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ABSTRACT
In this paper, we study multifractal spectra of the geodesic flows
on compact rank 1 surfaces without focal points. We compute the
entropy of the level sets for the Lyapunov exponents and establish
a lower bound for their Hausdorff dimension in terms of the pres-
sure function and its Legendre transform. In doing so,we employ and
generalize results of Burns and Gelfert for non-positively curved sur-
faces and construct an increasingly nested sequence of basic sets in
the complement of the singular set on which the geodesic flow is
non-uniformly hyperbolic. Such a sequence of basic sets eventually
contains any given basic set.
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1. Introduction

In this paper, we study the multifractal information of the Lyapunov level sets with respect
to the geodesic !ow on surfaces with no focal points. In particular, we focus on estimating
the topological entropy and the Hausdor" dimension of such level sets. Historically, sim-
ilar types of problems have been studied in a greater generality for uniformly hyperbolic
systems; see [2] for !ows, [3,24] for some discrete time examples, and [23] for a systematic
introduction.

While there are some known results for one-dimensional [16] and conformal systems
[10], in general, much less is known regarding the multifractal analysis for non-uniformly
hyperbolic systems. Higher-dimensional generalization is more di#cult because popular
methods for estimating the Hausdor" dimension by slicing it with the stable and unstable
leaves [20] and adding up the respective dimensions are no longer valid. Failure of such
methods is due to the fact that the projection map along the holomony is often not bi-
Lipschitz for non-uniformly hyperbolic systems, even when the stable and unstable leaves
are absolutely continuous.

In a di"erent setting, Burns and Gelfert [6] studied the Lyapunov level sets with respect
to the geodesic !ow over rank 1 non-positively curved surfaces. For such surfaces, there
exists a closed invariant subset of the unit tangent bundle, called the singular set, on which
the geodesic !ow experiences no hyperbolicity. It is the presence of such a singular set that
makes the geodesic !ow non-uniformly hyperbolic.

CONTACT Kiho Park kihopark@math.uchicago.edu; kihopark@uchicago.edu

© 2021 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/14689367.2021.1978394&domain=pdf&date_stamp=2021-11-03
mailto:kihopark@math.uchicago.edu
mailto:kihopark@uchicago.edu


DYNAMICAL SYSTEMS 657

In this paper, we extend the results of [6] to rank 1 surfaces without focal points by
employing similar techniques. Manifolds without focal points are natural generalizations
of non-positively curved manifolds, and the two classes of manifolds share many geomet-
ric features such as the presence of the singular set. On the other hand, there are certain
properties that only hold for non-positively curvedmanifolds; see Remark 2.5 for instance.

Let S be a closed surface equipped with a Riemannianmetric such that there are no focal
points (see De$nition 2.1), andG = {gt}t∈R be the geodesic !ow on its unit tangent bundle
T1S. We will assume throughout the paper that the singular set is non-empty because the
geodesic!ow is uniformly hyperbolic in the absence of the singular set, and themultifractal
analysis of the Lyapunov level sets is then well understood.

As we will shortly see in Proposition 2.3, the action of G on T1S in our case induces
a non-uniform hyperbolic splitting of TvT1S for each v ∈ T1S. In particular, the unsta-
ble distribution of v is well de$ned and denoted by Euv . Accordingly, we have the classical
de$nition of geometric potential given by

ϕgeo(v) := − lim
t→0

1
t
log

∥∥∥dgt|Euv
∥∥∥,

whose importance partially lies in its intimate relation to the Lyapunov exponent because
the Lyapunov exponent χ(v) can be de$ned as the Birkho" average of −ϕgeo along the
orbit of v. We say v ∈ T1S is Lyapunov regular if its Lyapunov exponent χ(v) exists; see
De$nition 2.9. The main object of study in this paper is the Lyapunov level set de$ned as

L(β) := {v ∈ T1S : v is Lyapuonv regular and χ(v) = β}.

We denote by h(L(β)) the topological entropy of L(β), also known as the entropy spec-
trum. Here we adopt Bowen’s de$nition [4] of the entropy for non-compact sets as the
Lyapunov level sets are non-compact in general. We also denote by dimH L(β) the Haus-
dor" dimension of L(β). The pressure function (see (6) for the de$nition of the pressure)
and its Legendre transform

P(t) := P(tϕgeo) and E(α) := inf
t∈R

(
P(t) − tα

)
, (1)

play important roles in computing h(L(β)) and dimH L(β). Here we notice that t is used
both as the time index for the !ow and the variable for the pressure function. Since using
such parameter t is a historic convention in the above two settings and the two ways t are
used are quite ‘disjoint’ throughout the paper, we claim that the choice of t shall not cause
any confusion.

Because of monotonicity and convexity of pressure function P (see Proposition 2.11),
the following limit exists:

α1 := lim
t→−∞

D+P(t),

where D+ stands for the right derivative. Our main result is stated as follows:

Theorem 1.1: Let S be a rank 1 Riemannian surface with no focal points. Then,

(1) The Lyapunov level set L(−α) is non-empty if and only if α ∈ [α1, 0].
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(2) For α ∈ (a1, 0), we have

h(L(−α)) = E(α)

and

dimH L(−α) ≥ 1 + 2 · E(α)

−α
.

Both the statement and the idea of the proof of the above theorem are similar to those
of the main results in [6], with necessary structural and technical modi$cations which are
based on recently introduced tools (see Section 4) suitable for studying manifolds without
focal points. Here, we brie!y comment on our approach to this result, which is based on
[6]. Since the singular set is non-empty, the geometric potential ϕgeo has more than one
equilibrium state. Consequently, the pressure function P(t) is not di"erentiable at t = 1,
exhibiting a phase transition. Based on this observation, we study the Lyapunov level sets
L(β) in two separate cases depending on the domain of β .

Setting α2 := D−P(1), where D− is the left derivative, the $rst case concerns with the
domainβ ∈ (−α2,−α1) corresponding to the time before the phase transition. In this case,
we compute the entropy h(L(β)) using the fact thatP is C1 when t<1, which is based on
the uniqueness of the equilibrium state for tϕgeo obtained in [7]; see Section 2 for further
discussions.

The other case β ∈ [0,−α2] corresponds to the time past the phase transition, where
we estimate the entropy spectrum from both below and above. For the lower bound, we
follow the construction in [6] and build an increasingly nested sequence of basic sets (see
De$nition 2.12) in the complement of the singular set on which the geodesic !ow is non-
uniformly hyperbolic; see Proposition 3.2. As the entropy spectrum is well understood on
the basic sets, and the increasingly nested basic sets are constructed so that they eventually
intersectL(β) non-trivially, we use such information to establish an e"ective lower bound
for the entropy ofL(β). In our case, the construction of such a sequence of basic sets relies
on the hyperbolic index function λT introduced in [7]; see Section 4.

The paper is structured as follows. In Section 2, we survey preliminaries on geometry,
thermodynamic formalism, and multifractal analysis. In Section 3, we prove Theorem 1.1
by assuming the existence of the increasingly nested basic sets (Proposition 3.2). In
Section 4, we establish Proposition 3.2. In its proof, we make use of Proposition 4.4, a key
proposition that allows us to equip local maximality to given hyperbolic sets, whose proof
is deferred to Section 5.

2. Preliminaries

2.1. Geometry

In this subsection, we introduce and survey geometric features of manifolds with no focal
points. LetM be a closed Riemannian manifold. For v ∈ T1M, we denote by γv the unique
geodesic with the initial velocity v ∈ T1M; in particular, the geodesic !ow G = {gt}t∈R is
de$ned as gtv := γ̇v(t). Often we will identify the orbit segment connecting v to gtv with
(v, t) ∈ T1M × [0,∞). We equip T1M with the following metric

d(v,w) := max{d(γv(t), γw(t)) : t ∈ [0, 1]}. (2)
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This metric was used by Knieper [18], and it is locally equivalent to the more commonly
used Sasaki metric.

A Jacobi !eld J(t) along a geodesic γ is a vector $eld along γ satisfying the following
Jacobi equation:

J′′(t) + R(J(t), γ̇ (t))γ̇ (t) = 0

where ′ denotes the covariant derivative along γ andR is the Riemmanian curvature tensor.
We denote the space of all Jacobi $elds along γ by J (γ ).

It is clear from the Jacobi equation that the behaviours of the Jacobi $elds are governed
by the Riemannian curvature of the manifold. For negatively curved manifolds, the func-
tion t (→ ‖J(t)‖ is strictly convex for any Jacobi $eld J. Non-positively curved manifolds
are natural generalizations of negatively curved manifolds, and t (→ ‖J(t)‖ is convex. In
regards to these behaviours of the Jacobi $elds, it is then clear from the following de$nition
that manifolds with no focal points are natural generalizations of non-positively curved
manifolds:

De!nition 2.1: A manifoldM has no focal points if for any initially vanishing Jacobi $eld
J(t), its length ‖J(t)‖ is strictly increasing.

We say a Jacobi $eld J is orthogonal if both J(t0) and J′(t0) are perpendicular to γ̇ (t0) for
some t0 ∈ R. Note that any such Jacobi $eld J with this property has an evidently stronger
property that J and J′ are perpendicular to γ̇ for all t ∈ R; see [21]. We say a Jacobi J is
parallel if J′ ≡ 0.

De!nition 2.2: For v ∈ T1M, the rank of v is the dimension of the space of parallel Jacobi
$elds over γv. We say the manifold is rank 1 if it has at least one rank 1 vector. The singular
set is the set of vectors with rank bigger than or equal 2:

Sing :=
{
v ∈ T1M : rank(v) ≥ 2

}
.

