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ABSTRACT ARTICLE HISTORY
In this paper, we study multifractal spectra of the geodesic flows Received 5 April 2021
on compact rank 1 surfaces without focal points. We compute the Accepted 23 August 2021
entropy of the level sets for the Lyapunov exponents and establish

a lower bound for their Hausdorff dimension in terms of the pres-

sure function and its Legendre transform. In doing so, we employ and

generalize results of Burns and Gelfert for non-positively curved sur-

faces and construct an increasingly nested sequence of basic sets in

the complement of the singular set on which the geodesic flow is

non-uniformly hyperbolic. Such a sequence of basic sets eventually

contains any given basic set.

1. Introduction

In this paper, we study the multifractal information of the Lyapunov level sets with respect
to the geodesic flow on surfaces with no focal points. In particular, we focus on estimating
the topological entropy and the Hausdorff dimension of such level sets. Historically, sim-
ilar types of problems have been studied in a greater generality for uniformly hyperbolic
systems; see [2] for flows, [3,24] for some discrete time examples, and [23] for a systematic
introduction.

While there are some known results for one-dimensional [16] and conformal systems
[10], in general, much less is known regarding the multifractal analysis for non-uniformly
hyperbolic systems. Higher-dimensional generalization is more difficult because popular
methods for estimating the Hausdorff dimension by slicing it with the stable and unstable
leaves [20] and adding up the respective dimensions are no longer valid. Failure of such
methods is due to the fact that the projection map along the holomony is often not bi-
Lipschitz for non-uniformly hyperbolic systems, even when the stable and unstable leaves
are absolutely continuous.

In a different setting, Burns and Gelfert [6] studied the Lyapunov level sets with respect
to the geodesic flow over rank 1 non-positively curved surfaces. For such surfaces, there
exists a closed invariant subset of the unit tangent bundle, called the singular set, on which
the geodesic flow experiences no hyperbolicity. It is the presence of such a singular set that
makes the geodesic flow non-uniformly hyperbolic.
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© 2021 Informa UK Limited, trading as Taylor & Francis Group


http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/14689367.2021.1978394&domain=pdf&date_stamp=2021-11-03
mailto:kihopark@math.uchicago.edu
mailto:kihopark@uchicago.edu

DYNAMICAL SYSTEMS (&) 657

In this paper, we extend the results of [6] to rank 1 surfaces without focal points by
employing similar techniques. Manifolds without focal points are natural generalizations
of non-positively curved manifolds, and the two classes of manifolds share many geomet-
ric features such as the presence of the singular set. On the other hand, there are certain
properties that only hold for non-positively curved manifolds; see Remark 2.5 for instance.

Let Sbe a closed surface equipped with a Riemannian metric such that there are no focal
points (see Definition 2.1), and G = {g;};cr be the geodesic flow on its unit tangent bundle
T'S. We will assume throughout the paper that the singular set is non-empty because the
geodesic flow is uniformly hyperbolic in the absence of the singular set, and the multifractal
analysis of the Lyapunov level sets is then well understood.

As we will shortly see in Proposition 2.3, the action of G on T1S in our case induces
a non-uniform hyperbolic splitting of T, T'S for each v € T'S. In particular, the unsta-
ble distribution of v is well defined and denoted by E%. Accordingly, we have the classical
definition of geometric potential given by

>

1
80 () := — lim — u
50 =~ lny o i

whose importance partially lies in its intimate relation to the Lyapunov exponent because
the Lyapunov exponent y (v) can be defined as the Birkhoff average of —¢$° along the
orbit of v. We say v € T'S is Lyapunov regular if its Lyapunov exponent x (v) exists; see
Definition 2.9. The main object of study in this paper is the Lyapunov level set defined as

L(B) := {v € T'S: vis Lyapuonv regular and x (v) = f}.

We denote by h(L(B)) the topological entropy of L(B), also known as the entropy spec-
trum. Here we adopt Bowen’s definition [4] of the entropy for non-compact sets as the
Lyapunov level sets are non-compact in general. We also denote by dimy £(f) the Haus-
dorff dimension of £(8). The pressure function (see (6) for the definition of the pressure)
and its Legendre transform

P(t) = P(t¢%°) and E(a) = inf(P(t)—ta), (1)
teR

play important roles in computing #(L(8)) and dimpy £(8). Here we notice that ¢ is used
both as the time index for the flow and the variable for the pressure function. Since using
such parameter ¢ is a historic convention in the above two settings and the two ways ¢ are
used are quite ‘disjoint’ throughout the paper, we claim that the choice of  shall not cause
any confusion.

Because of monotonicity and convexity of pressure function P (see Proposition 2.11),
the following limit exists:

a1 ;= lim DTP(),
t——00
where D7 stands for the right derivative. Our main result is stated as follows:

Theorem 1.1: Let S be a rank 1 Riemannian surface with no focal points. Then,

(1) The Lyapunov level set L(—c) is non-empty if and only if o € [a1,0].
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(2) Fora € (a1,0), we have
h(L(—a)) = E(@)

and
dimg L(—a) >1+2- 5(—(:;).

Both the statement and the idea of the proof of the above theorem are similar to those
of the main results in [6], with necessary structural and technical modifications which are
based on recently introduced tools (see Section 4) suitable for studying manifolds without
focal points. Here, we briefly comment on our approach to this result, which is based on
[6]. Since the singular set is non-empty, the geometric potential ¢°° has more than one
equilibrium state. Consequently, the pressure function P(t) is not differentiable at t = 1,
exhibiting a phase transition. Based on this observation, we study the Lyapunov level sets
L(B) in two separate cases depending on the domain of 8.

Setting o, := D™'P(1), where D~ is the left derivative, the first case concerns with the
domain 8 € (—ay, —«;) corresponding to the time before the phase transition. In this case,
we compute the entropy h(L(B)) using the fact that P is C ! when t < 1, which is based on
the uniqueness of the equilibrium state for t&’ obtained in [7]; see Section 2 for further
discussions.

The other case 8 € [0, —a] corresponds to the time past the phase transition, where
we estimate the entropy spectrum from both below and above. For the lower bound, we
follow the construction in [6] and build an increasingly nested sequence of basic sets (see
Definition 2.12) in the complement of the singular set on which the geodesic flow is non-
uniformly hyperbolic; see Proposition 3.2. As the entropy spectrum is well understood on
the basic sets, and the increasingly nested basic sets are constructed so that they eventually
intersect £(B) non-trivially, we use such information to establish an effective lower bound
for the entropy of L£(8). In our case, the construction of such a sequence of basic sets relies
on the hyperbolic index function At introduced in [7]; see Section 4.

The paper is structured as follows. In Section 2, we survey preliminaries on geometry,
thermodynamic formalism, and multifractal analysis. In Section 3, we prove Theorem 1.1
by assuming the existence of the increasingly nested basic sets (Proposition 3.2). In
Section 4, we establish Proposition 3.2. In its proof, we make use of Proposition 4.4, a key
proposition that allows us to equip local maximality to given hyperbolic sets, whose proof
is deferred to Section 5.

2. Preliminaries
2.1. Geometry

In this subsection, we introduce and survey geometric features of manifolds with no focal
points. Let M be a closed Riemannian manifold. For v € T' M, we denote by y, the unique
geodesic with the initial velocity v € T'M; in particular, the geodesic flow G = {gt} R is
defined as g;v := y, (). Often we will identify the orbit segment connecting v to g;v with
(v, t) € T'M x [0, 00). We equip T'M with the following metric

d(v, w) := max{d(y, (), yw(1)): t € [0,1]}. (2)
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This metric was used by Knieper [18], and it is locally equivalent to the more commonly
used Sasaki metric.

A Jacobi field J(t) along a geodesic y is a vector field along y satisfying the following
Jacobi equation:

J' () +RJ@®), y()y () =0

where’ denotes the covariant derivative along y and R is the Riemmanian curvature tensor.
We denote the space of all Jacobi fields along y by J (y).

It is clear from the Jacobi equation that the behaviours of the Jacobi fields are governed
by the Riemannian curvature of the manifold. For negatively curved manifolds, the func-
tion t > |[J(#)]| is strictly convex for any Jacobi field . Non-positively curved manifolds
are natural generalizations of negatively curved manifolds, and ¢ — ||J(¢)| is convex. In
regards to these behaviours of the Jacobi fields, it is then clear from the following definition
that manifolds with no focal points are natural generalizations of non-positively curved
manifolds:

Definition 2.1: A manifold M has no focal points if for any initially vanishing Jacobi field
J(t), its length [|J(#)|| is strictly increasing.

We say a Jacobi field ] is orthogonal if both ] (ty) and J' (t) are perpendicular to y (¢y) for
some ty € R. Note that any such Jacobi field J with this property has an evidently stronger
property that J and J' are perpendicular to y for all t € R; see [21]. We say a Jacobi ] is
parallel if ' = 0.

Definition 2.2: For v € T'M, the rank of v is the dimension of the space of parallel Jacobi
fields over y,. We say the manifold is rank 1 if it has at least one rank 1 vector. The singular
set is the set of vectors with rank bigger than or equal 2:

Sing := {v € T'M: rank(v) > 2}.
The regular set, Reg := T'M \ Sing, is defined as the complement of the singular set.

