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Infrasound data from arrays can be used to detect, locate, and quantify a variety of
natural and anthropogenic sources from local to remote distances. However, many
array processingmethods use a single broad frequency range to process the data, which
can lead to signals of interest being missed due to the choice of frequency limits or
simultaneous clutter sources. We introduce a new open-source Python code that proc-
esses infrasound array data in multiple sequential narrow frequency bands using the
least-squares approach. We test our algorithm on a few examples of natural sources
(volcanic eruptions, mass movements, and bolides) for a variety of array configurations.
Our method reduces the need to choose frequency limits for processing, which may
result in missed signals, and it is parallelized to decrease the computational burden.
Improvements of our narrow-band least-squares algorithm over broad-band least-
squares processing include the ability to distinguish between multiple simultaneous
sources if distinct in their frequency content (e.g., microbarom or surf vs. volcanic erup-
tion), the ability to track changes in frequency content of a signal through time, and a
decreased need to fine-tune frequency limits for processing. We incorporate a measure
of planarity of the wavefield across the array (sigma tau, στ) as well as the ability to
utilize the robust least trimmed squares algorithm to improve signal processing and
insight into array performance. Our implementation allows for more detailed charac-
terization of infrasound signals recorded at arrays that can improve monitoring and
enhance research capabilities.

Introduction
Infrasound (sound waves below 20 Hz) can be recorded from a
variety of natural and anthropogenic sources. Sensors are often
deployed as arrays, or groups of sensors in a given configuration,
that can enhance the ability to detect and distinguish coherent
infrasound signals from background noise. This is typically done
by the time difference of arrival of a signal at the various ele-
ments of the array, assuming a plane wave crossing the array.
Infrasound arrays can be located at a variety of distances from
the source, including local (≲15 km), regional (∼15–250 km),
and remote distances (≳250 km) (Fee and Matoza, 2013;
Matoza et al., 2018). The International Monitoring System
(IMS) aims to detect and locate potential nuclear explosion test-
ing, and includes a global network of 60 planned infrasound
arrays (53 of which have been installed as of 2021; Christie
and Campus, 2010). These IMS arrays have been used to
research a variety of other sources of infrasound, including vol-
canic eruptions (e.g., Matoza et al., 2017), chemical explosions
(e.g., Fee et al., 2013), microbaroms (e.g., Le Pichon et al., 2006;
Landès et al., 2012), and bolides (e.g., Le Pichon et al., 2013;
Pilger et al., 2015; Arrowsmith et al., 2021). In addition to this

global network of infrasound arrays, many regional infrasound
arrays exist, such as those operated by the Alaska Volcano
Observatory (AVO; e.g., Lyons et al., 2020).

Common infrasound array processing methods include
progressive multi-channel correlation (PMCC; e.g., Cansi,
1995; Cansi and Klinger, 1997), frequency–wavenumber analy-
sis (e.g., Smart and Flinn, 1971), and least-squares beamform-
ing (e.g., Szuberla and Olson, 2004; Olson and Szuberla, 2005),
as well as a variety of others. Aside from PMCC, many array
processing methods use a single broad frequency band for
processing, which often requires “fine tuning” (manual selec-
tion) of the frequency limits to best enhance signal detection
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while diminishing the detection of clutter sources (infrasound
sources other than the signal of interest). PMCC is the main
array processing tool used by the International Data Centre to
process data from the IMS arrays (Cansi, 1995; Cansi and
Klinger, 1997; Mialle et al., 2019). The least-squares array
processing method and mean cross-correlation maxima
(MCCM) metric (Szuberla and Olson, 2004; Olson and Szuberla,
2005; Wilson et al., 2009; Lee et al., 2013; Bishop et al., 2020) are
also popular for operational usage (e.g., De Angelis et al., 2012;
Lyons et al., 2020; Shiro et al., 2021), including at the U.S.
Geological Survey Alaska Volcano Observatory, Cascades
Volcano Observatory, Hawaiian Volcano Observatory, and
Volcano Disaster Assistance Program.

Least-squares array processing is well established, open-
source (e.g., Bishop et al., 2020), and easy to understand with
statistical uncertainty. The least-squares processing repository
used in Bishop et al. (2020) can analyze any data that can be
read into Python, including from a variety of servers (e.g.,
the Incorporated Research Institutions for Seismology [IRIS])
or from locally stored data (e.g., miniseed, Seismic Analysis
Code [SAC], and other common data formats), making it an
approachable array processing method. Although least-squares
processing appears to be a useful method, there are some lim-
itations to using this processing method in its typical implemen-
tation. In its ordinary application, this approach can sometimes
miss signals of interest, such as explosions or volcanic signals,
due to other sources, such as the microbarom or surf, being
present in the same processing band. Because least-squares array
processing is typically applied in a single broad frequency band,
the results are sensitive to processing parameters such as fre-
quency limits (e.g., Schwaiger et al., 2020), and there is little
information provided about the frequency content of the source,
including if it is changing through time. We show that these
limitations of the broad-band least-squares processing can be
mitigated by performing least-squares processing in multiple
sequential narrow frequency bands. Improvements of the multi-
ple narrow band processing over broad-band least squares
include: (1) improved ability to distinguish between multiple
sources with different frequency content such as the micro-
barom and/or surf from signals of interest, (2) more accurate
representation of event duration, (3) enhanced signal detection
capabilities, (4) improved ability to illuminate changes in fre-
quency content within a signal, (5) upgraded capability to dis-
tinguish between multiple simultaneous sources if distinct in
their frequency content, and (6) does not require “fine tuning’
of frequency limits based on individual array and signal char-
acteristics.

In this study, we describe our implementation of narrow-
band least-squares array processing for infrasound data, intro-
duce our open-source Python code with relevant processing
parameters, and investigate our new implementation for
a few examples. We find that performing least-squares array
processing in multiple sequential narrow frequency bands

improves array processing results and therefore the detection
capabilities compared to typical broad-band least-squares array
processing. This implementation allows for more detailed char-
acterization of the signal characteristics (e.g., ability to observe
changes in frequency content) that can improve monitoring
and enhance research capabilities.

