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Abstract
Stochastic field distortions caused by atmospheric turbulence are a fundamental limitation to the astrometric 
accuracy of ground-based imaging. This distortion field is measurable at the locations of stars with accurate 
positions provided by the Gaia DR2 catalog; we develop the use of Gaussian process regression (GPR) to 
interpolate the distortion field to arbitrary locations in each exposure. We introduce an extension to standard GPR
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techniques that exploits the knowledge that the 2D distortion held is curl-free. Applied to several hundred 90 s 
exposures from the Dark Energy Survey as a test bed, we find that the GPR correction reduces the variance of the 
turbulent astrometric distortions %12 / , on average, with better performance in denser regions of the Gaia catalog. 
The rms per-coordinate distortion in the riz bands is typically mas before any correction and %2 mas after 
application of the GPR model. The GPR astrometric corrections are validated by the observation that their use 
reduces, from 10 to 5 mas rms, the residuals to an orbit fit to riz-band observations over 5 yr of the r 18.5 trans- 
Neptunian object Eris. We also propose a GPR method, not yet implemented, for simultaneously estimating the 
turbulence fields and the 5D stellar solutions in a stack of overlapping exposures, which should yield further 
turbulence reductions in future deep surveys.
Unified Astronomy Thesaurus concepts: Astrometry (80); Sky noise (1463); Astronomy data analysis (1858)

1. Introduction
Ground-based astrometric measurements are one of the 

oldest human quantitative scientific endeavors. The accuracy of 
astrometric data was limited by the resolution of human vision, 
and subsequently by the angular resolution of telescopes. The 
successful detection of stellar parallax in the mid-1800s 
required understanding of stellar aberration and atmospheric 
refraction, which can be ameliorated to a great extent by 
differential measurements with respect to nearby more distant 
stars and attention to observing techniques (e.g„ transit 
telescopes). In the modern era of subarcsecond seeing and 
digital detectors, the error budget for relative astrometric 
accuracy of unresolved sources within an exposure will usually 
be dominated by three contributions:

1. Shot noise: stochastic errors in centroiding of the source 
in pixel coordinates. This component is typically 
crv « o"PSF/v, where crPSF is the rms width of the point- 
spread function and v is the signal-to-noise ratio (S /N) of 
the detection.49

2. Solution accuracy: the static errors in the map from pixel 
coordinates to (relative) sky coordinates, i.e., the 
distortions in the optics and detector, and the static 
refraction of the atmosphere, including chromatic distor­
tions from the atmosphere and optics.

3. Atmospheric turbulence: stochastic wander of the source 
due to refraction by atmospheric density fluctuations.

The transfer of the relative astrometry of an image to absolute 
sky coordinates is further limited by the accuracy of the 
reference catalog used to make such a transfer (as well as the 
contributions of items 1 and 3 to the exposure’s measurements 
of the reference stars).

While specialized instruments can be designed to improve 
solution accuracy, we demonstrated in Bernstein et al. (2017, 
hereafter B17) that an astrometric solution with«1 mas 
accuracy is possible for a general-purpose wide-held imager, 
the Dark Energy Camera (DECam; Flaugher et al. 2015) on the 
4 m Blanco Telescope at Cerro Tololo Inter-American 
Observatory (CTIO). This leaves shot noise (item 1) and 
atmospheric turbulence (item 3) as the dominant sources of 
astrometric noise, with the former dominant for faint sources 
and the latter dominant for high-S/N point sources.

Astrometric science has been revolutionized by space 
observatories, particularly the Hipparcos (Perryman et al. 
1997) and Gaia DR2 (Gaia Collaboration et al. 2018) catalogs. 
Space telescopes gain substantially in shot-noise errors if 
diffraction-limited resolution yields low <7PSF; their stability,

49 Throughout this paper, we will quote astrometric errors or image sizes as the 
rms per axis on the sky.

specialized instrumentation, and greatly reduced chromatic 
effects improve solution accuracy; and, perhaps most impor­
tantly, they are free of atmospheric turbulence errors.

The advent of Gaia DR2 also revolutionizes the potential of 
ground-based astrometry. Most obviously, the density of the 
DR2 catalog (0(1) star per arcmin2) allows almost any ground- 
based exposure of modest held of view (FOV) to be placed 
onto the absolute reference frame of Gaia DR2, obliterating the 
distinction between absolute and relative astrometry. Typical 
position/parallax uncertainties in Gaia DR2 rise from «0.02 
mas at G= 13 mag to %2 mas at the catalog limit of 
G = 21 mag (Gaia Collaboration et al. 2018), 1-3 orders of 
magnitude lower than previous astrometric catalogs approach­
ing similar sky density.

In this paper we demonstrate and quantify another important 
benefit that Gaia DR2 bestows on ground-based astrometry: the 
f»l' typical spacing between Gaia stars is well below the mIO' 
coherence length of atmospheric turbulence (B17), which 
means that we can use Gaia as a reference to measure and 
correct the majority of the power spectrum of astrometric 
distortions imposed by atmospheric turbulence.

The idea of exploiting the finite correlation length of 
atmospheric turbulence to reduce the error induced on target 
stars’ positions has been discussed before. This has been of 
particular interest in astrometric searches for exoplanets 
(including use with adaptive optics and interferometers). 
Lazorenko & Lazorenko (2004) propose a fairly complex 
method to interpolate turbulence to a single target star from an 
ensemble of nearby reference stars.50 This method was applied 
to exposures from the 8 m Very Large Telescope, yielding 
estimates of parallax accuracy of 0.04 mas for stars at 
17-19 mag (Lazorenko et al. 2009) for exposures accumulating 
to % 1800 s. (All models and data predict turbulence residuals to 
decline with exposure time as

We address in this work the application to wide-held 
surveys, where we are interested in estimating positions for all 
targets in the held, ideally to the photon-noise limit. The 
characteristics of atmospheric turbulence were investigated 
theoretically by Lindegren (1980) and empirically by Han & 
Gatewood (1995) and Zacharias (1996), among others. B17 
found statistics for turbulent distortions to be in rough 
agreement with these earlier works and proposed the use of 
Gaussian process regression (GPR) to transfer the turbulent 
held from Gaia stars to targets of interest. If the turbulence 
gives rise to a projected (2D) time-delay surface that can be 
accurately described as a Gaussian random held, then GPR, 
being the maximum likelihood (ML) estimator for a Gaussian

50 The method of Lazorenko & Lazorenko (2004) may be equivalent to the 
GPR solution in some limits; we have not investigated this carefully.
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process (GP), is also the minimum-variance unbiased 
interpolator.