We also denote the space of orthogonal Jacobi fields along y by J* (). The set of stable
orthogonal Jacobi fields [J°(y) is a subspace of J*(y) defined by

T (y) ={ € T*(): IJ(®)] is bounded for t > 0}.

Similarly, the set of unstable orthogonal Jacobi fields J*(y) consists of orthogonal Jacobi
fields whose norm is bounded for all t < 0. By pulling back these linear subspaces J*/* via
the identification T, T*M ~ 7 (), we define subbundles E*/* in TT'M by

B = (& € T,T'M: J € T ()},

where J¢ is the Jacobi field along y, whose initial conditions J¢ (0) and ]é (0) are specified
by &. We also define a 1-dimensional subbundle E° C TT!M given by the geodesic flow
direction.

The following proposition summarizes known properties on these subbundles when M
has no focal points; these properties are collected from [12,15,22].
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Proposition 2.3: Let M be an n-dimensional closed Riemannian manifold without focal
points.

(1) dim(E’*) = n — 1 and dim(E°) = 1.

(2) The subbundles E°, E¥, E“ := E° @ E° and E** := E° ® E" are G-invariant.

(3) The subbundles E°,o € {s, u, cs, cu}, are integrable to G-invariant foliations W°.

(4) E°(v) and E*(v) have a non-trivial intersection if and only if v € Sing.

(5) For any ] € J*(y) (respectively, T*(y)), IJ(t)| is non-increasing (respectively, non-
decreasing) for all t € R.

(6) The geodesic flow G = {g}1er on T'M is topologically transitive if M is rank 1.

The foliations W7, o € {s, u, cs, cu}, defined in the above proposition are called stable,
unstable, center-stable, and center-unstable, respectively. We endow each foliation with the
intrinsic metric as follows. On W*(v) we define

d’(u,w) == inf{l(my) | y: [0,1] > W (¥), y(0) = u, y(1) = w}

where 77 : T'M — M is the canonical projection, £ denotes the length of the curve on M,
and the infimum is taken over all C! curves y connecting u and v in W¥(v). Locally on
W (v), we define

d®(u, w) := |t| + d*(gru, w)

where t € R is the unique real number such that g;u € W*(w). It extends to the metric on
the entire centre-stable leaf W (v) in an obvious way. Moreover, it follows from the above
proposition that the map ¢ — d° (g;u, g;v) is non-increasing for o € {s, cs}.

Likewise, the metrics d“ and d* on W* and W, respectively, are defined analogously
and the map ¢ — d° (g;u, gv) is non-decreasing for o € {u, cu}. All intrinsic metrics d°,
o € {s,u,cs, cu}, are locally equivalent to the metric d from (2).

In this paper, we will primarily focus on rank 1 surfaces S without focal points. The rank
1 condition on § is equivalent to its genus being at least 2, and the singular set admits an
alternative description given by

Sing = {v eT's: K(rgv) =0forallt e R}, (3)

where K is the Gaussian curvature; see [14] and [11, Corollary 3.3, 3.6]. Moreover, the
Jacobi equation simplifies to

J' (1) + K(y ()] (1) = 0. (4)

Given any orthogonal Jacobi field J along y, we may identify it as a unit vector field along
y scaled by a continuous function. By an abuse of notation, we denote such a continuous
function also by ], and we may treat (4) as a scalar ODE.

Foranyv e T'S, the unstable leaf W*(v) projects to the horosphere H*(v) C S, and the
one-dimensional symmetric operator on T, H"(v) defines the geodesic curvature k" (v) of
the horosphere H*(v); see [7, Section 3] for details. Likewise, the geodesic curvature k°(v)
of the stable horosphere H*(v) is defined analogously, and satisfies k*(—v) = k*(v).
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Using the geodesic curvatures k¥/*, we define a non-negative function A on T'S given

by
A(v) := min{K’(v), k*(v)}.

The horospheres are C? for manifolds without focal points, so k* and A are continuous.
Such X first appeared in [5] in the setting of non-positively curved manifolds as a mean
of measuring hyperbolicity on the unit tangent bundle. It serves the same purpose in our
setting, and satisfies the following properties:

Proposition 2.4: (1) Alsing = 0.
(2) Ifx(v) =0, then K(wv) = 0.
(3) Ifr(gv) =0forallt € R, then v € Sing.

Proof: The first two statements relies on [5, Lemma 2.9] (see also [7, Lemma 3.11]) which
states that the unstable Jacobi field J* € J%(y,) with J¥(0) = 1 satisfies

J“'t) = k*(gv)J*(t) forallt € R. (5)

Likewise, (J°)'(t) = —k*(gv)J*(¢) for J* € J*(y,) with J°(0) = 1.

For the first statement, if v € Sing, then E*(v) and E¥(v) coincide, and the norm of the
Jacobi field J¢ corresponding to & € E*(v) = E*(v) is constant from Proposition 2.3. Then
it follows from (5) and the definition of A that A(v) = 0.

For the second statement, let v € TS with A(v) = 0, and without loss of generality,
suppose that k*(v) = 0. Then the stable Jacobi field J* € J°(y,) with J°(0) = 1 satisfies
(J*)'(0) = 0 from (5). Since (J*)' is a non-positive function from Proposition 2.3, it follows
that (J*)”(0) = 0, which then translates to K(zxv) = —(J*)”(0)/J°(0) = 0 from the Jacobi
Equation (4).

The last statement is an easy consequence of the second statement and the alternative
characterization (3) of the singular set. |

Remark 2.5: We note here that the behaviour of A slightly differs between non-positively
curved manifolds and manifolds with no focal points. For a non-positively curved mani-
fold M, whenever A(v) = 0 for some v € T'M, then it necessarily follows that A(g;v) = 0
either for all > 0 or for all ¢+ < 0. This is due to the convexity of the function ¢ = ||J(?)|]
for any Jacobi field J. Such a monotonic behaviour of A then translates to other geometric
properties, including d(Sing, g;v) — 0 ast — oo or t — —o0; see [5, Section 3].

The analogous property, however, does not hold for manifolds without focal points.
Instead, a related function A7 serving a similar purpose was considered in [7,8], and we
also make use of it in Section 4.

For each n > 0, we define
Reg(n) :={v e T'S: A(v) > n}.

While it defines a nested family of compact subsets in Reg, it does not exhaust Reg
as there are vectors v € Reg with A(v) = 0. Nevertheless, the geodesic flow restricted
to Reg(n) exhibits uniformly hyperbolic behaviour; see Lemma 4.1, Proposition 4.2 or
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[5, Lemma 3.10]. Using this fact together with the uniform continuity of A, we obtain
the following version of the shadowing lemma for orbit segments whose endpoints lie in
Reg(n). This lemma is similar to [6, Lemma 2.4] which establishes the shadowing lemma
for orbit segments whose endpoints lie in subsets of the form {v € T'S: K(v) < —n}.
The proof there readily extends to orbit segments with endpoints in Reg(n), and we omit
the proof.

Lemma 2.6 (Shadowing lemma): Let S be a closed surface without focal points. For any
n,& T > 0, there exists § > 0 such that for any collection of orbit segments {(vi, t;)}icz
with vi, g,vi € Reg(n), ti > © and d(g,vi,viy1) < 8 for all i € Z, there exist a geodesic
y and a sequence of times {Ti}icz with To=0, Ti+ti—e <Tit1 < Ti+ti+ ¢, and
Ay (1), yy,(t — Ti)) < e forallt € [T}, Tiy1] and i € Z.

The geodesic y is unique upto re-parametrization. Moreover, if the orbits being shadowed
are periodic, then the shadowing orbit is also periodic.

Another useful structure coming from the foliations is the local product structure. In
the following definition, B(v, §) denotes an open ball of radius é around v. Since the folia-
tions W%, o € {s, cs, u, cu}, are continuous, any compact subset of Reg has a uniform local
product structure for some § > O and x > 1.

Definition 2.7 (Local product structure): We say the foliations W and W* have the local
product structure at scale § > 0 with constantk > latv e T1S if for any wi, w2 € B(v,6),
the intersection [wy, wy] := W5 (w1) N W (w2) is a unique point and satisfies

d*(wr, [wi, wa]) < kd(wi, wa),

d®(wa, [wi, w2]) < kd(wy, wy).

2.2. Thermodynamic formalism

In this subsection, we briefly survey relevant results in thermodynamic formalism and
multifractal analysis.

A probability measure u on TS is G-invariant if  is g;-invariant for all t € R, and we
denote the set of all invariant measures by M (G). We say an u € M(G) is hyperbolic if its
Lyapunov exponent (see Definition 2.9) is non-zero. We denote by h(j1) the metric entropy
of the time-one map of the flow g with respect to 1. For any G-invariant subset Z C T'S,
we denote the entropy of g; restricted Z by h(Z). If Z is non-compact, such as the Lyapunov
level sets L£(8), we adopt Bowen’s definition [4] of entropy for non-compact sets which is
computed similar to the Hausdorftf dimension via finite open covers. In the case where Z
is compact, the entropy h(Z) agrees with the usual topological entropy.

