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ABSTRACT
We describe and test the fiducial covariance matrix model for the combined two-point function analysis of the Dark Energy Survey
Year 3 (DES-Y3) data set. Using a variety of new ansatzes for covariance modelling and testing, we validate the assumptions
and approximations of this model. These include the assumption of Gaussian likelihood, the trispectrum contribution to the
covariance, the impact of evaluating the model at a wrong set of parameters, the impact of masking and survey geometry,
deviations from Poissonian shot noise, galaxy weighting schemes, and other sub-dominant effects. We find that our covariance
model is robust and that its approximations have little impact on goodness of fit and parameter estimation. The largest impact
on best-fitting figure-of-merit arises from the so-called fsky approximation for dealing with finite survey area, which on average
increases the χ2 between maximum posterior model and measurement by 3.7 per cent ("χ2 ≈ 18.9). Standard methods to go
beyond this approximation fail for DES-Y3, but we derive an approximate scheme to deal with these features. For parameter
estimation, our ignorance of the exact parameters at which to evaluate our covariance model causes the dominant effect. We
find that it increases the scatter of maximum posterior values for #m and σ 8 by about 3 per cent and for the dark energy
equation-of-state parameter by about 5 per cent.

Key words: large-scale structure of Universe – cosmology: observations.

1 IN T RO D U C T I O N

Our understanding of the Universe has become much more accurate in the past decades due to a massive amount of observational data collected
through different probes, such as the cosmic microwave background (CMB; see e.g. Planck Collaboration VI 2020), big bang nucleosynthesis
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(see e.g. Fields et al. 2020), Type Ia supernovae (see e.g. Riess 2017; Smith et al. 2020), number counts of clusters of galaxies (see e.g. Mantz
et al. 2014; Costanzi et al. 2019; Abbott et al. 2020), the correlation of galaxy positions, and that of their measured shape (see e.g. Abbott
et al. 2018; Heymans et al. 2020). From the study of that data, a standard cosmological model has emerged characterized by a small number
of parameters (see e.g. Frieman, Turner & Huterer 2008; Peebles 2012; Blandford et al. 2020). Current spectroscopic and photometric surveys
of galaxies such as the Extended Baryon Oscillation Spectroscopic Survey1 and earlier phases of the Sloan Digital Sky Survey, the Hyper
Suprime-Cam Subaru Strategic Program,2 the Kilo-Degree Survey (KiDS3), and the Dark Energy Survey (DES4) have become instrumental in
testing this standard model at a new front: the growth of density perturbations in the late-time Universe. Also, future surveys, such as the Dark
Energy Spectroscopic Instrument,5 the Vera Rubin Observatory Legacy Survey of Space and Time,6 Euclid,7 and the Nancy Grace Roman
Space Telescope,8 will push this test to a precision exceeding that provided by other cosmological probes.

An important part of this program is the DES, a state-of-the-art galaxy survey that completed its 6-yr observational campaign in 2019
January (Diehl et al. 2019) collecting data on position, colour, and shape for more than 300 million galaxies. This makes DES the most sensitive
and comprehensive photometric galaxy survey ever performed. The main cosmological analyses of the first year (Y1) of DES data have been
concluded (Abbott et al. 2018, 2019b) and analyses of the first 3 yr of data (Y3) are under way. The study of the large-scale structure (LSS) of
the Universe based on the DES-Y3 data set has the potential to become the most stringent test of our understanding of cosmological physics
to date.

To achieve this goal, the DES team is comparing different theoretical models characterized by a range of cosmological parameters to the
measured statistics of the LSS in order to determine the model and range of parameters that are in best agreement with the data. The statistics
of the LSS considered in the main DES-Y3 analysis are two-point correlation functions of the galaxy density field (galaxy clustering), the
weak gravitational lensing field (cosmic shear), and the cross-correlation functions between these fields (galaxy–galaxy lensing) in real space
and measured in different redshift bins. These three types of two-point correlation functions are combined into one data vector – the so-called
3×2pt data vector.

A key ingredient in analysing these statistics is a model for the likelihood of a cosmological model given the measured correlation
functions. Under the assumption of Gaussian statistical uncertainties (which is to be validated), this likelihood is completely characterized
by the covariance matrix that describes how correlated the uncertainties of different data points in the 3×2pt data vector are. Validating the
quality of the covariance model for the DES-Y3 two-point analyses is the main focus of this paper.

There are several methods to estimate covariance matrices that can roughly be divided into four main categories: covariance estimation
from the data itself (e.g. through jackknife or sub-sampling methods; cf. Norberg et al. 2009; Friedrich et al. 2016), covariance estimation from
a suite of simulations (e.g. Hartlap, Simon & Schneider 2007; Dodelson & Schneider 2013; Taylor, Joachimi & Kitching 2013; Percival et al.
2014; Taylor & Joachimi 2014; Joachimi 2017; Sellentin & Heavens 2017; Avila et al. 2018; Shirasaki et al. 2019), theoretical covariance
modelling (e.g. Schneider et al. 2002; Eifler, Schneider & Hartlap 2009; Krause et al. 2017), or hybrid methods combining both simulations
and theoretical covariance models (e.g. Pope & Szapudi 2008; Friedrich & Eifler 2018; Hall & Taylor 2019).

For the DES-Y3 3×2pt analysis, we adopt a theoretical covariance model as our fiducial covariance matrix. This fiducial covariance
model is based on a halo model and includes a dominant Gaussian component, a non-Gaussian component (trispectrum and supersample
covariance), redshift space distortions (RSDs), curved sky formalism, finite angular bin width, non-Limber computation for the clustering part,
Gaussian shape noise, Poissonian shot noise, and fsky approximation to treat the finite DES-Y3 survey footprint (although taking into account
the exact survey geometry when computing sampling noise contributions to the covariance). In order to assess the accuracy of that model, we
study the impact of several approximations and assumptions that go into it (and into two-point function covariance models in general):

(i) the Gaussian likelihood assumption, i.e. whether knowledge of the covariance is sufficient to calculate the likelihood;
(ii) robustness with respect to the modelling of the non-Gaussian covariance contributions, i.e. contributions from the trispectrum and

supersample covariance;
(iii) treatment of the fact that two-point functions are measured in finite angular bins;
(iv) cosmology dependence of the covariance model;
(v) random point shot noise;
(vi) the assumption of Poissonian shot noise;
(vii) survey geometry and the fsky approximation;
(viii) other covariance modelling details such as flat sky versus curved sky calculations, Limber approximation, and RSDs.

We generate different types of mock data and/or analytical estimates to determine how each of these effects impacts the quality of the
fit between measurements of the 3×2pt data vector and maximum posterior models (quantified by the distribution of χ2 between the two).

1www.sdss.org/surveys/eboss
2hsc.mtk.nao.ac.jp/ssp
3kids.strw.leidenuniv.nl
4www.darkenergysurvey.org
5www.desi.lbl.gov
6www.lsst.org
7www.euclid-ec.org
8nasa.gov/content/goddard/nancy-grace-roman-space-telescope
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We also show how they impact cosmological parameter constraints derived from measurements of the 3×2pt data vector. For most of these
tests, we employ a linearized Gaussian likelihood framework that allows us to analytically quantify the impact of covariance errors on the
χ2 distribution and parameter constraints. This is complemented by a set of lognormal simulations and importance sampling techniques to
quickly assess large numbers of mock (non-linear) likelihood analyses.

This paper is part of a larger release of scientific results from year-3 data of the DES and our analysis is informed by the (in some cases
preliminary) analysis choices of the other DES-Y3 studies. In addition to carving out the most stringent constraints on cosmological parameters
from late-time two-point statistics of galaxy density and cosmic shear yet, the year-3 analysis of the DES collaboration is introducing and
testing numerous methodological innovations that pave the way for future experiments. Details of the DESY3 galaxy catalogues and the
photometric estimation of their redshift distribution are presented by Sevilla-Noarbe et al. (2020), Hartley et al. (2020), Everett et al. (2020),
Myles et al. (2021), Gatti et al. (2020a), Cawthon et al. (2020), Buchs et al. (2019), and Cordero et al. (2020). The measurements of galaxy
shapes and the calibration of these measurements for the purpose of cosmic weak gravitational lensing analyses are detailed by Gatti et al.
(2020b), Jarvis et al. (2020), and MacCrann et al. (2020). Krause et al. (2021) develop and test the theoretical modelling pipeline of the DES-Y3
3×2pt analysis, Pandey et al. (2021) outline how galaxy bias is incorporated in this pipeline, DeRose et al. (2020) validate this pipeline with the
help of simulated data, and Muir et al. (2020) describe how we have blinded our analysis to focus our efforts on model-independent validation
criteria and reduce the chance for confirmation bias. The DESY3 methodology to sample high-dimensional likelihoods and to characterize
external and internal tensions is outlined by Lemos et al. (2021) and Doux et al. (2020). Measurements of cosmic shear two-point correlation
functions and analyses thereof are presented by Amon et al. (2021) and Secco et al. (2021), the measurement and analysis of galaxy clustering
wo-point statistics are carried out by Rodrı́guez-Monroy et al. (2021), and two-point cross-correlations between galaxy density and cosmic
shear (galaxy–galaxy lensing) are measured and analysed by Prat et al. (2021), with additional analyses of lensing magnification and shear
ratios carried out by Elvin-Poole et al., (in preparation) and Sánchez et al. (2021) and results for an alternative lens galaxy sample presented
by Porredon et al. (2020) and Porredon et al., (2021). Finally, in DES Collaboration (2020) we present our cosmological analysis of the full
3×2pt data vector.

Our paper is structured as follows. We start by presenting a discussion of our validation strategy in Section 2, where we also summarize
our main findings before plunging into the details in the remaining of the paper. In Section 3, we review the modelling and structure of the
3×2pt data vector. Section 4 describes our fiducial covariance model as well as two alternatives to it that are used to validate several modelling
assumptions. In Section 5, we describe our linearized likelihood formalism and derive analytically how different covariance matrices impact
parameter constraints and maximum posterior χ2 within that formalism (including the presence of nuisance parameters and allowing for
Gaussian priors on these parameters). In Section 6, we present the details of each step in our validation strategy followed by a short Section 7
presenting a simple test to corroborate some of the results from the linearized framework. We conclude with a discussion of our results in
Section 8. Seven appendices describe in more detail some results used in this work.

2 C OVA R I A N C E VA L I DAT I O N ST R AT E G Y A N D S U M M A RY O F T H E R E S U LT S

How should one validate the quality of a covariance model (and the associated likelihood model) for the purpose of constraining cosmological
model parameters from a measured statistic? A straightforward answer seems to be that one should run a large number of accurate cosmological
simulations, then measure and analyse the statistic at hand in each of the simulated data sets, and test whether the true parameters of the
simulations are located within the, say, 68.3 per cent quantile of the inferred parameter constraints in 68.3 per cent of the simulations. There
are, however, at least two problems with such an approach.

The first one is a conceptual problem. Consider a Bayesian analysis of a measured statistic ξ̂ with a model ξ [π] that is parametrized by
model parameters π . For each value of π , the statistical uncertainties in the measurement ξ̂ will have some distribution

L
(
π |ξ̂

)
≡ p

(
ξ̂ |π

)
, (1)

which is also called the likelihood of the parameters given the data. If this function is known, then a Bayesian analysis will assign a posterior
probability distribution to the parameters as

p
(
π |ξ̂

)
= 1

N
L
(
π |ξ̂

)
pr(π) . (2)

Here, pr(π) is a prior probability distribution that parametrizes prior knowledge from other experiments (or theoretical constraints) and the
normalization constant N is fixed by demanding that p(π |ξ̂ ) be a probability distribution. The 68.3 per cent confidence region for the parameters
π would then, e.g. be stated as a volume V68.3 per cent in parameter space that contains 68.3 per cent of the probability. To unambiguously define
that volume, one can e.g. impose the additional condition that

min
π∈V68.3 per cent

p
(
π |ξ̂

)
≥ max

π /∈V68.3 per cent
p
(
π |ξ̂

)
(3)

or, more frequently, one would directly define one-dimensional intervals that satisfy the above conditions for the marginalized posterior
distributions on the individual parameter axes. Unfortunately, if one performs such an analysis many times one is not guaranteed that the true
parameters (e.g. of a simulation) are located within V68.3 per cent in 68.3 per cent of the times. This has recently been referred to as prior volume
effect [this issue is discussed in, e.g. Raveri & Hu (2019) and Abbott et al. (2019a)]. One may argue that a Bayesian posterior should not be
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interpreted in terms of frequencies but that does not help for the task of validating this posterior on the basis of a large number of simulated
data sets.9

Another more practical problem is the fact that it is not (yet) feasible to generate enough sufficiently accurate mock data sets to validate
covariance matrices of large data vectors with high precision. We recall that for the DES-Y1 analysis, a total of 18 realistic simulated data
sets were available to validate the inference pipeline (MacCrann et al. 2018). At the same time, the main reason why N-body simulations
would be required to test the accuracy of covariance (and likelihood) models is to capture contributions to the covariance coming from the
trispectrum (connected four-point function) of the cosmic density field. However, for DES-like analyses it has been shown that this contribution
is negligible (see e.g. Krause et al. 2017; Barreira, Krause & Schmidt 2018). The reason for this is twofold: First, very small scales (where the
trispectrum contribution to the covariance would matter most) are often cut off from analyses because on these scales already the modelling
of the data vector, ξ [π], is inaccurate. Secondly, on small scales the covariance matrix is often dominated by effects coming from sparse
sampling such as shot noise and shape noise. These covariance contributions are typically easy to model (although one has to be careful when
estimating effective number densities and shape-noise dispersions or when estimating the number of galaxy pairs in the presence of complex
survey footprints; see Troxel et al. 2018a, b).

As a result of the above considerations, we base our covariance validation strategy mostly on the use of a linearized likelihood (where
the model ξ [π] is linear in the parameters π). In this framework, the Bayesian likelihood allows for an interpretation in terms of frequencies
– both for total and marginalized constraints. Also, this allows us to perform large numbers of simulated likelihood analyses very efficiently,
without the need to run computationally expensive Markov chain Monte Carlo (MCMC) codes. In addition, any leading-order deviation from
a linearized likelihood will be next-to-leading order for the purpose of studying the impact of covariance errors (i.e. errors on errors) on our
analysis.

Within the linearized likelihood formalism, we confirm the findings of Krause et al. (2017) and Barreira et al. (2018) for the DES-Y3
set-up: Both supersample covariance and trispectrum have a negligible impact on our analysis. This allows us to estimate the impact of other
assumptions in our covariance and likelihood model either analytically or by the means of simplified mock data such as lognormal simulations
(as opposed to full N-body simulations; cf. Section 4.3).

We summarize our main findings in Fig. 1 and Table 1 for the busy reader. For the combined data vector of the DES-Y3 two-point
function analysis (the 3×2pt data vector; see details in Section 3), the left-hand panel of Fig. 1 shows the impact of different assumptions in
our likelihood model on the mean and scatter of χ2 between maximum posterior model and measurements. To obtain the maximum posterior
model, we are fitting for all the 28 parameters listed in Table 3 within the linearized likelihood framework described in Section 5.1. Since
we assume Gaussian priors on 13 nuisance parameters, the effective number of parameters in that fit will be between 28 and 15. Within the
linearized likelihood approach, we find that with a perfect covariance model the average χ2 is expected to be about 507.6; i.e. the effective
number of degrees of freedom in the fit is Nparam,eff ≈ 23.4. The right-hand panel of Fig. 1 shows the equivalent results when cosmic shear
correlation functions are excluded from the data vector (the 2×2pt data vector). The green points in both panels denote effects that have been
already accounted for in the previous year-1 analysis of DES.

What stands out in our analysis is the large effect of finite angular bin sizes on the cosmic variance and mixed terms of our covariance
model (cf. Section 4 for this terminology, where we also show that it is unavoidable to take into account finite bin width in the pure shot noise
and shape noise terms of the covariance). In DES-Y1, this has been dealt with in an approximate manner, by computing the covariance model
for a very fine angular binning and then re-summing the matrix to obtain a coarser binning (Krause et al. 2017). This time we incorporate the
exact treatment of finite angular bin size for all the three two-point functions into our fiducial covariance model (cf. Section 4). The blue points
in Fig. 1 denote improvements that have been made in the year-3 analysis compared to the year-1 covariance model, and the red points are
estimates of effects that are not taken into account in the fiducial DES-Y3 likelihood – either because they are negligible or because an exact
treatment is unfeasible (cf. Section 6 for details). Adding these effects in quadrature, our results suggest that the maximum posterior χ2 of
the DES-Y3 3×2pt analysis should be on average ≈ 4 per cent ("χ2 ≈ 20.3) higher than expected if the exact covariance matrix of our data
vector was known.