Algorithm and Capabilities
Least-squares beamforming (the process in which traces from
each element in an array are aligned in time for a given slowness
value in a least-squares sense) is a common method for infra-
sound array processing, both for research and monitoring pur-
poses. We assume an infrasonic signal that propagates as a plane
wave across the array of n elements and N element pairs, which
is typically valid for sources far from the array (Szuberla et al.,
2006). Least-squares regression of interelement travel times over
interelement distances can be used to estimate the optimal
slowness vector β of the propagating signal over successive time
windows with a given window length and overlap

EQ-TARGET;temp:intralink-;df1;320;496β � �βx; βy�T � k
ω
; �1�

in which k is the wavenumber of the propagating wave, and ω is
the angular frequency. The N × 1 vector of interelement travel
time differences (τ) can be expressed as (e.g., Szuberla and
Olson, 2004; Bishop et al., 2020):

EQ-TARGET;temp:intralink-;df2;320;405τ � Aβ� ϵ; �2�

in which A is the N × 2 matrix of co-array coordinates (interele-
ment distances), and ϵ is the N × 1 vector of measurement
errors. This system of equations is solved by minimizing the
sum of the squared residuals:

EQ-TARGET;temp:intralink-;df3;320;314β̂ � minimize
β

XN
i�1

jri�β�j2; �3�

in which ri is the ith component of the residual vector,
r � Aβ − τ. Under the assumption that the errors in estimating
the interelement travel times are normally distributed, then the
least-squares (L2 norm) solution is the maximum-likelihood sol-
ution (Montgomery et al., 2001).

From the estimation of the slowness vector, the back azi-
muth (θ is the direction of arrival defined here as clockwise
from north) and trace velocity (v is the speed in the plane
of the array) can be computed as follows:

EQ-TARGET;temp:intralink-;df4;320;145θ � tan−1
�
βx
βy

�
; �4�

EQ-TARGET;temp:intralink-;df5;320;79v � 1����������������
β2x � β2y

q � 1
jjβjj : �5�
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We use the maximum of the normalized cross-correlation
function between array elements to estimate the travel times
between the element pairs in the array, termed the MCCM.
Recently, some authors have switched from MCCM (e.g.,
Haney et al., 2018; Iezzi et al., 2019; Lyons et al., 2020) to
median cross-correlation maxima (MdCCM; e.g., Gabrielson,
2017; Bishop et al., 2020), as the median value is more resistant
to outliers. We note that many other metrics for detection are
in use, including the time domain Fisher analysis (Blandford,
1974) and frequency domain F-statistic analysis (Shumway,
1971; Smart and Flinn, 1971). An estimate of the standard
deviation of the time delays, termed sigma tau (στ), can be used
as an indicator of nonplanar propagation across the array
(Szuberla et al., 2006). The στ is defined as:

EQ-TARGET;temp:intralink-;df6;41;561στ �
����������������������������������������������
τT�I − A�ATA�−1AT�τ

N − 2

r
; �6�

in which I is the N × N identity matrix. Here we have assumed
that A has a rank of 2 (Szuberla and Olson, 2004). Another
interpretation of στ is that it is a scaled residual vector mag-
nitude, so interelement time delays that are not well described
by the plane wave model lead to a larger στ . Bishop et al.
(2020) explore improvements to infrasound array processing
using robust statistical estimators. The least trimmed squares
(LTS) estimator allows for individual element pairs to be
automatically dropped from processing that produce outlying
travel times, which can be viewed as violating the plane wave
assumption. Thus, Bishop et al. (2020) find that the LTS
implementation of the least-squares algorithm provides
robust array processing results and insight into array perfor-
mance (e.g., timing errors and sensor issues). Further discus-
sion on the statistical confidence or uncertainty in the
estimation of direction of arrival (back azimuth) and trace
velocity are described by Szuberla and Olson (2004) and
De Angelis et al. (2020).

We perform least-squares array processing separately on
multiple sequential narrow frequency bands and consolidate
the results to improve signal detection and time–frequency
characterization. Our Python code is openly available on
Github and relies upon another openly accessible repository
for least-squares array processing. We emphasize flexibility
in this implementation to allow the user to select the time
and frequency parameters. The overall minimum (FMIN)
and maximum (FMAX) frequencies are specified along with
the number of narrow bands (NBANDS) between the two
values. The narrow frequency bands can be specified with
a variety of spacing options (FREQ_BAND_TYPE), including
linear, logarithmic (e.g., Brachet et al., 2010), one octave, one-
third octave (e.g., Garces, 2013), two overlapping octave (e.g.,
Green and Bowers, 2010), and user specified. The corre-
sponding window lengths for each narrow band can be speci-
fied (WINDOW_LENGTH_TYPE) as either constant or

adaptive (e.g., Brachet et al., 2010; Le Pichon et al., 2010),
in which adaptive varies linearly with frequency. The filter
type (FILTER_TYPE) can be specified as either Type I
Chebyshev or Butterworth options. Typical least-squares in
narrow bands is performed (ALPHA = 1.0), with the option
of the LTS implementation of Bishop et al. (2020) (0.5 ≤
ALPHA < 1.0). The narrow-band least-squares code is paral-
lelized to allow for the possibility of using this implementa-
tion on a similar timescale to broad-band least-squares,
including near real-time monitoring. The parallelization is
currently set to loop over the separate bands (parameter
NBANDS). A full list of the parameters is included in the
Appendix, and the impact of processing parameters is briefly
explored in the Processing Parameter Investigation and
Discussion section.

