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Abstract

Protein aggregation is a feature of numerous neurodegenerative diseases. However, regulated,
often reversible formation of protein aggregates, also known as condensates, helps control a wide
range of cellular activities including stress response, gene expression, memory, cell development
and differentiation. This review presents examples of aggregates found in biological systems,
how they are used, and cellular strategies that control aggregation and disaggregation. We
include features of the aggregating proteins themselves, environmental factors, co-aggregates,
post-translational modifications and well-known aggregation-directed activities that influence
their formation, material state, stability and dissolution. We highlight the emerging roles of
biomolecular condensates in early animal development, and disaggregation processing proteins
that have recently been shown to play key roles in gametogenesis and embryogenesis.
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Introduction: Order and Disorder as Natural and Dynamic Cellular States

Cellular aggregation has long been equated with current or impending health issues.
However, accumulating evidence suggests that aggregation is important physiologically and
is not exclusively pathological. Although native three-dimensional structure of proteins is
largely encoded by the primary amino acid sequence, molecular chaperones help ensure

co- and post-translational quality by promoting proper protein conformation as intracellular
and extracellular environments change. If proteins fail to fold as predicted or assume an
alternative fold, they may assemble into aggregates. Some of these aggregates, whether
generated by exposure to stress, concentration-dependent precipitation, the failure of
co-translational directed folding or modifications associated with the ribosome [1], are
recognized as aberrant and either selected for degradation or refolding. In response to an
elevated aggregate load, the cell may invoke degradation pathways, place the aggregates into
storage compartments, or recover the aggregating proteins. For the latter process, chaperones
known as disaggregases are employed. The role of disaggregase type chaperones is to
establish a suitable balance between the aggregation process and protein solubilization and
refolding.

Disaggregases are also important for processing another class of proteins, those that form
ordered aggregates independent of stress. Ordered aggregation includes the formation of
cross-B structure that can stiffen condensates or form long unbranched fibers known

as amyloids. Amyloids that form as the result of an underlying genomic change are
frequently pathogenic and are characteristic of several neurodegenerative disorders including
Huntington’s, Parkinson’s, Alzheimer’s and prion-related diseases.

However, the capacity to form amyloid or other ordered aggregate forms is an intrinsic
property of many proteins [2, 3] and is not necessarily pathological. There are an increasing
number of cases where aggregate formation is fundamental to essential biological activities.
In recent years many of the biological “bodies”, “plasm”, ‘speckles’ and ‘non-membrane
bound organelles’ identified by microscopic inspection by cell and developmental biologists
have been shown to form through selective protein and nucleic acid aggregation. We and
others have uncovered novel aggregates in the earliest stages of development, including the
oocyte, embryo and gametogonia [4—13]. The functional significance of these previously
unappreciated aggregate bodies is suggested by genetic perturbations that affect the

aggregation phenotype while simultaneously impacting development [14].

The field of biological and pathological protein aggregation and the various mechanism
that influence it is vast, and we regret not being able to do justice to every aspect of it.
Some interesting and important topics related but not central to the main thrust of this
review include the crucial role of yeast models in the study of disease-related amyloids
[15], the full scope of functional amyloid examples in mammalian and plant systems [16—
19], and growing evidence of the involvement of liquid-liquid phase separation in forming
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well-recognized as well as novel membraneless organelles that comprise a fundamental
organizing principle in living cells ([20-25]), to name a few.

The goal of this review is to explore the topic of biological (as opposed to pathological)
aggregation with special emphasis on the ways condensate formation, maintenance and
dissolution can be influenced, highlighting examples from cell and developmental biology.
The review begins with some fundamentals including a brief overview of various material
states exhibited by biological aggregates, the distinction between ‘structural’ and ‘storage’
aggregates, the need for storage aggregate to be reversible, and a description of molecular
chaperones whose enzymatic disaggregation activities are very well characterized. These
enzymatic activities are paired with a discussion of the many non-chaperone activities that
are central to regulation of biological aggregates including features of the aggregation-prone
proteins themselves, as well as their regulators and modifiers. All of this sets the stage

for a review of the subset of aggregates that are important in different aspects of animal
development, and finally the search for aggregate processing activities specifically linked to
development.

Diversity of Material States

Figure 1A provides a simplified framework representing a roster of states from liquid
droplets, the most dynamic, through the formation of amyloid fibers, the most solid.

The material states are depicted as part of an equilibrium that is influenced by protein

(or RNA) concentration, co-aggregate complexity, modification, environment and varying
levels of enzymatic activity. The phrase “biological condensate” was recently coined [26]
as way of describing all non-stoichiometric assemblies of biomolecules that inhabit this
broad spectrum of aggregate types without regard to stability or material state. Importantly,
biomolecular condensate are membraneless. The constituent biological polymers in a
condensate may undergo self-assembly via clustering that increases the local concentration
of the assembling components. In living organisms, proteins, RNA and other polymers

can form biomolecular condensates via liquid-liquid phase separation (LLPS) to generate
colloidal emulsions or liquid crystals, in which material may flow like a liquid but have

a crystalline molecular structure; or by liquid-solid phase separation to generate gels, sols
or suspensions within cells or as extracellular secretions. In that the phrase ‘condensate’
makes no assumptions about either the physical mechanism through which assemblies

are achieved, nor the material state of the resulting assembly, we have opted to use the
term “condensate” throughout this review when information suggesting a more restrictive
structure, like amyloid, may still be debated.

Examples of biomolecular condensates in the cytoplasm include physiological bodies such
as stress granules [27], P-bodies [28], germline P granules [29], starch granules [30] as
well as pathological or pre-pathological entities, such as cataracts [31], Lewy bodies [32],
and amyloid fibrils among others. In the nucleus, examples include the nucleolus [33],
heterochromatin, paraspeckles, transcriptional condensates, and replication compartments
[34].
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The challenges inherent in the definitive identification of the material state of condensates
have been described in some recent reviews [35, 36]. However, as the list of biological
condensates grows, it seems clear that material state may be mixed (liquid, gel, oligomer or
fiber) and that transitions between states may be an important aspect of their function and
regulation. For example, liquid droplets formed by LLPS are part of many membraneless
compartments whose function may be to concentrate, localize, activate, inactivate, or

filter its contents [37]. Furthermore, introduction of a co-aggregate like RNA during or
after droplet formation, may shift the material state toward something more gel-like or
change the concentration of protein needed to phase separate [38, 39]. The formation

of a reinforcing structure, like the cross B-sheets that characterize amyloids, may further
solidify a condensate. Amyloid aggregates were historically characterized as being resistant
to detergent solubilization, however, the cross B-sheet structure can be found in much less
resistant structures as well [40]. Amyloid assembly is self-perpetuating with soluble, native
protein recruited into growing amyloid oligomers or fibers.

