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Modeling the interactions between water and energy is crucial to managing holistically these resources. Here, we
simulate water allocations and energy dispatch in the metropolitan region of Phoenix, Arizona in 2008-2017
using the WEAP and LEAP models under different spatiotemporal resolutions and coupling configurations. We
find that increasing the temporal resolution from annual to monthly allows capturing seasonal demands, which
improves the simulation of water allocations from supply sources to all demand nodes; the simulation of energy

LEAP fluxes is instead less sensitive to the model time step. Representing the domain with higher spatial granularity
enhances the ability to model the correct water portfolio of the power plants. Finally, coupling the models to
capture two-way feedbacks between water and energy systems improves the simulations of electricity generation
and, in turn, of water fluxes. While related to Phoenix, our findings provide useful insights to improve water-
energy nexus modeling at other sites.

1. Introduction

The water-energy nexus (WEN) is a term used to refer collectively to
the dependencies and interdependencies between water and energy
systems and resources (Rio Carrillo and Frei, 2009; Siddiqi and Anadon,
2011; U.S. Department of Energy, 2014). For example, water is required
for cooling purposes in thermal power plants and is directly used to
produce electricity in hydropower plants. Energy is needed to pump,
transport, and treat water. Depending on the region, each resource could
use a significant amount of the other (Khan et al., 2017). For instance, in
the U.S. power plants are estimated to be responsible for 13% of the total
water consumption, while the energy required to pump, transport, treat,
and heat water accounts for 13% of the total primary energy con-
sumption (Dieter et al., 2018; Sanders and Webber, 2012). Due to the
interdependencies between water and energy, climate and anthropo-
genic stressors (e.g., intense storms, heatwaves, droughts, terrorist at-
tacks, etc.) acting on one system can cause cascading impacts on the
other system, thus significantly compromising the security of both re-
sources over both short (daily and sub-daily; de Amorim et al., 2018;
Hatvani-Kovacs et al., 2016; Lubega and Stillwell, 2018; Su et al., 2020)
and long (multiple years; Bartos and Chester, 2015; van Vliet et al.,
2016a) time periods. The adoption of a nexus approach to operate and

manage water and energy systems has then become increasingly press-
ing, especially considering the additional stresses that climate change,
population growth, and urbanization will exert on these two resources
(Dai et al., 2018; Rio Carrillo and Frei, 2009; Scott, 2011; Siddiqi and
Anadon, 2011; van Vliet et al., 2016a).

A key step for the adoption of a nexus perspective in policy- and
decision-making is to quantify interactions in water-energy systems
through numerical models (Khan et al., 2017). These allow identifying
synergies and limiting tradeoffs both in current conditions and under
possible scenarios of climate change, demand growth, and expansion of
technologies and infrastructure. Given the broad scopes of WEN studies,
models have been developed using several approaches (Hamiche et al.,
2016). For instance, Schuck and Green (2002) relied on econometrics
principles to quantify the potential of price variation to conserve water
and energy resources. Grubert and Webber (2015) used a life-cycle
assessment method to estimate future changes in water and energy in-
terdependencies according to various policy choices. Stercke et al.
(2020) set up a system dynamics model to explore global and local
sustainable development goals that are related to the WEN. Khan et al.
(2018) and Gjorgiev and Sansavini (2018) developed resource optimi-
zation models to simulate the impacts of changes in water temperature
on power generation. The same goal was pursued by van Vliet et al.
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(2016b) combining a large-scale hydrologic model with a stream tem-
perature and hydropower and thermoelectric models. Obringer et al.
(2019) and Dale et al. (2015) investigated the implications of climate
change for the WEN using statistical and simulation modeling, respec-
tively. As summarized in a review study by Dai et al. (2018), WEN ap-
plications have been conducted at different temporal resolutions or time
steps. These include sub-hourly real-time simulations of water distri-
bution systems and power transmission networks (Khatavkar and Mays,
2018; Santhosh et al., 2014); and analyses at monthly and annual scales
of infrastructure expansion, effects of policies, and environmental im-
pacts (Jaaskeldinen et al., 2018; Zhou et al., 2019). Moreover, WEN
models have incorporated the physical components of water and energy
systems with various levels of detail. For instance, simulations of elec-
tricity generation and water demands have been performed both at fine
spatial resolution (or granularity), accounting for each power plant (e.g.,
Mu et al., 2020), and at a coarser resolution, aggregating the generating
stations based on fuel type and cooling technologies (e.g., Zhou et al.,
2019). In general, the adoption of given temporal resolution and spatial
granularity depends on data availability, geographical extent of the
study area (e.g., city, country, or transnational), and duration of the
simulations (e.g., daily, annual, or multidecadal). In a recent review of
current efforts and challenges in WEN modeling, Khan et al. (2017)
noted that the increasing efforts devoted to capture finer resolutions
should be carefully considered in terms of the gained simulation accu-
racy. However, very limited research has been dedicated to systemati-
cally investigate the importance of spatial and temporal resolutions on
model accuracy in WEN applications.

Khan et al. (2017) also reported that most previous studies of inte-
grated water and energy systems rely on a single model to simulate one
system and process its outputs to infer information on the other system.
In particular, these authors found that in most studies (e.g., Bouckaert
et al., 2012; Faeth et al., 2014; Mounir et al., 2019), modeling tools are
utilized to explicitly simulate the energy sector, and estimate its water
requirements without including an appropriate representation of the
water infrastructure, its internal dynamics, and the interactions with the
energy components. Other work has applied water management models
to simulate the water system and post-processed its outputs to estimate
energy demand for water uses (e.g., Baki and Makropoulos, 2014; Guan
et al., 2020). A more accurate representation of WEN interdependencies
would instead require the use of models that explicitly simulate each
system and are integrated by linking the computer codes (i.e., hard
links) or exchanging data in real time (i.e., soft links). Currently, inte-
grated or coupled WEN models that capture the feedback loops between
the two systems have been adopted in a limited number of cases. These
include both (i) the coupling with soft links of existing water and energy
models (van Vliet et al., 2016b; Voisin et al., 2020), as done with the
Water Evaluation and Planning (WEAP) and the Long-range Energy
Alternatives Planning (LEAP) platforms (Dale et al., 2015; Lin et al.,
2019; Liu et al., 2021); and (ii) the development of hard-linked
water-energy optimization (Khan et al., 2018; Parkinson and Djilali,
2015) and integrated assessment (Liu et al., 2019; Miara et al., 2017)
models. Despite these promising studies, their number is still limited and
the added values of coupled simulations compared to simpler ap-
proaches based on single models and data postprocessing has not been
yet properly quantified.