For any continuous flow G = {g;};cr on a compact metric space X and any continuous
function (also known as the potential) ¢ on X, the pressure P(¢) of ¢ can be defined by the
variational principle:

Ply) = sup{h(u) +/<pdu: W€ M(G)}. (6)

Any invariant measure, if any, achieving the supremum is called an equilibrium state. We
refer the reader to [25] for more details.
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From the entropy-expansiveness of the geodesic flows over manifolds with no focal
points [19], the entropy function w +— h(u) is upper semi-continuous, and hence, there
exists at least one equilibrium state for any potential.

For geodesic flows over rank 1 non-positively curved manifolds, Burns, Climenhaga,
Fisher, and Thompson [5] showed that t¢&° has a unique equilibrium state for ¢ in a small
neighbourhood of 0. In the case of surfaces, they also established the result for all < 1.
In our setting of surfaces with no focal points, the analogous result is established by Chen,
Kao, and the first named author:

Proposition 2.8 ([7, Theorem C]): Let S be a rank 1 Riemannian surface with no focal
points. Then t&° has a unique equilibrium state iy € M(G) for each t < 1.

Recall that the geometric potential is a continuous function on T'S defined by

1
080 (y) 1= — lim p log HdgtlEz

In particular, —@8%(v) captures the instantaneous growth rate of E under the derivative
of the geodesic flow.

Definition 2.9: The forward Lyapunov exponent x*(v) of v is defined as

1 t
= lim ——/ ©%(gsv) ds.
t—00 t 0

o1
xT () := lim - log Hdgﬂw
t—oo t

The backward Lyapunov exponent

1 (0
= lim —— / ¥%(gsv) ds.
t—00 —t

_ 1

Wesay v € T'Sis Lyapunov regularif x*(v) = x~(v), in which case we denote its common
value by x (v). The B-Lyapunov level set is defined as

L(B):={veTS:vis Lyapunov regular and x (v) = S}.
For u € M(G), we define its Lyapunov exponent by x (n) := — [ 8 dpu.

Remark 2.10: Notice that the singular set is contained in the 0-level set £(0). This follows
because for any v € Sing, its stable subspace E;, coincides with its unstable subspace EJ,
and hence, the unstable Jacobi field J* along y, has constant length. Hence, ¢8°° vanishes
on the singular set, and we have x (v) = 0 for any v € Sing.

As outlined in the introduction, we conduct our multifractal analysis on £(8) by
studying the pressure function P and its Legendre transform £ defined as in the (1):

P(t) := P(t¢%°) and E(a):= inﬂg(P(t) — ta).
te
We also say that a line £ = £(¢) is a supporting line to P, if it satisfies
inf (P(t) — £(1)) = 0.
teR

The following proposition summarizes some useful properties of P in our setting. See also
Figure 1.
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v 1 PO

Figure 1.

Proposition 2.11: With P as above, we have

(1) P is non-increasing and convex, and P(t) = 0 for all t > 1.

(2) PisC! everywhere except for t = 1. Moreover, P'(t) = f ©8° duy for all t < 1, where
Wy is the unique equilibrium state for t8° from Proposition 2.8.

(3) Recalling the definition of &y = lim;_, _oc D" P (t) from the introduction, for every o €
[a1, 0] there exists a unique supporting line £ to P of slope «u. In particular, ay is finite.

(4) Fort< 1, the unique supporting line to P at (t,P(t)) is

Lo, (s) == h(s) + say,

where ay := P'(t) = [ ¢8° dps. In particular, E(ay) = h(jy).

Proof sketch.: The first statement follows from the fact that the singular set is non-empty.
The second statement is due to the variational principle (6) and Proposition 2.8; see
[6, Proposition 5]. For the third statement, the finiteness of «; follows from the second
statement, continuity of 8% and compactness of TS, and the rest follows from the first
statement. Finally, the last statement follows from the second statement. [ |

At t = 1, there is a phase transition, which is caused by the discrepancy between
@y :=D"P(1) and DTP(1) =0

where «; is well defined due to the convexity of P. Due to the geometric nature of the
setting, all & appearing in this paper, including «; and a3, are non-positive. See Figure 1
for the supporting lines £, of slope «; for i € {1,2}.

As outlined in the introduction, the proof of Theorem 1.1 appearing in the next section
considers two domains (1, @2) and [«3, 0] for « separately. In analysing the latter case, we
will make use of uniformly hyperbolic subsystems, called the basic sets, whose Lyapunov
level sets and their multifractal information are better understood.
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Definition 2.12: A basic set A C TS is a compact, G-invariant, and locally maximal
hyperbolic set on which the geodesic flow is transitive.

For any basic set A C TS, analogous to (1) we define

Pa(t) :=PA(t¢%°) and Ep(a) = znﬂg(PA () — ta).

Basic sets are useful in our analysis because these functions capture precise information
of the level sets £(8) N A. We summarize them in the following proposition. Proofs for
the first four properties can be found in [6, Proposition 6] and the last property is due to
Barreira and Doutor [2].

Proposition 2.13: Let A C T'S be a basic set. Setting a1 (A) = limy_, _oc P (t) and
a2 (A) := lims_, o P}, (t), we have

(1) Pa(t) is strictly convex and real analytic on R.

(2) Foreacha € [a1(A), a2(A)], Pa(t) has a unique supporting line £ 5 o of slope o, which
intersects vertical axis at (0, & («)).

(3) Fora € [a1(A),az(A)], we have L(—a) N A # . For other o, L(—a) N A = (.

(4) For every t, there is a unique equilibrium state [y for t8°|p. Moreover, it satisfies
X () = —Pp'(t) and

En(=x (o)) = h(y).
(5) Foreverya € (a1(A),a2(A)), we have

Er(@)

—u

dimg(L(—a)NA)=1+2-
and

h(L(—a) N A) = Ep(a) = max{h(u): x () = —a and supp(u) € A}.

3. Proof of Theorem 1.1

Since we generally follow the strategies of [6], we will either omit or sketch the proofs
whenever applicable and refer the reader there for details.

3.1. Few simple observations
We establish some partial statements of Theorem 1.1.
Proposition 3.1: We have

(1) L(—a) =0 foreverya < oy and every a > 0.
(2) Foreverya € (a1, ), the Lyapunov level set L(—a) is non-empty and

h(L(—a)) = E(@).



666 (&) K .PARKANDT.WANG
(3) L(—ay) is non-empty.

Proof: The first statement, which is essentially a reformulation of the variational principle
(6), follows from [6, Proposition 5 (2)]. For the second statement, we first define

LYB):={veT'S: xT(v) =B,

and denote by h(LT(B)) its topological entropy. Clearly, we have £(8) C LT (B). By a
routine adaption of the proof for [9, Lemma 3.3.3] to the case of continuous flows over
compact spaces, we can draw a conclusion similar to [9, Theorem 3.1.1 (1)]: forevery t € R,
we have (with the convention of h(J) = —o0)

P(t) = sup(W(LT (—a)) + ta).

aeR

As an immediate consequence, we have

E(a) = tinﬂg(P(t) —ta) > h(LT (=) = h(L(=a)). (7)

For the reverse inequality, let t, < 1 be a real number such that P’(t,) = . We then have
from Proposition 2.11 (4) that

(@) = h(u,) = inf{h(Z): Z C T'S, 114, (2) = 1} < h(L(~)),

as required.

The last statement follows from the fact that the Lyapunov exponent of an invariant
measure (1) is defined as — [ 8°du. Indeed, taking any weak*-limit u € M(G) of the
unique equilibrium state w, for t,¢8° as @ — a1, we must have that x (u) = —a;. By
applying the ergodic decomposition to  and using the choice of ¢}, there exists an ergodic
te € M(G) such that x (u.) = —a;. Then the set of generic points for s, is non-empty
and belongs to L(—ay). [ |

We conclude this subsection by noting that the above argument for (7) readily extends
for any & € [y, 0]. Hence, for all such a we have £(«) > h(L(—w)).

3.2. Remaining statements of Theorem 1.1

Throughout this subsection, we will assume the following proposition whose proof appears
in Section 4.

Proposition 3.2: There exists an increasingly nested sequence of basic sets {K,’}EN such that
for any basic set A C T'S, there exists n € N such that A C A,,.

As we will see, such a family {KH}nEN of basic sets is used to extract information of
the Lyapunov level sets. It is used in showing that £(—«) is non-empty for « € (o1, 0).
Moreover, it is also used in showing that Py () := Pg (f) converges to P (f) for each t. This
then implies that the supporting line £, to P, (t) of slope o converges to the supporting line
£y to P(1) of slope o for all @ € (a1, 0). This observation then translates to the statements
of Theorem 1.1.
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We begin by relating the Lypaunov exponent x (v) of a Lyapunov regular vector v € T'S
to the solution of the Riccati equation over y,. For any orthogonal Jacobi field J, it follows
from the Jacobi Equation (4) that u := J'/]J satisfies the Riccati equation given by

W () +u®)* + Ky @) =0. (8)

Then the Lyapunov exponent y (v) may be described by

1t
x(v) = Tli)moo ?/0 u(t) dt, (9)

where u(t) := ]é(t) /Je(t) with & € E} is a solution to the Riccati Equation (8); see [6,
Lemma 2.6]. Such a description provides an upper bound for the Lyapunov exponent of a
closed geodesic.

