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Abstract   

Some molecules of chemical and biological significance possess vibrations with significant Herzberg-Teller (HT) 
couplings, which render the Franck-Condon (FC) approximation inadequate and cause the breakdown of the well-
known mirror-image symmetry between linear absorption and emission spectra. Using a model two-state system with 
displaced harmonic potential surfaces, we show analytically that the FC-HT interference gives rise to asymmetric 
intensity modification which has the same sign for all transitions on one side of the 0-0 absorption line and opposite 
signs in the equivalent fluorescence transitions, while the trend is exactly reversed for all transitions on the other side 
the 0-0 line. We examine the dependence of the absorption-emission asymmetry on mode frequency, Huang-Rhys 
factor and dipole moment parameters, to show the recovery of symmetry with particular combination of parameters 
and a crossover from fluorescence to absorption dominance. We illustrate the analytical predictions through 
numerically exact calculations in models of one and two discrete vibrational modes and also in the presence of a 
harmonic dissipative bath. In addition to homogeneous broadening effects, we identify large asymmetric shifts of 
absorption and emission band maxima which can produce the illusion of unequal frequencies in the ground and excited 
potential surfaces, as well as a nontrivial modulation of spectral asymmetry by temperature, which results from the 
enhancement of transitions on one side of the 0-0 line. These findings will aid the interpretation of experimental 
spectra in HT-active molecular systems. 
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1. Introduction 
 The Franck-Condon (FC) approximation1 offers a simple, intuitive model for understanding 
electronic spectra. Within the FC model, the transition moment becomes proportional to the overlap of 
nuclear wavefunctions on the two electronic states, whose nonmonotonic dependence on vibrational 
quantum numbers leads to the well-known progressions of transition intensities.2 Perhaps surprisingly, the 
neglect of nuclear coordinate dependence in the electronic matrix element of the dipole moment has been 
shown to be adequate and sufficiently accurate for assigning spectral lines in the majority of molecular 
systems. Yet, the FC assumption is known to break down in some cases (most notably in aromatic 
molecules, for example in anthracene,3 phenanthrene4, free base porphyrins5 and metalloporphyrins6), and 
corrections become necessary for interpreting the observed transitions.7-8 The lowest order correction 
involves expanding the dipole moment matrix element µ  (in the direction of the electric field) through 
linear terms in the normal mode coordinates, 
 

( ) ( ) ( ) ( )0 1 g
el-vibˆ ˆg e k k k

k
q qµ µ µ µ≡ + −∑q  ,                                            (1.1) 

 
where g  and e  are the ground and excited electronic states, q is the vector of normal mode coordinates 
at the equilibrium geometry gq  of the ground state, (0)µ  is the coordinate-independent component of the 
dipole matrix element along the field, and (1)

kµ  is its first derivative with respect to kq . The coordinate-
independent term ( )0µ is responsible for FC transitions, while the vector (1) (1){ }kµ=μ  of dipole derivatives 
is the Herzberg-Teller9 (HT) coupling. Transition dipole derivatives along vibrational coordinates can arise 
from nonadiabatic mixing of the excited electronic state e with another state that couples to the ground 
state. When the g-e transition is FC-forbidden by symmetry ( ( )0 0µ = ), the transition can be HT-allowed 
through intensity borrowing.10 If the equilibrium geometries of the ground and excited states of interest are 
identical because of symmetry, the term linear in normal mode coordinates leads to 1n n→ ±  transitions 
in this case, which can be very prominent, while higher transitions are forbidden. The electronic spectra 
can thus appear rather peculiar in such situations. Craig and Small have pointed out4 that the HT term can 
lead to sizable corrections of the transition moments predicted by the zeroth-order FC model, increasing 
the intensity of 0 n−  transitions in fluorescence and decreasing it in absorption. The asymmetry induced 
by FC-HT interference effects give rise to the breakdown of the well-known mirror-image symmetry 
between absorption and emission spectra. While simulations of FC-allowed spectra are abundant in the 
literature, only a small fraction of computational studies (for example, see 4, 11-21) have included HT effects.  
 In this paper we present a comprehensive study of HT effects in model molecular systems within 
the normal mode approximation of the relevant electronic potential energy surfaces. We show analytically, 
and also demonstrate through numerical calculations, that the absorption-emission asymmetry induced by 
the interference between FC and HT terms has the same sign for all m n→  transitions with m n>  and the 
opposite sign for m n< . When the two dipole parameters ( ( )0µ and (1)

kµ ) have the same sign, emission 
intensity is enhanced for all transitions that lie on the red side of the 0-0 line in the fluorescence spectrum 
relative to the corresponding lines on the blue side of the 0-0 line in absorption, while all intensities on the 
blue side of the 0-0 emission line are diminished compared their absorption counterparts. These trends are 
reversed when the dipole moment parameters have opposite signs. Our analysis suggests that this 
asymmetry depends nonmonotonically on the dipole moment components and the Huang-Rhys factor of a 
mode and reverses sign as these parameters are varied, going through a narrow region of parameter space 
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where the mirror-image symmetry is recovered. Depending on the ground-excited potential geometry and 
the dipole parameters, these effects can be similar or opposite for each normal mode vibration, giving rise 
to combination bands that exhibit rich patterns in the spectra as well as interesting temperature effects.  

When the electronic states are also coupled to a FC-active solvent or matrix, homogeneous 
broadening can blur and merge vibrational lines. The majority of earlier studies have treated such effects 
by using Gaussian or Lorentzian functions to broaden the computed spectral lines. In this paper we account 
for the dynamical process responsible for homogeneous broadening by including a harmonic dissipative 
bath that mimics a condensed phase environment. We show that the absorption-emission asymmetry can 
lead to large shifts of band maxima, giving the erroneous impression of unequal ground and excited 
potential energy curvatures. Since the interference-induced enhancement of spectral lines flips sign as one 
moves from the red to the blue side of the 0-0 transition, spectra become asymmetrically broadened. These 
effects are accompanied by a nontrivial temperature dependence, as the thermal population of higher 
vibrational states generates spectral lines and bands preferentially on one of the two sides of the n-n line.  
 In section II we set up the two-state Hamiltonian in the normal mode approximation and the 
expansion of the dipole moment. We also give the expressions for the time correlation functions that we 
use to calculate thermally averaged spectra with several discrete modes and a dissipative harmonic bath. In 
section III we derive the contributions of the FC and HT terms and the relevant line intensities. We show 
that the asymmetry of a transition (i.e. the difference of absorption and emission intensities) is of the same 
type for all m n→  transitions on the same (red or blue) side of the 0-0 line, but switches sign on the other 
side, and also that it has opposite signs in absorption and fluorescence. Using an analytical expression, we 
show the quantitative dependence of the spectral asymmetry as a function of mode frequency, Huang-Rhys 
factor and dipole terms. In section IV we illustrate these results by showing the spectra that results with 
several model parameters in the case of a single vibrational mode and also with two vibrations, which give 
rise to combination bands. The effects of condensed phase environments are investigated in section V, 
where we show spectra with one or two discrete vibrational modes in the presence of a harmonic dissipative 
bath. Last, we conclude in section VI with a summary of our findings and some additional remarks.  
 
