
15

CARL: Compiler Assigned Reference Leasing

CHEN DING, DONG CHEN, FANGZHOU LIU, BENJAMIN REBER, and

WESLEY SMITH, University of Rochester

Data movement is a common performance bottleneck, and its chief remedy is caching. Traditional cache
management is transparent to the workload: data that should be kept in cache are determined by the recency
information only, while the program information, i.e., future data reuses, is not communicated to the cache.
This has changed in a new cache design named Lease Cache. The program control is passed to the lease cache
by a compiler technique called Compiler Assigned Reference Lease (CARL). This technique collects the reuse
interval distribution for each reference and uses it to compute and assign the lease value to each reference.

In this article, we prove that CARL is optimal under certain statistical assumptions. Based on this optimality,
we prove miss curve convexity, which is useful for optimizing shared cache, and sub-partitioning monotonic-
ity, which simplifies lease compilation. We evaluate the potential using scientific kernels from PolyBench and
show that compiler insertions of up to 34 leases in program code achieve similar or better cache utilization (in
variable size cache) than the optimal fixed-size caching policy, which has been unattainable with automatic
caching but now within the potential of cache programming for all tested programs and most cache sizes.

CCS Concepts: • Theory of computation→ Design and analysis of algorithms; Mathematical optimization;
Discrete optimization;

Additional KeyWords and Phrases: Cache management, reuse interval distribution, cache replacement policy,

lease cache, miss ratio curve, optimality

ACM Reference format:

Chen Ding, Dong Chen, Fangzhou Liu, Benjamin Reber, and Wesley Smith. 2022. CARL: Compiler Assigned
Reference Leasing. ACM Trans. Arch. Code Optim. 19, 1, Article 15 (March 2022), 28 pages.
https://doi.org/10.1145/3498730

Extension of Conference article. We extend Prechtl et al. [54] by providing a theoretical proof of CARL optimality in a
variable-sized cache (Section 4), as well as providing an evaluation of the potential of CARL with a variable cache size
using the PolyBench and SPEC CPU 2017 benchmark suites (Section 5).
This work was done when the Dong Chen was a graduate student at University of Rochester.
This work was supported in part by the National Science Foundation (Contract No. CCF-2114319, CNS-1909099, and CCF-
1717877) and IBM Center for Advanced Studies. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the funding organizations.
Authors’ address: C. Ding, D. Chen, F. Liu, B. Reber, andW. Smith, Department of Computer Science, University of Rochester,
2513 Wegmans Hall, P.O. Box 270226, Rochester, NY 14627; emails: cding@cs.rochester.edu, jameschennerd@gmail.com,
fliu14@cs.rochester.edu, breber@cs.rochester.edu, wsmith6@cs.rochester.edu.
Updated author affilition: Dong Chen, College of Computer, National University of Defense Technology, 109 Deya Road,
Changsha, Hunan, 410073, China.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
1544-3566/2022/03-ART15 $15.00
https://doi.org/10.1145/3498730

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

https://doi.org/10.1145/3498730
mailto:permissions@acm.org
https://doi.org/10.1145/3498730

15:2 C. Ding et al.

1 INTRODUCTION

On modern systems, from mobile devices to supercomputers, data movement has become one of
themost significant costs in terms of both time and energy. The primarymitigation is caching.Mod-
ern caches are managed transparently to software: the workload itself cannot determine when and
which cacheline to evict. This transparency eases programmability and ensures program portabil-
ity, but as a result a program has no direct control of caching and cannot use program information
to directly improve cache management.
Recent machines supports either direct memory control or automatic caching. On GPUs, the

shared memory is program controlled. On Knights Landing, the near memory (MCDRAM) can
operate either in the Cache Mode: the MCDRAM works as the LLC cache of the DRAM shared by
all processors; and the Flat Mode: the MCDRAM acts as an extra NUMA node. Applications could
control which node to put its data via hbw_malloc()/malloc(), or move data between these two
with the kernel support, e.g., numactl. The new non-volatile memory from Intel operates in two
similar modes. So far, the choice is mutually exclusive: one should select either of these two modes
during system boot.
An alternative is programmable cache, or software-managed cache [36], which we study in this

article. Programmable cache is the cache in which applications can determine which block will
be evicted to make room for new data. Recently, Li et al. [44] proposed a new cache design called
a Lease Cache. In a lease cache, each cacheline is assigned a non-negative integer lease, which
represents the amount of logical time that it should reside in cache. If a cacheline is accessed
before its lease is up, then its lease is refreshed. Otherwise, the cacheline is evicted at the end of
its lease. This concept is growing in relevance, e.g., Twitter’s Time-To-Live Cache [71].
The lease cache has a variable size. Variable cache allocation is interesting for two reasons. First,

this is already the status quo. When the cache is shared, neither single application uses the whole
cache, nor does it maintain a constant cache occupancy. Second, it permits greater synergy. The
working set of an application is not a constant size and may benefit from a temporary increase in
cache usage. The cache space may be dynamically traded among applications based on demand. In
fact, variable-size allocation has been the standard solution used by operating systems to manage
memory sharing [20, 24]. The lease cache enables program control, and program informed leases
may improve not just performance but also performance predictability in large shared caches.
This article presents a compiler algorithm, its theoretical optimality, and its practical potential:

—Compiler Assigned Reference Lease (CARL). CARL is a compiler algorithm to program
the lease cache (Section 3). It uses a metric called profit per unit cost (PPUC) and greedily
chooses the lease with the largest PPUC.

— Theoretical properties.We present the conditions and formal proof that CARL’s greedy heuris-
tic provides optimal program control (Section 4.1) and that this optimality ensuresmiss curve
convexity (Section 4.2) and sub-partitioning monotonicity (Section 4.3).

— CARL potential. Through a simulation study using the loop-based PolyBench programs as
well as SPEC 2017, we compare cache utilization to existing cache management techniques
and show that the new solution is not just far superior to LRU performance, but also similar
to or better than the optimal (and offline therefore impractical) OPT (Section 5). We also
show a complete compiler solution in the appendix.

Any theory is limited by its assumptions. All our theoretical results assume unrestricted dy-
namic occupancy in the lease cache. While this cannot be always valid in an actual system, the
theory formalizes key properties and clarifies their theoretical complexity. In addition, the the-
ory is about program optimization of caching, not program optimization for caching (e.g., tiling,

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

CARL: Compiler Assigned Reference Leasing 15:3

fusion). Nor does it address directly the general problem of I/O complexity [28, 37] or data lay-
out optimization [42, 53]. Furthermore, the evaluation shows only the potential but not what is
realizable on an actual system. Implementation problems are being addressed in a hardware proto-
type with a fix-size, single-level, and unshared cache [54]. Here, we show the potential of compiler
optimization across all cache sizes.

2 BACKGROUND

2.1 Lease Cache

In a lease cache, each cacheline is managed by a lease, which determines how long it is allowed to
stay in cache. The lease is measured by the number of accesses rather than the physical time. A
lease of 1,000 means that the lease cache keeps the data block until 1,000 accesses later. The lease is
renewed if the data block is accessed before the end of the lease; otherwise, the block is evicted from
the cache. Conventional cache design is reactive—deciding which to replace when the cache is full,
but lease cache is prescriptive. The eviction time of a data block is prescribed by a lease at its latest
access. The lease is a programming interface for cache allocation. By assigning leases to memory
accesses, software may leverage program information to improve cache performance. Optimal
leasing ensures that data remains cached, while it is useful and is evicted at the end of its usefulness.

2.2 Reference Leases

A reference is defined as the instruction, which invokes a memory access, i.e., the program counter
for the load/store instruction. Given a program, a compiler assigns a lease to each reference.
When the program executes, each access is given the lease of its reference. The lease of each
reference is derived from two attributes for a reference: its Reuse Interval Distribution (D) and
its Access Ratio (AR). Next, we first define one basic term Reuse Interval (RI), then define
these two per-reference attributions.

Definition 2.1 (Reuse Interval (RI)). An RI is defined as the change in logical time between a data
block’s use and its reuse. Suppose, we have a trace abccba, the reuse interval of the datum a is
RI = 5.

Definition 2.2 (Reuse Interval Distribution (D)). A (D) is the distribution of RI’s among all of its
accesses. Using the same trace abccba given in previous definition and assuming there is only
one reference, the RI distribution of this reference would contain three different reuses 1, 3, and 5
caused by the access to datum c , b, and a, respectively, each accounting for 1/3.

Definition 2.3 (Access Ratio). The Access Ratio of a reference is the portion of all accesses in the
trace, which are invoked by that reference.

Figure 1(a) shows the loop nest of a 5-point stencil kernel, which appears commonly in scientific
computing and image processing. It contains six references, from A[i][j-1] to B[i][j]. This pro-
gram is used as a running example throughout this section and the next section. Figure 1(a) also
shows the reuse interval distributions for 4 (out of 6) references in the stencil kernel. The remain-
ing two references, B[i][j], A[i-1][j], have no reuses during the execution, hence omitted. For
illustration purposes, the RIs in Figure 1(a) are computed at element (rather than data block) gran-
ularity. In Figure 1(b), we use A[i][j] as an example demonstrating where these RIs come from.
RIs of other references can be inferred in a similar way. In the rest of this article, we use the notion
D[i] to represent the fraction of RIs whose value is i , e.g., for reference A[i][j], 96.77% of the data
form reuses with RI= 8, written as D[8] = 96.77%.
Consider a lease assignment strategy for the stencil loop. Almost all data accesses from the

A[i][j] and A[i][j+1] references will be reused almost immediately in the next iteration of the

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

15:4 C. Ding et al.

Fig. 1. The RI distribution example using the 5-point stencil program.

inner loop. Hence, a short lease for these references will grant many cache hits while using a low
amount of cache space. If the cache size is large enough, it may also be worthwhile to assign a long
lease to the A[i][j-1] and A[i+1][j] references, whose reuse is in the next iteration of the outer
loop. In any case, it is sensible to assign leases which grant many cache hits with a low space cost
before assigning leases which grant fewer cache hits or take up more space.

3 THE CARL ALGORITHM

We describe the CARL algorithm, which assigns leases to each reference.

3.1 Profit Per Unit Cost

CARL uses a metric for references called PPUC. Profit is the hit ratio. All accesses whose reuse
interval is less than or equal to the chosen lease are cache hits. If D is the RI distribution of a
reference and l is the chosen lease, then its corresponding contribution to the program’s hit ratio
would be:

H (D, l) =
l∑

i=0

D[i] · AccessRatio. (1)

The cost of a reference is its average cache use. We use the terms cache use, occupancy, allocation,
and consumption interchangeably in the rest of this article. If data from a reference takes up three
cachelines on average throughout execution, the cost is 3. The cost of a reference is proportional to
the average resident time among its accesses. The resident time of an access depends on its RI and
lease. If its reuse interval ri is less than the lease l , then the cacheline’s lease will be refreshed by
a new access after ri units of time. Otherwise, an access is resident in cache until its lease expires.
Thus, the average cache use of a reference with lease l can be computed as the sum of these two
values over the reference’s RI distribution, shown in Equation (2):

C (D, l) = �
�

l−1∑
i=0

i · D[i] +
RImax∑
i=l

l · D[i]�
�
· AccessRatio. (2)

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

CARL: Compiler Assigned Reference Leasing 15:5

ALGORITHM 1: CARL main loop. Functions C (cost) and ΔPPUC are defined in Equations (2) and (3).

