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Indoor spaces contain several classes of persistent organic chemicals, including per- and polyfluoroalkyl sub-
stances (PFAS), polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and organochlorine
pesticides (OCPs). However, concentrations of PFAS and persistent chemical mixtures and their associations with
building characteristics on college campuses are understudied. We collected dust from 43 nonresidential spaces
on four U.S. college campuses in 2016 and evaluated associations of room characteristics (carpeting, upholstered
furniture, and years since last furnished) with dust concentrations of PFAS, PBDEs, PCBs, and OCPs. Nine PFAS,
twelve PBDEs, two PCBs, and four OCPs were each detected in at least 75% of the spaces, including several
chemicals (e.g, DDT) that have been banned for decades. Concentrations were correlated within and, in some
cases, between chemical classes. Wall-to-wall carpeting (compared to rooms without wall-to-wall carpeting) was
associated with higher concentrations of six individual PFAS and a mixture of PFAS, and the number of pieces of
upholstered furniture was associated with increased concentrations of a mixture of PBDEs. These findings
indicate that carpeting and furniture are current sources of PFAS and PBDEs, respectively. Building and finish
materials should be carefully selected to avoid exposure to persistent chemicals.

1. Introduction

Persistent organic chemicals are characterized by resistance to
environmental degradation, long half-lives, and the potential to bio-
accumulate (United Nations Environment Programme, 2017). Per- and
polyfluoroalkyl substances (PFAS), polybrominated diphenyl ethers
(PBDEs), polychlorinated biphenyls (PCBs), and organochlorine pesti-
cides (OCPs) are examples of chemical classes with these properties,
each of which has been used widely in industry and consumer products
(Gliige et al., 2020; California Environmental Protection Agency, 2019;
Fernandez et al., 2021; U.S. Environmental Protection Agency, 2017a; b;
U.S. Environmental Protection Agency, 2021a). Human exposure to
these chemical classes is common in the U.S. (U.S. Centers for Disease
Control and Prevention, 2019; U.S. Environmental Protection Agency,
2013), and previous research has identified a wide range of correlates of
biomarker (Caspersen et al., 2016; Bradman et al., 2007; Sagiv et al.,
2015; Horton et al., 2013) and dust concentrations for these compounds
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(Whitehead et al., 2014a; Rudel et al., 2008; Allen et al., 2008; Bradman
et al.,, 2014; Rodgers et al., 2020). Indoor environments remain an
important microenvironment for exposure to each of these persistent
classes. Prior research has characterized concentrations of these chem-
ical classes in dust in homes and in public spaces, including occupational
settings (e.g., offices), fire stations, clothing stores, classrooms, and at
childcare facilities (Zheng et al., 2020; Wu et al., 2020; D’Hollander
etal.,, 2010; Harrad et al., 2019; Wu et al., 2019; Hall et al., 2020; Young
et al., 2021a; Goosey and Harrad, 2011). However, few studies have
examined characteristics of institutional spaces, such as universities,
associated with dust concentrations for these chemicals. Further, to our
knowledge, no prior study has identified correlates of mixtures of dust
concentrations of PFAS, PBDEs, PCBs, and OCPs. Given the U.S. popu-
lation is widely exposed to each of these persistent chemical classes,
some of which have similar toxicological modes of action, identifying
correlates of a mixture of PFAS, PBDEs, PCBs, and OCPs in dust can help
identify intervention strategies to reduce exposures.
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PFAS are a class of over 9000 highly persistent chemicals (U.S.
Environmental Protection Agency, 2021b) that are used for performance
properties in consumer products, including carpets and furniture (Gliige
et al., 2020; California Environmental Protection Agency, 2019). Their
widespread use has led to ubiquitous human exposure (U.S. Centers for
Disease Control and Prevention, 2019), where concentrations of various
PFAS, including perfluorooctanesulfonic acid (PFOS), perfluorooctanoic
acid (PFOA), and others, have been detected in homes, cars, childcare
facilities, offices, universities, and other indoor environments (Wu et al.,
2020; Haug et al., 2011; Fraser et al., 2013; Knobeloch et al., 2012;
Kubwabo et al., 2005; Karaskova et al., 2016; Gewurtz et al., 2009;
Young et al., 2020). Studies that sampled dust in public spaces, even
those that sampled dust more recently (e.g., 2014-2016) (Hall et al.,
2020), consistently measured detectable levels of many PFAS, including
those that have been phased-out, like PFOS and PFOA. These data un-
derscore the persistence of PFAS in indoor spaces. Several studies also
reported significantly higher PFAS in public spaces (e.g., fire stations,
classrooms, offices) than in homes (D’Hollander et al., 2010; Harrad
et al., 2019; Hall et al., 2020; Goosey and Harrad, 2011), suggesting
public spaces are important indoor microenvironments for exposure to
PFAS. Studies have found associations between PFAS levels in dust and
serum and certain products, such as carpeting (Wu et al., 2020) and
stain-resistant carpet or furniture (Boronow et al., 2019; Beesoon et al.,
2012). Both PFOS and PFOA, along with other PFAS, continue to be
detected in humans and in environmental samples years after their
respective phase-outs (De Silva et al., 2021). However, hundreds of
PFAS remain in active use in the U.S. and have failed to be systematically
regulated by the U.S. Environmental Protection Agency (EPA) (U.S. EPA,
2017), resulting in the potential for continued human exposure for years
to come.

