy(t)|dt
== R — Djj.(t), if Djju(t) < Djju(t + dt) ©)
7 | R+ Dyju(t), if Dyju(t) > Diju(t + dt)

Where Fjj;, and Fj;, are the relative forces along the x-
axis and y-axis. k;;, and k;;, are the relative mobility pa-
rameters along the z-axis and y-axis, respectively. ¢; and
g; represent relative maintenance parameters indicating that
how far they are beyond communication distance. D;; is the
current distance among the nodes. D;;,(t) and D;j,(t) are
the distance between two nodes along the z-axis and y-axis at
time t. Similarly, D, (t+dt) and D;;, (t+dt) are the distance
between two nodes along the x-axis and y-axis at time ¢ + dt.
x; and y; represent the x-axis and y-axis position of node v;.
dzx; and dy; are the position increment in time dt on the x-axis
and y-axis of node v;. R is the transmission range. This force
F;;will be used as weight to propagate information in Eq. (8).

B. Design of GNN Clustering Algorithm

Having obtained a customized graph dataset in the last
section, we present our GNN-based clustering algorithm here.
In general, our GNN model comprises four layers, including
an input layer, two SAGE (SAmple and aggreGatE) Convolu-
tional layers (SAGEConv), and an output layer. The dimension
of the input layer is the vehicle feature, and the output
dimension is predefined (e.g., 4 in our experiment). The core
layer of our GNN is inductive SAGE Convolutional layers.

SAGEConv layer is derived from graphSAGE [23], a gen-
eral inductive framework that leverages node feature infor-
mation to generate node embeddings for each node efficiently.
This inductive capability can generalize to operate on evolving
graphs and unseen nodes. Specifically, the SAGEConv layer

generates node embeddings by aggregating information from
their local neighbors. The detailed visual illustration of the
SAGEConv layer is shown in Fig. 3 The aggregation of
SAGEConv is formulated as:

1 _
hY = U(Wk . N jezm(h;C 1 ~Fij)) (8)

Where h¥ is the embedding of node v; in the kth layer. N; is
the neighborhood set connected to node v;. W* is the learnable
weight parameters of fully connected layer k. F}; is the weight
to aggregate message. o(-) is the activation function ReLU.
The number of GNN layers, namely search depth, is also
the number of neighbors of hops aggregated information by
the target node. In a k-layer GNN, nodes are able to collect
information from the neighbors of the k-hops.

Aggregate Feature Information From Neighbors

= “Sm-=
B e
B s -m-E - <o
inry
D =
B s
g Node features Aggregator

Fig. 3. Visual illustration of the SAGEConv layer.

On the other hand, early node embedding approaches are
inherently transductive and directly optimize the embedding
for each node using matrix-factorization-based objectives [25].
Consequently, they do not naturally generalize to unseen data
since they predict nodes in a single, fixed graph. Combined
with our application, the characteristic of the SAGEConv
satisfies the dynamic traffic scenario. Our proposed GNN-
based clustering algorithm is shown in Algorithm 1, where
Ja(z;) is the objective function discussed in section III part
C. Due to the deeper layers (2nd loop), this process is iterative,
and the nodes gradually acquire more and more information
from further away from the graph. We use 2 SAGEConv layers
(i.e., search depth K = 2). There are several choices of ag-
gregator architectures, such as Mean aggregator, Long Short-
Term Memory (LSTM) aggregator, and Pooling aggregator.
Here we choose Mean aggregator, which is a simple but with
significant gain in performance to compute the embedding.
The output is a low-dimensional vector embedding of the
nodes. It already proves to be extremely useful for feature input
for various downstream tasks such as classification, prediction,
and clustering.

C. Model Training

To learn effective and useful representations in a completely
unsupervised learning fashion, a graph-based loss function
Ja(z;) is applied to the output representations z;, and the
weight matrices W is tuned via backward propagation. This
loss function is defined as:

Ja(zi) = — Z (yij log(9iz) + (1 — viz) log(1 — §iz)) (9)
ijev

iy = 0(2] z), (10)

where j is a node v; which is within the transmission range
to node v;. §;; denotes the probability of an edge with logits
between the node ¢ and j.

