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Abstract

We consider a fluid—structure interaction model defined on a doughnut-like domain. It
consists of the dynamic Stokes equations evolving on the exterior sub-domain, coupled
with an elastic structure occupying the interior sub-domain. A key factor—a novelty
over past literature—is that the structure equation includes a strong (viscoelastic)
damping term of Kelvin—Voigt type at the interior. This affects the boundary condi-
tions at the interface between the two media and accounts for a highly unbounded
“perturbation”. Results include: (i) analyticity of s.c semigroup of contractions defin-
ing the overall coupled system, (ii) its (uniform) exponential decay, along with (iii)
sharp spectral properties of its generator. Some results are geometry-dependant.

Keywords Kelvin—Voigt damping - Analyticity - Exponential decay

1 Introduction and Statement of Main Results
1.1 The Coupled PDE Model

Throughout the paper, Q25 C R?, d = 2 or 3, will denote the bounded domain on
which the fluid component of the coupled PDE system evolves. Its boundary will be
denoted here as Q2 y = 'y UT"r, I's N I" y = ¢4, with each boundary component being
sufficiently smooth. Moreover, the geometry 2, immersed within 2 f» will be the
domain on which the structural component evolves with time. As configured then, the
coupling between the two distinct fluid and elastic dynamics occurs across boundary
interface I'y = 02 ; see Fig. 1. In addition, the unit normal vector v(x) will be
directed away from €2 ¢; thus on I'y, toward 2. (This specification of the direction of
v will influence the computations to be done below.)

B Rasika Mahawattege
rmhwttge @memphis.edu

1 Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00245-021-09812-5&domain=pdf
http://orcid.org/0000-0002-5952-3362

S1822 Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1821-S1863

Fig.1 The Fluid—Structure
Interaction

On this geometry in Fig. 1, we thus consider the following fluid—structure PDE
model in solution variables u = [u(¢, x), ua(t, x), ..., ug(t, x)] (the velocity field),
and w = [wi (¢, x), wa(t, x), ..., wy(t, x)] (the structural displacement field), while
the scalar-valued variable p denotes the pressure:

ur—Au+Vp=0 in(0,TIxQr=0Qy (1.1a)

PDE| divu=0 inQy (1.1b)
wi — Aw — Aw; +bw =0 in(0,T] x Q = Oy (1.1¢)
up; =0 on(0.TIxTy =%y (1.1d)

B.C U= w; on (0, T] xI'y =X (1.1e)
g—tf%;vw=pv on 3 (1.1f)

1.C.u(0, -) = ug, w0, ) = wgy, w(0,-) = wy, on Q. (1.1g)

The constant b in (1.1c) will take up either the value b = 0 or else the value b = 1.
Accordingly, the space of well-posedness is taken to be the finite energy space [16]:

(H'(Q0)/R)? x (L2(2,)) x Hf, b=0; (1.2a)
b (H' ()9 x (L2 Q) x Hy, b=1, (1.2b)

for the variable [w, w;, u], where
Hy ={f € (La(p)?: divf=0inQy; f-v=0o0nTy}. (1.3)
‘Hp is a Hilbert space with the following norm inducing inner product, where

(f.9)a=[qfgd2:

: { (Vui, Vi, + (v2, e, + (f, N, b =0; (1.4a)

.| 92 = N
(Vvi, ViDg, + (v1, )e, + (2. 12)a, + (f. NHe,.b=1. (1.4b)
f Fd)w,
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In (1.2a), the space (H! (Q)/R)d = (H! (€2)/ const )4 is endowed with the gradient

norm. There are some noteworthy differences between the cases b = 0 and b = 1,
as studied on their respective spaces in (1.4). The physical importance of the above
model is described in [24,38].
Literature There is rather vast literature concerning fluid—structure interaction mod-
els, both linear and non-linear (full Navier—Stokes equations), with static interface
(appropriate for small and rapid oscillations) [35, p. 53], [17, p. 53] as well as with
moving interface. As we cannot be exhaustive, here we concentrate by necessity on
works where the structure contains visco-elastic (Kelvin—Voigt) damping. While refer-
ring to [1-5,14,15,18,19] for linear/non-linear models with no Kelvin—Voigt damping.
To gain insight, preliminary studies have focused on replacing the fluid equation with
a heat equation, as the presence of the pressure is a source of additional complica-
tions. In this setting, a first work was [24] which in fact serves as a guidance for the
present paper as well as [38]. Subsequent works [36,37] dealt with the structure being a
plate with Kelvin—Voigt damping and physical interface conditions involving bending
and stress boundary operators. [38] uses a variational approach in seeking to extend
[24] to the Stokes case with pressure, while our present paper eliminates the pressure
by expressing it explicitly in terms of other variables by solving a suitable elliptic
problem. Of course, application of the Leray—Helmbholtz projection to eliminate the
pressure is out of question due to non-homogeneous interface conditions. Our present
results are more precise than those in [38] and cover not only the case b = 0 but
also the case b = 1, the two cases in effect having some important differences. In
addition, we show that some results are geometric-dependent, an issue not present in
[38]. [38] covers only the model b = 0. Once one establishes that the free-dynamics
generates a s.c. (contraction) analytic semigroup, the next task is to seek to character-
ize the domains of fractional powers of the negative generator. This would then allow
to establish optimal regularity results under the input of a control term acting either at
the interface or else at the exterior boundary. Success in this will ultimately allow one
to apply the abstract general optimal control theory with quadratic cost of [23] to the
present problem, under the additional action of a boundary control. In the case with
no pressure, this program was carried out in [32]. Its generalization to the present case
will require extending the results of [25,33,34] on domain of fractional powers to the
fluid case in (1.1a-g).

1.2 Main Results

We state here upfront some of the main results of the paper.

Theorem 1.1 (Semigroup well-posedness on Hp, b = 0and b = 1)
(i) The PDE problem (1.1a—g) admits the following abstract model

X =Apx, inHp, x=I[w,w, f] (1.5)

where the operator Ay, : Hp D D(Ap) — Hy is explicitly defined in Sect. 2 by Eq.
(2.3) with domain characterized in Proposition 2.1.
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(ii) The operator Ay is dissipative on Hyp: for [vy, v2, f] € D(Ap), we have:

V1 V]
Re| Ay | va |, | » =—/ |Vv2|2d§2f—/ IVF?PdQr <0. (1.6)
f F 1w, Qs Qf

(iii) The adjoint operator Ay, : ‘Hp D D(A}) — Hp, which is explicitly defined by
(4.1), with domain D(A},) characterized by Proposition 4.2, is likewise dissipative
on Hy: for [v, v3, f*] € D(A}), we have:

vy vy
Re| Ax| vi |, | vi =—/ |Vv§“|2dQs—/ IV 2dQy. (1.7
fr f* 2 2

Hp

. (iv) The operators Ap, and A}, generate s.c contraction semigroups e and e™' on
‘Hp. Thus the PDE-problem (1.1a—g) admits the following unique semigroup solution
with respect to the abstract form (1.5).

w(t) wo
wi (@) | = e | wy | € C([0,00): Hp) . (1.8)
u(t) uo

See Proposition 4.3 for the relationship between D(A;) and D(A}). Section 2
provides the explicit abstract model of the free dynamics (1.1a-g), b = 0,b = 1.
Dissipativity of A, is proved in Sect. 3. The adjoint A} is defined and proved to be
dissipative in Sect. 4. As a consequence of both A, and A being dissipative, they are
the generators of s.c contraction semigroups (Proposition 4.4) [6,27].

Theorem 1.2 (Spectral properties of Ap=o and Aj,_, on the imaginary axis iIR)

(1) For b = 0, the point iw, 0 # w € R, belongs to the resolvent set of Ap—q :
iw € p(Ap=0), @ # 0.

(ii) Let b = 0. Assume now, the generic geometric condition fr vdly # 0 on
(see Remark 5.1). Then the point .. = 0 is in the resolvent set ofA;, 0:0€ p(Ap=o).
Hence there is a small open disk Sy, in the complex plane centered at the origin and
of small radius ro > 0, that it is all contained in p(Ap=0) : Sy, € p(Ap=0).

(iii) Let b = 0. Assume now the condition fl"s vdly = 0 (for symmetric regions
Q). Then A = 0 is an eigenvalue of both the operator Ap—o and its adjoint A;_, on
Hp=0 with corresponding common eigenvector eg = [no, 0, 0], where 1 is the unique
solution of the following elliptic problem:

ad
Ano=0in QS,ﬂ =vonTy (1.9)
av ITy
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Moreover, the point A = 0 is in the resolvent set p(,zl\b:()) of the operator .;l\b:o =
Ab:oh”zbf()’ where the space Hp—o of codimension 1 in Hp—q is given by

Hp=o = [Null(Ap=0)1* = Hp=o/[Null (Ap=0)]
= {[vl,vz, f]EHb=0:/ V] ~vd1“5=0}. (1.10)

s

Hence there is a small open disk S, in the complex plane centered at the origin and
of small radius ro > 0, that it is all contained in p(.Ab 0): Sro € ,O(.Ab 0)- Similar
results holds for Ab o = Aj_olH,_e O 'Hb =0 Sy € p(.Ab o). The space Hb 0 is

Ab ol ‘Ab Ot.

lnvarlantfore or e

Theorem 1.2 (i) in its full strength is contained in Theorem 6.1 (for fl"s vdls # 0)
and in Theorem 7.1 (for fl"s vdl'y = 0). That i ¢ 0,(Ap), iw ¢ o,(Aj), hence
iw ¢ o,(Ap), is contained in Remark 4.1. The rest of Theorem 1.2 is proved in
Proposition 5.1 through Proposition 5.3, with invariance established in Proposition
5.4. The main results of the paper are given in the next Theorem.

Theorem 1.3 Let b = 0. (i) The generator Ap—g in (2.3) of the s.c. contraction semi-

group =0 gsserted by Theorem 1.1(iv) satisfies the following resolvent condition
forw e R
. - . c
lGeol = As—0)" ey = 1RGO, Ap=0)l£rty0) < -
Y lw| = some wy > 0 arbitrarily small, (1.11)

Hence, under the (generic) assumption |, . vdly # 0on Qy, the s.c. semigroup eAv=0t

is analytic on the finite energy space Hp=o, t > 0, [23, Thm 3E.3, p 334]. R
(i1) If, instead, '/Fs vdD's = 0 (symmetric region Q2 ), then the s.c semigroup eAv=0t

.A];:()t

is analytic on the space Hp—y where it is invariant; consequently e is analytic on

Hp=0 also in this symmetric case.
(iii) More precisely, the resolvent operator R(\, Ap—o) = (A — .Ab:())’1 of the
generator Ap—g in (2.3), satisfies the following estimate

C
IRG Apm) £,y < 750 forail 1 € C\K (1.12a)

where IC is the (infinite) key-shaped set defined by (see Fig. 2)

K = (—00, =2) U{S,=1(x0)\Sry } (1.12b)
with Sy—1(xo) the open disk centered at the point xy = {—1, 0} and of radius 1; and
Sy, defined in Theorem 1.2(ii). (iv) The spectrum o (Ap=0) of Ap=o is confined within

the set IC; in particular

Reo (Ap=p) C (=00, =81, for somed > 0. (1.13)
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Fig.2 The set K. Forb =0, er vdly #0

(v) The boundary (circumference) of the open disk S,—(xq) either belongs to the
resolvent set p(Ap=0) of Ap—o, or else belongs to the point spectrum o,(Ap—o) of
Ap—o, according to as whether the over-determined elliptic problem

Avi =2av;inQ; o <0 (1.14a)
0
vilr, =0, % - = kv, k = undetermined constant (1.14b)
v 1T

implies vi = 0in Qg and hence k = 0, or else implies vi # 0 in Q. Such outcome
depends on the geometrical properties of Q5. See Remark 1.1.