The regular set, Reg := T1M \ Sing, is de$ned as the complement of the singular set.

We also denote the space of orthogonal Jacobi $elds along γ byJ ⊥(γ ). The set of stable
orthogonal Jacobi !elds J s(γ ) is a subspace of J ⊥(γ ) de$ned by

J s(γ ) = {J ∈ J ⊥(γ ) : ‖J(t)‖ is bounded for t ≥ 0}.

Similarly, the set of unstable orthogonal Jacobi !elds J u(γ ) consists of orthogonal Jacobi
$elds whose norm is bounded for all t ≤ 0. By pulling back these linear subspacesJ s/u via
the identi$cation TvT1M - J (γv), we de$ne subbundles Es/u in TT1M by

Es/u(v) := {ξ ∈ TvT1M : Jξ ∈ J s/u(v)},

where Jξ is the Jacobi $eld along γv whose initial conditions Jξ (0) and J′ξ (0) are speci$ed
by ξ . We also de$ne a 1-dimensional subbundle Ec ⊂ TT1M given by the geodesic !ow
direction.

The following proposition summarizes known properties on these subbundles whenM
has no focal points; these properties are collected from [12,15,22].
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Proposition 2.3: Let M be an n-dimensional closed Riemannian manifold without focal
points.

(1) dim(Es/u) = n − 1 and dim(Ec) = 1.
(2) The subbundles Es,Eu,Ecs := Ec ⊕ Es and Ecu := Ec ⊕ Eu are G-invariant.
(3) The subbundles Eσ , σ ∈ {s, u, cs, cu}, are integrable to G-invariant foliations Wσ .
(4) Es(v) and Eu(v) have a non-trivial intersection if and only if v ∈ Sing.
(5) For any J ∈ J s(γ ) (respectively, J u(γ )), ‖J(t)‖ is non-increasing (respectively, non-

decreasing) for all t ∈ R.
(6) The geodesic "ow G = {gt}t∈R on T1M is topologically transitive if M is rank 1.

The foliations Wσ , σ ∈ {s, u, cs, cu}, de$ned in the above proposition are called stable,
unstable, center-stable, and center-unstable, respectively. We endow each foliation with the
intrinsic metric as follows. OnWs(v) we de$ne

ds(u,w) := inf{)(πγ ) | γ : [0, 1] → Ws(v), γ (0) = u, γ (1) = w}

where π : T1M → M is the canonical projection, ) denotes the length of the curve onM,
and the in$mum is taken over all C1 curves γ connecting u and v in Ws(v). Locally on
Wcs(v), we de$ne

dcs(u,w) := |t| + ds(gtu,w)

where t ∈ R is the unique real number such that gtu ∈ Ws(w). It extends to the metric on
the entire centre-stable leafWcs(v) in an obvious way. Moreover, it follows from the above
proposition that the map t (→ dσ (gtu, gtv) is non-increasing for σ ∈ {s, cs}.

Likewise, the metrics du and dcu onWu andWcu, respectively, are de$ned analogously
and the map t (→ dσ (gtu, gtv) is non-decreasing for σ ∈ {u, cu}. All intrinsic metrics dσ ,
σ ∈ {s, u, cs, cu}, are locally equivalent to the metric d from (2).

In this paper, we will primarily focus on rank 1 surfaces Swithout focal points. The rank
1 condition on S is equivalent to its genus being at least 2, and the singular set admits an
alternative description given by

Sing =
{
v ∈ T1S : K(πgtv) = 0 for all t ∈ R

}
, (3)

where K is the Gaussian curvature; see [14] and [11, Corollary 3.3, 3.6]. Moreover, the
Jacobi equation simpli$es to

J′′(t) + K(γ (t))J(t) = 0. (4)

Given any orthogonal Jacobi $eld J along γ , we may identify it as a unit vector $eld along
γ scaled by a continuous function. By an abuse of notation, we denote such a continuous
function also by J, and we may treat (4) as a scalar ODE.

For any v ∈ T1S, the unstable leafWu(v) projects to the horosphereHu(v) ⊂ S, and the
one-dimensional symmetric operator on TπvHu(v) de$nes the geodesic curvature ku(v) of
the horosphereHu(v); see [7, Section 3] for details. Likewise, the geodesic curvature ks(v)
of the stable horosphere Hs(v) is de$ned analogously, and satis$es ks(−v) = ku(v).
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Using the geodesic curvatures ks/u, we de$ne a non-negative function λ on T1S given
by

λ(v) := min{ks(v), ku(v)}.

The horospheres are C2 for manifolds without focal points, so ks/u and λ are continuous.
Such λ $rst appeared in [5] in the setting of non-positively curved manifolds as a mean
of measuring hyperbolicity on the unit tangent bundle. It serves the same purpose in our
setting, and satis$es the following properties:

Proposition 2.4: (1) λ|Sing ≡ 0.
(2) If λ(v) = 0, then K(πv) = 0.
(3) If λ(gtv) = 0 for all t ∈ R, then v ∈ Sing.

Proof: The $rst two statements relies on [5, Lemma 2.9] (see also [7, Lemma 3.11]) which
states that the unstable Jacobi $eld Ju ∈ J u(γv) with Ju(0) = 1 satis$es

(Ju)′(t) = ku(gtv)Ju(t) for all t ∈ R. (5)

Likewise, (Js)′(t) = −ks(gtv)Js(t) for Js ∈ J s(γv) with Js(0) = 1.
For the $rst statement, if v ∈ Sing, then Es(v) and Eu(v) coincide, and the norm of the

Jacobi $eld Jξ corresponding to ξ ∈ Es(v) = Eu(v) is constant from Proposition 2.3. Then
it follows from (5) and the de$nition of λ that λ(v) = 0.

For the second statement, let v ∈ T1S with λ(v) = 0, and without loss of generality,
suppose that ks(v) = 0. Then the stable Jacobi $eld Js ∈ J s(γv) with Js(0) = 1 satis$es
(Js)′(0) = 0 from (5). Since (Js)′ is a non-positive function from Proposition 2.3, it follows
that (Js)′′(0) = 0, which then translates to K(πv) = −(Js)′′(0)/Js(0) = 0 from the Jacobi
Equation (4).

The last statement is an easy consequence of the second statement and the alternative
characterization (3) of the singular set. !

Remark 2.5: We note here that the behaviour of λ slightly di"ers between non-positively
curved manifolds and manifolds with no focal points. For a non-positively curved mani-
foldM, whenever λ(v) = 0 for some v ∈ T1M, then it necessarily follows that λ(gtv) = 0
either for all t ≥ 0 or for all t ≤ 0. This is due to the convexity of the function t (→ ‖J(t)‖
for any Jacobi $eld J. Such a monotonic behaviour of λ then translates to other geometric
properties, including d(Sing, gtv) → 0 as t → ∞ or t → −∞; see [5, Section 3].

The analogous property, however, does not hold for manifolds without focal points.
Instead, a related function λT serving a similar purpose was considered in [7,8], and we
also make use of it in Section 4.

For each η > 0, we de$ne

Reg(η) := {v ∈ T1S : λ(v) ≥ η}.

While it de$nes a nested family of compact subsets in Reg, it does not exhaust Reg
as there are vectors v ∈ Reg with λ(v) = 0. Nevertheless, the geodesic !ow restricted
to Reg(η) exhibits uniformly hyperbolic behaviour; see Lemma 4.1, Proposition 4.2 or
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[5, Lemma 3.10]. Using this fact together with the uniform continuity of λ, we obtain
the following version of the shadowing lemma for orbit segments whose endpoints lie in
Reg(η). This lemma is similar to [6, Lemma 2.4] which establishes the shadowing lemma
for orbit segments whose endpoints lie in subsets of the form {v ∈ T1S : K(πv) ≤ −η}.
The proof there readily extends to orbit segments with endpoints in Reg(η), and we omit
the proof.

Lemma 2.6 (Shadowing lemma): Let S be a closed surface without focal points. For any
η, ε, τ > 0, there exists δ > 0 such that for any collection of orbit segments {(vi, ti)}i∈Z
with vi, gtivi ∈ Reg(η), ti ≥ τ and d(gtivi, vi+1) < δ for all i ∈ Z, there exist a geodesic
γ and a sequence of times {Ti}i∈Z with T0 = 0, Ti + ti − ε ≤ Ti+1 ≤ Ti + ti + ε, and
d(γ̇ (t), γ̇vi(t − Ti)) < ε for all t ∈ [Ti,Ti+1] and i ∈ Z.

The geodesic γ is unique upto re-parametrization. Moreover, if the orbits being shadowed
are periodic, then the shadowing orbit is also periodic.

Another useful structure coming from the foliations is the local product structure. In
the following de$nition, B(v, δ) denotes an open ball of radius δ around v. Since the folia-
tionsWσ , σ ∈ {s, cs, u, cu}, are continuous, any compact subset of Reg has a uniform local
product structure for some δ > 0 and κ ≥ 1.

De!nition 2.7 (Local product structure): We say the foliationsWcs andWu have the local
product structure at scale δ > 0 with constant κ ≥ 1 at v ∈ T1S if for any w1,w2 ∈ B(v, δ),
the intersection [w1,w2] := Wu

κδ(w1) ∩ Wcs
κδ(w2) is a unique point and satis$es

du(w1, [w1,w2]) ≤ κd(w1,w2),

dcs(w2, [w1,w2]) ≤ κd(w1,w2).

2.2. Thermodynamic formalism

In this subsection, we brie!y survey relevant results in thermodynamic formalism and
multifractal analysis.