Specifically, we sample the edges in a graph as positive
examples and non-existent edges (i.e., node pairs with no

164

Authorized licensed use limited to: City College of New York. Downloaded on August 02,2022 at 14:09:03 UTC from IEEE Xplore. Restrictions apply.

edges between them) as negative examples. Positive and
negative examples have the same number. Then, the positive
and negative examples form positive and negative graphs,
respectively. Along with the forward propagation, we can
calculate node representations via the GNN model and apply
them to the positive and the negative graphs for computing
pairwise probability among nodes. We can calculate the loss
and update model parameters via stochastic gradient descent
along with the backward propagation.

Algorithm 1: GNN-based Clustering Algorithm

: Graph G(V, E), edge weight F};
Vehicle feature x;,Vi € V
Search depth k, Vk € {1, ...,
Weight matrices W
Neighborhood set V;
Number of iterations 7'
Graph-based loss function Jg
Output: Clustering assignments

1 hY 2y

2 fort=11t T do

Input

K}

3 for k=11t K do
4 for i ¢ V do
5 BE o (Wh Z BT Fy));
EN;
6 2 hE/|IRE |2
7 end
8 end
9 Calculate J(z;) and update via stochastic gradient
descent

10 end
11 Run k-means on output embeddings z; to obtain final
clustering results

IV. PERFORMANCE EVALUATION

In this experimental section, we first introduce the bench-
mark datasets and experimental parameter settings used in
the experiments. After that, we evaluate the training of the
proposed GNN model to validate that our model can learn
useful and effective node representations. In addition, we show
the baseline algorithms used in the results. Finally, we evaluate
the metric performance used for VANET clustering between
our algorithm and the baseline algorithms.

We implement our simulation platform in Python framework
with PyTorch [26] and Deep Graph Library (DGL), which
is a Python package built for easy implementation of graph
neural network model family [24]. In addition, we conduct
the following experiments on a computer with a 2.21GHz Intel
Core 17-8750H CPU, 16GB Memory. Our proposed scheme is
used for highway scenarios. Furthermore, the traffic model and
the evaluations are based on real traffic data.

A. Datasets and Parameter Settings

1) Datasets: We construct a customized graph dataset for
model training on the open-source highD dataset [27]. The
highD dataset is new naturalistic vehicle trajectory recordings
on German highways. A camera-equipped drone recorded the
traffic with a 25fps frame rate at six different locations, and it
covered a road segment of about 420 m length. The locations
vary by the number of lanes, speed limits, and traffic density.
Using state-of-the-art computer vision algorithms for semantic
segmentation, the authors have estimated every pixel of each

frame, whether it belongs to a vehicle or the background.
The positioning error is typically less than ten centimeters.
It is convenient to obtain traffic information, including vehicle
trajectory, vehicle type, size, and maneuvers. We extract vehi-
cle feature x; including speed s;, position p, acceleration a;,
length [; and width w; of vehicles and standardize features by
removing the mean and scaling to unit variance.

We choose sequence 13 recording to build the graph dataset,
which involves the largest number of vehicles, since machine
learning algorithms generally have a distinct advantage when
dealing with a large amount of data. With the graph construc-
tion algorithm in section III part A, we generated 1000 training
graphs and 210 testing graphs where we only consider cars
instead of trucks since cars and trucks might have different
driving patterns. For simplicity, we consider the same type of
cars. The graph construction of data frame 32 is shown in
Fig. 4. The green triangle stands for the vehicles. The brown
dashed lines represent the edges among the vehicles. The blue
dashed lines indicate lanes.

Display Cars (no Trucks)
= > 2
> > > > > » > > >
»
r L 3 >__» >

Graph Construction

Fig. 4. Visual illustration of Graph Construction.

2) Parameter Settings: The dimension of the input layer
is 8 (i.e., vehicle feature dimension). We set the dimension
of the hidden layer and output layer to low-dimensional as 4.
The maximum epoch for training is 400. To avoid overfitting,
we apply early stopping. If the number of times that the
validation loss is greater than the minimum loss exceeds a
threshold (e.g., 150 in our experiment), the training will stop.
We randomly sample the edges on each graph to form the
training and validation sets. The edge ratio in the training
set to the validation set is 9 to 1. We select ADAM with a
learning rate of 0.003 as the optimization strategy. In addition,
for reproducibility, we set a random seed (42069).