Widespread exposure, even after phase-outs and regulatory action, is
not limited to PFAS. PCBs (IARC, 2016), PBDEs (U.S. Environmental
Protection Agency (EPA), 2016), and certain OCPs (U.S. Environmental
Protection Agency, 2013) have been banned from production in the U.S.;
however, these chemicals, some of which have been banned since the
1970s, continue to be found in indoor spaces (Rudel et al., 2003; Colt
et al., 2005; Hwang et al., 2008; Whitehead et al., 2014b) and in human
biomonitoring studies (U.S. Environmental Protection Agency, 2013;
Whitehead et al., 2015; Bjorvang et al., 2021; Malliari and Kalantzi,
2017). Each of these classes have similarly been used widely in industry
and in consumer products used indoors. PCBs, for example, were used in
an array of indoor applications, such as electronics, paints, and adhe-
sives (U.S. Environmental Protection Agency, 2021a). Contaminated
dust is a major source of exposure for PBDEs, which were used primarily
as flame retardants in furniture (Zota et al., 2008; Mitro et al., 2016).
OCPs, such as chlordane and dichlorodiphenyltrichloroethane (DDT),
were used indoors for termite and mosquito control, respectively, before
they were banned in the U.S. (Eskenazi et al., 2009; ATSDR, 2018).
Previous research has identified characteristics of indoor spaces asso-
ciated with concentrations of chemicals in these classes. For example,
presence of upholstered furniture, nap mats, and electronics have been
associated with dust concentrations of PBDEs (Allen et al., 2008; Brad-
man et al., 2014; Rodgers et al., 2020), home age with PCBs and OCPs
(Whitehead et al., 2014b), and flooring with PCBs (Rudel et al., 2008).

Persistent chemicals, including PFAS, but also PCBs, PBDEs, and
certain OCPs, do not readily degrade, leading to continued increasing
concentrations in the environment and therefore increasing possibility
of known and not-yet-known health impacts (Cousins et al., 2019a).
Breakdown of persistent chemicals may also lead to more toxic con-
stituents; for example, relatively stable fluoropolymers can degrade to
produce polyfluoroakyl acids (PFAAs), such as PFOA, which is linked to
adverse health outcomes (ATSDR, 2021). As classes, PFAS, PBDEs, PCBs,
and OCPs each contain chemicals or chemical groups listed on the
Stockholm Convention for meeting criteria on persistence, bio-
accumulation, long-range transport, and toxicity (United Nations Envi-
ronment Programme, 2017). A uniform estimate of persistence across
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diverse chemical classes is difficult to obtain due to limitations in the
applicability of current predictive models across a full range of chemical
structures (Environment and Chemicals, 2017). Moreover, degradation
of chemicals in environmental media such as soil or air may be different
than in the indoor environment, given that degradation or trans-
formation is slower indoors, and chemical fate indoors is largely deter-
mined by cleaning practices and air exchange (Shin et al., 2013). As a
result, the introduction of persistent chemicals to indoor spaces is likely
to have longer-lasting impacts than estimated by traditional degradation
studies.