Functional (Physiological) Amyloids

The cross B structure and fiber forming process have been highlighted in many pathological
examples of protein condensates [41]. Nonetheless, the recent literature has abundant
examples of regulated amyloids with physiological roles. For example, in response to
starvation, the S. cerevisiae RNA binding protein Rim4 forms amyloid aggregates that
repress translation of the cell cycle progression gene, CLB3 and other mRNAs. The active,
amyloid form of Rim4 sequesters mRNAs that, though toxic if translated early in meiosis,
are necessary for late meiotic events [42—44]. Temporally regulated phosphorylation of the
intrinsically disordered C-terminal domain of Rim4 leads to amyloid disassembly causing
the release of late meiotic mRNAs followed by the subsequent degradation of Rim4 [42—
44]. Likewise, in metazoa, conversion of the human melanocyte protein, Pmell7, to the
amyloid-forming conformation is pH-dependent, requiring the mildly acidic conditions
found in the melanosome lumen [45]. Pmell7 fibrils disassociate at neutral pH to regenerate
monomers. This aggregation/disaggregation cycle provides a safeguard against releasing
Pmell7 fibrils into the cytosol thus circumventing their toxicity [45]. Another example of

a regulated functional amyloid is found in memory storage attributed first to the neuronal
isoform of Aplysia cytoplasmic polyadenylation element binding protein CPEB [46]. The
self-sustaining amyloidogenic state of neuronal CPEB produces a persistent mark in the
activated synapse required for long-term memory [47]. When Drosophila CPEB, encoded by
the ORBZ2 gene, adopts the amyloid state it gains a new function, converting the translation-
repressive monomeric Orb2 into a translation-activating amyloid [48].

Storage and Structure: Reversible and One-way Changes in State

The many roles carried out by biological condensates include basic cellular functions

such as the modulation of cell growth and survival in response to the demands of the
environment. The strategy of forming condensates rather than degrading molecules during
exposure to a stress, means that protein availability during recovery does not require new
synthesis. One example is the yeast Cdc19 pyruvate kinase, which is recruited and preserved
as a condensate in stress granules that form in response to heat shock and other stressors
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[49]. Once stress conditions dissipate, disaggregation of the enzyme permits the rapid
resumption of energy metabolism and protein synthesis. Metabolic enzymes from bacteria
to animals form this type of reversible condensate, assembling into filaments in response to
starvation [50, 51]. When conditions improve, the filaments disassemble and the enzymes
are reused.

In contrast to reversible condensates like Cdc19, many of which are involved in storage,
some amyloid forming proteins are structural. In the case of structural condensate, the
transition to the amyloid conformation is a permanent (one-way) change in state. Examples
of structural amyloids include the bacterial curli proteins involved in biofilm formation
[52, 53], the adhesins of pathogenic yeast [54—-56], which mediate cell-cell and cell-tissue
interactions, and the eggshell chorion proteins of silkworm and related proteins in fish and
mammals that protect the developing embryo from the environment [57]. Reversible and
one-way changes in state are depicted in Fig. 1.

Chaperone-based Regulatory Activities for Condensate Processing

Proteins that have assumed a novel conformation with a free energy state lower than that

of the normally folded protein may require the help of dedicated molecular chaperones

to liberate and refold misfolded or denatured proteins. Molecular chaperones have key

roles in folding newly synthesized proteins into their native states, in trafficking proteins

to specific locations in cells and in the efficient assembly of molecular subunits into
functional multimeric structures. Chaperone-mediated disaggregation and stimulation of
proteolytic degradation are crucial aspects of proteostasis [58, 59]. Proteostasis seems to

fail as organisms age, hence modulation of proteostasis pathways including prevention of
amyloid formation, disaggregation of pre-existing condensates, and condensate sequestration
[60—62] are promising targets for the treatment of degenerative diseases.

Disaggregation may take place enzymatically through the use of molecular chaperones with
ATP-dependent disaggregase activity. Here we describe two major enzymatic activities, one
encoded by potent Hsp100 proteins and the other encoded by a universal Hsp70 network that
involves a collaboration between Hsp70, Hsp40 and Hsp110 proteins that has emerged as the
likely Hsp100-equivalent in animals.

The Hsp100 family:

Hsp100 family genes (HSP104 in yeast, c/pB in bacteria, HSP10] in plants) encode a
potent disaggregase whose broad spectrum of substrates include pre-amyloid oligomers,
phase-transitioned gels, as well as disordered aggregates and prions [63]. The Hsp100 family
is frequently described as present in all taxa except animals. More precisely, animals lack
cytoplasmic and nuclear Hsp100s [64] while maintaining a small repertoire of (diverged)
Hsp100 relatives in the mitochondrial compartment (e.g., mitochondrial Skd3 [65]). The
HSP100 genes encode spiral-shaped hexameric AAA+ chaperones that thread trapped
polypeptides through a central pore using a ratchet-like mechanism that is powered by ATP
hydrolysis. Fungal Hsp104 is not required under normal growth conditions but is essential
for thermotolerance and is advantageous under stress conditions due to its ability to work in
conjunction with Hsp70 and Hsp40 to mediate the recovery of properly folded proteins from
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disordered stress-denatured aggregates, disaggregate/fragment prion fibers into polymers
which can be adaptive in stress [66—68], and participate in proteasomal degradation of
select cytosolic proteins [69—72] among other activities. Hsp104 also confers longevity by
promoting the retention of damaged protein aggregates in the mother cell [73-75].

Mechanistically (recent cryo-EM structure studies are nicely described in [63]), the Hsp104
nucleotide binding domains (NBD-1 and NBD-2) use energy from ATP hydrolysis to
disaggregate proteins trapped in various higher order structures via translocation across

its axial channel using tyrosine bearing pore loops that contact the substrate [76, 77]. The
released polypeptides may refold spontaneously or may require assistance from molecular
chaperones. Refolding and reactivation occur following release from Hsp104 [78, 79]. In
cases such as the Sup35 prion, refolding isn’t necessary, as Hsp104 translocates the prion
domain but stops short of the carboxy terminal GTPase domain, which remains correctly
folded in the prion state [80].

