
TITLE PAGE 

Title: Indoor apparent temperature, cognition, and daytime sleepiness among low-income adults 

in a temperate climate 

Short running title: Temperature, cognition and sleepiness 

Authors: Carina J. Gronlund1, Kaan Cem Ketenci1, Tony G. Reames2, Peter S. Larson1, Justin 

Schott6, Zachary Rowe5, Quinton S. Jenkins3, Mario O. Sanca3, Troy Tournat3, Ketlyne Sol4, 

Don’aa Williams3, Emma Gijsbers3, Marie S. O’Neill3 

1University of Michigan Institute for Social Research, Ann Arbor, MI, USA 

2University of Michigan School for the Environment and Sustainability, Ann Arbor, MI, USA 

3University of Michigan School of Public Health, Ann Arbor, MI, USA 

4University of Michigan Department of Psychology, Ann Arbor, MI, USA 

5Friends of Parkside, Detroit, MI, USA 

6EcoWorks, Detroit, MI, USA 

Corresponding author details: 

Carina J. Gronlund, PhD, MPH 
University of Michigan Institute for Social Research 
Survey Research Center 
Social Environment and Health Program 
426 Thompson St. 
Ann Arbor, Michigan, 48104 
USA 
Phone: 734-615-9215 
Email: gronlund@umich.edu 
 

Data availability statement: The data that support the findings of this study are available on 

request from the corresponding author. The data are not publicly available due to privacy or 

ethical restrictions. 



Funding Statement: This work was funded by grants R00ES026198 and P30 ES017885 from the 

National Institute for Environmental Health Sciences, grant T42 OH008455–09 from the 

National Institute for Occupational Safety and Health, grant 1520803 from the National Science 

Foundation, and grants from the University of Michigan Poverty Solutions and M-Cubed 

programs. 

Conflict of interest disclosure: The authors have no conflicts of interest to declare. 

Ethics approval statement: This study was approved and exempted from annual review by the  

Institutional Review Board of the University of Michigan (study number HUM00166674). 

Patient consent statement: All participants provided informed consent. 

Permission to reproduce material from other sources: Not applicable. 

Acknowledgments: We thank the Climate Hazards, Housing, and Health Community-Academic 

Partnership and the Detroit Communities Reducing Energy and Water (D-CREW) participants. 

  



ABSTRACT (200 words) 

The burden of temperature-associated mortality and hospital visits is significant, but 

temperature’s effects on non-emergency health outcomes is less clear. This burden is potentially 

greater in low-income households unable to afford efficient heating and cooling. We examined 

short-term associations between indoor temperatures and cognitive function and daytime 

sleepiness in low-income residents of Detroit, Michigan. Apparent temperature (AT, based on 

temperature and humidity) was recorded hourly in 34 participant homes between July 2019-

March 2020. Between July-October 2019, 18 participants were administered word list immediate 

(WLL) and delayed (WLD) recall tests (10-point scales) and the Epworth Sleepiness Scale (24-

point scale) 2-4 times. We applied longitudinal models with nonlinear distributed lags of 

temperature up to 7 days prior to testing. Indoor temperatures ranged 8-34° C overall and 15-34 

C on survey days. We observed a 0.4 (95% CI: 0.0, 0.7) point increase in WLL and 0.4 (95% CI: 

0.0, 0.9) point increase in WLD scores per 2 C increase in AT. Results suggested decreasing 

sleepiness scores with decreasing nighttime AT below 22 C. Low-income Detroit residents 

experience uncomfortably high and low indoor temperatures. Indoor temperature may influence 

cognitive function and sleepiness, although we did not observe deleterious effects of higher 

temperatures.  

Practical Implications (up to 5 sentences): Climate adaptation strategies should account for non-

emergency health problems related to indoor temperature rather than just the mortality and 

emergencies related to temperature. Even in late summer and autumn, short-term changes in 

temperature weree associated with short-term changes in sleepiness and cognitive function. We 

did not see deleterious effects at high temperatures as hypothesized, but this may be due to 



insufficient sampling on extreme heat days. Further research on indoor temperatures and health 

is warranted to inform low-income energy efficiency assistance policies.  
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INTRODUCTION 

Due to climate change, extreme weather events are increasing, and extreme heat days are 

expected to warm by 3 C in the mid-latitudes by mid-century (Intergovernmental Panel on 

Climate Change (IPCC) 2018). The impacts of extreme weather events, e.g., temperatures or 

precipitation amounts that were observed less than 1% of the time in a historical period, such as 

1981-2010 (Field et al. 2012), disproportionately fall on vulnerable communities. These 

vulnerable communities include persons of color, who are more likely to live in lower quality 

homes and neighborhoods with fewer resources due to racially discriminatory mortgage lending 

practices, and individuals with low incomes, who often lack extreme temperature mitigation 

methods or may limit energy usage to minimize utility costs (Jessel et al. 2019). Of U.S. cities, 

Detroit, Michigan may be particularly vulnerable. This city of 670,000 people (American 

Community Survey (ACS) 2021) lies in the Koppen climate classification group ”hot summer 

continental climate.”  (Peel et al. 2007). In the 1981-2010 climatological period, 8.9 days per 

year had maximum temperatures exceeding 32 C, 114.5 days per year had minimum 

temperatures below 0 C (Great Lakes Integrated Sciences and Assessments (GLISA) 2017), and 

the relative humidity level was 69% (Climate-Data.org). In the Detroit region, 7.4% of deaths 

annually are attributed to ambient hot or cold temperatures (Gasparrini et al. 2015). According to 

the 2019 American Community Survey, 79% of Detroit’s residents identify as Black or African 

American, 8% identify as Hispanic or Latino, and 31% live below the poverty level (ACS 2021). 