Example Usage and Applications
We investigate our narrow-band least-squares processing
method on a few examples of natural sources for a variety
of array configurations (e.g., four elements with a small
aperture as well as more elements with a larger aperture).
The broad-band least-squares array processing method is
compared to our narrow-band least-squares implementation
for each example, highlighting improvements in data process-
ing and detection capabilities. The frequency limits for
the broad-band least-squares processing for each example
change according to those used in monitoring applications
while the narrow-band least-squares implementation is consis-
tent between examples (with two different band configurations
used). A second order Type I Chebyshev filter with a ripple of
0.01 is used for all examples, and processing parameters are
summarized in Table 1.

Eruption of Mount St. Helens, Washington
As part of the Acoustic Surveillance for Hazardous Eruptions
(ASHE) project, an infrasound array was deployed in 2004 at
Mount St. Helens, Washington, United States, which captured
multiple explosive eruptions (Matoza et al., 2007), including
the 08 March 2005 (09 March UTC) phreatic eruption. The
Coldwater (CDWR) array was located 13 km from the summit
(back azimuth of 153°) and consisted of four MB2000 (DASE/
Tekelec) broad-band aneroid microbarometers arranged in a
centered triangle with an aperture of ∼100 m (Fig. 1f) and
porous hose wind noise suppression (Hedlin et al., 2003).
The data were sampled at 40 Hz and have a flat response from
0.01 to 17 Hz. We refer the reader to Matoza et al. (2007) for
details on the array setup, eruption, and infrasound data
analysis.

Least-squares array processing, both broad- and narrow-
band, is applied to the CDWR data for the 09 March 2005
eruption using parameters that are similar to those used for
PMCC by Matoza et al. (2007) (their fig. 9). The broad-band
least-squares array processing uses a bandpass filter between
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TABLE 1
Details for the Processing Parameters Used in the Examples, Including Band Number, Minimum and Maximum
Frequency, Window Length, and Figure Number

Example Band
Minimum
Frequency (Hz)

Maximum
Frequency (Hz)

Window
Length (s) Figure

Mount St. Helens 1 0.1 10.0 50 1a–d

Multiweek 1 1.0 1.5 30 2

2 1.5 2.0 30

3 2.0 2.5 30

4 2.5 3.0 30

5 3.0 3.5 30

6 3.5 4.0 30

7 4.0 4.5 30

8 4.5 5.0 30

Bering Sea bolide 1 0.1 5.0 50 3a–d

Mass movement on Redoubt volcano 1 0.5 8.0 50 4a–d

Bogoslof volcano 1 0.1 10.0 30 5a–d

Mount St. Helens and mass movement
on Redoubt volcano

1 0.1 1.219 60 1f–k, 4f–k, 7

2 1.219 2.338 58

3 2.338 3.456 56

4 3.456 4.575 54

5 4.575 5.694 52

6 5.694 6.813 50

7 6.813 7.931 48

8 7.931 9.050 46

9 9.050 10.169 44

10 10.169 11.288 42

11 11.288 12.406 40

12 12.406 13.525 38

13 13.525 14.644 36

14 14.644 15.763 34

15 15.763 16.881 32

16 16.881 18.0 30

Bogoslof volcano, Bering Sea bolide and
least trimmed squares

1 0.1 0.176 100 3f–k, 5f–k,
and 6a–f,h–m

2 0.176 0.308 90

3 0.308 0.541 80

4 0.541 0.949 70

5 0.949 1.665 60

6 1.665 2.922 50

(Continued next page.)
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0.1 and 10 Hz with a window length of 50 s with 50% overlap
(Table 1). The narrow-band least-squares processing uses 16
bands linearly spaced between 0.1 and 18 Hz with an adaptive
window length of 60–30 s with 50% overlap (Table 1).

Broad-band least-squares processing results including the fil-
tered pressure trace between 0.5 and 10 Hz, MdCCM, back azi-
muth, and trace velocity from 01:00 to 02:30 UTC are shown by
Figure 1a–e, respectively. Prior to the phreatic eruption onset at
01:26 UTC, theMdCCM values are low (Fig. 1b) with a scattered
back azimuth (Fig. 1c), nonacoustic trace velocities (Fig. 1d), and
high στ values (Fig. 1e). At 01:26 UTC the MdCCM becomes
elevated with realistic back azimuth for the volcano (153°) and
trace velocity estimates until 01:41 UTC when the eruption sig-
nal briefly pauses. Although the MdCCM remains high for the
remainder of the time period investigated, the back azimuth
(Fig. 1c) transitions from Mount St. Helens (153°) to 285° ±
10° at 01:58 UTC, indicating loss of dominance of this signal,
which may falsely imply the end of the eruption, and subsequent
dominance of the microbarom or surf.

The narrow-band least-squares processing results include
the filtered pressure trace (Fig. 1g) from 0.5 to 10 Hz, MdCCM
(Fig. 1h), back azimuth (Fig. 1i,l), trace velocity (Fig. 1j,m),
and στ (Fig. 1k) from 01:00 to 02:30 UTC. Results with
MdCCM >0.6 are plotted in Figure 1i–m. Although the start
time of the eruption is consistent with the broad-band least-
squares processing, the narrow-band least-squares processing
does not show a pause in the eruption at 01:41 UTC but rather
a cessation of higher frequencies (>5 Hz) for a few minutes
while the lower frequencies continue to be coherent (Fig. 1h).
The back azimuth (Fig. 1i,l) is directed toward Mount St.
Helens for the entire eruption duration as well as a reasonable
trace velocity (Fig. 1j,m). Toward the end of the eruption, the
microbarom or surf begins to be detected in the lower fre-
quency bands around 01:58 UTC (Fig. 1l) with a more scat-
tered back azimuth (Fig. 1i), but slightly higher frequencies
from the eruption simultaneously continue to be detected
for ∼4 more minutes until 02:02 UTC. These simultaneous sig-
nals were not captured by broad-band least-squares processing
because the highest signal-to-noise ratio source in the band
dominates the detection. From this example, it is shown that
the narrow-band least-squares processing can provide a more
accurate representation of event duration than broad-band
least squares, which loses coherence for part of the eruption

(∼01:43–01:52 UTC), as well as interesting frequency changes
throughout the eruption signal that would not be shown by
broad-band least-squares processing.