Ln vitro work with purified Hsp104 suggest it has intrinsic ability to engage and disaggregate
substrates [80, 81] however, it is clear that the 7n vivo disaggregase activity of Hsp104 (and
the bacterial ortholog, ClpB) requires collaboration with the Hsp70 molecular chaperone
system, which includes J-domain proteins (Hsp40s) and a nucleotide-exchange factor
(Hsp110) in addition to the Hsp70 chaperone [78, 79, 82, 83]. The Hsp70 chaperone
system acts at condensate surfaces to initiate the Hsp100 translocation process via partial
solubilization and delivery of an Hsp70-bound unfolded polypeptide strand to the hexamer
channel [84]. Hsp70s activate Hsp100s through direct interaction with the coiled-coil M
domain located within NBD-1 of Hsp104/ClpB [84—88]. The association of Hsp70 releases
Hsp104/ClpB from a repressed state, boosting its ATPase and protein processing activities
[87]. Certain mutations in the M domain are hyperactive, displaying elevated activity,
higher affinity for a protein substrate and disaggregation activity in the absence of Hsp70.
These variant Hsp104s are highly toxic [89] presumably because they may not discriminate
between improperly folded proteins and proteins that are properly folded proteins but have
one or more intrinsically disordered domains [89, 90]. Analysis of single and double M
domain mutants suggested that at least one role of Hsp70 is to shift substrate specificity
toward unfolded proteins [84, 91, 92].

Hsp70 Chaperone Network:

Hsp100-type disaggregases are found in bacteria, and every compartment of fungi,
plants, and protists. Although there are several Hsp100 type proteins that localize to
the mitochondria in metazoans, there are no cytosolic or nuclear Hsp100 activities
[64]. In metazoa, Hsp70 family members cooperate with a specific subset of J-proteins
and nucleotide exchange factors to form a protein disaggregation machine capable of
solubilizing a wide range of amorphous and amyloid-like aggregates.

The 70 kDa heat shock protein encoded by HSP70 genes participates in all aspects of protein
life, including the folding of newly synthesized proteins, the translocation of polypeptides
into mitochondria, chloroplasts and the endoplasmic reticulum (ER), the disassembly of
protein complexes, and the regulation of protein activity. The stress-related activities of
Hsp70 proteins include preventing protein aggregation, solubilizing aggregated proteins,
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promoting the refolding of misfolded or unfolded proteins and cooperating with cellular
degradation machineries to clear aberrant proteins and protein aggregates [86].

Hsp70 ATPase activity is regulated by co-chaperones including J-proteins encoded by
HSPA40 genes, and nucleotide exchange factors (NEF) encoded by HSP/10 genes among
others [93-96]. As a result of J-protein mediated binding of substrate proteins to Hsp70-ATP,
in conjunction with direct J-protein-Hsp70 interactions, ATP is hydrolyzed and Hsp70
undergoes a transition to the ADP-bound state, which has high affinity for the substrate.
NEFs then induce ADP dissociation and rebinding of ATP, converting Hsp70 to the low-
affinity state and causing substrate release [97-99].

Hsp70s recognize a degenerate motif consisting of 5 residues enriched in hydrophobic
amino acids and flanked by positively charged amino acids, typically buried in the

interior of natively folded proteins, but exposed when proteins become unfolded or
misfolded. J-proteins confer selectivity. The A and B classes of J-proteins interact with
Hsp70 separately with distinct condensate selection properties [100]. For example, the
constitutively expressed Hsc70 (HSPAS) forms an ATP-dependent chaperone with J-protein
DNAIJBI and Hsp110 class NEFs (HSPH1-3) to solubilize aggregates formed by protein
denaturation. The expanded number of J-protein family members in animals (45) over
yeast (22) or bacteria (7) [101] increases the activity profile within each organism. For
example, Hsp110-Hsp70 complexed with DNAJA proteins cannot disaggregate fibrils, but
can disaggregate disordered aggregates [101], while DNAJA2 allows disaggregation of
smaller aggregates [102] and Hsp110-Hsp70 complexes that include DNAJB1 promote

the release of monomers from amyloid fibers by end depolymerization as well as fibril
fragmentation [103]. In eukaryotes but not prokaryotes, J-proteins also bind to each other
to form “complexes” [100]. J-protein complexes have a wider substrate spectrum compared
to the individual J-proteins or homo J-protein oligomers, because distinct substrate binding
specificities are combined. How the different classes of J-proteins (single and in complex)
recognize distinct clients remains unclear [104].

In addition to the Hsp40 co-chaperones which provide substrate selectivity, the Hsp70
chaperone network relies on the small heat shock proteins (sHSPs), a special class of
molecular chaperones between 12 and 43 kDa that lack an ATPase domain. The sHSPs
act early, holding proteins to facilitate their refolding or degradation by ATP-dependent
chaperone complexes [105, 106].

The flexible hydrophobic surfaces of sHSPs interact with exposed hydrophobic surfaces

of misfolded or denatured client proteins to sequester misfolded substrates into large
inclusions to protect them from proteases [105]. sHsp chaperones are thus poised to handle
early misfolding events prior to expression of other stress-inducible chaperones. sHsps

also facilitate subsequent disaggregation and folding by Hsp70 and Hsp100 by displacing
and releasing surface-bound sHsps from sHsp/substrate assemblies. sHSPs themselves are
sequestered into large, dormant, multimeric structures called sHsp oligomers to prevent any
deleterious effects due to their exposed hydrophobic surfaces. sHsp oligomers disperse into
smaller oligomers as they become active [105], a transition that can be precipitated by stress
and post-translational phosphorylation. The vast array of heterodimeric and heteromeric
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oligomer combinations generated by the ~10 sHSP genes in mammalian genomes lead to
distinct client recognition patterns and other types of regulation.

A recent survey of chaperone expression across different tissues suggest that various
disaggregation loads intrinsic to different tissues is supported by specific RNA expression
profiles of chaperones and co-chaperones [107]. The many chaperone activities found in
cells can be subdivided into those with core activities, found in all cells and those with
variable activities, which have a more variable range of tissue expression. Interestingly,
mutations identified in chaperones often lead to tissue-specific phenotypes, even when
expression profiles of the chaperone may be the same in multiple tissues.

The in vivo relevance of the Hsp110-Hsp70-Hsp40 disaggregase activity was examined in
C. elegans. Knock-down of Hsp110 in worms that were briefly heat shocked on day 1

of their lives caused persistent aggregates and reduced lifespan by 4.5 days, a phenotype
that was exacerbated by simultaneous knockdown of the Hsp70 homolog, HSP-1 [108]. To
investigate whether interfering with protein disaggregation had any organismal level impact,
lifespan was examined in worms with reduced expression of HSP-110, HSP-1, or both. The
knock-down of HSP-1 led to a developmental delay of about 1 day in 80% of animals.
However, all animals reached adulthood and did not display any other obvious phenotypes.
In related experiments, small Hsps were found to facilitate the disaggregation process and to
be essential under some thermal stress conditions in C. elegans [108].

Non-chaperone Regulatory Activities for Condensate Control

Aggregation is an efficient and often self-propagating process [3] so it comes as no
surprise that the formation of functional condensates must be highly regulated. In addition,
condensates that function as storage compartments require reliable mechanisms for the
release of resident molecules. In this section we enumerate and describe some of the many
cellular mechanisms that are central to the effective cellular use of aggregation in normal
physiological processes.

