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A B S T R A C T   

Modeling the interactions between water and energy is crucial to managing holistically these resources. Here, we 
simulate water allocations and energy dispatch in the metropolitan region of Phoenix, Arizona in 2008–2017 
using the WEAP and LEAP models under different spatiotemporal resolutions and coupling configurations. We 
find that increasing the temporal resolution from annual to monthly allows capturing seasonal demands, which 
improves the simulation of water allocations from supply sources to all demand nodes; the simulation of energy 
fluxes is instead less sensitive to the model time step. Representing the domain with higher spatial granularity 
enhances the ability to model the correct water portfolio of the power plants. Finally, coupling the models to 
capture two-way feedbacks between water and energy systems improves the simulations of electricity generation 
and, in turn, of water fluxes. While related to Phoenix, our findings provide useful insights to improve water- 
energy nexus modeling at other sites.   

1. Introduction 

The water-energy nexus (WEN) is a term used to refer collectively to 
the dependencies and interdependencies between water and energy 
systems and resources (Rio Carrillo and Frei, 2009; Siddiqi and Anadon, 
2011; U.S. Department of Energy, 2014). For example, water is required 
for cooling purposes in thermal power plants and is directly used to 
produce electricity in hydropower plants. Energy is needed to pump, 
transport, and treat water. Depending on the region, each resource could 
use a significant amount of the other (Khan et al., 2017). For instance, in 
the U.S. power plants are estimated to be responsible for 13% of the total 
water consumption, while the energy required to pump, transport, treat, 
and heat water accounts for 13% of the total primary energy con
sumption (Dieter et al., 2018; Sanders and Webber, 2012). Due to the 
interdependencies between water and energy, climate and anthropo
genic stressors (e.g., intense storms, heatwaves, droughts, terrorist at
tacks, etc.) acting on one system can cause cascading impacts on the 
other system, thus significantly compromising the security of both re
sources over both short (daily and sub-daily; de Amorim et al., 2018; 
Hatvani-Kovacs et al., 2016; Lubega and Stillwell, 2018; Su et al., 2020) 
and long (multiple years; Bartos and Chester, 2015; van Vliet et al., 
2016a) time periods. The adoption of a nexus approach to operate and 

manage water and energy systems has then become increasingly press
ing, especially considering the additional stresses that climate change, 
population growth, and urbanization will exert on these two resources 
(Dai et al., 2018; Rio Carrillo and Frei, 2009; Scott, 2011; Siddiqi and 
Anadon, 2011; van Vliet et al., 2016a). 

A key step for the adoption of a nexus perspective in policy- and 
decision-making is to quantify interactions in water-energy systems 
through numerical models (Khan et al., 2017). These allow identifying 
synergies and limiting tradeoffs both in current conditions and under 
possible scenarios of climate change, demand growth, and expansion of 
technologies and infrastructure. Given the broad scopes of WEN studies, 
models have been developed using several approaches (Hamiche et al., 
2016). For instance, Schuck and Green (2002) relied on econometrics 
principles to quantify the potential of price variation to conserve water 
and energy resources. Grubert and Webber (2015) used a life-cycle 
assessment method to estimate future changes in water and energy in
terdependencies according to various policy choices. Stercke et al. 
(2020) set up a system dynamics model to explore global and local 
sustainable development goals that are related to the WEN. Khan et al. 
(2018) and Gjorgiev and Sansavini (2018) developed resource optimi
zation models to simulate the impacts of changes in water temperature 
on power generation. The same goal was pursued by van Vliet et al. 
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(2016b) combining a large-scale hydrologic model with a stream tem
perature and hydropower and thermoelectric models. Obringer et al. 
(2019) and Dale et al. (2015) investigated the implications of climate 
change for the WEN using statistical and simulation modeling, respec
tively. As summarized in a review study by Dai et al. (2018), WEN ap
plications have been conducted at different temporal resolutions or time 
steps. These include sub-hourly real-time simulations of water distri
bution systems and power transmission networks (Khatavkar and Mays, 
2018; Santhosh et al., 2014); and analyses at monthly and annual scales 
of infrastructure expansion, effects of policies, and environmental im
pacts (Jääskeläinen et al., 2018; Zhou et al., 2019). Moreover, WEN 
models have incorporated the physical components of water and energy 
systems with various levels of detail. For instance, simulations of elec
tricity generation and water demands have been performed both at fine 
spatial resolution (or granularity), accounting for each power plant (e.g., 
Mu et al., 2020), and at a coarser resolution, aggregating the generating 
stations based on fuel type and cooling technologies (e.g., Zhou et al., 
2019). In general, the adoption of given temporal resolution and spatial 
granularity depends on data availability, geographical extent of the 
study area (e.g., city, country, or transnational), and duration of the 
simulations (e.g., daily, annual, or multidecadal). In a recent review of 
current efforts and challenges in WEN modeling, Khan et al. (2017) 
noted that the increasing efforts devoted to capture finer resolutions 
should be carefully considered in terms of the gained simulation accu
racy. However, very limited research has been dedicated to systemati
cally investigate the importance of spatial and temporal resolutions on 
model accuracy in WEN applications. 

Khan et al. (2017) also reported that most previous studies of inte
grated water and energy systems rely on a single model to simulate one 
system and process its outputs to infer information on the other system. 
In particular, these authors found that in most studies (e.g., Bouckaert 
et al., 2012; Faeth et al., 2014; Mounir et al., 2019), modeling tools are 
utilized to explicitly simulate the energy sector, and estimate its water 
requirements without including an appropriate representation of the 
water infrastructure, its internal dynamics, and the interactions with the 
energy components. Other work has applied water management models 
to simulate the water system and post-processed its outputs to estimate 
energy demand for water uses (e.g., Baki and Makropoulos, 2014; Guan 
et al., 2020). A more accurate representation of WEN interdependencies 
would instead require the use of models that explicitly simulate each 
system and are integrated by linking the computer codes (i.e., hard 
links) or exchanging data in real time (i.e., soft links). Currently, inte
grated or coupled WEN models that capture the feedback loops between 
the two systems have been adopted in a limited number of cases. These 
include both (i) the coupling with soft links of existing water and energy 
models (van Vliet et al., 2016b; Voisin et al., 2020), as done with the 
Water Evaluation and Planning (WEAP) and the Long-range Energy 
Alternatives Planning (LEAP) platforms (Dale et al., 2015; Lin et al., 
2019; Liu et al., 2021); and (ii) the development of hard-linked 
water-energy optimization (Khan et al., 2018; Parkinson and Djilali, 
2015) and integrated assessment (Liu et al., 2019; Miara et al., 2017) 
models. Despite these promising studies, their number is still limited and 
the added values of coupled simulations compared to simpler ap
proaches based on single models and data postprocessing has not been 
yet properly quantified. 

In this study, we contribute to addressing a number of the research 
gaps discussed above by investigating how the adoption of single and 
coupled models under different spatial and temporal resolutions affects 
the accuracy of WEN simulations. For this aim, we focus on long-term 
water allocations and energy dispatch in the metropolitan region of 
Phoenix, Arizona. This is a compelling study site for WEN studies for 
several reasons. First, it relies on limited water resources mainly pro
vided by energy-intensive sources, including groundwater and the 
Central Arizona Project (CAP) that transfers water from the Colorado 
River to central and southern Arizona through a 541-km canal (Bartos 
and Chester, 2014; Mounir et al., 2019). Second, while renewable 

energy sources have been increasing (APS, 2017; SRP, 2018), electricity 
is largely generated by thermal power plants that heavily depend on 
water, including the largest nuclear generating station in the country, 
Palo Verde. Finally, the Phoenix metropolitan region has experienced, 
over the last three decades, one of the fastest population growth in the U. 
S. that was possible by converting agricultural land into urban areas 
(Bausch et al., 2015); this shift has caused a dramatic change in water 
and energy demands. 