Exposure to each of these chemical classes has been linked with
various human health outcomes. PFAS exposure, for example, has been
associated with ulcerative colitis, kidney and testicular cancers, immu-
nosuppression, and thyroid disease (Sunderland et al., 2019; Agency for
Toxic Substances and Disease Registry (ATSDR), 2018). PCBs and PBDEs
have both been linked with thyroid dysregulation (Allen et al., 2016;
Pessah et al., 2019; Curtis et al., 2019), endocrine disruption (Rodgers
et al., 2018; BuhaDjordjevic et al., 2020), and neurotoxicity (Pessah
et al., 2019; Dorman et al., 2018). OCP exposures have been associated
with cancer (Carcinogenicity of 1, 2015), neurotoxicity (Briz et al.,
2011), endocrine and immunological abnormalities (Mrema et al.,
2013), and multi-generational risk of breast cancer (Cohn et al., 2015).
Further, some chemicals in these classes have similar structures and
biological activity, such as endocrine disruption (Allen et al., 2016;
Rodgers et al., 2018; Kar et al., 2017; Bell, 2014; Mnif et al., 2011), and
several studies have reported hormonal activity of indoor dust extracts
containing several of these chemicals (Young et al., 2021b; Hamers
etal., 2020; Kassotis et al., 2019). Their similar structures and biological
mechanisms suggest that these chemicals may have additive or inter-
active health effects; for example, a mixture of PFAS was jointly asso-
ciated with decreasing infant thyroid hormones levels (Preston et al.,
2020), while a mixture of PFAS and PCBs was associated with decreased
birth weight (Zhuang et al., 2021). These studies underscore the
importance of identifying exposure to mixtures of these classes in indoor
environments.

We sought to characterize the presence of these four classes as a
mixture in indoor dust. Most exposure research has used a chemical-by-
chemical approach, and we aimed to advance the current understanding
of indoor exposures to these classes as a mixture. Several studies have
used dimension-reduction techniques to classify mixture profiles within
a chemical class in indoor spaces (Wu et al., 2010; Muenhor and Harrad,
2018; Zhang et al., 2011, 2016; Wang et al., 2013; Liu et al., 2011);
however, we are not aware of any study that has simultaneously
examined all four of these highly persistent classes in dust to identify
correlates of exposure. We evaluated potentially important correlates of
exposure with these chemicals on college campuses, because they tend
to furnish spaces uniformly and use consistent furnishings within each
space, which limits intra-space variability. These data can inform pur-
chasing decisions at institutions like universities, as well as provide in-
formation relevant to regulatory actions on persistent chemicals that
have the potential to affect exposures for years to come.

2. Methods
2.1. Sample collection

Trained staff collected 43 dust samples from nonresidential spaces on
four New England college campuses in Spring 2016 (Rodgers et al.,
2020). Nonresidential spaces included classrooms, dorm common areas,
libraries, and lecture halls and auditoriums. Dust was collected using
vacuum cleaners (Dyson, Inc., Chicago, IL) fitted with a custom
aluminum crevice tool holding cellulose extraction thimbles (19 mm x
90 mm). In each space, staff lightly dragged the crevice tool over all
room surfaces, including floors, furniture, desks, and window sills, for
approximately 30 min. Samples were stored at < —20 °C prior to ship-
ment to the analytical laboratory.
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Information about the room characteristics was also collected
concurrently with dust sampling. We examined several room charac-
teristics as potential predictors of dust chemical concentrations. These
predictors included the number of upholstered furniture (continuous),
the number of years since the room was last furnished (continuous,
obtained from campus administration or facilities personnel), and the
carpet status of the room (yes/no, if the room had wall-to-wall carpet).