Multiweek trends
Using the CDWR array located near Mount St. Helens from
the Eruption of Mount St. Helens, Washington section, we
investigate a longer time period of 2.5 weeks from 01 to 16
November 2004. We use narrow-band least-squares processing
parameters similar to the specifications that Matoza et al.
(2007) used for PMCC processing in their figure 3. Our
processing parameters here include eight frequency bands with
linear spacing between 1 and 5 Hz, 30 s time windows with
50% overlap, and limiting the plotted results to those with
MdCCM >0.55 and trace velocities between 0.25 and
0.45 km/s (Fig. 2). Similar to the findings of Matoza et al.
(2007), we detect signals from multiple sources (Fig. 2). The
∼2.5 Hz signals from the direction of Mount St. Helens (back
azimuth of 153°) between 09 and 12 November are consistent
with swarms of long period signals from the volcano (Matoza
et al., 2007, 2009). Another continuous and coherent signal
over most of the study period are the higher frequency detec-
tions (>3.5 Hz) from a back azimuth of ∼200° (Portland,
Oregon), as well as the towns north of it, suggesting the signals
are cultural noise. In addition, lower frequency signals ∼1 Hz
have back azimiuths corresponding to the Pacific Ocean
(∼250°–350°). We find that narrow-band least-squares
processing provides useful results for long-duration examples
looking for trends over timescales of weeks to months.

Bering Sea bolide
On 19 December 2018, a bolide (meteor) that exploded over
the Bering Sea was detected on the IMS station I53US in
Fairbanks, Alaska (Arrowsmith et al., 2021). I53US is an
eight-element array with ∼2 km aperture (Fig. 3f), sampling
rate of 20 Hz, flat sensor response between 0.02 and 100 Hz,
and a wind noise reduction system installed.

Least-squares array processing, both broad- and narrow-
band, is applied to the I53US data from 01:45 to 02:05 UTC
on 19 December 2018. Broad-band least-squares processing uses
a bandpass filter between 0.1 and 5 Hz with a window length of
50 s with 50% overlap (Table 1). Narrow-band least-squares
processing is implemented using eight bands with logarithmic

TABLE 1 (continued)
Details for the Processing Parameters Used in the Examples, Including Band Number, Minimum and Maximum
Frequency, Window Length, and Figure Number

Example Band
Minimum
Frequency (Hz)

Maximum
Frequency (Hz)

Window
Length (s) Figure

7 2.922 5.128 40

8 5.128 9.0 30
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spacing between 0.1 and 9 Hz and an adaptive window length of
100 to 30 s with 50% overlap (Table 1).

Both the broad-band least-squares (Fig. 3a–e) and narrow-
band least-squares processing (Fig. 3g–m) yield similar results.
However, the narrow band processing allows for a more
detailed investigation into the source, in which the signal starts
off with lower frequencies, gradually includes higher frequen-
cies, and then the frequency content more gradually decreases
and tapers off during the rest of the signal (Fig. 3i,j,l,m). These
changes in frequency content within the signal would not be
apparent if broad-band least-squares processing was used and
has implications for source (e.g., volcanic emissions, moving
source, etc.) and propagation (e.g., atmospheric parameters,
multipathing, etc.) characterization.

Surficial mass movement on Redoubt volcano,
Alaska
Mass movement events can occur on steep slopes of volcanoes
and be recorded using infrasound sensors at local and
regional distances (e.g., Allstadt et al., 2018; Toney et al.,
2021). They are typically characterized by their emergent

Figure 1. Array processing example from the 08 March 2005
Mount St. Helens eruption (09 March UTC, back azimuth 153°)
using the Coldwater (CDWR) infrasound array data (Matoza
et al., 2007). Broad-band least-squares array processing is shown
on the left (a–e) with specifications of Type I Chebyshev bandpass
filter between 0.1 and 10 Hz and window length of 50 s with
50% overlap and narrow-band least-squares implementation on
the right (g–m) with specifications of 16 frequency bands with
linear spacing between 0.1 and 18 Hz, an adaptive window
length of 60 to 30 s with 50% overlap, and results with MdCCM
>0.6 plotted in (i–m). Results from broad-band least-squares
processing are (a) pressure trace from element one (filtered
between 0.5 Hz and the maximum frequency from broad-band
least-squares processing), (b) median cross-correlation maxima,
(c) back azimuth (true back azimuth denoted by dotted
horizontal line), (d) trace velocity, and (e) sigma tau (στ ).
Array geometry is shown in panel (f). Results from narrow-band
least-squares processing are (g) pressure trace from element one
(same as panel a), (h) median cross-correlation maxima, (i,l) back
azimuth (true back azimuth in panels (c,i) denoted by dotted
horizontal line), (j,m) trace velocity, and (k) sigma tau (στ ). The
color version of this figure is available only in the electronic
edition.
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signal onset and extended duration (as compared to a simple
explosion signal), which can make the distinction between
these signals and wind noise challenging (Allstadt et al.,
2018). A mass movement on Redoubt volcano was detected
on the local seismic network on 3 November 2021, but
no infrasound signal was clear in the broad-band Alaska
Volcano Observatory (AVO) infrasound processing for the
nearby AVO KENI array. The KENI array is located 93 km
from Redoubt volcano, Alaska (back azimuth of 260°), and
includes six Chaparral 64-Vx sensors with a flat response
of 0.03–245 Hz sampled at 100 Hz spread over ∼170 m
(Fig. 4f) and wind noise reduction domes installed.