In addition to enzymatic disaggregation discussed above, there are numerous naturally
occurring cellular or environmental events that control the flow of proteins and other
biomolecules into and out of condensates. Hence, the concept of disaggregation must
include disaggregation “activities” which are not enzymatic (disaggregases). The large
repertoire of condensate regulatory strategies, some of which require substantial genomic
(cellular) resources, suggests that condensate biology is an important (albeit late) addition
to our understanding of cell and development processes. Some of the interesting condensate
regulatory strategies are described below.

Gatekeeper residues:

The process of forming amyloid, both pathological and beneficial, is driven by the ability of
individual protein segments to adopt cross f-strand conformations and assemble into fibrils,
for example via tight, zipper-like interfaces. To ensure that condensates are formed or kept in
check according to the demands of the system, many aggregation-prone stretches of amino
acids in proteins are flanked by ‘‘gatekeeper’’ residues such as lysine, arginine and proline
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[109] that inhibit condensate formation. The positively charged residues are repulsive in
close-packed condensates and their large flexible side chains are entropically unfavorable
[109] and proline is incompatible with the B-sheet structure of amyloid type aggregates.

In a computational overview of all of the non-disease condensate-prone proteins in the
human proteome, gatekeeper residues with low aggregation propensity like Pro, Arg, Lys,
Asp and Glu were particularly highly represented at strategic (flanking) positions suggesting
that molecular evolution has acted on protein sequences to finely modulate their aggregation
propensities [2]. One example of gatekeeper regulation is found in the curli proteins encoded
by the enterobacterial csgA and csgB genes. Curli protein is an extracellular amyloid fiber
that mediates bacterial attachment to surfaces, cell-cell aggregation and biofilm formation.
Aggregation is kept in check in part by five imperfect repeats in the major curli subunit
protein, CsgA, thus rendering aggregation dependent on the CsgB protein [2, 110]. Repeats
R1 and RS promote responsiveness to CsgB nucleation and self-seeding by CsgA fibers

[52, 53] but Repeats R2—R4 include aspartic and glycine residues that reduce aggregation
propensity, and thus modulate polymerization efficiency and potential toxicity [111]. CsgA
mutants lacking those gatekeeper residues polymerized in vitro significantly faster than the
wild-type protein, and polymerized inn vivo even in absence of its nucleator CsgB.

Interestingly, misregulation of spatial and temporal aspects of functional amyloid formation
as a result of mutations in gatekeeper residues or regions seem to be a common disease
mechanism in the case of hormones. Peptide hormones are concentrated in secretory
granules as functional amyloids [112] (the environmental regulation of peptide hormone
will be described in more detail below). While the details of proprotein sorting into granules
is unclear, self-aggregation of regulated cargo at the trans-Golgi network (TGN) is known
to contribute to granule formation. Dominant mutations in provasopressin (precursor to the
water homeostasis hormone vasopressin) that cause cell degeneration and diabetes insipidus
prevent native folding and produce fibrillar aggregates in the endoplasmic reticulum (ER)
that might reflect mislocalized amyloid formation by sequences that are important for
granule sorting [113].

Amyloid Nucleating Partners:

As seen in the bacterial CsgA-CsgB system for Curli fibers, the formation of certain
amyloids requires a partner protein. One such set of partner proteins in animals is Rip1

and Rip3 which mediate necroptosis. Necrotopsis is a type of programmed cell death with
necrotic cell morphology [114] that is the result of interaction between the serine/threonine
kinase, Rip1 and its paralog, Rip3, under conditions of caspase-8 inhibition [17]. Rip1

and Rip3 interact via RHIM domains to form the necrosome consisting of heteromeric
amyloid fibers [115]. The amyloid-like structures that form upon their interaction may act as
a scaffold to activate multiple downstream pathways for necroptosis, lead to Rip3/Rip3
homo-oligomerization and Rip3 autophosphorylation. Phosphorylated Rip3 recruits and
phosphorylates mixed lineage kinase domain like protein MLKL, which leads to membrane
pore formation, loss of membrane integrity and, eventually, necrotic death [114].
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Environmental control:

Some functional amyloid-prone proteins take advantage of specific environmental features
of a subcellular compartment to sustain or break down condensates. One example is the

pH regulation of Pmell7 [116, 117] discussed earlier. Another example is the highly
concentrated membrane-enclosed secretory granules [118] that allow cells to stock hormone
until a signal triggers its release, at which point hormone can be secreted much faster than

it could be synthesized. The amyloid structure of the hormone enables a controlled release
of monomeric, functional hormone [112]. Each hormone has its own dissociation rate which
is controlled by extrinsic factors such as pH, ion concentration, and extracellular chaperones
[119].

Spatial differences in ATP may also affect the formation of condensates. Initial studies by
Patel et al. examining the solubilizing effect of ATP on a variety of condensates in vitro,
specifically identified the changes within the 1 to 8 mM range of concentrations found
within cells [120]. A role for ATP, beyond providing energy or serving as a substrate for
chaperones or other enzymes, has been supported by subsequent studies [121, 122] that
have examined the stability of cellular condensates in response to ATP concentration. It
is interesting that earlier studies on proteasome activity [123] show a peak of activity at
ATP levels that are less than a tenth of normal physiological levels. Their data suggest
proteosome activity increases as ATP concentration drops.

RNA as a co-condensate:

The role of RNA as a co-condensate species in protein condensate formation was suggested
by the identification of non-membrane bound nuclear particles where RNA processing, RNA
transport and ribosome assembly occur, and the identification of C. elegans P-granules

as centers of condensate formation [29]. A broader net was later cast using the chemical
isoxazole which served as an RNA mimetic to capture an expanded roster of proteins

whose aggregation status is influenced by RNA [124]. RNA may also serve as a substrate
for protein activities collected together in condensates. For example, fibrillarin methylates
rRNA while phase-separated within the dense fibrillar component of the nucleolus.

Recently, there has been more attention paid to the intrinsic property of RNA to aggregate
[125]. The ability of RNA to form inter- and intra- strand secondary structure contributes

to nucleic acid only as well as mixed protein-RNA complexes [38, 39]. Both the charge
contribution from the phosphodiester containing backbone of the RNA and the sequence
seem to play a role. Sequence-mediated stem-loop structures and chemical modifications of
bases each contribute to specific protein binding. As discussed below, RNA is featured in
multiple biological condensates.