 
2. Background  

 In this section we introduce a model Hamiltonian, discuss the relevant observables i.e., the spectral 
lineshapes and motivate initial conditions based on experimental approaches. We illustrate the required 
expressions and outline a dynamical approach to compute finite-temperature absorption and emission 
spectra under the FC and HT approximations.  
 
A. Model Hamiltonian 

Consider a molecule, with ground and excited electronic states g  and e , respectively, 
characterized by the parameters gs  and es  (which have dimensions of length). We assume that the 
vibrational and solvent coordinates can be described as a set of harmonic modes with frequencies kω , 
whose coupling to the electronic states is characterized by the parameters kc .  The total Hamiltonian is 
given by  
 

( ) ( )el-vib g g e e
ˆ ˆ ˆg g e eH H Hε ε= + + +                                               (2.1) 
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( ) ( )
2 22 22 eq 2 eq

g g, e e,
ˆ ˆ1 1ˆ ˆˆ ˆ,

2 2 2 2
k k

k k k k k k
k k

p pH m q q H m q q
m m

ω ω= + − = + −∑ ∑                          (2.2) 

 
where kq , kp  are the coordinates and momenta of the harmonic modes, gε , eε  are the energies of the ground 
and excited states,  and eq

g,kq , eq
e,kq  denote the normal mode coordinates of the two potential surfaces at their 

equilibrium geometries, which are given by eq 2
g, g /k k kq c s mω=  and eq 2

e, e /k k kq c s mω= . The coupling of 
molecular modes to the electronic states is often specified in terms of the Huang-Rhys factors kS , which 
are given by  
 

2
2

32
k

k
k

cS s
mω

= ∆


.                                                                (2.3) 

 
where e gs s s∆ = − . The arrangement of the potential surfaces is shown in Figure 1. We note that Eq. (2.2) 
assumes that the normal mode parameters on the two potential surfaces are identical. Even though 
Duschinsky effects22 have been found to play an important role in connection with HT contributions to 
molecular spectra,11 the main effect in this regard is a modification of the terms that contribute to FC-HT 
interference. The neglect of Duschinsky rotation in the present study allows an all-analytical examination 
of FC-HT interference effects, which lead to simple results and important insights about spectral trends.  
 

 

 
 

Fig. 1.  A schematic showing the two potential energy surfaces along a vibrational coordinate q  
and the initially equilibrated densities for absorption and emission spectra. The linearized 
dipole moment function is also shown.  
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B. Lineshapes and Initial Condition 
We calculate the absorption and emission spectral lineshapes, A ( )σ ω  and E ( )σ ω  respectively, as 

the real parts of the following Fourier transforms23-24  
 

( ) ( )A A0
Re i te R t dtωσ ω

∞
∝ ∫    and   ( ) ( )E E0

Re i te R t dtωσ ω
∞ −∝ ∫ .                              (2.4) 

 
 Here A ( )R t  and E ( )R t  are the corresponding dipole-dipole autocorrelation functions given by25 
 

( ) ˆ ˆ/ /
A el-vib el-vib Aˆˆ ˆTr (0)iHt iHtR t e eµ µ ρ− =  

  ,   ( ) ˆ ˆ/ /
E el-vib el-vib Eˆˆ ˆTr (0)iHt iHtR t e eµ µ ρ− =  

  ,             (2.5) 

  
µ̂  is the transition dipole operator in the direction of the electric field, and the initial density matrices for 
absorption and emission are denoted by ( )Aˆ 0ρ  and ( )Eˆ 0ρ , respectively.  

In the absorption experiment, the molecule is initially in thermal equilibrium with its surroundings 
on the ground electronic state before optical excitation, thus 
 

  g
ˆ1

Aˆ (0) g g HZ e βρ −−=                                                              (2.6)                            
         

where Z  is the partition function of the vibrational bath. In contrast, spontaneous emission  de-excites the 
molecule which, in the condensed phase, has generally fully relaxed within the excited state prior to 
significant emission, i.e., 
 

     e
ˆ1

Eˆ (0) e e HZ e βρ −−=                                                              (2.7) 
 

Next, we note that for transitions between the two chosen states, the projection of the dipole 
operator along the direction of the electric field can be expressed in the form 

 
( )el-vibˆ ˆg e e gµ µ= + ,                                                           (2.8) 

 
where µ̂  is the vibrational/solvent component that generally depends on the bath coordinates.  
 Using the last two equations and taking advantage of the diagonal form of the Hamiltonian in Eq. 
(2.1), the dipole autocorrelation functions can be easily simplified to  
 

( ) ( ) ( )
( ) ( ) ( )

e g g ge

e g g e e

ˆ ˆˆ/ //1
A

ˆ ˆ ˆ/ / /1
E

ˆ ˆTr ,

ˆ ˆTr

i t H iH tiH t

i t iH t H iH t

R t e Z e e e

R t e Z e e e

ε ε β

ε ε β

µ µ

µ µ

− − −−−

− − −−

=

=













                                        (2.9) 

  
where the trace is with respect to the vibrational and solvent degrees of freedom.  
 
C. Franck-Condon and Herzberg Teller Approximations 
 We now expand the dipole moment operator µ̂  in a Taylor series along all vibrational modes 

{ }kq=q  around the coordinates of the ground state potential minimum eq
gq . Within the HT approximation, 
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( ) ( ) ( ) ( )0 1 eq
g,ˆk k k

k
q qµ µ µ+ −∑q 

                                                (2.10) 

 
where 

( )
eq
g

0µ µ
=

=
q q

                                                              (2.11) 

 
is the component responsible for FC transitions and 
 

 ( )

eq
g

1
k

kq
µµ

=

 ∂
=  ∂ q q

                                                         (2.12) 

 
are the HT coupling coefficients.  
 The Franck-Condon (FC) approximation, which corresponds to a “vertical” excitation or de-
excitation of the electronic-vibrational density from one potential surface to another while the nuclear 
coordinates are frozen, is obtained by truncating the expansion of the dipole moment at the zeroth-order 
term, ( ) ( )0µ µq  , and leads to the following expressions for the dipole autocorrelation functions: 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

e g g ge

e g g e e

2 ˆ ˆˆ/ /0 /FC 1
A

2 ˆ ˆ ˆ/ /0 /FC 1
E

Tr

Tr

i t H iH tiH t

i t iH t H iH t

R t e Z e e e

R t e Z e e e

ε ε β

ε ε β

µ

µ

− − −−−

− − −−

=

=













                                    (2.13) 