Input : The number of references R and reuse interval distributions D1...R [1 . . .RImax]
Input : Target cache size S
Output : Reference leases L[1 . . .R]

1 Function Main():
2 L[1...R]← 0;

3 cacheUse ← 0;

4 while cacheUse < S do

5 (re f , lnew) ← argmax
r ∈1...R, l ∈L[r]...RImax

{�PPUC (Dr ,L[r], l)};

6 lold ← L[re f];

7 if lnew = lold then

8 /* No more lease to assign */

9 break ;

10 else

11 L[re f] = lnew ;

12 cacheUse + = C (Dr ef , lnew) −C (Dr ef , lold);

13 end if

14 end while

15 End

In Figure 2(a), we compute the Profit and Cost of all four references in the given 5-point
stencil example. Then, the value of PPUC, as the name implies, is the ratio of cache hits and the
corresponding cache occupancy. CARL is a greedy algorithm, which iteratively increases leases.
It may assign a lease for a reference and then increase that lease later on, so we are interested
in the change in PPUC from one lease to another. This is denoted as ΔPPUC . Let DA be the RI
distribution for reference A. The ΔPPUC when increasing its lease from l to l ′ is given by

ΔPPUC (A, l , l ′) =
H (DA, l

′) −H (DA, l)

C (DA, l ′) − C (DA, l)
. (3)

3.2 CARL Lease Assignment

Algorithm 1 shows the main loop of the CARL algorithm. CARL takes a target cache size and
set of reference RI distributions as input. It initializes a lease of 0 for each reference, and keeps
track of the cache use given its set of leases, which is initially 0. Then, in a loop, CARL updates
the leases in a greedy fashion: in each step, among all references, it selects the lease that is the
most profitable, i.e., the lease with the maximum ΔPPUC. Then the cache occupancy is updated
according to the change in cost of the lease. CARL continues this process until (1) the cache use
has reached some target value, i.e., the target cache size, or (2) all references have been assigned
the maximum possible lease.
The CARL lease assignment process for the 5-point stencil example is demonstrated in Fig-

ure 2(b). At the very beginning, all references are initialized to lease 0. In the first step, CARL
decides to assign lease 5 to reference A[i][j+1], since it has the highest PPUC = 16.7%/0.83.
In the next step, CARL considers whether to assign a longer lease for A[i][j+1] or a lease for
another reference and decides to assign lease 8 to reference A[i][j] since its PPUC = 16.7%/1.33.

3.3 Dual Leases

When CARL assigns a new lease, it updates its cache use according to the cost of that lease. If
the running cache size is less than the target cache size, there is no issue and lease assignment

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

15:6 C. Ding et al.

Fig. 2. CARL demonstration using the 5-point stencil program. This greedy algorithm relies on (1) the

per-reference RI distributions (Figure 1), and (2) the hit ratio and the cache use of each lease candidate

(Figure 2(a)) computed from the per-reference RI distributions using Equations (1) and (2).

continues. However, there may be a dilemma where, if the lease is assigned, the cache is over
allocated, but if it is not assigned, the cache is under allocated. The solution is to assign a long
lease for a portion of accesses and a short lease for the rest. The division point is selected such that
the target cache size is exactly matched.
CARL allocates one reference at a time. The effect of the allocation is an aggregate of all its

accesses. This is equivalent to allocating the lease in many steps, one for each access. Using dual
leases, CARL may effectively stop assigning leases to accesses partway through in the event that
the target cache size is exceeded. The upper bound on cache use for a single access is one cache
block over the entire program execution, i.e., with a lease equal to the trace length and no reuse.
Therefore, CARL may allocate cache within one block of any target cache size.

4 A THEORY OF OPTIMAL CACHE PROGRAMMING

This section proves CARL optimality, miss curve convexity, and sub-partitioning monotonicity.

4.1 Optimality

Optimality means maximal cache utilization, i.e., most hits for the given cache size. CARL greedily
assigns leases by decreasing PPUC. In the simple case, when the PPUC of leases are independent
from each other, the greedy algorithm is trivially optimal. However, in general the PPUC of leases

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

CARL: Compiler Assigned Reference Leasing 15:7

Fig. 3. Symbols used in (a) PPUC monotonicity, (b) the midpoint lemma, and (c) CARL optimality.

are not independent. Consider each lease as a cache allocation. It may happen that a sub-optimal
allocation will enable a more profitable allocation later on, hence a need to backtrack.
To show that CARL is optimal, We first give two properties of CARL, (1) PPUC Monotonicity,

and (2) the Midpoint Lemma, to prove (3) CARL Optimality. Figure 3 shows a diagram for each
proof to illustrate the symbols used in the proof.
CARLmay not exactly “match” a target cache size, but with dual leases (Section 2), it can allocate

a cache size within a single block of the target (assuming the target size is no greater than the data
size). The optimality is for only the cache sizes that are produced by CARL.
By choosing the maximal ΔPPUC, CARL attempts to maximize the profit gain at each step. A

problem, however, is that CARL recomputes ΔPPUCs after each assignment, so it may be possible
that a greater ΔPPUC appears later. The following theorem rules out such a possibility.

Theorem 4.1 (PPUC Monotonicity). Let y be the maximal ΔPPUC at a CARL step, and y ′ the
maximal ΔPPUC at the next step, then y ≥ y ′.

Proof. We first consider the case thaty,y ′ are for two different referencesA,B. After the current
step, the ΔPPUCs stay unchanged for B (only ΔPPUCs for A may change). We must have y ≥ y ′;
otherwise, the current step would have selected y ′ instead of y.

We next consider the case when in both steps CARL selects a lease for the same referenceA, i.e.,
first the largest ΔPPUC y at lease l and then ΔPPUC y ′ at l ′. We will use the definition of ΔPPUC

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

15:8 C. Ding et al.

given in Equation (3).We assume that the lease assigned forA before l is lold . Naturally lold < l < l ′,
y = ΔPPUC(A, lold , l), and y ′ = ΔPPUC(A, l , l ′). We now prove y ≥ y ′ by contradiction.

Assume the opposite, y ′ > y. Let y ′
old
= ΔPPUC(A, lold , l

′), i.e., the PPUC gain at the lease l ′

before the update. Because CARL chooses lease l over l ′ in the current step, we have y ≥ y ′
old

.
Combining the two inequalities yields y ′ > y ≥ y ′

old
. By substituting the formula for computing

ΔPPUC, we have:

H (A, l ′) −H (A, l)

C (A, l ′) − C (A, l) >
H (A, l)

C (A, l) ≥
H (A, l ′)

C (A, l ′) , (4)

where H (A, l) and C (A, l) represent hit ratio (Equation (1)) and average lease (Equation (2)) for
referenceA, respectively, when assigned lease l . We now show that the first inequality contradicts
with the second inequality. Rewriting the first inequality, we have

H (A, l)

C (A, l)

(H (A,l ′)
H (A,l) − 1

)
(C (A,l ′)
C (A,l) − 1

) > H (A, l)

C (A, l) .

Since H (A,l)
C (A,l) > 0, and C (A, l ′) > C (A, l), by re-arranging the terms, we have H (A,l)

C (A,l) <
H (A,l ′)
C (A,l ′) ,

which is the opposite of the second inequality. The two inequalities contradict; therefore, the as-
sumption is wrong, and we must have y ≥ y ′.
A careful reader may notice that the derivation assumes lold = 0, which means l and l ′ are the

first two leases assigned for referenceA. In the general case, a previous lease lold has been assigned
before l . This necessitates two changes to the PPUC calculation: subtracting H (A, lold) from the
numerator and C (A, lold) from the denominator. Since this change happens on every fraction in
Equation (4), the inequality still holds. �

Next, we show a lemma about the PPUC calculation. For a reference A, assume that CARL
chooses first l and then l ′ as leases. Let lm be a midpoint, i.e., l < lm < l ′. The midpoint lemma
says that the incremental PPUC from the midpoint to l ′ is greater than that from l to l ′. A pictorial
view can be seen in Figure 3(b).

Lemma 4.2 (Midpoint Lemma). Let l , l ′ be the two successive assignments that CARL selects for

reference A, and lm be a mid-point, i.e., l < lm < l ′. We have

ΔPPUC(A, lm , l
′) > ΔPPUC(A, l , l ′).

Proof. We defineHm as the additional cache hits, and Cm the extra cost, when increasing the
lease from l to lm . When increasing the lease from lm to l ′, let the two changes be ΔH ,ΔC, respec-
tively. Because CARL selects l ′ instead of lm , we know that ΔPPUC(A, l , l ′) > ΔPPUC(A, l , lm), that
is, Hm+ΔH

Cm+ΔC >
Hm

Cm .

We split the proof into two steps: First, we prove that ΔH
ΔC >

Hm

Cm and then we prove the desired
inequality.
Following the same idea from the proof of Theorem 4.1, we lift Hm and Cm from both the

denominator and numerator on both sides.

Hm + ΔH
Cm + ΔC

>
Hm

Cm
⇒ Hm

Cm
·
1 + ΔH

Hm

1 + ΔC
Cm

>
Hm

Cm
⇒ ΔH

ΔC >
Hm

Cm
.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

CARL: Compiler Assigned Reference Leasing 15:9

Given this conclusion, we can now derive that ΔH
ΔC >

Hm+ΔH
Cm+ΔC

ΔH
ΔC >

Hm

Cm
⇒ 1 +

Cm
ΔC > 1 +

Hm

ΔH

⇒ Cm + ΔC
ΔC >

Hm + ΔH
ΔH ⇒ ΔH

ΔC >
Hm + ΔH
Cm + ΔC

. �

The lemma shows that choosing a midpoint is unwise, because we can always increase PPUC by
choosing CARL’s next choice (l ′ in the lemma). Next, we show that no alternative lease assignment
algorithm can outperformCARL, known as the CARLOptimiality. The proof compares CARL lease
l with another lease assignment lK . Since they differ, inevitably there are at least two references
A,B such that CARL givesA a longer lease andB a shorter lease. The proof uses PPUCmonotonicity
and the midpoint lemma to show that no other lease assignment can outperform CARL.

Theorem 4.3 (CARLOptimality). No algorithmwhich determines the leases for a set of references

using only their reuse interval distribution can have a lower miss ratio than CARL.