Furthermore, in the 2019 American Housing Survey, 15% of Detroit households reported 

uncomfortably cold home temperatures for 24 hours or longer for reasons such as equipment 

breakdowns, utility interruptions, and inadequate insulation (U.S. Census Bureau 2020). Utility 

disconnections for non-payment are of particular concern for uncomfortable or unsafe indoor air 

temperatures. DTE Energy, which provides both natural gas and electricity service to Detroit 

residents, performed over 70,000 disconnections between September 2020 and September 2021 

amidst ongoing pandemic conditions (Michigan Public Service Commission, 2021). In an 

analysis of energy inefficiency in Detroit, energy inefficiency correlated with the percentage of 

African American or Latino households in a census tract, likely due to inadequate weatherization 

of the homes in these neighborhoods (Bednar et al. 2017). To inform policies related to 

healthcare subsidies, housing subsidies, and environmental and energy justice, it is particularly 

important to understand the health impacts of indoor temperatures among those more likely to 

have inadequate housing and therefore exposure to a wide range of indoor temperatures. 

Both hot and cold temperatures have been shown to increase emergency health events, 

and these associations have been used to estimate annual attributable mortality, hospitalizations, 

emergency department visits, and health costs (Gasparrini et al. 2015; Gronlund et al. 2019; Liu 

et al. 2019). However, associations between non-emergency events and temperature, particularly 

in community settings, are less well characterized. With respect to one such non-emergency 

health event, short-term cognitive function change, there is compelling evidence from a wide 

range of disciplines (education, psychology, health and medicine, ergonomics, building science, 

neuroscience, and gerontology) that cognitive function is impacted by temperature extremes in 

laboratory conditions, schools, and the workplace (Pilcher et al. 2002; Taylor et al. 2016; Xiong 

et al. 2018; Zhang et al. 2019). For example, in classroom settings, higher temperatures 



negatively affected students' learning, performance on standardized tests, focus, attention, and 

task completion (Goodman et al. 2018; Barbic et al. 2019). Considering residential settings, a 

study of older men in Boston found inverse associations between indoor temperature and 

cognitive function (Dai et al. 2016). Among young adults in non-air conditioned buildings, 

cognitive function was reduced during a heat wave (Laurent et al. 2018). However,  among older 

adults or in low-socioeconomic households, these associations are not well characterized.  

The effects of the sleep environment have received much attention to better understand 

the factors contributing to restful sleep and daytime sleepiness, although findings have been 

mixed with regard to optimal sleeping temperatures (Lan et al. 2017). Furthermore, few studies 

have examined sleep-temperature associations in community-based samples, where individuals 

might have more control over indoor temperature via a thermostat or may be exposed to wider 

temperature ranges given that older or unemployed individuals in the community are less likely 

to be in school or workplace environments during the day. Among Hong Kong students sleeping 

in dormitory rooms, Zhang et al. (2018) found a slight U-shaped association between reported 

sleeping thermal environment satisfaction and room temperature, with optimal satisfaction at 

24.2 °C. Another study found sleep to be more disrupted among low-income residents in Boston 

as summer temperatures increased (Williams et al. 2019). Furthermore, cognition is directly 

impacted by sleep quality (McCoy & Strecker 2011, Scullin et al. 2015), and may therefore be 

impacted both directly and indirectly by indoor temperature. These findings as a whole suggest 

associations between indoor temperature and the specific health outcomes of cognitive function 

and sleep. However, community-based research on indoor temperature as well as its association 

with both outcomes is sparse. 



In the current study, we characterized indoor temperature exposures in 34 low-income 

Detroit residences between July 2019-March 2020. For 18 of the participants, we then estimated 

associations of indoor temperatures with cognitive function and daytime sleepiness, and we 

characterized the time course (how long the exposure effects last) of temperature-associated 

cognition and sleepiness. We administered a phone survey on 2-4 occasions and measured indoor 

temperatures in the hours and nights prior to the survey. We hypothesized that cognitive 

processes—specifically working memory and auditory attention-- and sleepiness would increase 

with increasing temperatures above 22 C, decreasing temperatures below 22 C, and increasing 

temperature variability. We hypothesized that temperature exposures immediately prior to the 

survey or in the night prior to the survey would have stronger effects than temperatures occurring 

24 hours or more earlier.  

METHODS 

Recruitment 

The Detroit Communities Reducing Energy and Water (D-CREW) is a community-based 

participatory research project to examine the feasibility of an integrated, neighborhood-based, 

case-management approach to increasing household access to existing residential energy and 

water assistance programs to inform broader city-wide programs and planning. The cognition 

and temperature study was part of the larger study seeking to understand the potential health 

benefits of an energy efficiency program by reducing the barriers to assistance program 

utilization for low-income Detroit residents. Participants, adults with low-to-moderate household 

incomes residing in Detroit, were recruited using community flyers in an East Detroit public 

housing complex and Lower East Side neighborhood and consented in person. Of the 41 

consented and enrolled participants, 18 consented to this optional cognition and temperature sub-



study and responded to at least 2 phone surveys. Seven of the 41 participants completed only one 

phone survey. We excluded these 7 participants from the cognition and sleepiness analyses so 

that we could focus our analysis on within-participant associations between temperature and 

cognition and sleepiness and control for individual non-time-varying characteristics by design 

(see Statistical Analysis below). In an initial face-to-face survey of all participants, demographic 

and housing information were collected. 