 
The full FC-HT correlation functions (for either absorption or emission) can be decomposed into FC, HT 
and FC-HT (interference) contributions, 
 

( ) ( ) ( ) ( )FC HT FC-HTR t R t R t R t= + +                                                (2.14) 
 

where the HT term arises purely from HT couplings. This term is given by the expressions 
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

e g g ge

e g e e

ˆ ˆˆ/ /1 1 /HT 1 eq eq
A g, g,

ˆ ˆ ˆ/ /1 1 /HT 1 eq eq
E g, g,

ˆ ˆ Tr

ˆ ˆ Tr g

i t H iH tiH t
k k k k k k

k k

i t iH t H iH t
k k k k k k

k k

R t e Z q q e q q e e

R t e Z q q e q q e e

ε ε β

ε ε β

µ µ

µ µ

− − −−−
′ ′ ′

′

− − −−
′ ′ ′

′

 = − −
 

 = − −
 

∑ ∑

∑ ∑













                 (2.15) 

 
The FC-HT interference terms for absorption and emission are given by  
 



7 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

e g g ge

e g g ge

e g g e e

ˆ ˆˆ/ /0 1 /FC-HT 1 eq
A g,

ˆ ˆˆ/ /0 1 /1 eq
g,

ˆ ˆ ˆ/ /0 1 /FC-HT 1 eq
E g,

ˆ  Tr

ˆ Tr

ˆ  Tr

i t H iH tiH t
k k k

k

i t H iH tiH t
k k k

k

i t iH t H iH t
k k k

k

R t e Z e q q e e

e Z q q e e e

R t e Z e q q e e

ε ε β

ε ε β

ε ε β

µ µ

µ µ

µ µ

− − −−−

− − −−−

− − −−

 = −
 

 + −
 

= −

∑

∑

∑



















( ) ( ) ( ) ( )e g g e e
ˆ ˆ ˆ/ /0 1 /1 eq

g,ˆ Tri t iH t H iH t
k k k

k
e Z q q e e eε ε βµ µ− − −−


 

 + −
 ∑





                         (2.16) 

 
 Many approaches are available for evaluating these correlation functions. A simple procedure is 
obtained from the quantum-classical path integral (QCPI) formulation26-28, which is derived by using 
Feynman’s path integral29-30 representation in the semiclassical limit with respect to the coordinates of the 
nuclei. The QCPI expression is designed for use with anharmonic potential surfaces where the dynamical 
effects are efficiently captured through classical trajectories subject to forces along quantum paths of the 
electronic two-state system. In the case of harmonic potentials the QCPI methodology is exact. In the 
present case of Equations (2.13)-(2.16), the forces supplied by the forward and backward evolution 
operators are constant, allowing single-step evaluation. Further, the correlation functions can be further 
decomposed into products of one-dimensional Gaussian integrals that can be evaluated analytically. Finally, 
Fourier transformation of the correlation functions gives the absorption and emission lineshapes. The 
procedure is described in the Appendix. 
 
 
3. Franck-Condon -- Herzberg-Teller interference and absorption-emission asymmetry 

By adjusting the zeroth order term ( )0µ , it is useful to recast Eq. (2.10) in the form 
 

( ) ( ) ( ) ( )0 1 eq
M,ˆk k k

k
q qµ µ µ+ −∑q 


                                                       (3.1) 

 
where 

 
( ) ( ) ( ) ( )0 0 1 eq eq1

e, g,2 k k k
k

q qµ µ µ= + −∑  ,  ( )eq eq eq1
M, g, e,2k k kq q q= +                                      (3.2) 

 
Eq. (3.1) expresses the dipole moment with respect to the midpoint between the equilibrium geometries of 
the ground and excited surfaces. If the coordinate-independent term ( )0µ  is equal to zero, Eq. (3.1) is a line 
passing through the midpoint eq

Mq  of the two potential minima. As will be shown below, this symmetric 
situation leads to absorption and emission spectra that form a mirror image pair, analogous to the situation 
observed in the absence of HT terms. 
 In the rest of this section we consider a single vibrational degree of freedom and (for clarity) drop 
the mode subscript k. Consider a transition between vibrational state m in the ground potential and state n 
of the excited potential. We define the FC and HT matrix elements between the two vibrational states 

g e,m nΦ Φ , 
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( ) ( )
( )( ) ( )

g e eq eq
g e

g eq e eq eq eq
M g e eˆ ˆ

mn m n m n

mn m n m n

f q q q q dq

h q q q q q q q q dq

φ φ

φ φ

∞

−∞

∞

−∞

≡ Φ Φ = − −

≡ Φ − Φ = − − −

∫
∫

                             (3.3) 

 
where iφ  are harmonic oscillator wavefunctions. The FC integral can be rewritten in the more symmetric 
form, 
 

( ) ( )
( ) ( )

eq eq eq eq1 1
M ge M ge2 2

eq eq1 1
ge ge2 2

mn m n

m n

f q q q q q q dq

x q x q dx

φ φ

φ φ

∞

−∞

∞

−∞

= − + ∆ − − ∆

= + ∆ − ∆

∫
∫

                                    (3.4) 

 
where eq eq eq

ge e gq q q∆ = − .  Substituting x x→− , it is easy to show that if both mφ  and nφ  are even, or if both 
are odd functions of their coordinates (i.e., both m,n are either even or odd),  
 

( ) ( )
( ) ( )

eq eq1 1
ge ge2 2

eq eq g e1 1
ge ge2 2

mn m n

n m n m nm

f x q x q dx

x q x q dx f

φ φ

φ φ

∞

−∞

∞

−∞

= − + ∆ − − ∆

= + ∆ − ∆ = Φ Φ =

∫
∫

,                                (3.5) 

 
whereas if one of these wavefunctions is even and the other odd,  
 

( ) ( )eq eq1 1
ge ge2 2mn m n nmf x q x q dx fφ φ

∞

−∞
= − − ∆ + ∆ = −∫ .                                    (3.6) 