Lemma 3.3 ([6, Lemma 2.9]): For any closed geodesic (v,t) € T'S x [0, 00), we have

1 t
X < \/—; /0 K(y(s)) ds.

The right-hand side of the expression in the lemma above is well defined because
for such a closed geodesic we have u(s) = u(s + ¢) for all s € R. This then implies that
fot u/(s) ds = 0. Plugging this into (8) gives fot u*(s) + K(yy(s)) ds = 0, and hence

t t

f K(yy(s)) ds = — / u*(s) ds < 0.
0 0

Using Lemma 2.6 and 3.3, we obtain closed geodesics with arbitrarily small Lyapunov

exponents:

Proposition 3.4: If Sing is non-empty, then there exist closed geodesics with Lyapunov
exponents arbitrarily close to 0 and —a.

Proof: We treat two cases separately. Fix ¢ > 0 that can be arbitrarily small. Recalling the
nested family of compact subsets Reg(n) defined below Remark 2.5, Proposition 2.4 shows
that their union Un>0 Reg(n) contains the set {v € T'S: K(rv) # 0}. In particular, there
exists 7 = n(e) > 0 such that

{veT'S:|K(mv)| > &} C Reg(n).

From the transitivity of the geodesic flow (Proposition 2.3), we can then choose a sequence
of orbits segments {(vy, t,) }nen lying entirely in the set {v € T'S : [K(7v)| < &} such that
the footprints of both their endpoints v, and w;, := g, v, have the Gaussian curvature equal
to either £ or —& and that t,, — co. By passing to a subsequence if necessary, suppose that
vy, — vand w, — w.

Again from the transitivity, we can find an orbit segment starting near w and terminating
near v. Then using the shadowing lemma (Lemma 2.6) applied to Reg(#/2), we obtain a
closed geodesic which shadows v, to w,, (for some sufficiently large n € N) followed by w
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to v. This closed geodesic spends most of its time in {v € T'S : |[K(v)| < 2¢}, and hence,
its Lyapunov exponent can be bounded above by 2,/¢ using Lemma 3.3. Since ¢ > 0 was
arbitrary, this constructs closed geodesics whose Lyapunov exponents are arbitrarily close
to 0. See [6, Proposition 3] for details.

For closed geodesics with Lyapunov exponents arbitrarily close to —«;, we fix any
vp € L(—a;) and consider the solution u(f) to the Riccati Equation (8) over y,. The
existence of such vy € T'S is guaranteed from Proposition 3.1. Since —a; = x (vp) =
lim7_, o0 % fOT u(t) dt, it is not hard to see that lim inf;_, + o, K(,(f)) < 0by studying the
evolution of u(t). In particular, there exist £ > 0 and infinite sequences of forward times
{tn}nen C Ry and backward times {s,},<o C R_ satisfying {t,} /" 0o and {s,} \y —o0
such that g;vp is in the set {v € T'S : K(wv) < —e} when t = t, or s,,. Moreover, we have

1

th — Sn

ty
f — 8% (grvp) dt — —a. (10)
Sn

Using (10) instead of Lemma 3.3, the rest of the proof can be completed as above. By
passing to a subsequence if necessary, we may assume that g, vo — v and g, vo — w. It
follows again from transitivity of G that we can fix an orbit segment starting near w and
terminating near v. Gluing this orbit segment and the one from v, to w, by the shadow-
ing process as above, we obtain a sequence of closed geodesics. Then it follows from (10)
and Definition 2.9 that the Lyapunov exponent of such closed geodesics limits to —«; as
n— oo. |

Recall that £, is the supporting line to P (¢) of slope «.. The following proposition shows
that P, (¢) and £}, converge to P(t) and £, respectively. Its proof makes uses of the Katok’s
horseshoe theorem (see [17] and also [6,13]) which states that for any & > 0, hyperbolic
ergodic measure . € M(G), and potential ¢: T1S — R, there exists a basic set A € T1S
such that

Pa(p) > Pu(p) — ¢
where P, (¢) := h,(G) + [ ¢ du.

Proposition 3.5: The sequence of basic sets { A ,}nen from Proposition 3.2 satisfies
Pult) =Pz (6 7 P(®)

pointwise. Moreover, £ converges to £y for each o € (a1, 0).

Proof: Let e > 0 be given. We divide the proof into two cases t <1 and t > 1.

For t <1, let u; € M(G) be the unique equilibrium state of t¢$°° which is necessarily
hyperbolic; see [7]. Applying Katok’s horseshoe theorem to u; and t¢8® produces a basic
set A satisfying

PA(tg%°°) > P, (t¢%°) —e = P(t) —&.

Then Proposition 3.2 implies that P,(t) > P(t) — ¢ for all n large enough.
When ¢t > 1, note that P(t) = 0 from Proposition 2.11. Proposition 3.4 produces a
hyperbolic measure p, € M(G) whose Lyapunov exponent x (i) lies in the interval
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(0,¢/t). Since . is supported on a closed geodesic, it has zero entropy, and hence
Py, (t98°) is equal to —tx (us). By applying Katok’s horseshoe theorem to . and £,
we obtain a basic set A such that

Pa(t) > Py, (t95°) — e > —2e.

Proposition 3.2 then implies that P, () > —2¢ for all sufficiently large n. Since & was
arbitrary, this completes the proof of the first statement.
The proof of the second statement can be found in [6, Proposition 12]. |

We will prove each statement of Theorem 1.1 separately.

Proof of the first statement of Theorem 1.1: From Proposition 3.1, L(—«) is empty ifa €
(—00, ;) and « € (0,00). From the same proposition, £(—«) is non-empty for all & €
[a1,2). Moreover, £(0) is non-empty as Sing C £(0); see Remark 2.10. Therefore, it
suffices to show that £(—w) is non-empty for « € [c2,0).

In fact, the following method is general enough that it shows the domain in which
L(—a) is non-empty contains a closed interval whose endpoints are arbitrarily close to
o1 and 0. Using Proposition 3.4, we begin by choosing closed geodesics with the Lyapunov
exponents arbitrarily close to 0 and —o;, each of which is a basic set. Then the increas-
ingly nested family {A}nen from Proposition 3.2 eventually contains both such closed
geodesics for all sufficiently large n € N. The claim then follows from the fact that the set
of B € R in which A N £(B) is non-empty is a closed interval for any basic set A; see
Proposition 2.13. |

In view of Proposition 3.1 and the comment after its proof, the only thing left to show
in Theorem 1.1 is the lower bound for the entropy and dimension spectrum. Again, the
proof of the second statement of Theorem 1.1 relies on the increasingly nested sequence of
basic sets {Kn}neN C Reg constructed in Proposition 3.2. Similar to (1), we define

En(a) = Ex () := inf (Py(t) — ta)
" teR
as the Legendre transform of P, at «.

Proof of the second statement of Theorem 1.1: From Proposition 3.5, the supportinglines
£ to Py (t) converges to the supporting line £, to P(t) for each @ € (a1, 0). Since £ inter-
sects the vertical axis at (0, £(w)), and likewise for £, at (0, E,(w)), it follows that &, ()
also monotonically converges to £(«) for all @ € (a1, 0). Using Proposition 2.13, this then
translates to

h(L(=0)) = lim h(L(=e) N Ay) = lim Ex(@) = E(@)

and

& _,,, f@
— —

dimp (L(—a)) > li)ngodimH(L'(—a)ﬂT\n) = lim 1+2-

resulting in the required lower bounds for h(L(—«)) and dimy (L(—w)). [



670 K. PARK AND T. WANG

4. Proof of Proposition 3.2

This section is devoted to the proof of Proposition 3.2. In doing so, we will make use of a
family of non-negative functions A7 defined for each T > 0. It first appeared in [7] and is
closely related to A:

T
Ar(v) == / Agev) dt.
-T
From Proposition 2.4, if A7(v) = 0 for all T > 0, then v € Sing. In particular, setting
Regy(n) = {v € T'S: Ar(v) = n),

we have

Reg = U Regr(n).
T,n>0

Compared to Reg(n) which cannot exhaust the regular set, this has an advantage of being
able to find T, n > 0 such that Reg (1) contains a given compact subset of the regular set.

4.1. Criteria for hyperbolicity

Let kmax := max, 15 k*(v) = max, g k*(v) be the maximum geodesic curvature on
T1S. It can be used in comparing A and At (see [7, Subsection 4.2]): for any v € T'S and
t > 0, we have

1

t t
/ Algsv)ds > — / Ar(gsv) ds — 2Tkmax
0 2T Jo

This inequality can be used in the following lemma to establish the uniform hyperbol-
icity on Reg(n) with the constant C := exp(2Tkmax). We omit the proof as it is an easy
generalization of [5, Lemma 3.1] and [7, Lemma 4.5].

Lemma 4.1: For any T,n > 0, there exists C> 0 such that the following holds: for any v €
TS, w,w' € Wi(v), and t > 0, suppose that the segment connecting w and w' along W*(v)
remains in Reg(n) under the action of g for all T € [0,t]. Then

t
& (gw, gw') < C- d(w,w') - exp (_zn_T> .
Similarly, for any v € T'S, w,w' € W*(v), and t > 0 such that the segment connecting w and

w along W*(v) remains in Reg(n) under the action of g_; for all t € [0, 1],

t
d“(g_w,g—w') < C-d*(w,w') - exp <_277_T> ,

Using this lemma, the following proposition characterizes the uniformly hyperbolicity
among compact subsets of T'S.