The work presented here is built upon our previous effort in the 
Phoenix metropolitan region where the WEAP platform has been 
applied to simulate food-energy-water dynamics under a set of future 
scenarios of water demand and supply (Guan et al., 2020), and the LEAP 
model has been used to quantify the implications of future energy mix 
alternatives on the WEN (Mounir et al., 2019). In both studies, WEAP 
and LEAP have been applied at an annual resolution for several decades. 
Here, we first improve the model configurations by (i) increasing the 
temporal resolution of both models from annual to monthly, (ii) 
expanding the WEAP network from a single water demand node repre
senting all power plants to an explicit representation of all electricity 
generating stations, and (iii) coupling WEAP and LEAP through soft 
links. We then apply the models under different configurations using 
independent estimates of observed water and energy fluxes in the region 
as a reference over the period 2008–2017. First, we explore the impor
tance of the temporal resolution by comparing simulations of the 
coupled WEAP-LEAP model applied with annual and monthly time 
steps, respectively. Second, we quantify the value of increased spatial 
granularity by contrasting simulations of WEAP-LEAP where the WEAP 
domain has either a single water demand node representing all power 
plants or multiple nodes each representing a distinct power plant. 
Finally, we investigate the added value of capturing two-way feedbacks 
between water and energy systems by comparing simulations with the 
coupled WEAP-LEAP model and a standalone approach based on the 
WEAP model plus a post-processing routine designed to calculate energy 
fluxes. After presenting results of these comparisons that are obtained 
for a specific study region and model type, we discuss a number of im
plications useful to address challenges of WEN modeling more generally. 

2. Materials and methods 

To properly describe our methodology and case study, we initially 
define water and energy models. We refer to a water model as a tool that 
simulates allocation, treatment, and distribution of water from supply 
sources to demand nodes as a function of time. Similarly, we define an 
energy model as a tool that reproduces electricity generation and dispatch 
from different power plants to satisfy sectorial demands as a function of 
time. While some of the processes simulated in the water model require 
energy, these interactions are not explicitly captured and assumptions 
must be made on energy availability (e.g., energy is unlimited). A similar 
argument can be made for the energy model. Water and energy models 
can be coupled so that fluxes and information between the two systems 
are exchanged during the simulation. In the following, we first describe 
the study area (section 2.1) and provide a brief overview of the adopted 
water and energy models (section 2.2), along with their setup in the 
study region (section 2.3). Finally, we summarize the modeling config
urations used for our analyses (section 2.4). 

2.1. Study area 

We apply the water and energy models to the Phoenix Active Man
agement Area (AMA), an administrative region of 14,623 km2 (Fig. 1) 
managed by the Arizona Department of Water Resources (ADWR) and 
created after the approval of the Arizona Groundwater Management Act 
in 1980 to sustainably manage the regional aquifer. The Phoenix AMA is 
located in central Arizona and entirely includes the Phoenix metropol
itan area and several irrigation districts. The water and energy systems 
of this region are highly interdependent. Four main sources supply water 
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to the different users, including (i) surface water from the Salt and Verde 
Rivers managed by the Salt River Project (SRP); (ii) surface water from 
the Colorado River transported from Lake Havasu to Southern Arizona 
through the Central Arizona Project (CAP) canal; (iii) groundwater 
(GW); and (iv) reclaimed water (RW). Over the last decade, these water 
sources delivered ~2,800 million m3 annually satisfying the municipal 
(47% of the demand), agricultural (33%), Native American (11%, ac
counting for domestic and agricultural needs of the three largest com
munities in the region), industrial (5%), and power plant (4%) demands. 
To achieve this, energy is required to operate pumping stations, wells, 
water (WTPs) and wastewater (WWTPs) treatment plants, and water 
reclamation facilities (WRFs), totaling a demand of ~1,900 GWh per 
year (3.6% of the total electricity demand; Mounir et al., 2019). Energy 
supply for the region is largely provided by SRP and Arizona Public 
Service (APS) utilities, which operate eight natural gas generating sta
tions and one nuclear power plant within the region boundary, along 
with 22 large power plants located outside of this area (Mounir et al., 
2019). Electricity is needed to satisfy the residential (39% of the de
mand), commercial (35%), and industrial energy sectors (26%). The 
latter one includes the energy provided to the water infrastructure. 

2.2. Overview of WEAP, LEAP, and coupled WEAP-LEAP modeling 
platforms 

The Water Evaluation and Planning (WEAP; Yates et al., 2005) 
platform is used here as the water model. WEAP is designed to support 
water resources planning and management at different scales, by opti
mizing water allocations in a network linking supply sources to demand 
nodes under mass balance and user-specified constraints, including de
mand priorities and infrastructure operation rules, among others. Inputs 
for WEAP include fixed and time-varying variables characterizing water 

supply (e.g., aquifer properties, river discharge, water releases from 
reservoirs), demand nodes (e.g., population, water intensities), and 
management rules (e.g., canal and reservoir size). Outputs include 
several variables describing fluxes of water demand and supply in the 
network. In previous studies, WEAP has been applied at different time 
steps, ranging from annual (e.g., Guan et al., 2020), to monthly (e.g., 
Lévite et al., 2003) and weekly (e.g., Dale et al., 2015), and at national 
(e.g., Welsch et al., 2014), regional (e.g., Yates et al., 2013a; 2013b), and 
metropolitan (e.g., Guan et al., 2020) scales. 

The Long-range Energy Alternatives Planning (LEAP; Heaps, 2020) 
system is used in this study as the energy model. LEAP is an integrated 
energy-economy-environment model designed to support energy 
resource planning and management. It simulates energy generation 
from diverse fuel types to satisfy demand from different end-users 
through simple dispatch rules. It requires inputs characterizing de
mand, including activity levels (e.g., population, water flow) and energy 
intensities (e.g., per capita or per unit volume energy consumption), and 
supply, such as characteristics of power plants (e.g., fuel type, capacity), 
percent of energy losses, and reserve margins. Depending on application 
and data availability, inputs can be constant or vary in time. LEAP 
outputs time series of energy demand from each end-user, as well as 
energy generation and greenhouse gas emissions at each power plant, 
among many other variables. In previous applications, this modeling 
tool has been applied at annual (e.g., Mounir et al., 2019), monthly (e.g., 
Javadifard et al., 2019), and weekly (e.g., Dale et al., 2015) time steps to 
simulate energy systems at continental (e.g., Ouedraogo 2017), national 
(e.g., Aliyu et al., 2013), regional (e.g., Chang et al., 2017), and 
metropolitan (e.g., Mounir et al., 2019) scales. Both WEAP and LEAP 
have been used to model water and energy systems under present 
climate and infrastructural conditions, as well as to explore the impacts 
of future scenarios of demand and supply (e.g., Dale et al., 2015; Esteve 

Fig. 1. The Phoenix Active Management Area (AMA) in central Arizona, along with the location of power plants with the indication of fuel type and capacity; main 
water treatment plants (WTP), wastewater treatment plants (WWTP), and water reclamation facility (WRF); the Salt, Verde and Gila Rivers; the Central Arizona 
Project (CAP) aqueduct; canals of the Salt River Project (SRP); and cropland and urban areas of the Phoenix metropolitan region. 
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et al., 2015; Guan et al., 2020; Gul and Qureshi, 2012; Mounir et al., 
2019) and new policies (e.g., Handayani et al., 2017; Lévite et al., 2003). 