Table 1 summarizes the offsets in χ2 displayed in the left-hand panel of Fig. 1 and also shows how parameter constraints based on the
3×2pt data vector are impacted by assumptions of our covariance and likelihood model. We distinguish two effects here: the scatter of a
maximum posterior parameter π (which we denote by σ [π̂]) and the width of posterior constraints inferred from our likelihood model (which
we denote by σπ ). For our tests of likelihood non-Gaussianity, we state the changes in the difference between the fiducial parameter values
and the upper (high) and lower (low) boundaries of the 68.3 per cent quantile with respect to the standard deviation of the Gaussian likelihood.
For our tests of the impact of covariance cosmology, we show the mean of all σπ obtained from our 100 different covariances and also indicate
the scatter of these σπ values.

The effect that has the dominant impact on parameter constraints is that of evaluating the covariance model at a set of parameters that do
not represent the exact cosmology of the Universe. When computing the covariance at 100 different cosmologies that were randomly drawn
from a Monte Carlo Markov chain (run around a fiducial model data vector; see Section 6.8 for details), we find that the differences between
these covariances introduce an additional scatter in maximum posterior parameter values. This scatter increases by about 3 per cent for #m

9In order to deal with the prior volume effect, Joachimi et al. (2020) proposed to report parameter constraints through what they call projected joint highest
posterior density. This topic will be addressed in a separate DES paper (Raveri et al., in preparation).
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Figure 1. Impact of different covariance modelling choices on χ2 between measured 3×2pt (left-hand panel) and 2×2pt (right-hand panel) data vectors and
maximum posterior models. The dashed vertical lines and error bars indicate the 1σ fluctuations expected in χ2. See the main text for details.

Table 1. Summary of the impact of the different effects tested here on the distribution of χ2 between measurement and maximum posterior model, on the
scatter σ [π̂] of maximum posterior parameters π̂ , and on the standard deviations σπ on these parameters inferred from the likelihood. See the text for details.

Effect 〈χ2〉 σ (χ2) σ (#̂m) σ#m σ (σ̂8) σσ8 σ (ŵ) σw

Fiducial 507.6 31.8 0.0509 0.0509 0.0975 0.0975 0.244 0.244

Angular bin width 402.1 26.0 +0.8 per cent +7.4 per cent +0.8 per cent +8.3 per cent +1.0 per cent +7.4 per cent

Connected four-point function 507.6 31.8 +0.1 per cent −0.8 per cent +0.1 per cent −0.9 per cent +0.1 per cent −0.8 per cent
Curved sky 507.7 31.8 +0.0 per cent −0.0 per cent +0.0 per cent −0.0 per cent +0.0 per cent −0.0 per cent
Non-Limber and RSD 511.4 32.1 +0.1 per cent −0.6 per cent +0.1 per cent −0.6 per cent +0.3 per cent −1.4 per cent
Non-Gauss. likelihood – 32.6 +0.8 per cent

(low)
– +0.4 per cent

(low)
– +0.5 per cent

(low)
–

−0.9 per cent
(high)

−0.4 per cent
(high)

+0.05 per cent
(high)

Covariance cosmology 508.6 32.4 +2.9 per cent +(0.1 ± 0.06) per
cent

+2.8 per cent +(0.1 ± 0.05) per
cent

+4.7 per cent +(0.1 ± 0.06) per
cent

Random point shot noise 511.3 32.0 +0.0 per cent −0.5 per cent +0.0 per cent −0.6 per cent +0.0 per cent −0.2 per cent

Non-Poisson shot noise 515.0 32.3 +0.0 per cent −0.7 per cent +0.0 per cent −0.8 per cent +0.0 per cent −0.6 per cent
Masking and survey geometry 526.5 33.8 +0.6 per cent −0.8 per cent +0.7 per cent −0.3 per cent +0.3 per cent −1.3 per cent
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Figure 2. Impact of covariance errors on the ratio of the standard deviation of maximum posterior parameters to the width of the posterior derived from the
erroneous covariance. Green triangles shot the effect caused by non-Poissonian shot-noise and orange circles show the effect caused by the fsky approximation (cf.
Appendix C for our beyond-fsky treatment). These ratios have been calculated purely on the base of different analytic covariance models and within the linearized
likelihood framework discussed in Section 5.1. We also show the ratio of maximum posterior parameter scatter observed from the 197 FLASK simulations to
the statistical uncertainties expected from a lognormal covariance matrix matching the FLASK configuration. Within the statistical uncertainties, these ratios are
consistent with 1.

and σ 8 and by about 5 per cent for the dark energy equation-of-state parameter w. This increased scatter is in fact the dominant effect, since
the width of the derived parameter constraints hardly changes between the different covariance matrices. Note especially that rerunning the
analysis with a covariance updated to the best-fitting parameters does not mitigate this effect.

In Fig. 2, we take the two effects that had the largest impacts on χ2 and show the resulting mismatch between scatter of maximum
posterior values and width of the inferred contours for a wider range of parameters. All of our results take into account marginalization over
nuisance parameters (and all other parameters).

Our reason for exclusively investigating the impact of covariance errors on χ2 and parameter constraints is that those are the two measures
by which our final (on-shot) data analysis will be interpreted and judged.10 In the remainder of this paper, we detail how the above results were
obtained.

3 TH E 3×2 -POINT DATA VECTOR

The combined 3×2pt data vector of the DES-Y3 analysis consists of measurements of the following two-point correlations:

(i) the angular two-point correlation function w(θ ) of galaxy density contrast measured for luminous red galaxies in five different redshift
bins (see e.g. Rodrı́guez-Monroy et al. 2021; Cawthon et al. 2020, as well as other relevant references given in Section 1),

(ii) the auto- and cross-correlation functions ξ+(θ ) and ξ−(θ ) between the galaxy shapes of four redshift bins of source galaxies (see e.g.
Amon et al. 2021; Gatti et al. 2020a; Myles et al. 2021; Secco et al. 2021),

(iii) the tangential shear γ (θ ) imprinted on source galaxy shapes around positions of foreground redMaGiC galaxies (see e.g. Prat et al.
2021).

At the time of writing this paper, the exact choices for redshift intervals and angular bins considered for each two-point function are still
being determined by a careful study of their impact on the robustness of DES-Y3 parameter constraints (DES Collaboration 2020; Krause
et al. 2021). For the purposes of testing the modelling of the covariance matrix, we will use the most recent but possibly not final DES-Y3
analysis choices. We do not expect that our tests and conclusions will change in a significant manner with further updated analysis choices. We
assume that each of the correlation functions is measured in 20 logarithmically spaced angular bins between θmin = 2.5 arcmin and θmax =
250 arcmin. Some of these bins in some of the measured two-point functions are being cut from the analysis to ensure unbiased cosmological
results, resulting in a total of 531 data points when using the preliminary DES-Y3 scale cuts.

Our starting point of modelling the different two-point functions in the 3×2pt data vector is the three-dimensional (3D) non-linear matter
power spectrum P(k, z) at a given wavenumber k and redshift z. We obtain it by using either of the Boltzmann solvers CLASS11 or CAMB12 to
calculate the linear power spectrum and the HALOFIT fitting formula (Smith et al. 2003) in its updated version (Takahashi et al. 2012) to turn
this into the late-time non-linear power spectrum. From this 3D power spectrum, the angular power spectra required for our three two-point
functions [cosmic shear (κκ), galaxy–galaxy lensing (δgκ), and galaxy–galaxy clustering (δgδg)] in the Limber approximation are given by
(e.g. Limber 1953; Krause et al. 2017):

10Alternatively, one could investigate the distribution of p-values (or probability to exceed; cf. Hall & Taylor 2019) as opposed to the distribution of χ2.
11www.class-code.net
12camb.info
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Cij
κκ (,) =

∫
dχ

qi
κ (χ )qj

κ (χ )
χ2

P

(
, + 1

2

χ
, z(χ )

)
, (4)

C
ij
δgκ (,) =

∫
dχ

qi
δ

(
,+ 1

2
χ

, χ
)

qj
κ (χ )

χ2
P

(
, + 1

2

χ
, z(χ )

)
, (5)

C
ij
δgδg

(,) =
∫

dχ
qi

δ

(
,+ 1

2
χ

, χ
)

q
j
δ

(
,+ 1

2
χ

, χ
)

χ2
P

(
, + 1

2

χ
, z(χ )

)
, (6)

where χ is the comoving radial distance, i and j denote different combinations of pairs of redshift bins, and the lensing efficiency qi
κ and the

radial weight function for clustering qi
δ are, respectively, given by

qi
κ (χ ) = 3H 2

0 #mχ

2a(χ )

∫ χh

χ

dχ ′
(

χ ′ − χ

χ

)
ni

κ (z(χ ′))
dz

dχ ′ ,

qi
δ(k,χ ) = bi(k, z(χ )) ni

δ(z(χ ))
dz

dχ
. (7)

Here, H0 is the Hubble parameter today, #m is the ratio of today’s matter density to today’s critical density of the Universe, a(χ ) is the
Universe’s scale factor at comoving distance χ , and bi(k, z) is a scale- and redshift-dependent galaxy bias. Furthermore, ni

κ,g(z) denote the
redshift distributions of the different DES-Y3 redshift bins of source and lens galaxies, respectively, normalized such that
∫

dz ni
κ,g(z) = 1 . (8)

Note that on large angular scales the DES-Y3 analysis does not make use of the Limber approximation for galaxy clustering but instead
employs the method derived in Fang, Eifler & Krause (2020a).

The above angular power spectra are now related to the real space correlation functions w(θ ), γ t(θ ), and ξ±(θ ) as

wi(θ ) =
∑

,

2, + 1
4π

P,(cos θ )Cii
δgδg

(,) ,

γ
ij
t (θ ) =

∑

,

2, + 1
4π

P 2
, (cos θ )
,(, + 1)

C
ij
δgκ (,) ,

ξ
ij
± (θ ) =

∑

,≥2

2, + 1
4π

2(G+
,,2(x) ± G−

,,2(x))
,2(, + 1)2

Cij
κκ (,) .

(9)

Here, P, are the Legendre polynomials of order ,, P m
, are the associated Legendre polynomials, x = cos θ , and the functions G+,−

,,2 (x) are
given in Appendix A (see also Stebbins 1996). Note that we only consider the autocorrelations wi(θ ) for each tomographic bin since in the Y1
analysis it was shown that the cross-correlations do not carry significant information (Elvin-Poole et al. 2018).

The above relations between angular power spectra and real space correlation functions can all be written in the form

ξAB(θ ) =
∞∑

,=0

2, + 1
4π

FAB
, (θ ) CAB

, . (10)

This is particularly useful when deriving covariance expressions and when performing averages over finite bins in the angular scale θ . To
achieve the latter, one can simply derive analytical averages of the functions F AB

, (θ ). Both of these points will be considered in the next
sections.

For most of our tests, we consider the 3×2pt data vector and its covariance matrix at the fiducial cosmology described in Section 5, where
we also show the Gaussian priors assumed on some of these parameters when assessing the impact of covariance modelling on parameter
constraints and maximum posterior χ2.

4 C OVA R I A N C E M AT R I C E S F O R TH E 3 × 2PT DATA VECTOR

The covariance matrix of measurements of cosmological two-point statistics typically contains three contributions (cf. Krause & Eifler 2017;
Krause et al. 2017),

C = CG + CnG + CSSC . (11)

Here, CG is the contribution to the covariance that would be present if the cosmic matter density and cosmic shear fields were pure Gaussian
random fields (see also Schneider et al. 2002; Crocce, Cabré & Gaztañaga 2011), CnG are contributions involving the connected four-point
function of these fields (the trispectrum), and CSSC is the so-called supersample covariance contribution resulting from the fact that any survey
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only observes a finite volume of the Universe and that the mean density in that volume is subject to fluctuations due to long wavelength modes
(Takada & Hu 2013; Schaan, Takada & Spergel 2014).

In the fiducial DES-Y3 analysis, we model all of these covariance contributions analytically. This fiducial model is described in Section 4.1.
In Section 4.2, we describe an alternative model for the non-Gaussian covariance contributions that is used to test the robustness of our analysis
with respect to the modelling of the trispectrum contribution. Finally, Section 4.3 describes a set of lognormal simulations (Xavier, Abdalla &
Joachimi 2016) and the covariance matrix of the 3×2pt data vector estimated from them. These simulations also allow us to test the accuracy
of our Gaussian likelihood assumption and the treatment of masking and finite survey area in our fiducial covariance model.

4.1 Fiducial DES-Y3 covariance

In our fiducial covariance matrix, we model the non-Gaussian covariance contributions CnG and CSSC using a halo model combined with
leading-order perturbation theory to approximate the trispectrum of the cosmic density field and to compute the mode coupling between scales
larger than the considered survey volume with scales inside that volume. These calculations are carried out using the CosmoCov code package
(Fang et al. 2020a) based on the CosmoLike framework (Krause & Eifler 2017). Our modelling of these contributions has not changed with
respect to the year-1 analysis of DES and we refer the reader to Krause et al. (2017) as well as to the CosmoLike papers for details. However,
the modelling of the Gaussian contribution has changed as described in the following.

4.1.1 Gaussian covariance

Our modelling of the Gaussian covariance part has changed with respect to the year-1 analysis in the following ways:

(i) we use (and present for the first time13) analytical expression for the angular bin averaging of the functions F AB
, (θ ) (cf. equation 10) for

all four types of two-point functions present in our data vector (see Section 6.3; this is especially relevant for the sampling-noise contribution
to the covariance; cf. Troxel et al. 2018b);

(ii) we account for RSDs and also use a non-Limber calculation to obtain the galaxy–galaxy clustering power spectrum Cδgδg (,) (see
Section 6.5);

(iii) we do not make use of the flat-sky approximation anymore (see Section 6.4).

To derive expressions for the Gaussian covariance part, let us first consider an all-sky survey. If a two-point function measurement ξ̂AB(θ )
could be obtained from data on the entire sky, then for most types of two-point correlations it would be related to power spectrum measurements
CAB

, from a spherical harmonics decomposition of the same all-sky data through equation (10), i.e.

ξ̂AB(θ ) =
∞∑

,=0

2, + 1
4π

FAB
, (θ ) ĈAB

, . (12)

A notable exception to this is the cosmic shear two-point functions ξ̂± that obtain contributions from both the so-called E-mode and B-mode
power spectra (Schneider et al. 2002). For these functions, equation (12) in the curved sky formalism becomes

ξ̂
ij
± (θ ) =

∑

,≥2

2, + 1
4π

2(G+
,,2(x) ± G−

,,2(x))
,2(, + 1)2

(
ĈE,ij

γ γ (,) ± ĈB,ij
γ γ (,)

)
, (13)

where in the absence of shape-measurement systematics (and ignoring post-Born corrections) 〈ĈE,ij
γ γ (,)〉 = Cij

κκ (,) and 〈ĈB,ij
γ γ (,)〉 = 0.

Since this is a linear equation in C(,)’s, the covariance of two different two-point function measurements ξ̂AB and ξ̂CD at two different
angular scales θ1 and θ2 would be given in terms of the covariance of the corresponding power spectrum measurements by

Cov
[
ξ̂AB (θ1), ξ̂CD(θ2)

]
=

∑

,1,,2

(2,1 + 1)(2,2 + 1)
(4π)2

FAB
,1

(cos θ1) FCD
,2

(cos θ2) Cov
[
ĈAB

,1
, ĈCD

,2

]
. (14)

Again, for ξ̂AB (θ ) = ξ̂±(θ ) one would have to use CAB
, = ĈE

γ γ (,) ± ĈB
γ γ (,) in this sum.

For the autopower spectrum of galaxy density contrast in one of our redshift bins, the harmonic space covariance would be (Crocce et al.
2011)

Cov
[
Ĉii

δgδg
(,1), Ĉii

δgδg
(,2)

]
= 2δ,1,2

(2,1 + 1)

(
Cii

δgδg
(,1) + 1

ng

)2

. (15)

Here, ng is the number density of the galaxies and δ,1,2 is the Kronecker symbol. To account for partial-sky surveys (such as DES),
we simply divide this expression (and similar ones for the other two-point functions) by the observed sky fraction fsky. This so-called fsky

approximation leads to the following harmonic space Gaussian covariances of (see also Krause et al. 2017):

13We have shared our results with Fang et al. (2020a), who have used them for their covariance calculations.
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Ĉij
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Cov
[
Ĉij

gg(,1), ĈB,kl
γ γ (,2)

]
= 0

(
as are all other covariances with only one ĈB

γ γ

)
. (23)

At this point, let us introduce the following nomenclature: We will denote the terms that contain two power spectra as cosmic variance
contribution to the covariance, the terms that contain no power spectrum at all as the sampling noise contributions (or shape-noise and
shot-noise contributions), and the terms that contain contribution from one power spectrum and a sampling noise as the mixed terms. We test
the accuracy of the fsky approximation that results in equations (16–23) in Section 6.6 by comparing it to more accurate expressions.

