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Abstract

We consider a fluid–structure interaction model defined on a doughnut-like domain. It

consists of the dynamic Stokes equations evolving on the exterior sub-domain, coupled

with an elastic structure occupying the interior sub-domain. A key factor—a novelty

over past literature—is that the structure equation includes a strong (viscoelastic)

damping term of Kelvin–Voigt type at the interior. This affects the boundary condi-

tions at the interface between the two media and accounts for a highly unbounded

“perturbation”. Results include: (i) analyticity of s.c semigroup of contractions defin-

ing the overall coupled system, (ii) its (uniform) exponential decay, along with (iii)

sharp spectral properties of its generator. Some results are geometry-dependant.

Keywords Kelvin–Voigt damping · Analyticity · Exponential decay

1 Introduction and Statement of Main Results

1.1 The Coupled PDEModel

Throughout the paper, � f ⊆ R
d , d = 2 or 3, will denote the bounded domain on

which the fluid component of the coupled PDE system evolves. Its boundary will be

denoted here as ∂� f = "s ∪" f , "s ∩" f = ∅, with each boundary component being

sufficiently smooth. Moreover, the geometry �s , immersed within � f , will be the

domain on which the structural component evolves with time. As configured then, the

coupling between the two distinct fluid and elastic dynamics occurs across boundary

interface "s = ∂�s ; see Fig. 1. In addition, the unit normal vector ν(x) will be

directed away from � f ; thus on "s , toward �s . (This specification of the direction of

ν will influence the computations to be done below.)
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Fig. 1 The Fluid–Structure

Interaction
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On this geometry in Fig. 1, we thus consider the following fluid–structure PDE

model in solution variables u = [u1(t, x), u2(t, x), . . . , ud(t, x)] (the velocity field),

and w = [w1(t, x), w2(t, x), . . . , wd(t, x)] (the structural displacement field), while

the scalar-valued variable p denotes the pressure:

PDE

⎧
⎪«
⎪¬

ut − "u + ∇ p ≡ 0 in (0, T ] × � f ≡ Q f (1.1a)

div u ≡ 0 in Q f (1.1b)

wt t − "w − "wt + bw ≡ 0 in (0, T ] × �s ≡ Qs (1.1c)

B.C

⎧
⎪⎪⎪«
⎪⎪⎪¬

u|" f
≡ 0 on (0, T ] × " f ≡ � f (1.1d)

u ≡ wt on (0, T ] × "s ≡ �s (1.1e)
∂u

∂ν
−

∂(w + wt )

∂ν
= pν on �s (1.1f)

I.C. u(0, ·) = u0, w(0, ·) = w0, wt (0, ·) = w1, on �. (1.1g)

The constant b in (1.1c) will take up either the value b = 0 or else the value b = 1.

Accordingly, the space of well-posedness is taken to be the finite energy space [16]:

Hb

�
(H1(�s)/R)d × (L2(�s))

d × H̃ f , b = 0; (1.2a)

(H1(�s))
d × (L2(�s))

d × H̃ f , b = 1, (1.2b)

for the variable [w,wt , u], where

H̃ f = { f ∈ (L2(� f ))
d : div f ≡ 0 in � f ; f · ν ≡ 0 on " f }. (1.3)

Hb is a Hilbert space with the following norm inducing inner product, where

( f , g)� ≡
�
�

f ḡ d� :

»
¼½

£
¤¥

v1

v2

f

¦
§̈

,

£
¤¥

ṽ1

ṽ2

f̃

¦
§̈
¿
ÀÁ

Hb

=

�
(∇v1, ∇ṽ1)�s + (v2, ṽ2)�s + ( f , f̃ )� f

, b = 0; (1.4a)

(∇v1, ∇ṽ1)�s + (v1, ṽ1)�s + (v2, ṽ2)�s + ( f , f̃ )� f
, b = 1. (1.4b)
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In (1.2a), the space (H1(�)/R)d = (H1(�)/ const )d is endowed with the gradient

norm. There are some noteworthy differences between the cases b = 0 and b = 1,

as studied on their respective spaces in (1.4). The physical importance of the above

model is described in [24,38].

Literature There is rather vast literature concerning fluid–structure interaction mod-

els, both linear and non-linear (full Navier–Stokes equations), with static interface

(appropriate for small and rapid oscillations) [35, p. 53], [17, p. 53] as well as with

moving interface. As we cannot be exhaustive, here we concentrate by necessity on

works where the structure contains visco-elastic (Kelvin–Voigt) damping. While refer-

ring to [1–5,14,15,18,19] for linear/non-linear models with no Kelvin–Voigt damping.

To gain insight, preliminary studies have focused on replacing the fluid equation with

a heat equation, as the presence of the pressure is a source of additional complica-

tions. In this setting, a first work was [24] which in fact serves as a guidance for the

present paper as well as [38]. Subsequent works [36,37] dealt with the structure being a

plate with Kelvin–Voigt damping and physical interface conditions involving bending

and stress boundary operators. [38] uses a variational approach in seeking to extend

[24] to the Stokes case with pressure, while our present paper eliminates the pressure

by expressing it explicitly in terms of other variables by solving a suitable elliptic

problem. Of course, application of the Leray–Helmholtz projection to eliminate the

pressure is out of question due to non-homogeneous interface conditions. Our present

results are more precise than those in [38] and cover not only the case b = 0 but

also the case b = 1, the two cases in effect having some important differences. In

addition, we show that some results are geometric-dependent, an issue not present in

[38]. [38] covers only the model b = 0. Once one establishes that the free-dynamics

generates a s.c. (contraction) analytic semigroup, the next task is to seek to character-

ize the domains of fractional powers of the negative generator. This would then allow

to establish optimal regularity results under the input of a control term acting either at

the interface or else at the exterior boundary. Success in this will ultimately allow one

to apply the abstract general optimal control theory with quadratic cost of [23] to the

present problem, under the additional action of a boundary control. In the case with

no pressure, this program was carried out in [32]. Its generalization to the present case

will require extending the results of [25,33,34] on domain of fractional powers to the

fluid case in (1.1a–g).

1.2 Main Results

We state here upfront some of the main results of the paper.

Theorem 1.1 (Semigroup well-posedness on Hb, b = 0 and b = 1)

(i) The PDE problem (1.1a–g) admits the following abstract model

ẋ = Abx, in Hb, x = [w,wt , f ] (1.5)

where the operator Ab : Hb ⊃ D(Ab) → Hb is explicitly defined in Sect. 2 by Eq.

(2.3) with domain characterized in Proposition 2.1.
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(ii) The operator Ab is dissipative on Hb: for [v1, v2, f ] ∈ D(Ab), we have:

Re

»
½Ab

£
¥

v1

v2

f

¦
¨ ,

£
¥

v1

v2

f

¦
¨
¿
Á

Hb

= −

�

�s

|∇v2|
2d� f −

�

� f

|∇ f |2d� f ≤ 0. (1.6)

(iii) The adjoint operator A∗
b : Hb ⊃ D(A∗

b) → Hb, which is explicitly defined by

(4.1), with domain D(A∗
b) characterized by Proposition 4.2 , is likewise dissipative

on Hb: for [v∗
1 , v∗

2 , f ∗] ∈ D(A∗
b), we have:

Re

»
½A

∗
b

£
¥

v∗
1

v∗
2

f ∗

¦
¨ ,

£
¥

v∗
1

v∗
2

f ∗

¦
¨
¿
Á

Hb

= −

�

�s

|∇v∗
2 |2 d�s −

�

� f

|∇ f ∗|2d� f . (1.7)

. (iv) The operators Ab and A∗
b generate s.c contraction semigroups eAbt and eA∗

bt on

Hb. Thus the PDE-problem (1.1a–g) admits the following unique semigroup solution

with respect to the abstract form (1.5).

£
¥

w(t)

wt (t)

u(t)

¦
¨ = eAbt

£
¥

w0

w1

u0

¦
¨ ∈ C ([0,∞);Hb) . (1.8)

See Proposition 4.3 for the relationship between D(Ab) and D(A∗
b). Section 2

provides the explicit abstract model of the free dynamics (1.1a–g), b = 0, b = 1.

Dissipativity of Ab is proved in Sect. 3. The adjoint A∗
b is defined and proved to be

dissipative in Sect. 4. As a consequence of both Ab and A∗
b being dissipative, they are

the generators of s.c contraction semigroups (Proposition 4.4) [6,27].

Theorem 1.2 (Spectral properties of Ab=0 and A∗
b=0 on the imaginary axis iR)

(i) For b = 0, the point iω, 0 �= ω ∈ R, belongs to the resolvent set of Ab=0 :

iω ∈ ρ(Ab=0), ω �= 0.

(ii) Let b = 0. Assume now, the generic geometric condition
�
"s

ν d"s �= 0 on �s

(see Remark 5.1). Then the point λ = 0 is in the resolvent set of Ab=0 : 0 ∈ ρ(Ab=0).

Hence there is a small open disk Sr0 in the complex plane centered at the origin and

of small radius r0 > 0, that it is all contained in ρ(Ab=0) : Sr0 ∈ ρ(Ab=0).

(iii) Let b = 0. Assume now the condition
�
"s

ν d"s = 0 (for symmetric regions

�s). Then λ = 0 is an eigenvalue of both the operator Ab=0 and its adjoint A∗
b=0 on

Hb=0 with corresponding common eigenvector e0 = [η0, 0, 0], where η0 is the unique

solution of the following elliptic problem:

"η0 = 0 in �s ,
∂η0

∂ν

���
"s

= ν on "s (1.9)

123



Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1821–S1863 S1825

Moreover, the point λ = 0 is in the resolvent set ρ(�Ab=0) of the operator �Ab=0 ≡

Ab=0| �Hb=0
, where the space �Hb=0 of codimension 1 in Hb=0 is given by

�Hb=0 = [Null(Ab=0)]
⊥ = Hb=0/[Null(Ab=0)]

=

"
[v1, v2, f ] ∈ Hb=0 :

�

"s

v1 · ν d"s = 0

"
. (1.10)

Hence there is a small open disk Sr0 in the complex plane centered at the origin and

of small radius r0 > 0, that it is all contained in ρ( �Ab=0) : Sr0 ∈ ρ(�Ab=0). Similar

results holds for �A∗
b=0 = A∗

b=0|Hb=0
on �Hb=0: Sr0 ∈ ρ( �A∗

b=0). The space �Hb=0 is

invariant for eAb=0t or eA∗
b=0t .

Theorem 1.2 (i) in its full strength is contained in Theorem 6.1 (for
�
"s

ν d"s �= 0)

and in Theorem 7.1 (for
�
"s

ν d"s = 0). That iω /∈ σp(Ab), iω /∈ σp(A
∗
b), hence

iω /∈ σr (Ab), is contained in Remark 4.1. The rest of Theorem 1.2 is proved in

Proposition 5.1 through Proposition 5.3, with invariance established in Proposition

5.4. The main results of the paper are given in the next Theorem.

Theorem 1.3 Let b = 0. (i) The generator Ab=0 in (2.3) of the s.c. contraction semi-

group eAb=0t asserted by Theorem 1.1(iv) satisfies the following resolvent condition

for ω ∈ R

�(iωI − Ab=0)
−1�L(Hb=0) = �R(iω,Ab=0)�L(Hb=0) ≤

c

|ω|
.

∀ |ω| ≥ some ω0 > 0 arbitrarily small, (1.11)

Hence, under the (generic) assumption
�
"s

ν d"s �= 0 on �s , the s.c. semigroup eAb=0t

is analytic on the finite energy space Hb=0, t > 0, [23, Thm 3E.3, p 334].

(ii) If, instead,
�
"s

ν d"s = 0 (symmetric region �s), then the s.c semigroup e
�Ab=0t

is analytic on the space �Hb=0 where it is invariant; consequently eAb=0t is analytic on

Hb=0 also in this symmetric case.

(iii) More precisely, the resolvent operator R(λ,Ab=0) = (λI − Ab=0)
−1 of the

generator Ab=0 in (2.3), satisfies the following estimate

�R(λ,Ab=0)�L(Hb=0) ≤
C

|λ|
, for all λ ∈ C\K (1.12a)

where K is the (infinite) key-shaped set defined by (see Fig. 2)

K ≡ (−∞,−2) ∪ {Sr=1(x0)\Sr0} (1.12b)

with Sr=1(x0) the open disk centered at the point x0 = {−1, 0} and of radius 1; and

Sr0 defined in Theorem 1.2(ii). (iv) The spectrum σ(Ab=0) of Ab=0 is confined within

the set K; in particular

Re σ(Ab=0) ⊂ (−∞,−δ], for some δ > 0. (1.13)
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Fig. 2 The set K. For b = 0 ,
�
"s

ν d"s �= 0

(v) The boundary (circumference) of the open disk Sr=1(x0) either belongs to the

resolvent set ρ(Ab=0) of Ab=0, or else belongs to the point spectrum σp(Ab=0) of

Ab=0, according to as whether the over-determined elliptic problem

⎧
«
¬

"v1 = 2αv1 in �s α < 0 (1.14a)

v1|"s = 0,
∂v1

∂ν

���
"s

= kν, k = undetermined constant (1.14b)

implies v1 ≡ 0 in �s and hence k = 0, or else implies v1 �≡ 0 in �s . Such outcome

depends on the geometrical properties of �s . See Remark 1.1.