Proof. Since the lease is determined solely from the reuse interval distribution, any algorithm
must assign the same lease to all accesses of a reference (assuming the algorithm is deterministic).
Letm be the number of references. Let lG be the leases that CARL assigns to a referenceG. Let lK

G
be the lease to G assigned by an alternative policy K . Now, we would like to prove that, with the
same average cache size these two policies will occupy, alternative policyK could not outperform
CARL.
First, we consider the simplest case where the two policies differ in only two lease assignments,

i.e., for two references A and B, CARL chooses lA, lB , whileK chooses lK
A

and lK
B

(as visualized in

Figure 3(c)). Since these two policies will occupy the same amount of cache, we must have lA < lK
A

and lB > lK
B
. We show ΔPPUC(B, lK

B
, lB) ≥ ΔPPUC(A, lA, l

K
A
): For the same cache occupancy,

increasing the lease from lK
B

to lB provides at least as many cache hits as it does by increasing

the lease from lA to lK
A
. In other words, switching the policy fromK to CARL has the same cache

occupancy without losing any cache performance.
For reference B, let lB,p be the lease selected by CARL before lB . From PPUC monotonicity (The-

orem 4.1), PPUC gained by CARL’s new lease selection is no smaller than those of the remaining
lease candidates. Since CARL favors lB over lK

A
, we have ΔPPUC(B, lB,p , lB) ≥ ΔPPUC(A, lA, l

K
A
),

i.e., every lease that CARL chooses is at least as good as any lease that CARL does not choose. We
prove the inequality, ΔPPUC(B, lK

B
, lB) ≥ ΔPPUC(A, lA, l

K
A
), in three cases:

— If lK
B
= lB,p , then ΔPPUC(B, lK

B
, lB) = ΔPPUC(B, lB,p , lB) ≥ ΔPPUC(A, lA, l

K
A
), and the con-

clusion holds.
— If lK

B
> lB,p , then applying the mid-point lemma (Lemma 4.2), we have:

ΔPPUC(B, lKB , lB) > ΔPPUC(B, lB,p , lB) ≥ ΔPPUC(A, lA, l
K
A).

— If lK
B
< lB,p , let lB,p′ the CARL’s closest choice to lK

B
, which is not greater, as shown on

the right-hand side of the Figure 3(c). From the monotonicity theorem and trivial algebra,1

we know that ΔPPUC(B, lB,p′, lB) ≥ ΔPPUC(B, lB,p , lB). From the mid-point lemma, we have

1 a1
c1
≥ a2

c2
→ (a1+a2)

(c1+c2)
≥ a2

c2
for all an, cn > 0. Profit and cost must of course both be greater than 0 for a selected lease.

The proof can be done by lifting a2, c2, like what we did in mid-point lemma proof.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

15:10 C. Ding et al.

ΔPPUC(B, lK
B
, lB) > ΔPPUC(B, lB,p′, lB). Combining these two together, we have

ΔPPUC(B, lKB , lB)>ΔPPUC(B, lB,p′, lB)≥ΔPPUC(B, lB,p , lB)

⇒ ΔPPUC(B, lKB , lB) > ΔPPUC(A, lA, l
K
A).

In the general case, the lease differs in any number of references. LetB be all references B where
CARL assigns a longer lease than K does, andA the opposite. Both policies have the same cache
occupancy, which means:

∑
B∈B

(lB>l
K
B
)

(
C (B, lB) − C (B, lKB)

)
=
∑
A∈A

(lK
A
>lA)

(
C (A, lKA) − C (A, lA)

)
.

We show that the total gain of the hit ratio from the cache occupancy on the left is the same as or
higher than the total gain from the cache occupancy on the right:
∑
B∈B

ΔPPUC(B, lKB , lB) (C (B, lB) − C (B, l
K
B)) ≥

∑
A∈A

ΔPPUC(A, lA, l
K
A) (C (A, lKA) − C (A, lA)).

The left sum includes all hits when CARL assigns a longer lease thanK does, and the right sum
includes all hits when K assigns a longer lease than CARL does. For any reference B on the left
andA on the right, using the same proof from the two-reference case, we have ΔPPUC(B, lK

B
, lB) ≥

ΔPPUC(A, lA, l
K
A
). Therefore, the lowest PPUC for any B is at least as large as the highest PPUC

for any A. Since both sides of the equation have the same number of units of cache use, the sum
on the left is no lower than that on the right.
Therefore, for the same cache occupancy, CARL scores at least the same number of cache hits

as any other policy, that is, CARL is optimal. �

The above proof compares CARL leases with a set of alternative leases. Informally, we may
transform the alternative leases into the CARL leases by going through the CARL algorithm step
by step. At each step, we may add to or subtract from the alternative lease to match the CARL
lease. Since the CARL algorithmmaximizes the incremental PPUC at each step, this transformation
would never degrade the performance of the alternative lease. The process either maintains or
improves the performance. The alteration stops at the end when the leases are identical to those
of CARL. Therefore, the performance of the alternative leases (at the start of this process) must be
either the same as or worse than CARL.
A reader may question how limiting is the theorem’s assumption, i.e., that leases are assigned

based on the reuse interval distribution. May better leases be found based on other information?
To consider, we note that reuse information is all that is needed for optimal caching. The more
precise the information, the better the result of optimization. Previous optimal solutions, e.g., OPT,
have complete information—the forward reuse is known for every access. CARL is the optimal
solution based on aggregate information, i.e., distributions of RIs rather than individual RIs. The
restriction comes not from the CARL algorithm or the theory, but from the amount of information
that is available. For the same reuse information, other kinds of schemes cannot do better than
CARL. For any scheme to be better than CARL, it can only do so because it has more precise reuse
information.

4.2 Miss Curve Convexity and Optimal Cache Sharing

For any program, themiss ratio curve of CARL is a convex function of the cache size. This convexity
means that miss ratio decreases at the same or a lower rate as the cache size increases.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

CARL: Compiler Assigned Reference Leasing 15:11

Theorem 4.4 (Convexity). For cache sizes c1, c2, and 0 ≤ t ≤ 1, we have:

mr(t · c2 + (1 − t) · c1) ≤ t ·mr(c2) + (1 − t) ·mr(c1),

where mr(c) is the miss ratio at cache size c

Proof. The convexity is equivalent to proving mr(c1+t (c2−c1))
t (c2−c1) ≤ mr(c2)−mr(c1)

c2−c1 for t � 0. By taking
t to the smallest value, we have

mr(c2) ≥ mr(c1) + Δmr(c1) (c2 − c1).

Without the loss of generality, let’s assume c1 ≤ c2. Let cx0 = c1, cx1 , cx2 , . . . , cxm , cxm+1 = c2
be the steps of cache sizes of CARL, and ΔPPUC0 . . . ΔPPUCm+1 be their ΔPPUCs. Naturally
Δmr(cxi) = −ΔPPUCi .
From PPUC Monotonicity, we have ΔPPUCi ≥ ΔPPUCi+1. Considering ΔPPUCs as slopes, the

conclusion holds because the miss ratio mr(c2) computed using the series of slopes (ΔPPUCi) is
no smaller than the miss ratio computed using the steepest slope (ΔPPUC0), or formally:

mr(c2) = mr(c1) −
m∑
i=0

(cxi+1 − cxi)ΔPPUCi

≥ mr(c1) −
m∑
i=0

(cxi+1 − cxi)ΔPPUC0

≥ mr(c1) + Δmr(c1) (c2 − c1). �

In the proof, the calculation of mr(c2) also shows monotonicity. Since ΔPPUCi ≥ 0, the miss ratio
curve is monotonically non-increasing.
We have proved that the CARL miss curve convexity follows trivially from PPUC monotonicity.

For fixed-sized caching, OPT was formulated as a stack algorithm and proved optimal in 1970 [49].
The miss ratio curve of a stack algorithm is monotone but not necessarily convex. LRU is a
well known example whose miss ratio curve is not convex. The OPT convexity was not proved
until nearly half century later, as a corollary in 2015 (with assumptions) [7] and formally and
unconditionally in 2016 [51], as a main result of a 20-page article.

Convexity is useful in cache partitioning. In a cache shared by a set of competing processes, the
optimal fixed allocation is one “for which the miss-rate derivative . . . is equal for all processes”,
under the condition that their miss ratio curves be convex [58]. Practical caching techniques such
as LRU do not satisfy this condition. Two solutions have been developed. The first is to “induce”
convexity. Motivated in part by the optimal-partitioning problem being NP-complete, Talus was
developed to remove “performance cliffs” and make the miss ratio curve convex [7]. SLIDE uses
scaled down simulation to achieve convex miss ratio curves for a broad class of policies including
ARC, 2Q, and LIRS [63]. Second, with the aid of the higher-order theory of locality (HOTL),
optimal partitioning can be solved approximately for the LRU cache using dynamic programming
(with a time cost linear to the number of programs but quadratic to the size of the cache) [14, 72].

In addition to cache partitioning, there are other problems of cache sharing. Suh et al. [60]
developed optimization of time sharing using an analytical cache model. It assumed that the miss
ratio curve is convex. Using HOTL, Brock et al. [14] and Ye et al. [72] computed optimal elastic
cache partition sharing. Hu et al. [38] computed optimal program symbiosis and fair scheduling
in shared cache. Its model, average eviction time (AET), is mathematically equivalent to HOTL,
as shown by [73] in the relational theory of locality. For optimization, both techniques used
dynamic programming.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

15:12 C. Ding et al.

Because of the convexity guaranteed by CARL, these cache-sharing problems are simpler to
solve in the lease cache than in the LRU cache, although we do not solve these problems in this
article.

4.3 Sub-partitioning Monotonicity

Using reference leases raises a practical question. For two references in a program, a compiler may
use CARL to assign them each a separate lease, or the compiler may treat them as a single reference
and assign a single lease for both. Sub-partitioning monotonicity means that assigning two leases
is always the better option. Sub-partitioning cannot do worse.
Consider all partitions of a set of accesses. The finer-than relation forms a lattice. The top of

the lattice is the set of all accesses, and the bottom the partition with each access in its singleton
set. CARL guarantees Sub-partitioning Monotonicity, which means that for any cache size, the miss
ratio of a finer partition is never greater than the miss ratio of the original partition. The following
theoremproves sub-partitioningmonotonicity for two partitionswith the direct finer-than relation
in the partition lattice.

Theorem 4.5 (Sub-partitioning Monotonicity). Consider any program and any CARL lease

assignment. Let r be a set of accesses in the original partition, and r1, r2 its two sub-sets in the finer

partition, i.e., r1 ∪ r2 = r , r1 ∩ r2 = ∅. For any cache size c , let the CARL lease be l for r and l1, l2 for
r1, r2, respectively. Let mrl (c) be the original miss ratio of r accesses, and mrl1,l2 (c) the new combined

miss ratio of r1, r2 accesses. Then we have

mrl (c) ≥ mrl1,l2 (c),

for all subsets r1, r2, and cache size c ≥ 0.