Recently, the WEAP and LEAP platforms have been coupled to allow 
simulating the interactions of water-energy systems at each time step. 
The coupling is achieved through so-called “links” where: (i) LEAP reads 
variables from WEAP to determine energy demand for specific uses (e.g., 
groundwater pumping and desalination) and/or constrain hydropower 
generation; and (ii) WEAP reads variables from LEAP to estimate water 
requirements for thermal cooling and/or electricity generation in hy
dropower stations. These links allow both platforms to communicate 
iteratively at each time step. The coupled WEAP-LEAP modeling plat
form was applied by Dale et al. (2015) to investigate the impact of 
climate change on water and energy consumption in Sacramento, Cali
fornia, finding that electricity imports in the region may increase to 35% 
during hot dry years. 

2.3. Set up of WEAP, LEAP, and coupled WEAP-LEAP in the Phoenix 
AMA 

The WEAP and LEAP models are set up in our study region by 
improving the configurations adopted and validated by Guan et al. 
(2020) and Mounir et al. (2019), respectively, by increasing temporal 
resolution and spatial granularity, and by coupling the models. It is first 
noted that the words energy and electricity are used interchangeably in 
the rest of the paper, but our simulations involve only electricity. To 
investigate the effect of temporal resolution, we apply the models at an 
annual scale, as in the two studies mentioned above, and extend the 
setup also at monthly resolution. We derive the monthly SRP and CAP 
water allocations and estimate monthly water demands through the data 
sources provided in Table 1 and the assumptions described in the Ap
pendix. The network representing the water system of the Phoenix AMA 
implemented in WEAP is exemplified in Fig. 2a. Water from SRP, CAP, 
GW, and RW sources is directly distributed to the agricultural sector and 
is treated in WTPs prior to being delivered to the municipal, Native 
American, and industrial sectors; power plants receive water from all 
sources except for SRP. Water allocations from SRP are affected by 
management rules and natural flow in the Salt and Verde Rivers; CAP 
water deliveries depend on the entitlements of Colorado River water to 
the region; and RW is generated by treating municipal water in WRFs. 
All these rules and time-varying flows are implemented in the model, so 
that water supply is limited and constrained. Water demand is computed 
as a function of population and per capita water use for the municipal 

and industrial nodes, while it is directly inputted for the Native Amer
ican node using data from ADWR (2018). For the power node, we adopt 
two configurations to investigate the effect of spatial granularity of the 
energy system. In the first, a single node represents collectively all 
power plants. 

as in Guan et al. (2020), while, in the second, nine nodes are used to 
simulate the distinct power plants located in the Phoenix AMA. The 
transmission links between water supply and demand nodes are set up to 
represent the physical constraints of infrastructure and water manage
ment rules. The two networks are presented in Figs. S1 and S2. More 
details are provided by Guan et al. (2020). 

The energy system implemented in LEAP is summarized in Fig. 2b. 
Energy supply is provided by nine power plants located within the 
Phoenix AMA and 22 outside of this region, fueled by coal, natural gas, 
uranium, and renewable resources (i.e., solar radiation, wind, and 
water). These 31 generating stations are selected because they are 
entirely or partially owned by SRP and APS, the main utilities satisfying 
electricity demand in the region (PWCC, 2018; SRP, 2020a). Table 2 
presents the fuel type, total capacity, SRP and APS capacity entitlement, 
mean annual electricity generation, and water source for the nine power 
plants located within the Phoenix AMA; note that, for the nine gener
ating stations, water withdrawal is equal to water consumption ac
cording to the U.S. Energy Information Administration (EIA, 2018, 
2020a). For each of the 31 power plants, we input fuel type, capacity 
entitled to SRP and APS, merit (or dispatch) order, efficiency, and ca
pacity factor. We also specify transmission and distribution losses of 5% 
and a planned reserve margin of 15%. The energy demand structure is 
designed to focus on water-energy interactions and facilitate the 
coupling with WEAP. It includes (i) residential and commercial sectors, 
which can be related to the municipal and Native American water nodes; 
and (ii) industrial energy sector, which is divided into subsectors that 
are linked to industrial and agricultural water nodes, as well as to water 
infrastructure components that rely on seven different energy intensities 
to treat, transport, pump and convey the different water sources. Based 
on this setup, the electricity demand of the Phoenix AMA is assumed to 
be fully satisfied by the power plant capacities entitled to SRP and APS. 
This implies that (i) energy is imported into the Phoenix AMA only from 
the 22 external power plants managed by SRP and APS, and (ii) LEAP 
does not simulate the electricity exported outside of the Phoenix AMA 
boundaries associated with capacity entitlements of other energy com
panies. While we assume no limit in fuel availability at each power 
plant, the electricity generated is practically constrained by energy de
mand and water availability when WEAP is coupled to LEAP. Further 
details can be found in Mounir et al. (2019). 

We investigate the effect of the coupling strategy by first simulating 
WEN interactions in a standalone mode, which is illustrated in Fig. 3a. In 
this approach, we assume that WEAP is the only available model. Time 
series of water demand from the power plants are prescribed externally 
using estimates from ADWR (2018), and the energy needed for 
water-related uses is calculated by post-processing outputs of the water 
model. This involves multiplying the water fluxes from the supply 
sources simulated by WEAP by the corresponding energy intensities. We 
note that EIA provides data on water withdrawals and consumption for 
the power plants. These data are in good agreement with the ADWR 
estimates but incomplete for several years; we then utilize ADWR data to 
be consistent. In the second approach, we run the WEAP-LEAP model in 
coupled mode, as shown in Fig. 3b. We create a first set of links to 
connect the nine power plants located within the Phoenix AMA imple
mented in LEAP with the water demand nodes (or node, depending on 
the spatial granularity) for power in WEAP. In each link, we provide the 
water withdrawal intensity (in m3/kWh) obtained from EIA (2018, 
2019) for each power plant, multiplied by the ratio between the corre
sponding total capacity and the entitlement of SRP and APS. At each 
time step, LEAP simulates electricity generation in the system and WEAP 
uses these links to derive all water needs of each power plant. For 
instance, the electricity generation simulated by LEAP in the Palo Verde 

Table 1 
Datasets used to set up, apply, and test WEAP and LEAP in the Phoenix AMA.  