A probability measure µ on T1S is G-invariant if µ is gt-invariant for all t ∈ R, and we
denote the set of all invariant measures byM(G). We say an µ ∈ M(G) is hyperbolic if its
Lyapunov exponent (see De$nition 2.9) is non-zero.We denote by h(µ) themetric entropy
of the time-one map of the !ow g1 with respect to µ. For any G-invariant subset Z ⊆ T1S,
we denote the entropy of g1 restricted Z by h(Z). If Z is non-compact, such as the Lyapunov
level sets L(β), we adopt Bowen’s de$nition [4] of entropy for non-compact sets which is
computed similar to the Hausdor" dimension via $nite open covers. In the case where Z
is compact, the entropy h(Z) agrees with the usual topological entropy.

For any continuous !ow G = {gt}t∈R on a compact metric space X and any continuous
function (also known as the potential) ϕ on X, the pressure P(ϕ) of ϕ can be de$ned by the
variational principle:

P(ϕ) = sup
{
h(µ) +

∫
ϕ dµ : µ ∈ M(G)

}
. (6)

Any invariant measure, if any, achieving the supremum is called an equilibrium state. We
refer the reader to [25] for more details.
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From the entropy-expansiveness of the geodesic !ows over manifolds with no focal
points [19], the entropy function µ (→ h(µ) is upper semi-continuous, and hence, there
exists at least one equilibrium state for any potential.

For geodesic !ows over rank 1 non-positively curved manifolds, Burns, Climenhaga,
Fisher, and Thompson [5] showed that tϕgeo has a unique equilibrium state for t in a small
neighbourhood of 0. In the case of surfaces, they also established the result for all t<1.
In our setting of surfaces with no focal points, the analogous result is established by Chen,
Kao, and the $rst named author:

Proposition 2.8 ([7, Theorem C]): Let S be a rank 1 Riemannian surface with no focal
points. Then tϕgeo has a unique equilibrium state µt ∈ M(G) for each t<1.

Recall that the geometric potential is a continuous function on T1S de$ned by

ϕgeo(v) := − lim
t→0

1
t
log

∥∥∥dgt|Euv
∥∥∥.

In particular, −ϕgeo(v) captures the instantaneous growth rate of Euv under the derivative
of the geodesic !ow.

De!nition 2.9: The forward Lyapunov exponent χ+(v) of v is de$ned as

χ+(v) := lim
t→∞

1
t
log

∥∥∥dgt|Euv
∥∥∥ = lim

t→∞
−1
t

∫ t

0
ϕgeo(gsv) ds.

The backward Lyapunov exponent

χ−(v) := lim
t→∞

1
−t

log
∥∥∥dg−t|Euv

∥∥∥ = lim
t→∞

−1
t

∫ 0

−t
ϕgeo(gsv) ds.

We say v ∈ T1S isLyapunov regular ifχ+(v) = χ−(v), inwhich casewe denote its common
value by χ(v). The β-Lyapunov level set is de$ned as

L(β) := {v ∈ T1S : v is Lyapunov regular and χ(v) = β}.

For µ ∈ M(G), we de$ne its Lyapunov exponent by χ(µ) := −
∫
ϕgeo dµ.

Remark 2.10: Notice that the singular set is contained in the 0-level setL(0). This follows
because for any v ∈ Sing, its stable subspace Esv coincides with its unstable subspace Euv ,
and hence, the unstable Jacobi $eld Ju along γv has constant length. Hence, ϕgeo vanishes
on the singular set, and we have χ(v) = 0 for any v ∈ Sing.

As outlined in the introduction, we conduct our multifractal analysis on L(β) by
studying the pressure function P and its Legendre transform E de$ned as in the (1):

P(t) := P(tϕgeo) and E(α) := inf
t∈R

(P(t) − tα).

We also say that a line ) = )(t) is a supporting line to P , if it satis$es

inf
t∈R

(P(t) − )(t)) = 0.

The following proposition summarizes some useful properties ofP in our setting. See also
Figure 1.
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Figure 1.

Proposition 2.11: With P as above, we have

(1) P is non-increasing and convex, and P(t) = 0 for all t ≥ 1.
(2) P is C1 everywhere except for t = 1. Moreover, P ′(t) =

∫
ϕgeo dµt for all t<1, where

µt is the unique equilibrium state for tϕgeo from Proposition 2.8.
(3) Recalling the de!nition of α1 := limt→−∞ D+P(t) from the introduction, for every α ∈

[α1, 0] there exists a unique supporting line )α toP of slope α. In particular, α1 is !nite.
(4) For t<1, the unique supporting line to P at (t,P(t)) is

)αt (s) := h(µt) + sαt ,

where αt := P ′(t) =
∫
ϕgeo dµt . In particular, E(αt) = h(µt).

Proof sketch.: The $rst statement follows from the fact that the singular set is non-empty.
The second statement is due to the variational principle (6) and Proposition 2.8; see
[6, Proposition 5]. For the third statement, the $niteness of α1 follows from the second
statement, continuity of ϕgeo and compactness of T1S, and the rest follows from the $rst
statement. Finally, the last statement follows from the second statement. !

At t = 1, there is a phase transition, which is caused by the discrepancy between

α2 := D−P(1) and D+P(1) = 0

where α2 is well de$ned due to the convexity of P . Due to the geometric nature of the
setting, all α appearing in this paper, including α1 and α2, are non-positive. See Figure 1
for the supporting lines )αi of slope αi for i ∈ {1, 2}.

As outlined in the introduction, the proof of Theorem 1.1 appearing in the next section
considers two domains (α1,α2) and [α2, 0] for α separately. In analysing the latter case, we
will make use of uniformly hyperbolic subsystems, called the basic sets, whose Lyapunov
level sets and their multifractal information are better understood.
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De!nition 2.12: A basic set 0 ⊂ T1S is a compact, G-invariant, and locally maximal
hyperbolic set on which the geodesic !ow is transitive.

For any basic set0 ⊂ T1S, analogous to (1) we de$ne

P0(t) := P0(tϕgeo) and E0(α) := inf
t∈R

(P0(t) − tα).

Basic sets are useful in our analysis because these functions capture precise information
of the level sets L(β) ∩0. We summarize them in the following proposition. Proofs for
the $rst four properties can be found in [6, Proposition 6] and the last property is due to
Barreira and Doutor [2].

Proposition 2.13: Let 0 ⊂ T1S be a basic set. Setting α1(0) := limt→−∞ P ′
0(t) and

α2(0) := limt→∞ P ′
0(t), we have

(1) P0(t) is strictly convex and real analytic on R.
(2) For each α ∈ [α1(0),α2(0)],P0(t) has a unique supporting line )0,α of slope α, which

intersects vertical axis at (0, E(α)).
(3) For α ∈ [α1(0),α2(0)], we have L(−α) ∩0 2= ∅. For other α, L(−α) ∩0 = ∅.
(4) For every t, there is a unique equilibrium state µt for tϕgeo|0. Moreover, it satis!es

χ(µt) = −P0 ′(t) and

E0(−χ(µt)) = h(µt).

(5) For every α ∈ (α1(0),α2(0)), we have

dimH(L(−α) ∩0) = 1 + 2 · E0(α)

−α

and

h(L(−α) ∩0) = E0(α) = max{h(µ) : χ(µ) = −α and supp(µ) ⊆ 0}.

3. Proof of Theorem 1.1

Since we generally follow the strategies of [6], we will either omit or sketch the proofs
whenever applicable and refer the reader there for details.

3.1. Few simple observations

We establish some partial statements of Theorem 1.1.

Proposition 3.1: We have

(1) L(−α) = ∅ for every α < α1 and every α > 0.
(2) For every α ∈ (α1,α2), the Lyapunov level set L(−α) is non-empty and

h(L(−α)) = E(α).
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(3) L(−α1) is non-empty.

Proof: The $rst statement, which is essentially a reformulation of the variational principle
(6), follows from [6, Proposition 5 (2)]. For the second statement, we $rst de$ne

L+(β) := {v ∈ T1S : χ+(v) = β},

and denote by h(L+(β)) its topological entropy. Clearly, we have L(β) ⊂ L+(β). By a
routine adaption of the proof for [9, Lemma 3.3.3] to the case of continuous !ows over
compact spaces, we can draw a conclusion similar to [9, Theorem3.1.1 (1)]: for every t ∈ R,
we have (with the convention of h(∅) = −∞)

P(t) = sup
α∈R

(h(L+(−α)) + tα).

As an immediate consequence, we have

E(α) = inf
t∈R

(P(t) − tα) ≥ h(L+(−α)) ≥ h(L(−α)). (7)

For the reverse inequality, let tα < 1 be a real number such thatP ′(tα) = α. We then have
from Proposition 2.11 (4) that

E(α) = h(µtα ) = inf{h(Z) : Z ⊂ T1S, µtα (Z) = 1} ≤ h(L(−α)),

as required.
The last statement follows from the fact that the Lyapunov exponent of an invariant

measure χ(µ) is de$ned as −
∫
ϕgeodµ. Indeed, taking any weak∗-limit µ ∈ M(G) of the

unique equilibrium state µtα for tαϕgeo as α → α1, we must have that χ(µ) = −α1. By
applying the ergodic decomposition toµ and using the choice of α1, there exists an ergodic
µe ∈ M(G) such that χ(µe) = −α1. Then the set of generic points for µe is non-empty
and belongs to L(−α1). !

We conclude this subsection by noting that the above argument for (7) readily extends
for any α ∈ [α1, 0]. Hence, for all such α we have E(α) ≥ h(L(−α)).