RNA helicases and RNase activities:

RNA helicases provide a way to manage RNA structural changes that promote or discourage
RNA aggregation as well as RNA:protein co-aggregation. Processive RNA helicases of the
DEAH/RHA and Ski families as well as pro-processive RNA unwinding helicases of the
DEAD box family are frequently associated with condensates [126]. These proteins may
regulate RNA structure dynamically via hydrolysis of ATP, but in an ATP-independent
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manner may compete for RNA binding, thus influencing the association of RNA with other
proteins. For example, the mRNA encoding the Wnt antagonist Draxin in RNA processing
condensates found in neural crest cells is selectively degraded in a process that depends

on Draxin microRNA and the RNA helicase, DDX6 [127]. The connection between RNA
helicases and regulated formation and activity of condensates is an emerging theme in both
nuclear and cytosolic particles [128—130].

Post-translational modification:

Entire reviews could be written on the role of post-translational modifications (PTM) such
as phosphorylation in modulating aggregation. PTM of proteins can directly alter the shape
and folding of a protein, affect its activity, and enhance or suppress protein quality control
checkpoints. The reversibility of post-translational modification provides an opportunity to
regulate protein aggregation behavior, and dysregulation of PTM activities is known to
contribute to aberrant aggregation and disease. For instance, returning to the functional
amyloids discussed earlier, Pmell7 glycosylation influences its sorting and fibril formation;
Pmell7 fibrils fail to form in mutants lacking sialic acid and galactose modifications [131].
Yeast Rim4 is dephosphorylated and aggregated during starvation conditions and a threshold
of phosphorylation events by kinase Ime?2 leads to its dissolution and eventual degradation,
thus allowing the progression through meiosis [44]. In the presence of mRNA, CPEB
undergoes LLPS 7n vitro upon SUMOylation and, when 77 vivo SUMOylation is inhibited
by ginkgolic acid, CPEB localization to the phase-separated P-body decreases [132]. It is
likely that the numerous cellular and developmental pathways that employ reversible post-
translational modifications mediated by enzymatic pairs including kinases and phosphatases,
methyl-transferases, acetyl transferases, ubiquitylation and deubiquitylation or sumoylation
and desumoylation as signaling molecules may be triggering protein condensate formation
as one of their downstream responses. Finally, it is worth noting that the equilibrium
between a protein in its soluble form and its condensate form can be influenced during
synthesis via controlling accessibility of sites for post-translational modification or by direct
regulation of the modifying enzymes.

Aggregation in Cell Division and Development

Temporal responsiveness and spatial organization are important during all cell divisions,
but may take on added complexity during development. Taken broadly, cell division

during development helps to mediate the acquisition of cell fates and the proliferation

of a pluripotent and differentiating cell populations from gametogenesis through old age.
Gametogenesis and the early stages of development have historically provided a rich source
of observable cellular structures due to their accessibility and size compared to most somatic
cells. Although some of the structures, like germ plasm, are not found in most cells, they
highlight some of the general features that are found in many cellular condensates [133,
134]. In the following sections, we focus on the role aggregates play in distributing cellular
contents to daughter cells and how cells in developing embryos use aggregates to filter
cytosolic contents.
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Condensate-based strategies for Symmetric and Asymmetric distribution of cellular

contents:

Conceptually, condensates are especially useful in the context of the directed transport
of cellular contents. When coupled with mother cell division, condensates can influence
daughter cell inheritance and even cell specification when cytoplasmic determinants are
involved.

Symmetry: Although some condensates are destined to be retained by the mother yeast
cell, others (known as prions) are distributed to daughter cells to confer advantages in
fluctuating physical environments [135]. In many cases this requires the cleavage activity
of ScHsp104 which reduces mature fibrils into fibril propagons that are transported through
the bud neck into daughter cells [135]. Hence the chaperone network within S. cerevisiae
ensures that daughter cells benefit from the distribution of endogenous prions. Interestingly,
recent work has revealed a class of S. cerevisiae prions that are not amyloid in nature and
that are Hsp104-independent [66, 136, 137]. These may be akin to the Het-S prion of P,
anserina and the only known S. pombe prion, [CTR4+], neither of which can be cured by
inactivating Hsp104 [138, 139]. It appears that some prions rely on other chaperones for
their distribution.

Asymmetry: Condensate asymmetry is important in aging and lifespan. The asymmetric
distribution of condensates during mitosis promotes the birth of cells unburdened with
potentially toxic condensates accumulated over a lifetime, and are instead afforded a clean
slate and a normal lifespan. In budding yeast, mother cells actively retain condensates via
cytoskeletal tethering to facilitate retrograde transport away from the bud [74, 140-142]
as well as by compartmentalization of condensates in non-membrane bound entities that
associate with specific organelles like the intranuclear INQ and vacuolar IPOD [140, 141].

Strategies for creating asymmetry include extrinsic signaling cues and asymmetric
partitioning of molecular determinants as well as differential RNA localization and biased
microtubule-organizing center activity. For example, liquid-like condensates at the base

of motile cilia [143] may facilitate the ciliary “sweeping” of developmental morphogens
that are implicated in symmetry breaking events in the vertebrate node. Recent reports by
the Mowery [144] and Huber labs [145] in Xenopus highlight the asymmetric packaging
of mRNAs in mixed RNA-protein condensates. Interestingly, the tight sequestration of
mRNAs in condensates such as the vegetally localized Vgl mRNA, is reversed during
early development, allowing relocalization from the cortex to the cytosol of cells that
eventually form endoderm [146]. Cell divisions resulting in two distinct daughter cell fates
may be especially attractive targets for condensate regulation. For instance, C. elegans
embryonic development is characterized by sequential asymmetric cell divisions starting
from the one-celled zygote [12, 147] and is accompanied by reiterated asymmetric P granule
localization via polarized dissolution/condensation cycles. In A. gossypii Whi3 mediates
RNA-specific condensates that help define domains within a syncytial, multinucleate space.
Whi3 condensates located in fungal branches include BN1 and SPA2 mRNAs, while Whi3
condensates that form near nuclei have CLN3 mRNA [148].
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Developmental condensates as molecular filters that generate spatial repositories:

Many of the large, well-characterized cytoplasmic condensates visible by low resolution
microscopy seem to play a role in filtering cytoplasmic components, by which we mean
enriching or depleting a subcellular locale of what would otherwise be freely diffusing
molecules. Here we give some examples of subcellular bodies that are involved in this
filtering mechanism, as this strategy is known to generate the asymmetry in embryonic cells
important for germline development and clearing factors that could impede germ cell fate
maintenance.

Vertebrate Balbiani bodies, associated with the grouping of mitochondria [145] endoplasmic
reticulum, RNA and protein in the oocyte, is a transient non-membrane bound structure
thought to preserve a low-activity state required for long-term oocyte storage [149]. In
Xenopus, Balbiani body formation depends on the self-assembly of Xvelo protein into a
solid amyloid aggregate. Once formed, Balbiani bodies filter the cytoplasm for specific
proteins and RNA [150], which are then translocated to the vegetal cortex [151], where they
play a role in germline specification. Current models suggest that the Balbiani body houses
a liquid-like condensate within the cage-like Xvelo assembly that facilitates a diffusion-
capture mechanism of germ plasm components to drive their asymmetric inheritance.
Interestingly, the stably aggregated form of Xvelo is nonetheless reversible, as it dissolves in
concert with phosphorylation events that may affect the ability of the Xvelo protein to form
amyloid [4, 152] leading to Balbiani body dissolution early in oogenesis.