2.2. Chemical analysis

Prior to analysis, samples were sieved (<150 pm), weighed, and
repackaged for shipment by Southwest Research Institute. One sample
aliquot for each of the 43 field samples was analyzed at the University of
Antwerp for five OCPs, five polybrominated biphenyls (PBBs), twelve
PBDEs, and two PCBs. A second aliquot for each of the 39 field samples
with sufficient remaining dust was analyzed at the U.S. EPA for ten
PFAS. Full list of chemicals provided in Table S1.

Analysis of the OCPs, PBBs, PBDEs, and PCBs comprised two sample
preparation methods with three extracts per sample. Briefly, samples
were fractionated and either analyzed by gas chromatography—electron
capture negative ion mass spectrometry (GC-ECNI/MS) and GC-elec-
tron impact (EI)/MS or by LC-MS/MS. Additional sample preparation
and details on the instrumental analysis can be found in Rodgers et al.
(2020).

Analysis of PFAS followed procedures outlined in Fraser et al.
(2013), with minor alterations. In brief ~50 mg of sieved dust was sonic
extracted with 5 mL of methanol spiked with 20 ng each of a suite of
stable isotope labeled PFAS (Wellington labs) followed by centrifugation
at 16,000 g. An aliquot of the supernatant (2 mL) was passed through a
prewetted ENVI-Carb SPE cartridge (Supleco) and combined with 2 mM
ammonium formate buffer (25:75 methanol:buffer) without evaporation
for analysis. Extracted calibration curves from 1 to 100 ng (7 point)
without any blank material added, as well as NIST Standard Reference
Material (SRM) 2585 for analysis quality control, were prepared in the
same manner. All samples were analyzed via isotope dilution MS/MS
analysis on a Waters Acquity UPLC system coupled to a Quattro Premier
XE mass spectrometer normalized by mass extracted and reported as ng
PFAS/g dust.

2.3. Quality assurance/quality control

We used several quality assurance and quality control measures to
evaluate the accuracy and reliability of our measurements, following
approaches summarized in Udesky et al. (2019). We included three field
blank samples. If a chemical was detected in all three blank samples, we
blank-corrected by subtracting the median blank value from the re-
ported concentrations; only PFHxS was blank-corrected, as all blanks for
other compounds were non-detect (Table S2). For the PFAS data, the
limit of quantification (LOQ) was set at 20 ng/g, and for the other
compounds, the LOQs ranged between 1 and 5 ng/g dust and were
calculated as three times the standard deviation of procedural blank
values divided by the amount of dust used for analysis.

We evaluated accuracy using NIST SRM 2585 (Organic Contami-
nants in House Dust) for eight of the ten PFAS, PBDEs, two PCBs, and
four of the five OCPs. The average relative difference between the
certified or indicative values and the three SRM sample results was less
than 20% for all PFAS except PFHxA, and less than 30% for the other
persistent compounds, except for several BDE congeners (BDE 28, BDE
100, BDE 196, BDE 197, BDE 203) (Table S3). For measured standard
concentrations of PFAS, average percent error ranged between 5 and
24%.

2.4. Data analysis

Values above the LOQ were considered “detects” and values below
the LOQ, but still quantifiable, were considered “estimated values.” For
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samples reported as non-detect by the laboratory, we replaced values
with the minimum value (including estimated values)*detection fre-
quency. We calculated summary statistics and Spearman rank correla-
tion estimates for chemicals with values by the laboratory in >75% of
samples.

We used linear regression models to evaluate associations between
room characteristics and PFAS concentrations. We modeled associations
between room characteristics, including wall-to-wall carpeting (binary:
27 rooms with and 15 rooms without wall-to-wall carpeting), number of
pieces of upholstered furniture (range: 3-725), year since the room was
last furnished (range: 1972-2015), and natural log of dust concentra-
tions of each chemical individually.

To investigate associations between room characteristics and a
mixture of persistent chemicals, including PFAS, PBDEs, PCBs, and
OCPs, in dust we used Principal Component Analysis (PCA). PCA was
conducted with no constraints to assess the percent variation explained
by the total number of principal components (PCs). We a priori chose to
select the PCs that explained ~75% of the total variance in the data.
Concentrations were natural log-transformed and z-standardized prior
to PCA. We then used PC scores, which relate each observation in the
dataset to the PCs using loading values, as the dependent variable in
multivariable linear regression models. As with the individual chemical
regression models, we included carpet status, number of upholstered
furniture, and years since last furnished as covariates.