Cognitive and Sleepiness Phone Surveys 

Participants were called between July and November 2019, between 11:00 and 18:00, and 

phone calls lasted approximately ten minutes. The assessments included three previously 

validated measures of daytime sleepiness and cognition. These tests were chosen for their speed 

and ease of administration by phone. 

The Epworth Sleepiness Scale (Johns 1994) was used to measure sleepiness. Participants 

were asked to rate (scale of 0-3) how likely they were to doze or fall asleep given the following 

situations: sitting and reading, watching television, sitting inactive in a public place (e.g a theater 

or a meeting), as a passenger in a car for an hour without a break, lying down to rest in the 

afternoon when circumstances permit, sitting and talking to someone, sitting quietly after a lunch 

without alcohol, and in a car stopped for a few moments in traffic. The sum of the 8-item scale 

can range from 0 to 24, with higher scores indicating more sleepiness.  

The immediate, single trial word list learning (WLL) and the five-minute delay word list 

delayed (WLD) tests of nonassociated verbal material from the Health and Retirement Study 

(HRS) were used to measure cognition (Ofstedal et al 2005).  These cognitive tests are associated 

with frontally-mediated performance in attention and working memory (WLL) and temporally-

mediated performance in episodic memory (WLL and WLD; Lezak et al. 2012). Previous studies 



have demonstrated negative associations between the cognitive distraction of physical 

discomfort, such as thermal discomfort, and frontally-mediated tasks.(Legrain et al. 2013,  Lan et 

al. 2014). In the WLL test, participants heard 10 words in a row, two seconds apart, and were 

asked to repeat the words they remembered at the completion of the list. For the WLD task the 

participants were asked to recall as many words as they could remember from the initial list after 

a five minute delay. More words remembered indicated better performance on that test. Each of 

the four phone calls included a different list of words from the HRS. WLD was administered at 

the end of the phone survey as that was timed to be approximately five minutes after the WLD. 

We created four distinct word lists—one for each phone survey—and we randomly assigned, 

within each individual, the survey order of the word lists. The Epworth Sleepiness Scale was 

administered during the delay between the WLL and the WLD. The survey end time was used as 

the reference time in linking environmental information. We attempted to contact each 

participant on at least 4 occasions with the goal of completing 4 surveys per participant. 

Outdoor Temperature 

Outdoor temperature values were obtained from the Detroit City Airport (DET) hourly values 

from the Integrated Surface Hourly Database (NCEI 2019). DET is approximately 3 km from the 

East Side housing complex and 7 km from the Lower East Side neighborhood. Missing values (< 

0.01% of values) were replaced with Detroit Metropolitan Airport (DTW) values.  DTW is 36 

km from DET and DET temperature values were well-predicted (R2 = 0.68) by those from DTW. 

These data were imported using the rnoaa package in R (Chamberlain 2020), converted to local 

time, and linearly interpolated to create a value for each hour on the hour.  



Indoor Temperature 

Each participant was given a UX100-011 HOBO logger (Onset Corp.), which recorded indoor 

temperatures and humidity at hourly intervals. Participants were asked to mount the HOBO at 

eye level on an interior bedroom wall away from direct sunlight and air vents. Missing indoor 

data were imputed (see below). Apparent temperature (AT) is a measure of temperature 

incremented upwards at higher humidity values to better reflect perceived temperature 

(Steadman 1979). We chose this metric given the synergistic effects of humidity and temperature 

on sleep quality (Okomato-Mizuno 1999). We calculated AT as AT = –2.653 + (0.994 × 

temperature) + 0.0153 × (dew point)2 for both indoor and outdoor environments (Zanobetti et al. 

2002). 

Statistical Analysis 

AT exposure, both indoor and outdoor, was characterized in 5 distinct ways. 1) First, for each 

participant and cognitive exam, we converted AT, one value for each of the prior 24 hours, to a 

distributed lag nonlinear crossbasis (Gasparrini et al. 2010) using R’s dlnm package. A 

distributed lag nonlinear crossbasis is a two-dimensional spline of AT. We used a piecewise 

linear spline with one inflection point (knot) at the median AT of 22 C in the exposure dimension 

and a natural cubic spline with one knot at 12 hours in the lag dimension. This allowed us to 

characterize nonlinear associations between AT and cognition (e.g., potential negative 

associations both at very low and very high temperatures) as well as a nonlinear lag effect (e.g., a 

potentially stronger effect at immediate vs. much longer lags). We chose a piecewise linear 

spline in the exposure dimension due to a priori beliefs that effects would be minimized at room 

temperature (22 C) but be adverse both at colder and hotter temperatures (Zhang et al. 2019). In 

sensitivity analyses, we moved the knot to other moderate room temperatures: 20 C and 24 C. In 



the lag dimension, we chose a natural cubic spline, which has an additional degree of freedom, 

due to a lack of a priori beliefs about the point in time at which effects would begin to diminish. 

2) We also characterized nighttime AT as a piecewise linear spline of the average of hourly AT 

from 22:00 to 06:00 on the night before the exam (lag night 0). 3) To characterize temperature 

variability at night, we calculated the standard deviation (SD), rather than the average, of 

nighttime hourly AT in the prior night (lag night 0) as a natural cubic spline with a knot at 1 C. 

4) Nighttime AT over the prior 7 nights (lag nights 0-6) was also converted to a crossbasis, again 

as a piecewise linear spline in the exposure dimension with a knot at 22 C and a natural cubic 

spline in the lag dimension with a knot at 2 days. 5) We characterized nighttime AT SD over lag 

days 0-6 as a natural cubic spline crossbasis with a knot at 1 C and lag day 2. If the association 

modeled using a spline appeared linear, we additionally characterized the temperature metric as a 

single continuous variable in a separate model. 