4.2 Analytical lognormal covariance model

To test the robustness of the CosmoLike covariance, we also employ an alternative model for the connected four-point function part of the
covariance – the lognormal model. Hilbert, Hartlap & Schneider (2011) originally derived this as a model for the covariance of cosmic shear
correlation function, assuming that that the lensing convergence κ can be written in terms of a Gaussian random field n as (see also Xavier
et al. 2016)

κ = λ
(
en+µ − 1

)
, (24)

where it is assumed that 〈n〉 = 0. For given values λ > 0 and µ the power spectrum of n can be chosen such as to reproduce a desired two-point
correlation function ξκ (see Xavier et al. 2016, for caveats). Furthermore, for any given value λ > 0 one can choose µ such that 〈κ〉 = 0. This
makes λ the only free parameter of the lognormal covariance model. Hilbert et al. (2011) show that this model leads to a number of correction
terms to the Gaussian covariance model, and identify the most dominant of these terms to be

CLN[ξ̂κ (θ1), ξ̂κ (θ2)] ≈ CG[ξ̂κ (θ1), ξ̂κ (θ2)] + 4 ξκ (θ1)ξκ (θ2)
ASλ2

VarS(κ) . (25)

Here, AS is the area of the considered survey footprint and VarS(κ) is the variance of κ when averaged over the footprint. We generalize this to
the covariance of two-point correlations ξ̂AB and ξ̂CD between arbitrary scalar fields δA, δB, δC, and δD as

CLN[ξ̂AB (θ1), ξ̂CD(θ2)] − CG[ξ̂AB (θ1), ξ̂CD(θ2)] ≈ ξAB (θ1)ξCD(θ2)
AS

{
CovS(δA, δC)

λAλC

+ CovS(δA, δD)
λAλD

+ CovS(δB, δC)
λBλC

+ CovS(δB, δD)
λBλD

}
. (26)

Here, CovS(δA, δC) is the covariance of δA and δC after the two fields have been averaged over the entire survey footprint (and likewise for the
other terms appearing above). Following Hilbert et al. (2011), we use this expression even when considering non-scalar fields (i.e. the shear
field) by replacing ξXY(θ ) by the appropriate two-point functions ξ+(θ ), ξ−(θ ), γ t(θ ) [or w(θ ), for the scalar galaxy density contrast].

To choose the parameters λX (also called the lognormal shift parameters; cf. Xavier et al. 2016), we follow a procedure similar to the one
outlined in Friedrich et al. (2018). There, it is shown how the value of λX can be adjusted in order to match the re-scaled cumulant

S3(ϑ) ≡ 〈δX(ϑ)3〉
〈δX(ϑ)2〉2

(27)

of the random field δX smoothed with a top-hat filter of angular radius ϑ to the value of S3 predicted by leading-order perturbation theory
for that same smoothing scale. Since the focus in our paper is the covariance matrix of two-point statistics (hence a four-point function), we
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Table 2. Number density, galaxy bias (relevant for lenses only), shape-
noise dispersion (per shear component; relevant for sources only), and
the lognormal shift parameters obtained from the procedure described in
Section 4.2.

z-bin ng (arcmin−2) Bias σ ε Lognormal shift

Lenses 1 0.0221 1.7 − 1.089
Lenses 2 0.0381 1.7 − 1.106
Lenses 3 0.0583 1.7 − 1.047
Lenses 4 0.0295 2.0 − 1.252
Lenses 5 0.0251 2.0 − 1.177

Sources 1 1.7971 − 0.2724 0.004 53
Sources 2 1.5521 − 0.2724 0.008 85
Sources 3 1.5967 − 0.2724 0.019 18
Sources 4 1.0979 − 0.2724 0.032 87

Figure 3. Redshift distributions of lens galaxies (shaded regions) and source galaxies (solid lines) in our fiducial test configuration.

modify their method to match instead the value of reduced fourth-order cumulant

S4(ϑ) ≡
〈
δX(ϑ)4

〉
− 3

〈
δX(ϑ)2

〉2

〈
δX(ϑ)2

〉3 . (28)

The field δX here will be either projections of the 3D matter density contrast along the line-of-sight distribution of our lens galaxies or the
lensing convergence fields corresponding to our four source redshift bins. The smoothing scale ϑ at which we use the λX to match S4 to its
perturbation theory value is chosen such that it corresponds to about 10 Mpc h−1 at the mean redshift of the line-of-sight projection kernels
corresponding to the different δX. This is approximately the scale at which Friedrich et al. (2018) found the shifted lognormal model to be a
good approximation of the overall PDF of density fluctuations in N-body simulations (cf. their fig. 5).

Our results are shown in Table 2, where we present the number density, galaxy bias (relevant for lenses only), shape-noise dispersion (per
shear component; relevant for sources only), and the lognormal shift parameters obtained from the procedure described above. Note that for the
source galaxy samples, the relevant line-of-sight projection kernel used to derive the shift parameter is the lensing kernel (and not the redshift
distribution of the source galaxies). For the lens galaxies, all shift parameters come out to be >1. As a consequence, there will be pixels with
negative density in our lognormal simulations. However, the fraction of such pixels is <0.01 for all runs and all bins and setting δg = −1 in
these bins has an unnoticeable effect on the statistics measured in these maps (e.g. for bin 4, which is affected most, the standard deviation
of δg changes by 0.053 per cent). Note further that at the time of completing the simulation runs presented in Section 4.3, the DES-Y3 shear
catalogue and redshift distribution were not finalized. As a consequence, the shape-noise dispersion values used for simulations differ from
the values in this table. We display the projection kernels assumed for our analysis in Fig. 3.

4.3 Lognormal covariance from simulations

We also produce a test DES-Y3 covariance matrix from a set of simulations. We use the publicly available code FLASK (Full sky
Lognormal Astro fields Simulation Kit; Xavier et al. 201614) to generate 800 DES-Y3 footprint sky maps of density, convergence, and

14http://www.astro.iag.usp.br/flask/
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Figure 4. Validation of FLASK simulations. Each panel shows the absolute difference of three two-point correlations measured on FLASK realizations and the
predicted correlation functions from input C(,)s normalized to the statistical error given by the standard deviation along FLASK realizations ("X/σX, where X =
w, γ t, ξ+, ξ−). Grey dots are single realizations and blue dots its mean.

shear healpix maps (Górski et al. 2005) with NSIDE = 8192, as well as galaxy positions catalogues, used to reproduce the DES-Y3
properties. FLASK is able to quickly produce tomographic correlated simulations of clustering and weak lensing lognormal fields based on
the DES-Y3 lens and sources samples. The lognormal distribution of cosmological fields has been shown to be a good approximation
(Coles & Jones 1991; Wild et al. 2005; Clerkin et al. 2017) but much less computationally expensive to generate than full N-body
simulations.

As input for the simulations, we used a set of auto- and cross-correlated power spectrum and the lognormal field shift parameters. The
theoretical input power spectrum was generated using CosmoLike, and the lognormal shifts are the ones listed in Table 2. In order to reproduce
the properties of shear fields, we added the shape-noise term by sampling each pixel of the simulated maps to match the correspondent
shape-noise dispersion σ ε and number density ng of the tomographic bin. At the time of completing the simulation runs, the DES-Y3 shear
catalogue and redshift distribution were not finalized. For this reason, the values used in the simulations are slightly different from the values
in Table 2. For the simulations, we set the number density for the five tomographic lens bins as 0.0227, 0.0392, 0.0583, 0.0451, and 0.0278
(arcmin−2). The shape-noise dispersion values for the four tomographic bins of sources were set to 0.270 49, 0.332 12, 0.325 37, and 0.350 37.
The cosmology adopted for the theoretical power spectra is set as #m = 0.3, σ 8 = 0.823 55, ns = 0.97, #b = 0.048, h0 = 0.69, and
#νh

2
0 = 0.000 83.
We use the publicly available code TREECORR15 (Jarvis, Bernstein & Jain 2004) to measure the 3×2 point correlation measurements for

200 DES-Y3 realizations. For all measurements, we used 20 log-spaced angular separation bins on scales between 2.5 and 250 arcmin. We set
the bin slop TreeCorr parameter to zero, essentially setting all estimators to brute-force computation. In Fig. 4, we show the validation
of the measurements comparing with the theoretical input.

We will use the FLASK covariance mainly to estimate the impact of the survey geometry.

4.4 Comparisons among covariances

Here, we present some comparisons between the different covariance matrices. In Fig. 5, we show the ratio of the diagonal ele-
ments of the different covariance matrices introduced in this section displaying both the variances of the measurements of ξ+(θ ) of
w(θ ).

In Fig. 6, we compare the covariance matrices obtained from the FLASK simulations and the analytical halo model
covariance.

5 IM PAC T O F C OVA R I A N C E E R RO R S O N A L I N E A R I Z E D G AU S S I A N L I K E L I H O O D

As discussed earlier, a full assessment of the impact of using different covariance matrices to parameter estimation becomes unfeasible due
to the computational demand of running a large number of MCMC chains. Since the covariance matrices studied in this work differ by
subdominant effects, we do not expect large modifications in the results of the estimation of the parameters. Therefore, we will bypass this
difficulty by using a linearized approximation of the model data vector as a function of the parameters. The measured data are assumed to be
a Gaussian multivariate variable characterized by a covariance matrix and a given prior matrix. This approach is called the Gaussian linear
model (Seehars et al. 2014, 2016; Raveri & Hu 2019).

Within this approach, we study the following impacts of different covariances:

(i) error in the parameter estimation, characterized by the width of the contours;

15https://github.com/rmjarvis/TreeCorr
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Figure 5. Ratio of the diagonal elements of the different covariance matrices introduced in this section with respect to each other. The left-hand panel compares
the variances of measurements of ξ+(θ ) while the right-hand panel compares the variances of measurements of w(θ ). To give a sense of the goodness of fit
between the covariance estimated from FLASK and our fiducial analytic matrix, we treat the diagonal elements of the FLASK covariance as a multivariate Gaussian
whose covariance can be inferred from the properties of the Wishart distribution (Taylor et al. 2013). The low p-value for the highest redshift bin ofw(θ ) most
likely results from our incomplete treatment of the survey mask (cf. discussion in Section 6 and Appendix C).

(ii) the scatter of the best-fitting (maximum posteriors) parameters;
(iii) change in the maximum posterior χ2 value;
(iv) error in the maximum posterior χ2 value.

In the remainder of this section, we detail this method.

5.1 Linearized likelihoods

To speed up our simulated likelihood analyses, we employ a linearized model of the data vector ξ (e.g. the DES-Y3 3×2-point function data
vector). This can be considered a linear Taylor expansion of our full model around a fiducial set of parameters π0 that is summarized in Table 3.
In this approximation, our model data vector becomes

ξ (π) = ξ (π0) +
∑

α

(
πα − π0

α

) ∂ξ (π)
∂πα

∣∣∣∣
π=π0

, (29)
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Figure 6. FLASK (lower diagonal) versus CosmoLike halo model (upper diagonal) correlation matrix.

Table 3. Fiducial cosmology and standard deviation of Gaussian parameter
priors used in our mock likelihood analyses. AIA, i is the intrinsic alignment
amplitude in the i-th source redshift bin, mi is the multiplicative shear bias, and
"zs, i parametrizes systematic shifts in the photometric redshift distribution
of that bin. "zl, i parametrizes systematic shifts in the photometric redshift
distribution of the i-th lens redshift bin. The Gaussian priors we choose for the
parameters follow the analysis choices of Abbott et al. (2018) and we assume
infinite flat priors for all other parameters.

Parameter Fiducial value σ prior

Cosmology
#m 0.3 –
σ 8 0.823 55 –
h100 0.69 –
ns 0.97 –
w0 −1 –
#b 0.048 –
#ν 0.001 743 –
#3 1 − #m − #ν –

b1 1.7 –
b2 1.7 –
b3 1.7 –
b4 2.0 –
b5 2.0 –
"zl, 1 0.0 0.04
"zl, 2 0.0 0.04
"zl, 3 0.0 0.04
"zl, 4 0.0 0.04
"zl, 5 0.0 0.04

"zs, 1 0.0 0.08
"zs, 2 0.0 0.08
"zs, 3 0.0 0.08
"zs, 4 0.0 0.08

AIA, 1 0.0 –
AIA, 2 0.0 –
AIA, 3 0.0 –
AIA, 4 0.0 –
m1 0.0 0.03
m2 0.0 0.03
m3 0.0 0.03
m4 0.0 0.03
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where the sum is over all components πα of the parameter vector π (we will use Latin indices for the components of the data vector and Greek
indices for the components of the parameter vector). Given a two-point function measurement ξ̂ and abbreviating

ξ 0 = ξ
(
π0)

δξ = ξ̂ − ξ 0

δπ = π − π0

∂αξ = ∂ξ (π)
∂πα

∣∣∣∣
π=π0

our figure of merit χ2 as a function of the parameters becomes in the linearized approximation

χ2[δπ] =
(

δξ −
∑

α

δπα∂αξ

)T

C−1

(
δξ −

∑

α

δπα∂αξ

)

+
(
π − πprior)T P

(
π − πprior) . (30)

Here, we have allowed for a Gaussian prior with covariance matrix P−1 and central value πprior. To find the deviation δπMP = πMP − π0 from
our fiducial parameters that minimizes this function (the maximum posterior value of the parameters is denoted by πMP), we have to solve

∂χ2

∂(δπβ )

∣∣∣∣
δπ=δπMP

= 0 . (31)

Defining a vector x such that xβ = δξT C−1∂βξ as well as the Fisher matrix Fαβ = ∂βξT C−1∂αξ , this becomes

(F + P) δπMP = x + P (πprior − π0)

⇒ πMP = π0 + (F + P)−1x + (F + P)−1P (πprior − π0) . (32)

We now want to consider the situation when a model covariance matrix Cmod is used to calculate the likelihood in equation (30) that is
different from the true covariance matrix Ctrue of the statistical uncertainties in the data vector ξ̂ . In that case, our linearized likelihood will be
a Gaussian centred around πMP and with parameter covariance matrix

Cπ ,like = (Fmod + P)−1 , (33)

where Fmod,αβ = ∂βξT C−1
mod∂αξ is the Fisher matrix calculated from the model covariance.

The actual covariance matrix of πMP includes two sources of noise. First, statistical uncertainties in the measurement ξ̂ that are described
by the covariance matrix Ctrue and are represented by the first term in equation (32) that is proportional to x, and secondly, statistical uncertainties
in our choice of the prior centre that are described by the prior covariance matrix P−1 and are represented by the second term in equation (32)
that is proportional to πprior. The latter term has the covariance matrix (Fmod + P)−1P(Fmod + P)−1 (because the covariance matrix of πprior is
P−1). Hence, the total covariance matrix of πMP can be written as
(
Cπ ,MP

)
αβ

≡ Cov
[
πMP

α , πMP
β

]

= (Fmod + P)−1P(Fmod + P)−1 +
∑

κ,λ

(Fmod + P)−1
ακ (Fmod + P)−1

λβ

∑

i,k

∂κξi

(
C−1

modCtrueC−1
mod

)
ik

∂λξk . (34)

For Cmod = Ctrue, it is easy to see that this parameter covariance Cπ ,MP equals the covariance Cπ ,like that describes the shape of our likelihood
(as it should).

5.2 Impact on the width of the likelihood and scatter of best-fitting parameters

We can use the above findings to study the impact of different effects in covariance modelling on parameter constraints. If a covariance matrix
C1 contains a noise contribution that is missing in another covariance matrix C2, then we quantify the difference between these matrices by
considering the following two effects:

(i) Width of likelihood contours: Denoting the Fisher matrices obtained from C1 or C2 as F1 and F2, respectively, the widths of likelihood
contours drawn from the different covariances are given by

Cπ ,like, 1 = (F1 + P)−1

Cπ ,like, 2 = (F2 + P)−1 . (35)

Hence, if the difference C1 − C2 = E represents noise contributions missing from (or miss-estimated in C2), then a comparison of Cπ ,like, 1

and Cπ ,like, 2 quantifies the impact of this on the width of parameter contours.
(ii) Scatter in the centre of likelihood contours: If the data vector ξ̂ had C1 as its true covariance matrix but C2 would be used to derive the

maximum posterior parameters πMP from it, then the maximum posterior parameter covariance would be given by
(
Cπ ,MP, 2

)
αβ

= (F2 + P)−1 P (F2 + P)−1 +
∑

κ,λ

(F2 + P)−1
ακ (F2 + P)−1

λβ

∑

i,k

∂κξi

(
C−1

2 C1 C−1
2

)
ik

∂λξk . (36)
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If the difference C1 − C2 = E represents noise contributions missing from (or miss-estimated in C2), then a comparison of Cπ ,MP, 2 and
Cπ ,MP, 1 ≡ Cπ ,like, 1 quantifies the impact of this on the scatter in the location of parameter contours.