 
Similarly, it is straightforward to show that if both m and n (i.e. if mφ  and nφ ) are even, or if both are odd, 
then 
 

g eq e
Mˆmn n m nmh q q h= − Φ − Φ = − ,                                                  (3.7) 

while 
mn nmh h=                                                                           (3.8) 

 
if one of these functions is even and the other is odd. In the special case 0, 1m n= = , Equations (3.6) and 
(3.8) agree with the observations reported in earlier work,4, 12 although according to Equations (3.5) and 
(3.7), the generalization to all n values12 was incorrect. We now examine the consequences of the relation 
between the FC and HT integrals for absorption and emission intensities.  
 The dipole moment matrix element for absorption between vibrational state m on the ground 
surface and state n on the excited surface is given by 
 

A g e (0) (1)ˆm n m n mn mnf hµ µ µ µ→ ≡ Φ Φ = +                                                  (3.9) 
 

Using the results obtained above, the matrix element for emission between vibrational state m on the excited 
potential and state n on the ground state is  
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( )E g e (0) (1) (0) (1)ˆn m n m nm nm mn mnf h f hµ µ µ µ µ µ← ≡ Φ Φ = + = ± −                              (3.10) 

 
where the overall sign depends on whether the two vibrational wavefunctions have the same parity. 
Equations (3.9) and (3.10) are analogous to expressions reported by Craig and Small4 for 0 n→  transitions. 
Adding and subtracting, we obtain 
 

A E (0) A E (1)2 , 2m n n m mn m n n m mnf hµ µ µ µ µ µ→ ← → ←+ = − =                                     (3.11) 
 
if both quantum numbers are even or both are odd, or  
 

A E (1) A E (0)2 , 2m n n m mn m n n m mnh fµ µ µ µ µ µ→ ← → ←+ = − =                                      (3.12) 
 

if only one is even. These relations can be useful for extracting Huang-Rhys factors and dipole moment 
parameters from experimental spectra.   

Further, Equations (3.9) and (3.10) give 
 

( )
( )

22A (0) (1)

22E (0) (1)

,m n mn mn

n m mn mn

f h

f h

µ µ µ

µ µ µ

→

←

= +

= −





                                                    (3.13) 

 
Depending on the signs of the dipole moment components, HR factors and coordinate matrix elements, the 
two terms in the absorption and emission intensities will interfere either constructively or destructively. 
Thus, for a given m, n pair, if the FC and HT terms interfere constructively in the intensity of an absorption 
line, they will interfere destructively in the emission intensity, and vice versa.4 In the absence of HT effects, 
absorption and emission intensities are equal, giving rise to the well-known mirror image symmetry. The 
HT contribution lowers the intensity in one of the spectra while increasing it in the other.  
 Eq. (3.13) also shows that mirror-symmetric spectra arise if either (1) 0µ =  or if (0) 0µ = . The first 
case is the well-known situation of pure FC spectra. The second case is observed if  
 

( ) ( ) ( )0 1 e g1
2 0k k k

k
q qµ µ+ − =∑ .                                                      (3.14) 

 
As discussed in the previous section, the dipole moment is usually expanded with respect to the equilibrium 
geometry of the ground electronic state. Eq. (3.14) shows that the absorption-emission mirror image 
symmetry is broken through FC-HT interference, even if ( )0 0µ = .  
 To determine the direction of absorption-emission asymmetry, we examine the signs of the FC and 
HT integrals. While wavefunction signs are arbitrary, we adopt the convention 0mnf >  if both quantum 
numbers are either even or odd, and 0mnf <  if only one of the two quantum numbers is even and m n<  (

0mnf >  for m n> ). These signs are observed with the common convention of Hermite polynomials for 
small Huang-Rhys factors. Using the midpoint-shifted variables, the HT matrix element can be decomposed 
into two terms, 
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( )( ) ( )eq eq eq eq1 1 1 1
ge ge ge ge2 2 2 2mn m n mnh x q x q x q dx q fφ φ

∞

−∞
= + ∆ + ∆ − ∆ − ∆∫ .                        (3.15) 

 
Expressing eq1

ge2x q+ ∆  in terms of raising and lowering operators, Eq. (3.15) becomes 
 

( ) eq1
1, 1, ge21

2mn m n m n mnh m f m f q f
ω − += + + − ∆
                                      (3.16) 

 
(where we have set the mass equal to 1 in order to avoid confusion).  If both quantum numbers are either 
even or odd and m n< , it is easy to see that 0nmh < . On the other hand, if only one of the two quantum 
numbers is even, Eq. (3.16) leads to 0nmh >  for m n< . 
 Gathering these results, we find that for m n< , the signs of mnf  and mnh are opposite. Using again 
the relations established at the beginning of this section, we conclude that both mnf  and mnh  are positive 
for m n> . Thus, for lines to the right of the 0-0 absorption peak ( e gω ε ε> − ) or to the left of the 0-0 
emission peak ( e gω ε ε< − ), we find that  
 

( )
( )

22A (0) (1)

22E (0) (1)
for 

m n mn mn

n m mn mn

f h
m n

f h

µ µ µ

µ µ µ

→

←

= −
<

= +





                                       (3.17) 

 
If (0)µ  and (1)µ  are positive, emission is enhanced while absorption is diminished. The opposite scenario 
applies to lines to the left of the 0-0 absorption peak ( e gω ε ε< − ) and to the right of the 0-0 emission 
peak ( e gω ε ε> − ), 
 

( )
( )

22A (0) (1)

22E (0) (1)
for 

m n mn mn

n m mn mn

f h
m n

f h

µ µ µ

µ µ µ

→

←

= +
>

= −





                                       (3.18) 

 
From Eq. (3.13) we see that the asymmetry of the line, i.e. the difference of the absorption and emission 
intensities divided by their sum, is given by  
 

( ) ( )

2 2A E (0) (1)

2 2 2 2A E (0) (1)

2m n m n mn mn
mn

m n m n mn mn

f h

f h

µ µ µ µ
ζ

µ µ µ µ

→ →

→ →

−
≡ =

+ +





                                         (3.19) 

 
which, as expected, vanishes if either (0)µ  or (1)µ  is equal to zero. 
 Equations (3.17)-(3.19) are the main results of this section. Several noteworthy remarks can be 
made based on these expressions. First, we note that in the special case 0S = , the ground state and midpoint 
expansions coincide, thus ( ) ( )0 0µ µ= . Since the two potential surfaces are undisplaced in this case, the FC 
and HT integrals are nonzero only for select combinations of quantum numbers. Specifically, the FC factor 
becomes nm nmf δ=  (which describes FC-allowed n-n transitions), while the HT matrix element is 

( )1, 1, / 2mn m n m nh m nδ δ ω− += +  (which corresponds to HT-allowed 1n∆ = ±  transitions). Since at 
least one of mnf  and mnh  vanishes for any choice of quantum numbers in this case, we conclude from Eq. 
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(3.19) 0mnζ =  for all lines, i.e. mirror-image symmetry is restored in full FC-HT spectra if the Huang-Rhys 
factor is equal to zero. Figure 2 shows the asymmetry function 01ζ  as a function of the dipole moment 
parameters, mode frequency and Huang-Rhys factor. In the regions where this function is positive, the 
absorption line has higher intensity compared to the analogous emission line, and vice versa. 