3. Results
3.1. Dust concentrations

PFAS were widely detected in dust. The percent of samples above the
LOQ ranged from 23% to 87%, with the highest percentages for PFOA
(87%), perfluorononanoic acid (PFNA) (85%) and perfluorohexanoic
acid (PFHxA) (77%). All PFAS, except perfluorobutanesulfonic acid
(PFBS), had values reported by the lab above 75%. PFOA had the highest
geometric mean (GM) (96 ng/g), median (100 ng/g) and maximum
(2400 ng/g), followed by PFNA (74 ng/g), and PFHxA (35 ng/g), and
perfluorodecanoic acid (PFDA) (GM of 32 ng/g). Conversely, PFBA (9.6
ng/g), perfluoropentanoic acid (PFPeA) (11 ng/g), PFHxS (5.1 ng/g)
had the lowest GMs (Table 1; Table S4).

The other persistent chemicals were also widely detected in dust.
DDT, banned in the U.S. in 1972, was detected in 93% of dust samples.
Two PCB congeners were detected in nearly all spaces. BDE 209, major
congener in the DecaBDE flame retardant mixture, was found in all
samples and at the highest concentrations of all targeted chemicals (GM
of 8200 and maximum of 3,500,000 ng/g).

Concentrations in each sampling location were not uniformly high
across chemical groups (Figure S1). However, within a chemical class,
multiple individual chemicals were found at elevated concentrations
(>75% percentile). Several sampling locations had elevated concentra-
tions of individual PFAS and PBDEs.

3.2. Associations with room characteristics

Rooms with wall-to-wall carpet had higher concentrations of several
PFAS compared to rooms without wall-to-wall carpet (Fig. 1), whereas
the number of years since the room was last furnished and number of
pieces of upholstered furniture was not associated with any PFAS
(Table S5). Rooms with wall-to-wall carpet compared to rooms without
wall-to-wall carpet had higher estimated marginal mean concentrations
of PFPeA (15 ng/g versus 5.4 ng/g), PFHxA (56 ng/g versus 15 ng/g),
PFHXxS (8.5 versus 1.6 ng/g), perfluoroheptanoic acid (PFHpA) (28 ng/g
versus 2.3 ng/g), PFOA (183 versus 38 ng/g), and PFNA (115 ng/g
versus 32 ng/g), after controlling for the other room characteristics
(Fig. 1). Concentrations of other PFAS were also higher in carpeted
rooms, although not significantly.

Furniture was associated with concentrations of three PBDE
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Table 1

Summary of dust concentrations (ng/g) from samples (n = 39 for PFAS, n = 43 for other chemicals) collected on college campuses.
Compound LOQ?" % > LOQ mean std dev. median GM 95th %tile max.
PFAS
PFBA 20 26 14 11 <LOQ 9.6 35 48
PFPeA 20 23 21 27 <LOQ 11 83 130
PFHxA 20 77 79 130 38 35 210 800
PFHxS 20 26 36 95 <LOQ 5.1 150 540
PFHpA 20 49 90 210 <LOQ 13 270 1200
PFOA 20 87 270 490 100 96 1100 2400
PFOS 20 56 140 280 41 20 1000 1000
PFNA 20 85 170 360 79 74 340 2000
PFDA 20 62 180 440 53 32 750 2500
PBDEs
BDE 28 1 81 37 79 13 11 140 480
BDE 47 1 100 2800 4700 870 820 14,000 20,000
BDE 85 2 100 240 540 57 60 860 3100
BDE 99 1 100 3300 5500 920 1100 16,000 26,000
BDE 100 1 100 790 1700 190 190 3500 8700
BDE 153 2 98 440 1100 83 99 1300 6900
BDE 154 2 100 400 810 120 110 2000 4500
BDE 183 2 91 38 60 13 19 170 250
BDE 196 2 98 270 870 26 42 760 5600
BDE 197 2 81 30 68 9.4 12 95 430
BDE 203 2 84 69 210 8.4 14 250 1300
BDE 209 5 100 150,000 570,000 5500 8200 900,000 3,500,000
PCBs
CB 153 1 98 350 910 29 36 2000 4700
CB 180 1 98 400 1500 20 28 920 9300
OCPs
cC 1 84 22 87 3.3 4.2 58 560
TC 1 91 29 110 4.1 5.3 100 700
TN 1 91 15 53 2.5 3.4 58 340
pp-DDT 2 93 50 61 24 26 200 210