(vi) Complementing (1.12a) we have that the resolvent R(-, Ap—o) is uniformly
bounded on the imaginary axis

IR(w, Ap=0)ll£(Hyeg) = ¢, Y €R. (1.15)

Hence, the s.c. analytic semigroup eAv=01 jg uniformly exponentially stable on Hp—q:
there exist constants M > 1, § > 0, such that [28]

€= 21,0y < Me™®, 1> 0. (1.16)

Theorem 1.3 (analyticity) is proved in Theorem 6.1 for fr vdl'y # 0 and in

Corollary 7.1 for fr vdI'y = O.Invariance of Hb —o under the action of eAb=0t jg
established in Proposmon 5.4. Theorem 1.3(v) is proved in Proposition 5.6. Theorem
1.3(vi) (uniform stabilization) is proved in Sect. 6.3 for fFr vdly # 0. Refer to

Theorem 1.2 (iii) for fl“.g vdTs = 0 whereby 0 € 0,(Ap), 0 € 0, (A}).

Remark 1.1 For the over-determined problem (1.14), we have vy # 0, if Q;=2-D disk
or 3-D ball. Instead, problem (1.14) implies v; = 0 for many geometries; e.g if the
boundary I'y of €2, is partially flat; or partially spherical; or partially parabola-like;
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or partially hyperbola-like. This condition arose in the study of the fluid—structure
interaction model of [1], [17, Chapter 2] with no visco-elastic damping [35, Chapter
2].

Theorem 1.4 Let b = 0, 1.The point xo = {—1,0}, center of the disk S,—1(xp),
belongs to the continuous spectrum of Ap , as well as of Aj: —1 € o.(Ap), —1 €
0c(A}). Thus, Ap and A} do not have compact resolvent on Hp.

Theorem 1.4 is proved in Proposition 4.5.

Remark 1.2 When Q= 2-D disk,3-D ball, the point spectrum o, (Ap—¢) contains a
branch of ‘explicitly’ known eigenvalues o, — —oo monotonically and a branch of
eigenvalues,”  —1 (the pointin the continuous spectrum o, (Ap—p)) monotonically.
See Proposition 5.8. Such description is in line with the behavior of the eigenvalues

in the abstract equation X + Ax + Ax = 0 studied in [10].

Theorem 1.5 (b = 1. Spectral properties of the origin, Semigroup generation)

(i) Let b = 1. Then the origin . = 0 is an eigenvalue of the operator Ap—1 on Hp—1,
as well as the adjoint Aj,_, with common corresponding eigenvector ey = [n1, 0, 0],
where 11 is the unique solution of the following elliptic problem:

9
An—m =0inQy: | —yonT,. (1.17)
ov Iry

Moreover, the point A = 0 is in the resolvent set ,o(./zl\;,: 1) of the operator .Zszl =
Ap=1 l72,_, where the space Hp=1 of codimension 1 in Hp= is given by

Hp—1 = [Null(Ap=11* = Hp—1 /INull (Ap=1)]
={[v1,v2, fle Hp=1 :/ vl-vde=O}. (1.18)

[y

(ii) The factor space ﬁbzl = [Null(Ap_)]*+ = [Null(.AZzl)]J- is invariant under
the action of the semigroups eAb=1 A1? on the space Hp=1.
(iii) The operators Ap—1 and A;_, generate s.c contraction semigroups on the

Aand e
space ﬁbzl in (1.18), which, moreover, are uniformly stable on ﬁbzl.

(iv) The operators Ap—1 and Aj;_, generate s.c contraction semigroups e
Ay

Av=1t gnd

e*o=1" on the space Hp—1.

Theorem 1.6 The s.c semigroup =11 as asserted by Theorem 1.5(iv), is analytic on
Hp=1. More precisely, let

c (H'(Q4)/R)? c
Hp=1 =Hp=0+ | 0 | = (L2 Q2N |+ |0 |, ¢=constant  (1.19)
0 H, 0
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so that any x1 € Hp=1 can be written uniquely as the following direct sum

] v /R ¢ ¢
X1=|v | = v +10|=x0+1|0 (1.20)
f f i L 0 0
Then _
c 0
=11y = eAb=1130 + | 0 |cost+ | ¢ |sint. (1.21)
0 0

Theorem 1.5 is proved in [26]. Theorem 1.6 is proved in Sect. 8.

Orientation on Anayticity Theorem 1.3 (i),(ii) for » = 0 on Hp—0; and Theorem
1.6 forb =1 on Hp—;.

As noted in [24] in the case with no pressure (heat eqation rather than Stokes
equations), analyticity per se is not surprising in view of the following motivating
considerations.

A motivating result (a) Analyticity The following is a very special case of a much more
general result for which we refer to [9-11], (see also [23, Appendix 3B of Chapter
3, pp 285-296], [12,13]). These references solve and improve upon the conjectures
posted in [8]. Let A be a positive, self-adjoint operator on the Hilbert space Y. On it,
consider the following abstract equation

X+ Ax +Ax =0; or%[ﬂ:xsx[;]; (1.22)
-xl _ O I _Xl . x2 .
Al:xzi|_|:—A —A:||:x2:|_|:_A(xl+x2):|’ (1.23a)
DA) = {[xl,xz] e E ED(A%) xY: x€ 'D(A%), x| +x0 € D(A)} .
(1.23b)

The operator A is dissipative and with domain (1.23b) is closed and generates a

s.c. contraction semigroup ¢! on the finite energy space E = D(A%) x Y, which
moreover is analytic on E. Thus, the second-order dynamic (1.22) with strong ‘struc-
tural’ damping is parabolic-like.

(b) The spectrum of A Reference [11, Appendix A, Lemma A.1, p45] shows that the
spectrum o (A) of the operator A defined in (1.22)—(1.23b) has the following features
assuming that the positive self-adjoint operator A has compact resolvent on Y:

The spectrum of A consists of two branches of eigenvalues A,

—4
b = _Hn B JHn TR (1.24)
2 2 Mn
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solutions of the algebraic equation A2 + pnh 4+ wn = 0, where {n};2 | are the

eigenvalues of the positive self-adjoint operator A : 0 < 1 < -+ < up — +00. The
branch A, \, —oo monotonically. The branch 1,7 —1 monotonically. Moreover,
the point A = —1 belongs to the continuous spectrum o, (A) of the operator A. The
operator A does not have compact resolvent on the finite energy space E, even though
A has compact resolvent on Y.

Regarding our original coupled problem (1.1a—g) even without pressure as in [24],
the above abstract result for equation (1.23a) suggests, or makes one surmise, that
the homogeneous problem (1.1a—g) is the coupling of ‘two parabolic problems’ and
hence generates an analytic semigroup e (A, in (1.5)) on the finite energy space
‘Hp in (1.4). Of course, the above considerations are purely indicative and qualitatively
suggestive, as the Laplacian A in (1.1c) has coupled, high-level, non-homogeneous
interface boundary conditions which constitute the crux of the matter to be resolved
before making the assertion of analyticity of problem (1.1). At any rate analyticity
cannot follow by a perturbation arguent.

Orientation on Spectral Properties It was already noted in Theorem 1.4 that the
point —1 is a point in the continuous spectrum of the operator .4, as well as of the
operator A; : —1 € 0.(Ap), —1 € oc(A}), in line with what was noted in (b) above for
the abstract operator A in (1.22), (1.23a). This result for .4, coupled with the location
of its spectrum described by Theorem 1.3 (iv) make one expect that, qualitatively, the
spectrum of Ay, is like the spectrum of the operator A in (1.23a), with one branch
of eigenvalues being negative and going to —oo, and the other branch going to the
point —1 of the continuous spectrum. In our present case, a perfect counter part of this
behavioral property of the eigenvalues of .4, is offered by Proposition 5.8, at least for
b = 0 and 2 being a 2-D disk or 3-D ball. The general case is unsettled yet.

Part I: Results valid for the pair {A;, H;},b =0and b = 1

2 Abstract Model on 7, for the Free Dynamics (1.1a-g),b=0,b =1

The Navier—Stokes (linear) part (1.1a) contains two unknowns: the velocity field and
the pressure. In the present coupled case of problem (1.1), because of the (non-
homogeneous) boundary coupling (1.1d-f), it is not possible to use the classical,
standard idea of N-S problems with no-slip boundary conditions to eliminate the pres-
sure: that is, by applying the Leray projector on the equation from (L3(2))? onto
the classical space [7, p. 7] {f € (L (Q2)4: div f=0inQ; f-v=0o0n0dQR;}.
Accordingly, paper [1] (as well as paper [3], where the d-dimensional wave equation
(1.1c) is replaced by the system of dynamic elasticity) eliminated the pressure by a
completely different strategy. Following the idea of [31] (see also [23]), papers [1,3]
identify a suitable elliptic problem for the pressure p, to be solved for p in terms of
u, w and wy.

Elimination of p, by expressing p in terms of u, w and w; A key idea of [1], [17,
Chapter 2 ], [31,35] is that the pressure p(¢, x) solves the following elliptic problem

on Q2 in x, for each ¢:
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Ap=0in(0.T]x 2 = O (2.12)
9 9
_du , _dwrw) o 0T x T, = 5, (2.1b)
ov ov
ap
8—:Au~v0n(0, T]xTy=2ZXZy. (2.1¢)
v

In fact, (2.1aa) is obtained by taking the divergence div across Eq.(1.1a), and using
divu; = 0in Qf by (1.1bb), as well as div Au = A divu = 0in Q. Next, the B.C.
(2.1b) on Ty is obtained by taking the inner product of Eq.(1.1f) with v. Finally, the
B.C. (2.1¢c) on I'f is obtained by taking the inner product of Eq. (1.1a) restricted on
['¢, withv,usingu|r, = 0by (1.1d),sothaton "y : Vp-v = g—f|rf. This then results
in (2.1c).Through a technical argument based on elliptic theory, one then obtains that
the original PDE problem (1.1a—g) can be written as

d w w
— | w | =Ap | wy |. 2.2)
dt " "

Here the operator Ay, is given explicitly by

V] (%) Uik V1
Ap | vo | = | A(vy + vp) — by Uik € Hp, vy | € D(Ay). (2.3)
f Af—Vrm f f

where the function 7 is defined by (compare with (2.1a—b—c) for the dynamic problem):

Amr =0in Qy; (2.42)
3 3 U1
T = —f SV — w -V E H_%(FS) onlg;; | v | € D(Ay). (2.4b)
av av
f
am _3
a—:Af~veH 2(Cy) on Iy, (2.4¢)
» ; .