An inaccurate covariance model will in general have a different impact on the width and the location of parameter contours. Hence, in order
to quantify the importance of different effects in covariance modelling for parameter estimation, we compare both the pair Cπ ,like, 1/Cπ ,like, 2

and the pair Cπ ,MP, 1/Cπ ,MP, 2.

5.3 Distribution of χ2 when fitting for parameters

Within the linearized likelihood model developed in the previous section, we now investigate how errors in the covariance model impact the
distribution of χ2

MP between measured data vector ξ̂ and a maximum posterior model ξMP = ξ (πMP),

χ̂2
MP = (ξ̂ − ξMP)T C−1(ξ̂ − ξMP) . (37)

We start with the case that

(i) the true covariance C of ξ̂ is known;
(ii) no parameter priors are used when determining the best-fitting model ξMP;
(iii) the true expectation value ξ̄ ≡ 〈ξ̂〉 lies within our parameter space; i.e. there are parameters π true such that ξ (π true) = ξ̄ .

We will show that, as expected, in this case χ̂2
MP should follow a χ2 distribution with Ndata − Nparam degrees of freedom.

Using equations (29) and (32) (and setting again δξ ≡ ξ̂ − ξ 0), one can see that the maximum posterior data vector is given by

ξMP = ξ 0 +
∑

αβ

∂αξ
(
F−1)

αβ

(
δξ T C−1∂βξ

)

= ξ̄ +
∑

αβ

∂αξ
(
F−1)

αβ

(
(ξ̂ − ξ̄ )T C−1∂βξ

)

= ξ̄ +
∑

αβ

∑

kl

∂αξ
(
F−1)

αβ
(ξ̂k − ξ̄k)

(
C−1)

kl
∂βξl

≡ ξ̄ + P ·
(
ξ̂ − ξ̄

)
. (38)

Here, the second line follows from the fact that ξ̄ = 〈ξ̂〉 = 〈ξMP〉 and we have defined the matrix

Pij =
∑

αβ

∂αξi

∑

l

(
F−1)

αβ

(
C−1)

lj
∂βξl . (39)

It can be shown that P is an idempotent matrix (P2 = P) and furthermore that

Trace (P) = Nparam

C−1PC = PT . (40)

The residual between the measurement ξ̂ and the best-fitting model ξMP can be written in terms of P as

ξ̂ − ξMP =
(
ξ̂ − ξ̄

)
−

(
ξMP − ξ̄

)

= (1 − P) ·
(
ξ̂ − ξ̄

)
. (41)

Hence, the covariance matrix of ξ̂ − ξMP is given by

CP ≡ 〈(ξ̂ − ξMP)T (ξ̂ − ξMP)〉 = (1 − P)C (1 − P)T . (42)

This makes it straightforward to find the expectation value
〈
χ2

MP

〉
=

〈
(ξ̂ − ξMP)T C−1(ξ̂ − ξMP)

〉

= Trace
(
CP C−1)

=
∑

jk

Ckj

(
C−1)

jk
−

∑

k

Pkk

= Ndata − Nparam . (43)

Similarly, the variance of χ2
MP can be shown to be

Var(χ2
MP) =

〈(
χ2

MP

)2
〉

−
〈
χ2

MP

〉2

= 2 Trace
([

CP C−1]2
)

= 2(Ndata − Nparam) . (44)
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So far, we have only re-derived textbook results (Anderson 2003). Now how do 〈χ2
MP〉 and Var(χ2

MP) change if the covariance model Cmod we
use to find the best-fitting model ξMP and to compute χ2

MP is different from the true covariance matrix C of ξ̂?
Following similar steps as equations (38) and (39), one can show that

ξMP = ξ̄ + Pmod · (ξ̂ − ξ̄ ), (45)

where

(Pmod)ij =
∑

αβ

∂αξi

∑

l

(
F−1

mod

)
αβ

(
C−1

mod

)
lj

∂βξl (46)

and where the Fisher matrix Fmod is computed from the model covariance Cmod. Equation (45) especially shows that ξMP is still an unbiased
estimator of ξ̄ even when Cmod -= C. When deriving the moments of χ2

MP, we will still come across expectation values like (cf. equation 43)
〈
(ξ̂i − ξ̄i)(ξ̂j − ξ̄j )

〉
≡ (C)ij -= (Cmod)ij . (47)

Hence, the expectation value and variance of χ2
MP are given by

〈
χ2

MP

〉
= Trace

(
CPmod C−1

mod

)
(48)

Var
(
χ2

MP

)
= 2 Trace

([
CPmod C−1

mod

]2
)

, (49)

where

CPmod = (1 − Pmod)C (1 − Pmod)T . (50)

Now we are left to investigate how equations (48) and (49) change when a Gaussian parameter prior P is included in the likelihood function (cf.
equation 30). A complication in this case is that now ξMP is not necessarily an unbiased estimate of ξ̄ anymore. This is because in equation (30)
we have centred our prior around the model parameters πprior that may be different from the true parameters π true. Inserting the full expression
for the maximum posterior parameters (equation 32) into our linearized model, we now get

ξMP = ξ 0 + Pmod · (ξ̂ − ξ 0) + ζ (51)

with

(Pmod)ij =
∑

αβ

∂αξi

∑

l

(Fmod + P)−1
αβ

(
C−1

mod

)
lj

∂βξl

ζ =
∑

α

[
(Fmod + P)−1P (πprior − π0)

]
α
∂αξ .

(52)

The residual between ξ̂ and ξMP hence becomes

ξ̂ − ξMP = (1 − Pmod) · (ξ̂ − ξ 0) − ζ . (53)

Treating the prior centre πprior again as a random vector centred around π true, ζ also becomes a random vector with covariance
(
Cζ

)
ij

≡ Cov[ζi , ζj ]

=
∑

αβγ δ

∂αξi (Fmod + P)−1
αβ Pβγ (Fmod + P)−1

γ δ ∂δξj . (54)

Hence, along lines similar to the case without a prior, we can write the moments of χ2
MP for a given model covariance as

〈
χ2

MP

〉
= Trace

(
{CPmod + Cζ } C−1

mod

)
(55)

Var
(
χ2

MP

)
= 2 Trace

([
{CPmod + Cζ } C−1

mod

]2
)

. (56)

Notice that in the absence of priors Cζ = 0 and for the true covariance C, we recover equations (43) and (44) as expected. Equations (55) and
(56) are used to produce our main result shown in Fig. 1 for different covariance matrices.

6 EX P L O R I N G D I F F E R E N T E F F E C T S IN TH E C OVA R I A N C E M O D E L L I N G

Our main goal is to study the impact of including different effects in the covariance modelling on the estimation of parameters. Several
covariance matrices were generated and tested under different assumptions and approximations. The main results were already shown in
Section 2. We now present the details of each step in the validation strategy that was outlined in Section 5.
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6.1 Gaussian likelihood assumption

A basic assumption of our framework of testing different covariance matrices is that the likelihood function of the data is Gaussian. One simple
reason of why the sampling distribution of the correlation functions cannot be an exact multivariate Gaussian is that this violates the positivity
constraint of the power spectrum (Schneider & Hartlap 2009). There are also other reasons described below. The purpose of this subsection is
to assess the impact of non-Gaussianity of the likelihood of two-point functions in the parameter estimation. In this sense, checking this basic
assumption is a test of the whole framework and is different from the robustness tests for the covariance matrix modelling described in the
remaining subsections of this section.

The impact of a non-Gaussian likelihood in parameter estimation of weak lensing correlation functions has been recently studied in Lin
et al. (2020) where no significant biases were found in one-dimensional posteriors of #m and σ 8 between the multivariate Gaussian likelihood
model and more complex non-Gaussian likelihood models. Also, in Sellentin, Heymans & Harnois-Déraps (2018) the skewed distributions of
weak lensing shear correlation functions are used to derive an analytical expression for a non-Gaussian likelihood.

We first consider a full-sky survey such that each of our two-point function estimators ξ̂AB(θ ) is a harmonic transform of a harmonic
space estimator ĈAB

, (cf. equation 12), i.e.

ξ̂AB(θ ) =
∞∑

,=0

2, + 1
4π

FAB
, (θ ) ĈAB

, . (57)

Each ĈAB
, is given in terms of the spherical harmonics coefficients a,m, b,m of two Gaussian random fields as

ĈAB
, = 1

2, + 1

,∑

m=−,

a,mb∗
,m . (58)

The product of two Gaussian random variables does not follow a Gaussian distribution. Therefore, in principle one would not expect ĈAB
,

[and consequently ξ̂AB(θ )] to have a Gaussian likelihood. However, at small scales, i.e. at high multipoles ,, the sum of the random variables
a,mb∗

,m in equation (58) will approach a Gaussian distribution by means of the central limit theorem, since there are a large number (2, + 1)
of independent modes. It should be pointed out that at these small scales the galaxy density and shear fields characterized by a,m and b,m are
themselves non-Gaussian due to the non-linear evolution of gravity.

It is hence our working hypothesis that non-Gaussianity of ĈAB
, only matters at the largest scales (small ,’s) where both a,m and b,m can

be considered Gaussian random variables but not their product. In the full-sky case, it can then be shown that the second and third central
moments of ĈAB

, are given by

〈(
ĈAB

, − CAB
,

)2
〉

=

[(
CAB

,

)2 + CAA
, CBB

,

]

2, + 1
(59)

〈(
ĈAB

, − CAB
,

)3
〉

=
2
[(

CAB
,

)3 + 3CAA
, CBB

, CAB
,

]

(2, + 1)2
. (60)

If only a fraction fsky of the sky is being observed, these moments get divided by fsky and f 2
sky, respectively.

Assuming different multipoles to be uncorrelated, the corresponding moments of ξ̂AB(θ ) can be computed as
〈(

ξ̂AB(θ ) − ξAB(θ )
)2
〉

=
∞∑

,=0

(
2, + 1

4π
FAB

, (θ )
)2 〈(

ĈAB
, − CAB

,

)2
〉

(61)

〈(
ξ̂AB(θ ) − ξAB(θ )

)3
〉

=
∞∑

,=0

(
2, + 1

4π
FAB

, (θ )
)3 〈(

ĈAB
, − CAB

,

)3
〉

. (62)

Equation (61) is of course nothing but the diagonal of the covariance matrix (cf. equation 14).
The dominant effect of the non-Gaussianity of the C,’s is a positive skewness in the distribution of our data vectors (Sellentin et al.

2018). To estimate its impact on our parameter constraints, we approximate the entire distribution of our 3×2pt data vector by a multivariate
lognormal distribution. The covariance of our data vector and the skewness of each data point as given by equation (62) are sufficient to fix the
parameters of a shifted lognormal distribution. We have already discussed this in Sections 4.2 and 4.3, though with a conceptual difference:
In that section, we describe how to configure lognormal simulations of the cosmic density field, while here we assume measurements of the
3×2-point functions to have a multivariate lognormal distribution. To be explicit, we fix the shift parameters λ(θ ) that enter the lognormal
PDF of the measurements ξ̂AB(θ ) in the different angular bins (cf. equation 24 for the definition of λ) via the equation

〈(
ξ̂AB(θ ) − ξAB(θ )

)3
〉

=
3
〈(

ξ̂AB(θ ) − ξAB(θ )
)2
〉2

λ(θ )
+

〈(
ξ̂AB(θ ) − ξAB(θ )

)2
〉3

λ(θ )3
, (63)

which relates the second and third central moments of lognormal random variables (Hilbert et al. 2011).
In the top panel of Fig. 7, we show the impact of this non-Gaussianity on the distribution of maximum posterior χ2. For that figure, we

generated 300 000 random realizations of our fiducial data vector from a multivariate Gaussian distribution, 300 000 random realizations of that
data vector from a multivariate lognormal distribution, and 300 000 random realizations from another lognormal distribution, whose skewness
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Figure 7. Top panel: Distribution of χ2 when drawing 3×2pt data vectors from a Gaussian distribution (blue histogram), from a shifted lognormal distribution
where the skewness of each data point was computed in the fsky approximation (red histogram) and when assuming that the skewness of the data points is 5 times
that of the fsky approximation (green histogram). Bottom panel: Distribution of maximum posterior σ 8 when fitting the linearized model to Section 5.1 Gaussian
realizations of our fiducial data vector, to lognormal realizations of our fiducial data vector (blue histogram), and to lognormal realizations with 5 times the
skewness of the fsky approximation employed in Section 6.1 (orange histogram).

in each data point was increased by a factor of 5. For each of these random realizations, we analytically determined the maximum posterior
model within the linearized likelihood formalism of Section 5.1 and then computed the χ2 between that model and the random realization. The
blue histogram in the top panel of Fig. 7 shows the distribution of these χ2 values for the Gaussian random realizations and the red histogram
corresponds to the lognormal random realizations. The two histograms are almost identical. Hence, within the fsky approximation employed
above non-Gaussianity in the likelihood does not seem to affect our analysis. Also, even in the extreme scenario of enhancing the skewness of
the data vector by a factor of 5 (green histogram) the increase in the scatter of χ2 remains smaller than about 3 per cent of the average χ2 –
which still would not dominate over the other effects discussed in subsequent sections (cf. Fig. 1).

The impact of non-Gaussianity on the likelihood becomes even more negligible when directly considering the distribution of maximum
posterior parameters. We demonstrate this in the bottom panel of Fig. 7 for the best-fitting values of σ 8 but find similar results for our other key
cosmological parameters #m and w0. Therefore, we conclude that it is safe to assume a Gaussian distribution for the statistical uncertainties
of the DES-Y3 two-point function measurements.

6.2 Modelling of connected four-point function in covariance

The connected four-point contribution to the covariance is the part that is most challenging to model analytically (Schneider et al. 2002; Hilbert
et al. 2011; Sato et al. 2011; Takada & Hu 2013). This contribution is most relevant at small scales and turns out to be a small one for current
LSS analyses (Krause et al. 2017; Barreira et al. 2018). This is for two reasons: (1) such analyses typically cut away their smallest scales
because of uncertainties in the modelling of their data vectors and (2) at small scales the covariance matrix is often dominated by shape noise
and shot noise that are believed to be well understood.

We test whether the non-Gaussian covariance parts (by which we mean both the connected four-point function and supersample covariance)
are a relevant contribution to our error budget by either

(i) replacing the non-Gaussian contributions from the fiducial halo model with the lognormal covariance described in Section 4.2.
(ii) or setting it to zero, i.e. using only a Gaussian covariance matrix.

MNRAS 508, 3125–3165 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/508/3/3125/6358540 by guest on 18 August 2022



DES Y3: covariance validation 3143

Fig. 1 and Table 1 show that neither of these changes has a significant impact on the distribution of χ2 and our parameter constraints.
Assuming that our halo model and lognormal recipes do not underestimate the non-Gaussian covariance parts by orders of magnitude [see e.g.
Sato et al. (2009) and Hilbert et al. (2011) for justifications of this assumption), this demonstrates that we are insensitive to the exact modelling
of these contributions. At the same time, we want to stress that this finding holds for the specific scale cuts, redshift distributions, and tracer
densities of the DESY3 3×2pt analysis and cannot necessarily be generalized to other analysis set-ups.

6.3 Exact angular bin averaging

Equation (14) holds when measuring the two-point correlation functions in infinitesimally small bins around the angular scales θ1 and θ2.
This is unfeasible in practice and in fact also leads to divergent covariance matrices. This can, for example, be seen for the galaxy clustering
correlation functions, where the constant term proportional to 1/n2

g in the harmonic space covariance gives a contribution to the real space
covariance of

1
4π2n2

gfsky
lim

N→∞

N∑

,=1

(2, + 1)
2

P, (cos θ )2 → 1
4π2n2

gfsky
δD(cos θ − cos θ )(= ∞) .

The reason for this divergence is simply the fact that the number of galaxy pairs found in an infinitesimal bin vanishes, leading to infinite shot
noise. This problem disappears when considering finite angular bins.