(vi) Complementing (1.12a) we have that the resolvent R(·,Ab=0) is uniformly

bounded on the imaginary axis

�R(iω,Ab=0)�L(Hb=0) ≤ c, ∀ω ∈ R. (1.15)

Hence, the s.c. analytic semigroup eAb=0t is uniformly exponentially stable on Hb=0:

there exist constants M ≥ 1, δ > 0, such that [28]

�eAb=0t�L(Hb=0) ≤ Me−δt , t ≥ 0. (1.16)

Theorem 1.3 (analyticity) is proved in Theorem 6.1 for
�
"s

ν d"s �= 0 and in

Corollary 7.1 for
�
"s

ν d"s = 0.Invariance of �Hb=0 under the action of eAb=0t is

established in Proposition 5.4. Theorem 1.3(v) is proved in Proposition 5.6. Theorem

1.3(vi) (uniform stabilization) is proved in Sect. 6.3 for
�
"s

ν d"s �= 0. Refer to

Theorem 1.2 (iii) for
�
"s

ν d"s = 0 whereby 0 ∈ σp(Ab), 0 ∈ σp(A
∗
b).

Remark 1.1 For the over-determined problem (1.14), we have v1 �≡ 0, if �s=2-D disk

or 3-D ball. Instead, problem (1.14) implies v1 ≡ 0 for many geometries; e.g if the

boundary "s of �s is partially flat; or partially spherical; or partially parabola-like;
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or partially hyperbola-like. This condition arose in the study of the fluid–structure

interaction model of [1], [17, Chapter 2] with no visco-elastic damping [35, Chapter

2].

Theorem 1.4 Let b = 0, 1.The point x0 = {−1, 0}, center of the disk Sr=1(x0),

belongs to the continuous spectrum of Ab , as well as of A∗
b: −1 ∈ σc(Ab), −1 ∈

σc(A
∗
b). Thus, Ab and A∗

b do not have compact resolvent on Hb.

Theorem 1.4 is proved in Proposition 4.5.

Remark 1.2 When �s= 2-D disk,3-D ball, the point spectrum σp(Ab=0) contains a

branch of ‘explicitly’ known eigenvalues α−
n → −∞ monotonically and a branch of

eigenvaluesα+
n � −1 (the point in the continuous spectrumσc(Ab=0)) monotonically.

See Proposition 5.8. Such description is in line with the behavior of the eigenvalues

in the abstract equation ẍ + Aẋ + Ax = 0 studied in [10].

Theorem 1.5 (b = 1. Spectral properties of the origin, Semigroup generation)

(i) Let b = 1. Then the origin λ = 0 is an eigenvalue of the operator Ab=1 on Hb=1,

as well as the adjoint A∗
b=1 with common corresponding eigenvector e1 = [η1, 0, 0],

where η1 is the unique solution of the following elliptic problem:

"η1 − η1 = 0 in �s;
∂η1

∂ν

���
"s

= ν on "s . (1.17)

Moreover, the point λ = 0 is in the resolvent set ρ(�Ab=1) of the operator �Ab=1 =

Ab=1| �Hb=1
where the space �Hb=1 of codimension 1 in Hb=1 is given by

�Hb=1 = [Null(Ab=1]
⊥ = Hb=1/[Null(Ab=1)]

=

"
[v1, v2, f ] ∈ Hb=1 :

�

"s

v1 · ν d"s = 0

"
. (1.18)

(ii) The factor space �Hb=1 = [Null(Ab=1)]
⊥ = [Null(A∗

b=1)]
⊥ is invariant under

the action of the semigroups eAb=1t and eA∗
b=1t on the space Hb=1.

(iii) The operators �Ab=1 and �A∗
b=1 generate s.c contraction semigroups on the

space �Hb=1 in (1.18), which, moreover, are uniformly stable on �Hb=1.

(iv) The operators Ab=1 and A∗
b=1 generate s.c contraction semigroups eAb=1t and

eA∗
b=1t on the space Hb=1.

Theorem 1.6 The s.c semigroup eAb=1t , as asserted by Theorem 1.5(iv), is analytic on

Hb=1. More precisely, let

Hb=1 = Hb=0 +

£
¥

c

0

0

¦
¨ =

£
¥

(H1(�s)/R)d

(L2(�s))
d

H̃ f

¦
¨+

£
¥

c

0

0

¦
¨ , c = constant (1.19)
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so that any x1 ∈ Hb=1 can be written uniquely as the following direct sum

x1 =

£
¥

v1

v2

f

¦
¨ =

£
¥

v1/R

v2

f

¦
¨+

£
¥

c

0

0

¦
¨ = x0 +

£
¥

c

0

0

¦
¨ (1.20)

Then

eAb=1t x1 = eAb=1t x0 +

£
¥

c

0

0

¦
¨ cos t +

£
¥

0

c

0

¦
¨ sin t . (1.21)

Theorem 1.5 is proved in [26]. Theorem 1.6 is proved in Sect. 8.

Orientation on Anayticity Theorem 1.3 (i),(ii) for b = 0 on Hb=0; and Theorem

1.6 for b = 1 on Hb=1.

As noted in [24] in the case with no pressure (heat eqation rather than Stokes

equations), analyticity per se is not surprising in view of the following motivating

considerations.

A motivating result (a) Analyticity The following is a very special case of a much more

general result for which we refer to [9–11], (see also [23, Appendix 3B of Chapter

3, pp 285-296], [12,13]). These references solve and improve upon the conjectures

posted in [8]. Let A be a positive, self-adjoint operator on the Hilbert space Y . On it,

consider the following abstract equation

ẍ + Ax + Aẋ = 0; or
d

dt

�
x

ẋ

�
= A

�
x

ẋ

�
; (1.22)

A

�
x1

x2

�
=

�
0 I

−A −A

� �
x1

x2

�
=

�
x2

−A(x1 + x2)

�
; (1.23a)

D(A) =
�
[x1, x2] ∈ E ≡ D(A

1
2 ) × Y : x2 ∈ D(A

1
2 ), x1 + x2 ∈ D(A)

�
.

(1.23b)

The operator A is dissipative and with domain (1.23b) is closed and generates a

s.c. contraction semigroup eAt on the finite energy space E ≡ D(A
1
2 ) × Y , which

moreover is analytic on E . Thus, the second-order dynamic (1.22) with strong ‘struc-

tural’ damping is parabolic-like.

(b) The spectrum of A Reference [11, Appendix A, Lemma A.1, p45] shows that the

spectrum σ(A) of the operator A defined in (1.22)–(1.23b) has the following features

assuming that the positive self-adjoint operator A has compact resolvent on Y :

The spectrum of A consists of two branches of eigenvalues λ
+,−
n :

λ+,−
n = −

μn

2
±

μn

2

�
μn − 4

μn

, (1.24)
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solutions of the algebraic equation λ2 + μnλ + μn = 0, where {μn}∞n=1 are the

eigenvalues of the positive self-adjoint operator A : 0 < μ1 < · · · < μn → +∞. The

branch λ−
n � −∞ monotonically. The branch λ+

n � −1 monotonically. Moreover,

the point λ = −1 belongs to the continuous spectrum σc(A) of the operator A. The

operator A does not have compact resolvent on the finite energy space E , even though

A has compact resolvent on Y .

Regarding our original coupled problem (1.1a–g) even without pressure as in [24],

the above abstract result for equation (1.23a) suggests, or makes one surmise, that

the homogeneous problem (1.1a–g) is the coupling of ‘two parabolic problems’ and

hence generates an analytic semigroup eAbt (Ab in (1.5)) on the finite energy space

Hb in (1.4). Of course, the above considerations are purely indicative and qualitatively

suggestive, as the Laplacian " in (1.1c) has coupled, high-level, non-homogeneous

interface boundary conditions which constitute the crux of the matter to be resolved

before making the assertion of analyticity of problem (1.1). At any rate analyticity

cannot follow by a perturbation arguent.

Orientation on Spectral Properties It was already noted in Theorem 1.4 that the

point −1 is a point in the continuous spectrum of the operator Ab as well as of the

operator A∗
b : −1 ∈ σc(Ab), −1 ∈ σc(A

∗
b), in line with what was noted in (b) above for

the abstract operator A in (1.22), (1.23a). This result for Ab, coupled with the location

of its spectrum described by Theorem 1.3 (iv) make one expect that, qualitatively, the

spectrum of Ab is like the spectrum of the operator A in (1.23a), with one branch

of eigenvalues being negative and going to −∞, and the other branch going to the

point −1 of the continuous spectrum. In our present case, a perfect counter part of this

behavioral property of the eigenvalues of Ab is offered by Proposition 5.8, at least for

b = 0 and �s being a 2-D disk or 3-D ball. The general case is unsettled yet.

Part I: Results valid for the pair {Ab,Hb}, b = 0 and b = 1

2 Abstract Model onHb for the Free Dynamics (1.1 a–g), b = 0 ,b = 1

The Navier–Stokes (linear) part (1.1a) contains two unknowns: the velocity field and

the pressure. In the present coupled case of problem (1.1), because of the (non-

homogeneous) boundary coupling (1.1d–f), it is not possible to use the classical,

standard idea of N-S problems with no-slip boundary conditions to eliminate the pres-

sure: that is, by applying the Leray projector on the equation from (L2(�))d onto

the classical space [7, p. 7] { f ∈ (L2(�))d ; div f ≡ 0 in �; f · ν = 0 on ∂� f }.

Accordingly, paper [1] (as well as paper [3], where the d-dimensional wave equation

(1.1c) is replaced by the system of dynamic elasticity) eliminated the pressure by a

completely different strategy. Following the idea of [31] (see also [23]), papers [1,3]

identify a suitable elliptic problem for the pressure p, to be solved for p in terms of

u, w and wt .

Elimination of p, by expressing p in terms of u, w and wt A key idea of [1], [17,

Chapter 2 ], [31,35] is that the pressure p(t, x) solves the following elliptic problem

on � f in x , for each t :
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⎧
⎪⎪⎪⎪«
⎪⎪⎪⎪¬

"p ≡ 0in (0, T ] × � f ≡ Q f ; (2.1a)

p =
∂u

∂ν
· ν −

∂(w + wt )

∂ν
· ν on (0, T ] × "s ≡ �s; (2.1b)

∂ p

∂ν
= "u · νon (0, T ] × " f ≡ � f . (2.1c)

In fact, (2.1aa) is obtained by taking the divergence div across Eq.(1.1a), and using

div ut ≡ 0 in Q f by (1.1bb), as well as div "u = " div u ≡ 0 in Q f . Next, the B.C.

(2.1b) on "s is obtained by taking the inner product of Eq.(1.1f) with ν. Finally, the

B.C. (2.1c) on " f is obtained by taking the inner product of Eq. (1.1a) restricted on

" f , with ν, using u|" f
≡ 0 by (1.1d), so that on " f : ∇ p ·ν =

∂ p
∂ν

|" f
. This then results

in (2.1c).Through a technical argument based on elliptic theory, one then obtains that

the original PDE problem (1.1a–g) can be written as

d

dt

£
¥

w

wt

u

¦
¨ = Ab

£
¥

w

wt

u

¦
¨ . (2.2)

Here the operator Ab is given explicitly by

Ab

£
¥

v1

v2

f

¦
¨ =

£
¥

v2

"(v1 + v2) − bv1

" f − ∇π

¦
¨ ≡

£
¥

v∗
1

v∗
2

f ∗

¦
¨ ∈ Hb,

£
¥

v1

v2

f

¦
¨ ∈ D(Ab). (2.3)

where the function π is defined by (compare with (2.1a–b–c) for the dynamic problem):

⎧
⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪¬

"π ≡ 0 in � f ; (2.4a)

π =
∂ f

∂ν
· ν −

∂(v1 + v2)

∂ν
· ν ∈ H− 1

2 ("s) on "s; ;

£
¥

v1

v2

f

¦
¨ ∈ D(Ab). (2.4b)

∂π

∂ν
= " f · ν ∈ H− 3

2 (" f ) on " f ; (2.4c)

This method of elimination the pressure,as the usual Leray projection is not possible

due to the interface condition was introduced in [1], see also [17, Chapter 2],[35] in

the case of no visco-elastic damping. It was labeld “novel” in the MathSciNet Review

of [1]. Details in the present derivation of (2.3),(2.4) as well as of next Proposition 2.1

in the case of visco-elastic damping are given in [26].

Proposition 2.1 (a) The domain D(Ab) of the operator Ab : D(Ab) ⊂ Hb → Hb

in (2.3) is characterized as follows: {v1, v2, f } ∈ D(Ab) if and only if the following

properties hold true:
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(a1)

v1, v2 ∈ (H1(�s))
d; b = 1 v1, v2 ∈ (H1(�)/R)d ; b = 0,

such that "(v1 + v2) ∈ (L2(�))d

v2|"s = f |"s ∈ (H
1
2 ("s))

d [v1 + v2]|"s ∈ (H
1
2 ("s))

d

so that
∂(v1 + v2)

∂ν

���
"s

=

�
∂ f

∂ν
− πν

�

"s

∈ (H− 1
2 ("s))

d (2.5)

(a2)

f ∈ (H1(� f ))
d ∩ H̃ f , with " f − ∇π ∈ H̃ f ,

where π(v1, v2, f ) ∈ L2(� f ) is the harmonic

function defined by (2.4); (2.6)

(a3)
∂ f

∂ν

����
"s

∈ (H− 1
2 ("s))

d and π |"s ∈ H− 1
2 ("s); (2.7)

(a4)

f |" f
= 0; [" f · ν]" f

∈ H− 3
2 (" f ). (2.8)

Remark 2.1 We note, more over that the divergence theorem applied to div f ≡ 0

implies as f |" f
≡ 0 by (2.8) and f |"s = v2|"s by (2.5)

0 =

�

� f

div f d� f =

�

"s

f · ν d"s =

�

"s

v2 · ν d"s =

�

"s

v∗
1 · ν d"s, (2.9)

recalling (2.3), a necessary requirement on the image point [v∗
1 , v∗

2 , f ∗] to be in the

range R(Ab) of Ab (which defines a closed subspace on (H1(�s))
d ).

Remark 2.2 Henceforth, if we wish to emphasize the operator Ab in (2.3), for b = 0

on Hb=0, or for b = 1 on Hb=1, we shall accordingly use the notation Ab=0 or Ab=1,

respectively. Instead, Ab will ordinary cover both cases b = 0 and b = 1.