In this study, we contribute to addressing a number of the research
gaps discussed above by investigating how the adoption of single and
coupled models under different spatial and temporal resolutions affects
the accuracy of WEN simulations. For this aim, we focus on long-term
water allocations and energy dispatch in the metropolitan region of
Phoenix, Arizona. This is a compelling study site for WEN studies for
several reasons. First, it relies on limited water resources mainly pro-
vided by energy-intensive sources, including groundwater and the
Central Arizona Project (CAP) that transfers water from the Colorado
River to central and southern Arizona through a 541-km canal (Bartos
and Chester, 2014; Mounir et al., 2019). Second, while renewable
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energy sources have been increasing (APS, 2017; SRP, 2018), electricity
is largely generated by thermal power plants that heavily depend on
water, including the largest nuclear generating station in the country,
Palo Verde. Finally, the Phoenix metropolitan region has experienced,
over the last three decades, one of the fastest population growth in the U.
S. that was possible by converting agricultural land into urban areas
(Bausch et al., 2015); this shift has caused a dramatic change in water
and energy demands.

The work presented here is built upon our previous effort in the
Phoenix metropolitan region where the WEAP platform has been
applied to simulate food-energy-water dynamics under a set of future
scenarios of water demand and supply (Guan et al., 2020), and the LEAP
model has been used to quantify the implications of future energy mix
alternatives on the WEN (Mounir et al., 2019). In both studies, WEAP
and LEAP have been applied at an annual resolution for several decades.
Here, we first improve the model configurations by (i) increasing the
temporal resolution of both models from annual to monthly, (ii)
expanding the WEAP network from a single water demand node repre-
senting all power plants to an explicit representation of all electricity
generating stations, and (iii) coupling WEAP and LEAP through soft
links. We then apply the models under different configurations using
independent estimates of observed water and energy fluxes in the region
as a reference over the period 2008-2017. First, we explore the impor-
tance of the temporal resolution by comparing simulations of the
coupled WEAP-LEAP model applied with annual and monthly time
steps, respectively. Second, we quantify the value of increased spatial
granularity by contrasting simulations of WEAP-LEAP where the WEAP
domain has either a single water demand node representing all power
plants or multiple nodes each representing a distinct power plant.
Finally, we investigate the added value of capturing two-way feedbacks
between water and energy systems by comparing simulations with the
coupled WEAP-LEAP model and a standalone approach based on the
WEAP model plus a post-processing routine designed to calculate energy
fluxes. After presenting results of these comparisons that are obtained
for a specific study region and model type, we discuss a number of im-
plications useful to address challenges of WEN modeling more generally.

2. Materials and methods

To properly describe our methodology and case study, we initially
define water and energy models. We refer to a water model as a tool that
simulates allocation, treatment, and distribution of water from supply
sources to demand nodes as a function of time. Similarly, we define an
energy model as a tool that reproduces electricity generation and dispatch
from different power plants to satisfy sectorial demands as a function of
time. While some of the processes simulated in the water model require
energy, these interactions are not explicitly captured and assumptions
must be made on energy availability (e.g., energy is unlimited). A similar
argument can be made for the energy model. Water and energy models
can be coupled so that fluxes and information between the two systems
are exchanged during the simulation. In the following, we first describe
the study area (section 2.1) and provide a brief overview of the adopted
water and energy models (section 2.2), along with their setup in the
study region (section 2.3). Finally, we summarize the modeling config-
urations used for our analyses (section 2.4).

2.1. Study area

We apply the water and energy models to the Phoenix Active Man-
agement Area (AMA), an administrative region of 14,623 km? (Fi g. 1)
managed by the Arizona Department of Water Resources (ADWR) and
created after the approval of the Arizona Groundwater Management Act
in 1980 to sustainably manage the regional aquifer. The Phoenix AMA is
located in central Arizona and entirely includes the Phoenix metropol-
itan area and several irrigation districts. The water and energy systems
of this region are highly interdependent. Four main sources supply water
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Fig. 1. The Phoenix Active Management Area (AMA) in central Arizona, along with the location of power plants with the indication of fuel type and capacity; main
water treatment plants (WTP), wastewater treatment plants (WWTP), and water reclamation facility (WRF); the Salt, Verde and Gila Rivers; the Central Arizona
Project (CAP) aqueduct; canals of the Salt River Project (SRP); and cropland and urban areas of the Phoenix metropolitan region.

to the different users, including (i) surface water from the Salt and Verde
Rivers managed by the Salt River Project (SRP); (ii) surface water from
the Colorado River transported from Lake Havasu to Southern Arizona
through the Central Arizona Project (CAP) canal; (iii) groundwater
(GW); and (iv) reclaimed water (RW). Over the last decade, these water
sources delivered ~2,800 million m® annually satisfying the municipal
(47% of the demand), agricultural (33%), Native American (11%, ac-
counting for domestic and agricultural needs of the three largest com-
munities in the region), industrial (5%), and power plant (4%) demands.
To achieve this, energy is required to operate pumping stations, wells,
water (WTPs) and wastewater (WWTPs) treatment plants, and water
reclamation facilities (WRFs), totaling a demand of ~1,900 GWh per
year (3.6% of the total electricity demand; Mounir et al., 2019). Energy
supply for the region is largely provided by SRP and Arizona Public
Service (APS) utilities, which operate eight natural gas generating sta-
tions and one nuclear power plant within the region boundary, along
with 22 large power plants located outside of this area (Mounir et al.,
2019). Electricity is needed to satisfy the residential (39% of the de-
mand), commercial (35%), and industrial energy sectors (26%). The
latter one includes the energy provided to the water infrastructure.

2.2. Overview of WEAP, LEAP, and coupled WEAP-LEAP modeling
platforms

The Water Evaluation and Planning (WEAP; Yates et al., 2005)
platform is used here as the water model. WEAP is designed to support
water resources planning and management at different scales, by opti-
mizing water allocations in a network linking supply sources to demand
nodes under mass balance and user-specified constraints, including de-
mand priorities and infrastructure operation rules, among others. Inputs
for WEAP include fixed and time-varying variables characterizing water

supply (e.g., aquifer properties, river discharge, water releases from
reservoirs), demand nodes (e.g., population, water intensities), and
management rules (e.g., canal and reservoir size). Outputs include
several variables describing fluxes of water demand and supply in the
network. In previous studies, WEAP has been applied at different time
steps, ranging from annual (e.g., Guan et al., 2020), to monthly (e.g.,
Lévite et al., 2003) and weekly (e.g., Dale et al., 2015), and at national
(e.g., Welsch et al., 2014), regional (e.g., Yates et al., 2013a; 2013b), and
metropolitan (e.g., Guan et al., 2020) scales.