2 Limit of Quantitation (LOQ).

congeners. PBDE 100 and PBDE 153 concentrations were positively
associated with years since last furnished and PBDE 209 concentrations
were positively associated with number of pieces of upholstered furni-
ture (Table S6).

3.3. Correlations within and between chemical classes

Concentrations of chemicals within the same class were the most
correlated (Fig. 2). Spearman correlation estimates ranged from 0.23 to
0.98 for PBDEs, 0.66 to 0.95 for OCPs, and 0.13 to 0.91 for PFAS. Among
the PFAS, sulfonic acids were more highly correlated with each other, as
were carboxylic acids. We also found some moderate correlations across
chemical classes, including DDT with some PBDEs (highest correlation
of 0.56 for PBDE 196), PFOS with some PBDEs (highest correlation of
0.58 for PBDE 196), and PCBs with OCPs (highest correlation of 0.43 for
PCB 153 and CC) and PFHxS (highest correlation of 0.47 for PCB 180).

3.4. Principal Component Analysis

We found that 4 PCs explained approximately 75% of the variance in
the data: PC-1, 34%; PC-2, 18%; PC-3, 14%; and PC-4, 11%, respec-
tively. Loadings are shown in Fig. 3, where the direction reflects positive
and negative correlations of the chemical with the PCs. PC-1 was char-
acterized as a mixture of all persistent chemicals and explained variance
(loading >10%) for all chemicals across all classes, except PFHxS. PC-2
was characterized as a mixture of PFAS and lower brominated (<6
bromines) PBDEs. PC-3 was characterized as a mixture of PCBs, OCPs,
lower brominated PBDEs (<6 bromines), higher brominated PBDEs (>8
bromines), and PFAS. PC-4 was characterized as a mixture of higher
brominated PBDEs (>7 bromines), PCBs, PFBA, and PFOS. See Sup-
porting Information for a full description of each PC loading.

In mutually adjusted models, rooms that had wall-to-wall carpet had
significantly higher PC-2 scores (f = 1.9, 95% CI = 0.19, 3.6), indicating
that highly carpeted rooms had higher concentrations of all PFAS

compared to rooms without wall-to-wall carpeting (Table 2). An in-
crease in the number of upholstered furniture was associated with
decreased PC-3 scores (p = —0.0046, 95% CI = —0.0092, 0.000032) and
increased PC-4 scores (p = 0.0033, 95% CI = —0.0002, 0.0068), both
associations were marginally significant (p = 0.051 and p = 0.063,
respectively). This indicates that an increase in the number of furniture
is associated with increased concentrations of PCBs (PC-3), OCPs (PC-3),
higher brominated PBDEs (PC-3, PC-4), and sulfonic acid PFAS (PC-3,
PC-4). We did not find any associations between PC scores and year since
last furnished.

4. Discussion

We detected multiple PFAS and other persistent organic chemicals
on college campuses, many of which have been banned or phased-out for
decades in the U.S. Concentrations were strongly correlated within each
chemical class and, in some cases, moderately correlated between
chemical classes. Presence of wall-to-wall carpeting was associated with
higher concentrations of several individual PFAS and a mixture of PFAS.