3.2. Remaining statements of Theorem 1.1

Throughout this subsection, wewill assume the following propositionwhose proof appears
in Section 4.

Proposition 3.2: There exists an increasingly nested sequence of basic sets {0̃i}i∈N such that
for any basic set0 ⊂ T1S, there exists n ∈ N such that0 ⊆ 0̃n.

As we will see, such a family {0̃n}n∈N of basic sets is used to extract information of
the Lyapunov level sets. It is used in showing that L(−α) is non-empty for α ∈ (α1, 0).
Moreover, it is also used in showing thatPn(t) := P0̃n(t) converges toP(t) for each t. This
then implies that the supporting line )nα toPn(t) of slope α converges to the supporting line
)α to P(t) of slope α for all α ∈ (α1, 0). This observation then translates to the statements
of Theorem 1.1.



DYNAMICAL SYSTEMS 667

We begin by relating the Lypaunov exponent χ(v) of a Lyapunov regular vector v ∈ T1S
to the solution of the Riccati equation over γv. For any orthogonal Jacobi $eld J, it follows
from the Jacobi Equation (4) that u := J′/J satis$es the Riccati equation given by

u′(t) + u(t)2 + K(γ (t)) = 0. (8)

Then the Lyapunov exponent χ(v) may be described by

χ(v) = lim
T→∞

1
T

∫ T

0
u(t) dt, (9)

where u(t) := J′ξ (t)/Jξ (t) with ξ ∈ Euv is a solution to the Riccati Equation (8); see [6,
Lemma 2.6]. Such a description provides an upper bound for the Lyapunov exponent of a
closed geodesic.

Lemma 3.3 ([6, Lemma 2.9]): For any closed geodesic (v, t) ∈ T1S × [0,∞), we have

χ(v) ≤

√

−1
t

∫ t

0
K(γv(s)) ds.

The right-hand side of the expression in the lemma above is well de$ned because
for such a closed geodesic we have u(s) = u(s + t) for all s ∈ R. This then implies that∫ t
0 u

′(s) ds = 0. Plugging this into (8) gives
∫ t
0 u

2(s) + K(γv(s)) ds = 0, and hence
∫ t

0
K(γv(s)) ds = −

∫ t

0
u2(s) ds ≤ 0.

Using Lemma 2.6 and 3.3, we obtain closed geodesics with arbitrarily small Lyapunov
exponents:

Proposition 3.4: If Sing is non-empty, then there exist closed geodesics with Lyapunov
exponents arbitrarily close to 0 and −α1.

Proof: We treat two cases separately. Fix ε > 0 that can be arbitrarily small. Recalling the
nested family of compact subsets Reg(η) de$ned below Remark 2.5, Proposition 2.4 shows
that their union

⋃
η>0 Reg(η) contains the set {v ∈ T1S : K(πv) 2= 0}. In particular, there

exists η = η(ε) > 0 such that

{v ∈ T1S : |K(πv)| ≥ ε} ⊆ Reg(η).

From the transitivity of the geodesic !ow (Proposition 2.3), we can then choose a sequence
of orbits segments {(vn, tn)}n∈N lying entirely in the set {v ∈ T1S : |K(πv)| ≤ ε} such that
the footprints of both their endpoints vn andwn := gtnvn have theGaussian curvature equal
to either ε or −ε and that tn → ∞. By passing to a subsequence if necessary, suppose that
vn → v and wn → w.

Again from the transitivity, we can$nd an orbit segment starting nearw and terminating
near v. Then using the shadowing lemma (Lemma 2.6) applied to Reg(η/2), we obtain a
closed geodesic which shadows vn to wn (for some su#ciently large n ∈ N) followed by w
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to v. This closed geodesic spends most of its time in {v ∈ T1S : |K(πv)| ≤ 2ε}, and hence,
its Lyapunov exponent can be bounded above by 2

√
ε using Lemma 3.3. Since ε > 0 was

arbitrary, this constructs closed geodesics whose Lyapunov exponents are arbitrarily close
to 0. See [6, Proposition 3] for details.

For closed geodesics with Lyapunov exponents arbitrarily close to −α1, we $x any
v0 ∈ L(−α1) and consider the solution u(t) to the Riccati Equation (8) over γv0 . The
existence of such v0 ∈ T1S is guaranteed from Proposition 3.1. Since −α1 = χ(v0) =
limT→∞

1
T

∫ T
0 u(t) dt, it is not hard to see that lim inf t→±∞ K(γv0(t)) < 0 by studying the

evolution of u(t). In particular, there exist ε > 0 and in$nite sequences of forward times
{tn}n∈N ⊂ R+ and backward times {sn}n≤0 ⊂ R− satisfying {tn} ↗ ∞ and {sn} ↘ −∞
such that gtv0 is in the set {v ∈ T1S : K(πv) ≤ −ε} when t = tn or sn. Moreover, we have

1
tn − sn

∫ tn

sn
−ϕgeo(gτ v0) dτ → −α1. (10)

Using (10) instead of Lemma 3.3, the rest of the proof can be completed as above. By
passing to a subsequence if necessary, we may assume that gsnv0 → v and gtnv0 → w. It
follows again from transitivity of G that we can $x an orbit segment starting near w and
terminating near v. Gluing this orbit segment and the one from vn to wn by the shadow-
ing process as above, we obtain a sequence of closed geodesics. Then it follows from (10)
and De$nition 2.9 that the Lyapunov exponent of such closed geodesics limits to −α1 as
n → ∞. !

Recall that )α is the supporting line toP(t) of slope α. The following proposition shows
thatPn(t) and )nα converge toP(t) and )α , respectively. Its proof makes uses of the Katok’s
horseshoe theorem (see [17] and also [6,13]) which states that for any ε > 0, hyperbolic
ergodic measure µ ∈ M(G), and potential ϕ : T1S → R, there exists a basic set0 ⊆ T1S
such that

P0(ϕ) > Pµ(ϕ) − ε

where Pµ(ϕ) := hµ(G) +
∫
ϕ dµ.

Proposition 3.5: The sequence of basic sets {0̃n}n∈N from Proposition 3.2 satis!es

Pn(t) := P0̃n(t) ↗ P(t)

pointwise. Moreover, )nα converges to )α for each α ∈ (α1, 0).

Proof: Let ε > 0 be given. We divide the proof into two cases t<1 and t ≥ 1.
For t<1, let µt ∈ M(G) be the unique equilibrium state of tϕgeo which is necessarily

hyperbolic; see [7]. Applying Katok’s horseshoe theorem to µt and tϕgeo produces a basic
set0 satisfying

P0(tϕgeo) > Pµt (tϕ
geo) − ε = P(t) − ε.

Then Proposition 3.2 implies that Pn(t) ≥ P(t) − ε for all n large enough.
When t ≥ 1, note that P(t) = 0 from Proposition 2.11. Proposition 3.4 produces a

hyperbolic measure µε ∈ M(G) whose Lyapunov exponent χ(µε) lies in the interval
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(0, ε/t). Since µε is supported on a closed geodesic, it has zero entropy, and hence
Pµε (tϕgeo) is equal to −tχ(µε). By applying Katok’s horseshoe theorem to µε and tϕgeo,
we obtain a basic set0 such that

P0(t) > Pµε (tϕ
geo) − ε > −2ε.

Proposition 3.2 then implies that Pn(t) > −2ε for all su#ciently large n. Since ε was
arbitrary, this completes the proof of the $rst statement.

The proof of the second statement can be found in [6, Proposition 12]. !

We will prove each statement of Theorem 1.1 separately.

Proof of the !rst statement of Theorem 1.1: From Proposition 3.1,L(−α) is empty if α ∈
(−∞,α1) and α ∈ (0,∞). From the same proposition, L(−α) is non-empty for all α ∈
[α1,α2). Moreover, L(0) is non-empty as Sing ⊂ L(0); see Remark 2.10. Therefore, it
su#ces to show that L(−α) is non-empty for α ∈ [α2, 0).

In fact, the following method is general enough that it shows the domain in which
L(−α) is non-empty contains a closed interval whose endpoints are arbitrarily close to
α1 and 0. Using Proposition 3.4, we begin by choosing closed geodesics with the Lyapunov
exponents arbitrarily close to 0 and −α1, each of which is a basic set. Then the increas-
ingly nested family {0̃n}n∈N from Proposition 3.2 eventually contains both such closed
geodesics for all su#ciently large n ∈ N. The claim then follows from the fact that the set
of β ∈ R in which 0 ∩ L(β) is non-empty is a closed interval for any basic set 0; see
Proposition 2.13. !

In view of Proposition 3.1 and the comment after its proof, the only thing left to show
in Theorem 1.1 is the lower bound for the entropy and dimension spectrum. Again, the
proof of the second statement of Theorem 1.1 relies on the increasingly nested sequence of
basic sets {0̃n}n∈N ⊂ Reg constructed in Proposition 3.2. Similar to (1), we de$ne

En(α) = E0̃n(α) := inf
t∈R

(Pn(t) − tα)

as the Legendre transform of Pn at α.