Earlier explorations of extraction of precision photometry from 
wide-held CCD imaging in targeted fields include Platais et al. 
(2002), Anderson et al. (2006), and Bony et al. (2013). Typically, 
any time-dependent distortions such as atmospheric turbulence are 
corrected through polynomial fits to per-exposure distortions over 
the span of a single CCD (scales of order 10'). Anderson et al. 
(2006) take the additional step of referencing each star to a locally 
linear transformation determined from *60 neighboring reference 
stars, obtaining *7 mas residuals in their 900 s exposures on the 
2.2 m ESO telescope.

While this paper was under review, Lubow et al. (2021) 
reported application of a similar method—local coordinate 
systems defined by the 33 nearest Gaia DR2 stars—to the 
catalogs of the PanSTARRS 1 survey, attaining median 2D 
differentials between PS 1 and Gaia positions of * 5 mas with 
exposure times of 3CM-5 s on the 1.8 m telescope for stars near 
/ = 17 mag. Some comparison to our results is made in 
Section 7.

In this paper we pursue the application of GPR astrometric 
interpolation to positional catalogs from exposures in the Dark 
Energy Survey (DES; Diehl et al. 2014) and develop a method 
that can be applied in “production mode’’ to the <9(10* 5) 
exposures and 0(109) detections of unresolved sources in that 
survey. As reported by B17, the 90s DES exposures exhibit 
strongly anisotropic stochastic distortions with typical rms 
amplitudes of 5-10 mas. This dominates the *1 mas systematic 
errors in the calibration of the DEC am astrometric map. In this 
work we will demonstrate that GPR from Gaia DR2 stars 
succeeds in reducing the rms stochastic distortions to *2 mas 
per axis.

This greatly surpasses the requirement set for the Vera C. 
Rubin Observatory of < 10 mas rms relative astrometric 
accuracy per axis. GPR turbulence reduction will allow the 
Rubin Observatory Legacy Survey of Space and Time 
(LSST)52 to push astrometric science further beyond the 
capabilities of Gaia in many ways. The LSST will be able to 
measure Gaia-quality stellar parallaxes/proper motions well 
beyond Gaia’s faint limit, as well as improving on Gaia 
accuracy for stars near its limit. LSST can also bring 
milliarcsecond precision to the tracking of minor planets and 
other transients.

In the next section we review the relevant aspects of 
DES imaging and astrometric results from B17. Section 3 
reviews standard GPRs. Astrometric interpolation differs from 
standard cases in that the turbulent image displacement (m,v) is 
observed to follow the expectation that it is curl-free. We show 
how to extend the GPR formalism to exploit this known 
relation between the u and v fields.

Section 4 derives the correlation function—or, in GPR 
parlance, the “kernel’’—that should result from wind-blown 
von Karman turbulence at a single layer of the atmosphere. 
Section 5 describes the numerical methods for choosing and 
applying a kernel to the catalogs, and Section 6 gives 
quantitative results of application of the curl-free GPR to a 
test sample of several hundred DES exposures, including 
validation by fitting an orbit to DES observations of the bright 
trans-Neptunian object Eris. We conclude in Section 7.

1 See Table 18 of https://docushare.lsstcorp.org/docushare/dsweb/Get/
LPM-17.
5“ https://www.lsst.org

In the Appendix, we derive an even more comprehensive use 
of the GPR methodology, in which one can simultaneously 
obtain the ML values for the distortion fields of a stack of 
exposures and the 5D position/parallax/proper-motion solu­
tions of the stars contained within this stack. This method has 
the potential for significant further reduction of turbulence 
residuals, by effectively turning every star in the field with 
(shot noise) < (turbulence noise) into a reference star, not just 
those with Gaia measures. For DES exposures, the density of 
such stars does not exceed the density of Gaia stars, so the 
benefit of this technique will not be large, and we have not 
implemented this method on DES data. It should be of more 
value to future surveys with larger telescopes.

Table 1 is a guide to the notation in this paper.

2. Summary of DES Data and Astrometry
2.1. DES Data and Astrometric Solution

The DEC am science array consists of 62 distinct CCDs, each 
2048 x 4096 pixels at * 0/263 per pixel. The FOV approximates 
a circle with *1° radius. The analyses in this paper are done on 
exposures taken as part of the “Wide’’ survey of DES, in which a 
5000 deg2 section of the southern galactic cap is imaged 10 times 
in each of the g, r. i. z. and 7 filter bands, spread over six annual 
August-Febmary observing seasons. We will for the most part 
ignore the 7-band exposures, which have substantially lower S/N 
than griz and will not contribute significantly to overall astrometric 
precision (but appear otherwise astrometrically well-behaved). The 
griz exposures for the Wide survey are all 90 s in duration.

The results reported here make use of the “Y6A1” internal 
release of the full Wide survey data. The individual exposures 
are processed with the “FinalCut’’ pipeline very similar to the 
earlier version described in Morganson et al. (2018). Pixel 
coordinates for all sources are determined from the [XY] 
WIN_IMAGE windowed centroid quantity measured by SEx- 
tractor (Bertin & Amouts 1996). We assign the ERRA- 
WIN_IMAGE measurement as the a of a circular Gaussian 
measurement error on each unresolved source.

A mapping from pixel coordinates to sky coordinates is 
derived using the methods described in B17, with some 
improvements. The astrometry solution includes these terms:

1. A cubic polynomial spanning the whole FOV for each 
exposure, which absorbs the static atmospheric refraction, 
stellar aberration, and a pointing solution.

2. A zenith-oriented differential chromatic refraction term.
3. A polynomial per CCD per band per observing season, 

which captures optical distortions.
4. A chromatic lateral color shift oriented radially.
5. * Short-timescale (weeks) affine shifts in the positions of 

the CCDs in the focal plane.
6. The “tree ring’’ and “glowing edge’’ distortions arising 

from stray electric fields in each CCD.
7. * An additional fixed map of distortions apparently due to 

electric fields around the electrical cable connector.

Those items marked with an asterisk have been added to the 
model since B17. Furthermore, the entire astrometric solution 
is now registered to Gaia DR2 and allows for nonzero proper 
motion and parallax for all stars in the DES footprint when 
registering images internally and to Gaia. In B17 it was 
demonstrated that any errors in the astrometric solution that 
repeat over time are limited to <1 mas rms.
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Table 1
Notation Used Throughout the Text

Fortino et al.