A second example of membraneless germline condensates with a filtering function
required for germline specification is the Drosophila germ granules [153]. These germline
condensates of protein and RNA have both liquid-like and gel-like attributes [7]. Granule
formation occurs when posteriorly localized Oskar protein phase separates and recruits a
germ granule core that includes the RNA helicase Vasa, the factors Pum and Dazl, and the
argonaute family member Aubergine. This condensate structure then localizes hundreds of
mRNA clients including nanos mRNA, which is required in the developing germ cells to
repress somatic transcripts [126]. Balbiani bodies and germ granules also share some of the
same clients that regulate germline specification despite the distinct core composition of
each condensate.

A third developmental example of condensate-based filtration are the P granules of C.
elegans, named for their localization to the germline (P) lineage [11]. P granule condensates
consist of a gel-like core that includes the predicted RNA binding proteins PGL-1/3,

the intrinsically disordered proteins MEG-3/4, and the helicase LAF-1[154]. Despite

the non-dynamic core, P granules display liquid-like properties and dynamic dissolution/
condensation cycles. Control of P granule formation is accomplished by preferential
solubilization in the anterior of dividing cells while condensation occurs posteriorly [29].
Larval depletion of PGL-1/3 in combination with knockdown of two P granule helicases
leads to sterile adults with oogenesis defects [155], suggesting a P granule role in germline
maintenance rather than germline specification. Current models suggest that P granules
function by localizing to the cytoplasmic side of the nuclear pore where they monitor
mRNAs exiting the nucleus and prevent translation of transcripts that are not essential

for germline function [155]. Therefore, while Drosophila germ granules and vertebrate
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Balbiani bodies appear to collect germ cell components and specify the germline, P granules
may use a similar filtration mechanism to eliminate somatic factors that otherwise would
cause spurious germ cell differentiation. Interestingly, introduction of the potent fungal
disaggregase, Hsp104, into the C. elegans germline not only altered condensate distribution
and abundance but also led to germline defects and embryonic lethality [14].

Emerging areas in developmental protein condensate formation.

The above examples are a few among the many that indicate that condensates in the

adult germline, mature gametes and the developing embryo are important arbiters of early
development. Recently, analyses of the material state of these developmentally significant
condensates and visible nuclear and cytosolic particles indicate they contain more structure
than previously appreciated. Specifically, we and others have applied various markers of
amyloid oligomers and fibrils to the germlines, oocytes and early embryos of Xenopus
and C. elegans and found that both these organisms begin life with an appreciable amount
of amyloid material. However, it should be noted that the identity of the amyloidogenic
proteins remains largely unknown.

The C. elegans germline and early embryo contain discrete amyloid positive domains:

Defects in C. elegans P granule aggregation following the introduction of fungal Hsp104,
together with the ability of Hsp104 to solubilize higher order condensates, suggested

the presence of possible endogenous amyloid-type substrates during normal C. elegans
development. Furthermore, Hsp104 introduction caused cell division defects and eventual
embryonic arrest and lethality, suggesting that this disaggregase was disassembling
functional amyloid-like aggregates [14]. This is consistent with early work in which the use
of Hsp104 was explored as a therapeutic to mitigate toxic protein aggregation in Drosophila
models of Spinocerebellar Ataxia Type-3. In this study, Cushman-Nick et al [156] showed
that careful modulation of Hsp104 level was essential to avoid toxic effects of Hsp104
itself. Indeed, amyloid character was revealed in the worm germline, oocyte and early
embryo by various amyloid markers including the antibody A11 (amyloid oligomers) and
the antibody OC (amyloid fibrils) [14]. These markers revealed distinct subcellular locales
including those previously associated with aggregation such as the nuclear membrane [157],
the centrosome [13] and a subset of embryonic P granules [11]. The P granule localization
pattern is especially intriguing as these are asymmetrically inherited structures known to
influence germline-specific functions (see above). Further, analysis of late stage (3-fold)
embryos showed that much of the early amyloid had been solubilized, disaggregated or
degraded in the soma, but either maintained or re-aggregated de novo in the germline
precursors Z2/73, suggesting the germline is already materially distinct from the soma at
this early stage. These data indicate that amyloid aggregates are a normal aspect of C.
elegans development and that their proper regulation is essential for normal embryogenesis.

Amyloid as part of condensates found in Xenopus:

The size of Xenopus oocytes and the cells of the early embryo give rise to large cellular
structures which facilitate their detection and analysis. Examples of condensates with at
least some amyloid structure in Xenopus cytosol include those formed by Xvelo in Balbiani
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bodies [4], particles that participate in RNA localization [145, 158], the base of cilia [143]
and germ cell granules [159]. Developmentally, the Xenopus oocyte and early embryo use
cytosolic condensation to help solve the problem of spatial inheritance as well as to create
temporal control of specific activities.

The nucleus of Xenopus oocytes has provided a rich source for studies on non-membrane
bound particles [33, 160—164]. Nucleoli, Cajal bodies involved in snRNP biogenesis,
mRNA processing speckles, histone locus bodies and small RNA processing Pearls can

all be detected with dyes and antibodies that recognize amyloid structure [6]. Among the
differences between the nucleus and the cytosol is the steady state level of ATP, with

the nucleus being 2 to 3 times higher, providing an environment where many aggregating
proteins may tend to form more fluid condensates. This may be counterbalanced by the
abundance of RNAs that may have roles as co-condensates. The nucleus may also be
providing enhanced concentration of selected proteins, potentially pushing them toward the
formation of condensates. The breakdown of the nucleus during oocyte maturation and later
during embryonic divisions would drop the local concentration of proteins, allowing proteins
in a more liquid condensation state to disperse and the non-membrane bound particles to
come apart. As protein is reconcentrated in the nucleus after M phase, condensates would
reform.

Next Steps and Discovery

What are the components of the condensates?