The Long-range Energy Alternatives Planning (LEAP; Heaps, 2020)
system is used in this study as the energy model. LEAP is an integrated
energy-economy-environment model designed to support energy
resource planning and management. It simulates energy generation
from diverse fuel types to satisfy demand from different end-users
through simple dispatch rules. It requires inputs characterizing de-
mand, including activity levels (e.g., population, water flow) and energy
intensities (e.g., per capita or per unit volume energy consumption), and
supply, such as characteristics of power plants (e.g., fuel type, capacity),
percent of energy losses, and reserve margins. Depending on application
and data availability, inputs can be constant or vary in time. LEAP
outputs time series of energy demand from each end-user, as well as
energy generation and greenhouse gas emissions at each power plant,
among many other variables. In previous applications, this modeling
tool has been applied at annual (e.g., Mounir et al., 2019), monthly (e.g.,
Javadifard et al., 2019), and weekly (e.g., Dale et al., 2015) time steps to
simulate energy systems at continental (e.g., Ouedraogo 2017), national
(e.g., Aliyu et al., 2013), regional (e.g., Chang et al., 2017), and
metropolitan (e.g., Mounir et al., 2019) scales. Both WEAP and LEAP
have been used to model water and energy systems under present
climate and infrastructural conditions, as well as to explore the impacts
of future scenarios of demand and supply (e.g., Dale et al., 2015; Esteve
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et al., 2015; Guan et al., 2020; Gul and Qureshi, 2012; Mounir et al.,
2019) and new policies (e.g., Handayani et al., 2017; Lévite et al., 2003).

Recently, the WEAP and LEAP platforms have been coupled to allow
simulating the interactions of water-energy systems at each time step.
The coupling is achieved through so-called “links” where: (i) LEAP reads
variables from WEAP to determine energy demand for specific uses (e.g.,
groundwater pumping and desalination) and/or constrain hydropower
generation; and (ii) WEAP reads variables from LEAP to estimate water
requirements for thermal cooling and/or electricity generation in hy-
dropower stations. These links allow both platforms to communicate
iteratively at each time step. The coupled WEAP-LEAP modeling plat-
form was applied by Dale et al. (2015) to investigate the impact of
climate change on water and energy consumption in Sacramento, Cali-
fornia, finding that electricity imports in the region may increase to 35%
during hot dry years.

2.3. Set up of WEAP, LEAP, and coupled WEAP-LEAP in the Phoenix
AMA

The WEAP and LEAP models are set up in our study region by
improving the configurations adopted and validated by Guan et al.
(2020) and Mounir et al. (2019), respectively, by increasing temporal
resolution and spatial granularity, and by coupling the models. It is first
noted that the words energy and electricity are used interchangeably in
the rest of the paper, but our simulations involve only electricity. To
investigate the effect of temporal resolution, we apply the models at an
annual scale, as in the two studies mentioned above, and extend the
setup also at monthly resolution. We derive the monthly SRP and CAP
water allocations and estimate monthly water demands through the data
sources provided in Table 1 and the assumptions described in the Ap-
pendix. The network representing the water system of the Phoenix AMA
implemented in WEAP is exemplified in Fig. 2a. Water from SRP, CAP,
GW, and RW sources is directly distributed to the agricultural sector and
is treated in WTPs prior to being delivered to the municipal, Native
American, and industrial sectors; power plants receive water from all
sources except for SRP. Water allocations from SRP are affected by
management rules and natural flow in the Salt and Verde Rivers; CAP
water deliveries depend on the entitlements of Colorado River water to
the region; and RW is generated by treating municipal water in WRFs.
All these rules and time-varying flows are implemented in the model, so
that water supply is limited and constrained. Water demand is computed
as a function of population and per capita water use for the municipal

Table 1
Datasets used to set up, apply, and test WEAP and LEAP in the Phoenix AMA.

Model  Dataset Purpose of use

LEAP U.S. Energy Information
Administration (EIA 2019)
Pinnacle West Capital
Corporation (PWCC, 2018);

Estimates of electricity generation
used as observations
Capacities of the power plant

SRP (2020a)

EIA (2020a) Annual capacity factors

EIA (2018) Rate of water withdrawals from power
plants

EIA (2019) Determination of the monthly
variability of capacity factors

EIA (2020b) Monthly variability of the load

WEAP  ADWR (2018) Water supply and demand in the

Phoenix AMA

SRP (2020b) Monthly variability of discharge in
SRP canals

CAP (2020) Monthly variability of discharge in
CAP

City of Phoenix Water Services
Department (CPWSD 2011)

Monthly variability of municipal,

industrial, and power plant water
demand

Monthly variability of agricultural
water demand

Lahmers and Eden (2018)
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and industrial nodes, while it is directly inputted for the Native Amer-
ican node using data from ADWR (2018). For the power node, we adopt
two configurations to investigate the effect of spatial granularity of the
energy system. In the first, a single node represents collectively all
power plants.

as in Guan et al. (2020), while, in the second, nine nodes are used to
simulate the distinct power plants located in the Phoenix AMA. The
transmission links between water supply and demand nodes are set up to
represent the physical constraints of infrastructure and water manage-
ment rules. The two networks are presented in Figs. S1 and S2. More
details are provided by Guan et al. (2020).

The energy system implemented in LEAP is summarized in Fig. 2b.
Energy supply is provided by nine power plants located within the
Phoenix AMA and 22 outside of this region, fueled by coal, natural gas,
uranium, and renewable resources (i.e., solar radiation, wind, and
water). These 31 generating stations are selected because they are
entirely or partially owned by SRP and APS, the main utilities satisfying
electricity demand in the region (PWCC, 2018; SRP, 2020a). Table 2
presents the fuel type, total capacity, SRP and APS capacity entitlement,
mean annual electricity generation, and water source for the nine power
plants located within the Phoenix AMA; note that, for the nine gener-
ating stations, water withdrawal is equal to water consumption ac-
cording to the U.S. Energy Information Administration (EIA, 2018,
2020a). For each of the 31 power plants, we input fuel type, capacity
entitled to SRP and APS, merit (or dispatch) order, efficiency, and ca-
pacity factor. We also specify transmission and distribution losses of 5%
and a planned reserve margin of 15%. The energy demand structure is
designed to focus on water-energy interactions and facilitate the
coupling with WEAP. It includes (i) residential and commercial sectors,
which can be related to the municipal and Native American water nodes;
and (ii) industrial energy sector, which is divided into subsectors that
are linked to industrial and agricultural water nodes, as well as to water
infrastructure components that rely on seven different energy intensities
to treat, transport, pump and convey the different water sources. Based
on this setup, the electricity demand of the Phoenix AMA is assumed to
be fully satisfied by the power plant capacities entitled to SRP and APS.
This implies that (i) energy is imported into the Phoenix AMA only from
the 22 external power plants managed by SRP and APS, and (ii) LEAP
does not simulate the electricity exported outside of the Phoenix AMA
boundaries associated with capacity entitlements of other energy com-
panies. While we assume no limit in fuel availability at each power
plant, the electricity generated is practically constrained by energy de-
mand and water availability when WEAP is coupled to LEAP. Further
details can be found in Mounir et al. (2019).