Next, the midpoint-shifted constant term (0)µ  depends on the displacement between ground and 
excited potential surfaces, i.e. on the Huang-Rhys factor, 
 

( ) ( )
( )1

0 0 1
2

2S
m
µµ µ

ω
= +                                                          (3.20) 

 
Since the S dependence is only in one of the two terms, the Huang-Rhys factor can change the contribution 
of the FC term and thus modulate the asymmetry between absorption and emission intensities. If 

( ) ( )0 1 0µ µ >  (i.e. if both parameters are either positive or negative), increase of the Huang-Rhys factor will 
increase (0)µ  and thus further amplify the intensity of  (absorption or fluorescence) transitions in the region 
(to the left or the right of the 0-0 line) where constructive interference is observed. In contrast, if ( ) ( )0 1 0µ µ <
, Eq. (3.20) goes through zero at a critical value cS  of the Huang-Rhys factor, for which absorption and 
emission spectra exhibit mirror-image symmetry. In this case the spectral asymmetry is reversed as S goes 
through this critical value. This implies that the absorption and emission spectra of two modes with identical 
frequencies and dipole moments but different Huang-Rhys factors can exhibit opposite trends in the 
absorption and emission intensities.  
 
 

 
 

Fig. 2.  The asymmetry function 01ζ , Eq. (3.19). Left: as a function of the Huang-Rhys factor 
and mode frequency for (1) (0) 0.1sµ µ∆ = − . Right: as a function of Huang-Rhys 
factor and the ratio of dipole moment terms for  1300cmω −= .                    
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4. Absorption-emission asymmetry for discrete modes 

 In this section we present absorption and emission spectra at two temperatures (100 K and 300 K) 
for various combinations of vibrational parameters. Apart from the characteristic vibrational frequencies 
and Huang-Rhys factors that determine the respective displacements between the potential minima, the 
vibrational modes can be classified into four categories: 
(i)   Purely FC active ( ( ) ( )0 10, 0kµ µ≠ = ), 
(ii)  Purely HT active ( ( ) ( )0 10,  0kµ µ= ≠ ),  
(iii) FC-HT active with components that satisfy ( ) ( ) ( )0 0 1 eq1

ge2 0k
k

qµ µ µ= + ∆ =∑ , and 
(iv)   FC-HT active ( ( ) ( )0 10,  0kµ µ≠ ≠ ) in the general case ( )0 0µ ≠ . 
We show results for discrete modes with frequencies equal to 300 and 500 cm-1 for Huang-Rhys factors in 
the range 0-0.8. For nonzero values of (0)µ , we quantify the dipole moment parameters through the 
dimensionless ratio (1) (0)/k sµ µ∆ . If either (0) 0µ =  or (1) 0kµ = , the dipole moment value simply rescales the 
line intensity, so we do not specify it.  
 We begin with the spectral behaviors arising from a single vibrational mode and manifestations of 
mirror symmetry breaking between absorption and emission. We then focus on the signatures of 
combination bands for pairs of vibrational modes of different dipole characters and the homogeneous 
broadening from hundreds of weakly coupled bath modes at finite temperatures.  
 
A. Single-mode spectra and loss of mirror-image symmetry  
 Figures 3a and 3b show the spectra for a single vibrational mode with frequency 1ω  under the 
Franck-Condon approximation, ( )1

1 0µ = . As expected, the absorption and emission spectra exhibit 
progressions arising from vertical transitions between vibrational levels in the ground and excited electronic 
states, encoded in the FCR term. The frequencies for the observed transitions are ( )1 e g 1 1/ mω ε ε ω= − ±  
where 1m  is a non-negative integer. The frequency axes of the spectra in Figure 3 and all subsequent figures 
have been shifted by the electronic frequency ( )e g /ε ε−  , such that the 0-0 transition peak lies at 0. The 
relative intensities of vibronic progressions depend on the Franck-Condon overlaps between the relevant 
states, which have a non-monotonic dependence on the quantum numbers and the potential surface 
separation (i.e., the electron-vibration coupling or the Huang-Rhys factor). At low temperature, most of the 
peak intensities correspond to transitions from the ground vibrational level of the ground electronic state. 
As the temperature is increased, new transitions emerge from vibrationally excited states, leading to a 
rescaling of peak intensities. We note the perfect mirror symmetry between absorption and emission spectra 
in the pure FC case. 

Next, in Figures 3c and 3d we focus on spectra that arise exclusively from HT coupling, i.e.  
( )0 0µ =  in Eq. (2.10), such that the only contributing term is HTR . As discussed in the previous section, 

the asymmetry that results from linearization of the dipole moment with respect to one of the two potential 
mimina results in FC-HT interference and the loss of mirror image symmetry between absorption and 
emission spectra. With the exception of the n-n transition peak (at 0ω = ), absorption and emission spectral 
lines are seen to have different intensities. Panels 3e and 3f  show that the absorption-emission symmetry 
is restored in the FC-HT spectra obtained with ( )0 0µ = , i.e. in a pure HT transition originating from a 
dipole moment that is linear about the midpoint between the two potential minima. We also note that 
because of the symmetric placement of the point of expansion and the absence of the FC term, the n-n 
transition peak vanishes in this limit.  
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Fig. 3.   Absorption and emission spectra for a molecule with a single vibrational mode of 

frequency -1
1 300 cmω = . The frequency axes have been shifted by ( )e g /ε ε−  . (a,b) 

Pure FC spectra ( ( )1
1 0µ = ) with 1 0.5S = . (c,d) Pure HT spectra with ( )0 0µ = , 1 0.5S = . 

(e,f) FC-HT spectra with ( )0 0µ = , Left: 100KT = . Right: 300KT = .   
 
 
 

Figures 4a and 4b show the spectra with both FC and HT terms in the dipole expansion (with 
generic parameters that lead to ( )0 0µ ≠ ), for the special case 1 0S = . This limit is relevant for vibrations 
that are not FC-coupled (or are very weakly coupled) to the electronic states but which possess sizable HT 
contributions. Since the ground and excited surfaces are undisplaced in this case, the n n−  peak is of a 
purely FC origin, and the only allowed vibrational transitions ( 1n n→ ± ) arise entirely from the linear term 
in the normal mode coordinate (i.e. are purely HT). Thus, three peaks are observed with no interference 
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(i.e., FC-HTR vanishes when the Huang-Rhys factor is equal to zero). The HTR  term is perfectly symmetric in 
this case because the two potential surfaces lie on top of each other, thus the absorption and emission 
intensities are equal. As expected, the relative intensity of the 1n n+ →  peak is increased with temperature, 
due to the population of the excited vibrational levels. 