Taking advantage of the moderate correlation between indoor and outdoor temperature in 

this population, (Larsen et al. In progress) we performed multiple imputations using chained 

equations (MICE) using the R package mice (van Buuren and Groothuis-Oudshoorn 2010) to 

impute missing AT crossbasis values using available values and crossbases formed from 24 lags 

of airport AT. We imputed the crossbases rather than the raw AT values given that, unlike raw 

lags of AT, the components of the crossbases are assumed to be linearly associated with the 

outcome and are not highly multicollinear. We used predictive mean matching and performed 5 

imputations with 50 iterations each. Because the mice package only outputs the square root of 

the diagonal of the covariance matrix rather than the full covariance matrix, which is needed to 

calculate predictions at given temperature and lag values using model output and the dlnm 

package above, we calculated the covariance matrix using Rubin’s Rules (Barnard and Rubin 



1999) as follows. Step 1: We calculated the multiple imputation point estimate as the mean of the 

five imputed estimates. Step 2: We calculated the “within” variance, or the mean of the 

variances. Step 3: We calculated the “between” variance, or mean of the squared differences of 

each imputation estimate from the multiply-imputed point estimate. Step 4: We calculated total 

variance as (Step 2) + (Step 3) + (Step 3)/(number of imputations). We confirmed our 

calculations by verifying that the square root of the diagonal of the resulting covariance matrix 

was identical to the coefficients’ standard errors calculated for the model output by the mice 

package, which also used Rubin’s Rules. 

We employed repeated measures fixed effects analyses (Wooldridge 2011) in which we 

included a dummy variable for each participant in a linear regression of temperature on cognitive 

outcome. This controls for non-time-varying confounding (e.g., age, race, gender, etc.) and 

instead estimates the change in outcome for a change in time-varying exposure. This is 

equivalent to modeling the association between the difference between cognitive or sleepiness 

score and the within-person mean score and the difference between temperature exposure and the 

within-person mean of that temperature exposure. 

Specifically, we used the model: yij 1 2 n+ 1Tij ij                     Eq 1 

where yij is the health effect (WLL, WLD, or sleepiness score) for person i at time point j; 1 

through n are dummy variables for n individuals, vector Tij is either 1) the 24-hour crossbasis 

for AT, 2) the piecewise linear spline basis for nighttime average AT, 3) the natural cubic spline 

basis for nighttime AT SD, 4) the 7-day crossbasis for nighttime average AT, or 5) the 7-day 

crossbasis for nighttime AT SD.  



Descriptive statistics, including means, medians, and percentiles were calculated for both 

the exposures and outcomes as well as for the within-person differences between the values and 

the within-person means. Pearson’s correlation coefficients were calculated among certain 

exposure metrics. Descriptive statistics were also calculated over the entire time the temperature 

and humidity monitors were in the residences: from July 2019 through March 2020.  

RESULTS 

Participant Characteristics 

Due to in-person research restrictions related to the COVID-19 pandemic, we were not able to 

retrieve the monitors in-person, but most participants returned the monitors by mail or at a drop-

off location. Two monitors were mis-programmed and the data were not usable. In total, we 

acquired hourly indoor temperature and humidity data for 15 of the 18 phone survey participants 

and 34 of the 41 overall study participants. Of the 18 phone survey participants, indoor 

temperature and humidity data were imputed for 10 surveys among 3 participants. A total of 64 

participant-days were available for analysis, with one participant completing 2 surveys, 6 

participants completing 3 surveys, and 11 completing all 4 surveys. 

Of the 18 survey participants, most (89%) were women, and 89% identified as African 

American. Given that we had selected low-income residents, most (83%) of the respondents had 

annual household incomes less than $20,000 (Table 1), which was lower than the Detroit 2019 

median household income of $31,000 (ACS 2021) and well below the national 2019 median 

household income of $68,700 (Semega et al. 2020). Participant ages ranged from 28-77 years 

with a median of 58 years. 



Indoor AT and Response Characteristics on the Survey Day 

For the days participants were surveyed, hourly AT values in the prior 24 hours ranged from 15.0 

C to 32.4 C. Means of AT values over the prior 24-hour periods ranged from 16.7 C to 30.1 C, 

but nighttime (22:00-06:00) mean AT values were slightly higher and ranged from 17.3 C to 

30.8 C. None of the indoor temperature measures exceeded plausible values during the survey 

period (Table 2). Indoor AT range also varied within person, with the majority of 24-average 

measurements being at least ±1 to ±6.5 C from the within-person mean (Supplemental 

Information Table S1). When indoor AT was cooler, indoor AT variability also increased 

(Pearson correlation coefficient r = -0.38 for AT < 22 C vs. AT SD). WLL and WLD scores 

ranged from 2 to 10 and 1 to 10, respectively, on these 10-point scales. On the Epworth 

sleepiness scale, 11 is the threshold above which a respondent is considered to have mild 

excessive daytime sleepiness. Fifty percent of the reported scores were 6 or less, so most of our 

responses did not indicate excessive daytime sleepiness (Table 2). WLL, WLD, and sleepiness 

scores exhibited within-person variability, with the majority of responses being at least ±0.8,  

±0.8, and ±1.4 points from the within-person mean, respectively (Supplemental Information 

Table S1). 