3 The OperatorAb is Dissipative onHb ,b = 0 and b = 1

In preparation for the well-posedness (semigroup generation) of Sect. 4, we here

establish that the operator Ab is dissipative on Hb , b = 0 and b = 1

Proposition 3.1 Let b = 0 or b = 1. The operator Ab in (2.3) with domain described

by Proposition 2.1 is dissipative on the space Hb defined in (1.2). More precisely, let

[v1, v2, f ] ∈ D(Ab) ⊂ Hb, then

Re

»
½Ab

£
¥

v1

v2

f

¦
¨ ,

£
¥

v1

v2

f

¦
¨
¿
Á

Hb

= −

�

�s

|∇v2|
2d� f −

�

� f

|∇ f |2d� f ≤ 0. (3.1)
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Proof For [v1, v2, f ] ∈ D(Ab), we return to identity (2.3) and obtain

Re

»
½Ab

£
¥

v1

v2

f

¦
¨ ,

£
¥

v1

v2

f

¦
¨
¿
Á

Hb

= Re

»
½
£
¥

v2

"(v1 + v2) − bv1

" f − ∇π

¦
¨ ,

£
¥

v1

v2

f

¦
¨
¿
Á

Hb

(3.2a)

=

⎧
⎪⎪«
⎪⎪¬

Re
�
(v2, v1)(H1(�s )/R)d + ("(v1 + v2), v2)(L2(�s ))d + (" f , f )

H̃ f
− (∇π, f )

H̃ f

�
; b = 0

RHS of (3.2b) + Re{(v2, v1) − (v1, v2)} = RHS of (3.2b); b = 1

(3.2b)

= Re

"�

�s

∇v2 · ∇v1d�s + ("(v1 + v2), v2)(L2(�s ))d + (" f , f )
H̃ f

− (∇π, f )
H̃ f

"
; b = 0 , b = 1

(3.2c)

Here π is defined by (2.4). Henceforth, properties of D(Ab) listed in Proposition

2.1 will be invoked.

Second term of (3.2c) Since the unit normal on "s is inward with respect to �s

(Fig. 1), we obtain by Green’s first theorem, along with πν −
∂ f
∂ν

= − ∂(v1+v2)
∂ν

on "s

by (2.4b), and f |"s = v2|"s by (2.5); with ν inward to �s :

("(v1 + v2), v2)(L2(�s ))d

=

�

"s

�
−

∂(v1 + v2)

∂ν

�
· v̄2d"s −

�

�s

∇(v1 + v2) · ∇v̄2 d�s (3.3)

=

�

"s

πν · f̄ d"s −

�

"s

∂ f

∂ν
· f̄ d"s −

�

�s

∇v1 · ∇v̄2 d�s −

�

�s

|∇v2|
2 d�s

(3.4)

Third term of (3.2c) Recalling from (1.3) that H̃ f is topologically (L2(�s))
d , we

compute with " ≡ "s ∪ " f = ∂� f , via Green’s first theorem, since f |" f
≡ 0 by

(2.8):

(" f , f )
H̃ f

=

�

� f

" f · f̄ d� f =

�

"

∂ f

∂ν
· f̄ d" −

�

� f

|∇ f |2d� f (3.5)

=

�

"s

∂ f

∂ν
· f̄ d"s −

�

� f

|∇ f |2d� f . (3.6)

Sum of first three terms of (3.2c) Summing up (3.4) and (3.6), and recalling the inner

product (1.4a) for (H1(�s)/R)d , we obtain:

Re

"�

�s

∇v2 · ∇v1d�s + ("(v1 + v2), v2)(L2(�s ))d + (" f , f )
H̃ f

"

= Re

��

�s

�����
∇v2 · ∇v̄1d�s +

��

"s

πν · f̄ d"s −

�

"s �
�
��∂ f

∂ν
· f̄ d"s −

�

�s

�����
∇v1 · ∇v̄2d�s −

�

�s

|∇v2|
2 d�s

�

+

��

"s �
�
��∂ f

∂ν
· f̄ d"s −

�

� f

|∇ f |2d� f

��
= Re

��

"s

πν · f̄ d"s

�
−

�

�s

|∇v2|
2 d�s −

�

� f

|∇ f |2d� f .

(3.7)
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Fourth term of (3.2c) By the divergence formula, with " = " f ∪ "s = ∂� f ,

recalling from (1.3) that H̃ f is topologized by the (L2(�s))
d -norm and div f ≡ 0

and f |" f
≡ 0.

(∇π, f )
H̃ f

=

�

� f

∇π · f̄ d� f =

�

"

π f̄ ·ν d"−

�

� f

�����
π div f̄ d� f =

�

"s

π f̄ ·ν d"s

(3.8)

Final identity of (3.2c) Summing up (3.7) and (3.8) yields

RHS of (3.2) = Re
�
(v2, v1)(H1(�s )/R)d + ("(v1 + v2), v2)(L2(�s ))d + (" f , f )

H̃ f
− (∇π, f )

H̃ f

�

= Re

��

"s
�

���
πν · f̄ d"s

�
− Re

��

"s
�

���
π f̄ · νd"s

�
−

�

�s

|∇v2|
2 d�s −

�

� f

|∇ f |2d� f (3.9)

= −

�

�s

|∇v2|
2 d�s −

�

� f

|∇ f |2d� f , [v1, v2, f ] ∈ D(Ab), (3.10)

and (3.10) used in (3.2) proves (3.1), as desired, in both cases b = 0 and b = 1. ��

We postpone to Remark 4.2 below an orientation on the spectral analysis of the imagi-

nary axis for both the original operator Ab and its adjoint A∗
b on Hb as a consequence

of each of them being dissipative.

Corollary 3.2 Let b = 0, 1. Let (α + iω) be an eigenvalue of the operator Ab with

normalized eigenvector x = {v1, v2, f } ∈ Hb, �x�Hb
= 1. Then, necessarily

α = −�∇v2�
2 − �∇ f �2, (�∇v1�

2)α2 + α + (ω2�∇v1�
2 + �∇ f �2) = 0 (3.11)

If b = 0 and ω = 0 (the case ω �= 0 is described in Propositions 5.6 and 5.7) then the

eigenvalue α < 0 is given by

α =
−1 ±

�
1 − 4�∇v1�2�∇ f �2

2�∇v1�2
,

4

C2
p

�∇v1�
2� f �2 ≤ 4�∇v1�

2�∇ f �2 ≤ 1

(3.12)

where C p is the Poincare constant on � f .

Proof Insert Abx = (α + iω)x , with �x�Hb
= 1 on the L.H.S of (3.1) and obtain

(3.11) also by v2 = (α + iω)v1. For b = 0, ω = 0, estimate on the R.H.S of

(3.12) uses the Poincare inequality � f � ≤ C p�∇ f � since f |" f
= 0 by (2.8). Thus

�∇v1�
2� f �2 ≤

C2
p

4
, where �∇v1�

2 + �v2�
2 + � f �2 = 1 ��
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4 The Adjoint OperatorA∗
b
(b = 0, 1) is Dissipativity on

Hb,b = 0 and b = 1

Proposition 4.1 (The adjoint operator A∗
b on Hb) Let Ab be the operator in (2.3), with

domain D(Ab) described in Proposition 2.1. Then, its Hb-adjoint A∗
b is given by

A
∗
b

£
¥

v∗
1

v∗
2

f ∗

¦
¨ =

£
¥

−v∗
2

"(v∗
2 − v∗

1) + bv∗
1

" f ∗ − ∇π∗

¦
¨ ∈ Hb;

£
¥

v∗
1

v∗
2

f ∗

¦
¨ ∈ D(A∗

b), (4.1)

where the function π∗ is defined by

⎧
⎪⎪⎪⎪«
⎪⎪⎪⎪¬

"π∗ ≡ 0 in � f ; (4.2a)

π∗ =
∂ f ∗

∂ν
· ν −

∂(v∗
2 − v∗

1)

∂ν
· ν ∈ H− 1

2 ("s) on "s; (4.2b)

∂π∗

∂ν
= " f ∗ · ν ∈ H− 3

2 (" f ) on " f . (4.2c)

The proof is a direct computation, given in [26], which extends the proof with no

visco-elastic damping given in [24], as well as the proof of the next Proposition.

Proposition 4.2 The point {v∗
1 , v∗

2 , f ∗} ∈ D(A∗
b) ⊂ Hb in case,

(a1)

v∗
1 , v∗

2 ∈ (H1(�s))
d; b = 1 v∗

1 , v∗
2 ∈ (H1(�)/R)d ; b = 0,

such that "(v∗
2 − v∗

1) ∈ (L2(�s))
d

v∗
2 |"s = f ∗|"s ∈ (H

1
2 ("s))

d [v∗
2 − v∗

1 ]|"s ∈ (H
1
2 ("s))

d

so that
∂(v∗

2 − v∗
1)

∂ν

���
"s

=

�
∂ f ∗

∂ν
− π∗ν

�

"s

∈ (H− 1
2 ("s))

d (4.3)

(a2)

f ∗ ∈ (H1(� f ))
d ∩ H̃ f , with " f ∗ − ∇π∗ ∈ H̃ f ,

where π∗(v∗
1 , v∗

2 , f ∗) ∈ L2(� f ) is the harmonic

function defined by (4.2); (4.4)

(a3)
∂ f ∗

∂ν

����
"s

∈ (H− 1
2 ("s))

d and π∗|"s ∈ H− 1
2 ("s); (4.5)

(a4)

f ∗|" f
= 0; [" f ∗ · ν]" f

∈ H− 3
2 (" f ). (4.6)

Compare D(Ab) in Proposition 2.1 with D(A∗
b) in Proposition 4.2. Recall also [24,

Section 1].

As in the latter reference, we have
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Proposition 4.3 On Hb the bounded, symmetric operator

T =

£
¥

I 0 0

0 −I 0

0 0 −I

¦
¨ = T

∗, has the properties T
2 = identity on Hb and (4.7)

(i)

T : D(Ab)
onto
−−→ D(A∗

b) T = T
−1 : D(A∗

b)
onto
−−→ D(Ab)

T D(Ab) = D(A∗
b), T D(A∗

b) = D(Ab) (4.8)

(ii)

T Ab = A
∗
bT = A

∗
bT = (T Ab)

∗ on D(Ab)

Ab = T
−1

A
∗
bT on D(Ab) (similarity)

and T Ab is self adjoint with domain D(Ab) (4.9)

(iii)

(Abx, x)Hb
= (A∗

bx∗, x∗)Hb
,∀x ∈ D(Ab) and x∗ = T x ∈ D(A∗

b)

(4.10a)

Re(Abx, x)Hb
= Re(A∗

bx∗, x∗)Hb
,∀x ∈ D(Ab) and x∗ = T x ∈ D(A∗

b)

(4.10b)

(iv) If λ is an eigenvalue of Ab with corresponding eigenvector e

Abe = λe 0 �= e ∈ D(Ab) (4.11)

then applying T on both sides and recalling T Abe = A∗
bT e by (4.9) yields

A
∗
b(T e) = λ(T e) (4.12)

and λ is and eigenvalue of A∗
b with corresponding eigenvector (T e). And conversely.

It follows that if λ is not an eigenvalue of Ab, λ /∈ σp(Ab), then it is not an eigenvalue

of A∗
b either, λ /∈ σp(A

∗
b), thus λ /∈ σr (Ab), the residual spectrum of Ab [29].

As a consequence of Propositions 4.3 and 3.1, we have:

Proposition 4.4 Let b = 0, b = 1. The operator A∗
b in (4.1), with domain D(A∗

b)

defined by Proposition 4.1 is dissipative on the space Hb defined in (1.2): for

[v∗
1 , v∗

2 , f ∗] ∈ D(A∗
b) ⊂ Hb, we have

Re

»
½A

∗
b

£
¥

v∗
1

v∗
2

f ∗

¦
¨ ,

£
¥

v∗
1

v∗
2

f ∗

¦
¨
¿
Á

Hb

= −

�

�s

|∇v∗
2 |2 d�s −

�

� f

|∇ f ∗|2d� f , (4.13)
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Hence Ab and A∗
b are the generators of s.c ( C0 ) semigroups eAbt and eA∗

b t of

contractions on the finite energy space Hb.

For the last statement we recall in [27, Corollary 4.4, p 15] or in [6, Theorem 4.3.3,

p 188]. Proposition 4.4 can also be shown directly from A∗
b in (4.1), Proposition 4.2.

Remark 4.1 Trivially, each operator Ab=1 and A∗
b=1 is a generator of a s.c (non-

contraction) semigroup eAb=1t and eA∗
b=1t on the space Hb=0, each being on such

space a bounded perturbation of Ab=0 or A∗
b=0, respectively. Similarly, the analyticity

of eAb=0t and eA∗
b=0t on Hb=0 (Theorem 1.3(i)) implies at once analyticity of eAb=1t

and eA∗
b=1t on Hb=0 as well. We shall however mostly focus on the contraction case:

Ab=0 and A∗
b=0 on Hb=0; and Ab=1 and A∗

b=1 on Hb=1.