We investigate the effect of the coupling strategy by first simulating
WEN interactions in a standalone mode, which is illustrated in Fig. 3a. In
this approach, we assume that WEAP is the only available model. Time
series of water demand from the power plants are prescribed externally
using estimates from ADWR (2018), and the energy needed for
water-related uses is calculated by post-processing outputs of the water
model. This involves multiplying the water fluxes from the supply
sources simulated by WEAP by the corresponding energy intensities. We
note that EIA provides data on water withdrawals and consumption for
the power plants. These data are in good agreement with the ADWR
estimates but incomplete for several years; we then utilize ADWR data to
be consistent. In the second approach, we run the WEAP-LEAP model in
coupled mode, as shown in Fig. 3b. We create a first set of links to
connect the nine power plants located within the Phoenix AMA imple-
mented in LEAP with the water demand nodes (or node, depending on
the spatial granularity) for power in WEAP. In each link, we provide the
water withdrawal intensity (in m3/kWh) obtained from EIA (2018,
2019) for each power plant, multiplied by the ratio between the corre-
sponding total capacity and the entitlement of SRP and APS. At each
time step, LEAP simulates electricity generation in the system and WEAP
uses these links to derive all water needs of each power plant. For
instance, the electricity generation simulated by LEAP in the Palo Verde
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Fig. 2. Schematic of (a) water and (b) energy systems in the Phoenix AMA. Acronyms are defined in the main text.

Table 2
Power plants located within the Phoenix AMA and their fuel type, total capacity, SRP and APS capacity entitlement, mean annual electricity generation, and water
sources.
Power Plant Fuel Type Capacity SRP + APS Capacity Entitlement ~ Annual Electricity Generation Water Reference
[MW] [MW] [GWh] Source
Palo Verde Nuclear 3,875 1,822 31,532 RW, GW (APS, 2017)
Red Hawk Natural 1,060 984 4,132 RW (ADWR, 2020; APS, 2017)
gas
West Phoenix Natural 1,207 997 1,938 RW, GW (PWCC, 2018)
gas
Kyrene Natural 523 523 804 CAP, GW (ADWR, 2020; Stanley Consultants,
gas 2021)
Santan Natural 1,219 1,219 3,168 CAP, GW (ADWR, 2020; Veolia Water
gas Technologies, 2006)
Ocotillo Natural 333.4 330 103 GW (ADWR, 2020; APS, 2017)
gas
Agua Fria Natural 626 626 82 GW (ADWR, 2020; APS, 2017)
gas
Arlington Natural 580 580 1,419 GW (ADWR, 2020; APS, 2017)
Valley gas
Gila River Natural 1,650 1,100 4,705 GW (ADWR, 2020; APS, 2017)
gas

power plant to satisfy the demand of the Phoenix AMA is used by WEAP
to quantify the water required for the full production (including exports)
at this generating station. Similarly, we create a second group of links
that connects the water fluxes simulated by WEAP in 31 transmission
links with the energy demand structure in LEAP, and we input the en-
ergy intensities (in kWh/m®) of each water infrastructure component
obtained from Mounir et al. (2019). At each time step, the water fluxes
simulated by WEAP are converted into energy required by the water
infrastructure components implemented in the LEAP demand structure,
by multiplying the water volumes by the corresponding energy in-
tensity. For example, the water flow simulated by WEAP in the trans-
mission link from CAP to the municipal demand node is used by LEAP to
calculate the associated energy demand for conveyance and treatment.

2.4. Modeling configurations

We adopt four model configurations to investigate our research
questions. They are summarized in Table 3. In two configurations, a
single water demand node for power generation is used in WEAP and the
coupled WEAP-LEAP models are applied at annual and monthly reso-
lutions; these are labeled as 1A and 1M (1 power node, M = monthly,
and A = annual time resolution), respectively. In an alternative
configuration, labeled as 9M, nine demand nodes are implemented in
the WEAP network to simulate the water demand of each power plant
located within the Phoenix AMA, and the coupled WEAP-LEAP models
are run at a monthly temporal resolution. Finally, the configuration

called “standalone” is based on the WEAP model running at a monthly
temporal resolution with nine power nodes plus a post-processing
routine for the estimation of the energy embedded in water, as shown
in Fig. 3b. Simulations under 1A and 1M configurations are compared to
test the effect of temporal resolution; those under 1M and 9M to evaluate
the impact of spatial granularity; and those under 9M and standalone to
assess the significance of the coupling approach. All simulations are
performed from 2008 to 2017.

We investigate the accuracy of the modeling experiments in multiple
ways. We compare historical simulations of (1) monthly electricity
generation at distinct power plants with values reported by EIA; and (2)
annual water allocations from supply sources to demand sectors,
including power plants, with estimates from ADWR (Table 1). Com-
parison against historical observations is one of the four main strategies
for evaluating integrated assessment models recently reported in the
review of Wilson et al. (2021). To quantify differences between the time
series, we compute correlation coefficient (CC), root mean square error
(RMSE), and absolute percent error (APE). When contrasting 1A and 1M
simulations, we present differences between the constant monthly value
of several outputs derived under 1A with the time-varying values
returned by monthly runs of 1M. Finally, we use Sankey diagrams to
explore potential disagreements in allocations of water and embedded
energy from supply sources to the power plants and to verify whether a
given model configuration correctly represents water delivery
dynamics.
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Table 3
Characteristics of modeling configurations.
Configuration Temporal Granularity Coupling
name resolution
1A Annual 1 power node in WEAP-LEAP
WEAP
1M Monthly 1 power node in WEAP-LEAP
WEAP
9M Monthly 9 power nodes in WEAP-LEAP
WEAP
Standalone Monthly 9 power nodes in WEAP + post-
WEAP processing
3. Results

3.1. Effects of time resolution

We begin by presenting in Fig. 4 the electricity generated in
2008-2017 in the three largest power plants located within the Phoenix
AMA (see Table 2), as reported by EIA, and as simulated under 1A and
1M. The monthly means are also reported in the right panels. The
electricity generation from EIA exhibits marked seasonality, with a
summer peak at the two natural gas power plants, Santan and Redhawk
(Fig. 4a—d); and winter and summer peaks at the Palo Verde nuclear
generating station (Fig. 4e and f). This seasonality and its interannual
variability are well captured by 1M simulations (CC > 0.62 and RMSE
<0.2 TWh). In contrast, as expected, 1A simulations (plotted in Fig. 4 by
dividing the annual totals by 12) are not able to reproduce seasonal
peaks, and, in turn, the associated peaks of water demand for energy
production, as further described below. Despite this, the annual elec-
tricity generations returned by 1A each year are very close to the 1M
simulations aggregated annually (APE between the two configurations
relative to 1M and evaluated annually <2%).

We now turn our attention to the water allocation for electricity
generation (note that, for this variable, observations from ADWR are
only available at annual resolution and aggregated for all power plants,
while EIA provides data on water withdrawals only for 2014-2017
without detailed information on the water sources). In the domain with
a single power node, WEAP allocates water to such node only from RW
and GW sources. The corresponding mean monthly allocations simu-
lated by 1M are shown in Fig. 5a, while the single monthly averaged
value produced by 1A is presented in Fig. 5b. As suggested by the results
on electricity generation of Fig. 4, water volumes required by power
plants are characterized by a lower winter and a more pronounced
summer peak. This resource is largely provided by RW in summer (84%
in August) and almost equally supplied by both sources in late winter
and spring. As expected, annual simulations by 1A are unable to capture

[—EA-—-1A—1M]

0

D O O N o o A e O&
QO N N N W W W N WY (@ RS
O P PP EEE P TR

Fig. 4. Monthly electricity generation in 2008-2017 (left panels) and monthly
means across all years (right panels) reported by EIA (2019) and simulated by
coupled WEAP-LEAP under the 1A and 1M configurations at (a)-(b) Santan,
(c)-(d) Redhawk, and (e)-(f) Palo Verde power plants.

this variability in time and between the two water sources. For example,
1A underestimates results of 1M by 2.5 million m? (or 21%) in August
and overestimates them by 2.2 million m® (or 33%) in November. We
note that the increase of simulated RW is caused by a rise of municipal
water demand in summer and is likely overestimated due to the
assumption made in the WEAP setup of a constant water consumption
rate of 70% for the municipal water demand (see Supporting Informa-
tion of Guan et al. (2020) for details). This setup should be improved in
the future if observed data on the monthly variability of RW will become
available.