Proof. Let the miss ratio be mrl,l (c) if we assign the same lease l for r1, r2. Naturally, we have
mrl (c) = mrl,l (c). Applying the CARL optimality theorem (Theorem 4.3), we have mrl,l (c) ≥
mrl1,l2 (c). Combining the two results, we have mrl (c) ≥ mrl1,l2 (c). �

The proof shows the monotonicity between two partitions with a direct finer-than relation in
the partition lattice. If we apply the theorem on every relation, we have the monotonicity between
any two partitions that have a transitive finer-than relation. For example, a set of accesses may be
divided into any number of sub-sets.2

CARL sub-partitioning monotonicity follows trivially from its optimality. We may draw an anal-
ogy with Jensen’s inequality, which is the property between the average values of mathematical
functions. While Jensen’s inequality is based on convexity, the CARL monotonicicy follows from
its optimality.
The implication of the result is not entirely trivial.When a finer partition divides a set of accesses

into two subsets, it may weaken the precision in one of the sets but cannot worsen the cache
performance. Any blunting in one subset must be countered by sharpening in the other. We define
precision by how precise we can predict the next reuse at the time of an access. An RI distribution
makes a probablistic prediction. The greater the probability with which we can predict a reuse, the
more precise is the prediction.
In sub-partitioning, a set may be divided into any number of sub-sets. One or more of the sub-

sets may have a lower precision and make their prediction less certain. The monotonicity theorem,
however, ensures that the overall effect is never negative.

2The theorem can be proved without assuming optimality, but the proof is non-trivial (over a page long), which we do not
include here.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

CARL: Compiler Assigned Reference Leasing 15:13

Table 1. The Number of References and the Compilation Time Measured in

Milliseconds (10−3s) for the PolyBench Benchmarks

Tests I #References Time Tests II #References Time

2 mm 11 .212 mvt 8 .885
3 mm 15 .152 seidel_2d 10 .219
adi 34 30.8 syrk 6 .203
atax 10 .257 trisolv 9 .602
bicg 10 .136 cholesky 13 27.4
deriche 20 23.1 covariance 16 16.3
doitgen 7 .191 correlation 34 25.5
durbin 9 9.29 floyd_warshall 7 .253
fdtd_2d 16 12.0 gramschmidt 15 2·104
gemm 6 .081 lu 11 149
gemver 17 3.93 ludcmp 18 176
gesummv 13 .169 nussinov 18 6.50
heat_3d 22 .754 symm 10 243
jacobi_1d 8 .087 syr2d 8 177
jacob_2d 12 .192 trmm 6 35.8

Average #references 13 Average compilation time 32.0

Sub-partitioning is the refinement of program information. CARL provides the guarantee that
having more information can never degrade cache performance. Consider Belady’s anomaly,
which happens when a program incurs more misses in a larger cache than in a smaller cache [9].
While Belady’s anomaly is a problem based on the available space for cache management, another
anomaly may happen based on the available information for cache management. With CARL,
neither anomaly can happen.

5 EVALUATION

This section evaluates the potential of our reference lease compiler using the benchmark suite
PolyBench and SPEC CPU 2017.

5.1 Experimental Setup

5.1.1 Candidate Caching Techniques. Practical caching techniques use fixed-size replacement
policies. We use the baseline LRU and the ideal policy OPT. LRU always replaces the least recently
used block, and OPT looks at future accesses and replaces the block whose next reuse happens the
furthest in the future. We measure the miss ratio for all cache sizes. Since CARL is a variable size
policy, we show the miss ratio curves produced by CARL in terms of average cache consumption
RL-AVG and the maximal consumption RL-MAX.
While modern techniques perform better than LRU, they are still far from OPT. With one of

the most successful research prototypes called Hawkeye, Jain and Lin [40] reported achieving on
average half of the improvement of OPT over LRU. Two later variants, Glider [57] and Parrot [46]
further beat Hawkeye using machine learning models, i.e., Support Vector Machine (SVM) and
Self-Attention, but they still lower than OPT. While the best automatic solutions are still unable to,
we next see whether a compiler solution can reach the performance of the off-line ideal solution.

5.1.2 Measurements. All measurements are performed with a 64B cache line size. The LRU per-
formance is measured by profiling the reuse distance. Most efficient methods are Zhong et al. [74]

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

15:14 C. Ding et al.

in time complexity and Wires et al. [66] in space complexity. We use the approximation algorithm
in [74]. We use 99% accuracy (measured reuse distance is guaranteed to be between 99% and 100%
of actual). As for OPT, the measurement uses the setup from [33] based on the code from [59].

RL-AVG. Instead of a given target cache use, we run the CARL assignment loop until all refer-
ences are assigned leases equal to their greatest RIs. We use the algorithm to compute the miss
ratio and average cache use of each assignment. In addition, we connect two consecutive data
points with a line, which shows the effect of dual leases (Section 2).
Table 1 lists the number of references for PolyBench and the compilation overhead of RL, mea-

sured by running CARL on a machine with Intel Xeon Silver 4114 processors with 20 cores and
16 GB memory. On average, the CARL algorithm adds 0.03s overhead (collecting RI distributions
for each reference) on PolyBench with sampled RI distributions.

RL-MAX. We have developed an algorithm to measure the maximal cache use and implemented
it in a simulator. Given reference leases and the access trace, the simulator maintains the actual
cache consumption at each access by tracking the two ways it may change. (1) The cache occu-
pancy increases by 1 at a cache miss. For all data blocks, a hash table stores the last access time,
and a second hash table stores the lease at the time of the last access. (2) The cache consumption
decreases when a lease expires. To track expiration, an expiration counter is allocated and main-
tained for each future time t when there is at least one block that expires at t . When the execution
reaches time t , the counter value is deducted from the cache size, and its memory is freed. In ad-
dition, at a cache hit, the lease is renewed, which means decrementing the previous expiration
counter in addition to incrementing the current expiration counter.

Static Analysis vs Profiling. CARL requires the per reference RI distributions. The results in Fig-
ure 4 are measured using the accurate RI distributions obtained by profiling. CARL can be applied
without profiling using SPS [19]. The results are shown in Appendix in Figure 8. In both profiling
and SPS, CARL computes leases for all cache sizes by compiling a program only once. Chen et al.
[19, Table 2] showed that the overhead of SPS to collect RI distributions increases linearly with the
data size [19].

5.1.3 Benchmarks. We use PolyBench/C 4.2.1, which contains 30 numerical kernels extracted
from linear algebra, image processing, physics simulation, dynamic programming, and statistics
applications [47]. This benchmark suite has been extensively used. For example, Olivry et al. [52]
use it to evaluate their static analysis that derives the I/O complexity lower bounds for affine
programs; Abella-González et al. [1] developed their Python version to evaluate the profitability
of using Python for regular numerical codes.
The data sizes are assigned according to the depth of nested loops in the program. We choose

loop bound 1,024 for one and two nested loops, 256 for three nested loops, and 64 for four nested
loops. We chose a relatively small size due to the time-consuming OPT simulation. Each element
in an array is 8 bytes (A cache block contains 8 elements). In Section 5.4, we show results for
fragments of SPEC 2017 program traces.

5.2 CARL vs. OPT

For each test program, Figure 4 shows three miss ratio curves for RL-AVG,3 LRU, and OPT. Cold
misses are included so the curves do not drop to 0. In addition, it shows the maximal cache con-
sumption RL-MAX, which we discuss in the next section.

3RL-AVG shown in the figure does not violate the miss curve convexity (Section 4.2). Because we draw cache sizes in the
logarithmic scale, what seems visually concave is actually convex if plotted with a linear-scale x -axis.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

CARL: Compiler Assigned Reference Leasing 15:15

Fig. 4. Miss ratios of LRU, RL-AVG, and OPT on PolyBench benchmarks are shown as curves. The maximal

cache sizes of CARL, RL-MAX, are shown as points. The x-axis are different cache sizes, unit in KB and the

y-axis is their corrsponding cache miss ratio. Lower is better.

RL-AVG performs visibly better than OPT in 8 of the 30 tests: adi, atax, deriche, doitgen,
gemver, mvt, syr2d, and trisolv, and slightly worse than OPT in 2 tests: luand trmm. In
nussinov, RL-AVG is slightly worse in small cache sizes and better in large cache sizes. In the
remaining 19 cases, the two are indistinguishable. It is fair to say that when measured by the
average cache consumption or the cache utilization, CARLmatches or exceeds OPT in performance.
While OPT is impractical, a recent technique called Hawkeye uses novel hardware support to

imitate Belady (OPT for a single cache size) [40]. Hawkeye achieves half of the improvement
of OPT over LRU. The study tested four other techniques which achieved a fraction of that of
Hawkeye. Machine learning models are also adopted to improve the cache performance, e.g.,
Glider [57] and Parrot [46]. On average, Glider increases the hit ratio by 12.8% over LRU, while
OPT increases it by 18.6%. Parrot, an offline solution, increases the hit ratio by 16.6% over LRU.
In this evaluation, We do not compare with them directly. The target applications also differ.
We use compiler benchmarks, while Hawkeye, Glider, and Parrot used SPEC CPU benchmarks.
However, we note that the best achievable performance of these techniques is below OPT, often
significantly.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

15:16 C. Ding et al.

Fig. 5. The maximal cache consumption

is close to the average for 99.85% of ac-

cesses, shown by the small gap between

RL-99% and RL-AVG. By reducing the

lease to 0 for 0.4% of accesses, the max-

imal consumption is reduced from 64.19

KB to 0.17 KB.

Fig. 6. Miss ratio curves for CARL and LRU on 10M-instruction

fragments.

CARL outperforming OPT. A careful reader may notice that, in some cache sizes, CARL could
exceeds OPT in cache utilization. This is because CARL is a variable-size caching policy while OPT
is a fixed size cache policy.
Optimal caching is traditionally solved as a run-time problem and requires the memory access

trace. The evaluation results show two new ways to achieve optimal caching. First, the caching
problem may be solved at the program level using program code instead of a trace. At trace level,
OPT ranks the data by the dynamic order of their accesses, which is costly to measure and use. At
program level, CARL solves the same problem using RI distributions and reference leases, which
seem comparable to OPT dynamic ranking.

Second, in these tests, compiler control may be sufficient to manage the cache optimally. Trace-
level OPT has to control data eviction at each access. In loop-based code, the program structure
contains information on data usage and provides a means of control. For reference leasing, ac-
cesses from the same reference are more likely to not only have the same reuse pattern but also
benefit from the same control. As a result, CARL needs only a small number of leases, on aver-
age 13 as shown in Table 1. It achieves comparable performance to OPT using on average just
13 numbers.