 
 

 
Fig. 4.   FC-HT spectra for -1

1 300 cmω = . The frequency axes have been shifted by ( )e g /ε ε−  . (a,b) Symmetric 
spectra with ( ) ( )1 0

1 / 0.05sµ µ∆ = , 0S = . (c,d) Spectra for ( )0 1µ = , ( ) ( )1 0
1 / 0.05sµ µ∆ = , 1 0.5S = where 

dipole expansion and interference effects cooperate. (e,f) ( ) ( )1 0
1 / 0.05sµ µ∆ = − , 0.5S = when the two 

effects are in competition. The vertical axis range in Figure 4 panels has been doubled compared to Fig. 3, 
so that the higher peak intensities could be accommodated. Left: 100KT = . Right: 300KT = . 
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When 1 0S ≠  (Figures 4c-4f), all three terms in the correlation function, including the FC-HTR  term, 
contribute to each peak, and mirror-symmetry is broken for all n n′−  transitions. As is evident from 
Equations (3.17) and (3.18), the enhancement of absorption or emission intensities depends on the sign of 

( )1
1µ . Figures 4c-4d show spectra with ( ) ( )0 1

10, 0µ µ> > . In agreement with the conclusions of the previous 
section, it is seen that the intensities of peaks that lie on the right of the 0-0 absorption line are weaker than 
those on the left of the 0-0 emission line. The converse holds for lines on the left of the other side of the 0-
0 lines. The opposite situation is illustrated in Figures 4e-4f, where ( ) ( )0 1

10, 0µ µ> < . In this case absorption 
intensities are larger on the right side of the spectrum compared to their emission counterparts. Further, the 
opposite signs of these two parameters lead to significant decrease in the value of ( )0µ  compared to the 
previous case, which causes the absorption-emission asymmetry to be less prominent.  

 
 

 
Fig. 5.   Absorption and emission spectra for a molecule with a two vibrational modes of 

frequencies -1
1 300 cmω = and -1

2 500 cmω = . The frequency axes have been shifted by 
( )e g /ε ε−  . (a,b) One FC mode with ( ) ( )1 0

1 / 0sµ µ∆ = , 1 0.5S =  and one FC-HT mode 
with ( ) ( )1 0

1 / 0.02sµ µ∆ = − , 2 0.1S = . (c,d) Two FC-HT modes: ( ) ( )1 0
1 / 0.05sµ µ∆ = − , 

1 0.5S =  and ( ) ( )1 0
2 / 0.05sµ µ∆ = , 2 0.1S = . Left: 100KT = . Right: 300KT = . 
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 B. Combination Peaks  
In a molecule with many coupled vibrations, electronic transitions are accompanied by the 

simultaneous excitation/de-excitation of multiple modes, leading to combination peaks that lie at the 
cumulative transition frequencies ( )e g 1 1 2 2 3 3/ m m mω ε ε ω ω ω= − ± ± ± ±   where 1 2 3, ,m m m   are non-
negative integers. Figure 5 shows spectra for pairs of vibrations. It is easily seen that combination peaks 
exhibit asymmetric intensities only when at least one of the participating transitions is asymmetric. For 
example, in Figures 5a and 5b, the vibronic peaks associated with the selective excitation or de-excitation 
of the FC mode are perfectly symmetric, whereas the vibronic progressions of the FC-HT mode and the 
combination peaks involving transitions of both modes are asymmetric. Similar assignments of peaks can 
be made in Figures 5c and 5d for a pair of FC-HT active modes, where all n n′−  transitions exhibit dipole-
expansion and interference asymmetries. Depending on the relative signs of the HT couplings, interferences 
(in absorption for example) are either (i) both constructive/both destructive, as in Fig. 5c-5d, or (ii) 
constructive for one mode and destructive for the other (this example is shown in section V). Both cases 
are usually encountered in multimode spectra.  
 
 
5.  Homogeneous broadening, peak position asymmetry and temperature dependence 

In this section we show the changes to the spectra due to the presence of a FC-active dissipative 
bath, which mimics the effect of a solvent or matrix environment. Solvent spectral densities typically 
comprise a dense manifold of modes at relatively low frequencies that capture the translational, rotational 
and slow vibrational motions of the nuclei. Spectra in solution thus comprise a host of transitions between 
a large number of accessible levels, making the underlying fine structure impossible to resolve.  

We choose a harmonic dissipative bath described by the well-known Ohmic spectral density,31 
 

( ) c/
2

2J e
s

ω ωω π ξω −=
∆

                                                          (5.1) 

 
which peaks at 1

c 300 cmω −=  and the dimensionless parameter 1
3ξ =  characterizes the strength of coupling 

to the electronic states.  The system-bath coupling strength is often quantified in terms of the reorganization 
energy, which with the present parameters is 1200 cmλ −= . While computing response functions, we 
discretize the Ohmic bath into 200 normal modes using a logarithmic scheme32-33 which amounts to a 
uniform partitioning of the reorganization energy. The bath modes are assumed to be purely of FC character.  

The dense manifold of transitions from the bath lead to a spectral envelope over a broad frequency 
range. The absorption and emission spectra that result from coupling the two electronic states to only the 
bath are shown by grey lines in Figure 6a. Note that the reorganization energy of the bath is not necessarily 
reflected in the Stokes shift between absorption and emission peaks.34 Moreover, when the dissipative bath 
(or the solvent) is included alongside other discrete vibrations with relatively stronger FC or HT couplings 
(e.g., intramolecular normal modes), a multitude of peaks that arise from the combination of bath and 
discrete modes are observed. The resulting spectra are shown in Figure 6 for a single discrete mode of FC 
or combined FC-HT activity. It is seen that the bath gives rise to broadening around the previously observed 
sharp peaks, which now form spectral bands. Note that the observed broadening is entirely homogeneous 
and arises from the dynamical effects of explicit modes with incommensurate frequencies and coupling 
strengths. Although the pure FC bath spectra preserve mirror symmetry, coupling of a FC-HT active mode 
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to a bath (Figures 6b-6c) results in asymmetry that arguably is even more pronounced in comparison to the 
spectra of the same mode without the bath (Figures 4c, 4e). This is so because the asymmetric HT 
component of the discrete mode forms combination bands with the FC-active bath, leading to a nontrivial 
structural modulation of the lineshape.  