Remark 4.2 Orientation on the spectral analysis of the imaginary axis for both the

operators Ab and its adjoint A∗
b on Hb. For [v1, v2, f ] ∈ D(Ab) ⊂ Hb and ω ∈ R,

let by (2.3)

Ab

£
¥

v1

v2

f

¦
¨ =

£
¥

v2

"(v1 + v2) − bv1

" f − ∇π

¦
¨ = iω

£
¥

v1

v2

f

¦
¨ (4.14)

so that,

Re

»
½Ab

£
¥

v1

v2

f

¦
¨ ,

£
¥

v1

v2

f

¦
¨
¿
Á

Hb

= Re

⎧
⎪«
⎪¬

(iω)

������

v1

v2

f

������

2

Hb

«
⎪¬
⎪­

= −

�

�s

|∇v2|
2d� f −

�

� f

|∇ f |2d� f = 0. (4.15)

so that ∇v2 ≡ 0 in �s , ∇ f ≡ 0 in � f , hence f ≡ 0 in � f , since f |"s ≡ 0

by (2.8); hence ∇π ≡ 0 and π = const = −k in � f ; finally, v2 ≡ 0 in �s ,

since v2|"s = f |"s = 0 by (2.5).Thus, so far, as a consequence of dissipativity of

Ab on Hb, we have {v2 = 0, f = 0}. Next, (4.14) implies v2 = (iω)v1, hence

v1 ≡ 0 if ω �= 0. We conclude that: the points (iω) are not eigenvalues of Ab on

Hb, b = 0, 1, 0 �= ω ∈ R: iω /∈ σp(Ab). Similarly the dissipativity identity (4.13)

for the adjoint operator A∗
b in (4.1) will likewise yield that: the points (iω) are not

eigenvalues of A∗
b, 0 �= ω ∈ R, b = 0, 1. Hence by [29], the points (iω), 0 �= ω ∈ R,

are not in the residual spectrum of Ab on Hb : (iω) /∈ σr (Ab), ω ∈ R\{0}. When

ω = 0 (the origin) as to the corresponding first component v1, the conclusion is more

complex and depends on the geometrical conditions of the domain �s (see Remark

5.1 below).

(i1) If b = 0 and
�
"s

ν d"s �= 0, then the point λ = 0 is not an eigenvalue of

Ab=0 on Hb=0 (Proposition 5.1(a)), nor is an eigenvalue of the adjoint operator A∗
b=0

on Hb=0, so that 0 /∈ σr (Ab=0), the residual spectrum of Ab=0 [[29], P 282]. In

fact, for b = 0 and
�
"s

ν d"s �= 0, the point λ = 0 is in the resolvent set of Ab=0:

0 ∈ ρ(Ab=0) on Hb=0(Proposition 5.2). More conclusively, iR ∈ ρ(Ab=0) if b = 0

and
�
"s

ν d"s �= 0 (Theorem 6.1).
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(i2) On the other hand, if b = 0 and
�
"s

ν d"s = 0, then λ = 0 is an eigenvalue

of Ab=0 on Hb=0 as well as of A∗
b=0 on Hb=0 , with a one dimensional common

eigenspace, explicitly identified (Proposition 5.1(b)). One then works on the space
�Hb=0 = Hb=0\[Null(Ab=0)] of co-dimension one in Hb=0, Eq (5.4), which is

invariant for both eAb=0t and eA∗
b=0t (Proposition 5.4). One has, 0 ∈ ρ(�Ab=0), where

�Ab=0 = Ab=0| �Hb=0
(Proposition 5.3). More conclusively, iR ∈ ρ(�Ab=0) if b = 0

and
�
"s

ν d"s = 0 ( Theorem 7.1, Corollary 7.1).

(i i1) If b = 1, the the point λ = 0 is an eigenvalue of the operator Ab=1 and

A∗
b=1 on Hb=1 with, again a one-dimensional common eigenspace, explicitly identified

(Theorem 1.5). Again, one then works on the space �Hb=1 = Hb=1\[Null(Ab=1] of

co-dimesion one in (1.18), which is invariant for both eAb=1t and eA∗
b=1t . Then the

origin λ = 0 belongs to the resolvent set of �Ab=1 = Ab=1| �Hb=1
(Theorem 1.5).

Proposition 4.5 Let b = 0 , b = 1

(i) The point −1 belongs neither to the point spectrum of Ab, −1 /∈ σp(Ab), nor

to the point spectrum of A∗
b, −1 /∈ σp(A

∗
b); thus [[29], P 282], −1 does not belongs

to the residual spectrum of Ab, −1 /∈ σr (Ab). See also Proposition 4.3(iv).

(ii) In fact, −1 belongs to the continuous spectrum of Ab, as well as of A∗
b: −1 ∈

σc(Ab),−1 ∈ σc(A
∗
b).

Proof We consider only the operator Ab, as the analysis for A∗
b is similar.

(i) For [v1, v2, f ] ∈ D(Ab) defined by Proposition 2.1, let via (2.3),

(I + Ab)

£
¥

v1

v2

f

¦
¨ =

£
¥

v1 + v2

"(v1 + v2) − bv1 + v2

" f + f − ∇π

¦
¨ = 0 (4.16)

Thus, [v1 + v2] = 0 and then "(0) − bv1 + v2 = 0. This means v2 = 0 for b = 0

and [−v1 + v2] = 0 for b = 1. In both cases,v1 = v2 = 0 in (L2(�s))
d . Hence,

v2|"s = 0 = f |"S
by (2.5). Thus the third equation of (4.16) yields the problem

⎧
«
¬

" f + f − ∇π = 0 in � f

div f ≡ 0 in � f

f |" f
= 0; f |"s = 0 on ∂� f

(4.17)

and (4.17) implies f = 0 in L2(� f ). Thus [v1, v2, f ] = 0 and −1 /∈ σp(Ab). In fact,

taking the inner product of the first equation with f yields

(" f , f )� f
+ � f �2 =

������������

∂� f

∂ f

∂ν
· f̄ d(∂� f ) − �∇ f �2 + � f �2

=

�

� f

∇π · f̄ d� f =
�����������

∂� f

π f̄ · ν d(∂� f )

−

�

� f

π�
�

��
div f̄ d� f = 0 (4.18)
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Thus, f = 0 as claimed. The proof of −1 /∈ σp(A
∗
b) is exactly the same using now

(4.1) for A∗
b.

(ii) We shall actually show that −1 ∈ σp,app(Ab), the approximate point spectrum

of Ab. In fact after step (i) we are left with alternative that either −1 ∈ ρ(Ab) or

else −1 ∈ σc(Ab). We then recall the general result that [29]: σc(Ab) ∪ σp(Ab) ⊂

σp,app(Ab) ⊂ σ(Ab). Then, in fact −1 ∈ σc(Ab) Thus, we shall construct a sequence

xn = {v1n, v2n, fn} in D(Ab) ⊂ Hb, such that

�xn�Hb
≡ 1, yet (I + Ab)xn → 0 in Hb.

To this end, returning to the expression of (I + Ab)xn given by (4.16), we pick in

D(Ab), two smooth sequences {v1n} ∈ (H2(�s))
d , {v2n} ∈ (H2(�s))

d such that,

⎧
⎪«
⎪¬

v1n → 0 and v2n → 0 in (H2(�s))
d , thus

"(v1n + v2n) − bv1n + v2n → 0 in (L2(�s))
d

v2n|"s → 0 in (H3/2("s))
d ,

∂(v1n+v2n)
∂ν

���
"s

→ 0 in (H1/2("s))
d .

(4.19)

Next, pick corresponding sequences { fn} ∈ (H2(� f ))
d , πn ∈ H1(� f ), with

{v1n, v2n, fn} ∈ D(Ab), such that fn → 0 in (H2(� f ))
d , πn → 0 in H1(� f ),

div fn ≡ 0 in (L2(� f ))
d yielding therefore the problem

⎧
«
¬

" fn + fn − ∇πn = rn → 0 in (L2(� f ))
d

div fn ≡ 0 in (L2(� f ))
d

fn|" f
= 0; fn|"s = v2n|"s → 0 in (H3/2("s))

d

(4.20)

It then follows from [30] repeated also in [17, Chapter 2, Appendix A] that

� fn�(H2(� f ))
d +�πn�H1(� f )

≤ C
�
�rn�(L2(� f ))

d + �v2n�(H3/2("s ))d

�
→ 0 as n → ∞

(4.21)

Hence fn → 0 in (H2(� f ))
d . We have therefore obtained a nonzero sequence

{v1n, v2n, fn} ∈ D(Ab) such that

(I + Ab)

£
¥

v1n

v2n

fn

¦
¨ → 0 in Hb. (4.22)

Finally, we normalize the sequence xn = {v1n, v2n, f } to obtain �xn�Hb
≡ 1. Thus

−1 ∈ σp,app(Ab). ��

One can also give a direct proof that −1 ∈ σc(Ab) in the style of [24], See [26].

Part II: Results valid for b = 0: Ab=0 on Hb=0
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5 Spectral Analysis for b = 0

Remark 5.1 In the present Sect. 5 as well as in Sect. 6, we shall consider two cases

regarding the domain of �s ; that is,

whether (a)

�

"s

ν d"s �= 0 or whether (b)

�

"s

ν d"s = 0 (5.1)

where ν is the unit normal vector to "s . Given �s , which case arises depends on its

geometrical conditions. Case (5.1)(a) was first pointed out in [21, p 66], where it was

taken as an assumption. In this paper we shall allow each case to hold true. As noted

in [21, p 66], the geometric condition (5.1)(a) is “generically true. One is always

able to achieve this condition by a sufficiently small pertubation of the boundary "s .

Condition (5.1) is related to [a property of ] symmetry (or lack thereof) of the domain

�S”. For instance, (5.1)(b) holds true if �s is a 2-D disk or a 3-D ball, or "s is a 2-D

ellipse, or a 3-D ellipsoid, etc. As noted, the generic condition (5.1)(a) is an assumption

for the main strong stability result of the non-linear fluid–structure interaction model

(with no viscoelastic damping) [21, Theorem 1.4, p 66] . In our present paper, the

two geometrical cases in (5.1) have implication on the spectral properties of the point

λ = 0 for Ab=0 or A∗
b=0 on Hb=0. We also refer to [20,22].

Proposition 5.1 Let b = 0

(a) Under the assumption
�
"s

ν d"s �= 0, the origin λ = 0 is not an eigenvalue

of the operator Ab=0 in (2.3) on Hb=0; nor of the operator A∗
b=0 in (4.1) (in line

with Proposition 4.3(iv)). Thus, 0 /∈ σp(Ab=0) and 0 /∈ σr (Ab=0). [The susequent

Proposition 5.2 will establish that 0 ∈ ρ(Ab=0)].

(b) If
�
"s

ν d"s = 0, then λ = 0 is an eigenvalue of the operator Ab=0 as well

as of the adjoint A∗
b=0 on the space Hb=0 with corresponding common eigenvector

e0 = [η0, 0, 0], where η0 ∈ (H1(�s)/R)d is the unique solution of the following

elliptic problem:

"η0 = 0 in �s ,
∂η0

∂ν

���
"s

= ν on "s η0 = N0ν (5.2)

N = Neumann map, so that the null space of Ab=0 in Hb=0 is one dimensional

Null(Ab=0) = span{[η0, 0, 0]} in Hb=0. (5.3)

Moreover, when we define the space of codimension 1:

�Hb=0 ≡ [Null(Ab=0)]
⊥ = Hb=0\[Null(Ab=0)] = [Null(A∗

b=0)]
⊥ (5.4)

=

⎧
«
¬

£
¥

v1

v2

f

¦
¨ ∈ Hb=0 :

»
½
£
¥

v1

v2

f

¦
¨ ,

£
¥

η0

0

0

¦
¨
¿
Á

Hb=0

= (v1, η0)(H1(�s )/R)d = 0

«
¬
­ .

(5.5)
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then the following characterization of �Hb=0 holds true.

�Hb=0 =

"
[v1, v2, f ] ∈ Hb=0 :

�

"s

v1 · ν d"s = 0

"
. (5.6)

Proof (a) For [v1, v2, f ] ∈ D(Ab=0), let via (2.3) with b = 0

Ab=0

£
¥

v1

v2

f

¦
¨ =

£
¥

v2

"(v1 + v2)

" f − ∇π

¦
¨ = 0 �⇒ v2 = 0 in �s , v2|"s = f |"s = 0 on "s .

(5.7)

by the B.C in (2.5). Next, recalling (2.8)

⎧
⎪«
⎪¬

" f − ∇π = 0 in � f (5.8a)

div f ≡ 0 in � f ; �⇒ f ≡ 0 in � f , π ≡ constant = c in � f (5.8b)

f |" f
= 0; f |"s = 0 on ∂� f (5.8c)

as it follows by taking the inner product of Eq (5.8a) with f and using Greens’s

theorems

�����������

∂� f

∂ f

∂ν
· f̄ d(∂� f ) −

�

� f

|∇ f |2 d� f −

�

����������
�

∂� f

π f̄ · ν d(∂� f ) −

�

� f

π�
���

div f̄ d� f

�

= 0 (5.9)

and f ≡ 0 in � f by the B.C f |"s = 0. Since v2 ≡ 0 in �s by (5.7) and f ≡ 0

by (5.8), we obtain from Eqn (5.7) that v1 solves the following elliptic problem and

corresponding B.C by (2.5):

⎧
«
¬

"v1 = 0 in �s (5.10a)

∂v1

∂ν

���
"s

= −πν = cν on "s (5.10b)

When we take the inner product of Eqn (5.10a) with 1, considering inward unit

normal vector ν we obtain

0 =

�

�s

"v1 · 1 d�s = −

�

"s

∂v1

∂ν
d"s − (∇v1,∇1) =

�

"s

∂v1

∂ν
= −c

�

"s

ν d"s

(5.11)

Since
�
"s

ν d"s �= 0 (under present assumption), we conclude c = 0, which implies

v1 ≡ constant �⇒ v1 = 0 in (H1(�s)/R)d . Hence [v1, v2, f ] ≡ 0. Part (a) is

established.