Indoor AT on a Warm Day 

Indoor AT varied through the day and varied between participants. For example, on the warm 

day of August 21, 2019, when the outdoor AT ranged from 24.0 to 32.7 C, the hourly median 

indoor AT across participants ranged within a somewhat comfortable 24.0-27.0 C over the 

course of the day, with the highest temperatures in the evening. However, hourly maximum 

indoor AT ranged from 31.1-34.0 C. On that day, participant-specific medians ranged from 21.7-

32.2 C, while participant-specific maxima ranged from 23.0-34.0 C, and one participant never 



experienced indoor ATs below 31 C. Additionally, 3 of the participants experienced indoor ATs 

greater than 30 C at some point during that day (Supplemental Information Figure S1). 

Indoor AT July 2019-March 2020 

In examining the range of temperatures experienced throughout the entire larger study period 

(July 2019-March 2020), including several months after the end of this phone survey period, the 

first through third quartiles of daily indoor AT remained between 19 C and 28 C (Supplemental 

Information Figure S2A). However, indoor AT was as low as 8.0 C and as high as 43.5 C. The 

highest and somewhat implausible values may have resulted from inappropriate placement of a 

monitor, e.g., near an appliance or in the sun. Nevertheless, even after excluding participant 10, 

values were as high as 33.8 C. Of the 34 participants, 5 and 22 experienced indoor ATs below 10 

C and above 30 C, respectively, and 3 participants experienced both extremes (Supplemental 

Information Figure S2B). 

Associations of Cognitive Changes and Sleepiness with AT 

For indoor AT below 22 C, we did not see associations between cognitive changes and AT in the 

24 hours preceding the phone survey (Figures 1A, 1C). However, we did see an increase in 

sleepiness score for low AT in the hour of the survey: for a 2 C decrease in AT below 22 C, we 

observed a 0.5 (95% CI: -0.0, 1.1, p = 0.05) point increase. In the directions opposite to those 

hypothesized, we additionally observed a decline in sleepiness score in the 10-20 hours prior to 

the survey such that, e.g., for a 2 C decrease in AT below 22 C, sleepiness scores decreased by -

0.3 (95% CI: -0.5, -0.0, p = 0.03) points in lag hour 17 (Figure 1E). Most of the surveys were 

administered in the afternoon and evening, so this 10-20 lag hour time period corresponds to the 

prior evening and night during which individuals might have been trying to sleep. Similarly, with 

increasing indoor AT above 22 C in this time period of 10-15 hours prior to the survey, results 



were suggestive of improvements in WLL and WLD scores (Figures 1B, 1D). Specifically, we 

observed a 0.1 (95% CI: 0.0, 0.3, p = 0.06) point increase in WLL score for each 2 C increase in 

AT above 22 C at lag hour 12 and a 0.1 (95% CI: 0.0, 0.3, p = 0.09) point increase in WLD 

score. 

When examining average night time AT in isolation from the other time periods, we 

found positive associations with WLD, WLL, and sleepiness, which were again contrary to our 

hypotheses. Specifically, for WLD, we found a 0.7 (95% CI: 0.1, 1.4, p = 0.02) point increase in 

score for each 2 C increase in average night time AT above 22 C. In fact, neither WLL or WLD 

exhibited non-linear associations with AT within the observed AT range (Figures 2A and 2C). In 

a model with AT represented as a single, linear term rather than a spline, we observed a 0.4 (95% 

CI: 0.0, 0.7) point increase in WLL and 0.4 (95% CI: 0.0, 0.9) point increase in WLD scores for 

each 2 C increase in AT. At cooler temperatures, we found a -1.7 (95% CI: -3.3, -0.1, p = 0.03) 

point decrease in sleepiness score for each 2 C decrease in average night time AT below 22 C. 

When considering the night time AT variability (SD) instead of the average, we observed results 

suggestive of an increase in WLL score with increasing night time AT SD. However, the AT SD 

results were not statistically significant and may also have been confounded by cooler average 

AT given the moderate correlation (r = -0.38) between average night time AT and night time AT 

SD at AT below 22 C. In sensitivity analyses of average night time AT in which we assigned the 

cold-hot inflection point at 20 C or 24 C rather than 22 C, results were qualitatively similar for 

WLL, WLD, and sleepiness, although the positive association between sleepiness and AT at 

lower temperatures became non-significant (Supplemental Information, Figure S3A-F). 



In models of 7 prior nights of AT exposure, we did not find significant associations 

between either average night time AT or night time AT SD and the cognitive or sleepiness scores 

for any of the lag nights (Supplemental Information, Figures S4A-F and S5A-F). 

DISCUSSION 

This community-based participatory research study recruited low-income residents of Detroit 

and estimated associations between indoor temperatures and the participants’ cognitive function 

and daytime sleepiness during 2019. Although findings were mixed and inconsistent with some 

prior literature, our work adds to the limited body of knowledge about how temperature may 

influence indicators of health and quality of life, and not only deaths and urgent health effects 

requiring hospital visits.  This research is an important area of inquiry in the context of climate 

change and the well-documented disparities in weather-related health outcomes, and may also 

inform efforts to reduce energy insecurity among lower-income populations and enhance 

environmental justice. We next discuss our findings in more detail and in the context of previous 

findings from the literature, discuss strengths and limitations, and suggest areas for future 

research building upon this work. 