As a next step, we analyze the differences between 1A and 1M in
terms of annual water supply to all uses. In particular, we focus on water
delivered by CAP, which is the most energy-intensive water source. The
observed and simulated time series of annual water volume supplied by
CAP to all demand nodes are displayed in Fig. 6a, which shows that 1M
simulations better capture the ADWR estimates, especially in early years
when supply is lower. This finding can be explained by the 1M’s ability
to better represent key water allocation dynamics occurring within each
year. To demonstrate this, we plot in Fig. 6b and c the CAP monthly
supplies to the municipal demand node for two representative years. To
interpret these figures, we highlight that (i) CAP has the second-lowest
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Fig. 5. (a) Mean monthly water allocations from RW and GW to the power
node simulated in the 1M configuration, and (b) single mean monthly value
derived from the 1A setup.

allocation priority in the WEAP setup; (ii) there is a maximum water
volume that CAP can distribute to each user due to allocation rights (44
million m® for the municipal user, plotted with a red line labeled “CAP
Max” in Fig. 6b and c); and (iii) when CAP allocations reach this
maximum volume, an unmet demand exists that is satisfied by the next
available water source. Simulations under 1A lead to constant monthly
CAP water allocations, which could be either smaller than the maximum
allocation (as in 2010; Fig. 6b) or reach this value (as in 2012; Fig. 6¢)
depending on water demand. In the former case, CAP allocations satisfy
all water demand; in the latter case, another water source is used
throughout the year to meet the unmet demand. When simulations are
instead conducted under 1M, the water demand that CAP should satisfy
(labeled “Demand” in Fig. 6b and c) varies each month and the resulting
allocations could be either smaller (e.g., August) or larger (e.g.,
December) than 1A. Similar to 1A, there are months when CAP alloca-
tions reach the maximum value, as in, e.g., January, November, and
December of 2010. In this year, the annual water demand potentially
requested to CAP is almost identical under both 1A and 1M. However,
this demand is satisfied using solely CAP under 1A, while a
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Fig. 6. Water allocations from CAP. (a) Time series of CAP annual volumes to
all demand nodes estimated by ADWR (2018) (Obs) and simulated under 1A
and 1M configurations. (b)-(c) Monthly simulations of CAP supplies to the
municipal node in 2010 and 2012, respectively (see main text for details
on legend).
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Fig. 7. Monthly mean energy embedded in transporting and treating RW, SRP,
GW, and CAP water simulated under 1A and 1M along with the
percent difference.

supplementary source is required under 1M. Because of this difference,
annual CAP allocations simulated in 2010 are larger under 1A and
smaller under 1M, which is closer to the observation (Fig. 6a).

As a final note, the 1M’s ability to better capture intra-annual dy-
namics of water allocations results also in significant differences in the
estimation of energy required to transport and treat water. This is
illustrated in Fig. 7, which shows that, under 1M, this energy ranges
from a peak of 173 GWh in July to a minimum of 117 GWh in February.
Simulations at the annual scale suggest instead a constant value of ~150
GWh with differences of up to 19% with 1M. As found for electricity
generation, when aggregated annually, the differences between 1A and
1M are instead small (<1.1%).

3.2. Effects of spatial granularity

To investigate how the level of spatial details affects WEN simula-
tions, we compare results of runs with monthly forcings and two WEAP
networks with one (1M) and nine (9M) power nodes, respectively. The
Sankey diagrams of Fig. 8 display water allocations and embedded en-
ergy from supply sources to power demand nodes. We first focus on the
monthly mean values (Fig. 8a and b) and note that the total water use for
power generation is practically identical in the two cases (~8.87 million
m®>). However, the sources supplying water for power generation change
depending on the spatial granularity. Under 1M, RW and GW are
simulated as the only water sources that satisfy this demand (Fig. 8a).
When each power plant is instead represented in the WEAP network
along with the connections to the associated water supply sources (9M),
CAP is utilized as an additional water source (Fig. 8b). In particular, CAP
is the main water provider for Kyrene and Santan power plants
(Table 2). The use of CAP water reduces GW and RW allocations when
compared to 1M. This change results in an increase of 0.23 GWh (or 4%)
of the annual energy demand for water because CAP is more energy-
intensive (1.31 kWh/m3, see the appendix in Mounir et al., 2019) than
GW and RW (0.35 kWh/m® and 0.81 kWh/mS, respectively).

We further investigate differences between water allocations and
embedded energy by focusing on the months with the lowest (February;
Fig. 8c and d) and highest (August; Fig. 8e and f) water needs for power
generation. In February, simulations with one power node indicate GW
to be the largest water provider for power. When the domain includes
instead nine nodes, changes in water allocations caused by the use of
CAP water result in similar volumes supplied by GW and RW. This
redistribution leads, in turn, to an increase of energy for water treatment
and distribution of 0.37 GWh (8%) as compared to the simulation under
1M (compare Fig. 8c with 8d). In August, the larger water use by the
municipal sector increases the availability of RW (also due to the
assumption made to set up WEAP, as discussed in the previous section),
which is simulated as the major water source for energy generation in
both configurations. However, the use of CAP under 9M leads to (i)
lower RW and higher GW volumes compared to 1M, and (ii) a decrease
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Fig. 8. Sankey diagrams showing mean monthly water allocations from sources
to power users simulated under (a)-(c)-(e) 1M and (b)-(d)-(f) 9M, along with
embedded energy. Means are computed across (a)-(b) all months of all simu-
lated years; (c)-(d) all Februarys; and (e)-(f) all Augusts.

of energy embedded in the water of 0.28 GWh or 3% (compare Fig. 8e
with 8f).

3.3. Importance of coupling

The significance of representing two-way interactions in models of
water and energy systems is evaluated by comparing simulations with
the standalone and the coupled model configurations, which are both
based on a WEAP network with nine power plants and monthly simu-
lations. A key difference between standalone and coupled models relies
on the monthly water volumes required by the power plants. In the
coupled simulations, these fluxes are generated at each time step by
converting the energy generated by each power plant simulated by LEAP
into water volumes (Fig. 3b). In the standalone configuration, these
fluxes are instead provided as external inputs to WEAP (Fig. 3a). In our
study site, annual estimates of water withdrawals by all generating
stations combined are available from ADWR (2018); thus, to conduct
standalone simulations, assumptions are needed to disaggregate these
volumes to each power plant and at monthly resolution. Details are
provided in the Appendix.