(b) If
�
"s

ν d"s = 0, according to (5.11), c can be any constant. For each c �= 0 ∈

R,there exists a unique solution v1(c) �= 0 of problem (5.10) and the map cν → v1(c)

is linear, allows us to write v1(c) = cη0 with η0 solution of (5.10) for c = 1;that is

of (5.2).Thus , in this case, the eigenvector of the eigenvalue 0 ∈ σp(Ab=0) on Hb=0

123



Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1821–S1863 S1841

is c[η0, 0, 0] as claimed in (5.3). For the next claim under the definition (5.4), we

compute via Green’s Theorem, with ν inward, via (5.2)

(v1, η0)(H1(�s )/R)d = (∇v1,∇η0)(L2(�s ))d

= −(v1,∇η0 · ν)(L2("s ))d − (v1, div∇η0)(L2(�s ))d = −(v1, ν)(L2("s ))d

after recalling ∇η0 · ν = ∂η0

∂ν
= ν and div ∇η0 = "η0 = 0 from (5.2) with ν inward

in "s Thus we have

(v1, η0)(H1(�s )/R)d = 0 if and only if (v1, ν)(L2("s ))d = 0. (5.12)

��

The improvement of Proposition 5.1 part (a) is the following.

Proposition 5.2 Let b = 0. Under the assumption
�
"s

ν d"s �= 0, the point λ = 0 is

in the resolvent set ρ(Ab=0) of the operatorAb=0 . Hence there is a small open disk

Sr0 in the complex plane centered at the origin and of small radius r0 > 0, that is all

contained in ρ(Ab=0) : Sr0 ⊂ ρ(Ab=0).

Remark 5.1 For b = 0 and
�
"s

ν d"s �= 0, Theorem 6.1 establishes that iR ∈

ρ(Ab=0).

Proof Let [v∗
1 , v∗

2 , f ] ∈ Hb=0 be arbitary. We seek [v1, v2, f ] ∈ D(Ab=0) which

solves via (2.3) for b = 0

Ab=0

£
¥

v1

v2

f

¦
¨ =

£
¥

v2

"(v1 + v2)

" f − ∇π

¦
¨ =

£
¥

v∗
1

v∗
2

f ∗

¦
¨ ∈ Hb=0 (5.13)

Then (5.13) yields

v2 = v∗
1 ∈ (H1(�s)/R)d ; (5.14)

Since the data [v∗
1 , v∗

2 , f ∗] is drawn from Hb=0, then it satisfies the compatibility

condition
�
"s

v∗
1 · ν d"s = 0 in (2.9). As a consequence, there exists a unique solution

pair { f , π} ∈ (H1(� f ))
d × L2(� f )/R which solves the f -problem

⎧
⎪«
⎪¬

" f − ∇π = f ∗ ∈ H̃ f ⊂ (L2(� f ))
d; (5.15a)

div f ≡ 0 in � f ; (5.15b)

f |" f
= 0; f |"s = v2|"s = v∗

1 |"s ∈ (H
1
2 ("s))

d , (5.15c)

continuously in terms of the data f ∗, v∗
1 |"s , see [30, Thm. 2.4]. Thus, we have recov-

ered the third component f (and the pressure π modulo a constant). Let π henceforth

in this proof denote a definite pressure solution. For any constant C0, then π + C0 is
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also a viable pressure for the Stokes problem in (5.15a). We remark that by [3, p 436

],[26, Lemma A.3, Appendix A], we have

�
∂ f

∂ν

����
∂� f

, π |∂� f

�
∈ (H− 1

2 ("s))
d × (H− 1

2 ("s))
d , (5.16)

continuously in terms of the data. Having recovered so far v2 = v∗
1 in (5.14) and

uniquely { f , π} in (H1(� f ))
d × (L2(� f ))

d/R, we seek finally to recover also the

first component v1, as well as the unique constant C0 defined by the coupled problem

(5.15). To this end, we invoke v1− problem in (5.13) with v2 = v∗
1 , then we obtain

"(v1 + v∗
1) = v∗

2 in �s (5.17)

To recover v1 explicitly, from (5.17) we define the following two operators.

⎧
⎪⎪«
⎪⎪¬

−AN0φ = "φ in �s ; D(AN0) =

"
φ ∈ (H2(�s)/R)d :

∂φ

∂ν
= 0 on "s

"

(5.18a)

AN0 : D(AN0) ⊂ (L2(�s))
d → (L2(�s))

d; (5.18b)

⎧
⎪«
⎪¬

N0μ = ψ ⇐⇒

"
"ψ = 0 in �s and

∂ψ

∂ν
= μ

"
(5.19a)

N0 ∈ L(H− 1
2 ("s))

d , (H1(�s)/R)d) (5.19b)

for the Neumann map N0. Thus, as usual, via (5.19) and (2.5),

"

�
(v1 + v∗

1) − N0

!�
∂ f

∂ν
− (π + C0)ν

�

"s

!�
= v∗

2 in �s (5.20)

or by (5.18a):

− AN0

�
(v1 + v∗

1) − N0

!�
∂ f

∂ν
− (π + C0)ν

�

"s

!�
= v∗

2 ∈ (L2(�s))
d (5.21)

Hence v1 is given by

v1 = −A−1
N0

v∗
2 + N0

�
∂ f

∂ν
− (π + C0)ν

�

"s

− v∗
1 ∈ (H1(�s)/R)d (5.22)
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in terms of the data (via the prior recovery of { f , π}) where C0 is still unknown. To

identify C0 in (5.22), we consider following integral on "s of the Eq. (5.22).

�

"s

∂v1

∂ν
d"s =

�

"s

∂

�
−A−1

N0
v∗

2 + N0

�
∂ f
∂ν

− (π + C0)ν

�
"s

− v∗
1

�

∂ν
d"s (5.23)

Hence, we can recover C0, since ∂ N0ν
∂ν

= ν by definition, see (5.19)

C0 =

�
"s

∂v1
∂ν

d"s −
�
"s

∂

�
−A−1

N0
v∗

2+N0

�
∂ f
∂ν

−πν

�
"s

�

∂ν
d"s +

�
"s

∂v∗
1

∂ν
d"s

−
�
"s

ν d"s

(5.24)

where
�
"s

ν d"s �= 0 by assumption. ��

The improvement of the Proposition 5.1 part (b) is the following.

Proposition 5.3 Let b = 0. Under the assumption
�
"s

ν d"s = 0, the point λ = 0 is in

the resolvent set ρ(�Ab=0) of the operator �Ab=0 = Ab=0| �Hb=0
. Hence there is a small

open disk Sr0 in the complex plane centered at the origin and of small radius r0 > 0,

that is all contained in ρ( �Ab=0) : Sr0 ⊂ ρ( �Ab=0) as in Proposition 5.2.

Proof Let [v∗
1 , v∗

2 , f ] ∈ �Hb=0 be arbitary. We seek [v1, v2, f ] ∈ D(�Ab=0) ∩ �Hb=0

which solves via (2.3) for b = 0

�Ab=0

£
¥

v1

v2

f

¦
¨ =

£
¥

v2

"(v1 + v2)

" f − ∇π

¦
¨ =

£
¥

v∗
1

v∗
2

f ∗

¦
¨ ∈ �Hb=0 (5.25)

Then (5.25) yields

v2 = v∗
1 ∈ (H1(�s)/R)d ; (5.26)

then the proof of this proposition follows as the proof of the Proposition 5.2, until the

point in (5.22) where v1 is explicitly written in terms of data, but the constant C0 is

still unknown.

v1 = −A−1
N0

v∗
2 + N0

�
∂ f

∂ν
− (π + C0)ν

�

"s

− v∗
1 ∈ (H1(�s)/R)d (5.27)

To identify C0 in (5.27), we impose on v1 defined by (5.27) the required compatibility

condition (5.6) in order to force [v1, v2, f ] ∈ �Hb=0, that is
�
"s

v1 · ν d"s = 0, as

required

�

"s

v1·ν d"s =

�

"s

�
−A−1

N0
v∗

2 + N0

�
∂ f

∂ν
− πν

�

"s

�
·ν d"s−C0

�

"s

N0ν·ν d"s = 0

(5.28)
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since
�
"s

v∗
1 · ν d"s = 0 by (2.9). Next we recall by the definition ofN0 in (5.19a),

we have that N0ν = η0, where η0 satisfies the elliptic problem (5.2). Integrating

("η0, η0) = 0 from (5.2) yields by Green’s First Theorem and η0 = N0ν.

−

�

γs

η0 · ν d"s = −

�

"S

N0ν · ν d"s = −

�

"s

∂η0

∂ν
· η0 d"s = �∇η0�

2 �= 0 (5.29)

Using (5.29) in (5.28) yields the sought-after constant C0:

C0 =

�
"s

�
−A−1

N0
v∗

2 + N0

�
∂ f
∂ν

− πν

�
"s

�
· ν d"s

�
"s

N0ν · ν d"s

(5.30)

where the denominator is different from zero by (5.29). ��

Under asuumption
�
"s

ν d"s = 0: Invariance of factor space �Ab=0 = [Null

(Ab=0)]
⊥ = [Null(A∗

b=0)]
⊥ under the action of semigroup eAb=0t and eA∗

b=0t

This dynamic property relies on the key feature that Ab=0 and its adjoint A∗
b=0

have a common finite dimensional null-space. In fact, one dimensional space spanned

by the vector [η0, 0, 0] in (5.3).

Proposition 5.4 The subspace �Hb=0 = [Null(Ab=0)]
⊥ = [Null(A∗

b=0)]
⊥ of co-

dimesion 1 in Hb=0 is invariant under the action of the semigroups eAb=0t and eA∗
b=0t .

Proof By Proposition 5.1(b)

£
¥

v1

v2

f

¦
¨ ∈ Hb=0\[Null(Ab=0)] = Hb=0\[Null(A∗

b=0)]

⇐⇒

»
½
£
¥

v1

v2

f

¦
¨ ,

£
¥

η0

0

0

¦
¨
¿
Á

Hb=0

= 0 ⇐⇒ (v1, η0)(H1(�s )/R)d = 0 (5.31)

Of course, the common eigenspace [Null(Ab=0)] = [Null(A∗
b=0)] spanned by the

eigenvector [η0, 0, 0] corresponding to the eigenvalue λ = 0, is invariant under both

the semigroup eAb=0t and its adjoint eA∗
b=0t .

eAb=1t

£
¥

η0

0

0

¦
¨ = e0t

£
¥

η0

0

0

¦
¨ = eA∗

b=1t

£
¥

η0

0

0

¦
¨ , t ≥ 0 (5.32)
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Thus, the factor space Hb=0\[Null(Ab=0)] is invariant under the action of the semi-

group eAb=0t :

£
¥

v1

v2

f

¦
¨ ∈ Hb=0\[Null(Ab=0)] �⇒ eAb=0t

£
¥

v1

v2

f

¦
¨ ∈ Hb=0\[Null(Ab=0)],

(5.33)

since

»
½eAb=0t

£
¥

v1

v2

f

¦
¨ ,

£
¥

η0

0

0

¦
¨
¿
Á

Hb=0

=

»
½
£
¥

v1

v2

f

¦
¨ , eA∗

b=0t

£
¥

η0

0

0

¦
¨
¿
Á

Hb=0

=

»
½
£
¥

v1

v2

f

¦
¨ ,

£
¥

η0

0

0

¦
¨
¿
Á

Hb=0

= 0 (5.34)

by (5.31) and (5.32). Thus, the implication (5.33) follows. Similarly the factor space

Hb=0\[Null(A∗
b=1)] = Hb=0\[Null(Ab=0)] is invariant under the action of the

adjoint semigroup eA∗
b=0t . ��

Corollary 5.5 Let
�
"s

ν d"s = 0 as in Propositions 5.1(b), 5.3 and 5.4.

(i) The operators �Ab=0 = Ab=0| �Hb=0
and �A∗

b=0 = A∗
b=0| �Hb=0

generate s.c

contraction semigroups on the space �Hb=0 = [Null(Ab=0)]
⊥ = [Null(A∗

b=0)]
⊥,

invariant for them.

(ii) The operators Ab=0 and A∗
b=0 generate s.c contraction semigroups eAb=0t and

eA∗
b=0t on the space Hb=0 in (1.2b) (recovering Proposition 4.4).

Proof (i) (dissipativity) �Ab=0, respectively �A∗
b=0, are dissipative on �Hb=0, a fortiori

from the dissipativity of Ab=0 and A∗
b=0 on Hb=0 (Propositions 3.1 and 4.4)

Also, maximality follows from Proposition 5.3, as 0 ∈ ρ(�Ab=0), 0 ∈ ρ( �A∗
b=0).

(ii) If x ∈ Hb=0, then x = x | �Hb=0
+ ae0, and eAb=0t x = e

�Ab=0t x | �Hb=0
+ ae0

is the s.c contraction semigroup generated by Ab=0 on Hb=0, via part (i), where

e0 = [η0, 0, 0] is the eigenvector of Ab=0 corresponding to its eigenvalue λ = 0 and

so e
�Ab=0t e0 = e0t e0 = e0. ��

The next result will be much extended in Theorem 6.1 in Sect. 6. The proof of this

significant special case here is simpler. It will suffice to consider C
− = {λ ∈ C :

Reλ ≤ 0} by dissipativity of Ab=0 and A∗
b=0.

Proposition 5.6 Let b = 0 in (1.1c).

(i) in C
−, consider the closed disk Sr=1(x0), centered at the point x0 = {−1, 0}

and of radius r = 1. Let Sr=1
c
(x0) be its open complement in C

− = {λ : Re λ < 0}.