We apply broad- and narrow-band least-squares processing
to the data from 15:30 to 15:50 UTC on 03 November 2021.
Processing parameters for the broad-band least-squares analy-
sis include data bandpass filtered between 0.5 and 8 Hz (con-
sistent with AVO’s real-time monitoring frequency limits)
with a window length of 50 s with 50% overlap (Table 1).
Narrow-band least-squares processing includes 16 bands with
linear spacing between 0.1 and 18 Hz and an adaptive window
length of 60–30 s with 50% overlap (Table 1).

The mass movement signal is not observed in broad-band
least-squares processing (Fig. 4a–e), likely due to the micro-
barom and surf dominating the signal causing high
MdCCM (Fig. 4b) and high-frequency content of the low
amplitude mass movement signal that is above the band of typ-
ical processing (>10 Hz). We also note that the trace velocity
estimates for the ordinary least-squares processing in this
broad frequency band were not within the expected range
for acoustic signals (0.2–0.5 km/s, Fig. 4d). Applying nar-
row-band least-squares processing allows for the “clutter”
sources and mass movement signal to be separated due to
processing occurring in distinct frequency bands, thus allowing

for multiple simultaneous sources to be observed (seen clearly
in Fig. 4l). The mass movement signal lasting roughly 5 min is
clearly visible with a high MdCCM between 7 and 13 Hz
(Fig. 4h) and back azimuth consistent with Redoubt volcano
(Fig. 4i). Two other distinct sources are also clearly visible
for the entire duration of the data analyzed. The lowest fre-
quency band (<1 Hz) is interpreted to be the microbarom sig-
nal due to its low frequency (Fig. 4h) and scatter in back
azimuth 180° ± 10° (Fig. 4i). In the second to the lowest fre-
quency band (∼1–2 Hz), another persistent source is detected
and interpreted to be surf with frequencies just above the
microbarom (e.g., Le Pichon et al., 2004) and a back azimuth
roughly the same as Redoubt (260°, Fig. 4i). This example high-
lights the capabilities of narrow-band least-squares processing
for distinguishing between multiple simultaneous sources with
distinct frequency content, allowing for enhanced detection of

Figure 2. Array processing multiweek example using the CDWR
array near Mount St. Helens from 01 to 16 November 2004
(compare with fig. 3 of Matoza et al., 2007). Parameters for
narrow-band least-squares processing include eight frequency
bands with linear spacing between 1 and 5 Hz, 30 s time win-
dows with 50% overlap, and results with median cross-corre-
lation maxima (MdCCM) >0.55 that also have trace velocities
between 0.25 and 0.45 km/s plotted. The ∼2.5 Hz signals from
the direction of Mount St. Helens (back azimuth of 153°)
between 09 and 12 November are consistent with swarms of
long period (LPs) signals from the volcano (Matoza et al., 2007,
2009). The higher frequency detections (>3.5 Hz) are likely
cultural noise from a back azimuth of ∼200° (Portland, Oregon),
as well as the towns north of Portland. The lower frequency
signals ∼1 Hz have back azimuths corresponding to the Pacific
Ocean (∼250°–350°). The color version of this figure is available
only in the electronic edition.
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the sources of interest that may be otherwise obscured. In addi-
tion, narrow-band least-squares processing can be performed
for a wider range of frequencies, allowing for low amplitude,
higher frequency signals such as a mass movement to be
detected even while a low frequency signal such as the micro-
barom or surf dominates typical frequencies analyzed.

Eruption of Bogoslof volcano, Alaska
The 2016–2017 eruption of Bogoslof volcano, Alaska, United
States had at least 70 explosive episodes over 9 months that
were often recorded on six infrasound arrays operated by
AVO (Lyons et al., 2020). Event 14 (02 January 2017 at 22:56
UTC, Coombs et al., 2018) was not detected by the Dillingham
Infrasound Array (DLL) with the parameters of Lyons et al.
(2020) used to make the catalog of explosive events detected
using infrasound. However, atmospheric reconstruction and
propagation modeling by Schwaiger et al. (2020) suggests that
a detection would be predicted at the time of the eruption for
this array. DLL is a regional array operated by AVO located
816 km from Bogoslof (back azimuth of 229°). The array is
∼1 km in aperture (Iezzi et al., 2019; Lyons et al., 2020) and

at the time consisted of six Chaparral Physics Model 50a sensors
(five elements working during this explosive episode, Fig. 5f) with
a flat response from 0.02 to 50 Hz and a wind noise reduction
system installed (Lyons et al., 2020).

Least-squares array processing, both broad- and narrow-
band, is applied to the DLL data for event 14. Broad-band
least-squares processing uses data bandpass filtered between
0.1 and 10 Hz and a window length of 30 s with 50% overlap

Figure 3. Array processing example from the 19 December 2018
Bering Sea bolide using the I53US infrasound array data.
Broad-band least-squares array processing is shown on the left
(a–e) with specifications of Type I Chebyshev bandpass filter
between 0.1 and 5 Hz and window length of 50 s with 50%
overlap and narrow-band least-squares implementation on the
right (g–m) with specifications of eight frequency bands with
logarithmic spacing between 0.1 and 9 Hz, an adaptive window
length of 100–30 s with 50% overlap, and results with MdCCM
>0.6 plotted in (i–m). Note: The frequency axes are zoomed to
better depict the low frequency results. Array geometry is shown
in panel (f). Subplots are the same as Figure 1. The color version
of this figure is available only in the electronic edition.
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(Table 1), which is similar to those used by Lyons et al. (2020)
to make the catalog of Bogoslof events detected using AVO’s
regional infrasound arrays. Narrow band processing uses eight
bands with logarithmic spacing between 0.1 and 9 Hz, and an
adaptive window length of 100 to 30 s with 50% overlap
(Table 1).