Symbol Meaning

AW Aperture function of the telescope
D Telescope diameter
d = D/h Angular size of the telescope diameter as projected at the turbulent layer
h Height of turbulence
j Bessel function of the first kind
K Covariance matrix of the GP
Kjj — K(Xj Xj, 71 n) Kernel function of the GP
r/Ari 2x2 covariance function for stars j
r/Arl Two-point correlation function of 0
k -- (kX, ky) Fourier inverse to Ax
ko 2irh/r0
% Components of k relative to parallactic direction of the turbulence
Ns Number of stars in a DES exposure
fl — {%]_, • • • } Set of measurement shot noise for an exposure

Power spectrum of 0
>d Outer scale of turbulence
T Exposure time
U Merged vector of length 2Ns of both u and v points
u = (u. v) Displacements of stellar positions due to atmospheric turbulence

Posterior predictive mean of the GP regressor
Line segment with length and direction wT

w Wind vector at the turbulence layer
x = (x. y) Position of stars on a local projection of the sky
Ax x, - Xj for some stars j
z Zenith angle of the telescope
V- Mean of a GP. taken to be 0
V S/N of a source detection
& Overall amplitude of the turbulence = (0„, + 0„,)(ar = 0)
Cmm? Cmv? Cw Two-point correlation functions among the (u.v) components of displacement
G CwM T Cw
7TK Hyperparameters for the kernel function
a Stochastic errors in the centroiding of a source in pixel coordinates
°PSF rms width of the point-spread function

OPD along the line of sight

2.2. Nature of the Stochastic Distortions

Aside from the per-exposure cubic polynomial spanning the 
full FOV, these baseline Y6A1 astrometric solutions do not 
attempt to remove any of the stochastic distortions that would 
arise from atmospheric turbulence or other effects varying on 
timescales of single exposures. B17 described several properties 
of the stochastic distortion patterns, which we summarize here.

To quantify the distortion fields, we first define (u.v) to be 
the components of the difference between the DES-derived 
R.A./decl. and the Gaia DR2 values. We will summarize the 
distortion field with the two-point correlation function of this 
error field, defined as

Zm (x) = (UiUj) > (1)

where i and j range over all stars separated by the vector*. The 
virtue of this statistic is that the contribution from shot noise— 
or any other form of noise that has negligible star-to-star 
correlation—averages to zero. We can similarly define 

Of particular interest is

€+W = + L'W. (2)

As * .• 0, the value of 0„„ yields the total rms variance in the u
direction caused by atmospheric turbulence (or other spatially 
correlated errors).

The DES exposures are seen to have anisotropic errors, i.e., 
Z a, ^ sw and flv ^ 0. Figure 1 shows the distribution of major/ 
minor axes of the error ellipse implied by the zero-lag limits of 
the / values. The modal major and minor axes are 7 and 5 mas, 
respectively, with the means being higher. This is the 
turbulence noise.

A further critical observation is that the stochastic distortion 
field is curl-free, as seen in Figure 2. This implies that the 
scalar /+(*) function is a complete description of the 
vector turbulent distortions, if they arise from a GP, as 
explained in the Appendix of BK17. As will be detailed 
below, this function indicates a typical correlation length of 
«6' for the stochastic distortions (where /+ drops to half its 
* = 0 value).

3. Curl-free, Anisotropic Gaussian Process Interpolation
3.1. Scalar Gaussian Process Review

The standard methodology for GPR follows from the 
assumption that we are interested in the value of some 
stochastic scalar ii(x) over the field * (in our case, the positions 
* = (*, y) of a star on a local projection of the sky). The 
generation of u is considered a GP if and only if the distribution 
of u at any collection of points * {*,, jc2......*v 1 can be

4
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Y6A1 atmospheric turbulence errors
3500

Major axis 
Minor axis3000

2500

9-2000

in 1500

1000

RMS turbulence (mas)

Figure 1. Distribution of the major and minor axes of the turbulence-induced 
astrometric errors for the fsSO.OOO exposures of the DBS Y6A1 Wide survey. 
The distributions are clipped at 3 mas since smaller values are unreliable in 
these data.

Figure 2. The divergence and curl of the astrometric residuals on exposure 
#228645 (30 s, - band) are plotted on a common scale. The continuity of the 
vector held across chip boundaries, the curl-free nature of the held, and the 
streaky pattern of divergence suggest the hypothesis that these distortions arise 
from wind-blown atmospheric turbulence. Reproduced from BK17.

described by a multivariate normal distribution53

u = {m, u.2,...,Un} ~ A/(/r, K), (3)

with a mean fi that we can usually take as zero and a 
covariance matrix K = (mm7) with a known form K,, = K(Xj, xj) 
We will consider stationary (but potentially anisotropic) fields 
with possible hyperparameters tvk, for which we can place 
Kij = K(xi-xf'KK).

If we consider the held to have known values u at training 
points x, and we seek estimates u* at points x*. then we can 
write the joint distribution as

Here we follow GP convention by setting K.j = K(x\ — xj) 
and Kj * = K (xj — xj). Conditioning this joint distribution on 
the measured u yields the standard scalar GPR solution:

m*|m - MXK^K^u, K** - K*TK 'K*). (5)

Thus, the ML solution is the mean of this conditioned 
distribution—the ML value of u* at any point is a linear 
combination of the values at u. with coefficients determined by 
the relative locations of the reference stars to the target

position. The presence of independent measurement noise 
n = {tii, »2- •••} on the training points can be incorporated by 
considering the noise to be an addition to the kernel/covariance 
matrix K that has zero correlation length, i.e., only appears on 
the diagonal

Kij —» K(x, — xj) + Sij(nf). (6)

The suitability of the chosen kernel to the training data is 
quantified by the log marginal likelihood,

-21ogp(M|%, tvk) = urK lu + log|27Tfij, (7)

where K is a function of the hyperparameters tta-. The most 
suitable kernel is chosen by maximizing this quantity over tvk. 
If the held is truly Gaussian, the resultant interpolator is then 
optimal. The GPR does, however, yield a functional inter­
polator even if K is not precisely the covariance function of u, 
or if u is not a Gaussian held.

Application of the standard GPR to ground-based astro- 
metric data proceeds by using the sky positions of the stars as 
the feature vectors xt and dehning two distinct scalar helds (m,v) 
as the differences between the observed x and y coordinates and 
the true coordinates, (m, v,-) = Jt:°bs — jc/me. The training data 
are those for which the Gaia DR2 motions are available (and 
calculated at the observation epoch). Distinct GPRs are trained 
for each component u and v in this simplest scheme.