Proposition 4.2: Any compact G-invariant subset A C T'S is uniformly hyperbolic if and
only if A C Reg.
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Proof: One direction is clear. If A N Sing # @, then for any v € A N Sing, the geodesic
¥y admits a Jacobi field J¢ with & belonging to E°(v) = E*(v). From Proposition 2.3, such
a Jacobi field J; has constant length for all t € R. This implies that A is not uniformly
hyperbolic.

Conversely, suppose that A is a compact G-invariant subset of Reg. Then, there
exist T, n > 0 such that A is contained in Reg (). Meanwhile, the angles between sta-
ble/central/unstable distributions E};** are all positive for v € Reg and continuous in v.
Together with compactness of Reg;(17), we know T, T'S has a uniformly transversal split-
ting for all v € A. Then it follows from Lemma 4.1 that A is uniformly hyperbolic with
rate n/2T. |

Remark 4.3: In addition to being uniformly hyperbolic, any compact G-invariant subset
A C Reg has topological dimension 1. This follows from [6, Proposition 7].

4.2. Concluding the proof of Proposition 3.2

The construction of the sequence of increasingly nested basic sets {X,,}neN from Propo-
sition 3.2 begins with the following key proposition. This proposition corresponds to [6,
Proposition 8], and we prove it in the next section. While we follow their general strategy,
due to limitations of A in characterizing the singular set (see Remark 2.5), our construction
relies on the function A7 more suited to our setting.

Proposition 4.4: For any closed, G-invariant, hyperbolic set A C T'S and any neighbour-
hood U of A, there exists a closed, G-invariant, locally maximal, hyperbolic set A such that
ACACU.

Using Proposition 4.4, the rest of the proof can be completed as in the proof of [6,
Theorem 1.4], which we briefly sketch here. The following lemma from [6, Proposition
9] allows to glue two basic sets into another basic set; it uses the shadowing lemma and its
proof readily extends to our setting using our analogous version of the shadowing lemma
(Lemma 2.6).

Lemma 4.5 ([6, Proposition 9]): Given any two basic sets A1, Ay C TS, there is a third
basic set A which contains them both.

With Lemma 4.5 in hand, we are now ready to proceed to the proof of Proposition 3.2.
For each n € N, we denote by A, the closure of the set of all closed geodesics contained
in the complement of the %-neighbourhood N (Sing) of the singular set. It is a closed

G-invariant hyperbolic set (Proposition 4.2). Then Proposition 4.4 creates a closed G-
invariant hyperbolic set containing A, with the added structure of the local maximality.
The non-wandering set of such a set, which necessarily contains K,,, can be decom-
posed into basic sets by Smale’s spectral decomposition theorem, and repeatedly applying
Lemma 4.5 produces a basic set An containing all such basic sets. In particular, A,, contains
A,, By applying Lemma 4.5 again to A1, if necessary, we may assume that A, contains
A,, 1 also.
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It can be easily checked that such a nested sequence {Ap}nen is the required sequence
basic sets. In fact, for any basic set A, the closed geodesics in the regular set are dense in
A, and hence, there exists some n € N such that A C Kn C Xn. This completes the proof
of Proposition 3.2.

5. Proof of Proposition 4.4
5.1. Choice of constants and preliminary construction

Let A and U be given as in Proposition 4.4. We may assume that U is sufficiently close to
A so that every G-invariant compact set contained in U is hyperbolic and that U does not
intersect the singular set. By Proposition 4.2, there exist n, T > 0 such that U C Reg;(1).

Since a compact hyperbolic set is locally maximal if and only if it has a local product
structure, we will construct A as the image of a subshift of finite type under a continuous
injective map. In this way, A inherits the natural local product structure from the shift
space and will be locally maximal.

Instead of building A directly, we will construct its intersection with a suitably chosen
cross section C to the flow. This is because A has topological dimension 1 from Remark 4.3,
so its intersection with a cross section has topological dimension 0 (i.e. discrete points).
This helps with the construction of the Markov partition around A N C, which will later
be used to define the alphabets in the required subshift.

Remark 5.1: It is worth noting that our desired construction can be compared to the result
of Anosov [1]. He showed that given any zero-dimensional hyperbolic set A of a diffeomor-
phism of a smooth manifold and any its neighbourhood V, there exists a locally maximal
invariant set A’ satisfying the inclusion A C A" C V. He also showed that any such zero-
dimensional locally maximal set is necessarily homeomorphic to a Markov subset of a
Bernoulli shift. He achieves this by introducing a version of the shadowing property which
he proves to be equivalent to local maximality. Our construction is similar to his result in
that we use shadowing to establish local maximality, but it is more specific to our setting
of geodesic flows on rank 1 surfaces with no focal points, highlighting how non-uniform
hyperbolicity is still sufficient for the construction.

We first begin with the construction of the cross section C. Denoting by V C TT!S the
codimension-1 orthogonal complement to the vector field generating the geodesic flow, for
any v € T'Sand § > 0 we define Ds(v) as the image of the exponential map of the §-ball
in V(v) centred at the origin. For any § sufficiently small and v € T'S, the centre-stable
foliation W* induces an one-dimensional stable foliation YJ* on Ds(v) whose leaves are

defined by
W, s(w) := W(w) N Ds(v).

Likewise, W induces an one-dimensional foliation WWJ's on Ds(v). When the underlying
D5 (v) is clear, we will often suppress v and simply write W3/t (w). Restricted to a compact
subset of Reg, the foliations YW*/# are uniformly transverse.

We will now choose the scale § > 0 to work with. First, since Reg(») is a compact
subset of Reg, there exist é;ps = §(T,n) > 0 and x := k (T, n) > 1 such that vectors in a
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drps-neighbourhood of any v € Reg (1) have the local product structure with constant «;
see Definition 2.7.

Since E* and E* are perpendicular to ES, for sufficiently small § > 0, both Ds(v) and the
foliations W*/* and W*/* are nearly perpendicular to the geodesic flow lines. The slight
failure of the orthogonality can be accounted for as follows. Once and for all, we fix
larger than but sufficiently close to 1, and then we choose § € (0, §1ps/2) such that for any
ve TS, we Ds(v),and u € WY (w), we have

K d (g, w) < d(u, w) < Bd“(geu, w) (11)

where t € Ris a unique real number such that g;u belongs to the local unstable leaf W*(w)
of w. The metric d here denotes the metric from (2), and the multiplicative factor k ~! shows
up in the lower bound because g;u is equal to [w, u], and the bounds from Definition 2.7
apply here. Likewise, we may assume that analogous properties hold for any u € W;(w)
with respect to d°. Such 6§ > 0 fixed here will be the scale we will work with throughout the
proof.

Forv € A, wesayasubset of Ds(v) is a su-rectangle if it is a rectangle where each edge is a
subset of W/ (w) N Dy (v) for some w € Sing. Since both foliations W* and W* are min-
imal under the action of geodesic flow [8, Lemma 4.6] and Sing # ¢, for each v € A we can
build a su-rectangle around v of arbitrarily small diameter contained in Ds(v). In partic-
ular, we can choose a finite subset {v;}; | C A and build a sufficiently small su-rectangle
C; := Cy, C Ds(v;) around v; such that the union Ulfifng[_%’%)cw contains A and is

contained in U. Moreover, we may construct C;’s such that they are pairwise disjoint. Our
desired cross section is C := | J,-;,, Ci.

Since each v; belongs to A, the induced foliations WW*/# are uniformly transverse on C,
and each C; has a natural product structure: for any v, v, € C;, both

[vi,v2lc := Wy,g (v)N Wf,,a (v2)

and [va,vilc = W, s(v2) N W, 5(v1) are contained in C;. For such vy, v,, there exists a
unique real number ¢ € R such that g[v, v2]¢ coincides with [vy, v2]; see Figure 2. Note
that it plays the same role as the t appearing in (11). From the choice of 8 and «, we have

d(vi, [vi,v2le) < Bd"(vi, [vi,v2]) < Brd(vi, v2). (12)

Denote by 9C; the boundary of C; for 1 < i < n and 9C the union of dC;. Note that for
any vy € Sing and wy € W(vp), their forward Lyapunov exponents satisfy x*(wp) =
x T (vo) = 0. This follows from [6, Proposition 2] which makes use of the flat strip
theorem; since the flat strip theorem remains valid for manifolds with no focal points
[12, Theorem 2], the proof readily extends to our setting. Likewise, if wyp € W (vp),
then x ~(wp) = x ~(v0) = 0. Since A is uniformly hyperbolic, each v € A has x(v) > 0.
Hence, A does not intersect the boundary of any su-rectangle, and we have A N dC = ¢.
In particular, as A and 3C are both closed, we know d(A, dC) > 0.

We fix a sufficiently small 0 < o« <« d(A,dC) < 8 and construct finitely many su-
rectangles

R = R(Ot) = {Rl,Rz, e ,Rm}

on C such that their union contains A N C and that each R; has a diameter at most o and
contains at least one vector in A. We may assume that they have pairwise disjoint interiors
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Figure 2.

and that the distance between A N C and U]’il dR; is positive using the same reasoning
from the previous paragraph.