This method of elimination the pressure,as the usual Leray projection is not possible
due to the interface condition was introduced in [1], see also [17, Chapter 2],[35] in
the case of no visco-elastic damping. It was labeld “novel” in the MathSciNet Review
of [1]. Details in the present derivation of (2.3),(2.4) as well as of next Proposition 2.1
in the case of visco-elastic damping are given in [26].

Proposition 2.1 (a) The domain D(Ap) of the operator Ap : D(Ap) C Hp — Hp

in (2.3) is characterized as follows: {vy, v2, f} € D(Ap) if and only if the following
properties hold true:

@ Springer



Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1821-S1863 S1831

(a1)
v, v € (H Q)Y b=1 vi,ve H(Q/R? b=0,
such that A(vy + vp) € (LZ(Q))d
vl = flr, € (HZTO) [vy + vlir, € (H2 ()¢

i tv)| _ [ﬁ _ﬂv} e (H™2(T',))? (2.5
ov I T ‘

so that

(a2)

feH QM NHy, with Af —Vr e Hy,
where (v, v2, f) € Lo(2y) is the harmonic
function defined by (2.4); (2.6)

(a3)

e (H 3 (M) and w|r, € H™2(Ty); @.7)

af
ov r,

(a4) 3
f|Ff =0 [Af . V]Ff c H_E(Ff). (2.8)

Remark 2.1 We note, more over that the divergence theorem applied to div f = 0
implies as f|r, = 0by (2.8) and f|r, = v2|r, by (2.5)

O:/ divfde=/ f-vdl"szf vz-vdr‘s=/ v -vdls,  (29)
Qf T, T, I,

recalling (2.3), a necessary requirement on the image point [v], v5, f*] to be in the
range R(Ap) of A, (which defines a closed subspace on (H'(£2;))%).

Remark 2.2 Henceforth, if we wish to emphasize the operator A in (2.3), for b = 0
on Hp—g, or for b = 1 on Hj—1, we shall accordingly use the notation Ap—q or Ap—1,
respectively. Instead, A, will ordinary cover both cases b = 0 and b = 1.

3 The Operator Ay is Dissipativeon H, ,b =0and b = 1

In preparation for the well-posedness (semigroup generation) of Sect. 4, we here
establish that the operator Ay is dissipative on Hp , b =0and b = 1

Proposition 3.1 Let b = 0 or b = 1. The operator Ay in (2.3) with domain described
by Proposition 2.1 is dissipative on the space Hy, defined in (1.2). More precisely, let
[vi,v2, f] € D(Ap) C Hp, then

U1 U1

Rel Ap| v2 |, | v = —/ |Vv2|2d§2f—/ |Vf|2de <0. (3.1
f f H,, 2 Qs
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Proof For [vy, v2, f] € D(Ap), we return to identity (2.3) and obtain

V] VU1 V2 V1
Re| Ay | v |,]| »n =Re AW +v) —bu |, | v (3.2a)
rlLrl),, Af—Vr F 1),
Re{(UL vl)(Hl(Ql)/R)t/ + (A(vy + v2), U2)(L2(QJ.))d + (Af, f)gf — (Vm, f)gf }; b=0

RHS of (3.2b) + Re{(v2, v1) — (v1, v2)} = RHS of (3.2b); b=1
(3.2b)
= Re{/ Yoz - VOIdQ + (A1 +v2), )1y + (AF. g, = (V7 g, }; b=0,b=1
' (3.2¢)

Here 7 is defined by (2.4). Henceforth, properties of D(A}) listed in Proposition
2.1 will be invoked.
Second term of (3.2c) Since the unit normal on I'y is inward with respect to g
(Fig. 1), we obtain by Green’s first theorem, along with wv — %—5 =— W on ['g
by (2.4b), and f|r, = valr, by (2.5); with v inward to €;:

(A1 + v2), V2) (1,0

0
_ / <_ M) 5dl, _/ V(01 + v2) - Viiy dS2, (3.3)
r, av Qs
_ - af - - 2
= | nv-fdly— | = fdls— [ Vv -VadQs— [ |Vual* dSy
Ty r, dv Q Q
(3.4)

Third term of (3.2c) Recalling from (1.3) that H r is topologically (L2($25))4, we
compute with I' = I's U 'y = 9Qp, via Green’s first theorem, since f|r, = 0 by
(2.8):

_ 0 _
(Af. g, :/Q Af-fdszf:fra—f-fdr—/gfwﬂzdszf (3.5)
_ [ . fdT, —/ IV £12dS2. (3.6)
r, v Q ‘

Sum of first three terms of (3.2c) Summing up (3.4) and (3.6), and recalling the inner
product (1.4a) for (H! (QS)/R)d, we obtain:

Re{/ Vv - VuidQ + (A(vy + v2), Uz)(Lz(Q\))i +(Af, f)H/}

—Re[/ 71 Q+|: v - fdly —/y/f'dl‘—/ vzdﬂs—/ |Vv2|2d£2{|
Q
of A _
+ Umy{/f;n/szf |Vf|2d§2f:|} =Re(/rxnv-fdf‘s> I [Vva|? dS2 7/Qf IVfIPdSy.

3.7
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Fourth term of (3.2c) By the divergence formula, with I' = I'y U Ty = 0Qy,
recalling from (1.3) that H r is topologized by the (LQ(QS))d-norm and div f =0
and f|r, =0.

V7. fg, :/ Vn-fde:/nf-vdl"— MQfZ/ 7 fvdly
Qf r Qf r

T (39)
Final identity of (3.2c) Summing up (3.7) and (3.8) yields

RHS of (3.2) = Re {(vz, vt /Ry T (AL +02), 1)1y + (AS, g, — (Y, f);,,,}

=Re (/Sp/f‘:irs) —Re (/FJMFJ —/QS Vs |? dS2 —/Qf IV £12dy 3.9)
= —/ |V |? d2 —/ IVfldef, [vi, v2, f] € D(Ap), (3.10)
Qs Q

and (3.10) used in (3.2) proves (3.1), as desired, in both casesb =0and b =1. O

We postpone to Remark 4.2 below an orientation on the spectral analysis of the imagi-
nary axis for both the original operator A and its adjoint .Aj, on H}, as a consequence
of each of them being dissipative.

Corollary3.2 Let b = 0, 1. Let (@ + iw) be an eigenvalue of the operator Ap, with
normalized eigenvector x = {vy, va, f} € Hp, ||xll, = L. Then, necessarily

a=—Vurll> = IVFI% (IVuilPe? +a + @ [Vu > + IVAIP) =0 (3.11)

Ifb = 0 and w = 0 (the case w # 0 is described in Propositions 5.6 and 5.7) then the
eigenvalue oo < 0 is given by

=114V 2|V £

o
2|V |2

4
, Euwlnznfn2 <4IVulPIVFIZ <1
)4

(3.12)
where C), is the Poincare constant on Q.

Proof Insert Ayx = (a + iw)x, with |lx]l3, = 1 on the L.H.S of (3.1) and obtain
(3.11) also by v2 = (¢ 4+ iw)vy. For b = 0, = 0, estimate on the R.H.S of
(3.12) uses the Poincare inequality || f|| < C,[IV f |l since f|r, = 0 by (2.8). Thus

c2
IVorl2I £1I? < =2, where [V |2 + v2l? + 1 £1I> = 1 o
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4 The Adjoint Operator Ay (b = 0, 1) is Dissipativity on
Hp,b=0and b =1

Proposition 4.1 (The adjoint operator A} on Hy,) Let Ay, be the operator in (2.3), with
domain D(Ap) described in Proposition 2.1. Then, its Hy-adjoint A} is given by

vy —v) vy
Ap| v | = | AWS —v)) +bv} | € Hy; vy | € D(AY), “4.1)
* Af*¥—Vr* *

where the function * is defined by

A =0 in Qy; (4.2a)
ar* a(vy — vy
o= O AW ) ey on T (4.2b)
av av
om* " _3
S =AfTvEeHTIT)  onTy. (4.2¢)
5 ‘ .

The proof is a direct computation, given in [26], which extends the proof with no
visco-elastic damping given in [24], as well as the proof of the next Proposition.

Proposition 4.2 The point {v], v5, f*} € D(A}) C Hp in case,
(a1)
vivi e (H' Q)Y b=1 v}, vie (H (Q/RY b=0,
such that A(vi — v}) € (L*($2,))¢
1 1
vilr, = fHIr, € (H2(T)? [vi — villr, € (H2(Ty)?

03 —vD) =[3f*—n*v] e (H™1(I'y))! (4.3)
v Iy v r,

so that

(az)

e HYQN! N Hy, with Af* —Vr* e Hy,
where ¥ (v, v3, *) € Lz(Qf) is the harmonic
function defined by (4.2); 4.4)

(a3)
af*
v r,

c (H_%(FS))d and 7*|p, € H_%(Fs); 4.5

(a4) \
fIr, =00 [Af*vlr, € H2(Ty). 4.6)
Compare D(Ap) in Proposition 2.1 with D(A}) in Proposition 4.2. Recall also [24,

Section 1].
As in the latter reference, we have

@ Springer



Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1821-S1863 S1835

Proposition 4.3 On H), the bounded, symmetric operator

I 0 O
T=|0-1 0 | =T% hasthe properties T> = identity on Hp and ~ (4.7)
0 —1I
()
T : D(Ap) 2% D(AY) T=T":DA) 2% D(A)
TD(Ap) = D(A}), TD(A;) = D(Ap) 4.8)
(i1)
TA, = AT = AT = (TAp)" on D(Ap)
Ap = TﬁlAZT on D(Ap) (similarity)
and T Ay, is self adjoint with domain D(Ap) 4.9)
(iii)
(Apx, X)), = (Apx™, x*)p, , Vx € D(Ap) and x* = Tx € D(A})
(4.10a)
Re(Apx, x)3, = Re(Ajx*, x*)3q, ,Vx € D(Ap) and x* = Tx € D(Ay)
(4.10b)
(iv) If A is an eigenvalue of Ap, with corresponding eigenvector e
Ape =re 0+£eeD(A) 4.11)
then applying T on both sides and recalling T Ape = A} T e by (4.9) yields
AX(Te) = M(Te) (4.12)

and ). is and eigenvalue of Aj; with corresponding eigenvector (T e). And conversely.
It follows that if A is not an eigenvalue of Ap, . ¢ o,(Ap), then it is not an eigenvalue
of Aj, either, ) ¢ o,(A}), thus A ¢ or(Ap), the residual spectrum of Ap [29].

As a consequence of Propositions 4.3 and 3.1, we have:

Proposition4.4 Let b = 0,b = 1. The operator A}, in (4.1), with domain D(A})
defined by Proposition 4.1 is dissipative on the space Hj, defined in (1.2): for
[v, v3, f*] € D(A}) C Hp, we have

vy vy
Re| Ax| v |, | vi =—/ |Vv§|2d§25—/ IV 2dQy,  (4.13)
f* I 2 2

Hp
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Hence A, and Aj; are the generators of s.c ( Cqo ) semigroups et and e of
contractions on the finite energy space Hp.

For the last statement we recall in [27, Corollary 4.4, p 15] or in [6, Theorem 4.3.3,
p 188]. Proposition 4.4 can also be shown directly from A} in (4.1), Proposition 4.2.