Broad-band least-squares processing results are shown in
Figure 5a–e, in which no clear eruption signal can be seen due
to elevated noise and, therefore, high MdCCM at the array
that obscures the eruption signal. However, with narrow-
band least-squares processing (Fig. 5g–m), the eruption signal
is evident below 3 Hz from 23:38 to 23:48 UTC (origin time of
22:58 UTC given an average ∼41 minutes travel time to the
array, Lyons et al., 2020). This signal is clearly shown by high
values of MdCCM (Fig. 5h), back azimuth consistent with
Bogoslof (Fig. 5i), and reasonable trace velocities (Fig. 5j,m).
This example shows that our narrow-band least-squares array
processing method may increase the ability to detect eruption
signals that may not be detected using broad-band least-
squares processing, therefore improving eruption monitoring
capabilities.

LTS implementation
We investigate another explosive event from Bogoslof volcano
to highlight the utility of the LTS algorithm of Bishop et al.
(2020). Event 48 (10 June 2017, Coombs et al., 2018) was
not detected at the Adak infrasound array (ADKI) in real time,
because one of the elements (element 2) of the array had a

Figure 4. Array processing example from the 03 November 2021
mass movement on Redoubt volcano, Alaska (back azimuth
260°) using the KENI infrasound array data. The mass movement
was detected on the local seismic network, but no infrasound
signal was clear in the broad band Alaska Volcano Observatory
(AVO) infrasound processing for the KENI array. Broad-band
least-squares array processing is shown on the left (a–e) with
specifications of Type I Chebyshev bandpass filter between
0.5 and 8 Hz and window length of 50 s with 50% overlap and
narrow-band least-squares implementation on the right
(g–m) with specifications of 16 frequency bands with linear
spacing between 0.1 and 18 Hz, an adaptive window length of
60 to 30 s with 50% overlap, and results with MdCCM >0.6
plotted in (i–m). Array geometry is shown in panel (f). Subplots
are the same as Figure 1. The color version of this figure is
available only in the electronic edition.
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reversed polarity (that was unknown in real time). Bishop et al.
(2020) investigated this example, finding that the application
LTS instead of least-squares shows that element 2 was consis-
tently dropped from the array processing algorithm. ADKI is
located 621 km from Bogoslof with an aperture of ∼200 m
(Fig. 6n), consisted of six Chaparral Model 25Vx sensors
sampled at 100 Hz, and 1.2 m diameter aluminum mesh wind
noise reduction domes (Lyons et al., 2020).

Narrow-band LTS processing is applied to the ADKI data
using ALPHA = 0.5 with eight frequency bands with logarith-
mic spacing between 0.1 and 9 Hz, and an adaptive window
length of 100–30 s with 50% overlap (Table 1).

Results from narrow band processing are shown in
Figure 6a–f, in which the eruption signal can clearly be seen
from 13:56:30 to 14:02 UTC with high MdCCM (Fig. 6b), back
azimuth consistent with Bogoslof (65°, Fig. 6c,e), and reasonable
trace velocities (Fig. 6d,f). Microbarom and surf are detected
before and after the eruption signal with high MdCCM values
(Fig. 6b) and low frequency content (Fig. 6b–f) from a similar
back azimuth to Bogoslof. An overview of dropped elements
from the LTS implementation is shown by Figure 6g, with

detailed results of the dropped stations for the narrow frequency
bands shown in Figure 6h–m for elements 1–6, respectively.
Element 2 is consistently dropped from analysis (similar to
Bishop et al., 2020). This example shows that LTS can provide
robust array processing results and insight into array

Figure 5. Array processing example from the 02 January 2017
eruption of Bogoslof volcano, Alaska (event 14 in Lyons et al.,
2020, back azimuth 229°) using the Dillingham Infrasound Array
(DLL) infrasound array data. The event was not included in the
catalog of explosive events detected at this array by Lyons et al.
(2020). Broad-band least-squares array processing is shown on
the left (a–e) with specifications of Type I Chebyshev bandpass
filter between 0.1 and 10 Hz and window length of 30 s with
50% overlap and narrow-band least-squares implementation on
the right (g–m) with specifications of eight frequency bands with
logarithmic spacing between 0.1 and 9 Hz, an adaptive window
length of 100–30 s with 50% overlap, and results with MdCCM
>0.6 plotted in (i–m). Note: The frequency axes are zoomed to
better depict the low frequency results. Array geometry is shown
in panel (f). Subplots are the same as Figure 1. The color version
of this figure is available only in the electronic edition.
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performance (e.g., timing errors and sensor issues), even when
applied in narrow bands. The implementation of LTS in narrow
bands also allows for LTS to determine problematic sensors
without having to “fine-tune” of frequency limits based on indi-
vidual array and signal characteristics.

Processing Parameter Investigation and
Discussion
In this study, we present a narrow-band least-squares array
processing algorithm and associated open-source code, which
allows for a more detailed time–frequency signal characteriza-
tion over broad-band least-squares infrasound array processing.
Our algorithm can incorporate a measure of the variance of
the time delays between array elements (στ) as well as LTS
(Bishop et al., 2020) for improved processing capabilities.
Although there is an increase in the number of user defined
parameters for narrow-band least-squares over broad-band
least-squares, we note that the parameters may largely be con-
sistent and should not require many changes between examples
thus making it more user friendly. For example, broad-band
least-squares implementation requires a choice of the single

frequency band limits, which often requires a tradeoff between
limiting clutter signals while trying to retain the anticipated sig-
nals of interest. In the case of the mass movement at Redoubt,
the signal of interest was 7–13 Hz, which is above the normal
frequency limits used for explosion monitoring, and thus the