Proof of the second statement of Theorem 1.1: FromProposition 3.5, the supporting lines
)nα toPn(t) converges to the supporting line )α toP(t) for each α ∈ (α1, 0). Since )α inter-
sects the vertical axis at (0, E(α)), and likewise for )nα at (0, En(α)), it follows that En(α)

also monotonically converges to E(α) for all α ∈ (α1, 0). Using Proposition 2.13, this then
translates to

h(L(−α)) ≥ lim
n→∞

h(L(−α) ∩ 0̃n) = lim
n→∞

En(α) = E(α)

and

dimH(L(−α)) ≥ lim
n→∞

dimH(L(−α) ∩ 0̃n) = lim
n→∞

1 + 2 · En(α)

−α
= 1 + 2 · E(α)

−α
,

resulting in the required lower bounds for h(L(−α)) and dimH(L(−α)). !
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4. Proof of Proposition 3.2

This section is devoted to the proof of Proposition 3.2. In doing so, we will make use of a
family of non-negative functions λT de$ned for each T>0. It $rst appeared in [7] and is
closely related to λ:

λT(v) :=
∫ T

−T
λ(gtv) dt.

From Proposition 2.4, if λT(v) = 0 for all T>0, then v ∈ Sing. In particular, setting

RegT(η) := {v ∈ T1S : λT(v) ≥ η},

we have

Reg =
⋃

T,η>0
RegT(η).

Compared to Reg(η) which cannot exhaust the regular set, this has an advantage of being
able to $nd T, η > 0 such that RegT(η) contains a given compact subset of the regular set.

4.1. Criteria for hyperbolicity

Let kmax := maxv∈T1S ku(v) = maxv∈T1S ks(v) be the maximum geodesic curvature on
T1S. It can be used in comparing λ and λT (see [7, Subsection 4.2]): for any v ∈ T1S and
t>0, we have

∫ t

0
λ(gsv) ds ≥ 1

2T

∫ t

0
λT(gsv) ds − 2Tkmax

This inequality can be used in the following lemma to establish the uniform hyperbol-
icity on RegT(η) with the constant C := exp(2Tkmax). We omit the proof as it is an easy
generalization of [5, Lemma 3.1] and [7, Lemma 4.5].

Lemma 4.1: For any T, η > 0, there exists C>0 such that the following holds: for any v ∈
T1S, w,w′ ∈ Ws(v), and t ≥ 0, suppose that the segment connecting w and w′ along Ws(v)
remains in RegT(η) under the action of gτ for all τ ∈ [0, t]. Then

ds(gtw, gtw′) ≤ C · ds(w,w′) · exp
(

− ηt
2T

)
.

Similarly, for any v ∈ T1S, w,w′ ∈ Wu(v), and t ≥ 0 such that the segment connecting w and
w′ along Wu(v) remains in RegT(η) under the action of g−τ for all τ ∈ [0, t],

du(g−tw, g−tw′) ≤ C · du(w,w′) · exp
(

− ηt
2T

)
.

Using this lemma, the following proposition characterizes the uniformly hyperbolicity
among compact subsets of T1S.

Proposition 4.2: Any compact G-invariant subset 0 ⊆ T1S is uniformly hyperbolic if and
only if0 ⊆ Reg.
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Proof: One direction is clear. If 0 ∩ Sing 2= ∅, then for any v ∈ 0 ∩ Sing, the geodesic
γv admits a Jacobi $eld Jξ with ξ belonging to Es(v) = Eu(v). From Proposition 2.3, such
a Jacobi $eld Jξ has constant length for all t ∈ R. This implies that 0 is not uniformly
hyperbolic.

Conversely, suppose that 0 is a compact G-invariant subset of Reg. Then, there
exist T, η > 0 such that 0 is contained in RegT(η). Meanwhile, the angles between sta-
ble/central/unstable distributions Es,c,uv are all positive for v ∈ Reg and continuous in v.
Together with compactness of RegT(η), we know TvT1S has a uniformly transversal split-
ting for all v ∈ 0. Then it follows from Lemma 4.1 that 0 is uniformly hyperbolic with
rate η/2T. !

Remark 4.3: In addition to being uniformly hyperbolic, any compact G-invariant subset
0 ! Reg has topological dimension 1. This follows from [6, Proposition 7].

4.2. Concluding the proof of Proposition 3.2

The construction of the sequence of increasingly nested basic sets {0̃n}n∈N from Propo-
sition 3.2 begins with the following key proposition. This proposition corresponds to [6,
Proposition 8], and we prove it in the next section. While we follow their general strategy,
due to limitations of λ in characterizing the singular set (see Remark 2.5), our construction
relies on the function λT more suited to our setting.

Proposition 4.4: For any closed, G-invariant, hyperbolic set 0 ⊂ T1S and any neighbour-
hood U of 0, there exists a closed, G-invariant, locally maximal, hyperbolic set 0̃ such that
0 ⊆ 0̃ ⊆ U.

Using Proposition 4.4, the rest of the proof can be completed as in the proof of [6,
Theorem 1.4], which we brie!y sketch here. The following lemma from [6, Proposition
9] allows to glue two basic sets into another basic set; it uses the shadowing lemma and its
proof readily extends to our setting using our analogous version of the shadowing lemma
(Lemma 2.6).

Lemma 4.5 ([6, Proposition 9]): Given any two basic sets 01,02 ⊆ T1S, there is a third
basic set0 which contains them both.

With Lemma 4.5 in hand, we are now ready to proceed to the proof of Proposition 3.2.
For each n ∈ N, we denote by 0̂n the closure of the set of all closed geodesics contained
in the complement of the 1

n -neighbourhood N 1
n
(Sing) of the singular set. It is a closed

G-invariant hyperbolic set (Proposition 4.2). Then Proposition 4.4 creates a closed G-
invariant hyperbolic set containing 0̂n with the added structure of the local maximality.
The non-wandering set of such a set, which necessarily contains 0̂n, can be decom-
posed into basic sets by Smale’s spectral decomposition theorem, and repeatedly applying
Lemma 4.5 produces a basic set 0̃n containing all such basic sets. In particular, 0̃n contains
0̂n. By applying Lemma 4.5 again to 0̃n−1, if necessary, we may assume that 0̃n contains
0̃n−1 also.
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It can be easily checked that such a nested sequence {0̃n}n∈N is the required sequence
basic sets. In fact, for any basic set 0, the closed geodesics in the regular set are dense in
0, and hence, there exists some n ∈ N such that0 ⊂ 0̂n ⊂ 0̃n. This completes the proof
of Proposition 3.2.

5. Proof of Proposition 4.4

5.1. Choice of constants and preliminary construction

Let 0 and U be given as in Proposition 4.4. We may assume that U is su#ciently close to
0 so that every G-invariant compact set contained in U is hyperbolic and that U does not
intersect the singular set. By Proposition 4.2, there exist η,T > 0 such that U ⊆ RegT(η).

Since a compact hyperbolic set is locally maximal if and only if it has a local product
structure, we will construct 0̃ as the image of a subshift of $nite type under a continuous
injective map. In this way, 0̃ inherits the natural local product structure from the shift
space and will be locally maximal.

Instead of building 0̃ directly, we will construct its intersection with a suitably chosen
cross section C to the !ow. This is because0 has topological dimension 1 fromRemark 4.3,
so its intersection with a cross section has topological dimension 0 (i.e. discrete points).
This helps with the construction of the Markov partition around 0 ∩ C, which will later
be used to de$ne the alphabets in the required subshift.

Remark 5.1: It is worth noting that our desired construction can be compared to the result
of Anosov [1]. He showed that given any zero-dimensional hyperbolic set0 of a di"eomor-
phism of a smooth manifold and any its neighbourhood V, there exists a locally maximal
invariant set0′ satisfying the inclusion0 ⊂ 0′ ⊂ V . He also showed that any such zero-
dimensional locally maximal set is necessarily homeomorphic to a Markov subset of a
Bernoulli shift. He achieves this by introducing a version of the shadowing property which
he proves to be equivalent to local maximality. Our construction is similar to his result in
that we use shadowing to establish local maximality, but it is more speci$c to our setting
of geodesic !ows on rank 1 surfaces with no focal points, highlighting how non-uniform
hyperbolicity is still su#cient for the construction.

We $rst begin with the construction of the cross section C. Denoting by V ⊂ TT1S the
codimension-1 orthogonal complement to the vector $eld generating the geodesic !ow, for
any v ∈ T1S and δ > 0 we de$ne Dδ(v) as the image of the exponential map of the δ-ball
in V(v) centred at the origin. For any δ su#ciently small and v ∈ T1S, the centre-stable
foliation Wcs induces an one-dimensional stable foliation W s on Dδ(v) whose leaves are
de$ned by

W s
v,δ(w) := Wcs(w) ∩ Dδ(v).

Likewise,Wcu induces an one-dimensional foliationWu
v,δ onDδ(v). When the underlying

Dδ(v) is clear, we will often suppress v and simply writeW s/u(w). Restricted to a compact
subset of Reg, the foliationsW s/u are uniformly transverse.

We will now choose the scale δ > 0 to work with. First, since RegT(η) is a compact
subset of Reg, there exist δLPS = δ(T, η) > 0 and κ := κ(T, η) > 1 such that vectors in a
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δLPS-neighbourhood of any v ∈ RegT(η) have the local product structure with constant κ ;
see De$nition 2.7.

Since Es and Eu are perpendicular to Ec, for su#ciently small δ > 0, bothDδ(v) and the
foliations Ws/u and W s/u are nearly perpendicular to the geodesic !ow lines. The slight
failure of the orthogonality can be accounted for as follows. Once and for all, we $x β
larger than but su#ciently close to 1, and then we choose δ ∈ (0, δLPS/2) such that for any
v ∈ T1S, w ∈ Dδ(v), and u ∈ Wu

v (w), we have

κ−1du(gtu,w) ≤ d(u,w) ≤ βdu(gtu,w) (11)

where t ∈ R is a unique real number such that gtu belongs to the local unstable leafWu(w)

ofw. Themetric d here denotes themetric from (2), and themultiplicative factor κ−1 shows
up in the lower bound because gtu is equal to [w, u], and the bounds from De$nition 2.7
apply here. Likewise, we may assume that analogous properties hold for any u ∈ W s

v(w)

with respect to ds. Such δ > 0 $xed here will be the scale we will work with throughout the
proof.