One area of opportunity is the identification of the materials that initiate, join, stabilize

and persist as part of biological condensates. There is a gap between the observation of
punctate structures in the cell and the identification of their composition and control of
their material state. One strategy for identifying constituents is to take advantage of the
growing proteome repositories as well as datasets identifying protein-protein interactions,
often collected for other purposes, to develop specific hypotheses regarding condensate
formation. Hundreds of proteins, typically those with regions of low complexity, have been
implicated 7n vitro. Recent publications identify proteins that form condensates in vitro
[124, 165] many of which appear in biological condensates. Many of these same proteins co-
aggregate with RNA, therefore transcriptome data may also be useful. Furthermore, recent
advances in proximity labeling 7n vivo provides ways to deconvolute close associations

and potential condensate molecular partners under a variety of conditions [166]. There also
remain challenges for direct observation of condensate structure. Techniques to identify
material state range from amyloid detecting dyes and antibodies to detect structural epitopes
to chemicals like 1, 6 hexanediol that probe liquid droplet state [37] have been used.

Some condensates may not be stable during isolation or fixation, and may therefore require
visualization and characterization in living tissues However, a simple failproof method of in
vivo condensate identification awaits discovery.

What are the disaggregation activities that regulate early development?

The aggregation of proteins in animal germlines and embryos appears to be essential for
development. Ectopic expression of the fungal Hsp104 disaggregase in C. elegans resulted
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in developmental defects as well as changes in aggregation phenotypes [14]. The challenge
is to identify not only the developmentally important aggregation-prone proteins and co-
aggregating RNAs, but also their regulators. Disaggregation activities may take the form of
any of the regulatory pathways described above. Such activities should be expressed during
animal development, localized to specific developmental bodies with condensate character,
and cause developmental defects when lost.

Reassessment of the activity of familiar proteins using bioinformatic, phylogenetic and
proteomic inquiry may identify candidate regulators. For example, the ABCF proteins
(discussed below) were identified by their close phylogenetic relationship to the fungal-
specific disaggregase, New1. A bioinformatic approach might be to identify the intersection
of the set of proteins with requisite features such as RNA binding, ATPase, and helicase
domains and regions of disorder with the set of proteins that are physically associated with
developmental condensates. Beyond bioinformatic approaches, candidates can be mutated
or knocked down in animal model systems and evaluated for their impact on development
and on developmental condensates such as P-granules in C. elegans or nucleoli in X.

laevis [14]. While studies using zebrafish, fruit flies, ascidians or filamentous fungi all
provide their own special advantages, the transparency of worms and the large size of
Xenopus oocytes provide distinct opportunities for the study of condensates with roles in
development. However, candidates can also be evaluated in budding yeast, a system in
which many well characterized reporters of disaggregation activity have been developed.
Furthermore, many relevant proteins are conserved between fungi and metazoa, including
the Hsp proteins as well as the proteins encoded by the ABCF gene family and the RuvBL
proteins discussed below. Finally, complementary studies on disaggregation activity /n vitro
using purified aggregation-prone proteins or peptides will also be useful.

RuvBL proteins are aggregation regulators:

The RuvBL proteins have roles in chromatin remodeling [167] and DNA repair [168].
However, the RuvBL protein family was also identified in an siRNA screen in mammalian
cell lines for proteins involved in the formation of aggresomes, a non-membrane bound
condensate storage compartment that forms when the protein degradation system of the
cell is overwhelmed [169]. The RuvBL proteins have DNA-dependent ATPase and DNA
helicase activities and belong to the AAA+ (ATPases associated with diverse cellular
activities) protein family. Like other AAA+ proteins, including the disaggregase Hsp104
[170], RuvBL1 and RuvBL2 proteins form a barrel-like structure. The RuvB proteins
assemble into hetero-hexameric rings and together can form a mixed dodecamer made of
two stacked hexameric rings [171]. Xenopus RuvBL was also identified in a proteomic
screen for nuclear condensates [121] and is enriched in the proteome from neural ectoderm
fated cells in an early embryo [172] consistent with earlier localization studies of RuvBL
mRNAs [173]. The temporal and spatial analysis of RuvBL mRNAs suggests that the
proteins may be important developmentally [173]. Without embryonic expression of
RuvBL1 and RuvBL2 there are gastrulation and cell proliferation defects in Xenopus
development [174] and the failure to express the C. elegans, RUVB-1, causes embryonic
lethality [175].
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Like Hsp104, RuvBL proteins can process amyloid fibers [169]. The ATPase activity of
purified dodecamer RuvBL complex is stimulated by the fibrillized amyloidogenic peptide
APB1-42 [169] and affects the formation of AP fibrils. Addition of small sub-stoichiometric
amounts of purified dodecamer RuvBL complex in the absence of ATP significantly
delayed AP fibril seeding and reduced the rate of fibril growth, while addition of ATP
reversed this effect suggesting that RuvBL binding to oligomeric seeds is reduced or that
seed propagation is promoted [169]. Unlike Hsp104, the RuvBL proteins do not refold
denatured substrates and do not require Hsp40 and Hsp70 cofactors [169]. Additionally,
overexpression of the yeast orthologs, RVB/ or RVBZ2 suppresses thermotolerance defects
of hsp104 mutants [169]. The in vivo activities of RuvBL proteins include surveillance

of condensate size. Very small condensates accumulating during normal growth conditions
are kept in check by the RuvBL system which recognizes and clears condensates that are
larger than a critical threshold [176]. In cells lacking this activity, aggregation kinetics are
accelerated [176]. Because of its in vitro activity in disaggregating amyloid fibers, and the
developmental phenotypes in knockdowns, RuvBL proteins are a potential member of the
portfolio of developmental disaggregases in metazoa.

ABCF proteins play a role in protein disaggregation pathways:

The ABC family of ATPases are a large family of proteins with eight subclasses, A through
H, of which all but two (E and F) have membrane-spanning domains and function in
ATP-dependent transmembrane transport. The non-membrane associated ABCF1, 2 and

3 proteins were initially picked out as disaggregase candidates by their evolutionary
relationship to the fungal New1 protein which has Hsp104-independent disaggregation
activity in yeast [9, 177].

In cross-species rescue experiments carried out in S. cerevisiae, Human, Xenopus and

C. elegans, ABCF proteins were able to correct defects in the processing of ordered or
disordered condensates caused by the absence (Abcf3/Gen20) or reduction in normal levels
(Abcf2/Arbl) of the yeast orthologs [14]. Heat-denaturation of firefly luciferase (FFL-GFP)
reporter provided a test of disordered condensate processing, and the expanded Q97 exon

I of the Huntingtin protein (Htt-Q97-GFP) reporter provided a test of activity with respect
to a classical amyloid structure. In yeast, Hsp104 acts on both disordered and ordered
amyloid condensate types, and our analyses suggest that all three ABCF proteins engage in
pathways directed at amyloid-like targets, whereas only ABCF1 and 2 targeted disordered
FFL-GFP condensates [14]. Importantly, these assays support a role for ABCF proteins that
go beyond the previously established translational and ribosome biogenesis and ribosome
quality control roles for ARB/ and GCN20[178-180].