Then the operator Ab=0 in (2.3), (with b = 0) on Hb=0 has no eigenvalue λ+ iω with

ω �= 0 in Sr=1
c
(x0) =

�
(α, ω) : α2 + 2α + ω2 > 0

�
.The same conclusion holds for

the adjoint operator A∗
b=0. Hence [29, P 282], the points λ + iω,ω �= 0 in Sc

r=1(x0)

do not belong to the residual spectrum σr (Ab=0) of Ab=0 on Hb=0.
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(ii) The points λ = α + iω with ω �= 0 on the circumference of Sr=1(x0), i.e

satisfying α2 + 2α + ω2 = 0 may, or may not, belong to the point spectrum of

Ab=0, depending on geometrical conditions on �s . More preciesly, such points λ =

α+iω,ω �= 0 do, respectively do not, belong to σp(Ab=0) according to as whether the

over-determined elliptic problem (5.48) below do not, respectively do, imply v1 ≡ 0

on �s:

{α,ω}, ω �= 0 in circumference of Sr=1

�
∈ σp(Ab=0)

/∈ σp(Ab=0)

iff (5.49) implies

�
v1 �≡ 0 in �s

v1 ≡ 0 in �s .

Proof Step 1 Consider the eigenvalue/eigenvector equation for [v1, v2, f ] ∈ D(Ab=0)

for b = 0 in (2.3)

Ab=0

£
¥

v1

v2

f

¦
¨ =

£
¥

v2

"(v1 + v2)

" f − ∇π

¦
¨ = (α + iω)

£
¥

v1

v2

f

¦
¨ (5.35)

where we are taking α < 0, ω ∈ R; or explicitly,

⎧
«
¬

v2 = (α + iω)v1, (5.36a)

"(v1 + v2) = (α + iω)v2, (5.36b)

" f − ∇π = (α + iω) f . (5.36c)

Step 2 Multiply Eq. (5.36c) by f̄ integrate over � f , use Green’s First Theorem on�
� f

" f f̄ d� f along with the B.C. f |" f
= 0 in D(Ab=0) and use Divergence formula

on −
�
� f

∇π f̄ d� f with ∂� f ≡ "s ∩ " f recalling div f ≡ 0 in � f , to obtain ( all

norms are L2-norms on their respective domains)

�

� f

(" f − ∇π) · f̄ d� f =

�

"s

�
∂ f

∂ν
− πν

�
· f̄ d"s − ||∇ f ||2 = (α + iω)|| f ||2

(5.37)

Next, multiply Eq.(5.36b) by v̄2, integrate over �s , use the Green’s First Theorem on�
�s

"(v1 + v2)v̄2 d�s , with unit normal vector ν inward to �s to obtain by use the

B.C (2.5).

("(v1 + v2), v2) = −

�

"s

�
∂ f

∂ν
− πν

�
· f̄ d"s − ||∇v2||

2 − (α − iω)||∇v1||
2

= (α + iω)||v2||
2 (5.38)
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To obtain (5.38), we have also invoked ∇v2 = (α + iω)∇v1 from (5.36a) on the term

(∇v1,∇v2) = (α− iω)�∇v1�
2. Sum up (5.37) and (5.38) to obtain, after cancellation

of the boundary terms

0 = ||∇v2||
2+||∇ f ||2+α

�
||∇v1||

2+||v2||
2+|| f ||2

�
+iω

�
||v2||

2+|| f ||2−||∇v1||
2
�

(5.39)

Step 3 Taking the Real part and the Imaginary part of identity (5.39) yields (recall

α < 0)

||∇v2||
2 + ||∇ f ||2 + α

�
||∇v1||

2 + ||v2||
2 + || f ||2

�
= 0 (5.40)

ω

�
||v2||

2 + || f ||2 − ||∇v1||
2
�

= 0 (5.41)

(recall that we are taking α < 0). For ω �= 0, we obtain from (5.41) and (5.36a),

�∇v1�
2 = �v2�

2 + � f �2 ; �∇v2�
2 = (α2 + ω2)�∇v1�

2, ω �= 0 (5.42)

which substituted in (5.40) yields

[ω2 + α2 + 2α]�∇v1�
2 + �∇ f �2 = 0, ω �= 0. (5.43)

First case Assume that

ω2 + α2 + 2α > 0; i.e, λ = α + iω,ω �= 0 lies outside the closed disk Sr=1(x0)

(5.44)

with center x0 = {−1, 0} and radius r = 1. Then identity (5.43) implies

⎧
⎪«
⎪¬

�∇v1|� = 0, �∇ f � = 0, hence f = constant = 0 in H̃ f , since f |" f
= 0

v1 = constant = 0 in (H1(�s)/R)d (b = 0) (5.45a)

v2 = (α + iω)v1 = 0 in (L2(�s))
d , α + iω, α < 0 (5.45b)

In conclusion, we obtain v1 = v2 = f = 0 in Hb=0 for λ = α + iω, α < 0, ω �= 0

outside the closed disk Sr=1(x0). Proposition 5.6 is established for Ab=0. A similar

argument applies to A∗
b=0.

Second case. Assume next that λ = α + iω, still ω �= 0, lies on the circumference of

the disk Sr=1(x0); that is, it satisfies

α2 + 2α + ω2 = 0 (5.46)

Then Eq. (5.43) gives �∇ f � ≡ 0, hence f ≡ 0 since f |" f
= 0, thus π = const = c,

hence via (5.36a)

∂ f

∂ν

����
"s

≡ 0, 0 ≡ f
��
"s

= v2

��
"s

, v1

��
"s

≡ 0. (5.47)
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Returning to (5.36b) augmented by the relevant B.C in (2.5), we obtain via (5.36a)

and (5.47)

⎧
⎪⎪«
⎪⎪¬

"v1 =
(α+iω)2

(1+α)+iω
v1

[(1+α)+iω]
∂v1

∂ν

���
"s

=
� ∂ f

∂ν
− πν

�
"s

=−cν

or

⎧
⎪⎪«
⎪⎪¬

"v1 =2αv1 in �s

v1|"s =0,
∂v1

∂ν

���
"s

=−cν

(5.48a)

since (α+iω)2

(1+α)+iω
= 2α by replaced by use of (5.46). The over-determined problem in

(5.48) is precisely the one reported in [17, (2.4.4) p. 67, (2.4.13) p. 70, Appendix

D],[35]. For c = 0, then v1 = 0, hence v2 = 0 by (5.36a) in which case the point

(α, ω) on the circumference (5.46) is not an eigenvalue. For c �= 0 and otherwise

arbitrary the question arises as to whether the over-determined problem (5.48) implies

v1 = 0. The answer depends on geometrical conditions of �s . For instance if �s is a

disk (d = 2) or a sphere (d = 3), the answer is negative, [17, R.T, Appendix D],[35] :

and thus {v1 �= 0, 0, 0} is an eigenvector of Ab=0. On the other hand, many classes of

geometries of �s are given in [17,35] for which the over-determined problem (5.48)

implies v1 = 0, hence v2 = 0 and then {α,ω} satisfying (5.46) is not an eigenvalue.

On the other hand, there are geometries for which non-zero solution v1 �= 0 exists

that satisfies the over-determined problem (5.48). They include spheres(d = 2, 3).

See [17, Appendix D], [35].

One can also rerun the steps in the proof of Proportion 5.6 constructively as a

necessary condition argument, assuming that (α + iω) is an eigenvalue of Ab=0 on

Hb=0.

Proposition 5.7 Let b = 0. Let α + iω, α < 0, ω �= 0, be an eigenvalue of Ab=0 in

Hb=0, with normalized eigenvector {v1, v2, f }, �∇v1�
2 + �v2�

2 + � f �2 = 1. Then:

(i)

�∇v1�
2 =

1

2
, �v2�

2 + � f �2 =
1

2
, α2 + 2α + (ω2 + 2�∇ f �2) = 0, ω �= 0

(5.49)

α = −1 ±

�
1 − (ω2 + 2�∇ f �2), � f �2 ≤ C2

p�∇ f �2 ≤
C2

p

2
(1 − ω2)

(5.50)

where C p= Poicare constant of �s; (ii)

α2 + ω2 + 2α ≤ 0, i.e the point(α, ω) ∈ Sr=1(x0), ω �= 0 (5.51)

Proof (i) For ω �= 0, (5.41) yields �∇v1�
2+�v2�

2+� f �2−2�v1�
2 = 1−2�∇v1�

2 =

0, as desired. Then (5.40) with �∇v2�
2 = (α2 + ω2)�∇v1�

2 = (α2 + ω2) 1
2

and

normalized eigenvector yields (5.49), (5.50) (Compare with (3.12)). Moreover (5.43)

becomes [ω2+α2+2α]+2�∇ f �2 = 0. If ∇ f �= 0 (general case), then ω2+α2+2α <

0 and (α, ω), ω �= 0 belongs to the open disk Sr=1(x0). It may happen that ∇ f ≡ 0,

in which case (α, ω), ω �= 0, belongs to the boundary of such disk. If ∇ f ≡ 0 in � f ,
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hence f ≡ 0 in � f and π = constant = k �⇒ v2|"s = f |"s = 0, the v2 problem

becomes via (5.36a),(5.36b)

⎧
⎪⎪«
⎪⎪¬

"v2 =
(α + iω)2

(1 + α) + iω
v2 (5.52a)

v2|"s = 0,
∂v2

∂ν

���
"s

=
α + iω

(1 + α) + iω
kν (5.52b)

For many geometries of �s , other than �s= a disk or a ball, problem (5.52) implies

v2 ≡ 0, hence v1 ≡ 0 via (5.36a), violating the assumption of {v1, v2, f } being an

eigenvector. ��

In the next result we find exactly the (negative) eigenvalues α of the operator Ab=0

on Hb=0, at least when �s is a 2-D disk or a 3-D ball.

Proposition 5.8 Let b = 0. Let �s be a 2-D disk or 3-D ball. Let

"φn = −μnφn in �s, φn|"s = 0, n = 1, 2, . . . (5.53)

be the eigenvalue-vector problem of the Dirichlet Laplacian on �s , where 0 < μn �

+∞. Consider the eigenvalue-vector problem (5.35) for the operator Ab=0 on Hb=0

with focus on ω = 0 (i.e on the negative real axis): Then, the eigenvalues of problem

(5.35) with ω = 0 are solutions of

α2
n + μnαn + μn = 0 (5.54)

(so that α+
n + α−

n = −μn;α+
n α−

n = μn) and are given by

α+,−
n = −1 ±

�
1 − 4μ2

n = real negative, save possibly for finitely many n. (5.55)

We have that α+
n � −1 monotonically, where −1 ∈ σc(Ab) by Proposition

4.5 and α−
n → −∞ monotonically. The corresponding normalized eigenvector is

{v2n/αn, v2n, 0}, �v2n�2 ≡
α2

n

1+α2
n

, where v2n is identified in the proof below.

Proof The eigenvalue-vector problem (5.35) with focus on ω ≡ 0 can be rewritten as

⎧
⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪¬

"v2 =
α2

1 + α
v2 in �s; " f − ∇π = α f in � f (5.56a)

div f ≡ 0 in � f (5.56b)

v2|"s = f |"s f |" f
= 0 ,

∂v2

∂ν

���
"s

=
α

1 + α

�
∂ f

∂ν
− πν

�

"s

(5.56c)
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Choose f ≡ 0 in � f as a solution of (5.56a–b) in f , hence π ≡ constant = k in

� f , so that the v2 problem becomes

⎧
⎪⎪«
⎪⎪¬

"v2 =
α2

1 + α
v2 in �s (5.57a)

v2|"s = 0,
∂v2

∂ν

���
"s

=
α

1 + α
kν

���
"s

. (5.57b)

Since �s= 2-D or 3-D ball, the overdetermined problem with k �= 0 admits a non-

zero solution v2 �= 0, which in fact, for each scalar component of problem (5.57) can

be computed explicitly. [17,35]. Then by (5.36a), we have v1 �= 0 as well. On the other

hand by (5.57a) and the zero Dirichlet condition v2|"s = 0 we can appeal to (5.53) to

obtain
α2

n

1+αn
= −μn, n = 1, 2, . . . so that (5.54) follows. We are thus in the situation

of [10, Lemma A.1 with α = 1, 2ρ = 1], so that the two branches α+
n and α−

n behave

as stated in Proposition 5.8. Save for finitely many n, the values α
+,−
n are real negative

and the stated form of the eigenvector e
+,−
n = {v2n/α

+,−
n , v2n, 0} follows. ��

6 Case b = 0 and
∫

0s
�d0s �= 0. Analyticity, Location of the Spectrum

�(Ab=0)Within the SetK of the OperatorAb=0 on the SpaceHb=0,
Exponential Decay

6.1 Orientation

For the clarity of presentation, this section is devoted to the operator Ab=0 over the

space Hb=0 under the generic assumption
�
"s

ν d"s �= 0. The case
�
"s

ν d"s = 0 will

be handled in Sect. 7 via Proposition 5.3.

(a) We have already established that the operator Ab=0, with the action as in (2.3),

possesses the following two features: (i) it is the generator of a s.c. (C0-) semigroup

eAb=0t of contractions on the finite energy space Hb=0 in (1.2a) (Proposition 4.4); (ii)

Under the assumption
�
"s

ν d"s �= 0, 0 ∈ ρ(Ab=0), the resolvent set of Ab=0, and

hence there is a small open disk Sr0 in the complex plane centered at the origin and

of small radius r0 > 0, that is all contained in ρ(Ab=0) : Sr0 ⊂ ρ(Ab=0).

Accordingly, to conclude that eAb=0t is, moreover, analytic on Hb=0, all we need to

show [23, Thm. 3E.3, p. 334] is that (Ab=0 has no spectrum on the imaginary axis,

and):

�R(iω,Ab=0)�L(Hb=0) ≤
C

|ω|
, ∀ |ω| ≥ some ω0 > 0. (6.1)

Then, the proof in [23, p. 335] establishes that, in fact, for a suitable constant M > 0,

we have

�R(λ,Ab=0)�L(Hb=0) ≤
M

|λ|
, λ �= 0, ∀ λ ∈ �c

θ1
, (6.2a)

�c
θ1

=
�
λ ∈ C : 0 ≤ |arg λ| ≤

π

2
+ θ1

�
, (6.2b)
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Fig. 3 The Triangular Sector

�θ1
and its Complement �c

θ1
.