Fig. 9a—c shows the water volumes required by the three largest
generating stations, which are representative of results obtained across
all power plants. In some cases (e.g., Santan; Fig. 9a), the standalone
simulations are very similar to the coupled model outputs, while in
others they overestimate (e.g., Redhawk; Fig. 9b) or underestimate (e.g.,
Palo Verde; Fig. 9¢) the coupled fluxes, with smaller and larger ranges
between the maximum and minimum monthly values, respectively. The
two configurations exhibit these same differences in terms of simulated
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electricity generation, as displayed in Fig. 9d-f. This is expected since
the water used for power generation and the electricity produced are
linearly related through the water withdrawal intensities of the power
plants (note that this is a model limitation that should be addressed to
incorporate recent evidences of nonlinear behavior by Tidwell et al.,
2019). More importantly, Fig. 9d-f displays also monthly estimates of
electricity generation from EIA that can be used as a reference to assess
the accuracy of the modeling approaches. It is apparent that simulations
with the coupled models capture much better EIA observations than
those obtained using the standalone mode, as quantified by RMSE being
lower than 0.2 TWh and 0.8 TWh for the coupled and standalone runs,
respectively.

The discrepancies between the water demand of power plants
simulated with the two modeling approaches lead to differences in
volumes supplied by CAP, GW, and RW to these users, along with the
associated energy required for treatment and pumping. The mean
monthly water fluxes from sources to individual power plants are
compared in the Sankey diagrams of Fig. 10. The total water used for
power generation provided as input in the standalone configuration is
slightly larger than the simulated value in the coupled runs (9.34 vs.
8.87 million m®), resulting in higher embedded energy (6.08 vs. 5.87
GWh). To satisfy the water demand, the coupled models simulate a
larger (smaller) fraction of RW (GW and CAP water) compared to the
standalone case. Moreover, the two configurations predict different
portfolios of water sources for some of the power plants. For example, (i)
Redhawk and West Phoenix receive water only from RW in the stand-
alone configuration, while they are also supplied by GW in the coupled
mode; and (ii) Palo Verde is supplied by a much smaller fraction of GW
in the standalone runs.

The water allocations from the three sources to the power plants
exhibit also temporal differences. For instance, as illustrated in Fig. 11a
and b, the coupled runs simulate an increasing trend of CAP water al-
locations to all power plants from 2008 to 2017 that is not captured by
the standalone configuration. Under this simpler modeling approach,
constant annual allocations are predicted that result in an over-
estimation of CAP water throughout the simulation period. Both
modeling types simulate an increasing trend of GW allocations from
2008 to 2015 and a decrease afterward (Fig. 11c). However, simulations
under standalone overestimate (underestimate) GW monthly fluxes
simulated by the coupled models below (above) ~4.5 million m? (see
scatterplot in Fig. 11d), leading to lower variability of the monthly
fluxes. The two modeling approaches simulate instead similar alloca-
tions of RW to all power plants (Fig. 11e and f). Despite this, differences
are found in terms of RW allocations to distinct generating stations. This
is demonstrated in Fig. 12, which shows that outputs of the coupled
models are both overestimated (e.g., +104.7% in West Phoenix and
+31.8% in Redhawk) and underestimated (e.g., —17.9% in Palo Verde)
by the standalone runs.

4. Discussion and summary

While obtained for a specific study site, our results provide useful
information that could support WEN modeling efforts in other regions.
In particular, our findings are relevant for models that simulate WEN
dynamics over spatial extents of metropolitan regions or larger and at
timescales larger than one day. They are less applicable to real-time
simulations at sub-hourly resolutions of water distribution and power
transmission networks at a city or neighborhood scale, as, e.g., in the 24-
h simulations conducted by Santhosh et al. (2014) and Khatavkar and
Mays (2018).

4.1. Data availability and spatiotemporal disaggregation are key
As for all modeling exercises, increasing the spatial and temporal

resolutions of WEN models leads to more complex model setups that
require a larger amount of data. Focusing on the U.S., Chini and Stillwell
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Fig. 9. (a)-(c) Simulation of water allocations for power generation at (a) Santan, (b) Redhawk, and (c) Palo Verde power plants using standalone and coupled

configurations. (d)-(f) Same as (a)-(c) but for electricity generation, along with estimates from EIA (2019).
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Fig. 10. Sankey diagrams showing the mean monthly water supply from RW, GW, and CAP to the power users along with the energy embedded in treating and

pumping these fluxes as simulated by the (a) standalone and (b) coupled models.

(2017) recently highlighted that obtaining data on water and energy
systems, demand, and supply is a challenging task. In particular, these
authors reported that data on energy are available at higher time fre-
quencies and finer spatial granularity than data on water. EIA reports
the main characteristics of most power plants in the country and their
monthly electricity generation, as well as energy consumption grouped
by sectors at the state level. Hourly energy demands are also publicly
available in numerous balancing areas, defined as regions where energy
demand and supply must be balanced (Federal Energy Regulatory
Commission, 2020). Data from EIA have been crucial for our modeling
study at the metropolitan scale (Table 1).

Considering instead water, EIA reports water withdrawals and con-
sumption for the power plants. For other uses, the main efforts at the
national scale are from the United States Geological Survey (USGS) and
include Water Data for the Nation (USGS, 2016) and the National Water
Use Information Program (USGS, 2010). The Water Data for the Nation
initiative publishes almost in real-time streamflow data at daily or
sub-daily resolution across the country. These data could be used to
estimate water diversions from rivers at high temporal resolutions (up to

daily), which are needed to apply water models. Data on water with-
drawals from reservoirs, pumped volumes from wells, and allocations of
reclaimed water are instead more difficult to obtain since they depend
on policies on data sharing adopted by agencies and utilities managing
these supply sources. The National Water Use Information Program re-
ports every five years water use estimates at the county level, which are
temporal and spatial resolutions often too coarse for WEN modeling
studies. Currently, no agency has the mandate to collect national water
data at the utility or city scale, as EIA does with energy (Chini and
Stillwell, 2017). In our effort, we have been able to access a relatively
extensive dataset on water, including estimates of annual water demand
and supply data in the AMA by ADWR, daily water diversions from the
closest reservoir to Phoenix published online by SRP, and monthly re-
ports with water volumes allocated to different customers by CAP (see
Table 1 and Appendix).

Even if data are partially available, as in our study region, they are
very often provided at different resolutions and for limited time periods.
Thus, assumptions are needed to disaggregate data temporally and
spatially and to extrapolate them in time for their use in more detailed
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Fig. 12. Simulation of RW water allocations to (a) West Phoenix, (b) Redhawk,
and (c) Palo Verde power plants using standalone and coupled configurations.