Figure 6. Array processing example from the 10 June 2017
eruption of Bogoslof volcano, Alaska (back azimuth 65°) using
the Adak infrasound array (ADKI) infrasound array data. Narrow-
band least-squares implementation using least trimmed squares
(LTS) with ALPHA = 0.5 on the left (a–f) with specifications of
eight frequency bands with logarithmic spacing between 0.1 and
9 Hz, and an adaptive window length of 100 to 30 s with 50%
overlap. Results from narrow-band least-squares processing are
(a) pressure trace from element one (filtered between 0.5 and
9 Hz), (b) median cross-correlation maxima, (c,e) back azimuth,
and (d,f) trace velocity. An overview of dropped elements from
the LTS implementation is shown in (g), while detailed results of
the dropped stations for frequency bands are shown in (h–m) for
elements 1–6, respectively. Results with MdCCM >0.6 plotted in
panels (c–m). Array geometry is shown in panel (n). The color
version of this figure is available only in the electronic edition.
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signal was not captured by AVO’s typical processing. With
narrow-band least-squares, we show that the same upper and
lower frequency limits can be used for a variety of sources from
explosions at local scales to mass movements at regional distan-
ces to bolides at remote distances. Examples of previously
“hidden” signals, such as the Bogoslof explosive event (Fig. 5)
and the mass movement on Redoubt volcano (Fig. 4), visually
show increased detection capability using our narrow-band
least-squares algorithm over broad-band least squares. For sim-
plicity, we use a MdCCM threshold (e.g., 0.6), back azimuth
close to true, and reasonable trace velocity estimates (e.g.,
0.2–0.5 km/s) as a way to consider whether or not an event
was detected. Future work could include more complex detec-
tion algorithms that combine multiple detections from individ-
ual time–frequency cells (e.g., PMCC groups sets of time–
frequency band pair “pixels” into “families”, Cansi, 1995; Cansi
and Klinger, 1997). This may improve monitoring capabilities
such as those at a volcano observatory, while considering the
increased potential for “false alarms” due to increased number
of frequency bands. We suggest that another way to mitigate
false detections in an operational setting is to use the broad band
processing for detection and the narrow band processing for
near real-time manual analyst review.

We investigate two common filter types for the narrow band
processing results by revisiting the 08 March 2005 eruption of
Mount St. Helens CDWR array data. A Butterworth filter has
a less steep roll-off but is flat in the passband with results shown
in Figure 7a–g. Another common filter type is the Type I
Chebyshev filter, which generally has a steeper roll-off but
ripples in the passband (Fig. 7h–n, note there is a tradeoff
between ripple parameter and steepness of roll-off). For the
Type I Chebyshev filter, we note that increasing the ripple leads
to a steeper roll-off, and our low ripple value of 0.01 results in a
less steep roll-off than the Butterworth filter. MdCCM results
using the Chebyshev filter (Fig. 7i) show a greater contrast
between signal and background noise than the Butterworth
filter (Fig. 7b), as shown by the lower MdCCM values (deeper
blue colors in Fig. 7i) surrounding the coherent signal than
in Fig. 7b. Results using Chebyshev filters (Fig. 7h–n) show
less scatter in the trace velocity and back azimuth results than
those using Butterworth filters (Fig. 7a–g). This may be due to
Butterworth filters causing the narrow bands to be even nar-
rower than specified (Fig. 7g), whereas the Type I Chebyshev
filter has more overlap between the narrow bands (Fig. 7n).
Although not shown, we note that there was no notable
difference between the two filter types for the standard least-
squares processing due to the single broad frequency bandpass
filter. Overall, the results using Chebyshev filters (Fig. 7h–n)
seems to yield cleaner results than those using Butterworth fil-
ters (Fig. 7a–g) for the narrow-band least-squares processing.
Therefore, the results suggest using Type I Chebyshev filtering
for narrow-band least-squares processing (similar to that of
PMCC, e.g., Arrowsmith and Hedlin, 2005; Matoza et al., 2013).

Although the narrow band implementation of the least-
squares array processing algorithm provides improved process-
ing capabilities, limitations of the narrow frequency band width
should be considered. Processing over narrow frequency bands
affects both signal detection and parameter estimation, which
is the focus of this article. If the frequency band widths (B)
are too narrow or the window lengths (T) are too short, spurious
correlations can occur. We quantify this trade off with the
time–bandwidth product (BT). Although a detailed analysis
of the effect of varying BT on our detections is beyond the scope
of this article, we note that in the presence of a correlated signal
the F-statistic (e.g., Shumway, 1971; Smart and Flinn, 1971) is
distributed according to a noncentral F-distribution with
degrees of freedom that are functions of BT (Shumway et al.,
1999; Arrowsmith et al., 2009). In this work, the peak value
of our cross correlations as well as the uncertainty in the location
of the cross-correlation peak value also depend on BT (Bendat
and Piersol, 2000). For our least-squares parameter estimates,
this variability due to small BT could affect our estimates of
the optimal slowness vector. Following Bendat and Piersol
(2000), we suggest that BT >5 to minimize spurious correlations.
This would partially be dependent on the filter type, as the flat
passband for a Butterworth filter is narrower than the flat pass-
band for a Type I Chebyshev filter (Fig. 7g,n).We note that array
response is dependent on the array aperture (Gibbons et al.,
2008; Ruigrok et al., 2017) and generally improves with band
width. This is an important consideration for narrow band
processing, because not all array configurations are suitable
for every narrow frequency band used in analysis and can limit
the accuracy for narrow band processing. Future work may
include synthetic testing to evaluate these effects on the specific
deployment scenarios but is beyond the scope of this work.

Conclusions
We present a new open-source multiple sequential narrow-band
least-squares processing tool for infrasound array data. The algo-
rithm provides an improvement in detection capabilities over
broad-band least-squares array processing by allowing a more
detailed time–frequency signal characterization. This capability
can be utilized in near real-time volcano monitoring to identify
signals that may be otherwise undetected. Improvements of
the multiple narrow band processing over broad-band least
squares include: (1) improved ability to distinguish between
multiple sources with different frequency content such as the
microbarom and/or surf from signals of interest, (2) more accu-
rate representation of event duration, (3) enhanced signal detec-
tion capabilities, (4) improved ability to illuminate changes in
frequency content within a signal, (5) upgraded capability to dis-
tinguish between multiple simultaneous sources if distinct in
their frequency content, and (6) does not require “fine tuning”
of frequency limits based on individual array and signal charac-
teristics. We incorporate the calculation of sigma tau (στ) as a
measure of planarity of the wavefield across the array as well as
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the ability to incorporate the LTS algorithm of Bishop et al.
(2020) to improve signal processing and insight into array per-
formance. Our examples include short duration (e.g., minutes to
hours) as well as longer duration (e.g., weeks), showing useful
array processing results over a variety of timescales. We find that
the Type I Chebyshev filter appears to provide better results than
a Butterworth filter for the multiple narrow band implementa-
tion of the least-squares algorithm. Because the narrow-band
least-squares implementation has been parallelized, the compu-
tation time can be similar to broad-band least-squares when the
number of bands is less than the number of cores, making this
implementation feasible for real-time monitoring situations.