 
 

 
 

Fig. 6.  Homogeneous broadening effects (at 100 KT = ) of a dissipative bath on single mode spectra: 
-1

1 300 cmω =  and 1 0.5S = . In all cases the electronic states are coupled to an Ohmic bath 
having 1

c 300 cmω −=  and  0.33ξ = .  (a) FC mode: ( ) ( )1 0
1 / 0sµ µ∆ = . The spectra obtained for 

the bath alone are shown with grey lines. (b-c) FC-HT spectra with  (b) ( ) ( )1 0
1 / 0.05sµ µ∆ =   and 

(c) ( ) ( )1 0
1 / 0.05sµ µ∆ = − . The frequency axes have been shifted by ( )e g /ε ε−  .   

 
 

We previously noted in Figures 5c-5d how the relative magnitudes and signs of the dipole 
derivatives modulate absorption-emission asymmetry, when two FC-HT active modes are coupled together. 
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Figure 7 shows the effect of the bath on such spectral trends. We now consider modes with the same 
frequencies ( 1

1 300cmω −=  and 1
2 500cmω −= ) but with smaller FC coupling, such that each mode by itself 

results in primarily in one or two prominent vibronic peaks ( n n→  and 1n n→ ± ) and single-mode effects 
of symmetry breaking are less prominent. As discussed earlier, when the HT couplings of the two vibrations 
are of the same sign (Figure 7a), the directions of absorption-emission asymmetry are aligned, resulting in 
large asymmetry effects overall. As a result, the 1n n→ +  peaks for both modes are visible over the spectral 
envelope in emission spectra, whereas in absorption, destructive interference reduces the intensities of both 
transitions leaving behind only the n-n peak and a minor shoulder at larger frequencies.  
 
 

 
 

Fig. 7.  Spectra for two relatively weakly coupled FC-HT modes, in the presence of the bath. (a-b) 
-1

1 300 cmω = , 1 0.1S = and -1
2 500 cmω = , 2 0.05S = . (a) Both HT couplings are positive, 

( ) ( )1 0
1 / 0.05sµ µ∆ = , ( ) ( )1 0

2 / 0.05sµ µ∆ = and (b) where the HT couplings are of different 
signs, ( ) ( )1 0

1 / 0.05sµ µ∆ = , ( ) ( )1 0
2 / 0.05sµ µ∆ = . Bath parameters are identical to those in 

Figure 5 and both panels show spectra at 100 KT = . The frequency axes have been shifted 
by ( )e g /ε ε−  .  

 
 

When the HT couplings differ in sign, the directions of asymmetry are opposite and the intensities 
of transitions can be more commensurate. However, if the two mode frequencies differ, the opposite 
asymmetries appear at different frequencies, creating peaks of opposing intensities. As seen in Figure 7b, 
the contrasting nature of interferences for the two vibrational modes causes the 1n n→ +  transition of one 
mode (with 1

2 500cmω −= ) to be only visible in the absorption spectrum, while the other ( 1
1 300cmω −= ) 

is only visible in fluorescence. The central peaks near 0ω =  consist of n-n transitions for the discrete modes 
and vibrational progressions of bath modes. Similar asymmetric shifts are very prominent in several of the 
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panels shown in Figures 6-8. In Fig. 7a, the strongest peak in the emission spectrum is around 1350cm−
  

(from mode 1ω ), while the highest peak in absorption is that of the n-n transition (shifted by the bath to 
1~ 60cm− ). The asymmetric shift effect is even more clearly seen in Fig. 9a (discussed later), which shows 

spectra at a higher temperature that consist of a single broad band. While, the maximum of the absorption 
spectrum remains at 1~ 60cm− , the fluorescence peak now lies around 480 cm-1. Asymmetry in the peaks 
of absorption and emission spectra may be erroneously assigned to the difference in the vibrational 
frequencies in the ground and excited potential surfaces.  

 
 

 
 

Fig. 8.  Inversion of absorption-emission asymmetry through variation of the Huang-Rhys factor for a discrete 
mode with -1300 cmω = mode at 100KT =  with ( ) ( )1 0

1 / 0.0833sµ µ∆ = − , coupled to a dissipative bath 
with the parameters given in the main text. (a) 1 0.1S = . (b) 1 0.39366S = such that ( )0 0µ = .  (c) 

1 0.8S = . The frequency axes have been shifted by ( )e g /ε ε−  .   
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As explained in section III, the absorption-emission asymmetry disappears (and the spectra of FC-
HT active modes simplify) when the Huang-Rhys factor is equal to zero, and also (if (0) (1) 0µ µ < ) for 
another critical value cS . In the latter case, the spectral asymmetry switches sign as the mode Huang-Rhys 
factor is increased. Figure 8 illustrates this effect. It is seen that for the smallest value 1 0.1S =  the absorption 
intensity is larger, while for the larger value 1 0.8S =  fluorescence becomes stronger. With the chosen 
parameters the spectra exhibit perfect mirror symmetry for the critical value 1 0.39366S = .  
 

 

 
 

Fig. 9.  Temperature dependence of bath spectra.  (a-b) Spectra at 300 KT =  for a single FC-HT 
mode, -1

1 300 cmω = and 1 0.5S = with different directions of asymmetry, a) 
( ) ( )1 0
1 / 0.05sµ µ∆ =  (b) ( ) ( )1 0

1 / 0.05sµ µ∆ = − . The analogous low temperature results 
previously shown in Figures 6b and 6c respectively, have been replotted with dashes to aid 
comparison. Bath parameters are identical to Figures 5 and 6. The frequency axes have 
been shifted by ( )e g /ε ε−  .  

 
 

Last, we investigate in Figure 9 the effect of temperature on the spectra in the presence of a bath. 
With increase in the available thermal energy, vibronic peaks and combination bands that involve 
transitions from higher vibrational states become accessible. The emergence of a larger number of higher 
vibronic transitions and combination bands leads to broadening and modulation of peaks irrespective of 
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their dipole characters. In Fig. 9a we show the changes in the spectra obtained with the parameters used in 
Figure 6b upon increasing the temperature from 100 K to 300 K. At 100 KT = , most visible transitions are 
of the m n<  type leading to a dominant emission spectrum. However, as the temperature is increased, 
strong m n>  transitions emerge in the  < 0ω region (marked by a magenta arrow) of the absorption 
spectrum as excited vibrational states become thermally accessible. Such transitions are not visible in the 
emission spectrum, leaving the analogous  > 0ω  region empty. This effect more than compensates for the 
usual blue shift of the absorption spectra, leading to the impression of an anomalous red-shift. The trends 
are reversed with ( )1

1 0µ >  (Fig. 9b), now generating new intensity (magenta arrow) in the emission 
spectrum.  