Interestingly, ABCF proteins are implicated in spatial control of development. In Xenopus,
maternal ABCF2 mRNA is predominantly inherited by cells that will migrate during
gastrulation [14]. Without ABCF2, gastrulation fails [14]. In C. elegans, the loss of

ABCEF1 led to developmental delays, germline arrest, and enhanced the amyloid character
of P-granules [14]. Of note is the recent finding that the RNA-protein condensates that
localizes maternal mRNA to the vegetal hemisphere in Xenopus include ABCF1 [145].
Whether ABCF proteins have enzymatic activity toward condensates awaits definitive 7n
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vitro experiments. However, even if the activity is indirect, their inactivation nonetheless
causes an increased cellular load of condensates, and the basis for this phenotype is a fertile
field for future investigation.

Conclusions, Perspectives, Future Directions

Although robust methods for identification of the material state of physiological condensates
are still being developed, it is clear that the reversible, regulated management of condensate
state transitions and condensate dissolution may involve an expansive repertoire of
disaggregation activities. These activities may promote or inhibit condensate formation,
which may, in turn, initiate or delay cellular activity, maintain a specific cellular

response, or allow for an adaptation to new cellular challenges. The cellular arsenal

for aggregation management includes post-translational modification, local changes in

the cellular environment, the incorporation of co-aggregates, as well as the activities of
chaperones and disaggregases. The aggregation and disaggregation of protein complexes
can be tailored to meet conditions that favor rapid exchange, substrate dependent assembly
or structural stability. Condensates can be composed of dozens of components and can be
transient or long-lasting.

Protein condensates are central to normal cellular function. In addition to acting as cytosolic
filters (see above), protein condensates support many additional activities and could serve
various physiological roles in developmental and cell biological contexts. For instance,
they may serve as scaffolds for efficient signal transduction, localizing members of a
developmental signaling pathway, and thereby optimizing the response time of the targeted
cell. Similarly, biochemical pathways could be localized and concentrated into condensates
to improve productivity, induce rapid polymerization or reduce toxic byproducts. During
morphogenesis, condensates including cell adhesion components could stabilize cell-cell
interactions facilitating tissue cohesion during the coordinated bending of epithelial sheets.
Condensates could also sequester toxic cellular products, thus protecting developing
embryos. The sequestration of proteins into condensates and subsequent inactivation of
cell fate determinants could isolate somatic regulatory proteins until cell-type specific
disaggregation mechanisms are employed, promoting a cell-specific soluble proteome that
would function alongside traditional transcriptional regulatory mechanisms. Despite the
long history that equates aggregation with the abnormal or pathologic consequences of
misfolding, the observation that non-membrane bound condensates of protein and RNA are
central to many cellular functions, coupled with 7n vitro observations that purified proteins
can be induced to form similar condensates, has served to invigorate investigations that

are attempting to bridge /n vitro studies with what occurs in cells. We believe that the

list of biologically important condensates will continue to grow and that the identification
of their RNA and protein scaffolding, as well as the nature of their regulation, and their
client lists, especially during development, will provide an opportunity to better understand
determinative events during embryogenesis, as well as the adaptation of organisms to stress
and environmental changes.
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GLOSSARY

Amyloid

A special type of protein aggregate formed by the recruitment and subsequent cross-
polymerization of specific proteins into a special type of B-sheet secondary structure (known
as cross-f), and the ability to be stained by dyes including Congo Red, and Thioflavin dyes.

Amyloid Disease

Any disease in which the pathology is attributable to the conversion of a specific protein

to its amyloid form. In humans, there are at least 37 amyloid prone proteins that cause
disease including the B amyloid peptide, AP from the amyloid precursor protein, involved
in Alzheimer’s disease, a-synuclein involved in Parkinson’s disease, PrP involved in
transmissible spongiform encephalopathy, the microtubule associated protein Tau, involved
in various tauopathies, and Huntingtin exon 1 involved in Huntington’s disease.

Balbiani body

The Balbiani body is a non-membrane bound compartment found in animal oocytes. It
forms during the early stages of oogenesis and disappears as the oocyte matures. It seems
to assemble and contain Endoplasmic Reticuli, Golgi, RNA, mitochondria and proteins thus
assisting spatial distribution and restriction of maternally derived molecules.

Chaperones

Proteins that assist in the conformational folding or unfolding of proteins as well as

the assembly or disassembly of other macromolecular structures. One major function is
preventing newly synthesized polypeptide chains and assembled subunits from aggregating
into nonfunctional structures. Many chaperones are induced by stress to mitigate the
tendency of proteins to unfold and aggregate under such conditions.

Condensate

Here used to describe an assemblage of proteins that have taken on a conformation that
includes coalescence into a non-membrane bound cellular “compartment” that may have
a number of material states from supersaturated “liquid-liquid” droplets to the most solid
being “amyloid”.

Disaggregase
Molecular chaperones with enzymatic activities leading to the resolubilization of protein
aggregates with concomitant ATP hydrolysis.

Functional (physiological, biological) Amyloid
Non-pathological amyloid with a well-defined physiological role and whose formation is
regulated by one or more physiological signals [181].
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Phase separation

The creation of two distinct phases from a single homogeneous mixture as seen with oil and
water. The effect of different types of compatible or incompatible/repulsive macromolecules
within the cytoplasm or nucleus, magnified by the effects of macromolecular crowding
leading to micro-compartmentalization [26, 37].

P granule
P granules are liquid like RNA/protein membraneless condensates in the germline of C.
elegans that are typically perinuclear [11].

Prion

The word prion, coined in 1982 by Stanley Prusiner [182], is short for “proteinaceous
infectious particle” and refers to misfolded proteins with the ability to self-replicate and
confer their misfolded shape on normally folded molecules of the same protein and that is
transmissible between individuals. The term “prionoid,” was introduced to describe amyloid
aggregates that replicate within an organism and is transmissible between cells, but not
between individuals [183, 184].
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Figure 1. Material states and their biological correlates.
(A) Equilibria and reversibility between different condensate material states highlighting the

range and diversity of their structural organization and the strategies used by the cell to
transition from one state to the next. (B) Functional roles of reversible condensates. Left,
yeast (Cdc19) has a stabilizing amyloid core. Right, granules such as the Balbiani body or
the nucleolus consist of multiple material states, which may contribute to their stability and
aggregation/disaggregation dynamics. (C) One-way changes to an amyloid or amyloid-like
conformation are needed for some functions. Left, cell-cell interactions by adhesins in
Candida albicans, Middle, aggregation of Orb2 in Drosophila melanogaster for long-term
memory formation and right, structural amyloids such as the protective chorion layer of
oocytes. Purple wavy lines represent RNA. Filled blue circles represent ordered domains and
light blue lines represent intrinsically disordered domains of proteins. Black lines represent
oligomers. Figure created with Biorender.com. Oocyte in panel C adapted from [72].
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