Model Dataset Purpose of use 

LEAP U.S. Energy Information 
Administration (EIA 2019) 

Estimates of electricity generation 
used as observations 

Pinnacle West Capital 
Corporation (PWCC, 2018); 
SRP (2020a) 

Capacities of the power plant 

EIA (2020a) Annual capacity factors 
EIA (2018) Rate of water withdrawals from power 

plants 
EIA (2019) Determination of the monthly 

variability of capacity factors 
EIA (2020b) Monthly variability of the load 

WEAP ADWR (2018) Water supply and demand in the 
Phoenix AMA 

SRP (2020b) Monthly variability of discharge in 
SRP canals 

CAP (2020) Monthly variability of discharge in 
CAP 

City of Phoenix Water Services 
Department (CPWSD 2011) 

Monthly variability of municipal, 
industrial, and power plant water 
demand 

Lahmers and Eden (2018) Monthly variability of agricultural 
water demand  
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power plant to satisfy the demand of the Phoenix AMA is used by WEAP 
to quantify the water required for the full production (including exports) 
at this generating station. Similarly, we create a second group of links 
that connects the water fluxes simulated by WEAP in 31 transmission 
links with the energy demand structure in LEAP, and we input the en
ergy intensities (in kWh/m3) of each water infrastructure component 
obtained from Mounir et al. (2019). At each time step, the water fluxes 
simulated by WEAP are converted into energy required by the water 
infrastructure components implemented in the LEAP demand structure, 
by multiplying the water volumes by the corresponding energy in
tensity. For example, the water flow simulated by WEAP in the trans
mission link from CAP to the municipal demand node is used by LEAP to 
calculate the associated energy demand for conveyance and treatment. 

2.4. Modeling configurations 

We adopt four model configurations to investigate our research 
questions. They are summarized in Table 3. In two configurations, a 
single water demand node for power generation is used in WEAP and the 
coupled WEAP-LEAP models are applied at annual and monthly reso
lutions; these are labeled as 1A and 1M (1 power node, M = monthly, 
and A = annual time resolution), respectively. In an alternative 
configuration, labeled as 9M, nine demand nodes are implemented in 
the WEAP network to simulate the water demand of each power plant 
located within the Phoenix AMA, and the coupled WEAP-LEAP models 
are run at a monthly temporal resolution. Finally, the configuration 

called “standalone” is based on the WEAP model running at a monthly 
temporal resolution with nine power nodes plus a post-processing 
routine for the estimation of the energy embedded in water, as shown 
in Fig. 3b. Simulations under 1A and 1M configurations are compared to 
test the effect of temporal resolution; those under 1M and 9M to evaluate 
the impact of spatial granularity; and those under 9M and standalone to 
assess the significance of the coupling approach. All simulations are 
performed from 2008 to 2017. 

We investigate the accuracy of the modeling experiments in multiple 
ways. We compare historical simulations of (1) monthly electricity 
generation at distinct power plants with values reported by EIA; and (2) 
annual water allocations from supply sources to demand sectors, 
including power plants, with estimates from ADWR (Table 1). Com
parison against historical observations is one of the four main strategies 
for evaluating integrated assessment models recently reported in the 
review of Wilson et al. (2021). To quantify differences between the time 
series, we compute correlation coefficient (CC), root mean square error 
(RMSE), and absolute percent error (APE). When contrasting 1A and 1M 
simulations, we present differences between the constant monthly value 
of several outputs derived under 1A with the time-varying values 
returned by monthly runs of 1M. Finally, we use Sankey diagrams to 
explore potential disagreements in allocations of water and embedded 
energy from supply sources to the power plants and to verify whether a 
given model configuration correctly represents water delivery 
dynamics. 

Fig. 2. Schematic of (a) water and (b) energy systems in the Phoenix AMA. Acronyms are defined in the main text.  

Table 2 
Power plants located within the Phoenix AMA and their fuel type, total capacity, SRP and APS capacity entitlement, mean annual electricity generation, and water 
sources.  

Power Plant Fuel Type Capacity 
[MW] 

SRP + APS Capacity Entitlement 
[MW] 

Annual Electricity Generation 
[GWh] 

Water 
Source 

Reference 

Palo Verde Nuclear 3,875 1,822 31,532 RW, GW (APS, 2017) 
Red Hawk Natural 

gas 
1,060 984 4,132 RW (ADWR, 2020; APS, 2017) 

West Phoenix Natural 
gas 

1,207 997 1,938 RW, GW (PWCC, 2018) 

Kyrene Natural 
gas 

523 523 804 CAP, GW (ADWR, 2020; Stanley Consultants, 
2021) 

Santan Natural 
gas 

1,219 1,219 3,168 CAP, GW (ADWR, 2020; Veolia Water 
Technologies, 2006) 

Ocotillo Natural 
gas 

333.4 330 103 GW (ADWR, 2020; APS, 2017) 

Agua Fria Natural 
gas 

626 626 82 GW (ADWR, 2020; APS, 2017) 

Arlington 
Valley 

Natural 
gas 

580 580 1,419 GW (ADWR, 2020; APS, 2017) 

Gila River Natural 
gas 

1,650 1,100 4,705 GW (ADWR, 2020; APS, 2017)  
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3. Results 

3.1. Effects of time resolution 

We begin by presenting in Fig. 4 the electricity generated in 
2008–2017 in the three largest power plants located within the Phoenix 
AMA (see Table 2), as reported by EIA, and as simulated under 1A and 
1M. The monthly means are also reported in the right panels. The 
electricity generation from EIA exhibits marked seasonality, with a 
summer peak at the two natural gas power plants, Santan and Redhawk 
(Fig. 4a–d); and winter and summer peaks at the Palo Verde nuclear 
generating station (Fig. 4e and f). This seasonality and its interannual 
variability are well captured by 1M simulations (CC > 0.62 and RMSE 
<0.2 TWh). In contrast, as expected, 1A simulations (plotted in Fig. 4 by 
dividing the annual totals by 12) are not able to reproduce seasonal 
peaks, and, in turn, the associated peaks of water demand for energy 
production, as further described below. Despite this, the annual elec
tricity generations returned by 1A each year are very close to the 1M 
simulations aggregated annually (APE between the two configurations 
relative to 1M and evaluated annually <2%). 

We now turn our attention to the water allocation for electricity 
generation (note that, for this variable, observations from ADWR are 
only available at annual resolution and aggregated for all power plants, 
while EIA provides data on water withdrawals only for 2014–2017 
without detailed information on the water sources). In the domain with 
a single power node, WEAP allocates water to such node only from RW 
and GW sources. The corresponding mean monthly allocations simu
lated by 1M are shown in Fig. 5a, while the single monthly averaged 
value produced by 1A is presented in Fig. 5b. As suggested by the results 
on electricity generation of Fig. 4, water volumes required by power 
plants are characterized by a lower winter and a more pronounced 
summer peak. This resource is largely provided by RW in summer (84% 
in August) and almost equally supplied by both sources in late winter 
and spring. As expected, annual simulations by 1A are unable to capture 

this variability in time and between the two water sources. For example, 
1A underestimates results of 1M by 2.5 million m3 (or 21%) in August 
and overestimates them by 2.2 million m3 (or 33%) in November. We 
note that the increase of simulated RW is caused by a rise of municipal 
water demand in summer and is likely overestimated due to the 
assumption made in the WEAP setup of a constant water consumption 
rate of 70% for the municipal water demand (see Supporting Informa
tion of Guan et al. (2020) for details). This setup should be improved in 
the future if observed data on the monthly variability of RW will become 
available. 

As a next step, we analyze the differences between 1A and 1M in 
terms of annual water supply to all uses. In particular, we focus on water 
delivered by CAP, which is the most energy-intensive water source. The 
observed and simulated time series of annual water volume supplied by 
CAP to all demand nodes are displayed in Fig. 6a, which shows that 1M 
simulations better capture the ADWR estimates, especially in early years 
when supply is lower. This finding can be explained by the 1M’s ability 
to better represent key water allocation dynamics occurring within each 
year. To demonstrate this, we plot in Fig. 6b and c the CAP monthly 
supplies to the municipal demand node for two representative years. To 
interpret these figures, we highlight that (i) CAP has the second-lowest 

Fig. 3. Modeling approaches of water and energy systems in (a) standalone and (b) coupled modes. See text for details.  