5.3 Average vs. Maximal Cache Consumption

The cache consumption varies in CARL. The variation is shown in Figure 4 by the maximal con-
sumption, RL-MAX. At high miss ratios, RL-MAX is similar to RL-AVG. For low miss ratios, the maxi-
mal can be much greater than the average. In these cases, some references are given a long lease,
causing the cache use to jump temporarily.
The gap between the average and maximal cache consumption may be large. This is the case in

correlation, which we show in more detail in Figure 5.
In correlation, at themiss ratio around 50%, the average cache use is 0.19 KB, but themaximum

is 64.19 KB. There is a large gap. The correlation code is shown in List 1. The long lease is 3075 to
ref3, which captures the spatial reuse for ref3 across outer-loop iterations. It temporarily increases
the maximal cache size by 1,024 cache blocks but only for this particular loop nest.
In gramschmidt, starting at a miss ratio of around 57%, the average and maximal cache uses are

0.09 KB and 0.19 KB, respectively. For the next three consecutive lease assignments, the average

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

CARL: Compiler Assigned Reference Leasing 15:17

1 for (col = 0; col < 1024; col++) {

2 ... // ref1 store

3 for (row = 0; row < 1024; row++) {

4 // ref4 = ref2 + ref3
5 mean[col] = mean[col] + data[row * 1024 + col];

6 }

7 ... // two more references

8 }

Listing 1. Code snippet of correlation which calculates the mean of columns of a matrix.

use increases to 0.13 KB, 0.19 KB, and 0.23 KB, while the maximum increases to 64 KB, 85 KB, and
128 KB. The miss ratio is lower by 0.03%, 0.06%, and 0.08%. The compiler may assign 0 lease to the
0.3% of memory accesses and reduce the maximal cache use from 128 KB to 0.23 KB.
Prechtl et al. [54] studied a more realistic setup. Their CLAM system has implemented a split

single-level data cache of 8 KB CycloneV-GT FPGA. In fewer than half of the tests, CARL exceeds
the cache capacity. Data are evicted randomly when the leased space exceeds 8 KB. To limit the
over allocation, they developed Phase-based Reference Leases (PRL), which divides a program
into phases and runs CARL within each phase. They found that PRL is robust and consistently
performing the best over CARL and two other policies including Static Re-reference Interval

Prediction (RRIP) [41].
For fixed-size cache, PRL would prevent the cache overflow problems such as the one in correla-

tion (the short loop nest is a phase, and CARL would allocate within the cache capacity). We leave
as future study the effect of PRL on maximal cache use but note that at each phase, PRL is identical
to CARL, so the theorems hold for each phase of PRL.

5.4 Applicability and Performance on SPEC CPU 2017

Doerfert et al. [25] examined the applicability of the Polly tool for polyhedral compilation in the
SPEC 2,006 benchmarks. Of 1,862 code regions (single-entry, single-exit with at least one loop)
surveyed across nine benchmarks in SPEC, Polly could compile 275 regions (14.8%). In contrast,
SPS [19] can handle regions that Polly could not due to non-affine expression (1,230 regions), non-
affine loop bounds (840), non-canonical induction variables (384 loops that do not start at 0 and
are not incremented by 1), overflow issues from unsigned comparisons (199), presence of function
calls (532), and complex CFG (253, due to, e.g., switch). SPS cannot deal with regions that contain
aliasing (1,093), but clearly many more loops are compile-time enumerable than those subject to
the restrictions of the polyhedral model.
We use DPC3 SPEC CPU 2017 traces4 to test CARL on full applications. Each trace contains

10 million instructions. For 20 SPEC benchmarks, the average number of static references is 1,801
per 10M-instruction trace, the average number of different RIs per reference is 215. For all cache
sizes measured for each benchmark, CARL reduces miss ratio by 0%–1% for 68%, 1%–5% for 13%,
5%–10% for 8%, 10%–20% for 6%, 20%–50% for 3%, and 50% or more for 1.4% of cache sizes (absolute
reduction).
Figure 6 shows the comparison for the subset of traces where CARL makes the largest improve-

ments over RL-AVG and LRU. Though for most of the benchmarks CARL reduces less than 5% of
the misses, the results confirm two benefits. First, CARL is at least as good as LRU and does not
degrade performance. Second, in a significant number of cases, CARL makes large improvements

4https://dpc3.compas.cs.stonybrook.edu.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

https://dpc3.compas.cs.stonybrook.edu

15:18 C. Ding et al.

for complex programs with a large number of references and more complex RI distributions. Note
that these results assume perfect program information and are not based on compiler analysis.

6 RELATEDWORK

Lease Cache. The lease cache is recently introduced by Li et al. [44]. They developed Optimal

Steadystate Lease (OSL), which analyzed a trace and assigned a lease for each page based on
the RI histogram for its accesses. OSL is a trace-level solution and needs to examine all pages and
their accesses to assign a lease for each page. Neither the information nor the lease control is
feasible at program level. The theoretical results of CARL, PPUC monotonicity, midpoint lemma,
and convexity apply also to OSL. It is a simple corollary that OSL is optimal, which Li et al. [44]
conjectured but did not prove.
Li et al. [44] showed that OSL performs similarly or better thanOPT for a storageworkload. How-

ever, the space overhead is significant: the traces contain between 162 thousand and 230 million
pages, and OSL used an RI histogram per page [44, Table 1]. Among 30 benchmarks in PolyBench,
CARL uses 6–34 RI distributions (Table 1), while OSL uses 256–4,194,048, which is many orders
of magnitude less. Besides, the number of OSL leases grows with the data size, but the number
of CARL leases does not. With significantly lower space requirement, CARL still obtains a similar
comparison with OPT (Figure 4) as OSL did.
In a workshop article, Chen et al. [18] proposed Compiler Lease of Accelerator Memory

(CLAM), which was the first study of reference leases. Through simulation, they measured the
effect of reference leasing in element and cache-block granularity and compared it with that of
LRU. The results show that CARL is more effective than LRU in evicting cache blocks with poor
utilization. In other words, compiler knowledge allows the cache to better retain data blocks with
good spatial reuse.
Prechtl et al. [54] developed a hardware prototype of the lease cache on FPGA and made CLAM

a practical design for using leases in a fix-size, single-level, and not shared hardware cache. They
tested and compared techniques including CARL and PRL (discussed in Section 5.3).

Uniform Lease Cache. The simplest possible lease assignment policy is uniform lease (UL) pol-

icy, where each access receives the same lease. We call the cache managed by the UL policy the UL

cache. The UL assignment can be considered as the special case of CARL inwhich all accesses are in
the same set. Chen et al. [17] concluded that the performance of UL cache and LRU cache are sim-
ilar in most cases. As such, lease caching can be said to be performance safe, as LRU performance
can be achieved with minimal program information.

Reference Locality Modeling and Optimization. It is common for loop-nest optimization to clas-
sify references by the temporal and spatial reuse [2, 3, 50]. Reuse distance, i.e., LRU stack distance,
allows such locality be quantified. Marin and Mellor-Crummey [48] analyzed the reuse distance
histogram for each reference and used it for performance modeling across program inputs and
machine types. Other techniques also used this notion of locality. Fang et al. [29] used it to find
critical memory loads. Beyls and D’Hollander [11] used it to compile a program with cache hints
and to build a program tuning tool SLO to identify the cause of poor locality and give suggestions
for restructuring the code.
CARL is based on reference locality but differs in two aspects. First, the reference locality is

defined by reuse intervals instead of reuse distances. Second, it is used to directly control the
cache. Reuse intervals have been used to model cache performance in working-set theory from
its inception [23] and a number of later techniques [27, 39, 56, 68]. Reuse intervals are efficient
to measure and as a result frequently used in profiling and run-time analysis. Shen et al. [56]
developed statistical conversion between the reuse interval and reuse distance, which is then used

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

CARL: Compiler Assigned Reference Leasing 15:19

by the locality tuning tool SLO [12] and recently a near real-time analysis tool based on hardware
data watchpoints [64]. The relation between the reuse interval and reuse distance is formalized in
the relational theory of locality [69, 73].

Compile-time Modeling of Cache Performance. Compiler techniques has long been used to im-
prove cache performance by improving data reuses [2, 3, 5, 15, 31, 67]. To reduce the run-time
overhead, a cache stores data in block granularity, which complicates analysis but can be modeled
by a compiler [16, 30, 62, 70]. Two recent papers [6, 35] have given symbolic and accurate cache
models. There are precise models of cache behavior.
The lease cache permits direct cache control. Such control simplifies cachemodeling. The theory

in this article shows two such benefits. The first is synergy between analysis and control. The CARL
algorithm for cache allocation is at the same time the model for cache performance, as it selects
an allocation based on its effect on performance (measured by PPUC). The second is reduction
in complexity. For analysis, the most complex problem is to model the order of data access. In
CARL, the RIs are used for their distribution without any ordering information, yet the cache
utilization matches and exceeds OPT, which requires knowing the full trace. More powerful static
techniques may improve the cache utilization even beyond CARL. Furthermore, an open problem
is whether the variation of cache size can be analyzed or more importantly, be bounded. More
powerful compiler analysis may address this problem.

Collaborative cache. Hardware–software collaborative caching was first used byWang et al. [65]
and Beyls and D’Hollander [10, 11]. Gu et al. [32] proved that cache hints can obtain the perfor-
mance of optimal cache. Furthermore, the collaborative caching policy, called the LRU-MRU cache,
is a stack algorithm and observes the inclusion property [33]. They gave the algorithm to compute
the LRU-MRU stack distance. Gu and Ding [34] then studied priority hints beyond single-bit hints
and showed non-uniform inclusion property of this general policy and their one-pass evaluation.
Brock et al. [13] developed a practical solution for collaborative caching on loop-based code called
Program Assisted Cache Management (Pacman).
CARL differs in two ways. First, CARL targets variable-size cache. Second, cache hints are sug-

gestions, while leases mean direct control using program information. The baseline solution also
differs: it is to give no hint in the collaborative cache and the uniform lease in the lease cache.

Register and Scratchpad Memory Allocation. Registers may be viewed as a compiler managed
cache. In the bibliographical notes after the chapter on register allocation, Cooper and Torczon
[21, Chap. 13] pointed out that the Belady algorithm published in 1966 [8] was independently
invented by Sheldon Best working on the first Fortran compiler [4], and “Best’s algorithm has been
rediscovered and reused in many contexts over the years” [22, 45]. Scratchpad memory (SPM)
allocation is solved by extending the techniques of allocating scalars to registers to allocating
arrays in SPM.
Udayakumaran et al. [61] showed that dynamic allocation using their compile-time heuristics

could significantly outperform optimal static allocation. Taking a different approach, Li et al. [43]
used the static solution of graph coloring but enabled dynamic allocation through live-range split-
ting.
Past compiler solutions did not try to claim OPT optimality. Udayakumaran et al. [61] showed

that the performance of their compiler solution called the Data-Program Relationship Graph

(DPRG) was comparable to a direct-map cache. Li et al. [43] improved DPRG by as high as 13% (in
speedup) but did not compare the results with OPT. In this study, we show a large gap between
LRU and OPT and that CARL can potentially close this gap in almost all our tests.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

15:20 C. Ding et al.