Remark 4.1 Trivially, each operator Ap—; and Al’jzl is a generator of a s.c (non-
contraction) semigroup eAv=11 and ¢-1" on the space Hp—0, each being on such
space a bounded perturbation of A,—¢ or Aj_, respectively. Similarly, the analyticity
of eAv=0" and eAb=0" on Hj—o (Theorem 1.3(i)) implies at once analyticity of e“4=11
and e”-1" on Hp=0 as well. We shall however mostly focus on the contraction case:
Ap=o and Aj_, on Hp—o; and Ap— and Aj_,; on Hp—.

Remark 4.2 Orientation on the spectral analysis of the imaginary axis for both the
operators 4, and its adjoint A} on . For [v1, v2, f] € D(Ap) C Hpand w € R,
let by (2.3)

V1 1%) V1
Apl vy | = | Alvi+v2) —bvy | =iw| vy (4.14)
f Af =V f
so that,
2
V1 V] V1
Re|Ap | va |, | v =Re{ (iw) | 1
f f1)n, Fln,
= _/ |VU2|2de—/ IV f2dQy = 0. (4.15)
Q Qf )

so that Vv, = 0in Qg, Vf = 01in Qy, hence f = 0 in Qy, since flr, = 0
by (2.8); hence Vx = 0 and m = const = —k in Qy; finally, v2 = 0 in €,
since v2|r, = flr, = 0 by (2.5).Thus, so far, as a consequence of dissipativity of
Ap on Hp, we have {vo = 0, f = 0}. Next, (4.14) implies v; = (iw)v, hence

1 = 0if w # 0. We conclude that: the points (iw) are not eigenvalues of Aj on
Hp, b =0,1,0 # w € Riiw ¢ 0,(Ap). Similarly the dissipativity identity (4.13)
for the adjoint operator A in (4.1) will likewise yield that: the points (iw) are not
eigenvalues of A;';, 0 # w € R, b =0, 1. Hence by [29], the points (iw), 0 # w € R,
are not in the residual spectrum of A, on Hp : (iw) ¢ o0r(Ap), w € R\{0}. When
w = 0 (the origin) as to the corresponding first component vy, the conclusion is more
complex and depends on the geometrical conditions of the domain €2 (see Remark
5.1 below).

(1) If b = 0 and fr vdl'y # 0, then the point A = 0 is not an eigenvalue of
Ap—o on Hp—g (Proposmon 5.1(a)), nor is an eigenvalue of the adjoint operator .A
on Hp—g, so that 0 ¢ o,(Ap—p), the residual spectrum of Ap—g [[29], P 282]. In
fact, for b = 0 and fr vdTs # 0, the point A = 0 is in the resolvent set of Ap—o:
0 € p(Ap=p) on Hjp— O(Proposmon 5.2). More conclusively, iR € p(Ap—g) if b =0
and [ vdly # 0 (Theorem 6.1).
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(i2) On the other hand, if » = 0 and fr vdly = 0, then A = 0 is an eigenvalue
of Ap—op on Hp—o as well as of A;_, on Hb o , with a one dimensional common
elgenspace explicitly identified (Proposition 5.1(b)). One then works on the space
ﬁb —0 = Hp=0\[Null(Ap—o)] of co-dimension one in Hp—o, Eq (5. -4), which is
1nvar1ant for both eAv=0" and eAb=0’ (Proposition 5.4). One has, 0 € ,O(Ab 0), where
.Ab —0 = Ap= 0|H (Proposition 5.3). More conclusively, iR € p(Ab 0)ifb =0
and [ vdDs =0 ( Theorem 7.1, Corollary 7.1).

(it 1) If b = 1, the the point A = 0 is an eigenvalue of the operator A;,—; and
Aj_, on’Hp—1 with, again a one-dimensional common eigenspace, explicitly identified
(Theorem 1.5). Again, one then works on the space ﬁbzl = Hp=1\[Null(Ap=1] of
co-dimesion one in (1.18), which is invarial}\t for both eAv=17 and ¢“%=1’. Then the
origin A = 0 belongs to the resolvent set of Ap—; = Ap—1 |ﬁb:1 (Theorem 1.5).

Proposition4.5 Letb =0,b =1

(i) The point —1 belongs neither to the point spectrum of Ap, —1 ¢ 0,(Ap), nor
to the point spectrum of A}, —1 ¢ o,(A}); thus [[29], P 282], —1 does not belongs
to the residual spectrum of Ap, —1 ¢ o, (Ap). See also Proposition 4.3(iv).

(ii) In fact, —1 belongs to the continuous spectrum of Ap, as well as of A;: —1 €
oc(Ap), —1 € UC(AZ)

Proof We consider only the operator A, as the analysis for A} is similar.
(i) For [vy, va, f] € D(Ap) defined by Proposition 2.1, let via (2.3),

U] v+ 02
T+Ap) | v |=| AW +v)—bvi+uvy | =0 (4.16)
f Af+f—-Vnm

Thus, [v; + v2] = 0 and then A(0) — bvy 4+ vy = 0. This means v, = 0 forb = 0
and [—v; + v2] = 0 for b = 1. In both cases,v; = v, = 0 in (LZ(QS))d. Hence,
v2|r, = 0 = f|ry by (2.5). Thus the third equation of (4.16) yields the problem

Af+f—Vr=0inQy
divf=0in Qf 4.17)
flr; =0; flr, =00n Q¢

and (4.17) implies f = O in LZ(Qf). Thus [vy, v2, f1=0and —1 ¢ 0,(A). In fact,
taking the inner product of the first equation with f yields

(Af. P, + 1111 =M— IVLIZ+ 1£17
f

=f Va-fdQp=| nf- Qr)
Sy 7

/ 7 divTd, =0 (4.18)
Qr
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Thus, f = 0 as claimed. The proof of —1 ¢ o, (A7) is exactly the same using now
(4.1) for Aj.

(ii) We shall actually show that —1 € o 4p (Ap), the approximate point spectrum
of Ap. In fact after step (i) we are left with alternative that either —1 € p(Ap) or
else —1 € o.(Ap). We then recall the general result that [29]: o.(Ap) U 0, (Ap) C
0 p.app(Ap) C 0 (Ap). Then, infact —1 € o.(Ap) Thus, we shall construct a sequence
Xp = {Vin, vou, fn} in D(Ap) C Hp, such that

lxnllz, =1, yet (I + Ap)xy — 0in Hy,.

To this end, returning to the expression of (I 4+ Ap)x, given by (4.16), we pick in
D(Ap), two smooth sequences {vi,} € (H*(2))%, {van} € (H*(2,))¢ such that,

vin — 0and vy, — 0in (H2($2))4, thus

A1 + v2n) = bviy +v2, = 0in (L2(R4))? (4.19)
vanlr, — 0in (H3/2(Iy))d, 2t L= Oin (HA(T))

Next, pick corresponding sequences {f,} € (HZ(SZf))d, T, € Hl(Qf), with
{V1n, Van, fa} € D(Ap), such that f, — 0 in (H*(Q2)?, m, — 0in H'(Q)),
div f, = 0in (L*(Q f))d yielding therefore the problem

Afy+ fo =V, =ry, — 0in (L2(Q))?
divf, = 0in (L2(Q))¢ (4.20)
falr; =05 falr, = vaalr, = 0in (H3/2(T))?

It then follows from [30] repeated also in [17, Chapter 2, Appendix A] that

||fn||(H2(Q/.))d+||ﬂn||H1(Qf) <C [”rn”(Lz(Qf))d + ||v2”||(H3/z(FS))d] — Qasn — oo

4.21)
Hence f, — 0 in (H%(Q f))d . We have therefore obtained a nonzero sequence
{V1ns Von, fu) € D(Ap) such that

VUln
(I + Ap) | von | = 01in Hyp. (4.22)

fn

Finally, we normalize the sequence x, = {vi,, V2,4, f} to obtain ||x, |, = 1. Thus
—1 € 0papp(Ap). O

One can also give a direct proof that —1 € o.(Ap) in the style of [24], See [26].

Part II: Results valid for b = 0: Ap—g on Hp—o
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5 Spectral Analysis forb = 0

Remark 5.1 In the present Sect. 5 as well as in Sect. 6, we shall consider two cases
regarding the domain of €2; that is,

whether (a) vdly #0 or whether (b) vdliy, =0 5.1
Iy I

where v is the unit normal vector to I'y. Given €2, which case arises depends on its
geometrical conditions. Case (5.1)(a) was first pointed out in [21, p 66], where it was
taken as an assumption. In this paper we shall allow each case to hold true. As noted
in [21, p 66], the geometric condition (5.1)(a) is “generically true. One is always
able to achieve this condition by a sufficiently small pertubation of the boundary T's.
Condition (5.1) is related to [a property of | symmetry (or lack thereof) of the domain
Qs”. For instance, (5.1)(b) holds true if €2, is a 2-D disk or a 3-D ball, or I'y is a 2-D
ellipse, or a 3-D ellipsoid, etc. As noted, the generic condition (5.1)(a) is an assumption
for the main strong stability result of the non-linear fluid—structure interaction model
(with no viscoelastic damping) [21, Theorem 1.4, p 66] . In our present paper, the
two geometrical cases in (5.1) have implication on the spectral properties of the point
A = 0 for Ap—g or Aj_, on Hp—o. We also refer to [20,22].

Proposition 5.1 Letrb =0

(a) Under the assumption fr vdD'y # 0, the origin A = 0 is not an eigenvalue
of the operator Ap— in (2.3) on Hp—o; nor of the operator Aj_ in (4.1) (in line
with Proposition 4.3(iv)). Thus, 0 ¢ o,(Ap=0) and 0 ¢ o,(Ap—o). [The susequent
Proposition 5.2 will establish that 0 € p(Ap=0)].

(b) Iffr vdly = 0, then . = 0 is an eigenvalue of the operator Ap—q as well
as of the adjomt Aj_ on the space Hp=0 with corresponding common eigenvector

= [no, 0, 0], where ng € (H'($2 )/R)d is the unique solution of the following

elliptic problem:

9
Ano=0inQs, 2| —vonTy 5= Nov (5.2)
oy ITy

N = Neumann map, so that the null space of Ap—q in Hp—o is one dimensional
Null(Ap=0) = span{[no, 0, 01} in Hp=o. (5.3)

Moreover, when we define the space of codimension 1:

Hp—o = INull(Ap=0) 1" = Hp=o\[Null(Ap=0)] = [Null(A;_o)1* (5.4)
V1 V1 1o
= vy | € Hp—o : v |,] O = (v1, ﬂo)(Hl(QS)/R)d =0
f f 01/5,,
5.5
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then the following characterization of ﬁbzo holds true.