For v ∈ 0, we say a subset ofDδ(v) is a su-rectangle if it is a rectangle where each edge is a
subset ofWcs/cu(w) ∩ Dδ(v) for somew ∈ Sing. Since both foliationsWs andWu are min-
imal under the action of geodesic !ow [8, Lemma 4.6] and Sing 2= ∅, for each v ∈ 0we can
build a su-rectangle around v of arbitrarily small diameter contained in Dδ(v). In partic-
ular, we can choose a $nite subset {vi}ni=1 ⊂ 0 and build a su#ciently small su-rectangle
Ci := Cvi ⊂ Dδ(vi) around vi such that the union

⋃
1≤i≤n g[− 1

2 ,
1
2 )
Cvi contains 0 and is

contained in U. Moreover, we may construct Ci’s such that they are pairwise disjoint. Our
desired cross section is C :=

⋃
1≤i≤n Ci.

Since each vi belongs to0, the induced foliationsW s/u are uniformly transverse on C,
and each Ci has a natural product structure: for any v1, v2 ∈ Ci, both

[v1, v2]C := Wu
v,δ(v1) ∩ W s

v,δ(v2)

and [v2, v1]C = Wu
v,δ(v2) ∩ W s

v,δ(v1) are contained in Ci. For such v1, v2, there exists a
unique real number t ∈ R such that gt[v1, v2]C coincides with [v1, v2]; see Figure 2. Note
that it plays the same role as the t appearing in (11). From the choice of β and κ , we have

d(v1, [v1, v2]C) ≤ βdu(v1, [v1, v2]) ≤ βκd(v1, v2). (12)

Denote by ∂Ci the boundary of Ci for 1 ≤ i ≤ n and ∂C the union of ∂Ci. Note that for
any v0 ∈ Sing and w0 ∈ Wcs(v0), their forward Lyapunov exponents satisfy χ+(w0) =
χ+(v0) = 0. This follows from [6, Proposition 2] which makes use of the !at strip
theorem; since the !at strip theorem remains valid for manifolds with no focal points
[12, Theorem 2], the proof readily extends to our setting. Likewise, if w0 ∈ Wcu(v0),
then χ−(w0) = χ−(v0) = 0. Since 0 is uniformly hyperbolic, each v ∈ 0 has χ(v) > 0.
Hence, 0 does not intersect the boundary of any su-rectangle, and we have 0 ∩ ∂C = ∅.
In particular, as0 and ∂C are both closed, we know d(0, ∂C) > 0.

We $x a su#ciently small 0 ≤ α 8 d(0, ∂C) < δ and construct $nitely many su-
rectangles

R = R(α) := {R1,R2, . . . ,Rm}
on C such that their union contains 0 ∩ C and that each Ri has a diameter at most α and
contains at least one vector in0. We may assume that they have pairwise disjoint interiors
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Figure 2.

and that the distance between 0 ∩ C and
⋃m

j=1 ∂Rj is positive using the same reasoning
from the previous paragraph.

By choosing α su#ciently small, we can ensure that the every vector in the union⋃m
j=1 g[− 1

2 ,
1
2 ]
Rj is su#ciently close to 0, and hence, is contained in g

[− 1
2 ,

1
2 )
C. In partic-

ular, the $rst return time τ :
⋃m

j=1 Rj → [0, 1) to C is well de$ned. To see why this is true,
consider any v ∈

⋃m
j=1 Rj which lies in g

[− 1
2 ,

1
2 )
C. If v ∈ g

[− 1
2 ,0]

C, it is straightforward that

τ (v) ∈ [0, 12 ] is well de$ned. On the other hand, if v ∈ g
[0, 12 )

C and is not contained in

g
[− 1

2 ,0]
C, then consider g 1

2
(v) ∈

⋃m
j=1 g[− 1

2 ,
1
2 ]
Rj ⊂ g

[− 1
2 ,

1
2 )
C. By our assumption, we must

have that g 1
2
(v) ∈ g

[− 1
2 ,0]

C, and hence this gives τ (v) ∈ [ 12 , 1). Accordingly, we de$ne the

$rst return map on
⋃m

j=1 Rj by

F(v) := gτ (v)v.

Since g
[− 1

2 ,
1
2 )
C is contained in U which is then contained in RegT(η), the uniform hyper-

bolicity established in Lemma 4.1 applies to F ; see Lemma 5.4. Moreover, the choice of α
with 0 < α 8 d(0, ∂C) ensures that F(Rj) is contained in a single Ci for each Rj ∈ R =
R(α).

Remark 5.2: WhileF(v) necessarily belongs to C, it may not belong to
⋃m

j=1 Rj. In partic-
ular, F may not be in$nitely iterated on

⋃m
j=1 Rj. However, we will only need to consider

and focus on the set of vectors on which F can be in$nitely iterated.

SinceCi’s are pairwise disjoint, there exists c1 > 0 such that τ is bounded from below by
c1. Using d(0, ∂C) > 0, wemay assume thatF and τ are smooth onRj for every 1 ≤ j ≤ m.
To sum up, we have
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(1) R = {Rj}mj=1 is a collection of closed su-rectangles in C with mutually disjoint interi-
ors.

(2) The union
⋃m

j=1 Rj contains0 ∩ C and is contained in the interior of C.
(3) Each Rj has diameter at most α and contains at least one vector in0 ∩ C.
(4) Both F and τ are smooth on Rj, and F(Rj) is contained in a single Ci for every 1 ≤

j ≤ m.

The following lemma shows that F preserves the local product structure onR.

Lemma 5.3: For any v,w ∈ Ri such that F(v),F(w) ∈ Rj for some 1 ≤ i, j ≤ m, then

F([v,w]C) = [F(v),F(w)]C .

Similarly, if v,w ∈ Ri and F−1(v),F−1(w) ∈ Rj, then

F−1([v,w]C) = [F−1(v),F−1(w)]C .

Proof of Lemma 5.3: Since two statements are symmetric, wewill only show the $rst state-
ment. Let t0, t1 be the unique real numbers such that [v,w] = gt0 [v,w]C ∈ Wu(v) and
[F(v),F(w)] = gt1 [F(v),F(w)]C ∈ Wu(F(v)).

Note that gτ (v)+t0[v,w]C is the unique vector which lies on both Wu(F(v)) and
Wcs(gτ (v)w). Since Wcs(gτ (v)w) coincides with Wcs(F(w)), we have gτ (v)+t0[v,w]C =
gt1 [F(v),F(w)]C . In particular, F maps [v,w]C to [F(v),F(w)]C with τ ([v,w]C) =
τ (v) + t0 − t1. !

Weuse the elements fromR to establish the alphabet in the target shift space. Following
[6], for N ≥ 1 we de$ne

RN :=




D =
j=N⋂

j=−N
F−jRj : Rj ∈ R andD ∩0 2= ∅






as the collection of sets of the form
⋂j=N

j=−N F−jRj that contains at least one vector in0.
By translating Lemma 4.1 to this setting, the following lemma establishes the uniform

hyperbolicity of F restricted to vectors that belong to the same element ofR under F .

Lemma5.4: There exists γ ,C > 0 such that the following holds: for any n ∈ N, v ∈ T1S, and
w ∈ W s(v) such thatF j(v) andF j(w) belong to the same element ofR for every 0 ≤ j ≤ n,

d(Fn(v),Fn(w)) ≤ Ce−γ nd(u, v).

Similarly, for any v ∈ T1S and w ∈ Wu(v) such that F j(v) and F j(w) belong to the same
element ofR for every −n ≤ j ≤ 0,

d(F−n(v),F−n(w)) ≤ Ce−γ nd(u, v).

Proof: We prove the $rst statement; the second statement can be proved analogously. As
above, there exist small t0, t1 ∈ R such that gt0w ∈ Ws(v) and that gt1Fn(w) ∈ Ws(Fn(v)).
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In particular, the line segment connecting v and gt0w alongWs(v) ismapped under the time
Snτ (v) :=

∑n−1
j=0 τ (F j(v)) map of the geodesic !ow to the line segment connectingFn(v)

and gt1Fn(w) along Ws(Fn(v)). Since the entire process lies completely within RegT(η)

from the construction, Lemma 4.1 applies.
Denoting the constant from Lemma 4.1 by C0, we have

ds(Fn(v), gt1Fn(w)) ≤ C0 exp
(
− η

2T
· Snτ (v)

)
ds(v, gt0w)

≤ C0κ exp
(
− η

2T
· c1n

)
d(v,w)

where the second inequality uses (11) as well as Snτ (v) ≥ nc1 from the fact that the
$rst return time τ is bounded below by c1. Applying (11) again to ds(Fn(v), gt1Fn(w))

establishes the lemma with C := C0βκ and γ := ηc1/(2T). !

The following lemma is an easy consequence of Lemma 5.4.

Lemma 5.5: For any ε > 0, there exists N2 = N2(ε) ∈ N such that diam(D) < ε for every
N > N2 andD ∈ RN.

Proof of Lemma 5.5: Let ε > 0 be given. In order to prove the lemma, it su#ces to show
that there exists N2 ∈ N such that for any N > N2, D ∈ RN , v ∈ D ∩0, and w ∈ D, we
have d(v,w) < ε/2.