Cache System Design. The literature of cache system design is long and still rapidly growing.
Duong et al. developed the Protecting Distance-based Policy (PDP) [26]. PDP “prevents replac-
ing a cache line until a certain number of accesses to its cache set.” It is the same as the uniform
lease, i.e., the baseline solution discussed previously. PDP is a run-time solution, while UL is static.
It is a widely recognized problem that LRU does not perform well for the streaming pattern, e.g.,
when an array larger than the cache size is repeatedly traversed. Many techniques have been devel-
oped, including page coloring, cache replacement techniques such as SRRIP [41], cache bypassing,
and cache hints. Two recent techniques are Talus [7] and SLIDE [63]. Talus partitions the access
stream to have the effect of dividing the working set, and SLIDE, with scaled-down simulation,
achieves this effect for stack or non-stack cache policies. CARL has a similar effect, but it uses
program rather than cache control.
Many past designs target fixed-size cache with the goal of closing the gap between LRU and

OPT. Hawkeye, by actually simulating OPT in real-time, has moved close to OPT, achieving half of
the improvement of OPT over LRU [40]. Recent designs called Glider [57] and Parrot [46] improve
over Hawkeye with the help of machine-learning techniques, as also in [55]. Glider is direct im-
provement over Hawkeye and uses SVM. Parrot is an offline solution and uses the newest sequence
learning technique called Self Attention. On average, Glider increases the hit ratio by 12.8% over
LRU, while OPT increases it by 18.6%. Parrot, an offline solution, increases the hit ratio by 16.6% over
LRU. In this evaluation, We do not compare with them directly. The target applications also differ.
We use compiler benchmarks, while Hawkeye, Glider, and Parrot used SPEC CPU benchmarks.

Cache systems are automatic, while CARL is a programming solution. All automatic solutions
require empirically determined thresholds, while CARL uses compiler analysis and provides theo-
retical guarantees. Optimal caching is traditionally solved as a run-time problem and requires the
memory access trace. CARL shows three new findings. First, the caching problem may be solved
at the program level using program code instead of a trace. Second, in these tests, compiler control
may be sufficient to manage the cache optimally. Finally, using variable size caches, wemay exceed
OPT performance.

7 SUMMARY

As memory hierarchies become larger and more complex, fully automatic control, i.e., caching,
can be too restrictive since it does not utilize program knowledge. The lease cache hardware and
reference leasing compiler provide programmable cache and its program control.
This article has presented a theory and a potential study and shown that the cache can be pro-

grammed automatically and optimally.We prove the PPUCmonotonicity, themidpoint lemma, and
CARL optimality. From this optimality, we prove the miss curve convexity and sub-partitioning
monotonicity, which is useful for optimizing a shared cache and for simplifying the compiler de-
sign, in either hardware or software cache. When evaluated on loop-based kernel code, we show
that just 6–34 reference leases can achieve the same or better cache utilization than OPT, which is
not yet attainable with automatic solutions (including recent techniques utilizing large-scale ma-
chine learning) but now within the potential of cache programming for all tested programs and
most cache sizes.

APPENDICES

A DIRECT PROOF OF SUB-PARTITIONING MONOTONICITY

Theorem 4.1 is proved based on the optimality theorem. Here, we show a direct proof without
assuming optimality. First, we prove a lemma that establishes that a lease to a group of references
must lie between leases to the individual references that make up the group. Let two references

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

CARL: Compiler Assigned Reference Leasing 15:21

be ref1, ref2,
5 their RI distributions Dref1

, Dref2
and access ratios AR1,AR2. Let ref12 represent the

combined effect of the two. We have the combined access ratio and RI distribution:

AR12 = AR1 +AR2, (5)

Dref12
[i] =

Dref1
[i] ∗AR1 + Dref2

[i] ∗AR2

AR12
i = 1 . . .N . (6)

Assume a program exists with just these two references. We obtain individual leases by running
CARL using Dref1

,Dref2
. At each step t , the individual leases are l t1 , l

t
2 . At the first step, we have

l01 = l02 = 0. We obtain joint leases by running CARL using Dref12
. At each step, the group lease is

l t12.

LemmaA.1. For two references ref1, ref2 with any RI distributions, the lease assigned to the reference
group composed of ref1, ref2, known as l12, always lies within the range of the lease assigned when

considering the references separately. l1 ≤ l12 ≤ l2.

Proof. When assigning leases to each individual reference, compared with that for reference
groups, the only difference is the granularity of the access we consider. The cache space for the
reference access groups should be equal to the sum of the cache space costs for each reference,
written as Cost (Dref12

, l12) = Cost (Dref1
, l1) + Cost (Dref2

, l2). We use Equation (2) to compute the
space cost with respect to the reuse-interval distribution D and the assigned lease l .

LEFT = ��
�

l12∑
i=0

i ∗ Dref12
[i] +

N∑
i=l12+1

l12 ∗ Dref12
[i]��

�
∗AR12

=
��
�

l12∑
i=0

i ∗ Dref1
[i] +

N∑
i=l12+1

l12 ∗ Dref1
[i]��

�
∗AR1 +

��
�

l12∑
i=0

i ∗ Dref2
[i] +

N∑
i=l12+1

l12 ∗ Dref2
[i]��

�
∗AR2

(7)

RIGHT = ��
�

l1∑
i=0

i ∗ Dref1
[i] +

N∑
i=l1+1

l1 ∗ Dref1
[i]��

�
∗AR1 +

��
�

l2∑
i=0

i ∗ Dref2
[i] +

N∑
i=l2+1

l2 ∗ Dref2
[i]��

�
∗AR2.

(8)

As LEFT − RIGHT = 0, we have:

��
�

l1∑
i=0

i ∗ Dref1
[i] −

l12∑
i=0

i ∗ Dref1
[i] +

N∑
i=l1+1

l1 ∗ Dref1
[i] −

N∑
i=l12+1

l12 ∗ Dref1
[i]��

�
∗AR1

+
��
�

l2∑
i=0

i ∗ Dref2
[i] −

l12∑
i=0

i ∗ Dref2
[i] +

N∑
i=l2+1

l2 ∗ Dref2
[i] −

N∑
i=l12+1

l12 ∗ Dref2
[i]��

�
∗AR2 = 0. (9)

Equation (9) means that the cache space difference (ΔCost) when switching the lease from l1 to l12
is equal to that when switching the lease from l12 to l2. If we assume that l1 > l12, then Equation (9)

5We always mark the reference with smaller lease as r1. Then we have l1 ≤ l2.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

15:22 C. Ding et al.

Fig. 7. (a) At time t , lt1 , and l
t
2 are the temporary leases for ref1, ref2. When treating ref1, ref2 as a group, l12

will be assigned to both of them, while when considering individually, l1 and l2 will be their corresponding
leases. All arrows with ΔPPUCs indicate the performance gain brought by lease switching. (b) The DAG

representation of merging references to reference groups. Every vertex represents either a single reference

(blue nodes) or a reference group (white nodes). The edge points to the reference group it belongs to.

can be rewritten as

��
�

l1∑
i=l12+1

(i − l12) ∗ Dref1
[i] +

N∑
i=l1+1

(l1 − l12) ∗ Dref1
[i]��

�
∗AR1

+
��
�

l2∑
i=l12+1

(i − l12) ∗ Dref2
[i] +

N∑
i=l2+1

(l2 − l12) ∗ Dref2
[i]��

�
∗AR2 = 0.

However, each term in this equation is greater than 0. So, the assumption l1 > l12 does not hold
and we have l12 ≥ l1. Similarly, if we assume that l12 > l2, all terms in this equation are smaller
than 0. So, l12 always lies within the range (l1, l2) with respective to any RI distributions. �

Next we will prove that the per-reference lease assignment can achieve higher hit ratio than
reference-group lease assignment. We call it as the group monotonicity.

Theorem A.2 (Sub-partition Monotonicity). For two references ref1, ref2 with any RI distribu-
tions and access ratios, let l1, l2 be the leases selected individually and l12 the lease selected for them

as group. Then l12 cannot give a lower miss ratio for the same or less cache allocation than l1, l2, that
is, for all l12, l1,andl2 such that Cost (Dref1

, l1) +Cost (Dref2
, l2) = Cost (Dref12

, l12), we must have

H (Dref1
, l1) +H (Dref2

, l2) ≥ H (Dref12
, l12),

whereH represents the hit ratio.

Proof. As indicated in Figure 7(a), at time t , leases l t1 and l
t
2 were assigned to references ref1, ref2,

respectively. Equation (3) indicates that the change of PPUC could be derived from the ratio be-
tween the increment of hit ratio and that of space, written as ΔPPUC = ΔH

ΔCost . When assigning l12
to both references, the hit ratio will becomeHinit+ (ΔPPUC2+ΔPPUC3)∗ΔCostgrp and that will be-
comeHinit+ (ΔPPUC1+ΔPPUC4)∗ΔCostref when assigning l1, l2 separately to ref1, ref2, whereHinit

is the hit ratio achieved at time t , ΔCostgrp and ΔCostref represents the increment of space when
assigning leases to reference groups and single references, respectively. In Lemma A.1, we have al-
ready proved thatΔCostgrp = ΔCostref. In CARL, each time a old lease was replaced if and only if the
increment PPUC for the new lease is greater than that for the old lease (ΔPPUCnew ≥ ΔPPUCold).

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

CARL: Compiler Assigned Reference Leasing 15:23

Hence, we haveΔPPUC4 ≥ ΔPPUC3 andΔPPUC1 ≥ ΔPPUC2. For the same cache size, this inequal-
ity of PPUC implies the inequality of hit ratios, i.e.,H (Dref1

, l1) +H (Dref2
, l2) ≥ H (Dref12

, l12). �

In the following corollary, we extend it to all reference groups, since it shows that grouping
references cannot improve cache performance, and per reference leases give the best solution.

Corollary A.3. For any reference groups with any RI distributions, the lease assigned based on

smaller reference groups will always outperform the lease assigned based on larger reference groups.

Proof. Figure 7(b) shows one example of representing the reference grouping into DAG format.
Theorem A.2 could be applied on every edge. Given that, every destination node will incur higher
miss ratio than its source nodes. �

B CARL RESULTS BASED ON SPS SAMPLED RI DISTRIBUTIONS

Figure 8 shows the RL-AVG results with SPS sampled RI distributions (5% sampling rate).We can see
that for 24 of 30 benchmarks, SPS-5% overlaps with RL-AVG. For cholesky, lu and ludcmp, there is
a small gap between SPS-5% and RL-AVG for some of the cache sizes because the reuse intervals are
scattered for some of the references in the benchmarks. For nussinov, floyd_warshall, which
contain branches, the RI distribution collected is not that reliable as current SPS implementation
ignores branches. One may notice that this figure does not show the SPS-5% miss ratio curves for
symm and syrk. This is because their miss ratios are higher than the upper bound. For example, in
syrk, the miss ratio for a 128 KB cache is 0.76, much higher than bound 0.07

Fig. 8. Miss ratio curves for LRU, RL-AVG, OPT and RL-AVG with sampled RI distributions (SPS-5%).

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

15:24 C. Ding et al.

Table 2. The Number of References and the Total Time (SPS in 5% Sampling +

CARL Lease Assignment) Measured in Milliseconds (10−3s)

Tests I #references Time Tests II #references Time

2 mm 11 38 mvt 8 214
3 mm 15 30 seidel_2d 10 24
adi 34 398 syrk 6 21
atax 10 340 trisolv 9 73
bicg 10 218 cholesky 13 914
deriche 20 288 covariance 16 5, 935
doitgen 7 9 correlation 34 4, 063
durbin 9 22 floyd_warshall 7 17, 513
fdtd_2d 16 242 gramschmidt 15 60, 132
gemm 6 23 lu 11 1, 881
gemver 17 189 ludcmp 18 1, 573
gesummv 13 221 nussinov 18 123
heat_3d 22 5189 symm 10 4, 585
jacobi_1d 8 0.3 syr2d 8 5, 894
jacob_2d 12 258 trmm 6 25, 236

Average #references 13 Average compilation time 4,522

C CARL OVERHEAD

Table 3 shows the overhead of RI Distribution collection process collected by SPS under 5% sam-
pling rate with CARL lease assignment process, unit in milliseconds. On average, among all
30 benchmarks, CARL adds just 4.36% of overhead of the entire process of compiler cache allo-
cation (SPS + CARL).