Hpo = {[vl, v2, f1€ Hp—o : f v1 - vdly = 0}. (5.6)

s

Proof (a) For [vy, va, f] € D(Ap=0), let via (2.3) withb =0

V1 1%)
Ap—o | v2 | =| Awi+v2) [ =0 = v, =0inQ ,v2|r, = fIr, =0on [}.
f Af—Vrm
5.7
by the B.C in (2.5). Next, recalling (2.8)
Af —Vm =0inQy (5.8a)
divf =0in Qy; = f=0inQy, 7 = constant = cin Qy (5.8b)
Slr; =05 flr, =00n a2 (5.8¢)

as it follows by taking the inner product of Eq (5.8a) with f and using Greens’s
theorems

[, Sraai [ wrtan, - | [ sriom [ nofin]
agry OV Qr F Q
=0

| (5.9)

and f = 01in Qy by the B.C f|r, = 0. Since v; = 0in £ by (5.7) and f =0
by (5.8), we obtain from Eqn (5.7) that vy solves the following elliptic problem and
corresponding B.C by (2.5):

Avy = 0in (5.10a)
31)1

—| = —mv=cvonly (5.10b)
av IT

When we take the inner product of Eqn (5.10a) with 1, considering inward unit
normal vector v we obtain

9 9
o:/ Avl-ldQsz—/ 24T, — (Yo, V1) = ﬂ:—c/ VT,
Q r, v ry

Iy av
(5.11)

Since st v dI's # 0 (under present assumption), we conclude ¢ = 0, which implies
vy = constant —> wv; = Oin (Hl(Qs)/R)d. Hence [v1, vz, f] = 0. Part (a) is
established.

(b) If fl“s vdIly = 0, according to (5.11), ¢ can be any constant. For each ¢ # 0 €
R,there exists a unique solution v (c) # 0 of problem (5.10) and the map cv — v1(c)
is linear, allows us to write v{(c) = cng with ng solution of (5.10) for ¢ = 1;that is
of (5.2).Thus , in this case, the eigenvector of the eigenvalue 0 € o, (Ap—o) on Hp—g
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is c[no, 0, 0] as claimed in (5.3). For the next claim under the definition (5.4), we
compute via Green’s Theorem, with v inward, via (5.2)

Wi, m0) (1 (@) myt = VU1, Vi) (12 q )
= —(v1, Vno - V)(LZ(FX))J — (v1, dinUO)(LZ(QX))d = —(v1, V)(LZ(FX))d

7\

after recalling Vo - v = aa—v" =vand div Vig = Ang = 0 from (5.2) with v inward
in Iy Thus we have

(U] s nO)(Hl(QS)/R)d = 0 if and Ol’lly if (U] y U)(LZ(FS))d =0. (512)

O
The improvement of Proposition 5.1 part (a) is the following.

Proposition 5.2 Let b = 0. Under the assumption fl"q vdDs # 0, the point . = 0 is
in the resolvent set p(Ap—o) of the operatorAp—q . Hence there is a small open disk
Sy, in the complex plane centered at the origin and of small radius ro > 0, that is all
contained in p(Ap=0) : Sy, C p(Ap=0).

Remark 5.1 For b = 0 and fl“s vdl'y # 0, Theorem 6.1 establishes that iR €
p(Ap=0).

Proof Let [v], v, f]1 € Hp—o be arbitary. We seek [v1, va, f] € D(Ap—o) which
solves via (2.3) forb = 0

V1 V2 vy
Ap—o | v2 | =| A +v2) | =] v5 | € Hp=o (5.13)
f Af—Vr f*

Then (5.13) yields
vy = v} e (H'(Q4)/R)%; (5.14)

Since the data [v]", v’2k, f*]is drawn from Hp—o, then it satisfies the compatibility
condition f r, vi-vdTls = 0in(2.9). As a consequence, there exists a unique solution

pair {f, 7} € (H' ()¢ x L*(Qy)/R which solves the f-problem

Af —Vr = f*eHf C (Lo(2y)% (5.15a)

divf =0 inQy; (5.15b)
1

flr; =0: fIr, = valr, = vilr, € (H2(T)?, (5.15¢)

continuously in terms of the data f*, v’f Ir,, see [30, Thm. 2.4]. Thus, we have recov-
ered the third component f (and the pressure 7 modulo a constant). Let = henceforth
in this proof denote a definite pressure solution. For any constant Cy, then & + C is
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also a viable pressure for the Stokes problem in (5.15a). We remark that by [3, p 436
1,[26, Lemma A.3, Appendix A], we have

af
v

continuously in terms of the data. Having recovered so far v = v} in (5.14) and
uniquely {f, 7} in (H' (/)¢ x (L?(25))?/R, we seek finally to recover also the
first component vy, as well as the unique constant C defined by the coupled problem
(5.15). To this end, we invoke v;— problem in (5.13) with v, = v, then we obtain

,n|agf} e (H 3N x (H 3Ty, (5.16)
BQf

A +v)) =05 inQ (5.17)

To recover v; explicitly, from (5.17) we define the following two operators.

—Anyd = A in Q5 ; D(Ap,) = {¢ € (HX(S4)/R)? : 2—‘f =0on rs}
(5.18a)
Any : D(An,y) C (L2(2:)F — (L*(2:))%; (5.18b)
. Y
Nop = <~ {Alﬂ:Osz andE=u} (5.19a)
No € LH™ 2T, (H' (2)/R)%) (5.19b)

for the Neumann map Ny. Thus, as usual, via (5.19) and (2.5),

A |:(v1 +v]) — No ((% — (7T + Co)v> ):| = v} in (5.20)
Cs

or by (5.18a):

d
— An, [(vl +v}) = No ((a—f — (T + co>v) )} =} e (LA(Q))! (521
Iy

Hence v is given by

vi = —Ayv3 + No (2—{ — (T + CO)U) —vf e (H'(Q)/R)?! (522
Ty
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in terms of the data (via the prior recovery of { f, w}) where Cy is still unknown. To
identify Cp in (5.22), we consider following integral on Iy of the Eq. (5.22).

8|: N0v2+No( (JT+C0)V) -y

a ]
/ ﬂdr _/ I ars  (5.23)
Ty Ty av

Hence, we can recover Cy, since 82"’” = v by definition, see (5.19)
_lv*—i-No( af zrv) ]
du gy — [ oz drs + [ g
CO fl"Y f[‘x v fr ED s (524)
— fl“x vdT
where fo vdIDs # 0 by assumption. O

The improvement of the Proposition 5.1 part (b) is the following.

Proposition 5.3 Let b = 0. Under the assumption er vdly =0, the point . = 0isin
the resolvent set p(.Zb 0) of the operator .Zb 0= Ap= 0|H _,- Hence there is a small
open disk Sy, in the complex plane centered at the origin and of small radius ro > 0,
that is all contained in ,()(.A;7 0) S C ,O(Ab 0) as in Proposition 5.2.

Proof Let [v], v}, f] € H;,:() be arbitary. We seek [vy, v2, f] € D(.Ab:o) N ﬁb:O
which solves via (2.3) for b = 0

R V1 V2 v R
Ap=o | 2 | =| Alvi+m) | =] v] | € Hp=o (5.25)
f Af—Vr A

Then (5.25) yields
vy = v} € (H'(Q)/R)%: (5.26)

then the proof of this proposition follows as the proof of the Proposition 5.2, until the
point in (5.22) where v; is explicitly written in terms of data, but the constant Cy is
still unknown.

3
- _A;V;@ + No (a—{ — (T + Co)v>r — v e (H'(Q4)/R)? (5.27)

To identify Co in (5.27), we impose on v; defined by (5.27) the required compatibility

condition (5.6) in order to force [vy, v2, f] € Hb 0, that is fr vy -vdly = 0, as
required

B
/ vi-vdly :/ A_ vy + No (—f — nv) -vd[’s—CO/ Nov-vdliy =0
ry r, v r, r,

(5.28)
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since fl“s vy - vdl'y = 0 by (2.9). Next we recall by the definition of Ny in (5.19a),
we have that Nov = 1o, where ng satisfies the elliptic problem (5.2). Integrating
(Ang, no) = 0 from (5.2) yields by Green’s First Theorem and ny = Nogv.

—/ no-vdly = — Nov-vdly = — 1o dly —||V170|| #0 (5.29)
Vs I's I

Using (5.29) in (5.28) yields the sought-after constant C:

fl" |: N0U2+N0 (-f—nv>rsi|~vd1"x

fl"s Nov - vdT

Co = (5.30)

where the denominator is different from zero by (5.29). O

Under asuumption fn vdly = 0: Invariance of factor space ]l\;,=o = [Null

(Ap=0) 1+ = [Null (AZZO)]J- under the action of semigroup ¢**=0' and e“4-o’

This dynamic property relies on the key feature that .A,—o and its adjoint Aj_
have a common finite dimensional null-space. In fact, one dimensional space spanned
by the vector [19, 0, 0] in (5.3).

Proposition 5.4 The subspace Hp—o = [Null(Ap—o)I- = [Null(Af_,)1" of co-

dimesion 1 in Hp= is invariant under the action of the semigroups =01 and e’ |
Proof By Proposition 5.1(b)
V|
v2 | € Hp=o\[Null(Ap=0)] = Hp=0\[Null(A}_)]
f
U1 1o
— v |, 0 =0 < (v, UO)(Hl(QS)/R)d =0 (5.31)
! 0 Hp=0

Of course, the common eigenspace [Null(Ap=0)] = [Null(Aj_,)] spanned by the
eigenvector [n9, 0, 0] corresponding to the eigenvalue A = 0, is invariant under both
the semigroup =0 and its adjoint e b=’

10 0 . | mo
A=t o =0 |=eM=| 0], t>0 (5.32)
0 0 0
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Thus, the factor space Hp—o\[Null(Ap=0)] is invariant under the action of the semi-
group e=0" ;

V] V]

v | € Hpmo\[Null(Ap=0)] = =" | vy | € Hpeo\[Null(Ap=o)],
S f
(5.33)
since
v no V| . 0
e'Ab:Or v |, 0 = v |, e'Ab:Ot 0
f 0 1/ 1, f 0 1/ Hymo
V] no
= vy [,] O =0 (5.34)
f 0 Hp=0

by (5.31) and (5.32). Thus, the implication (5.33) follows. Similarly the factor space
Hp=o\[Null(A}_)] = Hp=0\[Null(Ap=0)] is invariant under the action of the

adjoint semigroup e“4=o’ |

Corollary 5.5 Let fr vdly =0asin Proposmons 5.1(b), 5.3 and 5.4.
(i) The operators Ab —0 = Ap= ole , and .A* 0 = Aj_ olm,_, generate s.c
contraction semigroups on the space 'Hb _o = [Null(Ap—p)]*+ = [Null(A}_ O)]

invariant for them.

(ii) The operators Ap—o and AZ:O generate s.c contraction semigroups e
Aj_ot
e” 'h=0

Ab=0" and

on the space Hp=q in (1.2b) (recovering Proposition 4.4).

Proof (i) (dissipativity) .szo, respectively .;l\Z:O, are dissipative on ﬁb:o, a fortiori
from the dissipativity of Ao and Aj;_, on H,—o (Propositions 3.1 and 4.4)
Also, maximality follows from Proposition 5.3, as 0 € ,o(jl\b 0),0 e ,0(.21\2:0).
(ii) If x € Hp=o, then x = x|g, = + aeop, and M=oty — A= 0’x|ﬁb=0 + aeq
is the s.c contraction semigroup generated by Ap—¢ on Hjp—o, via part (i), where
eo = [no, 0, 0] is the eigenvector of Ap—g corresponding to its eigenvalue A = 0 and

Ap—ot 0t O

so e ep = e’ley = eg.