We claim that we only need to show the cases where w is on W s(v) ∩ D or Wu(v) ∩
D with the upper bound ε/2 replaced by ε/(4κβ + 2). Indeed, suppose that d(v, u) <

ε/(4κβ + 2) for any u ∈ W s(v) ∩ D orWu(v) ∩ D. Then for anyw ∈ D, both [v,w]C and
[w, v]C belong toD from Lemma 5.3, and the triangle inequality gives d([v,w]C , [w, v]C) <

ε/(2κβ + 1). Since w coincides with [[w, v]C, [v,w]C]C , we obtain d([w, v]C ,w) < κβε
2κβ+1

from (12). Combined with d(v, [w, v]C) < ε/(4κβ + 2), we get

d(v,w) ≤ d(v, [w, v]C) + d([w, v]C ,w) ≤ κβε

2κβ + 1
+ ε

4κβ + 2
= ε

2
.

Since the diameter of Ri is bounded above by α, the rest of the proof is now due to
Lemma 5.4. !

While Lemma 5.4 establishes uniform hyperbolicity of F , the following observation
provides an alternative way to compare distance under small number of iterations of F .
Consider any u, v in the same element of C such that u ∈ W s(v), and suppose that Fn(v)
andFn(u) belong to the same element of C for some n ∈ N. There exist unique real num-
bers t0, t1 such that gt0u ∈ Ws(v) and gt1Fn(u) ∈ Ws(Fn(v)). Then v and gt0u are mapped
to Fn(v) and gt1Fn(u) respectively under the time Snτ (v) map of the geodesic !ow. In
particular, using (11) we have

d(Fn(v),Fn(u)) ≤ βds(Fn(v), gt1Fn(u)) ≤ βds(v, gt0u) ≤ βκd(v, u) (13)

where the second inequality is due to the fact that the ds-distance is non-increasing with
respect to the forward geodesic !ow. Such an observation may be interpreted as that the
distance between any two vectors on the sameW s leaf is almost non-increasing under F .
Likewise, the analogous statement holds for du with respect to F−1.
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5.2. Choice of alphabets for the subshift

We will choose large N and use elements inRN as the alphabet of the shift space.

De!nition 5.6: Given a bi-in$nite sequence (· · · , a−1, a0, a1, . . .) = (ai)i∈Z with ai ∈ RN
for all i ∈ Z, we follow the de$nition from [6] and call itN-admissible if for any i ∈ Z, there
exists ui ∈ ai ∩0 such that

F(ui) ∈ ai+1.

Denote by AN the set of all N-admissible sequences. Notice that the AN naturally has
the local product structure de$ned by

[a, b] := (. . . , a−2, a−1, a0, b1, b2, . . .)

for any a = (ai)i∈Z and b = (bi)i∈Z with a0 = b0, and such a product structure will
translate to the desired product structure on 0̃.

De!nition 5.7: For any a = (ai)i∈Z ∈ AN and ε > 0, we call w ∈ C an ε-shadowing of a
if there exists ui ∈ 0 ∩ ai ∩ F−1(ai+1) for each i ∈ Z such that

d(F i(w), ui) < ε.

We will show in the next subsection that for any ε > 0 su#ciently small, there exists
N0 ∈ N such that for any N > N0, every element in AN has a unique ε-shadowing. Fur-
thermore, we will show that such a shadowing mapψ : AN → C is injective. To construct
ψ , we begin by setting

3 := d



0 ∩ C,
m⋃

j=1
∂Rj



 ,

which is necessarily positive becauseR consists of su-rectangles and0 does not intersect
the boundary of any su-rectangle. FixN1 ∈ N such thatCe−γN1 < 1/2whereC, γ are from
Lemma 5.4, and choose

ε ∈
(
0,

3

2(1 + β2κ2)

)
and N0 > max{N1,N2(ε)}

where N2 is from Lemma 5.5.
We brie!y summarize the consequences of such choices of constants.With such a choice

of 3, whenever u ∈ 0 ∩ C and v ∈ C satis$es d(u, v) < 3, then v belongs to the same
element ofR that contains u. From the choice ofN0, wheneverw ∈ W s(u) such thatF i(w)

and F i(u) belong to the same element ofR for all 0 ≤ i ≤ N0, then

d(FN0(u),FN0(w)) ≤ 1
2
d(u,w).

and likewise for w ∈ Wu(v) with respect toF−N0 . From Lemma 5.5, wheneverF i(u) and
F i(v) belong to the same element of R for all −N0 ≤ i ≤ N0, then u and v belong to the
element ofRN0 , and hence d(u, v) < ε. We will use these facts repeatedly in the following
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lemma where we construct the required shadowing map ψ , and instead of the $rst return
map F , from now on we will work with its N0-th power G := FN0 .

While we follow the classical proof of the shadowing lemma using the uniform hyper-
bolicity established in Lemma 5.4, such hyperbolicity is only guaranteed contingent on
the assumption that the vectors whose distance are being compared remain in the same
elements of R. In particular, at each step we have to ensure that relevant vectors in
consideration belong to the suitable element ofR.

5.3. Construction of the subshift

With the above choice of ε andN0, the goal of this subsection is to build an injective coding
map using the N0-th power map G := FN0 .

Proposition 5.8: Any 2N0-admissible sequence has a unique ε-shadowing. Moreover, the
shadowing map ψ : A2N0 → C is injective.

Let a = (ai)i∈Z ∈ A2N0 be 2N0-admissible. For each i ∈ Z, let ui ∈ ai ∩0 such that
F(ui) ∈ ai+1 and Ri be the element of R containing ai. For simplicity of notations, we
denote

ui := uiN0 and Ri := RiN0

so that G maps ui into Ri+1 for each i ∈ Z. Moreover, we denote byDi the element ofRN0
containing ui, whose diameter is bounded above by ε from Lemma 5.5 and the choice of
N0.

The idea behind the construction of ψ is quite simple which we brie!y sketch in this
paragraph.We $rst want to $ndw ∈ R0 ∩ Wu(u0) such thatGn(w) is well de$ned belongs
to Gn(w) ∈ Rn for all n ∈ N. Since G is uniformly hyperbolic on the domain in which it
is well de$ned, we can construct w as the limit of a (exponentially converging) Cauchy
sequence {G−n(wn)}n∈N on R0 ∩ Wu(u0) for some well-chosen wn ∈ Rn whose image
under G−n is well de$ned. Then we $nd v ∈ R0 ∩ W s(u0) satisfying the analogous prop-
erties with respect to G−1, and de$neψ(a) as the local product [v,w]C . It will then be easy
to verify that ψ(a) is the unique shadow of a, as claimed in the proposition.

For each n ∈ N0, we will $rst inductively construct wn ∈ Rn satisfying the following
properties:

d(wn,un) < ε,

and for each 0 ≤ j ≤ n,

G−j(wn) ∈ Rn−j ∩ Wu(wn−j) (14)

and

d(G−j+1(wn−1),G−j(wn)) < ε/2j. (15)

Settingw0 := u0, the above listed properties (except for the last propertywhich is irrelevant
as we did not de$ne w−1) are trivially satis$ed for n = 0.
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From the de$nition of 2N0-admissibility, Gi(w0) belongs to Ri for all j ∈ {−2,−1,
0, 1, 2}. In particular,

w1 := [G(w0),u1]C ∈ R1

is well de$ned. For j ∈ {−2,−1, 0, 1}, G j(w1) coincides with [G1+j(w0),G j(u1)]C from
Lemma 5.3, and hence belongs to R1+j. This implies that G(w0), w1, and u1 belong in the
same element D1 of RN0 and that G−1(w1) ∈ D0. Since the diameter of D1 is at most ε,
the choice of constant N0 gives that d(w0,G−1(w1)) < 1

2d(G(w0),w1) ≤ ε
2 . In particular,

the above listed properties (14) and (15) for w1 hold for n = 1:

d(w1,u1) < ε, d(G(w0),w1) < ε, and d(w0,G−1(w1)) < ε/2.

Before moving onto the construction of w2, we establish another property of w1. From the
above paragraph, we have G(w1) = [G2(w0),G(u1)]C which belongs toR2. SinceF is well
de$ned on each rectangle in R, we know that F(G(w1)) is well de$ned and belongs to
C. A priori, we do not know whether it belongs to one of the rectangles in R nor which
rectangle it belongs to, if it belongs to one. This is because althoughwe canwriteF(G(w1))
as [F(G2(w0)),F(G(u1))]C where F(G(u1)) ∈ R2N0+1, we do not know which rectangle
F(G2(w0)) belongs to, if it belongs to one; see Remark 5.2. However, the following lemma
shows that F(G(w1)) belongs to R2N0+1 as expected, and the same holds for F j(G(w1))
for all 1 ≤ j ≤ N0.

Lemma 5.9: F j(G(w1)) ∈ R2N0+j for all 1 ≤ j ≤ N0. In particular, G2(w1) ∈ R3 is well
de!ned, and hence, G(w1) ∈ D2.

Proof: We begin by noting that G(w1) ∈ W s(G(u1)) ∩ R2 and that d(G(w1),G(u1)) ≤
ε/2 from the choice of N0. By applying (13) with n = 1 gives

d(F(G(u1)),F(G(w1))) ≤ βκd(G(u1),G(w1)) ≤ βκε/2 ≤ 3.

In particular, from the de$ning property of 3 and the fact that F(G(u1)) ∈ 0 we have
F(G(w1)) ∈ R2N0+1. Therefore, F can be iterated for F(G(w1)) since F is well de$ned
on each rectangle inR. Now inductively applying the same argument using (13) with n =
2, . . . ,N0 proves the lemma. !