Table 3 
Characteristics of modeling configurations.  

Configuration 
name 

Temporal 
resolution 

Granularity Coupling 

1A Annual 1 power node in 
WEAP 

WEAP-LEAP 

1M Monthly 1 power node in 
WEAP 

WEAP-LEAP 

9M Monthly 9 power nodes in 
WEAP 

WEAP-LEAP 

Standalone Monthly 9 power nodes in 
WEAP 

WEAP + post- 
processing  

Fig. 4. Monthly electricity generation in 2008–2017 (left panels) and monthly 
means across all years (right panels) reported by EIA (2019) and simulated by 
coupled WEAP-LEAP under the 1A and 1M configurations at (a)–(b) Santan, 
(c)–(d) Redhawk, and (e)–(f) Palo Verde power plants. 
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allocation priority in the WEAP setup; (ii) there is a maximum water 
volume that CAP can distribute to each user due to allocation rights (44 
million m3 for the municipal user, plotted with a red line labeled “CAP 
Max” in Fig. 6b and c); and (iii) when CAP allocations reach this 
maximum volume, an unmet demand exists that is satisfied by the next 
available water source. Simulations under 1A lead to constant monthly 
CAP water allocations, which could be either smaller than the maximum 
allocation (as in 2010; Fig. 6b) or reach this value (as in 2012; Fig. 6c) 
depending on water demand. In the former case, CAP allocations satisfy 
all water demand; in the latter case, another water source is used 
throughout the year to meet the unmet demand. When simulations are 
instead conducted under 1M, the water demand that CAP should satisfy 
(labeled “Demand” in Fig. 6b and c) varies each month and the resulting 
allocations could be either smaller (e.g., August) or larger (e.g., 
December) than 1A. Similar to 1A, there are months when CAP alloca
tions reach the maximum value, as in, e.g., January, November, and 
December of 2010. In this year, the annual water demand potentially 
requested to CAP is almost identical under both 1A and 1M. However, 
this demand is satisfied using solely CAP under 1A, while a 

supplementary source is required under 1M. Because of this difference, 
annual CAP allocations simulated in 2010 are larger under 1A and 
smaller under 1M, which is closer to the observation (Fig. 6a). 

As a final note, the 1M’s ability to better capture intra-annual dy
namics of water allocations results also in significant differences in the 
estimation of energy required to transport and treat water. This is 
illustrated in Fig. 7, which shows that, under 1M, this energy ranges 
from a peak of 173 GWh in July to a minimum of 117 GWh in February. 
Simulations at the annual scale suggest instead a constant value of ~150 
GWh with differences of up to 19% with 1M. As found for electricity 
generation, when aggregated annually, the differences between 1A and 
1M are instead small (<1.1%). 

3.2. Effects of spatial granularity 

To investigate how the level of spatial details affects WEN simula
tions, we compare results of runs with monthly forcings and two WEAP 
networks with one (1M) and nine (9M) power nodes, respectively. The 
Sankey diagrams of Fig. 8 display water allocations and embedded en
ergy from supply sources to power demand nodes. We first focus on the 
monthly mean values (Fig. 8a and b) and note that the total water use for 
power generation is practically identical in the two cases (~8.87 million 
m3). However, the sources supplying water for power generation change 
depending on the spatial granularity. Under 1M, RW and GW are 
simulated as the only water sources that satisfy this demand (Fig. 8a). 
When each power plant is instead represented in the WEAP network 
along with the connections to the associated water supply sources (9M), 
CAP is utilized as an additional water source (Fig. 8b). In particular, CAP 
is the main water provider for Kyrene and Santan power plants 
(Table 2). The use of CAP water reduces GW and RW allocations when 
compared to 1M. This change results in an increase of 0.23 GWh (or 4%) 
of the annual energy demand for water because CAP is more energy- 
intensive (1.31 kWh/m3, see the appendix in Mounir et al., 2019) than 
GW and RW (0.35 kWh/m3 and 0.81 kWh/m3, respectively). 

We further investigate differences between water allocations and 
embedded energy by focusing on the months with the lowest (February; 
Fig. 8c and d) and highest (August; Fig. 8e and f) water needs for power 
generation. In February, simulations with one power node indicate GW 
to be the largest water provider for power. When the domain includes 
instead nine nodes, changes in water allocations caused by the use of 
CAP water result in similar volumes supplied by GW and RW. This 
redistribution leads, in turn, to an increase of energy for water treatment 
and distribution of 0.37 GWh (8%) as compared to the simulation under 
1M (compare Fig. 8c with 8d). In August, the larger water use by the 
municipal sector increases the availability of RW (also due to the 
assumption made to set up WEAP, as discussed in the previous section), 
which is simulated as the major water source for energy generation in 
both configurations. However, the use of CAP under 9M leads to (i) 
lower RW and higher GW volumes compared to 1M, and (ii) a decrease 

Fig. 5. (a) Mean monthly water allocations from RW and GW to the power 
node simulated in the 1M configuration, and (b) single mean monthly value 
derived from the 1A setup. 

Fig. 6. Water allocations from CAP. (a) Time series of CAP annual volumes to 
all demand nodes estimated by ADWR (2018) (Obs) and simulated under 1A 
and 1M configurations. (b)–(c) Monthly simulations of CAP supplies to the 
municipal node in 2010 and 2012, respectively (see main text for details 
on legend). 

Fig. 7. Monthly mean energy embedded in transporting and treating RW, SRP, 
GW, and CAP water simulated under 1A and 1M along with the 
percent difference. 
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of energy embedded in the water of 0.28 GWh or 3% (compare Fig. 8e 
with 8f). 

3.3. Importance of coupling 

The significance of representing two-way interactions in models of 
water and energy systems is evaluated by comparing simulations with 
the standalone and the coupled model configurations, which are both 
based on a WEAP network with nine power plants and monthly simu
lations. A key difference between standalone and coupled models relies 
on the monthly water volumes required by the power plants. In the 
coupled simulations, these fluxes are generated at each time step by 
converting the energy generated by each power plant simulated by LEAP 
into water volumes (Fig. 3b). In the standalone configuration, these 
fluxes are instead provided as external inputs to WEAP (Fig. 3a). In our 
study site, annual estimates of water withdrawals by all generating 
stations combined are available from ADWR (2018); thus, to conduct 
standalone simulations, assumptions are needed to disaggregate these 
volumes to each power plant and at monthly resolution. Details are 
provided in the Appendix. 

Fig. 9a–c shows the water volumes required by the three largest 
generating stations, which are representative of results obtained across 
all power plants. In some cases (e.g., Santan; Fig. 9a), the standalone 
simulations are very similar to the coupled model outputs, while in 
others they overestimate (e.g., Redhawk; Fig. 9b) or underestimate (e.g., 
Palo Verde; Fig. 9c) the coupled fluxes, with smaller and larger ranges 
between the maximum and minimum monthly values, respectively. The 
two configurations exhibit these same differences in terms of simulated 

electricity generation, as displayed in Fig. 9d–f. This is expected since 
the water used for power generation and the electricity produced are 
linearly related through the water withdrawal intensities of the power 
plants (note that this is a model limitation that should be addressed to 
incorporate recent evidences of nonlinear behavior by Tidwell et al., 
2019). More importantly, Fig. 9d–f displays also monthly estimates of 
electricity generation from EIA that can be used as a reference to assess 
the accuracy of the modeling approaches. It is apparent that simulations 
with the coupled models capture much better EIA observations than 
those obtained using the standalone mode, as quantified by RMSE being 
lower than 0.2 TWh and 0.8 TWh for the coupled and standalone runs, 
respectively. 