By choosing o sufficiently small, we can ensure that the every vector in the union
Ujm:1 g[ 1 1]Rj is sufficiently close to A, and hence, is contained in g[ 1 1)C. In partic-

~32 ~332
ular, the first return time 7 : U]"; 1 Rj— [0,1) to C is well defined. To see why this is true,
consider any v € U]m:1 R; which lies in 8 % ) % )C dfve g % ,o]C’ it is straightforward that
T(v) € [0, %] is well defined. On the other hand, if v € 80! )C and is not contained in
2

81 o]C’ then consider g% (v) € U]m=1 81 1]Rj C §_1 l)C. By our assumption, we must

2 2°2 22

have that g1 (v) € §_1 o]C’ and hence this gives t(v) € [%, 1). Accordingly, we define the
2 2
first return map on [, R; by
F W) = gewmv.

Since 8 % ’ % )C is contained in U which is then contained in Reg;(n), the uniform hyper-

bolicity established in Lemma 4.1 applies to F; see Lemma 5.4. Moreover, the choice of «
with 0 < o < d(A, dC) ensures that F(R;) is contained in a single C; for each Rj € R =
R(a).

Remark 5.2: While F (v) necessarily belongs to C, it may not belong to U]m=1 R;. In partic-
ular, 7 may not be infinitely iterated on UJm:1 R;. However, we will only need to consider
and focus on the set of vectors on which F can be infinitely iterated.

Since C;’s are pairwise disjoint, there exists ¢c; > 0 such that 7 is bounded from below by
c1. Using d(A, 9C) > 0, we may assume that 7 and 7 are smooth on R; forevery 1 < j < m.
To sum up, we have
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(1) R ={Rj}i, is a collection of closed su-rectangles in C with mutually disjoint interi-
ors.

(2) The union U;’;l R; contains A N C and is contained in the interior of C.

(3) Each R; has diameter at most o and contains at least one vector in A N C.

(4) Both F and 7 are smooth on Rj, and F(R)) is contained in a single C; for every 1 <
j<m.

The following lemma shows that F preserves the local product structure on R.
Lemma 5.3: For any v,w € R; such that ¥ (v), F (w) € R; for some 1 < i,j < m, then
F([v,wle) = [F ), Fw)lc.
Similarly, if v,w € R; and Flw), Flw) e R;, then
FHmwle) = [F' ), F - w)le.

Proof of Lemma 5.3: Since two statements are symmetric, we will only show the first state-
ment. Let fy,#; be the unique real numbers such that [v, w] = gy [v, w]c € W*(v) and
[FW), Fw)] = g, [F), Fw)lec € WHF ).

Note that gr(y)44,[v,wlc is the unique vector which lies on both W*(F(v)) and
W (gzyw). Since W(gryw) coincides with W(F(w)), we have g;u)44[v, wlc =
£u [F(v), Fw)lc. In particular, F maps [v,w]c to [F(v), F(w)lc with t([v,w]c) =
T(v) + 1t — 1. |

We use the elements from R to establish the alphabet in the target shift space. Following
[6], for N > 1 we define

=N
Ry:=1{D= ﬂ FIR:ReRandDNA£0
j=—N

as the collection of sets of the form ﬂ;zle F IR that contains at least one vector in A.
By translating Lemma 4.1 to this setting, the following lemma establishes the uniform
hyperbolicity of F restricted to vectors that belong to the same element of R under F.

Lemma5.4: Thereexistsy,C > 0such that the following holds: foranyn € N, v € TS, and
w € W) such that FI(v) and J/(w) belong to the same element of R for every 0 < j < n,

d(F*(v), F"(w)) < Ce ""d(u, v).

Similarly, for any v € T'S and w € W*(v) such that Fi(v) and Fi(w) belong to the same
element of R for every —n <j <0,

A(F7"(v), F*(w)) < Ce ""d(u,v).

Proof: We prove the first statement; the second statement can be proved analogously. As
above, there exist small fo, #; € R such that g;;w € W*(v) and that g, 7" (w) € W*(F"(v)).
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In particular, theline segment connecting v and gy, w along W*(v) is mapped under the time
Spt(v) == Z]-";Ol T(FI(v) map of the geodesic flow to the line segment connecting 7" (v)
and g, F"(w) along W*(F"(v)). Since the entire process lies completely within Reg(n)
from the construction, Lemma 4.1 applies.

Denoting the constant from Lemma 4.1 by Cy, we have

&*(F" (1), 84 F" () < Coexp (=51 - SH) ) ' (vgigw)
< Cok exp (—% . cm) d(v,w)

where the second inequality uses (11) as well as S?(v) > nc; from the fact that the
first return time 7 is bounded below by c;. Applying (11) again to d*(F"(v), gy, F"(w))
establishes the lemma with C := CyBk and y := nc;/(2T). |

The following lemma is an easy consequence of Lemma 5.4.

Lemma 5.5: For any ¢ > 0, there exists N, = N, (¢) € N such that diam(D) < ¢ for every
N > Ny and D € Ry.

Proof of Lemma 5.5: Let ¢ > 0 be given. In order to prove the lemma, it suffices to show
that there exists N, € N such that for any N > N, D € Ry, v € DN A, and w € D, we
have d(v, w) < ¢/2.

We claim that we only need to show the cases where w is on W*(v) N'D or W¥(v) N
D with the upper bound ¢/2 replaced by ¢/(4xp + 2). Indeed, suppose that d(v, u) <
e/(4kB + 2) forany u € W*(v) N'D or W¥*(v) N D. Then for any w € D, both [v, w]¢ and
[w, v]c belong to D from Lemma 5.3, and the triangle inequality gives d([v, w]c, [w, v]c) <
&/(2xB + 1). Since w coincides with [[w, v]c, [v, w]c]c, we obtain d([w, v]¢, w) < 2/{'(5%
from (12). Combined with d(v, [w, v]¢) < &/(4xB + 2), we get

kBe I3 e

dv,w) <d®, [w,v]e) +d(w,v]le, w) < 2B 11 + B 12 = 3

Since the diameter of R; is bounded above by «, the rest of the proof is now due to
Lemma 5.4. u

While Lemma 5.4 establishes uniform hyperbolicity of F, the following observation
provides an alternative way to compare distance under small number of iterations of F.
Consider any u, v in the same element of C such that u € W*(v), and suppose that F"(v)
and F"(u) belong to the same element of C for some n € N. There exist unique real num-
bers g, t; such that g;,u € W*(v) and g,, 7" (u) € W*(F"(v)). Then v and g;,u are mapped
to F*(v) and g, F"(u) respectively under the time S,7(v) map of the geodesic flow. In
particular, using (11) we have

d(F"(v), F'(w) = Bd*(F"(v), g0 F" (W) < Bd’ (v, g1, 1) < Pred(v, u) (13)

where the second inequality is due to the fact that the d°-distance is non-increasing with
respect to the forward geodesic flow. Such an observation may be interpreted as that the
distance between any two vectors on the same }V* leaf is almost non-increasing under F.
Likewise, the analogous statement holds for d* with respect to F -1
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5.2. Choice of alphabets for the subshift

We will choose large N and use elements in R as the alphabet of the shift space.

Definition 5.6: Given a bi-infinite sequence (- - - ,a_j, ag, a1, . ..) = (4;)jcz witha; € Ry
foralli € Z, we follow the definition from [6] and call it N-admissible if for any i € Z, there
exists u; € a; N A such that

F(u;) € aiy1.

Denote by Ay the set of all N-admissible sequences. Notice that the Ay naturally has
the local product structure defined by

[a, b] = ( ..,a_2,4_1,40, bl, bz, .. )

for any a = (ai)iez and b = (b;)iez with a9 = by, and such a product structure will
translate to the desired product structure on A.

Definition 5.7: For any a = (a;)jcz € An and ¢ > 0, we call w € C an ¢-shadowing of a
if there exists u; € A Na; N F~(ajy1) for each i € Z such that

A(Fi(w),uj) < e.

We will show in the next subsection that for any ¢ > 0 sufficiently small, there exists
Ny € N such that for any N > Ny, every element in Ay has a unique ¢-shadowing. Fur-
thermore, we will show that such a shadowing map v : Ay — C is injective. To construct
¥, we begin by setting

m
A=d|AnC| Jor |,
j=1

which is necessarily positive because R consists of su-rectangles and A does not intersect
the boundary of any su-rectangle. Fix N; € N such that Ce™"™ < 1/2where C, y are from
Lemma 5.4, and choose

€ (O, 2(1%}32/&) and Ny > max{Nj, N»(¢)}
where N, is from Lemma 5.5.

We briefly summarize the consequences of such choices of constants. With such a choice
of A, whenever u € ANC and v € C satisfies d(u,v) < A, then v belongs to the same
element of R that contains . From the choice of Ny, whenever w € W*(u) such that F*(w)
and Fi(u) belong to the same element of R for all 0 < i < N, then

1
d(F0 ), FHw) < S du,w).
and likewise for w € YW*(v) with respect to F —No, From Lemma 5.5, whenever F*(u) and

Fi(v) belong to the same element of R for all —Ny < i < Ny, then u and v belong to the
element of Ry, and hence d(u, v) < e. We will use these facts repeatedly in the following
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lemma where we construct the required shadowing map v, and instead of the first return
map F, from now on we will work with its Ny-th power G := F™.