3.2. Curl-free Vector Fields

A simple and applicable ray-optic model for the displace­
ments caused by atmospheric turbulence is that the centroid of 
the stellar image moves by an apparent vector

M = 01, v) = VX(j>{x), (8)

where o(x) is the optical path difference (OPD) along the line 
of sight x. as convolved with the telescope aperture. If this 
model holds instantaneously and the source photon arrival rate 
is constant, then we can average both u and o over the duration 
of the exposure and the equation will still hold. A special case 
would be a single-screen “frozen” approximation: o(x, t) varies 
with time as <p(x — wt) for a wind vector w at the turbulent 
layer. In this case, the time-averaged o is the convolution of the 
instantaneous <j> with a line segment of wind motion during the 
exposure. The results in this section will, however, be true for 
any model of the time-averaged <j>.

As shown in B17, the two-point correlation functions of the 
residual displacement helds u(x) are observed to be purely “E- 
mode,” meaning that V7 x m contains only white noise 
consistent with the shot noise of stellar centroid measurements. 
It is therefore likely that enforcing a curl-free turbulence held 
will yield a more accurate GPR, since we can combine the data 
from both helds u and v to solve for a single degree of 
freedom <j>.

The curl-free GPR begins by assuming that <j> is a zero-mean 
Gaussian held, in which case it can be fully characterized by its 
power spectrum P,j(k) or its two-point correlation function 
K.jAx), which we can relate via the Fourier transform

j^(Ar)= (9)

' Using the standard notation N(ji, C) for a multivariate normal distribution 
with mean ji and covariance matrix C.

The relation (8) implies that the Fourier transforms of u and 
4> satisfy FT(u) = ikFT(o). This in turn implies that the

5
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covariance matrix of the turbulence component of the 
displacement held is

A,(Ax) = (iQ)

Thus, any parametric model for can be transformed into a 
parametric 2x2 covariance matrix function of Ax. (We retain 
a scalar notation for this 2x2 function Kt, reserving the matrix 
symbol K for the matrix of covariances between different held 
points.)

With this modihcation, we can recast the GPR to a merged 
vector U = {m, V\, M], V2,---,uns, VvJ of 2NS scalar quantities. 
As in the scalar GPR, we can dehne matrices K, K\ K** 
composed of 2 x 2 blocks such that

Aj — K, (Xi Xj) T 8ij{itiitj )
^ - x;)

%y = W-x;). (in

The measurement noise term in the hrst row is also a 2 x 2 
matrix, which in practice is very close to diagonal for DES data 
but is substantially anisotropic for Gaia. After this change, the 
standard GPR formulae (5) and (7) remain correct, with the 
substitution u ■ U. If the A/Ax) function were diagonal, then 
the GPR solution would separate into two distinct scalar GPRs. 
But even an isotropic held <fi has off-diagonal terms in K„ and 
therefore this curl-free interpolant exploits information that two 
distinct scalar GPRs cannot.

4. Model for Wind-blown Von Karman Turbulence
We desire a model for the correlation function K(x) between 

the turbulent distortions at two locations separated by x. Since 
the displacement (m,v) is 2D, there are three scalar correlation 
functions of interest, Klm, Km„ Kvv. Considering hrst one 
dimension of the dehection, u, we have from Equation (8) that 
the dehection of a single photon passing through a time-delay 
screen </> at location x and time t will be u oc J^0(x, t). The 
photons that arrive to form the image of a particular star arrive 
at hxed t from a range of x described by the aperture function 
of the telescope A(x), effectively convolving the instantaneous 
OPD screen as o ■ o x. ,4. Adopting the frozen-screen approx­
imation common in adaptive optics analyses, such that </>(x, 
t) = o(x — wt), means that the integration of photon arrival time 
over the exposure duration T corresponds to a further 
convolution of the phase screen by a line segment of length 
and direction wT, which we will denote by the “wind function’’ 
W{x). The apparent dehection, averaged over all arriving 
photons for a star crossing the phase screen at location x, 
becomes

8
m(x) oc —[<j)(t = 0) <g> A ig) W], (12)

The convolutions become multiplications in the Fourier 
domain, and we can also recall that the correlation function 
Kuu is the Fourier transform of the power spectrum Pu(k) of the

dehections, giving

< Kvv(x) y
kxky A(k)|A'(t)||W'(t)| (13)

which reproduces Equation (10) by the inclusion of the 
aperture and wind functions altering the instantaneous OPD 
screen <fi. In this section we have treated x as being in distance 
units and k in inverse distance. But we can equally well use 
these equations with x representing the 2D angle subtended 
about the telescope axis, which we shall do henceforth.

It now remains to choose models for /( ,, A, and W. The 
common model for the power spectrum of atmospheric 
turbulence is the von Karman spectrum,

4#) c< (Af + (14)

where fc0 is the inverse of the outer scale of turbulence. More 
precisely, our angular system, with turbulence at height h and 
outer scale r0, produces k0 = ItyIi/vq. There is an additional 
complication that when the zenith angle z of the observation is 
nonzero, the (horizontal) turbulent layer is foreshortened along 
the direction toward zenith. To include this effect, we should 
break k into components (k , k,) relative to the parallactic 
direction and substitute

k2 (i"n cos z)2 + kl (15)

in the argument of P^.
For the telescope aperture we will adopt the simplest case of 

a uniformly filled circular aperture, which yields

|A'(*)| ^

where J is the Bessel function of the first kind and d is the 
angular size of the telescope diameter D as projected to the 
turbulent layer, d = D/h.

The Fourier transform of the line segment window function 
yields

| W'(*)| oc sinc'(* - w/2), (17)

where w is now taken to be the wind transport over the duration 
of the exposure, as projected onto the angular coordinates of 
the telescope.

Combining the previous five equations yields our model for 
the astrometric correlation function K(x) for a single layer of 
von Karman turbulence. There are two known parameters (the 
zenith angle z and the parallactic angle defining k ) and five 
free parameters: {£0, r0, d, wv, wy}, denoting the overall 
amplitude of the turbulence, = (Kml + Kvv)(x = 0), the 
(angular equivalents of) outer scale, telescope aperture, and 
components of the wind vector. Of these parameters, the outer 
scale r0 is the least important because it is typically larger than 
the 4 m telescope diameter, and the aperture function damps the 
power spectrum before the outer scale sets in.