B. Model Training and Clustering Results

In order to evaluate the performance of node representations
of our GNN model, we employ three metrics: Binary Cross
Entropy Loss, Accuracy, and Area Under Curve (AUC). Binary
Cross Entropy Loss is the objective function (i.e., Eq. (9)).
AUC stands for the area under Receiver Operating Charac-
teristic (ROC) curve, and the higher value indicates better
performance. Accuracy is the ratio of the correctly classified
elements to the total number of elements.

TP+TN
TP+TN+FP+ FN’

where T'P, TN, FP and F'N are true positive, true negative,
false positive and false negative, respectively.

an

Accuracy =

165

Authorized licensed use limited to: City College of New York. Downloaded on August 02,2022 at 14:09:03 UTC from IEEE Xplore. Restrictions apply.

After 1.5 hours of computation, the training of our GNN
model is completed. The results show that the training and
validation losses are 0.041 and 0.084, respectively. The train-
ing and validation accuracy are 0.986 and 0.969, respectively.
In addition, the loss and accuracy on the testing graphs are
0.063 and 0.978, respectively. Here validation set is used
to check the model convergence during training and avoid
overfitting. Moreover, the testing set is applied to evaluate
model generalization capability, and the AUC on testing graphs
gets a good score of 0.998. Thus, we conclude that our GNN
model can learn useful and predictive node representations.
The training loss and accuracy are shown in Fig. 5. We have
obtained a trained GNN model that can be used to learn useful
node representations. Furthermore, we apply the trained GNN
model on a graph and then obtain the clustering results by
using k-means on node representations of the graph.

30 Learning curve of GNN model

— train
—— dev

Binary Cross Entropy Loss
= = N N
o % o w

o©
s
L

e
<)
|

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Training steps x10°

Accuracy
o © o o =
(o)} ~ © o o
|) | ’ !

©
5
L

— train
—— dev

o
>

00 05 10 15 20 25 30 35
Training steps x10°

Fig. 5. Loss and accuracy curve during training.

In order to see the clustering results, we refer to [18] to
select the number of clusters:

[

where L denotes the length of the road. R denotes the
transmission radius of the vehicle. The length of the road
segment L is about 420 m, and the transmission range R is
defined as 100 m. Therefore, the number of clusters is n = 3.
The clustering result on testing data frame 66 is shown in
Fig. 6. The colored triangles represent the 3 clusters formed
by our proposed clustering algorithm. The red dashed circles
mark the CHs.

(12)

C. Baseline Algorithms

We used the following clustering methods as the baseline
algorithms in our comparisons.

1) Method using features only: k-means is traditional clus-
tering algorithms [17]. Here we run k-means on our original
vehicle feature as a benchmark.

Fig. 6. GNN-based clustering results.

2) Method using graph structure only: Spectral Clustering
[20] uses the adjacency matrix as the input similarity matrix
to perform dimensionality reduction before clustering and is
widely used in graph clustering.

3) Method using both features and graph: We also compare
our proposed algorithm with the Graph Autoencoder (GAE)
based clustering algorithm [21], which is an unsupervised
learning network embeddings by encoding nodes/graphs into
a latent vector space and reconstructing graph data from the
encoded information. Since GAE is a matrix-factorization-
based method, it can only be used for fixed graphs. Thus,
we trained every graph before evaluating them.

D. VANET Performance Evaluation and Results

We evaluate the clustering performance in VANET based on
the highD dataset by our GNN-based algorithm and baseline
algorithms. Since the highD dataset covers a road segment, we
can only obtain a limited period of tracking time and distance.
The coverage of the road segment is about 420 m length. Each
vehicle is visible for a median duration of 13.6 s.

We run our algorithm on 210 testing graphs. Then, we take
each testing graph as the initial frame and track each initial
frame. We read the data frames backward until all vehicles on
the initial frame disappear in the road segment. In this finite
process, we record the number of vehicles out of the trans-
mission range of corresponding CHs and leaving the initial
clusters. In the whole process, we tracked 67,119 frames, and
it involved 4558 vehicles. The number of vehicles breaking the
initial clusters is shown in Fig. 7. In the above and following
process, we both run ten times to eliminate randomness and
then calculate the mean and standard deviation. The results
show that our algorithm corresponds to the minimum number
of vehicles breaking the initial clusters.