To analytically average over a finite angular bin [θmin , θmax ], we assume that the number of galaxy pairs with angular separation θ is
proportional to sin θ (corresponding to a uniform distribution of galaxies on the sky). We then replace the functions F AB

, (θ ) in equations (9)
and (10) by

FAB
, (θ ) → 1

cos θmin − cos θmax

∫ θmax

θmin

dθ sin θ FAB
, (θ ) . (64)

For the galaxy clustering correlation function w(θ ), this leads to

P,(cos θ ) →
[P,+1(x) − P,−1(x)]cos θmin

cos θmax

(2, + 1)(cos θmin − cos θmax)
. (65)

The corresponding expressions for the galaxy–galaxy lensing correlation function γ t(θ ) and for the cosmic shear correlation functions
ξ± are presented (together with derivations of all the bin averaged expressions) in Appendix B.

We show below how the bin averaging solves the problem of diverging diagonal values of the covariance for w(θ ). This can be seen from

∑

,

(
[P,+1 (x) − P,−1 (x)]cos θmin

cos θmax

)2

2(2, + 1)fsky(ngAbin)2
=

∫ cos θmin

cos θmax

dx1

∫ cos θmin

cos θmax

dx2

∑

,

2, + 1
2

P, (x1) P, (x2)
fsky(ngAbin)2

=
∫ cos θmin

cos θmax

dx1

∫ cos θmin

cos θmax

dx2
δD(x1 − x2)
fsky(ngAbin)2

= cos θmin − cos θmax

fsky(ngAbin)2

= 2
AsurveyAbinn2

g

= 1
Npair

, (66)

where Asurvey = 4π fsky is the total survey area, Abin = 2π (cos θmin − cos θmax ) is the bin area, and Npair the total number of galaxy pairs used
to estimate ŵ. The above expression is the usual formula for the shot-noise part of the real space covariance.

The impact of the exact angular bin averaging for the noise and mixed terms in the Gaussian part of the covariance matrix is included for
all four types of two-point functions present in the DES-Y3 data vector and the DES-Y3 fiducial covariance.

6.4 Flat versus curved sky

For the Y1 analysis, it was shown that the flat-sky approximation was valid for the galaxy–galaxy shear and shear–shear two-point correlation
function (Krause et al. 2017). In Y3, the fiducial covariance computes the full sky correlations; see equations (12) and (13). We show in Fig. 1
that the effect of including curved sky results has negligible impact on the χ2 distribution. Table 1 shows that this is also true for parameter
constraints.

6.5 RSD and Limber approximation and RSD effects

The modelling of the angular power spectrum of two tracers involves a projection from the 3D power spectrum that requires integrals with
integrands containing the product of two spherical Bessel functions, which are highly oscillatory. The inclusion of RSD effects in a simple linear
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modelling (Kaiser 1987) involves the computation of those integrals with derivatives of the Bessel functions. These integrals are notoriously
difficult to perform numerically and it is usual to apply the so-called Limber approximation (Limber 1953; LoVerde & Afshordi 2008). An
efficient computation of these integrals without resorting to the Limber approximation was recently implemented in the case of the angular
power spectrum for galaxy clustering in Fang et al. (2020b). We use their approach to study the impact of taking into account both non-Limber
computations and RSD effects in the covariance matrix. Fig. 1 and Table 1 show that not taking these effects into account leads to an increase
in average χ2 of about 0.5 per cent and an underestimation of uncertainties in key cosmological parameters by 0.6 per cent to 1.4 per cent.

6.6 Effect of the mask geometry

The analytical covariance models described in Section 4 make use of the so-called fsky approximation; i.e. they take the covariance of an all-sky
survey and divide this by the sky fraction of DES-Y3 to approximate the covariance of our partial sky data. In Appendix C, we show how to
go beyond this approximation. First, we note there that the covariance of the two-point function measurements between pairs of scalar random
fields (δa, δb) and (δc, δd) within angular bins [θab

− , θab
+ ] and [θ cd

− , θ cd
+ ] is given by

Cov
{
ξ̂ ab

[
θab
− , θab

+
]
, ξ̂ cd

[
θ cd
− , θ cd

+
]} Nab

pair

[
θab
− , θab

+
]

Ncd
pair

[
θ cd
− , θ cd

+
]

nanbncnd

= (2π )2
∑

,1 ,2

[
P,1+1(x) − P,1−1(x)

]θab
−

θab
+

[
P,2+1(x) − P,2−1(x)

]θcd
−

θcd
+

· Cov
{
C̃ab

,1
, C̃cd

,2

}
. (67)

Here, P, are again the Legendre polynomials and the angular bin averaging was already evaluated. The factor Nab
pair[θ

ab
− , θab

+ ] (resp.
Ncd

pair[θ
cd
− , θ cd

+ ]) is the average number of pairs of random points that uniformly sample the footprint with densities na, nb (resp. nc,
nd) and whose separation falls into the angular bin [θab

− , θab
+ ] (resp. [θ cd

− , θ cd
+ ]). Hence, these factors describe how the exact survey

geometry suppresses the number of pairs of positions in the bins [θab
− , θab

+ ] and [θ cd
− , θ cd

+ ] with respect to the fsky approximation. Also,
finally, Cov{C̃ab

,1
, C̃cd

,2
} is the covariance of pseudo-C, estimates of the power spectra between the fields (δa, δb) and (δc, δd) (see

Appendix C for more details). Note that the full survey footprint modifies the covariance with respect to the fsky approximation used
in Section 3 both through the factors Nab

pair[θ
ab
− , θab

+ ]/nanb, Ncd
pair[θ

cd
− , θ cd

+ ]/ncnd and by changing Cov{Ĉab
,1

, Ĉcd
,2

} compared to equations
(16)–(23).

One can determine the factors Nab
pair[θ

ab
− , θab

+ ]/nanb and Ncd
pair[θ

cd
− , θ cd

+ ]/ncnd either by counting pairs in a set of random points that trace
the survey footprint homogeneously or they can be calculated analytically from the power spectrum of the survey mask (see our Appendix C as
well as Troxel et al. 2018b). This will generally lead to an enhancement of statistical uncertainties (i.e. of the covariance matrix) with respect
to the fsky approximation. To calculate Cov{C̃ab

,1
, C̃cd

,2
}, one could e.g. follow approximations made by Efstathiou (2004). We slightly modify

their arguments in Appendix C to arrive at

Cov
{
C̃ab

,1
, C̃cd

,2

}
≈ 1

4

(
Cac

,1
Cbd

,2
+ Cac

,2
Cbd

,1
+ Cac

,1
Cbd

,1
+ Cac

,2
Cbd

,2

(2,1 + 1)(2,2 + 1)
+

Cad
,1

Cbc
,2

+ Cad
,2

Cbc
,1

+ Cad
,1

Cbc
,1

+ Cad
,2

Cbc
,2

(2,1 + 1)(2,2 + 1)

)
M,1,2 . (68)

Here, the mode coupling matrix M,1,2 again depends on the power spectrum of the survey mask and is also detailed in Appendix C.
Note that in order to keep our notation brief, we have assumed that the power spectra Cac

,1
etc. in the above equation include both

the underlying cosmological power spectra and contributions to the power spectra from sampling noise, such as shape noise and shot
noise.

In practice, equation (68) and the approximations proposed by Efstathiou (2004) yield very similar results and they are both valid on
scales ,1, ,2 that are much smaller than the typical scales of the mask W. Unfortunately, the DES-Y3 analysis mask has features and holes over
a large range of scales. Hence, the angular scales of interest in the 3×2pt analysis are never strictly smaller than the scales of our mask. Hence,
equation (68) is not sufficiently accurate in our case and in fact significantly overestimates our statistical uncertainties. In Fig. 8, we explain
a simple scheme that can be used to correct for this. To motivate this procedure, consider how one would compute the Gaussian covariance
model directly from the real space two-point correlation functions, i.e. without taking the detour to Fourier space that was used in Section 3.
For the covariance of ξ̂ ab[θab

− , θab
+ ] and ξ̂ cd [θ cd

− , θ cd
+ ], this would amount to integration over all pairs of locations within our survey mask that

fall into the angular bins [θab
− , θab

+ ] and [θ cd
− , θ cd

+ ]. Schematically, this leads to terms of the form

Cov ∝
∫

(ab)∈mask,bin

d#ad#b

∫

(cd)∈mask,bin

d#cd#dξ ac(θac)ξ bd (θbd ) + . . . . (69)

Here, #a. . . #d are four locations inside the survey mask such that the distance between #a and #b lies inside the angular bin [θab
− , θab

+ ] and
the distance between #c and #d lies inside the angular bin [θ cd

− , θ cd
+ ]. Now the approximation of Efstathiou (2004) assumes that the two-point

functions ξ ac(θ ), ξ bd(θ ) are negligible on scales θ comparable to the small-scale features in the mask. Schematically, this amounts to making
the approximation
∫

d#a . . . W (#a)ξ ac(θac) ≈ ξ̄ ac

∫
d#a . . . W (#a)δ2

Dirac(#a − #c), (70)
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Figure 8. The impact of masking on the DES-Y3 covariance. The blue histogram in the right-hand panel shows the distribution of χ2 obtained from our FLASK

data vectors when using the fsky approximation. We restrict this figure to the 2×2pt function part of the data vector since it is this part that suffers the most from
masking effects (cf. Fig. 1). Ansatzes in the CMB literature (e.g. Efstathiou 2004) are not sufficient to correct for this, because the DES footprint has features
down to very small scales. In the main text, we have motivated a possible way to correct for these small-scale masking features and the orange histogram in
the left-hand panel shows that this ansatz indeed significantly improves the χ2 obtained from our FLASK measurements. The sketch in the right-hand panel
visualizes how small-scale features in the mask lead to an overestimation in the covariance when using common ways to treat the impact of survey geometry on
the two-point function covariance (see the main text for explanation).

where ξ̄ ac is a suitable average of the two-point function over different scales. Our understanding of the approximation of Efstathiou (2004)
via equation (70) is based on findings that we present in Appendix D. This approximation fails when the mask contains features (e.g. holes)
on scales where the two-point function has not yet decayed. Assuming that such small-scale holes cover a fraction of fmask of a more coarse
version of the footprint, this can roughly be corrected for with a multiplicative factor, i.e. by instead using the approximation
∫

d#a . . . W (#a)ξ ac(θac) ≈ fmask ξ̄ ac

∫
d#a . . . W (#a)δ2

Dirac(#a − #c) . (71)

The right-hand panel of Fig. 8 visualizes this for the mixed terms in the covariance, where one of the correlation functions ξ ac or ξ bd is
due to sampling noise such as shape noise or shot noise and is hence exactly proportional to a Dirac delta function. In that case, the integration
is over pairs that share one end point. Now, the approximation made e.g. in Efstathiou (2004) or by our equation (68) assumes that also the
correlation function between the other two end points effectively acts as a delta function with respect to the smallest scale features in the survey
mask (cf. equation 70). We find that this is not the case for the DES-Y3 mask and that it contains features on all scales relevant to our analysis.
However, as indicated in equation (71), one can approximately correct for this by multiplying the mixed terms in the covariance by the fraction
fmask of the coarser survey geometry that is covered by small-scale holes in the mask. This can be considered a next-to-leading-order correction
to our equation (68).

By applying equation (71) twice, one can see that the cosmic variance terms (terms where neither of the two-point functions ξ ac or ξ bd are
exactly proportional to delta functions) can be corrected by multiplication with f 2

mask. To implement this correction in practice, we draw circles
within the DES-Y3 survey footprint with radii ranging from 5 to 20 arcmin and measure the masking fraction in these circles. We find that this
fraction is ≈90 per cent across the considered scales. Multiplying the mixed terms in the covariance by that fraction and the cosmic variance
terms by the square of that fraction (together with using equation 68), we indeed find significant improvement of the maximum posterior χ2

obtained for the FLASK simulations – as is shown in the left-hand panel of Fig. 8 (as well as in Fig. 1).
In Fig. 9, we use our FLASK measurements together with the technique of precision matrix expansion (PME; from inverse covariance =

precision matrix; Friedrich & Eifler 2018) and perform a consistency of the modelling ansatz described above by investigating the impact
of masking on individual covariance terms. We find both with the PME methods and with our analytic ansatz that masking effects are most
impactful in the covariance terms that depend on shape noise of the weak lensing source galaxies (i.e. in what we called mixed terms in
Section 3). This also agrees with the findings of Joachimi et al. (2020) and it further motivates the modelling of masking effects that we
have described here. Nevertheless, we do not elevate this modelling ansatz to our fiducial covariance model because its motivation remains
rather heuristic. However, we consider it a realistic estimate for the error made by the fsky approximation and can hence use it to estimate the
impact of that approximation on parameter constraints. In Fig. 2, we have already shown that this impact is below the 1 per cent level; i.e.
we underestimate the scatter of maximum posterior parameters by less than 1 per cent when making the fsky approximation in our fiducial
covariance model.

Note that Kilbinger & Schneider (2004), Sato et al. (2011), Shirasaki et al. (2019), and Philcox & Eisenstein (2019) have devised and
promoted an alternative method to correct for masking, which amounts to direct Monte Carlo integration of expressions like equation (69).
Given the large area of DES-Y3 and its numerous combinations of redshift bins, we did not find this to be feasible.
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Figure 9. The method of PME (Friedrich & Eifler 2018) allows us to estimate the impact of individual covariance terms on χ2 even when only few simulated
measurements are available. The orange squares show the average χ2 between our FLASK measurements and their mean [re-scaled by a factor of NFLASK/(NFLASK

− 1) to account for the correlation of individual measurements and mean] when using either no PME at all or when using PME estimates from shape-noise free
sims or from the full sims. The blue dots show the corresponding χ2 values when using the heuristically motivated analytical treatment of masking and survey
geometry presented in the main text. The grey dashed line represents the number of data points and should be the average χ2 if we had a perfect covariance
model (note that for this comparison we have not performed any parameter fitting).

6.7 Non-Poissonian shot noise

In the Poissonian limit and in a complete region of the sky, the power spectrum of shot noise is scale independent and given by

N
complete
, = 1

n̄
, (72)

where n̄ is the galaxy density per steradian. As noted in the previous subsection, in galaxy surveys not every region of the sky is fully
accessible; i.e. the presence of bright stars, satellite trails, etc. leads to artificial changes in the measured galaxy density. These density changes
can potentially modify the observed galaxy power spectrum and bias any cosmological analyses derived from them, and thus, they are avoided
by removing certain regions of the sky where artefacts may be found. These regions are usually smaller than the resolution of the (pixelated)
survey mask used to determine whether a region of the sky is within the footprint or not, since it is computationally expensive to increase the
resolution. This this can be described through a fractional mask Wi = 1/fi, where i is a given pixel of the mask and fi is the fractional area of
the pixel unaffected by the presence of artefacts. If we compute the galaxy overdensity as δg,i = Ni/(N̄Wi) − 1, with N̄ =

∑
i Ni/

∑
i Wi ,

the mean number of sources per pixel, we can estimate the Poissonian noise power spectrum as (Nicola et al. 2020)

N, = #pix
W̄

N̄
, (73)

where w̄ is the mean of the weights wi across the footprint, and #pix is the area of the pixels from the mask in steradians. In the case where all
the pixels in the footprint are fully complete, we recover equation (72) since n̄ = N̄/#pix, and N̄ =

∑
i Ni/

∑
i 1. However, in the case that

any of the pixels of the mask are not fully complete we obtain an increased shot-noise contribution by a factor W̄ ≥ 1 (since 0 ≤ fi ≤ 1).
In previous studies, the DES-Y1 lens galaxies were shown to prefer a super-Poissonian variance (Friedrich et al. 2018; Gruen et al. 2018)

that might be a consequence of their complex selection criteria or due to the nature of their formation and evolution (see e.g. Baldauf et al.
2013; Dvornik et al. 2018). This super-Poissonian variance leads to an enhancement in shot noise. In order to test for this effect, we proceeded
to estimate the angular power spectrum, C, ≈ C,,galaxies + N, + δC,, of DES-Y1 REDMAGIC galaxies selected in Elvin-Poole et al. (2018) using
NaMaster (Alonso et al. 2019), where N, is the shot-noise contribution from equation (73) and δC, is the excess power that can be due to a
number of factors (variations in completeness not captured by the mask, super-Poissonian shot noise, observational systematics, etc.). We also
compute the power spectrum, C,,rnd of a random field with the same number of objects as the galaxy sample considered, and the probability
of populating a pixel i is proportional to its weight, Wi. We find that C,,rnd is statistically consistent with N,. We then compute the ratio as
follows:

r, = C, − C,,rnd

N,

≈ C,,galaxies

N,

+ δC,

N,

. (74)

In Fig. 10, we show r, compared to the theoretical expectation for C,,galaxies/N, = C,,th/N,, where C,,th is the theoretical power spectrum
computed using the best-fitting parameters found in Elvin-Poole et al. (2018). We also allow for a 20 per cent variation in the linear galaxy
bias, which is much larger than the uncertainty found in Elvin-Poole et al. (2018). We find that there is an excess power at , ≥ 3000 that cannot
be explained by an excess galaxy clustering (i.e. a larger than measured linear bias or a non-linear bias component). We identify this excess
(between 2 per cent and 6 per cent) with δC,

N,
in equation (74).