The spectrum of a chromophore with multiple FC-HT active modes may comprise combinations 
of the aforementioned effects. Such multimode signatures create nontrivial temperature dependent 
modulations in spectra, some of which have been emulated in this paper within the realms of a simple 
model.   
 
 
6. Concluding Remarks  

Molecules that display significant deviations from simple Franck-Condon transitions give rise to 
interesting and sometimes unexpected spectral characteristics. In this paper we presented a comprehensive 
study of FC-HT signatures in the linear spectra of model molecular systems within the normal mode 
approximation, where the two relevant electronic states are described by multidimensional harmonic 
potential surfaces. We have shown analytically that the asymmetry induced by the interference of FC and 
HT components has opposite signs for all transitions in equivalent sides of the 0-0 line in the absorption 
and emission spectra (e.g. the blue side in absorption and red side in emission, or vice versa), and that the 
trend is reversed for all transitions on the other of the 0-0 line. 

For each vibrational mode, the absorption-emission asymmetry depends on the dipole moment 
parameters, as well as the mode frequency and Huang-Rhys factor. We have obtained a simple relation for 
the asymmetry and shown that it vanishes not only in simple limits corresponding to undisplaced potential 
surfaces or to particular relations of the dipole moment parameters, but also for nontrivial parameter 
combinations. As a result, a crossover is observed, from spectra where fluorescence intensities are more 
prominent to spectra where absorption dominates. In molecular systems comprising many vibrational 
modes, similar or opposing trends in line intensities can give rise to interesting spectral features. As the 
thermal population of vibrational levels modulates peak intensities in the blue and red sides of the 0-0 line, 
the HT-induced asymmetry can impact the temperature dependence of molecular spectra in nontrivial ways. 

Our analytical results were illustrated by numerically exact calculations in models of one or two 
discrete vibrational modes using parameters typical of common molecular systems, and also in the presence 
of a FC-active dissipative bath that mimics a condensed phase environment and accounts for homogeneous 
broadening. The computed spectra illustrate the nontrivial FC-HT interference that causes the breakdown 
of absorption-emission symmetry, its recovery through accidental symmetries, and its inversion by minor 
changes in coupling strengths. The inclusion of a dissipative bath gives rise to diverse and very rich spectral 
patterns, which arise from combination bands of HT-active molecular vibrations and a large number of FC-
active bath modes. In addition to spectral broadening, we observed large asymmetric peak shifts, which 
produce the illusion of unequal vibrational frequencies in the two potential surfaces. Finally, thermal effects 
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were seen to unequally impact the asymmetry across spectral regions, leading to intriguing trends in the 
spectra. We expect these interesting trends to be largely observable in the condensed phase spectra of HT-
active molecular systems.  
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Appendix 

Here we provide an outline of the procedure for computing linear absorption and emission spectra 
under the Herzberg-Teller approximation. For a transition from electronic state a  to state b  the response 
function has the form 

 

( )ˆ ˆ ˆ/ /1 ˆ ˆ( ) Tr b a aiH t H iH tR t Z e e eβµ µ− −−=                                                     (6.1) 

 
For general Hamiltonians, this expression may be evaluated in the semiclassical limit as a special case of 
the quantum-classical path integral26-28 (QCPI) expression. For the present purpose where the vibrational 
Hamiltonians are quadratic functions, the QCPI procedure is exact. Further, with the normal mode form of 
the two potential surfaces, each component of the response function factorizes into single-mode correlation 
functions. Shifting the coordinates, the vibrational Hamiltonians can be written as 
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with eq 2

, /b k k b kq c s mω= . Further, within the FC-HT approximation, the dipole can be expressed in the form 
 

( ) ( ) ( ) ( )0 1 eq
ref ref,ˆk k k

k
q qµ µ µ+ −∑q                                                          (6.3) 

 
where eq

ref,{ }kq  are the coordinates of the point about which the dipole moment function is expanded in the 
present coordinate system. The terms entering the response function can be written as  
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( ) ( ) ( ) ( ) ( )/ vib, 0 1FC-HT eq
ref ref,2 b ai t q

k k k k j
k j k

R t e F q F Fε ε µ µ− −

≠
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where 

( ), , ,
ˆ ˆ ˆ/ /1Tr b k a k a kih t h ih t

k kF Z e e eβ− −−=                                                        (6.7) 

 
is the FC line broadening function,   
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( ), , ,
ˆˆ ˆ/ /1 ˆTr b k a k a kiH t h iH tq

k k kF Z q e e eβ− −−=                                                   (6.8)              

 
is reminiscent of the “average coordinate” of the kth normal mode and   
 

( ), , ,
ˆ ˆ ˆ/ /1 ˆ ˆTr b k a k a kih t h ih tqq

k k k kF Z q e q e eβ− −−=   .                                              (6.9) 

 
resembles a “position correlation function”.  

Each of these functions may be written in the QCPI form. Dropping the mode subscript k, Equations 
(6.7)-(6.9) can be obtained from the expression 

 

( ) ( ) ( )0 0, /
0 0 0 0 , , i q p

AB A t tC dq dp W q p B q p e θ= ∫ ∫                                         (6.10) 

 
where AW  is the Wigner phase space transform of the operator ,

ˆˆ /a kh
kA e Zβ− , ,t tq p  are the phase space 

coordinates reached by a classical trajectory to be specified below, θ  is the QCPI phase, and the operators 
ˆ ˆ,A B  are equal to q̂  or Î  (the identity). The classical trajectory is subject to the average of the forces 

supplied by the two Hamiltonians, i.e. 1
2 bcs . The position reached by the trajectory at the time  t  is  

 

( ) ( )0
0 2cos sin 1 cos

2
bp csq t q t t t

m m
ω ω ω

ω ω
= + + − ,                                      (6.11) 

 
and the classical phase is given by 
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2 2

0 0
2 3( ) sin 1 cos sin

2
b b bcq s cp s c st t t t

m m
θ ω ω ω

ω ω ω
= + − −                                   (6.12) 

 
The last term arises from the difference of the coordinate independent term of ( )q t  and the quadratic 
“counterterm” in bH  (which encodes the vibrational reorganization energy between the two surfaces). Last, 
the Wigner functions are 
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β ω
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π
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                                       (6.13) 

 

( ) ( )0
0 0 0 0 0,  ,q I

pW q p q i W q p
mω

 = − 
 

.                                             (6.14) 

 
The resulting QCPI integrals are Gaussian and may be evaluated analytically to yield closed form 
expressions for kF , q

kF  and qq
kF .  
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