The discrepancies between the water demand of power plants 
simulated with the two modeling approaches lead to differences in 
volumes supplied by CAP, GW, and RW to these users, along with the 
associated energy required for treatment and pumping. The mean 
monthly water fluxes from sources to individual power plants are 
compared in the Sankey diagrams of Fig. 10. The total water used for 
power generation provided as input in the standalone configuration is 
slightly larger than the simulated value in the coupled runs (9.34 vs. 
8.87 million m3), resulting in higher embedded energy (6.08 vs. 5.87 
GWh). To satisfy the water demand, the coupled models simulate a 
larger (smaller) fraction of RW (GW and CAP water) compared to the 
standalone case. Moreover, the two configurations predict different 
portfolios of water sources for some of the power plants. For example, (i) 
Redhawk and West Phoenix receive water only from RW in the stand
alone configuration, while they are also supplied by GW in the coupled 
mode; and (ii) Palo Verde is supplied by a much smaller fraction of GW 
in the standalone runs. 

The water allocations from the three sources to the power plants 
exhibit also temporal differences. For instance, as illustrated in Fig. 11a 
and b, the coupled runs simulate an increasing trend of CAP water al
locations to all power plants from 2008 to 2017 that is not captured by 
the standalone configuration. Under this simpler modeling approach, 
constant annual allocations are predicted that result in an over
estimation of CAP water throughout the simulation period. Both 
modeling types simulate an increasing trend of GW allocations from 
2008 to 2015 and a decrease afterward (Fig. 11c). However, simulations 
under standalone overestimate (underestimate) GW monthly fluxes 
simulated by the coupled models below (above) ~4.5 million m3 (see 
scatterplot in Fig. 11d), leading to lower variability of the monthly 
fluxes. The two modeling approaches simulate instead similar alloca
tions of RW to all power plants (Fig. 11e and f). Despite this, differences 
are found in terms of RW allocations to distinct generating stations. This 
is demonstrated in Fig. 12, which shows that outputs of the coupled 
models are both overestimated (e.g., +104.7% in West Phoenix and 
+31.8% in Redhawk) and underestimated (e.g., −17.9% in Palo Verde) 
by the standalone runs. 

4. Discussion and summary 

While obtained for a specific study site, our results provide useful 
information that could support WEN modeling efforts in other regions. 
In particular, our findings are relevant for models that simulate WEN 
dynamics over spatial extents of metropolitan regions or larger and at 
timescales larger than one day. They are less applicable to real-time 
simulations at sub-hourly resolutions of water distribution and power 
transmission networks at a city or neighborhood scale, as, e.g., in the 24- 
h simulations conducted by Santhosh et al. (2014) and Khatavkar and 
Mays (2018). 

4.1. Data availability and spatiotemporal disaggregation are key 

As for all modeling exercises, increasing the spatial and temporal 
resolutions of WEN models leads to more complex model setups that 
require a larger amount of data. Focusing on the U.S., Chini and Stillwell 

Fig. 8. Sankey diagrams showing mean monthly water allocations from sources 
to power users simulated under (a)-(c)-(e) 1M and (b)-(d)-(f) 9M, along with 
embedded energy. Means are computed across (a)–(b) all months of all simu
lated years; (c)–(d) all Februarys; and (e)–(f) all Augusts. 
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(2017) recently highlighted that obtaining data on water and energy 
systems, demand, and supply is a challenging task. In particular, these 
authors reported that data on energy are available at higher time fre
quencies and finer spatial granularity than data on water. EIA reports 
the main characteristics of most power plants in the country and their 
monthly electricity generation, as well as energy consumption grouped 
by sectors at the state level. Hourly energy demands are also publicly 
available in numerous balancing areas, defined as regions where energy 
demand and supply must be balanced (Federal Energy Regulatory 
Commission, 2020). Data from EIA have been crucial for our modeling 
study at the metropolitan scale (Table 1). 

Considering instead water, EIA reports water withdrawals and con
sumption for the power plants. For other uses, the main efforts at the 
national scale are from the United States Geological Survey (USGS) and 
include Water Data for the Nation (USGS, 2016) and the National Water 
Use Information Program (USGS, 2010). The Water Data for the Nation 
initiative publishes almost in real-time streamflow data at daily or 
sub-daily resolution across the country. These data could be used to 
estimate water diversions from rivers at high temporal resolutions (up to 

daily), which are needed to apply water models. Data on water with
drawals from reservoirs, pumped volumes from wells, and allocations of 
reclaimed water are instead more difficult to obtain since they depend 
on policies on data sharing adopted by agencies and utilities managing 
these supply sources. The National Water Use Information Program re
ports every five years water use estimates at the county level, which are 
temporal and spatial resolutions often too coarse for WEN modeling 
studies. Currently, no agency has the mandate to collect national water 
data at the utility or city scale, as EIA does with energy (Chini and 
Stillwell, 2017). In our effort, we have been able to access a relatively 
extensive dataset on water, including estimates of annual water demand 
and supply data in the AMA by ADWR, daily water diversions from the 
closest reservoir to Phoenix published online by SRP, and monthly re
ports with water volumes allocated to different customers by CAP (see 
Table 1 and Appendix). 

Even if data are partially available, as in our study region, they are 
very often provided at different resolutions and for limited time periods. 
Thus, assumptions are needed to disaggregate data temporally and 
spatially and to extrapolate them in time for their use in more detailed 

Fig. 9. (a)–(c) Simulation of water allocations for power generation at (a) Santan, (b) Redhawk, and (c) Palo Verde power plants using standalone and coupled 
configurations. (d)–(f) Same as (a)–(c) but for electricity generation, along with estimates from EIA (2019). 

Fig. 10. Sankey diagrams showing the mean monthly water supply from RW, GW, and CAP to the power users along with the energy embedded in treating and 
pumping these fluxes as simulated by the (a) standalone and (b) coupled models. 
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WEN simulations (Khan et al., 2017). Such assumptions could be sup
ported by reports of local water and energy utilities and irrigation dis
tricts. In our effort, we have disaggregated annual estimates of 
municipal and agricultural water demand from ADWR (2018) to 
monthly scale through monthly fractions derived from a report pub
lished online by the City of Phoenix, which is one of the largest water 
providers (CPWSD, 2011), and from a recent report on irrigated agri
culture in Arizona by Lahmers and Eden (2018), respectively. For the 
standalone simulations, we have also performed a spatial disaggregation 

of energy-related water demand from ADWR (2018) by combining 
power plant characteristics (i.e., capacity, capacity factor, and water 
withdrawal rate; see Appendix) available from EIA (2018, 2019). 
Alternatively, open record requests could be sent to utilities to obtain 
data, as done by Chini and Stillwell (2017, 2018) who contacted water 
utilities in 127 U.S. cities to conduct a utility-scale analysis of drinking 
water and wastewater flows along with the embedded energy. Despite 
this, these authors also warned about potential limitations of data pro
vided by utilities in terms of accuracy (e.g., absence of data quality 
assurance and control) and low resolution (e.g., energy data is not 
collected at sub-monthly resolution). 