While we follow the classical proof of the shadowing lemma using the uniform hyper-
bolicity established in Lemma 5.4, such hyperbolicity is only guaranteed contingent on
the assumption that the vectors whose distance are being compared remain in the same
elements of R. In particular, at each step we have to ensure that relevant vectors in
consideration belong to the suitable element of R.

5.3. Construction of the subshift

With the above choice of ¢ and Ny, the goal of this subsection is to build an injective coding
map using the Ny-th power map G := F™,

Proposition 5.8: Any 2Ny-admissible sequence has a unique e-shadowing. Moreover, the
shadowing map  : Aan, — C is injective.

Let a = (aj)icz. € AN, be 2Np-admissible. For each i € Z, let u; € a; N A such that
F(u;) € ai+1 and R’ be the element of R containing a;. For simplicity of notations, we
denote

ui:=up, and R':= R™No

so that G maps U; into R™*! for each i € Z. Moreover, we denote by D' the element of Ry,
containing u;, whose diameter is bounded above by ¢ from Lemma 5.5 and the choice of
Np.

The idea behind the construction of v is quite simple which we briefly sketch in this
paragraph. We first want to find w € RO N W*H(up) such that G" (W) is well defined belongs
to G"(w) € R" for all n € N. Since G is uniformly hyperbolic on the domain in which it
is well defined, we can construct W as the limit of a (exponentially converging) Cauchy
sequence {G " (Wy,)}nen on R® N WH(Ug) for some well-chosen w,, € R" whose image
under G" is well defined. Then we find v € R® N W$(up) satisfying the analogous prop-
erties with respect to G !, and define ¥ (a) as the local product [v, w]c. It will then be easy
to verify that v (a) is the unique shadow of 4, as claimed in the proposition.

For each n € Ny, we will first inductively construct w, € R" satisfying the following
properties:

d(Wpy,Up) < &,
and foreach 0 <j < n,
G (w,) € R N WH (W) (14)
and
dG T (Wo1), G (W) < /2. (15)

Setting Wy := Uy, the above listed properties (except for the last property which is irrelevant
as we did not define w_) are trivially satisfied for n = 0.
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From the definition of 2Np-admissibility, G'(Wp) belongs to R’ for all j € {—2,—1,
0, 1,2}. In particular,

wi == [G(Wp),up]c € R

is well defined. For j € {—2,—1,0,1}, G/(W) coincides with [G'(wp), G/(u;)]c from
Lemma 5.3, and hence belongs to R!*/. This implies that G (W), Wi, and u; belong in the
same element D! of RN, and that G ~1(w;) € DO. Since the diameter of D! is at most &,
the choice of constant N gives that d(wo, G 1 (w;)) < %d(g (Wo), Wq) < £.1In particular,

the above listed properties (14) and (15) for w hold for n = 1:
d(w,up) < &, d(G(Wp),W1) <& and d(Wo, G~ (W1)) < &/2.

Before moving onto the construction of W, we establish another property of w;. From the
above paragraph, we have G(W1) = [G?(Wy), G(U;)]c which belongs to R?. Since F is well
defined on each rectangle in R, we know that F(G(w;)) is well defined and belongs to
C. A priori, we do not know whether it belongs to one of the rectangles in R nor which
rectangle it belongs to, if it belongs to one. This is because although we can write F (G (W))
as [F(G*(Wp)), F(G(ur))]c where F(G(up)) € R*No+1 we do not know which rectangle
F(G*(Wp)) belongs to, if it belongs to one; see Remark 5.2. However, the following lemma
shows that F(G(w;)) belongs to R¥Not1 4 expected, and the same holds for FI(Gwy))
forall 1 <j < No.

Lemma 5.9: F/(G(W)) € R*NoY for all 1 < j < Ny. In particular, G*(Wy) € R is well
defined, and hence, G(W1) € D2,

Proof: We begin by noting that G(w;) € W*(G(u;)) N R? and that d(G(w;),G(u;)) <
£/2 from the choice of Ny. By applying (13) with n = 1 gives

d(F(GUD), F(GW1))) = Brd(G(u1),G(W1)) < Bre/2 < A.

In particular, from the defining property of A and the fact that 7(G(u;)) € A we have
F(G(W1)) € R*Not1 Therefore, F can be iterated for F(G(W1)) since F is well defined
on each rectangle in R. Now inductively applying the same argument using (13) with n =
2,..., Ny proves the lemma. |

With such properties of w; in mind, we define
Wy = [G(Wy), Uz]c € R

See Figure 3 which also contains G?(W) where W is a vector (yet to be defined) described
in the sketch of proof appearing below Proposition 5.8. As we will see in the following
lemma, the statement G(W;) € D? of the above lemma ensures that d(G(W;),W,) < ¢
which corresponds to (15) of w; for j = 0.

Lemma 5.10: W, satisfies (14) and (15). Moreover, we have G(W,) € D3.

Proof: Using the fact that a € Ay, is 2Np-admissible, we have G/(uy) € R for —2 <
j < 2.From the definition of w; and Lemma 5.9, we have Gt/ (w;) € R*%i for —2 < j < 1.
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W (W)

R? (uy)
P? %1y
Uz T 2wy
<ée
Pwy) | Fwyp) <el2 |<eld e
<¢ w, % FY(w) W (wy)
G(ws) T4 (wg)

Figure 3.

In particular, for the same range of j, G/(W,) is defined as [G'1/ (W), G/ (u2)]c, and hence
belongs to R2%J. This implies that G(W;), Wy, and U, belong in the same element D? of
RN, and that w; and G ~L(w,) belong in D'. Then the uniform hyperbolicity of G coming
from the choice of constant Ny gives (15) for wy:

dWy,uy) <&, and d(G 7T (W)),G7(Wa) <e/2 forje {0,1,2).

The remaining statement that G(W,) belongs to D follows just as in Lemma 5.9. |

We describe another iteration prior to generalizing this process. Let
w3 = [G(Wa), Us]c € R,

Lemma 5.11: W3 satisfies (14) and (15).

Proof: Proceeding as in the above lemma, G/ (w3) belongs to R31 for all je{-2,-1,0,1}.
Moreover, G(W,), W3, and U3 belong in the same element D3 of RN, and that w; and
G~ 1(w3) = [wa, G71(u3)]c belong in D?. Lemma 5.5 and the choice of constant Ny then
give

dws,uz) <&, and d(G 7T (W), G7(W3)) <&/2 forje {0,1,2},

where G72(w3) = [G~1(W2), G2(u3)]c from Lemma 5.3.

A priori, this is all that can be deduced from the construction of ws; that is, we
do not quite have the well-definedness of G~3(W3) nor the properties corresponding
to (14) and (15) for j = 3. This is because a = (a;)iez € Azn, is only 2Np-admissible,
so F7(G7%(u3)) does not necessarily belong to RNo—J for 1 <j < Ny, and hence,
FI(G2(W3)) cannot be defined as [F /(G (W2)), F/(G2(u3))]¢ via Lemma 5.3.
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Instead, we can directly show using the definition of A that
FI(G2(w3)) € RN foralll <j < Ny. (16)

Indeed, from the fact (G~ (W»), G2(W3)) < &/4 established above, there exists a small
to € R such that gtog’z(w3) € Wge/4(g*1(w2)) by (11). Since the d“-distance is non-
increasing with respect to the backward geodesic flow, we have

-G 2 (W3) € Wy, ) (FH(G 7 (W2))) (17)

where 19 = T(F~ (G 1 (Wy))).
Since  d(F~NGT'W2), FT(wWh) < /2, d(F W), F1(G(Wp) < e, and
F~HG(Wp)) belongs to A N RN~ we have from the defining property of A that

Wheea(FHG (Wa))) € RN

because & +¢&/2 + Pre/4 < 26 + ie/4 < A. All vectors in Wy /4(}“—1(g—1(w2)))
project to W*(F (G (wy))) along the flow direction, and by (11) the image of such
a projection contains W}, /4(.7: ~1(G~1(W,))). From (17) there exists t; € R such that
Sto+11—10G ~2(W3) belongs to RN~ and hence, must be equal to F~1(G~2(w3)). This
establishes (16) for j = 1, and by repeating the argument, we can show (16) for the
other j’s inductively. In particular, it shows that G~3(w3) belongs to R® N W*(wj) and
d(G72(Wy),G3(W3)) < &/8 from the definition of Ny. These correspond to (14) and (15)
of w3 with j = 3. |

Suppose now that Wy, Wy,...,W,_; are constructed with the listed properties (14)
and (15) for some n € N. For the general inductive step, we set

Wy, = [g(anl): un]C

and verify the listed properties above in the following lemma:
Lemma 5.12: Forall0 <j <mn, GI(wy,) is well defined and satisfies (14) and (15).

Proof: The proof resembles that of wz above. Proceeding as above, G(W,_1), Wy, and U,
belong in the same element D" and that w,,_; and G ~L(w,) belong in D" 1 Lemma 5.5
and the choice of Ny then give

dWw,,u,) <& and d(G 7T (w,_1),G7(w,) <e/2 forje {0,1,2}.