Cognition and AT 

Multiple domains of indoor environmental quality, including thermal environment, lighting, 

noise, and air pollution, have been found to influence cognitive performance (reviewed in Wang 

et al. 2021). Cold temperature exposure has been shown to impact memory, vigilance, and 

reaction time as well as changes in dopamine, epinephrine, and norepinephrine levels (reviewed 

in Taylor et al. 2016). Cognitive deficits related to temperature may also be due to a distracting 

effect of thermal discomfort or poor sleep the prior night (Lan et al. 2017, Alhola & Polo-

Kantola 2007, Johnson et al. 2017). However, many of our findings, particularly for the warm 



temperatures, did not agree with these prior findings or support our hypotheses that working and 

episodic memory and auditory attention cognitive domains would show an inverse-V-shaped 

association with AT within the range of observed ATs (18-30 C) and with an inflection point of 

20-24 C. Rather, we observed an increase in these domains of cognitive performance with 

increasing ATs, which supports the hypothesis of a protective effect of increasing AT, but not 

the hypothesis that the upper threshold for this effect is 22 C. Our survey period started mid-

summer and ended in mid-autumn, prior to the much colder outdoor and indoor temperatures 

experienced by some of our participants and after the hottest day of the summer (maximum AT 

of 39.9 C). Therefore, our participants may not have experienced indoor temperatures above or 

below the threshold at which temperature has deleterious effects on these cognitive domains. In 

contrast to field studies that did capture more extreme temperatures, attention/processing speed 

and working memory  were reduced in young adults in non-air conditioned buildings during a 

heat wave (Laurent et al. 2018), and the odds of having a low mini-mental status score was 

minimized at daily mean outdoor temperatures of 10-15 C in older male veterans, with the daily 

mean outdoor temperature ranging from -5 C to 25 C (Dai et al. 2016). In a meta-analysis of 

cognition and temperature studies, where cognition included office productivity and learning, 

Seppanen et al. (2006) found a 10% decline in normalized performance for indoor temperatures 

at 30 C vs. 23 C. 

  These and other studies are consistent with the idea that a U- or V-model, with a single 

inflection point, is too restrictive (Zhang et al. 2019). Instead, the “extended-U” model (Hancock 

and Warm 2003) may be more appropriate in allowing for a wider range of temperatures over 

which cognition is only slightly or not at all affected by temperature and therefore allowing for 

significantly increasing or decreasing associations at only the extreme ends of the temperature 



range. Support for the extended-U model with regards to memory was found in a recent 

qualitative meta analysis of studies of college students (Wang et al. 2021).  Additional support 

for an extended-U model was provided by a quantitative meta-analysis of laboratory studies of 

temperature and cognitive function, incorporating studies using a wide variety of cognitive 

performance measures.,In this meta analysis, effects in the experimental groups vs. the control 

groups did not change substantially when temperature rose to 5 C above the control group room 

temperatures. However, 5% decreases in overall cognitive function were observed for a 6 C 

decrease in temperature or a 9 C increase in temperature, and cognitive function declined by as 

much as 8% at extreme hot and cold temperatures. As expected, heterogeneity in study findings 

was considerable given different levels of acclimatization, physical fitness, thermal comfort, and 

clothing between studies (Yeganeh et al. 2018). With respect to thermal comfort and 

acclimatization, military and sports medicine studies have demonstrated physiological adaptation 

to warm temperatures (Garrett et al. 2011). Specific to cognition, a chamber study of tropically-

acclimated and temperate-climate-acclimated men showed greater decrement in mental 

arithmetic performance in the temperate-climate acclimated men (Wijayanto et al. 2017). In 

occupational settings, thermal comfort preferences vary across individuals and countries, and this 

variation may be due in part to differences in acclimatization (Hwang & Cheng 2007). These 

studies further support the idea that our temperature ranges were not sufficiently wide to detect 

decreases in cognitive function in a U-shaped model, particularly for hot temperatures. 

Additionally, studies of mortality and temperature have found a strong effect of timing in year 

such that the first wave of high temperatures in spring or early summer has the most substantial 

deleterious effects, and then subsequent days or nights of high temperature in mid- or late-

summer are less impactful as subjects have likely become either acclimated to or, rarely, expired 



from high temperatures (Gasparrini et al. 2016). Therefore, future research on indoor 

temperatures and cognition should study warm-temperature effects early in and throughout the 

summer and should also study cold temperature effects during the coldest months. Future studies 

should also include a higher number of participants to provide the statistical power needed for an 

extended-U model, or more flexible regression splines that could account for a potentially wide 

range of ideal indoor AT values. 

Sleep and AT 

In support of one hypothesis, we did observe an increase in sleepiness when AT was below 22 C 

in the hour of the phone survey. However, when considering a longer time course of exposure, 

our results did not support our hypothesis of a V-shaped association between AT and sleepiness 

within the range of observed ATs (18-30 C) and an inflection point of 20-24 C. However, we did 

see significantly reduced daytime sleepiness at lower bedroom temperatures the night before, 

suggesting that sleep quality was maximized at these lower nighttime bedroom temperatures. 

Our results are consistent with those from a study of 8 older men in Japan with average bedroom 

temperatures ranging from 20-28 C. In that study, increasing air temperature and humidity were 

correlated with earlier wake-up times and decreased sleep efficiency (Tsuzuki et al. 2015). 

However, our findings conflict with those from studies of Hong Kong students in their dormitory 

rooms, in which sleeping thermal environment satisfaction was maximized at 24.2 C with 

satisfaction slightly diminished at both lower and higher temperatures (Zhang et al. 2018), and 

sleep quality was higher among students reporting thermal satisfaction vs. those reporting feeling 

too hot or cold (Tsang et al. 2021). Also, perhaps because our participants did not experience 

extreme-heat conditions, our findings did not concur with those of a Massachusetts study 

(Williams et al. 2019), in which sleep was disrupted in low-income housing residents during a 



heat wave. Our results also conflict with a review of sleep and thermal environment studies 

finding that heat exposure, but not mild cold exposure, impacts sleep stages in community-based 

settings where bedding and clothing can be altered by the participants (Okamoto-Mizuno K & 

Mizuno 2012).  