4.2. Value of higher temporal resolution 

In our study region, fluxes of water and energy systems are charac
terized by marked intra-annual variability largely due to higher de
mands in hot summers (see Figs. 4, 5, and 9). Incorporating this higher 
temporal variability in simulations of water-energy interactions pro
vides critical support for the identification of synergies between the two 
systems that can guide policy- and decision-makers in the two sectors. 
This is particularly true in regions where there are large fluctuations of 
demand for both resources and of surface water supply. For example, 
simulating the seasonal water availability for power generation provides 
detailed information on (i) which type of power plants is more conve
nient and sustainable to expand or retire in the future (APS, 2017; SRP, 
2018); (ii) reservoir operations to optimize hydropower generation 
(Demertzi et al., 2014; Xuan et al., 2020); and (iii) planning of energy 
generation and, in turn, of imports and exports (Federal Energy Regu
latory Commission, 2020). Capturing the seasonality in water and en
ergy demand and supply is also important to (i) identify optimal water 
conservation (energy efficiency) strategies that save energy (water) 
while being cost-effective (e.g., Bartos and Chester, 2014; Escriva-Bou 
et al., 2018; White and Fane, 2002); and (ii) model impacts of heat 
waves and low water flows on power production (Bartos and Chester, 
2015; Gjorgiev and Sansavini, 2018; Harto and Yan, 2011; van Vliet 
et al., 2016a). 

Results of our work also suggest that adopting higher temporal 

Fig. 11. Simulations of (a)–(b) CAP, (c)–(d) GW, and (e)–(f) RW water allocations for power generation using the standalone and coupled models. For each water 
source, the monthly time series and scatterplots between the two estimates are shown. In the scatterplots, the thinner (thicker) line is the 1:1 line (linear regression). 

Fig. 12. Simulation of RW water allocations to (a) West Phoenix, (b) Redhawk, 
and (c) Palo Verde power plants using standalone and coupled configurations. 
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resolutions increases the accuracy of WEN simulations. This is particu
larly true for water fluxes and less critical for energy fluxes. For instance, 
the use of annual or monthly temporal resolutions results in a difference 
of up to 5% in the simulated annual CAP water supply (Fig. 6), but 
practically no difference in simulated annual electricity generation at 
each power plant. This finding can be explained considering that water 
systems are more rigid because there is a direct connection between 
demand nodes and their supply sources due to both infrastructural 
constraints and management rules. As a consequence, if simulations are 
performed at the monthly resolution, the contribution of each supply 
source to a given demand node can vary dramatically each month 
depending on water availability. Since these seasonal dynamics are not 
captured in annual simulations, there may be marked differences in the 
simulated water volumes provided by each water source throughout the 
year. Two main reasons can instead explain why the simulated annual 
energy supply is less sensitive to the model temporal resolution. The first 
is that electricity is not directly delivered from specific power plants to 
distinct users because of the presence of the electric grid; therefore, even 
if the overall demand changes monthly, electricity generations at indi
vidual power plants are not importantly affected by demand changes of 
each user. The second reason is that, in our study region, water infra
structure contributes only ~4% to the total energy demand (Mounir 
et al., 2019); thus, even if different water fluxes are simulated at the two 
resolutions, the difference in associated electricity demands is compar
atively very small. 

These outcomes obtained for the Phoenix AMA with thermoelectric 
power plants can be used as a reference to assess the value of temporal 
resolution in WEN modeling in other study areas. Water systems rely 
everywhere on relatively rigid allocation rules and infrastructure con
straints. We then expect that the simulation of water allocations from 
supply sources to demand nodes, including power plants, will be ubiq
uitously impacted by the temporal resolution. Conversely, modeling 
energy supply will likely be less impacted by temporal resolution in 
several regions in the U.S., because the power grid is always present and 
the national average of the percentage of total energy use to pump and 
treat water is ~4%, as in the Phoenix AMA (Electric Power Research 
Institute; EPRI, 2000). The sensitivity of simulated electricity generation 
to the WEN model temporal resolution is expected to increase in regions 
where water infrastructure is responsible for a substantial portion of the 
total energy consumption, such as in California, where this portion is 
~10% (California Public Utilities Commission; CPUC, 2010), and in 
areas greatly dependent on desalination, like the UAE where desalina
tion uses up to 22% of its total electricity (Siddiqi and Anadon, 2011). 
However, increasing temporal resolution to monthly is most likely 
needed when hydropower represents a large share of the electricity 
generation, due to the need to model streamflow seasonality and 
reservoir operation, as also showed by Dale et al. (2015). 

4.3. Value of higher spatial granularity 

Our analyses show that, when the spatial granularity of the water 
model domain is increased, dynamics of water allocations for energy 
generation are simulated with higher accuracy. This suggests that, 
depending on the specific study site, a coarse representation of the en
ergy system components in the water model domain may result in 
ignoring the contribution of distinct water sources for power generation. 
For example, in the Phoenix AMA, allocations of CAP water to power 
plants are only captured using the configuration where each power plant 
is explicitly represented in the water model (Fig. 8). This modeling 
capability is important for both the electricity companies that manage 
the generating stations relying on such water supply and the regional 
management of water resources. While increasing the spatial resolution 
up to the granularity of single power plants enhances model accuracy, it 
also requires a larger amount of data and adds complexity to the model. 
Here, we show that this effort is valuable and achievable at the scale of a 
metropolitan region. As the spatial extent of the study region increases 

(e.g., states or countries), capturing the dynamics of water allocations to 
distinct power plants may become unfeasible and, in some cases, even 
unnecessary. For example, Yates et al. (2013a) coupled WEAP with the 
regional energy deployment system (ReEDS) to quantify water with
drawals by different users including the power system in Southwestern 
U.S., which encompasses our study site. In doing so, these authors 
aggregated power plants by technology type within balancing areas, 
thus using a much coarser description of the energy system than the one 
adopted in our study. However, the differences in CAP water supplies 
simulated in our study for the coarse and fine domains represent only 
0.06% of the annual water withdrawals over the Southwestern U.S. As a 
result, the simplified modeling setup adopted by Yates et al. (2013a) is 
justified to simulate the WEN in such a large domain without causing 
any major loss of information. Finally, the need to disaggregate spatially 
and increase model complexity could be less critical if the main sources 
of electricity generation come from solar PV and wind turbines because 
these require very limited water volumes. 

4.4. Utility of coupled simulations 

In our study, coupled and standalone models are compared–to our 
knowledge for the first time–in the same WEN system. We find that the 
use of coupled models results in more accurate simulations of electricity 
generation and its water needs than estimations based on a standalone 
configuration where a water model is used to infer information on the 
energy system (Fig. 9). This difference is explained by the assumptions 
made to generate energy-related inputs for the water model, which, as 
discussed above, are obtained by disaggregating annual estimates of 
water use for power generation from ADWR in space (to each power 
plant) and time (monthly). Under these assumptions, simulations of 
energy generation and water demand with the standalone and coupled 
models are similar at some power plants (e.g., Santan), but they diverge 
significantly at others, including a large underestimation of water 
withdrawn by the most water-consuming generating station, Palo Verde. 
Moreover, results from these two approaches differ in terms of (i) water 
allocations supplied from each source to the power plants (this may be a 
minor issue elsewhere if power plants are supplied by a single source), 
(ii) energy embedded in treating and pumping these water volumes, and 
(iii) intra-annual variability of the total water allocation from the 
different sources. These differences highlight the limitations of simpler 
approaches where a model is used to simulate one system (in our case, 
water) and infer information about the other system (energy). Clearly, 
the limitations of standalone simulations are less critical when there is 
enough information and confidence on the assumptions made to 
constrain the model (in our case, on the time series of water demand 
from power plants). 