Among the PFAS, we found the highest dust concentrations for PFDA
and PFOA. Our results are generally consistent with a recent study of
PFAS in dust on a college campus that found similar GM concentrations
for PFOS, PFOA, PFHpA, PFPeA, PFNA, and PFHxS in rooms without
renovations (Figure S2) (Young et al., 2020). PFOA concentrations were
higher in our study (GM 96 ng/g vs. 11.6 ng/g), and we detected PENA
and PFDA more frequently (Young et al., 2020). However, PFHxA had
the highest GM concentration (326 ng/g) in Young et al., which was
nearly 10x higher than our study (35 ng/g). Similar to our study, PFOS
and PFOA were found at the highest mean concentrations among PFAS
in several U.S. household dust studies (Fraser et al., 2013; Knobeloch
et al., 2012; Byrne et al., 2017; Strynar and Lindstrom, 2008). We found
higher mean concentrations of PFDA, PFNA, and PFPeA compared to
studies conducted in homes (Figure S2), but generally lower concen-
trations for PFHpA, PFHxA, PFOA, and PFOS (Fraser et al., 2013;
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Fig. 1. Estimated marginal means (ng/g) with 95% confidence levels for rooms with and without wall-to-wall carpet, controlling for years since last furnished and

number of upholstered furniture. Significant differences indicated by asterisk.

Knobeloch et al., 2012; Strynar and Lindstrom, 2008). Although this
may reflect differences in when samples were collected, we found higher
mean concentrations for most PFAS on college campuses compared to
childcare centers in recently published studies in the U.S. (Zheng et al.,
2020; Wu et al., 2020; Fraser et al., 2013)

Concentrations of several PFAS (PFPeA, PFHxA, PFHxS, PFHpA,
PFOA, PFNA) were associated with carpet status, which is consistent
with other studies (Haug et al., 2011; Gewurtz et al., 2009). Because
only PFAS were associated with the presence of carpet, these findings
suggest that carpets were current sources of PFAS. Our PCA confirmed
this, where PC-2, comprised of PFAS, was also associated with carpet
status. We did not observe associations between carpet status or furni-
ture with the phased-out PFOS. Although PFBS is thought to be used as a
replacement for PFOS in Scotchgard (California Environmental Protec-
tion Agency, 2019; Glynn et al., 2012), we measured it too infrequently
to include in our analyses. This may be because we had a relatively high
detection limit in this study compared to other studies with PFBS (Young
et al., 2020). Further, installation of carpet in these spaces may have

occurred before the replacement of PFBS for PFOS in carpet treatments.
We do not have information on the year carpet was installed. Since
carpet has been shown to be a reservoir for semivolatile organic com-
pounds (SVOCs) (Haines et al., 2020), it is surprising that we did not see
consistent associations between carpeting and dust concentrations for
other non-PFAS chemicals. However, the lack of association may be
because we did not have information for when the carpets were intro-
duced into each space; for example, it is likely that carpeting has been
replaced, perhaps multiple times, since DDT was banned from use,
meaning that DDT may be correlated to other components in the spaces
or widely redistributed throughout the indoor space. Unlike the OCPs
and PCBs in our study, it is likely that PBDEs and PFAS have current
sources in furniture and carpeting in the spaces.

Consistent with previous studies of PBDEs and furniture, we found
positive significant associations between BDE 100 and BDE 153 con-
centrations and years since last furnished and BDE 209 concentrations
and number of pieces of upholstered furniture. Furniture, particularly
older furniture, appeared to be a significant source of PBDEs in our
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Fig. 2. Spearman correlation estimates for persistent chemicals measured in dust. Chemical groups indicated by black squares.

study’s spaces. This finding is consistent with other studies that have
found relationships between upholstered furniture and PBDE levels in
college settings (Rodgers et al., 2020; Young et al., 2020; Dodson et al.,
2017).

This is one of the first studies to investigate a mixture of PFAS,
PBDEs, PCBs and OCPs in dust. Persistent chemicals may have similar
structures and toxicological endpoints (e.g, endocrine disruption, thy-
roid toxicity), potentially leading to additive or interactive health effects
(Curtis et al., 2019; Dingemans et al., 2016; Lopez-Espinosa et al., 2012;
Turyk et al., 2007). Therefore, the presence of persistent chemical
mixtures in dust indicates that human health risk assessments focused on
individual chemicals may be inadequate and should consider exposure
to mixtures to be protective of health.