Table 3. The Number of References and the Total Time (Profiling +

CARL Lease Assignment) Measured in Seconds

Tests I CARL Toal Tests II CARL Total

2 mm .09 74.7 mvt .03 4.60
3 mm .01 120.2 seidel_2d .08 67.1
adi 33.0 163.8 syrk .05 18.4
atax .01 4.11 trisolv .01 .53
bicg .01 4.43 cholesky .92 254.
deriche 35.3 59.5 covariance 6.96 1452.
doitgen .002 35.4 correlation 20.8 1464.7
durbin .09 0.84 floyd_warshall .001 2398.6
fdtd_2d 23.7 125.7 gramschmidt .04 3622.1
gemm .001 31.2 lu 88.7 947.8
gemver 3.86 12.2 ludcmp 90.9 638.7
gesummv .02 3.49 nussinov 901.7 1301.1
heat_3d .06 2771.8 symm 11.2 2500.8
jacobi_1d .000 .01 syr2d 6.25 2596.24
jacob_2d .10 78.2 trmm 2.97 1134.1

Average CARL time 40.9 Average total time 728.6

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

CARL: Compiler Assigned Reference Leasing 15:25

ACKNOWLEDGMENTS

Pengcheng Li and Colin Pronovost contributed to the first formulation of CARL optimality and its
proof. Mingyang Jiao collected the OPT results shown in Figure 4. Hannah Simons helped with
the illustration. We also thank many people who have given feedback and suggestions including
Donovan Snyder, Noah Bertram, Katherine Seeman, Joshua Radin, Aaron Gindi, the rest of the
University of Rochester systems research group, and the anonymous reviewers of this journal.

REFERENCES

[1] Miguel Á. Abella-González, Pedro Carollo-Fernández, Louis-Noël Pouchet, Fabrice Rastello, and Gabriel Rodríguez.
2021. PolyBench/Python: Benchmarking python environments with polyhedral optimizations. In Proceedings of the

30th ACM SIGPLAN International Conference on Compiler Construction (Virtual, Republic of Korea). Association for
Computing Machinery, New York, NY, 59–70. DOI:https://doi.org/10.1145/3446804.3446842

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers: Principles, Techniques, and Tools

(2nd ed.). Addison-Wesley.
[3] Randy Allen and Ken Kennedy. 2001. Optimizing Compilers for Modern Architectures: A Dependence-based Approach.

Morgan Kaufmann Publishers.
[4] J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L. Herrick, R. A. Nelson, D. Sayre, P. B. Sheridan,

H. Stern, I. Ziller, R. A. Hughes, and R. Nutt. 1957. The FORTRAN automatic coding system. In Proceedings of the

Western Joint Computer Conference. 188–198.
[5] Utpal Banerjee. 1997. Dependence Analysis. Kluwer. I–XVII, 1–214 pages.
[6] Wenlei Bao, Sriram Krishnamoorthy, Louis-Noël Pouchet, and P. Sadayappan. 2018. Analytical modeling of cache

behavior for affine programs. PACMPL 2, POPL (2018), 32:1–32:26. DOI:https://doi.org/10.1145/3158120
[7] Nathan Beckmann and Daniel Sanchez. 2015. Talus: A simple way to remove cliffs in cache performance. In Proceed-

ings of the International Symposium on High-Performance Computer Architecture. 64–75. DOI:https://doi.org/10.1109/
HPCA.2015.7056022

[8] L. A. Belady. 1966. A study of replacement algorithms for a virtual-storage computer. IBM Systems Journal 5, 2 (1966),
78–101.

[9] Laszlo A. Belady, Robert A. Nelson, and Gerald S. Shedler. 1969. An anomaly in space-time characteristics of certain
programs running in a paging machine. Communications of the ACM 12, 6 (1969), 349–353.

[10] K. Beyls and E.H. D’Hollander. 2002. Reuse distance-based cache hint selection. In Proceedings of the 8th International
Euro-Par Conference. Paderborn, Germany.

[11] Kristof Beyls and Erik H. D’Hollander. 2005. Generating cache hints for improved program efficiency. Journal of
Systems Architecture 51, 4 (2005), 223–250.

[12] Kristof Beyls and Erik H. D’Hollander. 2006. Discovery of locality-improving refactoring by reuse path analysis.
In Proceedings of High Performance Computing and Communications. Springer. Lecture Notes in Computer Science,
Vol. 4208. 220–229.

[13] Jacob Brock, Xiaoming Gu, Bin Bao, and Chen Ding. 2013. Pacman: Program-assisted cache management. In Proceed-
ings of the International Symposium on Memory Management.

[14] Jacob Brock, Chencheng Ye, Chen Ding, Yechen Li, Xiaolin Wang, and Yingwei Luo. 2015. Optimal cache partition-
sharing. In Proceedings of the International Conference on Parallel Processing.

[15] Calin Cascaval and David A. Padua. 2003. Estimating cache misses and locality using stack distances. In Proceedings

of the International Conference on Supercomputing. 150–159.
[16] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck. 2001. Exact analysis of the cache behavior of nested loops. In

Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation. Snowbird, UT.
[17] Dong Chen, Chen Ding, Fangzhou Liu, Benjamin Reber, Wesley Smith, and Pengcheng Li. 2021. Uniform lease vs.

LRU cache: Analysis and evaluation. In Proceedings of the 2021 ACM SIGPLAN International Symposium on Memory

Management (Virtual, Canada). Association for Computing Machinery, New York, NY, 15–27. DOI:https://doi.org/
10.1145/3459898.3463908

[18] Dong Chen, Chen Ding, and Dorin Patru. 2019. CLAM: Compiler leasing of accelerator memory. In Languages and

Compilers for Parallel Computing, LCPC 2019, Atlanta, GA, October 22-24, 2019, Revised Selected Papers (Lecture Notes

in Computer Science, Vol. 11998), Santosh Pande and Vivek Sarkar (Eds.), Springer, 89–97.
[19] Dong Chen, Fangzhou Liu, Chen Ding, and Sreepathi Pai. 2018. Locality analysis through static parallel sampling.

In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation. 557–570.
DOI:https://doi.org/10.1145/3192366.3192402

[20] Edward G. Coffman Jr. and Peter J. Denning. 1973. Operating Systems Theory. Prentice-Hall.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

https://doi.org/10.1145/3446804.3446842
https://doi.org/10.1145/3158120
https://doi.org/10.1109/HPCA.2015.7056022
https://doi.org/10.1145/3459898.3463908
https://doi.org/10.1145/3192366.3192402

15:26 C. Ding et al.

[21] Keith Cooper and Linda Torczon. 2010. Engineering a Compiler, 2nd Edition. Morgan Kaufmann.
[22] Jack W. Davidson and Christopher W. Fraser. 1984. Code selection through object code optimization. ACM Transac-

tions on Programming Languages and Systems 6, 4 (1984), 505–526. DOI:https://doi.org/10.1145/1780.1783
[23] Peter J. Denning. 1968. The working set model for program behaviour. Communications of the ACM 11, 5 (1968),

323–333.
[24] Peter J. Denning. 2021. Working set analytics. ACM Computing Survey 53, 6 (2021), 113:1–113:36. DOI:https://doi.

org/10.1145/3399709
[25] Johannes Doerfert, ClemensHammacher, Kevin Streit, and SebastianHack. 2013. Spolly: Speculative optimizations in

the polyhedral model. In Proc. 3rd International Workshop on Polyhedral Compilation Techniques (IMPACT’13), Armin
Größlinger and Louis-Noël Pouchet.

[26] Nam Duong, Dali Zhao, Taesu Kim, Rosario Cammarota, Mateo Valero, and Alexander V. Veidenbaum. 2012. Im-
proving cache management policies using dynamic reuse distances. In Proceedings of the ACM/IEEE International

Symposium on Microarchitecture. 389–400. DOI:https://doi.org/10.1109/MICRO.2012.43
[27] David Eklov, David Black-Schaffer, and Erik Hagersten. 2011. Fast modeling of shared caches in multicore systems.

In Proceedings of the International Conference on High Performance Embedded Architectures and Compilers. 147–157.
Best paper.

[28] Venmugil Elango, Fabrice Rastello, Louis-Noël Pouchet, J. Ramanujam, and P. Sadayappan. 2015. On characterizing
the data access complexity of programs. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages. 567–580. DOI:https://doi.org/10.1145/2676726.2677010
[29] Changpeng Fang, Steve Carr, Soner Önder, and Zhenlin Wang. 2005. Instruction based memory distance analysis

and its application. In Proceedings of the International Conference on Parallel Architecture and Compilation Techniques.
27–37.

[30] S. Ghosh, M. Martonosi, and S. Malik. 1999. Cache miss equations: A compiler framework for analyzing and tuning
memory behavior. ACM Transactions on Programming Languages and Systems 21, 4 (1999), 703–746.

[31] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. 2012. POLLY - performing polyhedral optimizations
on a low-level intermediate representation. Parallel Processing Letters 22, 04 (2012), 1250010. DOI:https://doi.org/10.
1142/S0129626412500107

[32] Xiaoming Gu, Tongxin Bai, Yaoqing Gao, Chengliang Zhang, Roch Archambault, and Chen Ding. 2008. P-OPT:
Program-directed optimal cachemanagement. In Proceedings of theWorkshop on Languages and Compilers for Parallel

Computing. 217–231.
[33] Xiaoming Gu and Chen Ding. 2011. On the theory and potential of LRU-MRU collaborative cache management. In

Proceedings of the International Symposium on Memory Management. 43–54.
[34] Xiaoming Gu and Chen Ding. 2012. A generalized theory of collaborative caching. In Proceedings of the International

Symposium on Memory Management. 109–120.
[35] Tobias Gysi, Tobias Grosser, Laurin Brandner, and Torsten Hoefler. 2019. A fast analytical model of fully associative

caches. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation. 816–
829. DOI:https://doi.org/10.1145/3314221.3314606

[36] E. G. Hallnor and S. K. Reinhardt. 2000. A fully associative software-managed cache design. In Proceedings of 27th

International Symposium on Computer Architecture (IEEE Cat. No. RS00201). 107–116. DOI:https://doi.org/10.1145/
339647.339660

[37] J. Hong and H. T. Kung. 1981. I/O complexity: The red-blue pebble game. In Proceedings of the ACM Conference on