An additional advantage of coupled models is that they allow a more 
mechanistic representation of processes and characteristics of water and 
energy infrastructure. This has three important benefits. First, it facili
tates the simulation of WEN systems characterized by different temporal 
and spatial scales, a process named synchronization by Khan et al. 
(2017). The case of the Phoenix AMA illustrates this point since the 
coupled model is capable to simulate electricity generation in all power 
plants supplying the study area, including those located outside of the 
geographical boundaries that contribute to satisfy the local energy de
mand. These external generating stations are instead not included in the 
standalone configuration because it is quite hard to make assumptions 
on their contribution. The second benefit of the higher mechanistic 
nature of integrated models is that they are (probably the most) accurate 
tool to simulate WEN systems under different future scenarios since they 
allow implementing, in a relatively easy fashion, changes of infra
structural components (e.g., number and type of power plants, con
struction or decommission of water infrastructure) and their 
management rules, new energy and water efficiency technologies, and 
modifications of water and energy demands in the different sectors, 
among other features. The value of this capability has been shown, for 
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example, by Yates et al. (2013a), who used the coupled ReEDS-WEAP 
models to simulate capacity expansion and energy generation accord
ing to different future electricity mix scenarios, along with water allo
cations under drought conditions. Lastly, coupled models could be 
beneficial in data-scarce regions to simulate processes for which data are 
not available, provided that reliable assumptions are made on their 
parameterization through, e.g., values reported in literature or relations 
with population served. 

5. Conclusions 

The simulation of the interactions between water and energy systems 
is crucial to identify synergies and adopt a holistic management 
approach. In this study, we investigate how the accuracy of WEN sim
ulations is affected by the spatiotemporal resolution and use of coupled 
models that capture two-way feedbacks between the systems. We do so 
by applying the WEAP and LEAP models in the Phoenix metropolitan 
region, where water resources are limited and energy-intensive. Our 
results can be summarized as follows: 

(i) Increasing the temporal resolution from annual to monthly al
lows capturing the marked seasonality of electricity generation 
and the associated water requirements. While the use of both 
time steps leads to the simulation of similar annual electricity 
generations at each station, annual aggregates of water deliveries 
from each source vary with the temporal resolution. This differ
ence in sensitivity to the model time step is explained by the 
presence of more rigid infrastructure constraints and allocation 
rules in water systems compared to energy systems.  

(ii) The use of a finer spatial granularity by incorporating each power 
plant in the WEAP domain allows simulating the correct water 
portfolios of power plants, which the coarser configuration with a 
single water demand node for power is unable to capture. This 
leads to differences in simulated energy embedded in water for 
power generation. The accuracy achieved by refining the spatial 
granularity up to the single power plant can be unnecessary in 
studies applied to regions with a large spatial extent.  

(iii) Simulations with the coupled models reproduce EIA observations 
of electricity generation better than the standalone approach. 

Simulations under the two modeling approaches differ in terms of 
magnitude and intra-annual variability of water allocations from 
distinct sources to each power plant, with relative differences 
exceeding 100%. By representing processes and characteristics of 
water and energy infrastructure in a more mechanistic fashion, 
coupled models facilitate the simulation of WEN systems with 
different temporal and spatial scales and under possible future 
scenarios. Once the spatial granularity and complexity of the 
domain are fixed and data have been collected, we believe that 
the adoption of coupled instead of standalone approaches is not 
limited by the scale of the problem, but rather by the current low 
availability of these integrated models. 

Software and/or data availability 

The software tools used in this paper are: (i) the Water Evaluation 
and Planning (WEAP), and (ii) the Long-range Energy Alternatives 
Planning (LEAP). Both tools are developed by the Stockholm Environ
ment Institute (SEI; sei-international.org). The 2-year license for WEAP 
is free for non-profit, governmental or academic organization based in a 
developing country, and it ranges from $250 to $3000 depending on the 
user type. Pricing for the LEAP license is available by contacting SEI. 
Both platforms run in Windows machine. The data used to apply the 
software is publicly available and listed in Tables 1 and 2 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.envsoft.2021.105197. 

Appendix. Data sources used to spatially and temporally disaggregate the WEAP and LEAP models 

The datasets used to set up and calibrate the LEAP and WEAP models are presented in detail in Mounir et al. (2019; their Table C1) and Guan et al. 
(2020; their Table 1). Table 1 presents a sample of these datasets as well as additional data sources used in this publication to determine the monthly 
variability in some variables. 

To increase the temporal resolution of WEAP, we derive the monthly variability of SRP and CAP water allocations from the SRP’s daily water report 
(SRP, 2020b) and CAP’s monthly delivery report (CAP, 2020), respectively. We estimate the monthly water demands of municipal, industrial, and 
power plant sectors from the 2011 Water Plan of the City of Phoenix Water Services Department (CPWSD, 2011). To estimate the monthly agricultural 
water demand, we use data available for Yuma County, located in southwestern Arizona (Lahmers and Eden, 2018). We instead assume uniform 
demand for the Native American node because (i) its magnitude is comparatively much smaller, and (ii) we could not identify any valuable source to 
disaggregate it. 

To increase the temporal resolution of LEAP, we assume the monthly variability of the capacity factors to match the observed monthly variability in 
the respective power plant electricity generation reported in EIA (2019). For the energy demand, the monthly variability is assumed identical to the 
variability in (i) the total load obtained from EIA (2020b) for the activities unrelated to water; and (ii) water demand as described for WEAP for the 
activities related to water. For example, the monthly variability of the energy required to pump CAP water to the municipal node is assumed identical 
to the monthly variability of the water demand by this node. 

To conduct the standalone simulations and generate inputs for WEAP, we disaggregate spatially and temporally annual estimates of ADWR water 
allocations to all power plants. To disaggregate spatially, we multiply the total annual water volumes of the nine power plants by a weighting co

efficient defined as wp = (Cp ⋅CFp ⋅WRp)/
∑9

p=1
(Cp ⋅CFp ⋅WRp), where Cp, CFp, and WRp are capacity, annual mean capacity factor, and water withdrawal 
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rate of the p-th power plant, respectively. We use instead the variability in monthly capacity factors available from EIA (2019) for the temporal 
disaggregation. 
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Jääskeläinen, J., Veijalainen, N., Syri, S., Marttunen, M., Zakeri, B., 2018. Energy 
security impacts of a severe drought on the future Finnish energy system. J. Environ. 
Manag. 217, 542–554. https://doi.org/10.1016/j.jenvman.2018.03.017. 

Javadifard, N., Khadivi, S., Motahari, S., Farahani, M., 2019. Modeling of water–energy- 
environment nexus by water evaluation and planning and long-range energy 
alternative planning models: a case study. Environ. Prog. Sustain. Energy 1–12. 
https://doi.org/10.1002/ep.13323. 
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