The next result will be much extended in Theorem 6.1 in Sect. 6. The proof of this
significant special case here is simpler. It will suffice to consider C~ = {A € C :
Re) < 0} by dissipativity of Ao and A} _.

Proposition5.6 Letb =0in(1.1c).

(i) in C~, consider the closed disk S,_| (xo), centered at the point xo = {—1, 0}
and of radius r = 1. Let Ec(xo) be its open complement in C~ = {AL : Re A < 0}.
Then the operator Ap—q in (2.3), (with b = 0) on Hp—q has no eigenvalue ) + iw with
w #0in Srzlc(xo) = {(oe w) : a2+ 20+ o* > O} The same conclusion holds for
the adjoint operator AZ:O Hence 29, P 282], the points A +iw, w # 0in S;_, (xo)
do not belong to the residual spectrum o, (Ap=0) of Ap—o on Hp—o.
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(ii) The points . = o + iw with @ # 0 on the circumference of Sy—1(xp), i.e
satisfying a® + 2o + w?> = 0 may, or may not, belong to the point spectrum of
Ap—o, depending on geometrical conditions on Qz. More preciesly, such points . =
a+iw, w # 0do, respectively do not, belong to o, (Ap—o) according to as whether the
over-determined elliptic problem (5.48) below do not, respectively do, imply vi = 0
on S

€0op (Ap=0)

(@, o), 0in ci Sr=
a, w}, w # 0 in circumference of Sy {gé op(Ap=0)

0inQ
iff (5.49) implies |11 7 01 S
v = 0in Q.

Proof Step 1 Consider the eigenvalue/eigenvector equation for [vy, vo, f] € D(Ap=o)
for b = 0in (2.3)

V] v U]
Ap=o | 2 | = | A1+ ) [ =(@+io)| v (5.35)
b Af—-Vx b

where we are taking o« < 0, w € R; or explicitly,

v = (¢ +iw)vy, (5.36a)
Ay 4+ v2) = (@ + iw)vy, (5.36b)
Af—Vron=(u+iw)f. (5.36¢)

Step 2 Multiply Eq. (5.36¢) by f integrate over 2 f» use Green’s First Theorem on
fo Af fdQyalong withthe B.C. f|r, = 0inD(Ap=0) and use Divergence formula

on — fo an_de with Q¢ = I'y N I' 7 recalling div f = 0 in Q, to obtain ( all

norms are L2-norms on their respective domains)

z af = .
(Af =Vr)- fdQy = / (a—v - nv) fdTs = [IVFIP = (@ + i) fII?
Ty
(5.37)
Next, multiply Eq.(5.36b) by v», integrate over €2, use the Green’s First Theorem on
fQY A(v] + v2)v2 d2, with unit normal vector v inward to €2, to obtain by use the

B.C (2.5).

Qf

a _
(A(vy + 1), v2) = —fr (% — nv) - fdTs — |[Vul* — (@ — iw)||Vur ||
= (a +iw)l|vl? (5.38)
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To obtain (5.38), we have also invoked Vvy = (o + iw)Vv; from (5.36a) on the term
Vv, Vip) = (¢ —iw)|| Vv ||2. Sum up (5.37) and (5.38) to obtain, after cancellation
of the boundary terms

0 = |IVual P+IVFIP+a(IVurl P+ vl P+ F1P) +io(val P+ £ 1P =1 Vi)

(5.39)
Step 3 Taking the Real part and the Imaginary part of identity (5.39) yields (recall
a <0)

Vel + 1V £12 4+ (Vo2 + [l + [1F1F) =0 (5.40)
o (Il +1171P =11V ]?) =0 (5.41)
(recall that we are taking o < 0). For w # 0, we obtain from (5.41) and (5.36a),
IVoLll® = Il + 1£117: IVl? = @ +o)|Voil>, 0 #0  (542)
which substituted in (5.40) yields
[0 + o + 2] |V > + IVFI? =0, »#0. (5.43)
First case Assume that

@ +a?+2a>0;ie r=a+iw, o £ 0 lies outside the closed disk Sy— (xo)
(5.44)
with center xo = {—1, 0} and radius r = 1. Then identity (5.43) implies

[Vuilll =0, IVfll =0, hence f = constant = 0 in I-if, since f|r, =0
v = constant = 0 in (HI(QS)/R)d b =0) (5.45a)
vy = (a +iw)v; =0in (Lr(2)%, o +iw,a <0 (5.45b)

In conclusion, we obtain vy = v, = f = 0inHp—g for A = a+iw, a0 <0,w £ 0
outside the closed disk S,—(xg). Proposition 5.6 is established for Ap—¢g. A similar
argument applies to Ay _ .

Second case. Assume next that A = o + iw, still w # 0, lies on the circumference of
the disk S,—1(x¢); that is, it satisfies

o> +2a+a0?=0 (5.46)

Then Eq. (5.43) gives ||V f|| = 0, hence f = 0 since f|r, = 0, thus 7 = const = c,
hence via (5.36a)

o

5 rSEO’ 0= fl, =vl.. v, =0 (5.47)
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Returning to (5.36b) augmented by the relevant B.C in (2.5), we obtain via (5.36a)
and (5.47)

(a+iw)2 Avy=2avq in
Avp= ) or vy
(I+a)+iw vilr, =0, 4| =—cv
| . 0vg af dv ITg
[(1+a)+iw] ™ l“s_[av ”U]rx_ cv (5.482)
(a+iw)?

since Tt tio = 2« by replaced by use of (5.46). The over-determined problem in
(5.48) is precisely the one reported in [17, (2.4.4) p. 67, (2.4.13) p. 70, Appendix
D],[35]. For ¢ = 0, then v; = 0, hence v, = 0 by (5.36a) in which case the point
(o, w) on the circumference (5.46) is not an eigenvalue. For ¢ # 0 and otherwise
arbitrary the question arises as to whether the over-determined problem (5.48) implies
v] = 0. The answer depends on geometrical conditions of €2,. For instance if €2 is a
disk (d = 2) or a sphere (d = 3), the answer is negative, [17, R.T, Appendix D],[35] :
and thus {v; # 0, 0, 0} is an eigenvector of .4,—g. On the other hand, many classes of
geometries of €2, are given in [17,35] for which the over-determined problem (5.48)
implies v; = 0, hence v» = 0 and then {«, w} satisfying (5.46) is not an eigenvalue.
On the other hand, there are geometries for which non-zero solution v; # 0 exists
that satisfies the over-determined problem (5.48). They include spheres(d = 2, 3).
See [17, Appendix D], [35].

One can also rerun the steps in the proof of Proportion 5.6 constructively as a
necessary condition argument, assuming that (¢ 4 iw) is an eigenvalue of 4,—g on
Hp—o.

Proposition 5.7 Let b = 0. Let o +iw, @ < 0, w # 0, be an eigenvalue of Ap—q in
Hp—o, with normalized eigenvector {vi, va, [}, |Vill> + lv2ll> + | f1I* = 1. Then:

®

1 1
[V |2 > ||vz||2+||f||2=§, @’ +2a+ (@ +2IVFIH =0, w #0

(5.49)
C2
o =—1+\/1-@+2VFPD). IfI2<CUVFI? < — (-
(5.50)

where C,= Poicare constant of Q; (ii)
o® + o> +20 <0, iethepoint(a, w) € S—1(x0), @ # 0 (5.51)

Proof (i) For w # 0, (5.41) yields || Vi || *+[lva ||+ £ I*=2[[vs | = 1-2[| Vv |* =
0, as desired. Then (5.40) with Vv |? = (@? + ?)[|Vvi|> = (¢ + ©?)} and
normalized eigenvector yields (5.49), (5.50) (Compare with (3.12)). Moreover (5.43)
becomes [w?+a2+2a]+2|VfI? = 0.IfV f # 0 (general case), then w?4a? 20 <
0 and (a, w), w # 0 belongs to the open disk S,—;(xp). It may happen that V f = 0,
in which case («, ), @ # 0, belongs to the boundary of such disk. If V f = 0in Q,
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hence f = 0in Qf and 7 = constant = k = v|r, = f|r, = 0, the v problem
becomes via (5.36a),(5.36b)

(o + iw)?
Apy = 2 HIO” 5.52
2T 0T tin’ (5-522)
) .
nlr, =0, —2 ot (5.52b)

win T Uta) tio

For many geometries of €2, other than Q= a disk or a ball, problem (5.52) implies
vy = 0, hence vy = 0 via (5.36a), violating the assumption of {vy, v2, f} being an
eigenvector. O

In the next result we find exactly the (negative) eigenvalues « of the operator A,—g
on Hp—o, at least when €25 is a 2-D disk or a 3-D ball.

Proposition 5.8 Let b = 0. Let 25 be a 2-D disk or 3-D ball. Let
Apy = —pn@y in s, ¢n|l‘s =0, n=12,... (5.53)

be the eigenvalue-vector problem of the Dirichlet Laplacian on Q, where 0 < u, /'
+o00. Consider the eigenvalue-vector problem (5.35) for the operator Ap—o on Hp—q
with focus on w = 0 (i.e on the negative real axis): Then, the eigenvalues of problem
(5.35) with w = 0 are solutions of

Ol,% + Uty + py =0 (5.54)
(so that a;f + a, = —pn; f o, = ) and are given by
a;,"’_ = —1+£,/1 —4u; = real negative, save possibly for finitely many n. (5.55)

We have that o;" ' —1 monotonically, where —1 € o.(Ap) by Proposition
4.5 and o, — —oo monotonically. The corresponding normalized eigenvector is

2
{von/otn, vau, 0}, llv2n ||2 = li’;ﬂ’ where vy, is identified in the proof below.
n

Proof The eigenvalue-vector problem (5.35) with focus on w = 0 can be rewritten as

2
Avy = ¢ »inQ; Af—-Vr=afinQy (5.56a)
14+«
div f =0in Qy (5.56b)
0= 1 S, =0, 22| = 210 (5.56¢)
v = =0, — = — — TV .D0C
21T b JATy awlir, 14a|dv r,
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Choose f = 01in Q as a solution of (5.56a-b) in f, hence m = constant = k in
Q, so that the v, problem becomes

o2
vy In (5.57a)
(07

=0, 2 * k (5.57b)
v =0, —| = v| . .
21T win,  1+a In,

Since 5= 2-D or 3-D ball, the overdetermined problem with k # 0 admits a non-
zero solution vy #% 0, which in fact, for each scalar component of problem (5.57) can
be computed explicitly. [17,35]. Then by (5.36a), we have v # 0 as well. On the other
hand by (5.57a) and the zero Dirichlet condition v |r, = 0 we can appeal to (5.53) to

2

obtain ljl-_’:x,, = —un, n=1,2,...s0 that (5.54) follows. We are thus in the situation
of [10, Lemma A.1 witha = 1, 2p = 1], so that the two branches ozn+ and «,, behave
as stated in Proposition 5.8. Save for finitely many 7, the values o, are real negative

and the stated form of the eigenvector e,‘f = {v, /oc;f ", vay, 0} follows. O

6 Caseb = 0 and frs vdrls # 0. Analyticity, Location of the Spectrum

6(Ap=o) Within the Set /C of the Operator .A,_ on the Space Hp—o,
Exponential Decay

6.1 Orientation

For the clarity of presentation, this section is devoted to the operator 4;,—g over the
space Hp—o under the generic assumption fl‘s vdDg # 0. The case fl} vdl'y = 0will
be handled in Sect. 7 via Proposition 5.3.
(a) We have already established that the operator A,—q, with the action as in (2.3),
possesses the following two features: (i) it is the generator of a s.c. (Cp-) semigroup
eAv=0" of contractions on the finite energy space Hp—o in (1.2a) (Proposition 4.4); (ii)
Under the assumption fl“x vdly # 0,0 € p(Ap—o), the resolvent set of Ap—¢, and
hence there is a small open disk S, in the complex plane centered at the origin and
of small radius r¢ > 0, that is all contained in p (Ap=0) : Sy, C p(Ap=0).
Accordingly, to conclude that eAv=ot is, moreover, analytic on Hp—q, all we need to
show [23, Thm. 3E.3, p. 334] is that (Ap—o has no spectrum on the imaginary axis,
and):

IRGw, Ap=0) |l £(Hp—g) < |CC0—|, Y |w| > some wgy > 0. 6.1)
Then, the proof in [23, p. 335] establishes that, in fact, for a suitable constant M > 0,
we have

M C
IR, Ap=0)ll£(Hpeg) =< ik A#£0, Vie D), (6.2a)
Zgl:{keC:O§|argA|§%+91}, (6.2b)

@ Springer



Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1821-S1863 S1851

Fig.3 The Triangular Sector
Ty, and its Complement Egl .