In general, minimum wintertime recommended indoor temperatures for sleeping range 

from 17-20 C and maximum summertime indoor temperatures range from 23-26 C (Jackson & 

Gaston 2019). In community settings, thermal comfort during sleep has been optimized at 

temperatures as high as 24 C (Lin & Deng 2008). These wide ranges in comfortable sleeping 

temperatures are likely due in part to the strong influences of bedding and bed clothing on 

optimal ambient sleeping temperature (Irshad et al. 2019, Pan et al. 2012, Lin & Deng 2008, 

Zhang et al. 2018, Wang et al. 2015). If bedding and bed clothing remained consistent within our 

participants during each participant’s survey period, then our study would have controlled for 

bedding and clothing effects by examining only within-person changes in sleepiness with within-

person changes in temperature. However, individuals in our study may have altered their bedding 

and clothing based on ambient bedroom temperature in ways that were not consistent from one 

individual to the next. 

Study Strengths 

In contrast to most temperature and cognition or temperature and sleep research, our indoor 

temperature measurements were acquired in a community setting, among adults, including 

retirees, in their own homes. We also employed a community-based participatory research 

approach, whereby community partners participated in and enhanced the quality of the study 

design, played a critical role in recruitment and retention, and participated in analysis and 

dissemination. Our long observation period across multiple months allowed for indoor 



temperature characterization in 3 seasons and longitudinal, within-person comparisons of 

temperature with short-term changes in sleep and cognition to fully control for non-time-varying 

confounding.  

Furthermore, although air conditioning is often proposed as an easy mitigation method, for many 

low-income families, such as those included in our study, the cost of mechanical cooling is likely 

prohibitive. Heating and cooling costs in the Midwestern U.S. can strain household resources, 

where 1 in 5 residents reported reducing or forgoing food or medicine to pay energy costs in the 

2015 Residential Energy Consumption Survey (EIA 2018). Therefore, low-income subjects are 

potentially most greatly impacted by indoor temperature and temperature variability due to fewer 

household resources to control the indoor environment. 

Study Limitations and Avenues for Future Research 

We did not control for indoor air pollutants, which may be associated with cognitive function 

and correlate with indoor temperatures (Du et al. 2020). Furthermore, the Epworth Sleepiness 

Scale includes questions about riding in cars, which may not be appropriate for our low-income, 

urban population. We chose the WLL and WLD tests given their validated use over the phone 

and in racially diverse populations (e.g., Howard et al. 2005). Simple task decrement in the heat 

has been reported in a small number of studies, but there is evidence that more complex tasks are 

more sensitive to heat (Wang et al. 2021). We also did not ask about pajama type or coverage or 

bedding materials. We assumed that individuals would select the combination of each that would 

maximize their comfort given ambient bedroom temperatures, but preferences could be 

influenced by other factors and vary seasonally. We also did not verify that participants had 

properly sited the monitors prior to phone survey administration. Without a clear decision rule on 



what would be an impossible indoor temperature value, we did not drop or impute high values. 

However, an overestimate of the change in exposures from one time period to the next might 

have biased our results. Higher sample size, in addition to allowing us to fit an extended-U 

model as discussed above, would allow us to examine differences by sex and age, which may be 

important for generalizing our findings. Notably, prior research suggests that men have been 

found to prefer cooler sleeping environments due perhaps to higher basal metabolic rates (Irshad 

et al. 2019, Pan et al. 2012), and it is plausible that women’s temperature preferences vary across 

the life course, including during pregnancy and perimenopause. Our participants ranged in age 

from 28-77 years old, and prior research has shown that age impacts cognitive performance and 

sleep (e.g., Mander et al. 2017, Murman 2015). Additionally, sleep disparities by race have been 

observed (Johnson et al. 2019), and a better understanding of the determinants of sleep quality 

and subsequent daytime sleepiness in low-income households and people of color is critical to 

eliminating these disparities. 

Higher sample sizes would permit us to consider interactions between duration and intensity of 

exposure, with the idea that habituation to the temperatures occur or, conversely, that long 

durations of mild temperatures may be as impactful as short durations of intense exposure. The 

surveys were also administered from late morning through the evening, which may have 

introduced chronobiological bias, considering the circadian patterns of cognitive performance 

and sleepiness (e;g., Blatter & Cajochen 2007, Schmidt & Bao 2017). Finally, little is known 

about precisely which domains of cognition are impacted by temperature in a non-occupational 

setting. We chose to study domains that were measured by tests easily administered in a short 

amount of time over the phone. Future studies should examine a more comprehensive range of 



cognitive domains, including complex cognitive tasks such as arithmetic given that complex 

cognitive tasks may be more susceptible to temperature (Zhang et al. 2019). 