WEN simulations (Khan et al., 2017). Such assumptions could be sup-
ported by reports of local water and energy utilities and irrigation dis-
tricts. In our effort, we have disaggregated annual estimates of
municipal and agricultural water demand from ADWR (2018) to
monthly scale through monthly fractions derived from a report pub-
lished online by the City of Phoenix, which is one of the largest water
providers (CPWSD, 2011), and from a recent report on irrigated agri-
culture in Arizona by Lahmers and Eden (2018), respectively. For the
standalone simulations, we have also performed a spatial disaggregation

10

of energy-related water demand from ADWR (2018) by combining
power plant characteristics (i.e., capacity, capacity factor, and water
withdrawal rate; see Appendix) available from EIA (2018, 2019).
Alternatively, open record requests could be sent to utilities to obtain
data, as done by Chini and Stillwell (2017, 2018) who contacted water
utilities in 127 U.S. cities to conduct a utility-scale analysis of drinking
water and wastewater flows along with the embedded energy. Despite
this, these authors also warned about potential limitations of data pro-
vided by utilities in terms of accuracy (e.g., absence of data quality
assurance and control) and low resolution (e.g., energy data is not
collected at sub-monthly resolution).

4.2. Value of higher temporal resolution

In our study region, fluxes of water and energy systems are charac-
terized by marked intra-annual variability largely due to higher de-
mands in hot summers (see Figs. 4, 5, and 9). Incorporating this higher
temporal variability in simulations of water-energy interactions pro-
vides critical support for the identification of synergies between the two
systems that can guide policy- and decision-makers in the two sectors.
This is particularly true in regions where there are large fluctuations of
demand for both resources and of surface water supply. For example,
simulating the seasonal water availability for power generation provides
detailed information on (i) which type of power plants is more conve-
nient and sustainable to expand or retire in the future (APS, 2017; SRP,
2018); (ii) reservoir operations to optimize hydropower generation
(Demertzi et al., 2014; Xuan et al., 2020); and (iii) planning of energy
generation and, in turn, of imports and exports (Federal Energy Regu-
latory Commission, 2020). Capturing the seasonality in water and en-
ergy demand and supply is also important to (i) identify optimal water
conservation (energy efficiency) strategies that save energy (water)
while being cost-effective (e.g., Bartos and Chester, 2014; Escriva-Bou
et al., 2018; White and Fane, 2002); and (ii) model impacts of heat
waves and low water flows on power production (Bartos and Chester,
2015; Gjorgiev and Sansavini, 2018; Harto and Yan, 2011; van Vliet
et al., 2016a).

Results of our work also suggest that adopting higher temporal
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resolutions increases the accuracy of WEN simulations. This is particu-
larly true for water fluxes and less critical for energy fluxes. For instance,
the use of annual or monthly temporal resolutions results in a difference
of up to 5% in the simulated annual CAP water supply (Fig. 6), but
practically no difference in simulated annual electricity generation at
each power plant. This finding can be explained considering that water
systems are more rigid because there is a direct connection between
demand nodes and their supply sources due to both infrastructural
constraints and management rules. As a consequence, if simulations are
performed at the monthly resolution, the contribution of each supply
source to a given demand node can vary dramatically each month
depending on water availability. Since these seasonal dynamics are not
captured in annual simulations, there may be marked differences in the
simulated water volumes provided by each water source throughout the
year. Two main reasons can instead explain why the simulated annual
energy supply is less sensitive to the model temporal resolution. The first
is that electricity is not directly delivered from specific power plants to
distinct users because of the presence of the electric grid; therefore, even
if the overall demand changes monthly, electricity generations at indi-
vidual power plants are not importantly affected by demand changes of
each user. The second reason is that, in our study region, water infra-
structure contributes only ~4% to the total energy demand (Mounir
et al., 2019); thus, even if different water fluxes are simulated at the two
resolutions, the difference in associated electricity demands is compar-
atively very small.

These outcomes obtained for the Phoenix AMA with thermoelectric
power plants can be used as a reference to assess the value of temporal
resolution in WEN modeling in other study areas. Water systems rely
everywhere on relatively rigid allocation rules and infrastructure con-
straints. We then expect that the simulation of water allocations from
supply sources to demand nodes, including power plants, will be ubiq-
uitously impacted by the temporal resolution. Conversely, modeling
energy supply will likely be less impacted by temporal resolution in
several regions in the U.S., because the power grid is always present and
the national average of the percentage of total energy use to pump and
treat water is ~4%, as in the Phoenix AMA (Electric Power Research
Institute; EPRI, 2000). The sensitivity of simulated electricity generation
to the WEN model temporal resolution is expected to increase in regions
where water infrastructure is responsible for a substantial portion of the
total energy consumption, such as in California, where this portion is
~10% (California Public Utilities Commission; CPUC, 2010), and in
areas greatly dependent on desalination, like the UAE where desalina-
tion uses up to 22% of its total electricity (Siddiqi and Anadon, 2011).
However, increasing temporal resolution to monthly is most likely
needed when hydropower represents a large share of the electricity
generation, due to the need to model streamflow seasonality and
reservoir operation, as also showed by Dale et al. (2015).

4.3. Value of higher spatial granularity

Our analyses show that, when the spatial granularity of the water
model domain is increased, dynamics of water allocations for energy
generation are simulated with higher accuracy. This suggests that,
depending on the specific study site, a coarse representation of the en-
ergy system components in the water model domain may result in
ignoring the contribution of distinct water sources for power generation.
For example, in the Phoenix AMA, allocations of CAP water to power
plants are only captured using the configuration where each power plant
is explicitly represented in the water model (Fig. 8). This modeling
capability is important for both the electricity companies that manage
the generating stations relying on such water supply and the regional
management of water resources. While increasing the spatial resolution
up to the granularity of single power plants enhances model accuracy, it
also requires a larger amount of data and adds complexity to the model.
Here, we show that this effort is valuable and achievable at the scale of a
metropolitan region. As the spatial extent of the study region increases
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(e.g., states or countries), capturing the dynamics of water allocations to
distinct power plants may become unfeasible and, in some cases, even
unnecessary. For example, Yates et al. (2013a) coupled WEAP with the
regional energy deployment system (ReEDS) to quantify water with-
drawals by different users including the power system in Southwestern
U.S., which encompasses our study site. In doing so, these authors
aggregated power plants by technology type within balancing areas,
thus using a much coarser description of the energy system than the one
adopted in our study. However, the differences in CAP water supplies
simulated in our study for the coarse and fine domains represent only
0.06% of the annual water withdrawals over the Southwestern U.S. As a
result, the simplified modeling setup adopted by Yates et al. (2013a) is
justified to simulate the WEN in such a large domain without causing
any major loss of information. Finally, the need to disaggregate spatially
and increase model complexity could be less critical if the main sources
of electricity generation come from solar PV and wind turbines because
these require very limited water volumes.