4.1. Limitations

This study evaluated the presence of PFAS and a mixture of four
classes of persistent chemicals in non-residential institutional spaces and
their association with a number of room characteristics. However, our
study has several limitations. For example, there may be other important
indoor sources of PFAS that we did capture, including use of carpet
treatments, cleaning solutions, or other maintenance practices that may
contain PFAS. Concentrations of PFOS were among the highest PFAS
observed in our study, and given PFOS was not associated with carpeting
or furniture, other sources of this chemical likely exist that we did not
quantify. We also measured only a limited number of PFAS, and did not

measure precursor chemicals that have been detected in indoor spaces,
and only sampled dust from four colleges in New England; therefore, our
finding may not be generalizable to colleges in different states and
geographical regions. Further, our small sample size limits the statistical
power and precision of our findings. Lastly, the room characteristics,
particularly carpet status, may have been measured with error (e.g.,
carpets may have covered the majority of the space but not be consid-
ered wall-to-wall), though we would expect any misclassification to be
non-differential and create a bias towards the null.

4.2. Implications

The presence of these four classes of persistent chemicals, years after
their bans in many cases, illustrates the need to characterize chemical
persistence before manufacture and widespread use occurs. For
example, PFOS and PFOA were largely phased out by 2002 and 2010,
respectively, and were found in 77-100% of samples, and DDT was
banned in 1972, but was found in 93% of samples. There is scientific
evidence for regulating chemicals based on persistence alone, since
persistence is a chemical characteristic that has the potential to lead to
cumulative exposures and health effects for decades or longer (Cousins
et al., 2019a). Further, the case of PFAS has demonstrated the cost and
technical hurdles associated with addressing contamination of persistent
chemicals, emphasizing the importance of regulatory policies that pre-
vent this kind of contamination before widespread exposure occurs.
Applying a “persistence-sufficient” approach to PFAS and other
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Fig. 3. Loadings of the first four principal components (PCs) from the PCA.

Table 2

Mutually adjusted associations between room characteristics and principal
component scores for the first four principal components. Beta and 95% confi-
dence intervals shown.™"

carpet no. of upholstered furniture years since last
furnished

PC- 2 (-0.4, 4.9 —0.00042 (—0.0076, 0.051 (-0.078, 0.18)
1 0.0067)

PC- 1.9 (0.19, 3.6) —0.00077 (—0.0059, —0.074 (-0.17, 0.018)
2 0.0043)

PC- -0.13 (-1.7, —0.0046 (—0.0092, 0.024 (—0.059, 0.11)
3 1.4) 0.000032)

PC- 0.57 (—0.6, 1.7) 0.0033 (—0.0002, 0.0068) —0.026 (—0.089,
4 0.036)

@ All chemical concentrations were log-transformed and z-standardized.
b The PCA was constrained to four principal components, which explained
~75% of the variance in the data.

manufactured chemicals would put an end to the repetitive cycle of
allowing persistent chemicals to be produced without adequately
considering multi-generational consequences (Cousins et al., 2019a;
Balan et al., 2021).

Given the persistence and toxicity of PFAS that have already entered
the environment, and will remain for hundreds of years, further expo-
sures need to be prevented. For example, institutions should prioritize
healthy materials during remodeling or building projects. There are
many certification programs that contain criteria for using non-
hazardous products (Goodwin Robbins et al., 2020). Another strategy
is to eliminate non-essential (or avoidable) uses of PFAS (Cousins et al.,
2019b; Kwiatkowski et al., 2020), including carpeting, paints, and
cleaning mixtures, as has been outlined in the European Union’s
Chemical Strategy (Council of the European U, 2019). Our findings also
underline the importance of regulating persistent chemicals at the
class-level, as we found detectable concentrations for PFAS (PFOA,

PFOS, and PFHxS) and other persistent chemicals (e.g., DDT and PCBs)
that have been banned or phased-out for decades. In addition, our
findings support the need for risk assessment strategies that incorporate
cumulative and additive effects from multiple chemical exposures.
There is growing support for regulating PFAS as a class based on their
common persistent properties (Cousins et al., 2019a, 2020; Balan et al.,
2021; Kwiatkowski et al., 2020). Changes in chemical policy need to
happen simultaneously at building, institutional, municipal, state, and
national levels, and our findings support the need for safer chemicals in
each of these arenas.
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