Conclusions 

Our results were suggestive of short-term associations of AT with sleepiness and cognition, such 

that sleepiness increased when AT was below 22 C in the hour of the testing and cognition 

declined for each 2 C decrease in average nighttime AT below 30 C. Protective effects of cool 

(18-22 C) nighttime AT on daytime sleepiness were also observed. The association between 

cognition and AT was linear, rather than V-shaped as hypothesized. Future research should 

expand sample size, seasons of testing, and number of tests per person to allow for a potentially 

more complex functional form, i.e., an “extended-U” shape, of cognition and sleepiness with 

temperature. These advancements would enable the characterization of cognition and sleepiness 

over the wide range of indoor temperatures experienced by this and other low-income 

populations. 
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TABLES 

Table 1. Counts and percents by race, gender (only male and female reported), and income categories 
among 18 Detroit, Michigan participants surveyed on 2-4 occasions, July-November, 2019. 
Characteristic N (Percent) 
Race  
   African American 16 (89%) 
   White 1 (5%) 
   Other 1 (5%) 
Female 16 (89%) 
Income categories  
     $0-19,999 15 (83%) 
     $20,000-34,999 0 (0%) 
     $35,000-49,999 1 (5%) 
     $50,000-$74,999 1 (5%) 
     No Answer 1 (5%) 

 
Table 2. Distributions of age, apparent temperature (AT) exposure, cognition (word list and delayed word 
list learning scores), and sleepiness scores among 18 Detroit, Michigan participants surveyed on 2-4 
occasions, July-November, 2019.  
Characteristic Mean Min Median Max 
Age (years, N = 14) 56 28 58 77 
Word list learning score 
(WLL) 

6.4 2.0 6.0 10.0 

Delayed word list 
learning score (WLD) 

4.9 1.0 4.5 10.0 

Epworth Sleepiness Scale 
score 

6.8 0.0 6.0 18.0 

     
AT (C), minimum of lags 
0-23 hours† 

22.1 15.0 22.0 28.4 

AT (C), maximum of lags 
0-23 hours† 

25.5 19.1 25.6 32.4 

AT (C), mean of lags 0-
23 hours† 

23.6 16.7 23.2 30.1 

AT (C), mean of prior 
night†‡ 

23.9 17.3 23.6 30.8 

Meant AT standard 
deviation (C), prior 
night†‡ 

0.6 0.1 0.5 3.1 

†N = 15 participants with complete (non-imputed) data representing 54 participant days 
‡Night = 22:00-06:00 
 
  



FIGURES 

Figure 1. Time course of associations for hourly indoor apparent temperatures prior to the hour of the 
phone survey (lag hours), the differences between the word recall (A, B), delayed word recall (C, D), and 
sleepiness (E, F) scores and the scores at 22 C. The left column (A, C, E) are the effects above 22 C and 
the right column (B, D, F) are the effects below 22 C. The gray shaded areas represent 95% confidence 
intervals. 

 
Figure 2. Associations between nighttime (22:00-06:00) average indoor apparent temperatures (AT) and 
AT standard deviations (SD) and next-day cognition and sleepiness, or the differences between the word 
recall (A, B), delayed word recall (C, D), and sleepiness (E, F) scores and the scores at 22 C or an SD of 1 
C. The left column (A, C, E) are the effects for average AT and the right column (B, D, F) are the effects 



for AT SD. The gray shaded areas represent 95% confidence intervals. 

 
 
 



SUPPLEMENTAL MATERIAL 

Table S1. Distributions of the absolute differences of each characteristic from the within-person mean for 
apparent temperature (AT) exposure, cognition (immediate word list and delayed word list recall) scores, 
and sleepiness score among 18 Detroit, Michigan participants surveyed on 2-4 occasions, July-November, 
2019. 
Characteristic Minimum 25th Percentile Median 75th Percentile Maximum 

Immediate Word 
List Recall score 
(WLL) 

0.0 0.5 0.8 1.7 5.0 

Delayed Word 
List Recall score 
(WLD) 

0.0 0.5 0.8 1.3 5.0 

Epworth 
Sleepiness Scale 
score 

0.0 1.0 1.4 2.4 4.3 

Mean AT (C), 
lags 0-23 hours* 

0.0 0.4 1.1 2.2 6.5 

Mean AT (C), 
prior night†* 

0.1 0.6 1.3 2.1 6.2 

Mean AT 
standard 
deviation (C), 
prior night†* 

0.0 0.1 0.2 0.3 2.0 

*N = 22 participants 
†Night = 22:00-06:00 

 
  



Figure S1. Distributions of apparent temperature (AT) by hour (A) and by participant (B) on August 21, 
2019 among 34 Detroit, Michigan participants with indoor temperature monitors. 
 

 



Figure S2. Indoor apparent temperature (AT) maxima, minima, and medians by hour (A) and boxplots by 
participant (B) in 34 Detroit, Michigan participants, July, 2019-April 2020. 
 

  



Figure S3. Night time (22:00-06:00) average indoor apparent temperatures (AT) and next-day cognition 
and sleepiness (the differences between the immediate word recall (A, B), delayed word recall (C, D), and 
sleepiness (E, F) scores vs. the scores at 24 C (A, C, E) or 20 C (B, D, F). The gray shaded areas represent 
95% confidence intervals. 
 

  



Figure S4. For nighttime (22:00-06:00) indoor apparent temperatures in the 0-6 nights prior to the phone 
survey (lag nights), the differences between immediate word recall, delayed word recall, and sleepiness 
scores and the scores when nighttime apparent temperature was 22 C. The left column is the effects at 16 
C and the right column is the effects at 32 C. The gray shaded areas represent 95% confidence intervals.  

 
 
 
Figure S5. For nighttime (22:00-06:00) indoor apparent temperature standard deviations (SD) in the 0-6 
nights prior to the phone survey (lag nights), the differences between immediate word recall, delayed 
word recall, and sleepiness scores and the scores when nighttime apparent temperature SD was 1 C. The 
left column is the effects at an SD of 0.2 C and the right column is the effects at an SD of 2 C. The gray 



shaded areas represent 95% confidence intervals. 
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