The Disk Sy, C p(Ap=0) e

g,

s T _

where one may take the angle 91, 0 < 6 < T such that tan (2 91) = %, with C
the constant in (6.1), for an arbitrary fixed constant 0 < p < 1. We seek the ‘largest’
possible angle 6; < 7, at least after moving the vertex of the triangular sector in a
nearby point. In our case, this nearby point will be xo = {—1, 0}; in which case, with

vertex on xg = {—1, 0} the angle 6; will be arbitrarily close to z In this section, we

shall establish a resolvent estimate such as (6.2a) for all > € C\K, namely

AR, Ap=0)ll £(H,g) < const, VA € C\K; (6.32)
equivalently (since Ap—oR (X, Ap—0) = —1 + AR(A, Ap—0))
I Ap=0R(A, Ap=0)ll £(F,_o) < const, Vi e C\K; (6.3b)

K being the infinite key-shaped set defined in (6.7b), see Fig. 2, whereby, moving
the vertex of the triangular sector of analyticity to concide with the point xg = {—1, 0},

the corresponding angle 0 is arbitrarily close to % (Fig. 3).

(b) Then (6.3b) and S;,, C p(Ap=o) Will imply that the real part of the spectrum
o (Ap=op) of Ap—o is confined inside the negative axis (—oo, —rg], 0 < Fy < rg. The
direct passage from (6.3) to (6.2) is exhibited in Remark 6.2 below. Moreover, our
proof below, once specialized with Re A = 0, A = iw, w € R, will yield (through
simplified computations in Remark 6.1 below) the establishment of inequality (6.1)
for any wop > 0. This result, combined with S;, C p(Ap=o) Will allow us to conclude
that
IRGw, Ap=0)ll g+ < const, w € R. (6.4)

Then, (6.4) will imply [28] uniform stabilization of the analytic semigroup eAv=0t
on Hp—o: there exists constants M > 1, § > 0 such that

Ap=ot t

e,y < Me™', 1 >0, (6.52)

lle
and hence that
Re o (Ap—g) € (—o0; —8]. (6.5b)

In conclusion, the present section establishes three results: (a) analyticity of the
semigroup eAv=ot, (b) location of the spectrum o (Ap—g) of Ap—g, in Theorem 6.1,
(1)—(iii); and (c) exponential stability (6.5a) in Theorem 6.1(iv). Analyticity and expo-
nential stability require the assumption [, vdTly # 0. The case [ vdDs = 0 is

analyzed in Sect. 7, still for b = 0.
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6.2 Main Resultforb = 0and fi vdl; # 0

Theorem 6.1 Let b = 0. (i) The generator Ap—g in (2.3) of the s.c. contraction semi-
group =0 gsserted by Proposition 4.4 satisfies the following resolvent condition
forw € R

. - ] C
[Go! = Ap=0) ™ k) = IRG@: Ap=0)ll LcHm) = -

Y |lw| > some wy > 0 arbitrarily small, (6.6)

.Ab=ot

Hence, under the assumption fr vdD'y # O, the s.c. semigroup e is analytic on
5

the finite energy space Hp—o, t > 0, [23, Thm 3E.3, p 334].
(ii) More precisely, the resolvent operator R(x, Ap—o) = (A — Ap—0)~" of the
generator Ap—q in (2.3), satisfies the following estimate

C
IR, Ap=) I £(Hy—g) < i forall x e C\K (6.7a)

where IC is the (infinite) key-shaped set defined in Fig. 2
K = (=00, =2) U{Sr=1(x0)\Sy,} (6.7b)

with Sy—1(xo) the open disk centered at the point xy = {—1, 0} and of radius 1; and
Sy, defined in Proposition 5.2.
(iii) The spectrum o (Ap—g) of Ap—o is confined within the set K; in particular

Reo (Ap—y) C (—o0, =8], forsomed > 0. (6.8)

(iv) Complementing (6.6) we have that the resolvent R(-, Ap—o) is uniformly
bounded on the imaginary axis

IR(w, Ap=0)llc(Hyeg) = ¢, Yo €R. (6.9)

Hence, the s.c. analytic semigroup eAb=0t g uniformly exponentially stable on Hp—o:
there exist constants M > 1, § > 0, such that [28]

€= 211,y < Me™®, 1> 0. (6.10)

Step 1 Given {v], v3, f*} € Hp—o, constants @ < 0 and w € R\{0}, we seek to solve
the equation

V1 Ul
(@+io)] —Ap=0) | v2 | =| V5 (6.11)
f I
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in terms of {vy, v2, f} € D(Ap=p) uniquely, and establish, in fact, the analyticity
estimate (6.3b). For A = a +iw € p(Ap—0), we have via (2.3)

* *

V1 vl vl U1
v | =R, Ap=0) | v | Ap=0RM, Ap=0) | v5 | =Ap=0 | 12
f I I f
v2
— | A +m) |. (6.12)
Af—Vrm

We see that the analyticity condition (6.3a) on Hp—¢ is equivalent to showing the
following estimates (all norms are L;-norms on the respective domains): there exists
a constant C > 0 such that

IVoallg, + 1AQL+v2) g, + (A = VD), < CUIVVIIG, + 1031,
+HI G, )
forall A = o + iwin p(Ap—o)\/C; that is, outside the set IC defined in (6.7b)
(Fig. 2)
(6.13)
This is what we shall show below. Explicitly (6.11) is rewritten via (2.3) as

(a4 io)v — vy = v} € (H'(Q)/R)%; (6.14a)
(a4 io)vs — A(vy 4 v2) = v} € (La(2))%; (6.14b)
(@+io)f —(Af —Vr) = f*e Hp C (La(2))? (6.14c)

Step 2 Henceforth, to streamline the notation, | - ||, respectively (-, -) will denote
the L, (-)-norm, respectively the complex inner product on either the set 2 or the set
2 ¢. No ambiguity is likely to occur. We take the L2 (€2 y)-inner product of Eq. (6.14c)
against (A f — V), use Green’s First Theorem to evaluate f Q fAFfdQ r»recall the

B.C. fIr, = 0(2.8), in D(Ap=0) and obtain

(¢ +iw) f- ﬂ
Iy v

—I(Af = VOI? = (f*, (Af — Vn)).

(ot-l—ia))/ f-g—fd[’s —(a+ia))||Vf||2—(ot+ia))
Ts

dls — (@ + i) ||V fI* = (@ +io)(f, V)

x/ Af-vdls — |(Af = VD)2 = (f*, Af — V). (6.15)
Ty

by using Green’sTheorem with div f = 0. Similarly, we take the (L(£2,))%-
inner product of (6.14b) against A(v; + v2), use Green’s First Theorem to evaluate
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f Q, 2 A(v]+v32)d 2y, recalling that the normal vector v is inward w.r.t. 2, and obtain

—(a +l“’)/ 8(v1+v2) dTy—(a+iw)(Vva, V(v1 + v2)) — [[A(v; + v)]?

= (v3, A(v +2)). (6.16)
Invoking now the B.C. f|r, = v2|r, and M (ﬁ - JT])) in D(Ap=0)
K FS
(see (2.5)), we rewrite (6.16) as
—(a—}—la))/ ——nv) drl —(a+la))||Vv2|| — (¢ +iw)(Vvy, Vuy)
—lA@ +v))?
= (v3, A(v1 + 12)). (6.17)

Summing up (6.15) and (6.17) yields after a cancellation of the boundary terms

—(a@ +io)[[Vv2|* + IV £I2]
= A+ ) I> + II(Af = VI + (@ +iw)(Vva, Vuy)
+(v3, A(v + 1)) + (f*, Af — V) (6.18)

We now return to (6.14a), multiply by (¢ — iw) # 0, and rewrite the result as
v = [(o — ia))/(ot2 + wz)][vz + v{], which introduced in the third term on the RHS
of (6.18) yields

. (@ +iw)?
(@ +i0)(Vvz, Voi) = - [IVuall* + (Voz, Vo)) (6.19a)
(a2 — a)2) +i2aw (41 w)2
= IVval|* + ﬁw 2. Vo)

(6.19b)

Substituting (6.19b) into (6.18), we obtain the final identity
2 2, 2a 2 2
AL+ )"+ II(Af = Vo)|I” +i o 1+m Vo= + IV £l

+
R
= —a+
(@ +iw)’

- (f"Af-Vn )—T(V 2, Voi) (6.20)

o? 2 2 *
o ] Vool —allV I — (v, A(v1 + v2))
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Step 3 We take the real part of identity (6.20), thus obtaining the new identity:
1AL+ )l + 1A f = V)2
2 2
_ wr 2 2
= [—a + m] Vol — V£l

_Re{(a+iw)2

T+l (Vuo, Vvik)}

— Re(v}, A(u] 4 v2)) — Re(f*, Af — V) (6.21)

j? — o?| (@ +iw)?| _

We estimate the RHS of (6.21), noticing that —— , — =1,
1 (6.21), noticing rtol = @t ol

thus obtaining the inequality

IA1 +v) 2 + (A f — VI)II? < (la] + 1+ e[ Voo + [alIV £
+ e[Ia@ + v+ 1A S = VOIP| + Ca VoI + 10512 + 1717

or

(1= [Ia@ + w2+ I1Af = VDI < (ol + 1+ ) Vool + el [V £
+ Cer eIV + 10317 + 1LF*11%). (6.22)

We next take |o| > r; > 0, with r; fixed but arbitrarily small, 1 + €] < %|ot| and

setting ko = 1 + % we obtain
(=& [Ia@ + )2+ 1A f = VDI < kolel V0] + lal V£
+ Cer IVOT I + 10317 + 1LF41%). (6.23)
Next, with € > 0 chosen above, we take €|a| < |w|, thereby rewriting (6.23)
(1= [Ia@ + w2 +IAf - Vo]
1
<~ [ekolall Vo2 |2 + el VFIP | + Cor VO I + 10312+ 17412 (6.24)
1
<~ [kolol V021 + 10lIV £ 17| 4 Cey el IVOTI2 + 10317 + 11£1)