Figure 7. (a–g) Comparison between Butterworth and (h–n) Type I
Chebyshev filters for narrow band processing using the 08 March
2005 Mount St. Helens eruption (09 March UTC, back azimuth
153°) using the CDWR infrasound array data. Specifications of 16
frequency bands with linear spacing between 0.1 and 18 Hz, an
adaptive window length of 60 to 30 s with 50%overlap, and results
with MdCCM >0.6 plotted in panels (c–f, j–m). (a,h) Pressure trace
from element one filtered between 0.5 and 18 Hz, (b,i) median
cross-correlation maxima, (c,j) back azimuth, (d,k) trace velocity,
(e,i) back azimuth scatter plot, (f,m) trace velocity scatter plot, and
(g,n) amplitude of narrow filter bands. This example shows that type
I Chebyshev filters appears to provide better results than
Butterworth filters for narrow-band least-squares processing. The
color version of this figure is available only in the electronic edition.
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Data and Resources
The narrow-band least-squares code repository is publicly accessible on
Github (https://github.com/amiezzi/narrow_band_least_squares, last
accessed April 2022) and relies upon another publicly accessible reposi-
tory on Github (https://github.com/uafgeotools/array_processing, last
accessed February 2022). Most datasets used in the examples are acces-
sible on Incorporated Research Institutions for Seismology (IRIS) under
network codes AV (DLL, KENI) and IM (I53US). The data from the
Mount St. Helens eruption (Coldwater [CDWR]) are available through
Natural Resources Canada (NRCan)/CHIS autodrm tools (https://
earthquakescanada.nrcan.gc.ca/stndon/AutoDRM/index-en.php, last
accessed May 2022) using the DC network code and station names
MSH21, MSH22, MSH23, and MSH24, as well as in a Dryad Data
Repository (Matoza and Iezzi, 2022, https://doi.org/10.25349/
D92W38) (please also cite Matoza et al. (2007) for usage of this data).
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Appendix: Parameters
Data

• Uses data stored locally (miniseed or other common data
types) or pulls data from Incorporated Research Institution
for Seismology (IRIS)

• SOURCE: Location of stored data [string]
- ‘local’: Manually input infrasound data (requires associ-
ated station location and metadata)

- ‘IRIS’: Uses the University of Alaska Fairbanks (UAF)
waveform collection (automatically obtains metadata)

• START: Start time for data processing [UTCDateTime]
• END: End time for data processing [UTCDateTime]
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Frequency bands

• Sets total processing frequency limits, number of narrow
frequency bands, and allows for frequency band widths to
be determined by a few different methods

• FREQ_BAND_TYPE: Frequency band width specification
type [string]
- ‘linear’: Linear spacing for frequency bands between FMIN
and FMAX

- ‘log’: Logarithmic spacing for frequency bands between
FMIN and FMAX (e.g., Brachet et al., 2010)

- ‘octave’: Octave width; upper frequency (f2) is twice the
lower frequency (f1)

- ‘2_octave_over’: Two octave bands that overlap by 1
octave; upper frequency (f2) is 4 times the lower frequency
(f1) (e.g., Green and Bowers, 2010)

- ‘onethird_octave’: One-third octave; the upper band edge
(f2) is the lower band edge (f1) times the cubed root of 2
(e.g., Garces, 2013)

• FMIN: Minimum frequency [float] [Hz]
• FMAX: Maximum frequency [float] [Hz]
• NBANDS: Number of frequency bands [integer]
- Note: This parameter may get rewritten if using the
octave bands, since they put precedence on the FMIN
and FMAX values over the number of bands (if they
are not in agreement) when creating the narrow frequency
band limits

Filters

• Allows for a few different bandpass filter types that can be
user specified (uses scipy.signal.iirfilter)

• FILTER_TYPE: Type of filter [string]
- ‘butter’: Butterworth filter
- ‘cheby1’: Type I Chebyshev filter

• FILTER_ORDER: Order of the filter [integer]

• FILTER_RIPPLE: Filter ripple (only used for cheby1
filter) [float]

Window lengths

• WINOVER: Window overlap [float]; value between 0 and 1
• WINDOW_LENGTH_TYPE: Type of window length
[string]
- ‘constant’: Single value for all narrow frequency bands
- ‘adaptive’: Varies linearly with the period (1/f) (Brachet
et al., 2010; Le Pichon et al., 2010)

• WINLEN: Window length [s]; used if WINDOW_
LENGTH_TYPE is constant and ‘adaptive’ because of the
broadband processing plot

• WINLEN_1: Window length for band 1 (lowest frequency)
[s]; only used if WINDOW_LENGTH_TYPE is ‘adaptive’

• WINLEN_X: Window length for band X (the highest fre-
quency) [s]; only used if WINDOW_LENGTH_TYPE is
‘adaptive’

Detection

• MDCCM_THRESH: Threshold value of MdCCM for plot-
ting back azimuth and trace velocity results [float]; value
between 0 and 1

Miscellaneous

• ALPHA: The percentage of data points to keep in the array
processing [float]
- ALPHA = 1.0: Least-squares processing
- 0.5 ≤ALPHA < 1.0: Least trimmed squares (LTS) processing
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