Theory of Computing. Milwaukee, WI.
[38] XiamengHu, XiaolinWang, Yechen Li, Yingwei Luo, ChenDing, and ZhenlinWang. 2017. Optimal symbiosis and fair

scheduling in shared cache. IEEE Transactions on Parallel and Distributed Systems 28, 4 (2017), 1134–1148. DOI:https://
doi.org/10.1109/TPDS.2016.2611572

[39] Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo, Zhenlin Wang, Chen Ding, and Chencheng Ye. 2018. Fast miss
ratio curve modeling for storage cache. ACM Transactions on Storage 14, 2 (2018), 12:1–12:34. DOI:https://doi.org/10.
1145/3185751

[40] Akanksha Jain and Calvin Lin. 2016. Back to the future: Leveraging Belady’s algorithm for improved cache replace-
ment. In Proceedings of the International Symposium on Computer Architecture. 78–89. DOI:https://doi.org/10.1109/
ISCA.2016.17

[41] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely Jr., and Joel S. Emer. 2010. High performance cache replacement
using re-reference interval prediction (RRIP). In Proceedings of the International Symposium on Computer Architecture.
ACM, 60–71. DOI:https://doi.org/10.1145/1815961.1815971

[42] Rahman Lavaee. 2016. The hardness of data packing. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages. 232–242. DOI:https://doi.org/10.1145/2837614.2837669

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

https://doi.org/10.1145/1780.1783
https://doi.org/10.1145/3399709
https://doi.org/10.1109/MICRO.2012.43
https://doi.org/10.1145/2676726.2677010
https://doi.org/10.1142/S0129626412500107
https://doi.org/10.1145/3314221.3314606
https://doi.org/10.1145/339647.339660
https://doi.org/10.1109/TPDS.2016.2611572
https://doi.org/10.1145/3185751
https://doi.org/10.1109/ISCA.2016.17
https://doi.org/10.1145/1815961.1815971
https://doi.org/10.1145/2837614.2837669

CARL: Compiler Assigned Reference Leasing 15:27

[43] Lian Li, Hui Feng, and Jingling Xue. 2009. Compiler-directed scratchpad memory management via graph coloring.
TACO 6, 3 (2009), 9:1–9:17. DOI:https://doi.org/10.1145/1582710.1582711

[44] Pengcheng Li, Colin Pronovost, William Wilson, Benjamin Tait, Jie Zhou, Chen Ding, and John Criswell. 2019. Beat-
ing OPTwith statistical clairvoyance and variable size caching. In Proceedings of the International Conference on Archi-
tectural Support for Programming Languages and Operating Systems. 243–256. DOI:https://doi.org/10.1145/3297858.
3304067

[45] Vincenzo Liberatore, Martin Farach-Colton, and Ulrich Kremer. 1999. Evaluation of algorithms for local register
allocation. In Proceedings of the International Conference on Compiler Construction. 137–152. DOI:https://doi.org/10.
1007/978-3-540-49051-7_10

[46] Evan Zheran Liu, Milad Hashemi, Kevin Swersky, Parthasarathy Ranganathan, and Junwhan Ahn. 2020. An imitation
learning approach for cache replacement. In Proceedings of the 37th International Conference on Machine Learning,

(ICML’20), 13-18 July 2020, Virtual Event, Vol. 119. PMLR, 6237–6247. http://proceedings.mlr.press/v119/liu20f.html.
An Imitation Learning Approach for Cache Replacement. arXiv:2006.16239. Retrieved from https://arxiv.org/abs/
2006.16239.

[47] Louis-Noel Pouchet and Tomofumi Yuki. 2018. PolyBench/C 4.2. Retrieved from http://https://sourceforge.net/
projects/polybench/files/.

[48] G. Marin and J. Mellor-Crummey. 2004. Cross architecture performance predictions for scientific applications using
parameterized models. In Proceedings of the International Conference on Measurement and Modeling of Computer

Systems. 2–13.
[49] R. L. Mattson, J. Gecsei, D. Slutz, and I. L. Traiger. 1970. Evaluation techniques for storage hierarchies. IBM System

Journal 9, 2 (1970), 78–117.
[50] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. 1996. Improving data locality with loop transformations.

ACM Transactions on Programming Languages and Systems 18, 4 (1996), 424–453.
[51] Pierre Michaud. 2016. Some mathematical facts about optimal cache replacement. ACM Transactions on Architecture

and Code Optimization 13, 4 (2016), 50:1–50:19. DOI:https://doi.org/10.1145/3017992
[52] Auguste Olivry, Julien Langou, Louis-Noël Pouchet, P. Sadayappan, and Fabrice Rastello. 2020. Automated derivation

of parametric data movement lower bounds for affine programs. In Proceedings of the 41st ACM SIGPLAN Conference

on Programming Language Design and Implementation (London, UK) (PLDI 2020). Association for Computing Ma-
chinery, New York, NY, 808–822. DOI:https://doi.org/10.1145/3385412.3385989

[53] E. Petrank and D. Rawitz. 2002. The hardness of cache conscious data placement. In Proceedings of the ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages.
[54] Ian Prechtl, Ben Reber, Chen Ding, Dorin Patru, and Dong Chen. 2020. CLAM: Compiler lease of cache memory. In

Proceedings of the International Symposium on Memory Systems.
[55] Subhash Sethumurugan, Jieming Yin, and John Sartori. 2021. Designing a cost-effective cache replacement policy

using machine learning. In Proceedings of the 2021 IEEE International Symposium on High Performance Computer

Architecture. IEEE, 297–308.
[56] Xipeng Shen, Jonathan Shaw, Brian Meeker, and Chen Ding. 2007. Locality approximation using time. In Proceedings

of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 55–61.
[57] Zhan Shi, Xiangru Huang, Akanksha Jain, and Calvin Lin. 2019. Applying deep learning to the cache replacement

problem. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. Association for
Computing Machinery, New York, NY, 413–425. DOI:https://doi.org/10.1145/3352460.3358319

[58] Harold S. Stone, John Turek, and Joel L. Wolf. 1992. Optimal partitioning of cache memory. IEEE Transactions on

Computers 41, 9 (1992), 1054–1068. DOI:https://doi.org/10.1109/12.165388
[59] R. A. Sugumar and S. G. Abraham. 1993. Efficient simulation of caches under optimal replacement with applications

to miss characterization. In Proceedings of the International Conference on Measurement and Modeling of Computer

Systems. Santa Clara, CA.
[60] G. Edward Suh, Srinivas Devadas, and Larry Rudolph. 2001. Analytical cache models with applications to cache

partitioning. In Proceedings of the International Conference on Supercomputing. 1–12.
[61] Sumesh Udayakumaran, Angel Dominguez, and Rajeev Barua. 2006. Dynamic allocation for scratch-pad memory

using compile-time decisions. ACM Transactions on Embedded Computer Systems 5, 2 (2006), 472–511. DOI:https:
//doi.org/10.1145/1151074.1151085

[62] Xavier Vera, Nerina Bermudo, Josep Llosa, and Antonio González. 2004. A fast and accurate framework to ana-
lyze and optimize cache memory behavior. ACM Transactions on Programming Languages and Systems 26, 2 (2004),
263–300. DOI:https://doi.org/10.1145/973097.973099

[63] Carl A.Waldspurger, Trausti Saemundsson, IrfanAhmad, andNohhyun Park. 2017. Cachemodeling and optimization
using miniature simulations. In Proceedings of USENIX Annual Technical Conference. 487–498. Retrieved from https://
www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

https://doi.org/10.1145/1582710.1582711
https://doi.org/10.1145/3297858.3304067
https://doi.org/10.1007/978-3-540-49051-7_10
http://proceedings.mlr.press/v119/liu20f.html
https://arxiv.org/abs/2006.16239
http://https://sourceforge.net/projects/polybench/files/
https://doi.org/10.1145/3017992
https://doi.org/10.1145/3385412.3385989
https://doi.org/10.1145/3352460.3358319
https://doi.org/10.1109/12.165388
https://doi.org/10.1145/1151074.1151085
https://doi.org/10.1145/973097.973099
https://www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger

15:28 C. Ding et al.

[64] Qingsen Wang, Xu Liu, and Milind Chabbi. 2019. Featherlight reuse-distance measurement. In Proceedings of the

International Symposium on High-Performance Computer Architecture. IEEE, 440–453. DOI:https://doi.org/10.1109/
HPCA.2019.00056

[65] Z. Wang, K. S. McKinley, A. L.Rosenberg, and C. C. Weems. 2002. Using the compiler to improve cache replace-
ment decisions. In Proceedings of the International Conference on Parallel Architecture and Compilation Techniques.
Charlottesville, Virginia.

[66] Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas J. A. Harvey, Andrew Warfield, and Coho Data. 2014. Charac-
terizing storage workloads with counter stacks. In Proceedings of the Symposium on Operating Systems Design and

Implementation. USENIX Association, 335–349.
[67] M. J. Wolfe. 1996. High Performance Compilers for Parallel Computing. Addison-Wesley, Redwood City, CA.
[68] Xiaoya Xiang, Bin Bao, Chen Ding, and Yaoqing Gao. 2011. Linear-time modeling of program working set in shared

cache. In Proceedings of the International Conference on Parallel Architecture and Compilation Techniques. 350–360.
[69] Xiaoya Xiang, Chen Ding, Hao Luo, and Bin Bao. 2013. HOTL: A higher order theory of locality. In Proceedings of

the International Conference on Architectural Support for Programming Languages and Operating Systems. 343–356.
[70] Jingling Xue and Xavier Vera. 2004. Efficient and accurate analytical modeling of whole-program data cache behavior.

IEEE Trans. Comput. 53, 5 (2004), 547–566. DOI:https://doi.org/10.1109/TC.2004.1275296
[71] Juncheng Yang, Yao Yue, and K. V. Rashmi. 2020. A large scale analysis of hundreds of in-memory cache clusters at

Twitter. In 14th USENIX Symposium on Operating Systems Design and Implementation. USENIX Association, 191–208.
Retrieved from https://www.usenix.org/conference/osdi20/presentation/yang.

[72] Chencheng Ye, Jacob Brock, Chen Ding, and Hai Jin. 2017. Rochester elastic cache utility (RECU): Unequal cache
sharing is good economics. International Journal of Parallel Programming 45, 1 (2017), 30–44. DOI:https://doi.org/10.
1007/s10766-015-0384-3

[73] Liang Yuan, Chen Ding, Wesley Smith, Peter J. Denning, and Yunquan Zhang. 2019. A relational theory of local-
ity. ACM Transactions on Architecture and Code Optimization 16, 3 (2019), 33:1–33:26. DOI:https://doi.org/10.1145/
3341109

[74] Yutao Zhong, Xipeng Shen, and Chen Ding. 2009. Program locality analysis using reuse distance. ACM Transactions

on Programming Languages and Systems 31, 6 (Aug. 2009), 1–39.

Received August 2021; revised November 2021; accepted November 2021

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 15. Publication date: March 2022.

https://doi.org/10.1109/HPCA.2019.00056
https://doi.org/10.1109/TC.2004.1275296
https://www.usenix.org/conference/osdi20/presentation/yang
https://doi.org/10.1007/s10766-015-0384-3
https://doi.org/10.1145/3341109