500

400 I

3001

o l
o4

k-means Spectral GAE Our GNN

Num of Cars Breaking Clusters

Fig. 7. Number of vehicles breaking the initial clusters.

On this basis, we evaluate the average cluster lifetime on
the testing graphs, which indicates the time span that the CMs
keep unchanged. If a cluster whose CMs remain unchanged
during our whole trace on the highD dataset, its average cluster
lifetime is this whole trace time. As shown in Fig. 8, the
average cluster lifetimes are 11.039+0.038 s, 11.231+£0.099
s, 11.837+0.110 s, 12.069+0.037 s with confidence 95% for
k-means, Spectral Clustering, GAE, and our GNN. Clearly,
the longer the average cluster lifetime is, the more stable
the cluster is. Compared with baseline algorithms, our GNN-
based clustering algorithm has the longest average cluster

166

Authorized licensed use limited to: City College of New York. Downloaded on August 02,2022 at 14:09:03 UTC from IEEE Xplore. Restrictions apply.

lifetime, reaching 12 s, which is very close to the median
duration of 13.6 s. Furthermore, methods using both features
and graph structure, i.e., GAE and our GNN, are more stable
than methods using either features or graph structure only.

12.5
0}
o 12.01
E
k]
5 1154
g
I
3 11.01
(9]
()]
o
105
=4

10.0 4 .

k-means Spectral GAE Our GNN
Fig. 8. Average cluster lifetime.

We also performed a quantitative analysis of coverage
percentage (CP). In this paper, the CP is defined as:

N - N Iso

N)
where Ny, is the number of isolated vehicles which do not
belong to any cluster. As shown in Fig. 9, the coverage percent-
age of four algorithms are 86.062+0.455%, 98.383+0.173%,
97.734+0.517%, 98.927+0.111% with confidence 95%, re-
spectively. The results indicate our GNN-based algorithm’s
cluster efficiency outperforms baselines.

CP= 13)

100.0

97.5 4

95.0 1

92.54

90.0

87.51

85.0 1

Coverage Percentage (%)

82.54

k-means Spectral GAE Our GNN

Fig. 9. Coverage percentage.

V. CONCLUSION

In this paper, our research aimed to establish and main-
tain stable clusters for cooperative driving in VANET. Based
on quantitative and qualitative analysis on the open-source
highD traffic dataset, it can be concluded that our GNN-based
clustering algorithm using both features and graph structure
outperforms the baseline algorithms. Moreover, this is the
very first attempt to solve the VANET clustering problem by
applying GNN. Our intelligent and learnable GNN model gives
the possibility to adapt to different traffic scenarios.

As future works, we plan to study other traffic scenarios
like urban environment and Simulation of Urban MObility
(SUMO) for long-term performance since the highD dataset
is limited in total tracking time.

ACKNOWLEDGMENT

This research is supported by NSF IRNC Grant No.
2029295.

REFERENCES
[1] Transport Topics. “Traffic congestion costs billions in wasted
fuel, time, report says,’Mar. 28, 2014. [Online]. Available:

http://www.ttnews.com/articles/basetemplate.aspx ?storyid=29007.

(2]

[4]

(51

(6]

(71

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27)

167

EPA (United States Environmental Protection Agency). Sources of
Green-house Gas Emissions. Greenh. Gas Emiss. Accessed 3 Mar 2020.
https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions.
P. Kavathekar and Y. Chen, “Vehicle platooning: A brief survey and
categorization,” in Proc. 7th ASME/IEEE Int. Conf. MESA/ASME
DETC/CIE, 2011, pp. 1-17.

D. Jia, K. Lu, J. Wang, X. Zhang, and X. Shen, “A Survey on Platoon-
Based Vehicular Cyber-Physical Systems,” IEEE Communications Sur-
veys & Tutorials, 18(1), 2016, pp.263-284.

C. Cooper, D. Franklin, M. Ros, F. Safaei, and M. Abolhasan, “A
comparative survey of VANET clustering techniques,” IEEE Commu-
nications Surveys & Tutorials, 19(1), 2016, 657-681.