The real-space 2D correlation functions for the von Karman 
spectrum, the aperture, and the wind function can be done 
analytically individually, but their convolution is not analytic. 
One has the option of doing the convolution numerically, but 
we opt instead to use the above equations to multiply the three 
(analytic) Fourier domain functions and do the Fourier

Jxikd/2)
kd

(16)
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Figure 3. Each panel plots a measure or model of the astrometric error 
correlation function 5+Cr). The top left panel shows the measured correlation 
function for exposure 361582 (in i band), before any GPR subtraction. The 
bottom left panel shows the single-screen wind-blown von Karman turbulence 
model that is the best fit to these data for |ar| < 5'. The bottom right panel 
shows the von Karman model that the optimizer finds to minimize the 5o after 
GPR subtraction. The top right panel shows the measured 5+ after subtraction 
of the GPR. Note that there is no noticeable remaining correlation at any x (at 
this dynamic range) after the GPR correction is applied.

transform numerically using a fast Fourier transform. The 
bottom panels of Figure 3 plot /+ = Kuu + Kvv for two variants 
of the wind-blown von Karman model.

We note at this point that the real atmospheric turbulence is 
unlikely to arise from a single von Karman screen. The 
observed /+ functions have more structure than the von 
Karman model, e.g., features at multiple position angles. The 
turbulence may arise at multiple heights with varying wind 
speed, for example. We will, however, proceed with this model 
as a viable kernel, and remember that it is possible that other 
kernels would perform better, and the most successful von 
Karman parameters may not represent the physical conditions 
of a single screen. Data from instruments monitoring atmo­
spheric turbulence are available at CTIO, but we do not expect 
ab initio information on the turbulence parameters to provide a 
more effective GP kernel than fitting and optimization to the 
empirical information from Gaia stars’ residuals.

5. Numerical Methods
The curl-free GPR is implemented on the DES data on an 

exposure-by-exposure basis, with the following procedure:

1. Data Retrieval: A Python program retrieves the Y6A1 
DES single-epoch astrometric solutions for a single 
exposure from DES data hies, including estimates of 
shot noise from the SExtractor quantity (ERRA- 
WIN_WORLD). Corresponding Gaia five-parameter astro­
metry solutions, as well as their full covariance matrices, 
are retrieved via the Python package ASTROQUERY.

2. Pre-processing: The retrieved Gaia 5D solution for 
epoch J2015.5 for each star is reduced to a 2D position 
(and uncertainty) at the time of the DES exposure. The 
DES and Gaia catalogs are then matched with the 
match_coordinates_sky routine from ASTROPY; 
detections within 0"5 are matched. Gaia detections with

no DES match are discarded. Additionally, if more than 
15,000 matches are found, 15,000 detections are 
randomly chosen and the rest are discarded in order to 
conserve memory in later steps. The program then 
performs a gnomonic projection on both catalogs using 
the center of the DES exposure as the projection axis. For 
each matched star, the residual held zz = xDEs — *Gaia is 
formed, and a 2 x 2 shot-noise uncertainty zz, is created 
from the sum of the DES and Gaia measurement errors. 
In order to facilitate fivefold cross-validation later on, the 
matched data are randomly distributed into five subsets, 
A through E. At any one time, one subset will be the 
validation set, and the other four will be the training set. 
Additionally, the detections in the DES catalog that did 
not have a match are designated as the prediction set.

3. Error Rescaling: In order to remove outliers, sigma­
clipping is performed to four standard deviations on the 
residual values, zz,. Additionally, any detections that have 
shot-noise errors >250 mas1 2 are removed since they are 
too noisy to be useful and/or are measurement artifacts. 
For and ’-band exposures there are few detections 
with shot-noise errors this high, but this is an important 
step for the g and Y bands. We also find that the shot- 
noise errors from SExtractor are systematically 
underestimated, particularly for detections with very 
low shot noise. To give the kernel more accurate shot- 
noise values, we replace the (ERRAWIN_WORLD) with 
the rms of the residual held values for a group of 256 
detections with similar estimated shot noise. The best-fit 
third-degree polynomial as a function of astrometric 
position in the FOV is subtracted from the residual held. 
This is done to remove large-scale systematic errors from 
instrument distortion (e.g., thermal expansion of the 
telescope) and low-altitude “ground-layer” turbulence 
that distorts large angular scales (see Section 6.2 of B17 
for further details).

4. Fitting kernel to £+: In order to get an initial guess of the 
kernel parameters, tvk, £+(jc) is calculated for the training 
set. A Nelder-Mead optimizer varies nK to minimize the 
residual sum of squares (RSS) between the observed £+ 
and the parametric von Karman £+ = (Kmi + Kvv). For 
this least-squares htting, only £+(jc) for x < 5' is used. 
With the resultant kernel parameters, we execute the curl- 
free GPR on the zz,. Using hvefold cross-validation, we 
obtain a residual zz, for each matched star from the 
difference of the raw zz, and a GPR-estimated value that 
has not been trained on that star. Another round of sigma­
clipping is then performed on the data, this time removing 
all detections greater than four standard deviations from 
the mean of zz*.

5. Optimization of kernel: Ideally the GPR kernel fitted 
to the observed /+ function would be the optimal 
interpolator, yielding the smallest rms errors in position 
for the validation set. The rms errors can be measured 
without shot-noise biases as the limit of £+(jc) as 
x —> 0. We define a figure of merit meant to approximate 
this limit as

6.3=(€+W)bl<i/3, (I*)

where the average is pair weighted. In practice, the fitted 
kernel is not optimal for *L2- perhaps because the von 
Karman kernel model does not fully describe the held, or

7
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Figure 4. At left is a map of binned astrometric errors of stars in a typical DBS exposure (#361582, i band) relative to their Gaia DR2 positions. At right are the results 
after subtraction of corrections derived from the curl-free GPR method. Fivefold cross-validation is used such that no Gaia star is used to derive the GPR that is applied 
to it. The reduction in amplitude and correlation length of the astrometric errors is apparent.

perhaps because of non-Gaussianity and/or outliers in the 
data. Regardless of the cause, we find that the figure of 
merit U.2 can be reduced by further optimization of the 
von Karman parameters tvk. Using the “fitted” kernel 
parameters found in the previous step as an initial guess, 
we use the L_BFGS_B gradient-descent method of the 
scipy.optimize.minimize optimizer (Virtanen 
et al. 2020) to minimize the ^ 2 of the validation set. 
This is the most computationally intensive part of the 
process since the optimization requires many repeated 
evaluations of the GPR. In order to reduce the number of 
optimization steps, we first optimize over the parameters 
d, wv, and ny and then fix these and optimize the 
remaining parameters /0 and r0. The results tvk we call 
the “optimized” kernel parameters. We evaluate the GPR 
and residuals using the optimized parameters. Again 
using fivefold cross-validation and four standard devia­
tion sigma-clipping, we find m* for all matched stars. 
When we refer to “GPR-subtracted” data, it will by 
default mean those corrected with the optimized para­
meters. In some of the further analyses we will explicitly 
compare results with a GPR using the fitted parameters 
from step 4 versus the optimized parameters from 
this step.