Step 4 We now take the imaginary part of identity (6.20), thus obtaining the new
identity

2a 5 5 (o + iw)? .
w{[l + m} Vol + IV £ } - —Im{m(vm, voD)

— Im{(v3, A(vi +v2)) + (f*, (Af = Va))}. (6.25)
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With € > 0 arbitrary assume that

0 T
<e€e< - —
a? + w?
that is, that the point {«, w} lies outside the disk (a + 1)> 4+ w? =1

(6.26)

Then taking the absolute value of both sides of (6.25), using (6.26) as well as
(@ + iw)?| .
— > = 1, we obtain
ac + w

2 2 e 2 2
elol[Vua|l” + o]V f|I7 < TIIszll + Cea [ VoT||
+ E[1aw + P +IAf - Vo]
+ Cor [I0317 + 15712 (6.27)

We then obtain from (6.27)

0 < SlolIVorl? + IV F11? < _ €] vmp v |2
SlIVl? + @IV £ < | elo] = S | 1902l + ]IV /]
= & [I1a@ + w2+ 1A F = VOIR |+ Ce [IVo 12 + 10312 + 1171?]
(6.28)
where the LHS of (6.28) is valid for all |w] s.t.
€ 62
—|lo| <€lw|——; or 0<e<|wl|. (6.29)
2 2
From (6.28), we obtain
IV FI? < € [I1a@r + w2 + (A f = Vo]
+ Ce [IVU I + 1312 + 1P (6.30)
and
lIV02]? < 262 [ A @ + v + 1A f = VoI
+C IV + 10312 + 1171 (6.31)

Now invoke (6.30) and (6.31) in (6.24), we obtain
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(1= [law + w2+ 1A f - Vol

1
= = {2k [Ia@r + w2+ A S - v ]|y
€
1
+—{e [1a + w2+ 1A s - vo ]|
€
+Cep IV + 1317 + 1717} (6.32)

Finally (6.32) implies

1@+ v + A f = VOI? = Cearca {IVOTIZ + 10312+ 17712} 5 (633)
Since [1 — € — 2kpe — €2] > 0 by restricting further € to have E—T < € with €3
arbitrarily small, so that recalling 2ekog = 2¢ + %—f arbitrarily small.

Step 5 We return to estimate (6.28). On its LHS, we drop the positive term
|w|||V £11?,while for this term we use: %rl < §|a| < 5|wl according to prior selec-
tions €|a| < |w| and || > r;. On the RHS of (6.28), we invoke (6.33). We thus obtain,
as desired

190217 = Cercrca {IVOTI2 + 0312+ 117512 (6.34)

Step 6 Summing up (6.33) and (6.34) we finally obtain

[1A@ + 02 + 1(Af = VO)I? + V02

< conste,y IV 12 + 0317 + 17717 (6.35)

for all points {«, w} satisfying (6.26) and (6.29) aslo the conditions €|x| < |w|. Since
€ > 0 in these two relations is arbitrary, we conclude that (estimate (6.33) and hence
the conclusive) estimate (6.35) hold(s) true for all points {«, @}, « < 0, outside the
disk: (@ + 1)2 + w? = 1, with @ # 0. This is precisely the conclusion (6.3b); that
is, conclusion (6.7aa). We have thus proved parts (ii), (iii) (location of the spectrum
0 (Ap=0)) of Theorem 6.1 . O

Remark 6.1 (Specialization to the case « = 0) We specialize the above computations
to the case @« = 0, A = iw, to obtain:
(a) The counterpart of identity (6.21) (real part) is

IA1 + v)I? + I(Af — V)||* = |[Vvz||>~Re(Vva, Vo)
— Re(v3, A(v; + 12)) — Re(f*, (Af — Vn)),
(6.36)

which then yields
A =o[law + v+ A f - Vo]
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= A+ 0IVul? + CIvei I+ w12 + 117}, 63D

the counterpart of estimate (6.22).
(b) The counterpart of identity (6.25) (imaginary part) is

o[ IVel? + IV £12] = =1m(Tva, Vo) —Im(v3, Ai+v2)) = Im(f*, (A f=Y)).
(6.38)
Thus, (6.38) implies the estimate

190212 + 19 £12] < ( ) [1A@ + v+ A f = Vo)l

lw| —€

CG * * *
+ ( >{||Vv1||2+||v2||2+||f 1’} ©39

lw| — €

(c) Use of inequality (6.39) into the RHS of inequality (6.37) for the Vv,-term
yields

1
[1 —e— ﬂ} [1A@ + v+ 1A f = Vo]

o] — €
(1+e)C
= (Ce M _;) {1V o124+ 1o 12 + 17412 (6.40)
1 1 1
or taking |w| —€ > wp > 0, hence = < 1—6—6( to_ | —e— ed+e :
2 wo lw| — €

JAG@1 + v 2+ A f = V|2 < consteay [IVU 12+ 0512+ 117412}
lw| > wg >0 (6.41)

which is the counterpart of (6.33).
(d) Finally, returning to (6.39) and using here (6.33), we obtain

IVoal + IV £IP < constea {IVOFI2 + 10DI7 + £ (6.42)

which is the counterpart of estimate (6.34).
(e) Summing up (6.41) and (6.42), we obtain the counterpart of (6.35) = (6.3b) by
(6.12), (6.13) for @ = 0, i.e.

lAp—0 R (iw, Ap=0)ll £(H,) < C, VY |lw| = wp > 0 arbitrary, equivalently
(6.43a)

C
IRGw, Ap=0)l £(Hy—o) < ﬁ, V |w| > wg > 0 arbitrary, (6.43b)
w

Theorem 6.1 (i) is established.

@ Springer



Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1821-S1863 S1859

Remark 6.2 (direct passage from (6.3) to (6.2)) Returning to Eqns. (6.14a—c), we obtain
forA =a+iw:

A Vil = VU3 < IAVY = Vil = [[Vuall; (6.44)
Aozl = 3 1 < Av2 — v3ll = AU + v2)l; (6.45)
AIAT = <A f = f5 = 1A f = Vm)ll. (6.46)

Hence, summing up,

IALIVLl 4 o2l + 1A < Vo2l + [[AE +v2) || + [[(Af = V)|
+ IVl + ozl + 1L
(by (6.35)) < C {IVVT [l + o3l + L F*II} (6.47)

for all A satisfying (6.26) and (6.29). In short, in view of (6.11) and (1.2a), estimate
(6.47) says that

*

*

V1 v Co ih

v = |R(A, Ap—0) | V5 < |T|0 vy , (6.48)
* *

h H h H h H

for all such A = @ + iw. Theorem 6.1(ii), Eq. (6.7a), is proved.

6.3 Exponential Stability

The resolvent bound (6.43b) combined with .A;:lo € L(Hp=0) ,hence S;, C p(Ap=0)
by Proposition 2.1, Fig. 3 allows one to conclude that the resolvent is uniformly
bounded on the imaginary axis iR:

IRGw, Ap=0)ll £(H,_p) < const, (6.49)

as claimed in (6.9). Hence, [28] the s.c. analytic semigroup e*=0" is moreover. (uni-
formly) exponentially bounded: There exist constants M > 1, § > 0, such that

e ey = Me™™, 120, anyd = ro (©30)

by (6.8). This proves Theorem 6.1(iii), Eq. (6.10). Theorem 6.1 is fully proved.

7 Caseb =0, fr vdrls = 0: Analyticity, Location of the Spectrum

Within the Set C (Within the Set iC U {0}) of the Operator Ab —o on
the Space ’Hb —o (of the Operator A,_( on the Space ’Hb o)

We consider at first the operator Xb:o on the space ’ﬁb:o = [Null(Ap=0)]+, as
claimed in (5.4). We rely on Propositions 5.1(b), 5.3, 5.4 and Corollary 5.5.
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Theorem 7.1 Let b = 0 and fb:() vdDl'y = 0. (i) The perfect counterpart of Theorem
6.1 on analyticity, location of spectrum and uniform stability holds true for the operator
Ap—o on the space Hp—.

Proof The proof is exactly verbatim the one of Theroem 6.1 after replacing the oper-
ator Ap—q on the space Hp—( with the operator .Ab 0 in Hb —0, taking into account
Propositions 5.1(b), 5.3, 5.4 and Corollary 5.5. O

Corollary 7.1 Let b = 0 and fr vdTs = 0. The operator Ap—y generates a s.c

analync semigroup A= on the space Hp— % As to its spectrum, one has o (Ap—g) =
G(Ab 0) U {0} on Hp—o, where O'(Ab 0) in Hp— is centered in the set K in 6.7b.

Proof As in the proof of Corollary 5.5, if x € Hp—g, then x = X +aey, with X € ﬁb:o
and the eigenvector defined in Proposition (5.1)(b). Then =0ty = Ab=01} 4 aeg
defines the analytic contraction semigroup on Hp—. O

8 b = 1. Proof of Theorem 1.6

Proof Step 1 We already know that =11 s as.c analytic semigroup on Hp—o, as
on this space the generator A,—1 is an innocuous bounded perturbation of the of the
analytic semigroup generator Ap—g on Hp—o.

Step 2 Via definition (2.3), we obtain

c 0 0
Ap=1 |0 | =| —c |=| —c|;
| 0] —Vn 0
] 0 —c c
A_ 10| =Apy | —c|=| 0 |==1]0 (8.1)
| 0] 0 —Vr 0
recalling from (2.4a) that in the present case  satisfies:
. or .
Ar =0inQy, i, =0, ol =0, sothatwr =0in Qy,
2R N

and similarly for 7* via (4.2). Thus —1 € o, (Aizl), with eigenvector ® = [c, 0, 0].
[Recall that via Theorem 1.5(i), 0 € o, (Ap=1), so we cannot deduce from (8.1) that
Ap—1® = i P, which in fact is incorrect]

Step 3 It follows from the RHS of (8.1) that

C C
A 1ol =E=D"|0], n=1,23..., ie(=)"e€a,(A") (82)
0 0
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while (8.2) for n = 1, and the LHS of (8.1) imply

c c c 0
A_ 10 =Apm Al |0 | =—Apy [0 | =] (8.3)
0 0 0 0
Similarly, (8.2) for n = 2 and the LHS of (8.1) yield
c c c 0 c 0
AZ:I O = AbilA;;:l 0 = Ab:l 0 = —C Ab 1 O = C
0 0 0 0 0 0
8.4)
In general
c 0
Aol =D e |, n=1,23... (8.5)
0 0
Thus, invoking (8.5) and (8.1), we obtain, as desired in (1.21):
A C 00 tk C
_ k
e=111 0 | = HAbzl 0 (8.6)
=0 0
o £2n—1 2 1 c
"o 0 8.7
ZZn—])' +Z(2 )! 0 ®.7)
: n=
n—1 0 n c
= - - 8.8
D i —t 8+Z( G (8.8)
0 c
= | c |sint+ | O |cost. (8.9)
0 0

m}
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