This excess will translate into an extra shot-noise-like contribution to the covariance matrix (Philcox et al. 2020). The way we include
this is by fitting a correction to the number density αn such that the excess power is compatible with zero. In order to do so, we minimize the
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Figure 10. Measured ratio r, = C,−C,,rnd

N,
(crosses) compared to predicted contribution of the galaxy power spectra over the shot noise (solid line) for the

fiducial parameters at Elvin-Poole et al. (2018) allowing for a 20 per cent uncertainty in the galaxy bias (shaded regions) for two redshift bins (bin 4 in blue and
bin 5 in orange). Horizontal dashed lines are just to guide the eye. If the shot noise were to be completely Poissonian, the measured and predicted ratios would
agree; however, we find an excess between 2 per cent and 6 per cent.

Table 4. Best-fitting values of αn to correct
for the excess shot noise with the DES-Y1
REDMAGIC galaxies.

Bin number α

1 1.042 ± 0.002
2 1.069 ± 0.003
3 1.072 ± 0.003
4 1.057 ± 0.003
5 1.021 ± 0.001

following χ2:

χ2(αn) =
∑

,

(
C, − C,,th

αnN,

− C,,rnd

N,

)2 (
"C,,th

αnN,

)−2

, (75)

where "C,,th is varied in the range of 1.22C,,th–0.82C,,th (so we are allowing for 20 per cent uncertainty in the bias for the fit). The resulting
values for αn can be found in Table 4. In Figs 1 and 2 and Table 1, one can see that depleting the lens galaxy densities in our fiducial covariance
model by these factors has a negligible effect on both maximum posterior χ2 and parameters constraints.

6.8 Cosmology dependence of the covariance model

In order to evaluate our covariance model, we choose a particular set of cosmological parameters. We do not vary these parameters when
sampling our parameter posterior and this may impact the width of our parameter constraints (Hamimeche & Lewis 2008; Eifler et al. 2009;
White & Padmanabhan 2015; Kalus, Percival & Samushia 2016). Our main reason for not sampling the covariance model along with the data
model is that computing a covariance matrix is computationally too costly for this to be feasible. Recently, Carron (2013) has also indicated
that it may indeed be incorrect to vary the covariance cosmology when running MCMC chains.

It is only after running the MCMC chains that we can recompute the covariance at our best-fitting parameters and re-derive our parameter
constraints – repeating this process until our constraints have converged (cf. Abbott et al. 2018, for the application of this procedure in the
DES Y1 data). Therefore, the cosmology at which we compute our covariance is expected to be off from the best-fitting cosmology. In this
subsection, we investigate how χ2, as well as cosmological parameter constraints, shifts when computing the covariance at cosmologies that
are randomly drawn from the DESY3-like posterior.

We test the robustness of our constraints against the choice of cosmological parameters at which we evaluate the covariance model
by taking a set of 100 different cosmologies drawn randomly from the simulated DES-Y3 3×2pt posterior and generating 100 lognormal
covariance matrices. Using each of these covariances, we estimate posteriors for a given realization of simulated DES-Y3 3×2pt data with
noise drawn from a fiducial lognormal covariance.

Since it is prohibitively expensive to perform simulated analyses running MCMC chains for each covariance matrix, we use the technique
of importance sampling. That allows us to quickly evaluate how these different likelihood modelling choices impact the derived parameter
constraints without repeatedly running expensive sampling algorithms. In our importance sampling pipeline, we take a fiducial analysis as a

MNRAS 508, 3125–3165 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/508/3/3125/6358540 by guest on 18 August 2022



3148 O. Friedrich et al.

Figure 11. (S8, #m) constraints for a given noisy realization of the DES-Y3 3×2pt data vector analysed using 100 lognormal covariance matrices, each
computed from a different cosmology drawn from a simulated DES-Y3 3×2pt posterior. The 100 contours are superimposed in the plot, showing very small
change in constraints. The points indicate the cosmologies at which the covariances were evaluated.

proposal distribution, re-evaluate the likelihoods using the alternative covariance matrix, and compute importance weights as:

wi = L(πi |ξ̂ , Calt)

L(πi |ξ̂ , Cfid)
, (76)

where Cfid is the fiducial covariance in the analysis and Calt is the alternative one. If the changes induced by the new covariance matrix in the
posterior are not too large, the re-weighted samples represent the target distribution (i.e. the posterior for the alternative covariance matrix).
So we have

Ep[f (Xi)] =
∑

i

pif (Xi) =
∑

i

qi

pi

qi

f (Xi) = Eq[wif (Xi)], (77)

for a function f(Xi) of the posterior samples. Here, pi is the probability of Xi under the target distribution p and qi is the probability of Xi under
the proposal distribution q (see e.g. MacKay 2002; Owen 2013).

To diagnose the performance of our importance sampling estimates, we use the effective sample size (ESS):

ESS =
〈wi〉2

〈
w2

i

〉Nsamples, (78)

where Nsamples is the total number of posterior samples used in the estimation. The ESS as defined above quantifies the statistical power of
the sample set after the re-weighting process (assuming uncorrelated samples). It is equal to the original sample size re-scaled by the ratio of
the variances under each of the distributions (Martino, Elvira & Louzada 2017), such that the error of the mean of a quantity x with standard
deviation σ x under the target distribution can be estimated as σx/

√
ESS. Additionally, since our proposal distribution is itself a weighted

sample set, we incorporate both the original and the importance weights in our ESS estimate.
Using the fiducial lognormal covariance matrix, we run the nested sampling algorithm MultiNest (Feroz & Hobson 2008; Feroz,

Hobson & Bridges 2009; Feroz et al. 2019), and perform the importance sampling procedure to estimate parameters using each of the 100
covariance matrices randomly sampled in parameter space. The (S8, #m) contours can be seen in Fig. 11. The ESSs for the importance sampled
estimates range from 16 446 to 18 329 (implying a standard error of the mean within 0.78 per cent of the standard deviation for all cases), and
the contours show good statistics. As the impact of covariance cosmology is barely noticeable for this range of tested parameters, we repeat
the analysis for a few more extreme (and unlikely) cosmologies in Appendix F.

These results all confirm that we can safely neglect the impact of the choice of covariance cosmology in DES-Y3 3×2pt analysis. One
caveat of this conclusion is that we have indeed only varied cosmological parameters (including galaxy bias parameters) but not nuisance
parameters (multiplicative shear bias, photometric redshift uncertainties) or parameters that describe intrinsic alignment. However, the DES-Y3
shear and photo-z calibration yield tight Gaussian priors on the corresponding nuisance parameters. Also, intrinsic alignment is relevant only
on small angular scales where the covariance matrix is dominated by sampling noise contributions. Hence, we do not expect the results of this
section to change significantly had all parameters been varied.
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6.9 Random point shot noise

We also consider the effect of additional shot noise in the measurements of galaxy clustering resulting from the use of finite numbers of random
points. The Landy–Szalay estimator (Landy & Szalay 1993) is estimating the galaxy clustering correlation function inside an angular bin [θ1,
θ2] as

ŵ[θ1, θ2] = DD[θ1, θ2] − 2DR[θ1, θ2] + RR[θ1, θ2]
RR[θ1, θ2]

, (79)

where DD[θ1, θ2] is the number of galaxy pairs found within the angular bin, RR[θ1, θ2] is the (normalized) number of pairs of random points
that uniformly samples the survey footprint, and DR[θ1, θ2] is the (normalized) number of galaxy-random-point pairs within the angular bin.
If the number density of random points nr is much larger than the number density of the galaxies ng (as is recommended for reduce sampling
noise), then both RR and DR must be re-scaled by factors of (ng/nr)2 and (ng/nr) respectively.

We stress that the Landy–Szalay estimator was devised at a time of very limited computational resources, where it was prohibitively costly
to measure galaxy pair in a large number of random points. Hence, it was vital to minimize random point shot noise. Nowadays, footprint
geometries of photometric surveys are typically characterized by high-resolution healpix maps. The most straightforward way to calculate
galaxy clustering correlation function is to simply assign a value of galaxy density contrast to each of these pixels and then measure the scalar
autocorrelation function of the unmasked pixels. This way, one is avoiding random point shot noise completely.

Nevertheless, it is still very common to measure w(θ ) by means of equation (79). So we also tested what impact a finite number of
random points would have on our analysis. To do so, we extended expressions of Cabré & Gaztañaga (2009; see their appendix A) to the
case where the same random points are used to estimate w(θ ) in each of our redshift bins and also to subtract shear around random points
from our galaxy–galaxy lensing correlation functions. Note that this causes a noise contribution to the two-point function measurements that
is correlated among different redshift bins. We assumed a random point density of 1.36 arcmin−2, which is more than 20 times larger than
the density of our most dense lens galaxy sample. From Table 1, it can be seen that not accounting for the random point shot noise in the
covariance leads to an increase in average χ2 of !1 per cent and to an underestimation of parameter uncertainties by ≈0.5 per cent. Hence,
this effect can be ignored for our analysis.

6.10 Effective densities and effective shape noise

We are closing this section by spelling out an aspect of covariance modelling that may seem straightforward but which has repeatedly came
up in covariance discussions.

If the tracer galaxies used to estimate two-point correlation functions are weighted according to some weighting scheme, then this may
change the effective number densities and the effective shape noise that should be used when evaluating the covariance expressions in Section 4.
In the following, we will derive how this can be done for each of the two-point functions in the DESY3 3×2pt data vector.

6.10.1 Galaxy clustering

We start with the galaxy clustering correlation function w(θ ). We assume a weighting scheme that is aimed at correcting for non-cosmological
density fluctuations resulting from spatially varying observing conditions (as e.g. in Elvin-Poole et al. 2018). This means that the weights
assigned to each galaxy in fact sample a weight map that spans the entire footprint.

Instead of measuring w(θ ) from the weighted galaxies by means of, say, the Landy–Szalay estimator (Landy & Szalay 1993), it will be
more convenient to think of the galaxy density contrast as a pixelized field on the sky. Furthermore, we will assume that the weight map has
been normalized such that 〈w〉 = 1 (which can always be done without changing the outcome of the weighted measurement). Consider pixel
i with galaxy count Ng,i and weight wi. If ng is the average galaxy density of the unweighted sample, then by taking expectation values with
respect to many Poissonian shot-noise realizations (and hence ignoring fluctuations of the underlying matter density field) we get

〈Ng,i〉 = Apixng

wi

(80)

Var(Ng,i) = Apixng

wi

(81)

Var(wiNg,i) = wiApixng (82)

Var
(

wiNg,i

Apixng
− 1

)
≡ Var(δg,i)

= wi

Apixng
, (83)

where Apix is the area of each pixel and the second to last line serves as definition of δg,i and needs the fact that we demanded 〈w〉 = 1.
Note that these equations are only valid for an ensemble of observations that shares the same weight maps and differs only in their shot-noise
realizations.
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From the set of all pixels, we can now estimate w(θ ) within a finite angular bin [θ1, θ2] as

ŵ[θ1, θ2] =
∑

pxls i>j "
ij
[θ1,θ2] δg,i δg,j

∑
pxls i>j "

ij
[θ1,θ2]

, (84)

where the symbol "
ij
[θ1,θ2] in the double sum over all pixels is 1 when the distance of the pixel pair i, j is within [θ1, θ2] and 0 otherwise. Note

that we assume an enumeration of the pixels and that we demand i > j in the sum in order to not count any pair of pixels twice.
If shot noise is the only source of noise, then it is straightforward to calculate the variance of this measurement as

Var(ŵ[θ1, θ2]) =

∑
pxls i>j "

ij
[θ1,θ2]

〈
δ2

g,i

〉 〈
δ2

g,j

〉

[∑
pxls i>j "

ij
[θ1,θ2]

]2

= 1
(Apixng)2

∑
pxls i>j "

ij
[θ1,θ2] wi wj

[∑
pxls i>j "

ij
[θ1,θ2]

]2

= 1
Npair,g[θ1, θ2]

∑
pxls i>j "

ij
[θ1,θ2] wi wj

∑
pxls i>j "

ij
[θ1,θ2]

. (85)

In the last line, Npair,g[θ1, θ2] is the number of unweighted galaxy pairs within the angular bin [θ1, θ2]. Note that in the presence of clustering,
this should be calculated from a set of random points instead of from the actual galaxy catalogue.

The first factor on the right-hand side of equation (85) is what the shot-noise variance of ŵ should be in the absence of a weighting
scheme. The second term is a two-point function of the weight map itself. If the weight map has a white-noise power spectrum, then this
factor will be close to 1 in any angular bin that does not include angular distances of 0. This means that at large enough scales the last line
of equation (85) looks like the covariance for plain Poissonian shot noise without any notion of an effective number density. This may be
surprising, but it stems from the fact that the weighting scheme we assumed does not simply multiply the galaxy density contrast field. Instead,
it reverses an already existing depletion of galaxy density from non-cosmological density fluctuations.

In conclusion, the effective number density that should be used to compute the covariance of ŵ[θ1, θ2] is

ng,eff [θ1, θ2] = ng

√√√√
∑

pxls i>j "
ij
[θ1,θ2]∑

pxls i>j "
ij
[θ1,θ2] wi wj

. (86)

6.10.2 Galaxy–galaxy lensing

We move on to consider the galaxy–galaxy lensing correlation function γ t[θ1, θ2]. We assume that the lens galaxy sample comes with weights
derived from a weight map wl as in the previous subsection while each source galaxy j has a weight ws

j that does not come from an entire
weight map but is instead the result of the individual quality of shape measurement for this galaxy. A measurement of γ t can be constructed
as

γ̂t [θ1, θ2] =
∑

pxl i, source j "
ij
[θ1,θ2] δl,i εt,j→i ws

j∑
pxl i, source j "

ij
[θ1,θ2] ws

j

. (87)

Here, δl,i is the galaxy density contrast of the lenses defined in analogy to the previous subsection, εt, j → i is the tangential component of the
shear of source j with respect to lens galaxy i, and wj is the weight of source galaxy j. Note that due to our definition of the lens galaxy density
contrast this estimator already includes subtraction of shear around random points.

If shot noise and shape noise are the only sources of noise, then it can be readily shown that

Var(γ̂t [θ1, θ2]) =

∑
pxl i, source j "

ij
[θ1,θ2]

〈
δ2
l,i

〉 〈(
εt,j→i ws

j

)2
〉

[∑
pxl i, source j "

ij
[θ1,θ2] ws

j

]2

≈ 1
Npair,ls[θ1, θ2]

∑
pxl i, source j "

ij
[θ1,θ2]

〈(
εt,j→i ws

j

)2
〉

∑
pxl i, sources j "

ij
[θ1,θ2] ws

j

≈ 1
2Npair,ls[θ1, θ2]

∑
source j

〈
|εj |2

(
ws

j

)2
〉

Ns

(
only with

〈
ws

j

〉
= 1 =

〈
wl

j

〉
!
)
. (88)

Here, Npair,ls[θ1, θ2] is the number of unweighted lens–source pairs in the angular bin [θ1, θ2], Ns is the total number of source galaxies and
εj = ε1,j + iε2,j is the complex intrinsic ellipticity of source galaxy j.
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Note that the final expression in equation (88) explicitly allows for the possibility that the source weights ws
j are correlated with the

intrinsic ellipticities εj of the source galaxies. One can interpret equation (88) as

Var(γ̂t [θ1, θ2]) =
σ 2

ε,eff

Npair,ls[θ1, θ2]
(89)

with the effective dispersion of intrinsic ellipticity per shear component given by

σ 2
ε,eff = 1

2

∑
source j |εj |2 (ws

j )2

Ns

. (90)

One subtlety here is that the above derivation requires 〈ws
j 〉 = 1. The above expressions must be modified as this is not the case or when

taking into account responses Rj of a shape catalogue generated with metacalibration (Sheldon & Huff 2017). We detail what to do in the latter
case in Appendix G.