6. Analysis: With m*. we calculate statistics on how well the 
model performs. All statistics omit the stars that have 
been sigma-clipped.

6. Results for DBS Exposures
We applied this procedure to 343 DBS exposures (76, 70, 64, 

72, and 61 from griz Y bands, respectively). The g-band 
exposures exhibit very high outlier rates and ERRAWIN_- 
WORLD inaccuracies for reasons that are not understood and 
probably irrelevant to the turbulence estimation, so we will not 
make further use of them in this paper. The low S/N of the Y-

band exposures makes them less interesting tests of turbulence 
reduction, so most of our statistics will concentrate on 
riz. Maps of the astrometric errors of Gaia stars before and 
after application of the GPR correction are shown for a typical 
exposure in Figure 4.

The average density of matches with Gaia (after sigma­
clipping) for the exposures analyzed is 0.95 arcmin~2, or 104 
per 3 deg2 DES exposure. With the fivefold cross-validation, 
there are an average of % 2000 stars in a validation subset. The 
optimization of the kernel parameters using the L_BFGS_B 
algorithm requires % 100 recalculations of the GPR on average, 
which is the computational bottleneck of the procedure, 
requiring several hours on a 12-core cluster node. Further 
investigation of the optimization may yield substantial 
speedups.

Our primary measure of success for this analysis is the 
reduction of the /0 = (h2 + v2} of the raw residual held after the 
GPR model of the turbulence is subtracted. With a finite 
number of validation stars, we cannot calculate /0(* = 0). To 
measure the improvements due to GPR subtraction, we 
approximate /0 with 4+(k| < 0.5'). i.e., we average over all 
validation—star pairs with separation <0(5.54 Figure 5 plots the 
raw /o versus the GPR-subtracted /0 for riz Y exposures, with 
the bottom panel replotting the quantity J^,,/2 . which gives the 
rms astrometric error per axis. The bottom panel also shows the 
relationship between rms and held density for riz Y exposures. 
The average £0 of the raw residual held for all 206 Wz-band 
exposures was 125 mas2, or an rms astrometric error of 7.3 mas 
per axis. The average £0 after the GPR model was subtracted 
from the residual held was 11.9 mas2 or 2.3 mas rms. The 
average reduction in £0 was a factor of 12. This is the principal 
result of this work.

4 Note that this £0 estimator uses a smaller radius (0(5) than the 5i.2 used 
during kernel optimization. This is because Figure 6 shows that £(x) is already 
dropping significantly at |ar| = V.2 in the GPR-subtracted data.
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Figure 5. The top panel plots the values of (;0 kj ^+(|ar| < 0(5) for the validation samples of every analyzed riz Y exposure before (.r-axis) vs. after (v-axis) subtraction 
of the GPR. The dotted lines mark constant factors of 5o reduction by the GPR subtraction. The bottom panel is similar except that it uses ^(g/2 . the rms turbulence 
error per axis, instead of the total variance 5o- on the axes. And the color scale in this case indicates the density of Gaia stars used in each exposure.

We also note that the kernel optimization of Step 5 reduces 
Co by a mean factor of«1.6 x for r/z-band exposures (with a 
wide range of variation), and it is possible that this optimization 
could be improved.

Figure 6 plots C+(M) averaged over all riz exposures, 
showing that (per expectations) the longer-range correlations 
are completely eliminated by GPR subtraction. The

correlation length, R0, is defined as the angle such that 
C+(Ro) = 0.5Co- For the 206 r/'z-band exposures, the average 
correlation length of the raw residual held was 5(7. The 
average correlation length of the residual held after the GPR 
model was subtracted was 1(3. As expected, the post-GPR 
correlation length is similar to the mean distance between 
Gaia stars used for training.

9
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Figure 6. The points plot the mean azimuthally averaged £+(|x|) for 206 riz- 
band exposures. The curves apply a Savitsky-Golay smoothing to the (noisy) 
measured points separation from 5" to 1?5. From top to bottom, the curves 
show the correlated astrometric errors before any GPR subtraction (“Raw”), 
after subtracting a GPR using the best-fit von Karman turbulence parameters 
(“Fitted model”), and after subtracting a GPR using an “optimized” kernel 
chosen to minimize 5o = £+fcr —> 0). The astrometric variance is greatly 
reduced from the raw level of = 119 mas2 to 19.5 and 12.0 mas2 by the 
fitted and optimized kernels, respectively. The average correlation length of the 
astrometric errors (defined as the point where 5+ drops to Jo/2) is reduced from 
5{7 to 1(2 by GPR subtraction.

The average von Karman kernel parameters for the riz 
functions are in rough agreement with a physical model, 
although it is clear from, e.g„ Figure 3 that the single-screen 
Uirbulence model is an incomplete description of the 
astrometric correlation functions. The average aperture-dia­
meter parameter, d, was 2'. 5, which corresponds to the physical 
4 m diameter D for a Uirbulence height of 5.5 km, which is of 
similar magnitude to the typical height of dominant Uirbulence 
(Beckers 1993). At this height the average angular outer-scale 
parameter of r0 = 1°7 corresponds to 160 m, also physically 
reasonable—though this parameter has a weak effect on the 
kernel or GPR accuracy. The typical wind parameter ampliUide 
of |w| = 3(5 corresponds to winds of justm(). 1 ms~\ which 
seems lower than one would expect for tropospheric winds.

There are few clear trends in the values of the post-GPR V> or 
in the reduction factor gained by the GPR. From the bottom 
panel of Figure 5 it is clear that the exposures taken in low- 
density regions of the Gaia catalog have the lowest (worst) 
reduction factors. This is to be expected, as density Gaia 
training data can measure and remove the turbulence to higher 
spatial frequencies. We also find, not surprisingly, that a lower 
raw Y, correlates with a lower GPR-subtracted 5i- Beyond this, 
there are no obvious trends with filter band or other variables. 
The sizes of /0 both before and after GPR subtraction are 
highly variable over time, as one finds for related atmospheric 
Uirbulence phenomena such as the seeing FWHM. These large 
“weather” variations could be masking subtler trends with 
wavelength, air mass, etc., that might emerge upon analysis of 
a larger number of exposures.