This proves (15) for j € {0, 1,2}.

For the inductive step, suppose G (w,) € R N WH(w,,_) and d(G*1(w,_)),
G kw,)) < s/2k for some k > 2. Asin the proof of (16), but instead using FNo—i(Uy_k_1)
as the vector lying in A and pivoting at F No=j(W,,_k_1), we can show

FHG ™ w,)) e RPPNo—T forall1 <j < Ny

by observing that &+ Zf;ol £/2' + Bre)2¥ < 26 4+ Bre/2F < A. In particular,
G *1(w,) is well defined and belongs to R"*=1 N W*(W,,_x_1), and it follows from
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the definition of Ny that d(G*(W,_;),G % 1(w,)) < ¢ / 2k+1 completing the inductive
process. |

As in the proof of Lemma 5.9 and (16), we have FI(G™(Wy,)) € R forall -Ny < j<o0
and nNp < j < (n+ 1)Np. It then follows from Lemma 5.5 and (14) that

d(F(G (W), uj) <& forall 0 < j < nNj.
From the obtained sequence {W,},en satisfying (14) and (15), we define
w:= lim G "(w,),
n—oo

which belongs to R® N W*(up). Here the convergence of the limit is guaranteed because
G~"(w,) forms a Cauchy sequence due to (15). Moreover, both d(up, W) and d(G" (W), Wy,)
are bounded above by > "%, 27%¢ = ¢. From Lemma 5.5 we then have d(F/ (w), uj) < ¢ for
allj e N.

We repeat the construction using the negative indices of a = (a;)iez € Azn, and this
gives us a sequence {V, },<o satisfying the analogous properties as {W, },>¢ with respect to
W instead. In particular, we may define

v:= lim G"(v,),
n—o0
which belongs to R® N W*(uy). Finally, the desired shadowing map v can be defined as

¥ (a) = [v,Wlc.

See Figure 4.

Since d(Ug, W) < & and d(Ug,V) < &, we have d(W,V) < 2¢ and hence d(W, ¥ (a)) <
2Bke from (12). From (13), we have d(F/ (W), F/ (¥ (a))) < Bxd(W, ¥ (a)) < 28%k>¢ for
allj € N, and hence,

d(wj, F (Y (a))) < d(uj, FF(W)) + d(F (W), F (Y (a)) < & + 2%k,

Since uj € A and ¢ + 2B%k%e < A, we have F/((a)) € R for all j € N. The analogous
inequality for the negative indices n < 0 can similarly be verified using v,, and G"(v), and

2° W5 (wo)

%\'\a AX \°
L LA R |
7 7 / \ T o
/ \

T 2wy T3(wy) g7 (w,)

Figure 4.
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this shows that 7/ (1 (a)) € R’ for all j € Z. Then it follows from Lemma 5.5 that ¥ (a)
indeed e-shadows a with respect to F, as required.

The well-definedness and injectiveness of ¢ can also easily be verified. For well-
definedness, if we had used a different sequence {u}};cz for a = (a;)icz and obtained
¥ (a)' € R, thenboth G" (¥ (a)) and G" (¥ (a)’) belong to R" for all n € Z, and this implies
that ¥ (a) = ¥ (a)’ from Lemma 5.5. The injectivity of the map r also follows in a straight-
forward way, as {a;}icz, is uniquely determined by the orbit of 1y (a), so is a. This completes
the proof of Proposition 5.8.

5.4. Completing the proof of Proposition 4.4

Using ¥, we construct A as follows:

A =g (Amy)).

teR

We claim that A is the desired set satisfying the statements of Proposition 4.4. Indeed,
every vector in A is contained in A,y, and mapped to itself by v/, so A C A. From its
construction, A is G-invariant and compact as it is the image of a compact set under the
continuous map . Moreover, A is uniformly hyperbolic as it contained in U, and it is
locally maximal because it inherits the local product structure of A,y . This completes the
proof of Proposition 4.4.

Acknowledgments

The authors would like to thank American Institute of Mathematics where this project was initiated.
The authors would also like to thank Amie Wilkinson, Dan Thompson, and Keith Burns for useful
discussions.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding
This work was supported by NSF [grant number DMS-1461163], [grant number DMS-1954463].

References

[1] D.V. Anosov, Extension of zero-dimensional hyperbolic sets to locally maximal ones, Sbornik:
Math. 201(7) (2010), pp. 935-946.

[2] L. Barreira and P. Doutor, Birkhoff averages for hyperbolic flows: Variational principles and
applications, J. Stat. Phys. 115 (2004), pp. 1567-1603.

[3] L. Barreira and B. Saussol, Variational principles and mixed multifractal spectra, Trans. Am.
Math. Soc. 353(10) (2001), pp. 3919-3944.

[4] R. Bowen, Topological entropy for noncompact sets, Trans. Am. Math. Soc. 184 (1973),
pp- 125-136.

[5] K. Burns, V. Climenhaga, T. Fisher, and D.]. Thompson, Unique equilibrium states for geodesic
flows in nonpositive curvature, Geometric Funct. Anal. 28(5) (2018), pp. 1209-1259.



684 K. PARK AND T. WANG

(6]
(7]
(8]
9]
(10]
(11]
[12]
[13]

(14]

[16]
[17]
(18]

[19]

(23]
(24]

[25]

K. Burns and K. Gelfert, Lyapunov spectrum for geodesic flows of rank 1 surfaces, Discrete
Contin. Dyn. Syst. 34(5) (2014), pp. 1841-1872.

D. Chen, L.-Y. Kao, and K. Park, Unique equilibrium states for geodesic flows over surfaces
without focal points, Nonlinearity 33(3) (2020), pp. 1118-1155.

D. Chen, L.-Y. Kao, and K. Park, Properties of equilibrium states for geodesic flows over manifolds
without focal points, Adv. Math. (N.Y.) 380 (2021), pp. 107564.

V. Climenhaga, Thermodynamic formalism and multifractal analysis for general topological
dynamical systems, Doctoral Thesis.

V. Climenhaga, Bowen’s equation in the non-uniform setting, Ergodic Theor. Dyn. Syst. 31(4)
(2011), pp. 1163-1182.

P. Eberlein, When is a geodesic flow of anosov type? I, ]. Differ. Geometry 8(3) (1973),
pp- 437-463.

J.-H. Eschenburg, Horospheres and the stable part of the geodesic flow, Mathematische
Zeitschrift 153(3) (1977), pp. 237-251.

K. Gelfert, Horseshoes for diffeomorphisms preserving hyperbolic measures, Mathematische
Zeitschrift 283(3-4) (2016), pp. 685-701.

E. Hopf, Closed surfaces without conjugate points, Proc. Natl. Acad. Sci. U.S.A. 34(2) (1948),
pp- 47-51.

D. Hurley, Ergodicity of the Geodesic Flow on Rank One Manifolds Without Focal Points, Pro-
ceedings of the Royal Irish Academy Section A: Mathematical and Physical Sciences JSTOR,
1986. pp. 19-30

A. Johansson, M. Jordan, T. Anders Oberg, and M. Pollicott, Multifractal analysis of non-
uniformly hyperbolic systems, Israel ]. Math. 177 (2010), pp. 125-144.

A. Katok, Lyapunov exponents entropy, and periodic orbits for diffeomorphisms, Publications
Mathématiques De L'THES 51 (1980), pp. 137-173.

G. Knieper, The uniqueness of the measure of maximal entropy for geodesic flows on rank 1
manifolds, Ann. Math. 148 (1998), pp. 291-314.

E Liu and E. Wang, Entropy-expansiveness of geodesic flows on closed manifolds without conju-
gate points, Acta. Math. Sin. Engl. Ser. 32(4) (2016), pp. 507-520.

H. McCluskey and A. Manning, Hausdor{f dimension for horseshoes, Ergodic Theory and Dyn.
Syst. 3(2) (1983), pp. 251-260.

] M. Perdigao do Carmo, Riemannian geometry, Birkhduser, Boston, 1992.

Y. Pesin, Geodesic flows on closed Riemannian manifolds without focal points, Mathematics of
the USSR-Izvestiya 11(6) (1977), pp. 1195-1228.

Y. Pesin, Dimension theory in dynamical systems, University of Chicago Press, Chicago, 1997.
Y. Pesin and H. Weiss, The multifractal analysis of Birkhoff averages and large deviations, Global
analysis of dynamical systems. Inst. Phys. Bristol (2001), pp. 419-431.

P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, Vol. 79, Springer-
Verlag, 2000.



	1. Introduction
	2. Preliminaries
	2.1. Geometry
	2.2. Thermodynamic formalism

	3. Proof of Theorem 1.1
	3.1. Few simple observations
	3.2. Remaining statements of Theorem 1.1

	4. Proof of Proposition 3.2
	4.1. Criteria for hyperbolicity
	4.2. Concluding the proof of Proposition 3.2

	5. Proof of Proposition 4.4
	5.1. Choice of constants and preliminary construction
	5.2. Choice of alphabets for the subshift
	5.3. Construction of the subshift
	5.4. Completing the proof of Proposition 4.4

	Acknowledgments
	Funding
	References