A. Katiyar, D. Singh, and R. S. Yadav, “State-of-the-art approach to
clustering protocols in vanet: A survey,” Wireless Networks, 26(7), 2020,
5307-5336.

M. Ren, J. Zhang, L. Khoukhi, H. Labiod, and V. Veque, “A review
of clustering algorithms in VANETS,” Annals of Telecommunications,
1-23, 2021.

A. Daeinabi, A. G. P. Rahba, and A. Khademzadeh, “VWCA: An
efficient clustering algorithm in vehicular ad hoc networks,” J. Netw.
Comput. Appl., vol. 34, no. 1, 2011, pp. 207-222.

R. Chai, B. Yang, L. Li, X. Sun and Q. Chen, “Clustering-based
data transmission algorithms for VANET,” International Conference on
Wireless Communications and Signal Processing, Hangzhou, 2013, pp.
1-6.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, 32(1), 2020, 4-24.

J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, M. Sun, and et
al., “Graph neural networks: A review of methods and applications,” Al
Open, 1, 2020, 57-81.

U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, 17(4), 2007, 395-416.

X. Bao, H. Li, G. Zhao, L. Chang, J. Zhou, and Y. Li, “Efficient
clustering V2V routing based on PSO in VANETSs,” Measurement, 152,
2020, 107306.

M. Ren, L. Khoukhi, H. Labiod, J. Zhang, and V. Veque, “A
mobility- based scheme for dynamic clustering in vehicular ad-hoc
networks(VANETS),” Vehicular Communications, 9, 2017, 233-241.
Communications and Information Technologies (ISCIT), 2014, pp.233-
237

A. Bello Tambawal, R. Md Noor, R. Salleh, C. Chembe, and M. Oche,
“Enhanced weight-based clustering algorithm to provide reliable delivery
for VANET safety applications,” PloS one, 14(4), 2019, e0214664.

B. Azat, B and T. Hong, “Destination based stable clustering algorithm
and routing for vanet,” Journal of Computer and Communications, 8(01),
2020, 28.

N. Taherkhani and S. Pierre, “Centralized and localized data congestion
control strategy for vehicular ad hoc networks using a machine learning
clustering algorithm. IEEE Transactions on Intelligent Transportation
Systems,”17(11), 2016, 3275-3285.

R. Chai, X. Ge, and Q. Chen, “Adaptive K-harmonic means clustering
algorithm for VANETS,” International Symposium on computing, net-
working and communications (WiMob), 2012, pp. 593-599.

M. A. Saleem, S. Zhou, A. Sharif, T. Saba, M. A. Zia, A. Javed, M.
Mittal, and et al., “Expansion of cluster head stability using fuzzy in
cognitive radio CR-VANET,” IEEE Access, 7, 2019, 173185-173195.
G. Liu, N. Qi, J. Chen, C. Dong, and Z. Huang, “Enhancing cluster-
ing stability in VANET: A spectral clustering based approach. China
Communications,” 17(4), 2020, pp. 140-151.

T. N. Kipf, and M. Welling, “Variational graph auto-encoders,” arXiv
preprint arXiv:1611.07308, 2016.

L. A. Maglaras, and D. Katsaros, “Distributed clustering in vehicular
networks,” IEEE 8th international conference on wireless and mobile
computing, networking and communications (WiMob), 2012, pp. 593-
599.

W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” In Proceedings of the 31st International
Conference on Neural Information Processing Systems, 2017, pp. 1025-
1035.

M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, Z. Zhang, and et al.,
“Deep Graph Library: Towards Efficient and Scalable Deep Learning on
Graphs,” arXiv preprint arXiv:1909.01315, 2019.

S. Cao, W. Lu, and Q. Xu. Grarep: Learning graph representations with
global structural information. In KDD, 2015.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, S.
Chintala, and et al., “Pytorch: An imperative style, high-performance
deep learning library,” Advances in neural information processing sys-
tems, 32, 2019, 8026-8037.

R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highd dataset:
A drone dataset of naturalistic vehicle trajectories on german highways
for validation of highly automated driving systems,” International Con-
ference on Intelligent Transportation Systems (ITSC), 2018, pp. 2118-
2125.

Authorized licensed use limited to: City College of New York. Downloaded on August 02,2022 at 14:09:03 UTC from IEEE Xplore. Restrictions apply.