The Disk Sr0 ⊂ ρ(Ab=0)

Σθ1

Σ
c
θ1

θ1 Sr0

where one may take the angle θ1, 0 < θ1 < π
2

, such that tan
�

π
2

− θ1

�
= C

ρ
, with C

the constant in (6.1), for an arbitrary fixed constant 0 < ρ < 1. We seek the ‘largest’

possible angle θ1 < π
2

, at least after moving the vertex of the triangular sector in a

nearby point. In our case, this nearby point will be x0 = {−1, 0}; in which case, with

vertex on x0 = {−1, 0} the angle θ1 will be arbitrarily close to
π

2
. In this section, we

shall establish a resolvent estimate such as (6.2a) for all λ ∈ C\K, namely

⎧
⎪«
⎪¬

�λR(λ,Ab=0)�L(Hb=0) ≤ const, ∀ λ ∈ C\K; (6.3a)

equivalently (since Ab=0 R(λ,Ab=0) = −I + λR(λ,Ab=0))

�Ab=0 R(λ,Ab=0)�L(Hb=0) ≤ const, ∀ λ ∈ C\K; (6.3b)

K being the infinite key-shaped set defined in (6.7b) , see Fig. 2, whereby, moving

the vertex of the triangular sector of analyticity to concide with the point x0 = {−1, 0},

the corresponding angle θ1 is arbitrarily close to
π

2
(Fig. 3).

(b) Then (6.3b) and Sr0 ⊂ ρ(Ab=0) will imply that the real part of the spectrum

σ(Ab=0) of Ab=0 is confined inside the negative axis (−∞,−r̄0], 0 < r̄0 < r0. The

direct passage from (6.3) to (6.2) is exhibited in Remark 6.2 below. Moreover, our

proof below, once specialized with Re λ = 0, λ = iω, ω ∈ R, will yield (through

simplified computations in Remark 6.1 below) the establishment of inequality (6.1)

for any ω0 > 0. This result, combined with Sr0 ⊂ ρ(Ab=0) will allow us to conclude

that

�R(iω,Ab=0)�L(H) ≤ const, ω ∈ R. (6.4)

Then, (6.4) will imply [28] uniform stabilization of the analytic semigroup eAb=0t

on Hb=0: there exists constants M ≥ 1, δ > 0 such that

�eAb=0t�L(Hb=0) ≤ Me−δt , t ≥ 0, (6.5a)

and hence that

Re σ(Ab=0) ∈ (−∞;−δ]. (6.5b)

In conclusion, the present section establishes three results: (a) analyticity of the

semigroup eAb=0t ; (b) location of the spectrum σ(Ab=0) of Ab=0, in Theorem 6.1,

(i)–(iii); and (c) exponential stability (6.5a) in Theorem 6.1(iv). Analyticity and expo-

nential stability require the assumption
�
"s

ν d"s �= 0. The case
�
"s

ν d"s = 0 is

analyzed in Sect. 7, still for b = 0.
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6.2 Main Result for b = 0 and
∫

0s
� d0s �= 0

Theorem 6.1 Let b = 0. (i) The generator Ab=0 in (2.3) of the s.c. contraction semi-

group eAb=0t asserted by Proposition 4.4 satisfies the following resolvent condition

for ω ∈ R

�(iωI − Ab=0)
−1�L(Hb=0) = �R(iω,Ab=0)�L(Hb=0) ≤

c

|ω|
.

∀ |ω| ≥ some ω0 > 0 arbitrarily small, (6.6)

Hence, under the assumption
�
"s

ν d"s �= 0, the s.c. semigroup eAb=0t is analytic on

the finite energy space Hb=0, t > 0, [23, Thm 3E.3, p 334].

(ii) More precisely, the resolvent operator R(λ,Ab=0) = (λI − Ab=0)
−1 of the

generator Ab=0 in (2.3), satisfies the following estimate

�R(λ,Ab=0)�L(Hb=0) ≤
C

|λ|
, for all λ ∈ C\K (6.7a)

where K is the (infinite) key-shaped set defined in Fig. 2

K ≡ (−∞,−2) ∪ {Sr=1(x0)\Sr0} (6.7b)

with Sr=1(x0) the open disk centered at the point x0 = {−1, 0} and of radius 1; and

Sr0 defined in Proposition 5.2.

(iii) The spectrum σ(Ab=0) of Ab=0 is confined within the set K; in particular

Re σ(Ab=0) ⊂ (−∞,−δ], for some δ > 0. (6.8)

(iv) Complementing (6.6) we have that the resolvent R(·,Ab=0) is uniformly

bounded on the imaginary axis

�R(iω,Ab=0)�L(Hb=0) ≤ c, ∀ω ∈ R. (6.9)

Hence, the s.c. analytic semigroup eAb=0t is uniformly exponentially stable on Hb=0:

there exist constants M ≥ 1, δ > 0, such that [28]

�eAb=0t�L(Hb=0) ≤ Me−δt , t ≥ 0. (6.10)

Step 1 Given {v∗
1 , v∗

2 , f ∗} ∈ Hb=0, constants α < 0 and ω ∈ R\{0}, we seek to solve

the equation

((α + iω)I − Ab=0)

£
¥

v1

v2

f

¦
¨ =

£
¥

v∗
1

v∗
2

f ∗

¦
¨ (6.11)
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in terms of {v1, v2, f } ∈ D(Ab=0) uniquely, and establish, in fact, the analyticity

estimate (6.3b). For λ = α + iω ∈ ρ(Ab=0), we have via (2.3)

£
¥

v1

v2

f

¦
¨ = R(λ,Ab=0)

£
¥

v∗
1

v∗
2

f ∗

¦
¨ ; Ab=0 R(λ,Ab=0)

£
¥

v∗
1

v∗
2

f ∗

¦
¨ = Ab=0

£
¥

v1

v2

f

¦
¨

=

£
¥

v2

"(v1 + v2)

" f − ∇π

¦
¨ . (6.12)

We see that the analyticity condition (6.3a) on Hb=0 is equivalent to showing the

following estimates (all norms are L2-norms on the respective domains): there exists

a constant C > 0 such that

⎧
⎪⎪⎪⎪«
⎪⎪⎪⎪¬

�∇v2�
2
�s

+ �"(v1 + v2)�
2
�s

+ �(" f − ∇π)�2
� f

≤ C{�∇v∗
1�2

�s
+ �v∗

2�2
�s

+� f ∗�2
� f

}

for all λ = α + iω in ρ(Ab=0)\K; that is, outside the set K defined in (6.7b)

(Fig. 2)

(6.13)

This is what we shall show below. Explicitly (6.11) is rewritten via (2.3) as

⎧
⎪«
⎪¬

(α + iω)v1 − v2 = v∗
1 ∈ (H1(�s)/R)d; (6.14a)

(α + iω)v2 − "(v1 + v2) = v∗
2 ∈ (L2(�s))

d; (6.14b)

(α + iω) f − (" f − ∇π) = f ∗ ∈ H̃ f ⊂ (L2(� f ))
d (6.14c)

Step 2 Henceforth, to streamline the notation, � · �, respectively (·, ·) will denote

the L2(·)-norm, respectively the complex inner product on either the set �s or the set

� f . No ambiguity is likely to occur. We take the L2(� f )-inner product of Eq. (6.14c)

against (" f −∇π), use Green’s First Theorem to evaluate
�
� f

f " f d� f , recall the

B.C. f |" f
= 0 (2.8), in D(Ab=0) and obtain

(α + iω)

�

"s

f ·
∂ f

∂ν
d"s − (α + iω)�∇ f �2 − (α + iω)( f ,∇π)

−�(" f − ∇π)�2 = ( f ∗, (" f − ∇π)).

(α + iω)

�

"s

f ·
∂ f

∂ν
d"s − (α + iω)�∇ f �2 − (α + iω)

×

�

"s

π̄ f · ν d"s − �(" f − ∇π)�2 = ( f ∗," f − ∇π). (6.15)

by using Green’sTheorem with div f ≡ 0. Similarly, we take the (L2(�s))
d -

inner product of (6.14b) against "(v1 + v2), use Green’s First Theorem to evaluate
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�
�s

v2"(v1+v2)d�s , recalling that the normal vector ν is inward w.r.t. �s , and obtain

−(α + iω)

�

"s

v2 ·
∂(v1+v2)

∂ν
d"s −(α+iω)(∇v2,∇(v1 + v2)) − �"(v1 + v2)�

2

= (v∗
2 ,"(v1 + v2)). (6.16)

Invoking now the B.C. f |"s = v2|"s and ∂(v1+v2)
∂ν

����
"s

=
�

∂ f
∂ν

−πν

�����
"s

in D(Ab=0)

(see (2.5)), we rewrite (6.16) as

−(α + iω)

�

"s

f ·
�∂ f

∂ν
− π̄ν

�
d"s − (α + iω)�∇v2�

2 − (α + iω)(∇v2,∇v1)

−�"(v1 + v2)�
2

= (v∗
2 ,"(v1 + v2)). (6.17)

Summing up (6.15) and (6.17) yields after a cancellation of the boundary terms

−(α + iω)[�∇v2�
2 + �∇ f �2]

= �"(v1 + v2)�
2 + �(" f − ∇π)�2 + (α + iω)(∇v2,∇v1)

+(v∗
2 ,"(v1 + v2)) + ( f ∗," f − ∇π) (6.18)

We now return to (6.14a), multiply by (α − iω) �= 0, and rewrite the result as

v1 = [(α − iω)/(α2 + ω2)][v2 + v∗
1 ], which introduced in the third term on the RHS

of (6.18) yields

(α + iω)(∇v2,∇v1) =
(α + iω)2

α2 + ω2
[�∇v2�

2 + (∇v2,∇v∗
1)] (6.19a)

=
(α2 − ω2) + i2αω

α2 + ω2
�∇v2�

2 +
(α + iω)2

α2 + ω2
(∇v2,∇v∗

1)

(6.19b)

Substituting (6.19b) into (6.18), we obtain the final identity

�"(v1 + v2)�
2 + �(" f − ∇π)�2 + i

"
ω

��
1 +

2α

α2 + ω2

�
�∇v2�

2 + �∇ f �2

�"

=

�
−α +

ω2 − α2

α2 + ω2

�
�∇v2�

2 − α�∇ f �2 − (v∗
2 ,"(v1 + v2))

− ( f ∗," f − ∇π) −
(α + iω)2

α2 + ω2
(∇v2,∇v∗

1) (6.20)
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Step 3 We take the real part of identity (6.20), thus obtaining the new identity:

�"(v1 + v2)�
2 + �(" f − ∇π)�2

=

�
−α +

ω2 − α2

α2 + ω2

�
�∇v2�

2 − α�∇ f �2

− Re

"
(α + iω)2

α2 + ω2
(∇v2,∇v∗

1)

"

− Re(v∗
2 ,"(v1 + v2)) − Re( f ∗," f − ∇π) (6.21)

We estimate the RHS of (6.21), noticing that
|ω2 − α2|

α2 + ω2
≤ 1,

|(α + iω)2|

α2 + ω2
≡ 1,

thus obtaining the inequality

�"(v1 + v2)�
2 + �(" f − ∇π)�2 ≤ (|α| + 1 + �1)�∇v2�

2 + |α|�∇ f �2

+ �

�
�"(v1 + v2)�

2 + �(" f − ∇π)�2
�

+ C�1,�{�∇v∗
1�2 + �v∗

2�2 + � f ∗�2}

or

(1 − �)

�
�"(v1 + v2)�

2 + �(" f − ∇π)�2
�

≤ (|α| + 1 + �1) �∇v2�
2 + |α|�∇ f �2

+ C�1,�{�∇v∗
1�2 + �v∗

2�2 + � f ∗�2}. (6.22)

We next take |α| > r1 > 0, with r1 fixed but arbitrarily small, 1 + �1 < 1
r1

|α| and

setting k0 = 1 + 1
r1

, we obtain

(1 − �)

�
�"(v1 + v2)�

2 + �(" f − ∇π)�2
�

≤ k0|α| �∇v2�
2 + |α|�∇ f �2

+ C�1,�{�∇v∗
1�2 + �v∗

2�2 + � f ∗�2}. (6.23)

Next, with � > 0 chosen above, we take �|α| < |ω|, thereby rewriting (6.23)

(1 − �)

�
�"(v1 + v2)�

2 +�(" f − ∇π)�2
�

≤
1

�

�
�k0|α|�∇v2�

2 + �|α|�∇ f �2
�

+ C�1,�{�∇v∗
1�2 + �v∗

2�2 + � f ∗�2}

≤
1

�

�
k0|ω|�∇v2�

2 + |ω|�∇ f �2
�

+ C�1,�{�∇v∗
1�2 + �v∗

2�2 + � f ∗�2}

(6.24)

Step 4 We now take the imaginary part of identity (6.20), thus obtaining the new

identity

ω

"�
1 +

2α

α2 + ω2

�
�∇v2�

2 + �∇ f �2

"
= − Im

"
(α + iω)2

α2 + ω2
(∇v2,∇v∗

1)

"

− Im{(v∗
2 ,"(v1 + v2)) + ( f ∗, (" f − ∇π))}. (6.25)
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With � > 0 arbitrary assume that

⎧
«
¬

0 < � <

�
1 +

2α

α2 + ω2

�

that is, that the point {α,ω} lies outside the disk (α + 1)2 + ω2 = 1

(6.26)

Then taking the absolute value of both sides of (6.25), using (6.26) as well as

|(α + iω)2|

α2 + ω2
≡ 1, we obtain

�|ω|�∇v2�
2 + |ω|�∇ f �2 ≤

�2

2
�∇v2�

2 + C�2�∇v∗
1�2

+ �3
�
�"(v1 + v2)�

2 + �(" f − ∇π)�2
�

+ C�3

�
�v∗

2�2 + � f ∗�2
�

(6.27)

We then obtain from (6.27)

0 <
�

2
|ω|�∇v2�

2 + |ω|�∇ f �2 ≤

�
�|ω| −

�2

2

�
�∇v2�

2 + |ω|�∇ f �2

≤ �3
�
�"(v1 + v2)�

2 + �(" f − ∇π)�2
�

+ C�

�
�∇v∗

1�2 + �v∗
2�2 + � f ∗�2

�

(6.28)

where the LHS of (6.28) is valid for all |ω| s.t.