With such properties of w1 in mind, we de$ne

w2 := [G(w1),u2]C ∈ R2.

See Figure 3 which also contains G2(w) where w is a vector (yet to be de$ned) described
in the sketch of proof appearing below Proposition 5.8. As we will see in the following
lemma, the statement G(w1) ∈ D2 of the above lemma ensures that d(G(w1),w2) < ε

which corresponds to (15) of w2 for j = 0.

Lemma 5.10: w2 satis!es (14) and (15). Moreover, we have G(w2) ∈ D3.

Proof: Using the fact that a ∈ A2N0 is 2N0-admissible, we have G j(u2) ∈ R2+j for −2 ≤
j ≤ 2. From the de$nition ofw1 and Lemma 5.9, we haveG1+j(w1) ∈ R2+j for−2 ≤ j ≤ 1.
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Figure 3.

In particular, for the same range of j, G j(w2) is de$ned as [G1+j(w1),G j(u2)]C , and hence
belongs to R2+j. This implies that G(w1), w2, and u2 belong in the same element D2 of
RN0 and that w1 and G−1(w2) belong inD1. Then the uniform hyperbolicity of G coming
from the choice of constant N0 gives (15) for w2:

d(w2,u2) < ε, and d(G−j+1(w1),G−j(w2)) < ε/2j for j ∈ {0, 1, 2}.

The remaining statement that G(w2) belongs toD3 follows just as in Lemma 5.9. !

We describe another iteration prior to generalizing this process. Let

w3 := [G(w2),u3]C ∈ R3.

Lemma 5.11: w3 satis!es (14) and (15).

Proof: Proceeding as in the above lemma,G j(w3) belongs toR3+j for all j ∈ {−2,−1, 0, 1}.
Moreover, G(w2), w3, and u3 belong in the same element D3 of RN0 and that w2 and
G−1(w3) = [w2,G−1(u3)]C belong in D2. Lemma 5.5 and the choice of constant N0 then
give

d(w3,u3) < ε, and d(G−j+1(w2),G−j(w3)) < ε/2j for j ∈ {0, 1, 2},

where G−2(w3) = [G−1(w2),G−2(u3)]C from Lemma 5.3.
A priori, this is all that can be deduced from the construction of w3; that is, we

do not quite have the well-de$nedness of G−3(w3) nor the properties corresponding
to (14) and (15) for j = 3. This is because a = (ai)i∈Z ∈ A2N0 is only 2N0-admissible,
so F−j(G−2(u3)) does not necessarily belong to RN0−j for 1 ≤ j ≤ N0, and hence,
F−j(G−2(w3)) cannot be de$ned as [F−j(G−1(w2)),F−j(G−2(u3))]C via Lemma 5.3.
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Instead, we can directly show using the de$nition of3 that

F−j(G−2(w3)) ∈ RN0−j for all 1 ≤ j ≤ N0. (16)

Indeed, from the fact d(G−1(w2),G−2(w3)) < ε/4 established above, there exists a small
t0 ∈ R such that gt0G−2(w3) ∈ Wu

κε/4(G−1(w2)) by (11). Since the du-distance is non-
increasing with respect to the backward geodesic !ow, we have

gt0−τ0G−2(w3) ∈ Wu
κε/4(F−1(G−1(w2))) (17)

where τ0 = τ (F−1(G−1(w2))).
Since d(F−1(G−1(w2)),F−1(w1)) < ε/2, d(F−1(w1),F−1(G(w0))) < ε, and

F−1(G(w0)) belongs to0 ∩ RN0−1, we have from the de$ning property of3 that

Wu
βκε/4(F−1(G−1(w2))) ⊂ RN0−1

because ε + ε/2 + βκε/4 < 2ε + βκε/4 < 3. All vectors in Wu
βκε/4(F−1(G−1(w2)))

project to Wu(F−1(G−1(w2))) along the !ow direction, and by (11) the image of such
a projection contains Wu

κε/4(F−1(G−1(w2))). From (17) there exists t1 ∈ R such that
gt0+t1−τ0G−2(w3) belongs to RN0−1, and hence, must be equal to F−1(G−2(w3)). This
establishes (16) for j = 1, and by repeating the argument, we can show (16) for the
other j’s inductively. In particular, it shows that G−3(w3) belongs to R0 ∩ Wu(w0) and
d(G−2(w2),G−3(w3)) < ε/8 from the de$nition ofN0. These correspond to (14) and (15)
of w3 with j = 3. !

Suppose now that w0,w1, . . . ,wn−1 are constructed with the listed properties (14)
and (15) for some n ∈ N. For the general inductive step, we set

wn := [G(wn−1),un]C

and verify the listed properties above in the following lemma:

Lemma 5.12: For all 0 ≤ j ≤ n, G−j(wn) is well de!ned and satis!es (14) and (15).

Proof: The proof resembles that of w3 above. Proceeding as above, G(wn−1), wn, and un
belong in the same element Dn and that wn−1 and G−1(wn) belong in Dn−1. Lemma 5.5
and the choice of N0 then give

d(wn,un) < ε, and d(G−j+1(wn−1),G−j(wn)) < ε/2j for j ∈ {0, 1, 2}.

This proves (15) for j ∈ {0, 1, 2}.
For the inductive step, suppose G−k(wn) ∈ Rn−k ∩ Wu(wn−k) and d(G−k+1(wn−1),

G−k(wn)) < ε/2k for some k ≥ 2. As in the proof of (16), but instead usingFN0−j(un−k−1)
as the vector lying in0 and pivoting at FN0−j(wn−k−1), we can show

F−j(G−k(wn)) ∈ R(n−k)N0−j for all 1 ≤ j ≤ N0

by observing that ε +
∑k−1

i=0 ε/2i + βκε/2k < 2ε + βκε/2k < 3. In particular,
G−k−1(wn) is well de$ned and belongs to Rn−k−1 ∩ Wu(wn−k−1), and it follows from
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the de$nition of N0 that d(G−k(wn−1),G−k−1(wn)) < ε/2k+1, completing the inductive
process. !

As in the proof of Lemma 5.9 and (16), we haveF j(G−n(wn)) ∈ Rj for all−N0 ≤ j ≤ 0
and nN0 ≤ j ≤ (n + 1)N0. It then follows from Lemma 5.5 and (14) that

d(F j(G−n(wn)), uj) < ε forall 0 ≤ j ≤ nN0.

From the obtained sequence {wn}n∈N satisfying (14) and (15), we de$ne

w := lim
n→∞

G−n(wn),

which belongs to R0 ∩ Wu(u0). Here the convergence of the limit is guaranteed because
G−n(wn) forms a Cauchy sequence due to (15).Moreover, both d(u0,w) and d(Gn(w),wn)
are bounded above by

∑∞
i=1 2−iε = ε. FromLemma 5.5 we then have d(F j(w), uj) < ε for

all j ∈ N.
We repeat the construction using the negative indices of a = (ai)i∈Z ∈ A2N0 and this

gives us a sequence {vn}n≤0 satisfying the analogous properties as {wn}n≥0 with respect to
W s instead. In particular, we may de$ne

v := lim
n→∞

Gn(vn),

which belongs to R0 ∩ W s(u0). Finally, the desired shadowing map ψ can be de$ned as

ψ(a) := [v,w]C .

See Figure 4.
Since d(u0,w) < ε and d(u0, v) < ε, we have d(w, v) < 2ε and hence d(w,ψ(a)) ≤

2βκε from (12). From (13), we have d(F j(w),F j(ψ(a))) ≤ βκd(w,ψ(a)) ≤ 2β2κ2ε for
all j ∈ N, and hence,

d(uj,F j(ψ(a))) ≤ d(uj,F j(w)) + d(F j(w),F j(ψ(a)) ≤ ε + 2β2κ2ε.

Since uj ∈ 0 and ε + 2β2κ2ε < 3, we have F j(ψ(a)) ∈ Rj for all j ∈ N. The analogous
inequality for the negative indices n ≤ 0 can similarly be veri$ed using vn and Gn(v), and

Figure 4.
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this shows that F j(ψ(a)) ∈ Rj for all j ∈ Z. Then it follows from Lemma 5.5 that ψ(a)
indeed ε-shadows a with respect to F , as required.

The well-de$nedness and injectiveness of ψ can also easily be veri$ed. For well-
de$nedness, if we had used a di"erent sequence {u′

i}i∈Z for a = (ai)i∈Z and obtained
ψ(a)′ ∈ R0, then bothGn(ψ(a)) andGn(ψ(a)′) belong toRn for alln ∈ Z, and this implies
thatψ(a) = ψ(a)′ from Lemma 5.5. The injectivity of themapψ also follows in a straight-
forward way, as {ai}i∈Z is uniquely determined by the orbit ofψ(a), so is a. This completes
the proof of Proposition 5.8.

5.4. Completing the proof of Proposition 4.4

Using ψ , we construct 0̃ as follows:

0̃ :=
⋃

t∈R
gt(ψ(A2N0)).

We claim that 0̃ is the desired set satisfying the statements of Proposition 4.4. Indeed,
every vector in 0 is contained in A2N0 and mapped to itself by ψ , so 0 ⊂ 0̃. From its
construction, 0̃ is G-invariant and compact as it is the image of a compact set under the
continuous map ψ . Moreover, 0̃ is uniformly hyperbolic as it contained in U, and it is
locally maximal because it inherits the local product structure ofA2N0 . This completes the
proof of Proposition 4.4.
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