6.1. Test on Eris Orbit

As a test of the GPR astrometric correction, we examine the 
residuals of an orbit fit to the positions measured by DES for 
the trans-Neptunian object Eris (Brown et al. 2005). Because 
Eris moves Ml°4 in both R.A. and deck over the 5 yr span of 
the DES observations, it is being informed by a continuously

changing set of Gaia stars, and thus the orbit residuals are a 
good sampling of the accuracy of the GPR. A good orbit also 
requires a correct absolute astrometric calibration, at least 
across these few degrees.

Figure 7 plots the residuals to the 27 griz observations of 
Eris in the DES Wide survey, compared to the best-fit orbit as 
obtained using the algorithms of Bernstein & Khushalani 
(2000). The error bars in the plot are the expected uncertainties 
from the quadraUire sum of the ERRAWIN_WORLD measure­
ment error and the ^-derived rms Uirbulence error. The 
measured pixel positions for the Eris detections are converted 
to R.A. and deck using the full static astrometric model as 
described above, including chromatic terms.

Restricting our consideration to the 19 riz exposures, the rms 
residual to the best-fit orbit is 10.1 mas (per axis) using the raw 
positions (no turbulence correction) but drops to 5.0 mas after 
the GPR estimates are subtracted. The \2 values and degrees of 
freedom are 27.9 and 44.7/32 before and after GPR 
subtraction, respectively. This demonstrates a clear improve­
ment in astrometric quality. The factor of 2 improvement in rms 
is less than the VT2 we might expect from the typical reduction 
in Zq, because Eris, at r = 18.5 mag, is not bright enough to be 
in the fully Uirbulence-dominated regime for DES once the 
GPR is applied: the shot-noise errors in its positions vary from 
1.7 to 5.2 mas (with an rms value of 2.9 mas). Indeed, once the 
GPR correction is applied, a star must be near the exposure 
saUiration limit in order to have shot noise well below the 
Uirbulence noise.

These measurement accuracies are far better than is typically 
obtained for minor planets from ground-based observations, 
especially considering the short (90 s) exposure times. To give 
a sense of scale, a typical trans-NepUinian object at 40 an 
distance moves by 4 mas s~\ so shutter-timing corrections are 
now larger than the %2 mas astrometric Uirbulence error.

7. Summary and Prospects
We have demonstrated that GPs are highly effective for 

interpolating the stochastic astrometric distortions from a set of 
known spatial points (Gaia stars) to arbitrary locations in the 
focal plane. For DES images in riz bands, we achieve an 
average reduction of a factor % 12 in the total astrometric 
variance /0 ascribable to Uirbulence. As expected, the GPR is 
very successful at modeling (and removing) distortion modes at 
wavelengths longer than the typical mV spacing between Gaia 
DR2 stars, and the GPR-subtracted astrometric errors have a 
correlation length of mV. This achievement is assisted by a new 
variant of GPR that makes use of the known curl-free naUire of 
the 2D distortion held.

For these 90 s images, this reduces the rms Uirbulence error 
to m2 mas in each axis, at which point it is subdominant to shot 
noise in the object centroid for any source with S/N < 200, 
which requires >40,000 photoelectrons to be acquired. There is 
now thus only awl mag range of stellar brightness in which the 
astrometry is dominated by Uirbulence noise but the stars are 
not saturating the CCD, so in practical terms the atmospheric 
Uirbulence noise has been nearly eliminated.

It is likely that some further improvement is possible by 
improving the optimization of the von Karman parameters, or 
by choosing a better form for the kernel. It is already clear from 
Figure 3 that the observed /+(%) function has qualitative 
aspects not reproduced by the von Karman model, such as 
different major axes at different scales, which could result from
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Figure 7. Residuals of the observed R.A./decl. positions from GPR-corrected DBS measurements of the trans-Neptunian object Eris to the best-htting orbit are 
plotted. The observations span 5 yr. with the relative times marked below each point pair. The rms error of the n'--band observations is 5 mas, as marked by the shaded 
region, consistent with the estimated shot noise plus residual turbulence £0. The rms residual was 10 mas before the GPR correction was made, demonstrating the 
success of the GPR method.

multiple layers of turbulence. Such behavior has been observed 
in data from the Canada-France-Hawaii Telescope, and it is 
worth investigating whether using the measured £;, directly, 
rather than a model fit, is genetically better (P. F. Leget, private 
communication). We have not developed this yet, because of 
the possibility that a noisy measured £+ could lead to non- 
positive-definite covariance matrices.

Lubow et al. (2021) have applied a somewhat simpler 
approach to removing astrometric errors from the PS 1 catalogs 
by referencing each object to the mean of the nearest 33 Gaia 
DR2 stars detected in the PS1 images. This would be 
equivalent to GPR with a flat-top circular kernel of radius 
equal to the distance of the 33rd-nearest star (reported as mV at 
median). The GPR method can be expected to perform better 
through a weighting of the Gaia reference stars that is 
optimized for the spectrum of the distortions and the 
measurement noise of individual references. On the other 
hand, the GPR is computationally slower since it uses the full 
set of Gaia references to derive and apply these optimized 
weights. A direct performance comparison between the two 
results is not possible given the different telescopes and 
observing conditions of the surveys, and because Lubow et al. 
(2021) do not separate turbulence errors from shot noise in their 
statistics. We do see from their Figure 9, however, that for 
bright stars (i m 17 mag), where shot-noise contributions 
should be low, their correction reduces median 2D astrometric 
residuals by about a factor 2, whereas we obtain VT2 m 3.5 x 
reduction in turbulence noise, perhaps as a result of the more 
optimal interpolation.

Dramatic improvement may be possible by creating a denser 
training set than Gaia DR2 provides. Future releases of Gaia 
will help in this regard. But a more powerful means to

bootstrap a denser training sample is outlined in the Appendix: 
when we require that non-Gaia stars’ motion over time fits the 
standard parallax/proper-motion model, their 5D solutions 
become increasingly constrained with more observing epochs, 
and the exposure-by-exposure residuals to these 5D solutions 
become useful for constraining the turbulence patterns of 
individual exposures. The Appendix gives the mathematical 
solution for a feasible scheme to solve for the 5D solutions and 
the turbulence interpolation for all exposures in a region of sky 
simultaneously. We will test this in future work. The 
astrometric system, i.e., the absolute coordinates, proper 
motion, and parallax zero-points, will remain tied to Gaia, 
and here again ground-based results will benefit from future 
Gaia releases.

With the joint turbulence /proper-motion solution, essentially 
every star with per-exposure shot-noise level lower than the 
turbulence noise becomes an additional reference point for the 
turbulence solution. While DES has few stars fainter than the 
Gaia limit that satisfy this condition, LSST will have many. We 
thus expect this to be a valuable technique for the survey.