6.10.3 cosmic shear

For cosmic shear, we follow Schneider et al. (2002) and construct a measurement of ξ+ from a set of sources as

ξ̂+[θ1, θ2] =
∑

i>j "
ij
[θ1,θ2] wiwj (ε1,iε1,j + ε2,iε2,j )
∑

i>j "
ij
[θ1,θ2] wiwj

. (91)

If shape noise is the only source of noise and if the intrinsic ellipticities of galaxies are not correlated with their weights, then the variance of
ξ̂+ is given by

Var(ξ̂+[θ1, θ2]) =
∑

i>j "
ij
[θ1,θ2]

〈
ε2

1,iw
2
i

〉 〈
ε2

1,jw
2
j

〉
+

〈
ε2

2,iw
2
i

〉 〈
ε2

2,jw
2
j

〉

[∑
i>j "

ij
[θ1,θ2] wiwj

]2

≈
2σ 4

ε,eff

Npair[θ1, θ2]
. (92)

Here, Npair[θ1, θ2] is the number of source galaxy pairs in the bin [θ1, θ2] and we have replaced each expectation value 〈ε2
1/2,iw

2
i 〉 by σ 2

ε,eff

from equation (90). Note that we again assumed 〈wj〉 = 1 and that this may require re-scaling of both weights and σ ε when using shape
measurements from metacalibration.

6.10.4 Testing validity of effective shape noise

To test the validity of our expression for effective shape noise in equation (90), we run a sub-sample covariance estimator on our data (see e.g.
Friedrich et al. 2016). In particular, we divide all of our source and lens galaxy samples into 200 randomly chosen sub-samples and measure
the galaxy–galaxy lensing correlation function of each source–lens bin combination. As a result, we obtain 200 measurements of γ̂t in each
source–lens bin combination. Since we employ completely random sub-sampling, i.e. without any regard for e.g. a division of our footprint
into sub-regions, the sample covariance of these 200 measurements will almost exclusively be dominated by shape noise and shot noise. This
is even more so, because the lens and source densities of the sub-samples are very low.

In Fig. 12, we show the ratio of the variances of the 200 galaxy–galaxy lensing measurements γ̂t in the different lens–source bin
combinations to equation (89). Assuming that the sub-sample covariances follow a Wishart distribution, we find that these ratios are perfectly
consistent with 1. This indicates that equation (90) indeed yields an accurate effective shape-noise dispersion, and that one should indeed use
the plain density of lens galaxies (as opposed to any notion of effective density) when evaluating covariance expressions.

7 A SIM PLE χ2 TEST

In this short section, we present a simple χ2 test that does not rely on the linearized framework. However, it has the disadvantage of not
addressing the impact on the estimation of parameters. Here, we generate a large number of ‘contaminated’ data vectors (we use 1000) by
a Gaussian sampling of a given covariance matrix that includes different effects and to compute a χ2 distribution from these data vectors
using a fiducial covariance matrix. The resulting shifts in the mean value of χ2 and their standard deviations give another benchmark for the
importance of the different effects considered here. We show the results of this test in Fig. 13. Note that the relative increases in χ2 follow
closely what we obtained within the linearized likelihood framework in Fig. 1. This indicates that the dominant way in which covariance errors
cause χ2 offsets is not through the altered scatter of maximum posterior parameter locations but simply through using an erroneous inverse
covariance when computing χ2. That also justifies our usage of the linearized likelihood framework since any impact of non-linear parameter
dependences on parameter fitting can be expected to be even less relevant than linear fitting in the first place.

MNRAS 508, 3125–3165 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/508/3/3125/6358540 by guest on 18 August 2022



3152 O. Friedrich et al.

Figure 12. Ratio between the sample variance of γ̂t measured in 200 randomly selected sub-samples of the DESY3 lens and sources catalogues and equation (89)
for the shape-noise contribution to the covariance (again using equation 90 to calculate the effective shape-noise dispersion σ ε,eff). Each row displays the variances
measured for a different source redshift bin and vertical dashed lines separate points belonging to different lens redshift bins (1–5 from left to right). Assuming
that the covariance estimates have a Wishart distribution, we calculate the covariance matrix of these ratios (cf. Taylor et al. 2013) and find that they are consistent
with 1 (both for the cosmic shear and galaxy–galaxy lensing variances).

Figure 13. χ2 tests taking into account different effects. Colours follow the scheme of Fig. 1.
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8 D I S C U S S I O N S A N D C O N C L U S I O N S

In this paper, we have presented the fiducial covariance model of the DES-Y3 joint analysis of cosmic shear, galaxy–galaxy lensing, and galaxy
clustering correlation functions (the 3×2pt analysis). We then investigated how the assumptions and approximations of that model (including
the assumption of Gaussian statistical uncertainties) impact the distribution of maximum posterior χ2 and maximum posterior estimates of
cosmological parameters.

The fiducial covariance matrix of the DES-Y3 3×2pt analysis uses the formalism of Krause & Eifler (2017) to model supersample
covariance as well as the trispectrum contribution to the covariance. The model for the Gaussian covariance part (i.e. the contributions from
the disconnected four-point function) correctly takes into account sky curvature and includes analytical averaging over the finite angular bins
in which the two-point functions are measured. Furthermore, the galaxy clustering power spectra that enter our calculation of the Gaussian
covariance part are computed using the non-Limber formalism of Fang et al. (2020b) and also include modelling of RSDs. The finite survey
area of DES-Y3 is incorporated in the covariance model via the fsky approximation (except in the pure shape-noise and shot-noise terms where
we follow Troxel et al. 2018b).

In order to perform our validation tests for the DES-Y3 covariance matrix, we developed a plethora of new modelling ansatzes and testing
strategies that are applicable in general. These new techniques are as follows:

(i) We have motivated and devised a way of drawing realizations of the 3×2pt data vector from a non-Gaussian distribution in order to test
the accuracy of our Gaussian likelihood assumption.

(ii) We have derived analytical expressions for angular bin averaging of all four types of two-point correlation functions included in the
3×2pt vector (ξ+, ξ−, γ t, and w). These expressions correctly account for sky curvature. To the best of our knowledge, an analytical treatment
of bin averaging for cosmic shear two-point function has not been presented before (though we have shared our results with Fang et al. 2020a,
who have used them for the fiducial covariance computations).

(iii) We have extended the lognormal analytical model for the covariance of cosmic shear two-point function of Hilbert et al. (2011) to the
other two-point functions present in the 3×2pt data vector.

(iv) Within a linearized likelihood formalism, we have analytically derived how covariance model inaccuracies influence the distribution of
maximum-posterior χ2 and of maximum-posterior parameter estimates. The results we presented also allow for the possibility of including
the Gaussian priors on certain model parameters and can be used to analytically estimate the impact of covariance errors on cosmological
likelihood analyses.

(v) By fitting an effective number density to the high-, plateau of galaxy clustering C, measurements, we have estimated how much the
assumption of Poissonian shot noise influences our likelihood analysis. This is similar in spirit to the RASCALC technique presented by Philcox
et al. (2020), and we agree with those authors that non-Poissonian shot noise can be viewed as an effective description of how short-scale
non-linearities in galaxy clustering influence the covariance.

(vi) We calculated covariance matrices for 100 different sets of cosmological and nuisance parameters randomly drawn from a simulated
likelihood chain. This allowed us to investigate whether calculating our covariance model at a reasonable, but wrong point in parameter space
significantly impacts our analysis. This was done both within our linearized likelihood framework and by using importance sampling to quickly
evaluate the 100 non-linear likelihoods.

(vii) We have derived how the two-point correlation function of weight maps influences the covariance of galaxy clustering two-point
function measurements. In that context, we have also found that traditional ways of deriving an effective number density for a given set of
galaxy weights are erroneous when those weights are aimed at undoing a suspected depletion of galaxy density (e.g. due to variations in
observing conditions).

(viii) We have derived an expression for the effective dispersion of intrinsic source shapes for the situation when source galaxy weights
are correlated with galaxy ellipticity. We have also shown how metacalibration responses (Sheldon & Huff 2017) enter that expression for
effective shape noise.

(ix) We have described a clean sub-sample covariance estimation scheme that directly measures the sampling noise contributions to the
covariance from a given data set. We then used the resulting covariance estimates to test the validity of our assumed effective shape noise
values.

(x) We have employed the hybrid covariance estimation technique PME (Friedrich & Eifler 2018) to efficiently evaluate the importance of
individual contributions to the covariance from only a limited set of simulated data (in our case: 200 realizations of the 3×2pt data vector
including shape noise and 100 realizations without shape noise).

(xi) We have devised a treatment of survey geometry in covariance modelling that improves upon existing approximations (of e.g. Efstathiou
2004) and we have demonstrated how to carry those approximations from harmonic space to real space.

Using these results, we perform several tests for the fiducial DES-Y3 3×2pt covariance matrix and likelihood model, with the following
conclusions:

(i) The assumption of Gaussian statistical uncertainties is sufficiently accurate (cf. Section 6.1). Hence, knowledge of the covariance of the
3×2pt data vector is sufficient to model our statistical uncertainties. The main assumption made to arrive at this conclusion is that non-Gaussian
error bars are primarily a large-scale problem and that at small scales the number of modes present within the DES-Y3 survey volume converges
to a Gaussian distribution via the central limit theorem.
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(ii) The non-Gaussian part of the covariance has a negligible impact on both maximum posterior χ2 and parameter constraints (cf.
Section 6.2). This statement is not a general one but only holds for the specific DES-Y3 3×2pt analysis set-up. The main assumption made
to arrive at that conclusion is that the CosmoLike model (Krause, Eifler & Blazek 2016) or the lognormal model (Hilbert et al. 2011) for the
non-Gaussian covariance does not vastly underestimate the true covariance. Given the results of Sato et al. (2009) and Hilbert et al. (2011), we
find that this a safe assumption.

(iii) Of all covariance modelling assumptions investigated in this paper, the fsky approximation (made in the mixed term and cosmic variance
term of our covariance model) has the largest effect on maximum posterior χ2. On average, it increases χ2 between measurement and maximum
posterior model by about 3.7 per cent ("χ2 ≈ 18.9) for the 3×2pt data vectors and by about 5.7 per cent ("χ2 ≈ 16.0) for the 2×2pt data
vector (cf. Table 1).

(iv) However, neither fsky approximation nor any other covariance modelling detail tested in this paper (cf. Table 1; with the exception of
finite bin width; see the next point) has any significant impact on the location and width of constraints on the parameters #m, σ 8, and w.

(v) The only exception to this statement is finite angular bin width that – if not taken into account in the mixed term and cosmic variance
term of the covariance model – significantly increases the scatter of maximum posterior parameters (without increasing the inferred constraints
accordingly). However, finite bin width has been taken into account in the past in an approximate manner – see e.g. Krause et al. (2017).

(vi) The fact that we do not know the true cosmological parameters of the Universe forces us to evaluate our covariance model at a wrong
set of parameters. Even when iteratively adjusting those parameters to the maximum posterior parameters of the analysis, the parameters of the
covariance model will scatter around the ‘true’ cosmological/nuisance parameters. We consider this an irreducible covariance error and find
that it increases the maximum posterior scatter of #m and σ 8 by about 3 per cent and that of the dark energy equation-of-state parameter w by
about 5 per cent (cf. Section 6.8 and Table 1). At the same time, we find this effect to have a negligible impact on maximum posterior χ2.

In summary, we have shown that our fiducial covariance and likelihood model underestimates the scatter of maximum posterior parameters
by about 3–5 per cent, which is mostly caused by uncertainty in the set of cosmological and nuisance parameters at which we evaluate that
model. On average, the χ2 between maximum posterior model and measurement of the 3×2pt data vector will be ∼4 per cent higher than
expected with perfect knowledge of the covariance matrix. This is mainly caused by our use of the fsky approximation. We have devised an
improved treatment of the full survey geometry (cf. Section 6.6) but for the reason mentioned above this was only used to test the impact of
the fsky approximation on parameter constraints.

Given the small impact that we estimated from the unaccounted effects in the covariance modelling, we conclude that the fiducial
covariance model is adequate to be used in the 3×2pt DES-Y3 analysis. While our validation of this covariance model has been carried out
with a preliminary set of scale cuts and redshift distributions, we do not expect qualitative changes for the final DES-Y3 analysis set-up.

While the DESY3 specific outcomes of our study cannot straightforwardly be transferred to other surveys and analyses, our methodological
innovations will be useful tools in the covariance and likelihood validation of future experiments.
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Norberg P., Baugh C. M., Gaztañaga E., Croton D. J., 2009, MNRAS, 396, 19
Owen A. B., 2013, Monte Carlo Theory, Methods and Examples, available at https://statweb.stanford.edu/∼owen/mc/
Pandey S. et al., 2021(arXiv:2105.13545)
Peebles P. J. E., 2012, ARA&A, 50, 1
Percival W. J. et al., 2014, MNRAS, 439, 2531
Philcox O. H. E., Eisenstein D. J., 2019, MNRAS, 490, 5931
Philcox O. H. E., Eisenstein D. J., O’Connell R., Wiegand A., 2020, MNRAS, 491, 3290
Planck Collaboration VI, 2020, A&A, 641, A6
Pope A. C., Szapudi I., 2008, MNRAS, 389, 766
Porredon A. et al., 2020, Phys. Rev. D, 103, 043503
Porredon A. et al., 2021,(arXiv:2105.13546)
Prat J. et al., 2021,(arXiv:2105.13541)
Raveri M., Hu W., 2019, Phys. Rev. D, 99, 043506
Riess A. G., 2017, Handbook of Supernovae Confirming Cosmic Acceleration in the Decade that Followed from SNe Ia at z > 1. p. 2615 Springer International

Publishing AG, Basel.
Rodrı́guez-Monroy M. et al., 2021,(arXiv:2105.13540)
Ross A. J., Percival W. J., Crocce M., Cabré A., Gaztañaga E., 2011, MNRAS, 415, 2193
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A P P E N D I X A : C U RV E D SK Y F O R M A L I S M

The angular clustering correlation function of galaxies w(θ ) is given in terms of the galaxy clustering power spectrum C
gg
, as

w(θ ) =
∑

,

2, + 1
4π

P, (cos θ )
(

C
gg
, + 1

n

)
, (A1)

where n is the galaxy density per steradian. The term proportional to 1
n

is usually omitted (cf. Ross et al. 2011) since it sums up to16

1
2πn

∑

,

2, + 1
2

P, (cos θ ) = 1
2πn

δD(cos θ − 1)

= δD(θ )
2πn sin θ

, (A2)

which has to be interpreted as a two-dimensional Dirac delta function on the sphere.
According to de Putter & Takada (2010) (see also Stebbins 1996), the galaxy–galaxy lensing correlation function γ t(θ ) is given in terms

of the galaxy-convergence cross-power spectrum C
gκ
, as

γt (θ ) =
∑

,

2, + 1
4π

P 2
, (cos θ )
,(, + 1)

C
gκ
, , (A3)

where P m
, are the associated Legendre Polynomials.

Finally, the cosmic shear correlation functions ξ±(θ ) are given by

ξ±(θ ) =
∑

,≥2

2, + 1
4π

2(G+
,,2(x) ± G−

,,2(x))
,2(, + 1)2

CE
, ,

(A4)

where x = cos θ and CE
, is the E-mode power spectrum of shear, and we assume B modes to vanish. The functions G±

,,2(x) are defined in
equation (4.18)17 of Stebbins (1996). Equation (A4) can be expressed in terms of associated Legendre polynomials by using equation (4.19)
of Stebbins (1996), which gives

G+
,,2(x) ± G−

,,2(x) = P 2
, (x)

{
4 − , ± 2x(, − 1)

1 − x2
− ,(, − 1)

2

}
+ P 2

,−1(x)
(, + 2)(x ∓ 2)

1 − x2
. (A5)

In Appendix B, we show how to obtain A4 from the notation in Stebbins (1996).
It can be seen from above that each of the considered two-point correlation functions can be written in terms of the corresponding power

spectra as

ξA(θ ) =
∑

,

2, + 1
4π

FA
, (cos θ ) CA

, . (A6)

16from
∑

,
2,+1

2 P,(x)P,(y) = δD(x − y) - see N. Bronstein & A. Semendjajew (1979) for this and other properties of Legendre polynomials.
17Note that a factor of 1/isin (θ ) is missing in the second line of this equation.
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A P P E N D I X B : AV E R AG I N G C O R R E L AT I O N F U N C T I O N S OV E R F I N I T E B I N S

The area average can be performed for γ t by replacing P 2
, (cos θ ) with

∫ θmax
θmin

dθ sin θ P 2
, (cos θ )

cos θmin − cos θmax
=

∫ cos θmin
cos θmax

dx P 2
, (x)

cos θmin − cos θmax

=
∫ cos θmin

cos θmax
dx

(
1 − x2

)
d2

dx2 P, (x)

cos θmin − cos θmax
.

(B1)

Using integration by parts and various recursion relations of Legendre polynomials (cf. N. Bronstein and A. Semendjajew 1979), this becomes
∫ θmax

θmin
dθ sin θ P 2

, (cos θ )

cos θmin − cos θmax
= 1

cos θmin − cos θmax

{(
, + 2

2, + 1

)
[P,−1(x)]cos θmin

cos θmax
+ (2 − ,) [xP,(x)]cos θmin

cos θmax
− 2

2, + 1
[P,+1(x)]cos θmin

cos θmax

}
.