4.4. Utility of coupled simulations

In our study, coupled and standalone models are compared-to our
knowledge for the first time-in the same WEN system. We find that the
use of coupled models results in more accurate simulations of electricity
generation and its water needs than estimations based on a standalone
configuration where a water model is used to infer information on the
energy system (Fig. 9). This difference is explained by the assumptions
made to generate energy-related inputs for the water model, which, as
discussed above, are obtained by disaggregating annual estimates of
water use for power generation from ADWR in space (to each power
plant) and time (monthly). Under these assumptions, simulations of
energy generation and water demand with the standalone and coupled
models are similar at some power plants (e.g., Santan), but they diverge
significantly at others, including a large underestimation of water
withdrawn by the most water-consuming generating station, Palo Verde.
Moreover, results from these two approaches differ in terms of (i) water
allocations supplied from each source to the power plants (this may be a
minor issue elsewhere if power plants are supplied by a single source),
(ii) energy embedded in treating and pumping these water volumes, and
(iii) intra-annual variability of the total water allocation from the
different sources. These differences highlight the limitations of simpler
approaches where a model is used to simulate one system (in our case,
water) and infer information about the other system (energy). Clearly,
the limitations of standalone simulations are less critical when there is
enough information and confidence on the assumptions made to
constrain the model (in our case, on the time series of water demand
from power plants).

An additional advantage of coupled models is that they allow a more
mechanistic representation of processes and characteristics of water and
energy infrastructure. This has three important benefits. First, it facili-
tates the simulation of WEN systems characterized by different temporal
and spatial scales, a process named synchronization by Khan et al.
(2017). The case of the Phoenix AMA illustrates this point since the
coupled model is capable to simulate electricity generation in all power
plants supplying the study area, including those located outside of the
geographical boundaries that contribute to satisfy the local energy de-
mand. These external generating stations are instead not included in the
standalone configuration because it is quite hard to make assumptions
on their contribution. The second benefit of the higher mechanistic
nature of integrated models is that they are (probably the most) accurate
tool to simulate WEN systems under different future scenarios since they
allow implementing, in a relatively easy fashion, changes of infra-
structural components (e.g., number and type of power plants, con-
struction or decommission of water infrastructure) and their
management rules, new energy and water efficiency technologies, and
modifications of water and energy demands in the different sectors,
among other features. The value of this capability has been shown, for
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example, by Yates et al. (2013a), who used the coupled ReEDS-WEAP
models to simulate capacity expansion and energy generation accord-
ing to different future electricity mix scenarios, along with water allo-
cations under drought conditions. Lastly, coupled models could be
beneficial in data-scarce regions to simulate processes for which data are
not available, provided that reliable assumptions are made on their
parameterization through, e.g., values reported in literature or relations
with population served.

5. Conclusions

The simulation of the interactions between water and energy systems
is crucial to identify synergies and adopt a holistic management
approach. In this study, we investigate how the accuracy of WEN sim-
ulations is affected by the spatiotemporal resolution and use of coupled
models that capture two-way feedbacks between the systems. We do so
by applying the WEAP and LEAP models in the Phoenix metropolitan
region, where water resources are limited and energy-intensive. Our
results can be summarized as follows:

(i) Increasing the temporal resolution from annual to monthly al-
lows capturing the marked seasonality of electricity generation
and the associated water requirements. While the use of both
time steps leads to the simulation of similar annual electricity
generations at each station, annual aggregates of water deliveries
from each source vary with the temporal resolution. This differ-
ence in sensitivity to the model time step is explained by the
presence of more rigid infrastructure constraints and allocation
rules in water systems compared to energy systems.

(ii) The use of a finer spatial granularity by incorporating each power
plant in the WEAP domain allows simulating the correct water
portfolios of power plants, which the coarser configuration with a
single water demand node for power is unable to capture. This
leads to differences in simulated energy embedded in water for
power generation. The accuracy achieved by refining the spatial
granularity up to the single power plant can be unnecessary in
studies applied to regions with a large spatial extent.

(iii) Simulations with the coupled models reproduce EIA observations
of electricity generation better than the standalone approach.

Appendix A. Supplementary data
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Simulations under the two modeling approaches differ in terms of
magnitude and intra-annual variability of water allocations from
distinct sources to each power plant, with relative differences
exceeding 100%. By representing processes and characteristics of
water and energy infrastructure in a more mechanistic fashion,
coupled models facilitate the simulation of WEN systems with
different temporal and spatial scales and under possible future
scenarios. Once the spatial granularity and complexity of the
domain are fixed and data have been collected, we believe that
the adoption of coupled instead of standalone approaches is not
limited by the scale of the problem, but rather by the current low
availability of these integrated models.

Software and/or data availability

The software tools used in this paper are: (i) the Water Evaluation
and Planning (WEAP), and (ii) the Long-range Energy Alternatives
Planning (LEAP). Both tools are developed by the Stockholm Environ-
ment Institute (SEL sei-international.org). The 2-year license for WEAP
is free for non-profit, governmental or academic organization based in a
developing country, and it ranges from $250 to $3000 depending on the
user type. Pricing for the LEAP license is available by contacting SEI.
Both platforms run in Windows machine. The data used to apply the
software is publicly available and listed in Tables 1 and 2
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Appendix. Data sources used to spatially and temporally disaggregate the WEAP and LEAP models

The datasets used to set up and calibrate the LEAP and WEAP models are presented in detail in Mounir et al. (2019; their Table C1) and Guan et al.
(2020; their Table 1). Table 1 presents a sample of these datasets as well as additional data sources used in this publication to determine the monthly
variability in some variables.

To increase the temporal resolution of WEAP, we derive the monthly variability of SRP and CAP water allocations from the SRP’s daily water report
(SRP, 2020b) and CAP’s monthly delivery report (CAP, 2020), respectively. We estimate the monthly water demands of municipal, industrial, and
power plant sectors from the 2011 Water Plan of the City of Phoenix Water Services Department (CPWSD, 2011). To estimate the monthly agricultural
water demand, we use data available for Yuma County, located in southwestern Arizona (Lahmers and Eden, 2018). We instead assume uniform
demand for the Native American node because (i) its magnitude is comparatively much smaller, and (ii) we could not identify any valuable source to
disaggregate it.

To increase the temporal resolution of LEAP, we assume the monthly variability of the capacity factors to match the observed monthly variability in
the respective power plant electricity generation reported in EIA (2019). For the energy demand, the monthly variability is assumed identical to the
variability in (i) the total load obtained from EIA (2020b) for the activities unrelated to water; and (ii) water demand as described for WEAP for the
activities related to water. For example, the monthly variability of the energy required to pump CAP water to the municipal node is assumed identical
to the monthly variability of the water demand by this node.

To conduct the standalone simulations and generate inputs for WEAP, we disaggregate spatially and temporally annual estimates of ADWR water
allocations to all power plants. To disaggregate spatially, we multiply the total annual water volumes of the nine power plants by a weighting co-

9
efficient defined asw, = (C, :CF, -WR;)/ > (C, -CF, -WR,), where C,, CF,, and WR, are capacity, annual mean capacity factor, and water withdrawal
p=1
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rate of the p-th power plant, respectively. We use instead the variability in monthly capacity factors available from EIA (2019) for the temporal

disaggregation.
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