Note that both shot-noise errors and turbulence residuals are 
expected to decrease as the inverse square root of exposure 
time T. Thus, for a given observatory and filter band, the 
magnitude dividing turbulence-dominated from shot-noise- 
dominated astrometry is independent of T. The GPR technique 
shifts that magnitude brightward by about 2.5 mag. For longer 
DECam exposures, both limits drop, and astrometry could 
become limited by sub-milliarcsecond errors in the static 
astrometric model, including errors in chromatic corrections 
arising from inaccurate knowledge of the source spectra.

This GPR technique should be directly applicable to the 
LSST data. The Rubin Observatory’s 8.5 m diameter primary
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mirror is larger than the Blanco’s 4 m primary, which will 
lower the expected level of /+ in similar atmospheric 
conditions, but the shorter total exposure time (30 s) of nominal 
LSST visits will increase the per-exposure £;,, so we might 
expect values similar to those we find for DES. Rubin’s greater 
aperture means, however, that shot noise is lower than for DES, 
which means that more stars—including many beyond Gaia’s 
magnitude limit—will be in the turbulence-dominated regime 
and thus benefit from the GPR subtraction. This should allow 
LSST data to substantially surpass the initial requirements and 
goals for its astrometric performance and subsequent science.
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Appendix
Simultaneous Inference of Turbulence and 5D Stellar 

Parameters
The positions of isolated stars on the sky are expected to 

follow the standard five-parameter model:

47 = 4 + t^Xi - xl^Wi. (Al)

= M^Si. (A2)

Here f;, and -7;, are the date of exposure //. and the projection of 
the b ary centric observatory position onto the line of sight for 
the exposure. The five parameters for star i are the position, 
proper motion, and parallax S; = {%", yP, f, % tu,}. The goal 
of this section is to develop a method for extracting s = {sq, ,v2, 
...} from the observed positions jc*s of each star in each 
exposure.55 The data model is

4?s = + “i>- (A3)

We will always assume that xobs has been mapped from pixel 
coordinates to sky coordinates using the best available static 
instrument model, and u is a stochastic, zero-mean error term 
that includes curl-free atmospheric turbulence, shot noise, and 
any errors in the instrumental model.

The method of Section 3.2 gives a straightforward procedure 
by which a GPR trained on the Gaia star images in exposure /i 
yields an estimator h;m for each individual image of a non- 
Gaia star. One could then fit the set of observed x‘’lf — «,,, to 
the model (A3) to estimate ,v,. It is the case, however, that as 
more exposures are taken and the ,v, becomes better known, this 
star can begin to inform the training of the GPR for each 
exposure, improving the estimator u for other stars in its 
vicinity, and in turn improving their 5D solutions. We therefore 
explore the possibility of an estimator for s that considers the 
data from all exposures simultaneously.

To do so, we continue the assumption that the displacement 
field m;, is the sum of a turbulence contribution, which is the

A given star need not be observed in all exposures.
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gradient of a Gaussian random field with known power 
spectrum, and a shot-noise contribution, which does not 
correlate between stellar observations. We further assume that 
there is no correlation of either component between distinct 
exposures—and each exposure can have its own correlation 
function Kp, determined by hyperparameter optimization on the 
Gaia stars, as described above.

In this case the probability of the observations is a 
multivariate Gaussian that separates between exposures:

}k) = nj27r^r/3

X exp (x°hs - MpS)T Kp1 (x°hs - MpS) j, (A4)

where we have used the data model in Equation (A3) and 
defined

Rii.ij — RiiG/// Xjii) T riinSij. (A5)

Also, x°hs is the concatenation of all the observed positions on 
exposure //..

Bayes’s theorem, assuming independent Gaussian priors on 
each star’s parameters, gives

t-^}) oc } I*) x H -/VW, (A6)

The prior can include Gaia measurements of the star’s ,v,, if 
available. It is also advisable to place a weak prior on the 
parallax for non-Gaia stars to avoid numerical instabilities for 
stars that have been observed at the same limited range of dates 
each year. The observing cadence of DES is not designed for 
parallax measurements and can produce such degeneracies.

By substituting Equation (A4) into this equation and 
concatenating the stellar parameters and their priors into 
sp = {$!, ,v2. ...} and K1' = diag({/</'}), we obtain the log 
posterior for the stellar parameters:

-2\ogp(s\{x°hs], sp, Kp) = (const) 

+ (s - sPfK-\s - sp)

+ (I°": - _ M^)

=> G),

Cs =

(A7)

(A8)

(A9)

(A10)

2 = Q
4

(All)

The last line gives the maximum-posterior estimate of all the 
stars’ 5D properties. This joint solution is computationally 
feasible; GPRs are rate limited by Cholesky matrix factoriza­
tions. If there are Ns stars appearing in Ne exposures, then each 
of the Kp are 2Ns x 2Ns square, so the sum inside the brackets 
of Equation (A 10) requires ()(HN,,N2) operations. The s vector 
has 5Ns elements, so the factorization needed to obtain it in 
Equation (All) requires 0(125N2) operations, which in most 
cases (Ne >15) is lower than the cost of the per-exposure 
inversions.

It is clearly infeasible to execute the solution in one shot over 
the full DES survey, with Ns ~ 108 and /V,. ~ 105. There is little

lost, however, in dividing the survey into regions and solving 
each independently. Each region’s solution is informed by stars 
within a few atmospheric correlation lengths of its targeted 
boundaries, which should be included in the solution. But more 
distant stellar measures do not improve the target region and 
need not be included. Thus, the computation is best managed 
by dividing the survey into *T° regions, with Ns ^ 105,

The computational cost of the wholistic solution can be 
compared to the cost of optimizing the hyperparameters of Kv 
for each exposure. The optimizer must reinvert the (2 x No)2 
matrix many times to maximize the log marginal likelihood, 
with Ng being the number of Gaia stars in the full exposure, 
whereas the wholistic solution requires a single (2 x Ns)2 
inversion, where Ns is the total number of stars of interest in the 
region. In most cases the wholistic solution will take 
comparable or less time than completing the per-exposure 
kernel tuning.

The only distinction between Gaia detections and DES-only 
stars in Equation (All) is that the former have stronger priors. 
The solution uses all of the stars to constrain the turbulence 
held. In practice, one will also want to interpolate the 
turbulence held to the locations of sources in individual 
exposures that do not have 5D solutions (e.g„ minor planets 
and other transients). As with a simple GPR, it is straightfor­
ward to perform this interpolation, and the computational cost 
is much lower than for the Cholesky inversion of Cs.
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