�

2
|ω| ≤ �|ω| −

�2

2
; or 0 < � < |ω|. (6.29)

From (6.28), we obtain

|ω|�∇ f �2 ≤ �3
�
�"(v1 + v2)�

2 + �(" f − ∇π)�2
�

+ C�

�
�∇v∗

1�2 + �v∗
2�2 + � f ∗�2

�
(6.30)

and

|ω|�∇v2�
2 ≤ 2�2

�
�"(v1 + v2)�

2 + �(" f − ∇π)�2
�

+C�

�
�∇v∗

1�2 + �v∗
2�2 + � f ∗�2

�
(6.31)

Now invoke (6.30) and (6.31) in (6.24), we obtain
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(1 − �)

�
�"(v1 + v2)�

2 + �(" f − ∇π)�2
�

≤
1

�

�
2k0�

2
�
�"(v1 + v2)�

2 + �(" f − ∇π)�2
��

}

+
1

�

�
�3
�
�"(v1 + v2)�

2 + �(" f − ∇π)�2
��

+C�1,�{�∇v∗
1�2 + �v∗

2�2 + � f ∗�2}. (6.32)

Finally (6.32) implies

�"(v1 + v2)�
2 + �(" f − ∇π)�2 ≤ C�,�1,�2

�
�∇v∗

1�2 + �v∗
2�2 + � f ∗�2

�
; (6.33)

Since [1 − � − 2k0� − �2] > 0 by restricting further � to have 2�
r1

< �2 with �2

arbitrarily small, so that recalling 2�k0 = 2� + 2�
r1

arbitrarily small.

Step 5 We return to estimate (6.28). On its LHS, we drop the positive term

|ω|�∇ f �2,while for this term we use: �2

2
r1 ≤ �2

2
|α| ≤ �

2
|ω| according to prior selec-

tions �|α| ≤ |ω| and |α| > r1. On the RHS of (6.28), we invoke (6.33). We thus obtain,

as desired

�∇v2�
2 ≤ C�,�1,�2

�
�∇v∗

1�2 + �v∗
2�2 + � f ∗�2

�
(6.34)

Step 6 Summing up (6.33) and (6.34) we finally obtain

�
�"(v1 + v2)�

2 + �(" f − ∇π)�2 + �∇v2�
2
�

≤ const�,r1

�
�∇v∗

1�2 + �v∗
2�2 + � f ∗�2

�
(6.35)

for all points {α,ω} satisfying (6.26) and (6.29) aslo the conditions �|α| ≤ |ω|. Since

� > 0 in these two relations is arbitrary, we conclude that (estimate (6.33) and hence

the conclusive) estimate (6.35) hold(s) true for all points {α,ω}, α < 0, outside the

disk: (α + 1)2 + ω2 = 1, with ω �= 0. This is precisely the conclusion (6.3b); that

is, conclusion (6.7aa). We have thus proved parts (ii), (iii) (location of the spectrum

σ(Ab=0)) of Theorem 6.1 . ��

Remark 6.1 (Specialization to the case α = 0) We specialize the above computations

to the case α = 0, λ = iω, to obtain:

(a) The counterpart of identity (6.21) (real part) is

�"(v1 + v2)�
2 + �(" f − ∇π)�2 = �∇v2�

2−Re(∇v2,∇v∗
1)

− Re(v∗
2 ,"(v1 + v2)) − Re( f ∗, (" f − ∇π)),

(6.36)

which then yields

(1 − �)

�
�"(v1 + v2)�

2 + �(" f − ∇π)�2
�

123



S1858 Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1821–S1863

≤ (1 + �)�∇v2�
2 + C�

�
�∇v∗

1�2 + �v∗
2�2 + � f ∗�2

�
, (6.37)

the counterpart of estimate (6.22).

(b) The counterpart of identity (6.25) (imaginary part) is

ω

�
�∇v2�

2 + �∇ f �2
�
=−Im(∇v2,∇v∗

1)−Im(v∗
2 ,"(v1+v2))− Im( f ∗, (" f −∇π)).

(6.38)

Thus, (6.38) implies the estimate

�
�∇v2�

2 + �∇ f �2
�

≤

�
�

|ω| − �

��
�"(v1 + v2)�

2 + �(" f − ∇π)�2
�

+

�
C�

|ω| − �

��
�∇v∗

1�2 + �v∗
2�2 + � f ∗�2

�
. (6.39)

(c) Use of inequality (6.39) into the RHS of inequality (6.37) for the ∇v2-term

yields

�
1 − � −

�(1 + �)

|ω| − �

� �
�"(v1 + v2)�

2 + �(" f − ∇π)�2
�

≤

�
C� +

(1 + �)C�

|ω| − �

��
�∇v∗

1�2 + �v∗
2)�2 + � f ∗�2

�
, (6.40)

or taking |ω|−� ≥ ω0 > 0, hence
1

2
<

�
1 − � −

�(1 + �)

ω0

�
<

�
1 − � −

�(1 + �)

|ω| − �

�
:

�"(v1 + v2)�
2 + �" f − ∇π�2 ≤ const�,ω0

�
�∇v∗

1�2 + �v∗
2)�2 + � f ∗�2

�
,

|ω| > ω0 > 0 (6.41)

which is the counterpart of (6.33).

(d) Finally, returning to (6.39) and using here (6.33), we obtain

�∇v2�
2 + �∇ f �2 ≤ const�,ω0

�
�∇v∗

1�2 + �v∗
2)�2 + � f ∗�2

�
, (6.42)

which is the counterpart of estimate (6.34).

(e) Summing up (6.41) and (6.42), we obtain the counterpart of (6.35) = (6.3b) by

(6.12), (6.13) for α = 0, i.e.

⎧
⎪⎪«
⎪⎪¬

�Ab=0 R(iω,Ab=0)�L(Hb=0) ≤ C, ∀ |ω| ≥ ω0 > 0 arbitrary, equivalently

(6.43a)

�R(iω,Ab=0)�L(Hb=0) ≤
C

|ω|
, ∀ |ω| ≥ ω0 > 0 arbitrary, (6.43b)

Theorem 6.1 (i) is established.
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Remark 6.2 (direct passage from (6.3) to (6.2)) Returning to Eqns. (6.14a–c), we obtain

for λ = α + iω:

|λ| �∇v1� − �∇v∗
2� ≤ �λ∇v1 − ∇v∗

1� = �∇v2�; (6.44)

|λ| �v2� − �v∗
2� ≤ �λv2 − v∗

2� = �"(v1 + v2)�; (6.45)

|λ| � f � − � f ∗� ≤ �λ f − f ∗� = �(" f − ∇π)�. (6.46)

Hence, summing up,

|λ|[�∇v1� + �v2� + � f �] ≤ �∇v2� + �"(v1 + v2)� + �(" f − ∇π)�

+ �∇v∗
2� + �v∗

2� + � f ∗�

(by (6.35)) ≤ C
�
�∇v∗

1� + �v∗
2� + � f ∗�

�
, (6.47)

for all λ satisfying (6.26) and (6.29). In short, in view of (6.11) and (1.2a), estimate

(6.47) says that

������

£
¥

v1

v2

h

¦
¨
������

H

=

������
R(λ,Ab=0)

£
¥

v∗
1

v∗
2

h∗

¦
¨
������

H

≤
Cω0

|λ|

������

£
¥

v∗
1

v∗
2

h∗

¦
¨
������

H

, (6.48)

for all such λ = α + iω. Theorem 6.1(ii), Eq. (6.7a), is proved.

6.3 Exponential Stability

The resolvent bound (6.43b) combined with A
−1
b=0 ∈ L(Hb=0) , hence Sr0 ⊂ ρ(Ab=0)

by Proposition 2.1, Fig. 3 allows one to conclude that the resolvent is uniformly

bounded on the imaginary axis iR:

�R(iω,Ab=0)�L(Hb=0) ≤ const, (6.49)

as claimed in (6.9). Hence, [28] the s.c. analytic semigroup eAb=0t is, moreover. (uni-

formly) exponentially bounded: There exist constants M ≥ 1, δ > 0, such that

�eAb=0t�L(Hb=0) ≤ Me−δt , t ≥ 0, any δ > r0 (6.50)

by (6.8). This proves Theorem 6.1(iii), Eq. (6.10). Theorem 6.1 is fully proved.

7 Case b = 0,
∫

0s
�d0s = 0: Analyticity, Location of the Spectrum

Within the SetK (Within the SetK ∪ {0}) of the Operator Âb=0 on

the Space Ĥb=0 (of the OperatorAb=0 on the Space Ĥb=0)

We consider at first the operator �Ab=0 on the space �Hb=0 = [Null(Ab=0)]
⊥, as

claimed in (5.4). We rely on Propositions 5.1(b), 5.3, 5.4 and Corollary 5.5.
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Theorem 7.1 Let b = 0 and
�

b=0 ν d"s = 0. (i) The perfect counterpart of Theorem

6.1 on analyticity, location of spectrum and uniform stability holds true for the operator
�Ab=0 on the space �Hb=0.

Proof The proof is exactly verbatim the one of Theroem 6.1 after replacing the oper-

ator Ab=0 on the space Hb=0 with the operator �Ab=0 in �Hb=0, taking into account

Propositions 5.1(b), 5.3, 5.4 and Corollary 5.5. ��

Corollary 7.1 Let b = 0 and
�
"s

ν d"s = 0. The operator Ab=0 generates a s.c

analytic semigroup eAb=0t on the space Hb=0. As to its spectrum, one has σ(Ab=0) =

σ(�Ab=0) ∪ {0} on Hb=0, where σ(�Ab=0) in �Hb=0 is centered in the set K in 6.7b.

Proof As in the proof of Corollary 5.5, if x ∈ Hb=0, then x = x̂ +ae0, with x̂ ∈ �Hb=0

and the eigenvector defined in Proposition (5.1)(b). Then eAb=0t x = e
�Ab=0t x̂ + ae0

defines the analytic contraction semigroup on Hb=0. ��

8 b = 1. Proof of Theorem 1.6

Proof Step 1 We already know that eAb=1t is a s.c analytic semigroup on Hb=0, as

on this space the generator Ab=1 is an innocuous bounded perturbation of the of the

analytic semigroup generator Ab=0 on Hb=0.

Step 2 Via definition (2.3), we obtain

Ab=1

£
¥

c

0

0

¦
¨ =

£
¥

0

−c

−∇π

¦
¨ =

£
¥

0

−c

0

¦
¨ ;

A
2
b=1

£
¥

c

0

0

¦
¨ = Ab=1

£
¥

0

−c

0

¦
¨ =

£
¥

−c

0

−∇π

¦
¨ = −

£
¥

c

0

0

¦
¨ (8.1)

recalling from (2.4a) that in the present case π satisfies:

"π = 0 in � f , π |"s = 0,
∂π

∂ν

���
"s

= 0, so that π ≡ 0 in � f ,

and similarly for π∗ via (4.2). Thus −1 ∈ σp(A
2
b=1), with eigenvector � = [c, 0, 0].

[Recall that via Theorem 1.5(i), 0 ∈ σp(Ab=1), so we cannot deduce from (8.1) that

Ab=1� = i�, which in fact is incorrect]

Step 3 It follows from the RHS of (8.1) that

A
2n
b=1

£
¥

c

0

0

¦
¨ = (−1)n

£
¥

c

0

0

¦
¨ , n = 1, 2, 3 . . . , i .e (−1)n ∈ σp(A

2n
b=1) (8.2)
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while (8.2) for n = 1, and the LHS of (8.1) imply

A
3
b=1

£
¥

c

0

0

¦
¨ = Ab=1A

2
b=1

£
¥

c

0

0

¦
¨ = −Ab=1

£
¥

c

0

0

¦
¨ =

£
¥

0

c

0

¦
¨ (8.3)

Similarly, (8.2) for n = 2 and the LHS of (8.1) yield

A
5
b=1

£
¥

c

0

0

¦
¨ = Ab=1A

4
b=1

£
¥

c

0

0

¦
¨ = Ab=1

£
¥

c

0

0

¦
¨ =

£
¥

0

−c

0

¦
¨ ; A

7
b=1

£
¥

c

0

0

¦
¨ =

£
¥

0

c

0

¦
¨

(8.4)

In general

A
2n−1
b=1

£
¥

c

0

0

¦
¨ = (−1)n

£
¥

0

c

0

¦
¨ , n = 1, 2, 3 . . . (8.5)

Thus, invoking (8.5) and (8.1), we obtain, as desired in (1.21):

eAb=1t

£
¥

c

0

0

¦
¨ =

∞�

k=0

tk

k!
A

k
b=1

£
¥

c

0

0

¦
¨ (8.6)

=

∞�

n=1

t2n−1

(2n − 1)!
A

2n−1
b=1

£
¥

c

0

0

¦
¨+

∞�

n=0

t2n

(2n)!
A

2n
b=1

£
¥

c

0

0

¦
¨ (8.7)

=

∞�

n=1

(−1)n t2n−1

(2n − 1)!

£
¥

0

c

0

¦
¨+

∞�

n=0

(−1)n t2n

(2n)!

£
¥

c

0

0

¦
¨ (8.8)

=

£
¥

0

c

0

¦
¨ sin t +

£
¥

c

0

0

¦
¨ cos t . (8.9)

��
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