(B2)

In his equation (4.26), Stebbins (1996) defines the shear correlation function Cγ (θ , φ1, φ2) that, by inspection of equation 4.27 and Fig. 2
of this work, translates into the shear correlation functions ξ±(θ ) as

ξ±(θ ) = Cγ (θ, 0, 0) ± Cγ (θ,π/4,π/4) . (B3)

This way, one directly arrives at our expression for the shear correlation functions, equation (A4).
To account for finite bin width in equation (A4) and in the covariance of ξ̂±, one has to perform the area-weighted bin average of the

functions
[
G+

,,2(cos θ ) ± G−
,,2(cos θ )

]
. To do so, one can insert the relations

∫ x2

x1

dx
x P 2

, (x)
1 − x2

=
[
x

dP,(x)
dx

]x2

x1

− [P,(x)]x2
x1

∫ x2

x1

dx
P 2

, (x)
1 − x2

=
[

dP,(x)
dx

]x2

x1

(B4)

into equation (A5). In summary, this means that one has to exchange the functions
[
G+

,,2(cosθ ) ± G−
,,2(cosθ )

]
as follows:

∫ cos θmin
cos θmax

dx
(
G+

,,2(x) ± G−
,,2(x)

)

cos θmin − cos θmax
=

{
−

(
,(, − 1)

2

)(
, + 2

2, + 1

)
[P,−1(x)]cos θmin

cos θmax

− ,(, − 1)(2 − ,)
2

[xP,(x)]cos θmin
cos θmax

+ ,(, − 1)
2, + 1

[P,+1(x)]cos θmin
cos θmax

+ (4 − ,)
[

dP,(x)
dx

]cos θmin

cos θmax

+ (, + 2)

{[
x

dP,−1(x)
dx

]cos θmin

cos θmax

− [P,−1(x)]cos θmin
cos θmax

}

± 2(, − 1)

{[
x

dP,(x)
dx

]cos θmin

cos θmax

− [P,(x)]cos θmin
cos θmax

}

∓ 2(, + 2)
[

dP,−1(x)
dx

]cos θmin

cos θmax

}
1

cos θmin − cos θmax
.

(B5)

These expressions can be very efficiently calculated and pre-tabulated e.g. with the help of the gnu scientific library (Galassi et al.
2009).

APPE N D IX C: M ASKING IN REAL SPACE COVARI ANCES

DES observations do not cover the entire sky, but are located within a survey mask, described by a function W (n̂) that is =1 if we have
observed the sky at location n̂ and zero otherwise.18 In this appendix, we derive how this masking changes the covariance of any measured
two-point statistics.

18A map of the mask will come with a finally resolution, in which case the fractional values 0 < W < 1 of the mask will describe the completeness of observations
within the map resolution.
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We start by computing, how many galaxy pairs we expect to find within our mask (assuming that galaxies do not cluster). If n1 and n2 are
the number densities of two different tracer samples, then the expected number of pairs dNpair(θ ) with angular separation within [θ , θ + dθ ] is
given by (cf. Troxel et al. 2018b)

dNpair(θ )
n1n2

= dθ

∫
d#1d#2 W (n̂1) W (n̂2) δD(arccos[n̂1 · n̂2] − θ )

= dθ

∫
d#1d#2 W (n̂1) W (n̂2)

√
1 − x2

12δD(x12 − cos θ )

= dθ sin θ

∫
d#1d#2 W (n̂1) W (n̂2) δD(x12 − cos θ )

= dθ sin θ
∑

,

2, + 1
2

P,(cos θ )
∫

d#1d#2 W (n̂1) W (n̂2)P,(x12) . (C1)

Using the fact that

P,(n̂ · m̂) = 4π
2, + 1

,∑

m=−,

Y,m(n̂)Y ∗
,m(m̂) (C2)

(
⇒ ξ (n̂ · m̂) =

∑

,

2, + 1
4π

C, P,(n̂ · m̂) =
∑

,m

C,Y,m(n̂)Y ∗
,m(m̂)

)
(C3)

this becomes

dNpair(θ )
n1n2

= 2π sin θ dθ
∑

,m

P,(cos θ )

∗
(∫

d#1 W (n̂1) Y ∗
,m(n̂1)

)(∫
d#2 W (n̂2) Y,m(n̂2)

)

= 2π sin θ dθ
∑

,m

P,(cos θ ) |W,m|2

= 2π sin θ dθ
∑

,

(2, + 1)P,(cos θ ) CW
,

= 8π2 sin θ dθ ξW (θ ) , (C4)

where in the last steps we have defined the angular power spectrum of the mask through (2, + 1)CW
, =

∑
m |W,m|2 as well as the angular

two-point function of the mask, ξW(θ ). The total number of galaxy pairs in a finite angular bin [θmin , θmax ] is then

Npair[θmin, θmax] = (8π2n1n2)
∫ θmax

θmin

dθ sin θ ξW (θ )

= (8π2n1n2)
∑

,

[P,+1(x) − P,−1(x)]θmin
θmax

4π
CW

, . (C5)

The two-point correlation function of two scalar random fields, ξ ab(θ ) = 〈δa(n̂a)δb(n̂b)|n̂a · n̂b = cos θ〉, is in practice estimated within a finite
angular bin as

ξ̂ ab[θmin, θmax]
Npair[θmin, θmax]

nanb

=
∫ θmax

θmin

dθ sin θ

∫
d#ad#b W (n̂a)W (n̂b)

∗ δD(xab − cos θ ) δa(n̂a)δb(n̂b)

= 2π
∑

,m

∫ θmax

θmin

dθ sin θ P,(θ )

∗
∫

d#ad#b W (n̂a) W (n̂b) Y,m(n̂a) Y ∗
,m(n̂b) δa(n̂a)δb(n̂b)

= 2π
∑

,

[P,+1(x) − P,−1(x)]θmin
θmax

∗ 1
2, + 1

∑

m

∫
d#a W (n̂a)δa(n̂a)Y,m(n̂a)

∗
∫

d#b W (n̂b) Y ∗
,m(n̂b)δb(n̂b). (C6)

From the last line, it can be seen that ξ̂ ab – apart from the normalization by Npair[θmin , θmax ]/nanb – is exactly the angular space counterpart
of the pseudo-cell estimator in the corresponding harmonic space (cf. Efstathiou 2004). Why this is the case can be understood most easily in
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the limit of an infinitesimal angular bin. In this limit

Npair(θ ) ∝ sin θ ξW (θ )

Npair(θ ) 〈ξ̂ ab(θ )〉 ∝ sin θ ξW (θ ) ξ ab(θ ) , (C7)

where the second line shows that the convolution of mask and signal power spectrum in harmonic space (Efstathiou 2004) becomes a simple
multiplication in angular space. Normalization by Npair(θ ) especially is the angular analogue of multiplication with the inverse mode-coupling
matrix that appears in harmonic space.

Let Ĉab
, be the pseudo-C, estimator we identified in equation (C6); i.e. we write

ξ̂ ab[θmin, θmax]
Npair[θmin, θmax]

nanb

= 2π
∑

,

[P,+1(x) − P,−1(x)]θmin
θmax

Ĉab
, (C8)

with

Ĉab
, ≡ 1

2, + 1

∑

m

(Wδa),m (Wδb)∗,m . (C9)

Then, the covariance of the two-point function measurements between the fields δa&δb and δc&δd within angular bins [θab
− , θab

+ ] and [θ cd
− , θ cd

+ ]
is given by

Cov
{
ξ̂ ab[θab

− , θab
+ ], ξ̂ cd [θ cd

− , θ cd
+ ]

} Nab
pair[θ

ab
− , θab

+ ] Ncd
pair[θ

cd
− , θ cd

+ ]

nanbncnd

= (2π)2
∑

,1 ,2

[
P,1+1(x) − P,1−1(x)

]θab
−

θab
+

[
P,2+1(x) − P,2−1(x)

]θcd
−

θcd
+

·Cov
{
Ĉab

,1
, Ĉcd

,2

}
. (C10)

Assuming that δa, δb, δc, and δd are Gaussian random fields and defining the symbols

W,1,2m1m2 ≡
∫

d# W (n̂) Y,1m1 (n̂) Y ∗
,2m2

(n̂), (C11)

it is straightforward to show that Cov
{
Ĉab

,1
, Ĉcd

,2

}
is given by (cf. Efstathiou 2004)

Cov
{
Ĉab

,1
, Ĉcd

,2

}
= 1

(2,1 + 1)(2,2 + 1)

∑

m1 m2

∫
d#ad#bd#cd#d

∗ W (n̂a)W (n̂b)W (n̂c)W (n̂d )

∗ Y,1m1 (n̂a)Y ∗
,1m1

(n̂b)Y,2m2 (n̂c)Y ∗
,2m2

(n̂d )

∗
{
ξ ac(θac)ξ bd (θbd ) + ξ ad (θad )ξ bc(θbc)

}

= 1
(2,1 + 1)(2,2 + 1)

∑

m1 m2

∑

,3 m3

∑

,4 m4

(
Cac

,3
Cbd

,4
+ Cad

,3
Cbc

,4

)

∗ W,1,3m1m3W,3,2m3m2W,2,4m2m4W,4,1m4m1 .

(C12)

At this point, Efstathiou (2004) and Varshalovich, Moskalev & Khersonskii (1988) follow with the approximation

≈ 1
2

Cac
,1

Cbd
,2

+ Cac
,2

Cbd
,1

+ Cad
,1

Cbc
,2

+ Cad
,2

Cbc
,1

(2,1 + 1)(2,2 + 1)

∗
∑

m1m2

∑

,3m3

∑

,4m4

W,1,3m1m3W,3,2m3m2W,2,4m2m4W,4,1m4m1 . (C13)

We, however, find that for fixed values of ,1 and ,2 the expression
∑

m1 m2 m3 m4

W,1,3m1m3W,3,2m3m2W,2,4m2m4W,4,1m4m1 (C14)

has four maxima at [,3 = ,1, ,4 = ,2], [,3 = ,2, ,4 = ,1], [,3 = ,1, ,4 = ,1], and at [,3 = ,2, ,4 = ,2] and that the area around each of these
maxima contributes a similar amount to the sums over ,3 and ,4. Hence, we opt instead for the approximation

Cov
{
Ĉab

,1
, Ĉcd

,2

}
≈ 1

4

(
Cac

,1
Cbd

,2
+ Cac

,2
Cbd

,1
+ Cac

,1
Cbd

,1
+ Cac

,2
Cbd

,2

(2,1 + 1)(2,2 + 1)
+

Cad
,1

Cbc
,2

+ Cad
,2

Cbc
,1

+ Cad
,1

Cbc
,1

+ Cad
,2

Cbc
,2

(2,1 + 1)(2,2 + 1)

)

∗
∑

m1,m2,m3,m4

W,1,3m1m3W,3,2m3m2W,2,4m2m4W,4,1m4m1 . (C15)

In practice, both approximations yield very similar results and they are valid on scales ,1, ,2 that are much smaller than the typical scales of
the mask W (Efstathiou 2004; Varshalovich et al. 1988). Unfortunately, the DES-Y3 analysis mask has features and holes over a large range of
scales. Hence, the angular scales of interest in the 3×2pt analysis are never strictly smaller than the scales of our mask. Hence, equation (C15)
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is not sufficiently accurate in our case and infact significantly overestimates our covariance matrix. In Fig. 8, we explain a simple scheme
that can be used to correct for this: Calculating the covariance of ξ̂ ab[θab

− and θab
+ ], ξ̂ cd [θ cd

− , θ cd
+ ] within the Gaussian covariance model (see

also Section 3) requires integration over all pairs of locations within our survey mask that fall into the angular bins [θab
− , θab

+ ] and [θ cd
− , θ cd

+ ].
Schematically, the covariance then depends on expressions of the form

Cov ∝
∫

(ab)∈mask,bin

d#ad#b

∫

(cd)∈mask,bin

d#ad#bξ ac(θac)ξ bd (θbd ) + . . . . (C16)

Fig. 8 visualizes this for the mixed terms in the covariance, where one of the correlation functions ξ ac or ξ bd is due to sampling noise such as
shape noise of shot noise and hence is proportional to a Dirac delta function. In that case, the integration is over pairs that share one end point.
Now, the approximation made e.g. in Efstathiou (2004) or by our equation (C15) assumes that also the correlation function between the other
two end points effectively acts as a delta function – at least with respect to the smallest scale features in the survey mask. We find that this is
not the case for the DES-Y3 mask and that it contains features on all scales relevant to our analysis. However, Fig. 8 also indicates a simple
way to fix this: Approximating the integrand over the distance of the two remaining end points by a delta function roughly overestimates
the integral by a factor equal to one over the fraction of small-scale hole in the survey footprint compared to the average scale at which the
two-point function between the two end points decays. Also, multiplying the mixed terms in the covariance by this fraction can serve as a
next-to-leading-order correction to our equation (C15). By similar arguments, one can deduce that the cosmic variance terms (terms where
none of the end points must be joined) can be corrected by performing this multiplication twice.

To implement this correction, we draw circles within the DES-Y3 survey footprint with radii ranging from 5 to 20 arcmin and measure
the masking fraction in these circles. We find that this fraction is ≈90 per cent across the considered scales. Multiplying the mixed terms in the
covariance by that fraction and the cosmic variance terms by the square of that fraction (and using equation C15), we indeed find significant
improvement of the maximum posterior χ2 obtained for the FLASK simulations (cf. lower panel of Fig. 8 as well as Fig. 1).

We end this appendix by further simplifying equation (C15). Using the completeness of the Y,m as well as the fact that W (n̂)2 = W (n̂),
one can show that (Efstathiou 2004)

∑

m1,m2,m3,m4

W,1,3m1m3W,3,2m3m2W,2,4m2m4W,4,1m4m1 = |W,1,2m1m2 |2 . (C17)

Then, rewriting W,1,2m1m2 as

W,1,2m1m2 =
∫

d# W (n̂) Y,1m1 (n̂) Y ∗
,2m2

(n̂)

=
∑

,m

W,m

∫
d# Y,m(n̂) Y,1m1 (n̂) Y ∗

,2m2
(n̂)

= (−1)m2
∑

,m

W,m

√
(2, + 1)(2,1 + 1)(2,2 + 1)

4π

∗
(

, ,1 ,2

0 0 0

)(
, ,1 ,2

m m1 −m2

)
(C18)

and using orthogonality properties of Wigner 3j symbols, one can see that
∑

m1m2
|W,1,2m1m2 |2

(2,1 + 1)(2,2 + 1)
=

∑

,m

|W,m|2

4π

(
, ,1 ,2

0 0 0

)2

=
∑

,

2, + 1
4π

CW
,

(
, ,1 ,2

0 0 0

)2

. (C19)

⇒ Cov
{
Ĉab

,1
, Ĉcd

,2

}
≈ 1

4

(
Cac

,1
Cbd

,2
+ Cac

,2
Cbd

,1
+ Cac

,1
Cbd

,1
+ Cac

,2
Cbd

,2

+ Cad
,1

Cbc
,2

+ Cad
,2

Cbc
,1

+ Cad
,1

Cbc
,1

+ Cad
,2

Cbc
,2

)

∗
∑

,

2, + 1
4π

CW
,

(
, ,1 ,2

0 0 0

)2

≡ 1
4

(
Cac

,1
Cbd

,2
+ Cac

,2
Cbd

,1
+ Cac

,1
Cbd

,1
+ Cac

,2
Cbd

,2
+ Cad

,1
Cbc

,2
+ Cad

,2
Cbc

,1
+ Cad

,1
Cbc

,1
+ Cad

,2
Cbc

,2

)
M,1,2 . (C20)

For an efficient numerical evaluation of the above sum, we point out the following useful relation of Wigner-3j symbols (following from
functions.wolfram.com/HypergeometricFunctions/ThreeJSymbol/):
(

, ,1 ,2

0 0 0

)2

/

(
, − 2 ,1 ,2

0 0 0

)2

= (,2 − ,1 + , − 1)(,1 − ,2 + , − 1)(,1 + ,2 − , + 2)(,1 + ,2 + ,)
(,2 − ,1 + ,)(,1 − ,2 + ,)(,1 + ,2 − , + 1)(,1 + ,2 + , + 1)

. (C21)
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APPENDIX D : MOTIVATION FOR OUR RE-SCALI NG ANSATZ FOR MASKI NG EFFECTS

In this appendix, we make some of the arguments presented in Section 6.6 more precise. We have stated there that calculating the covariance of
ξ̂ ab[θab

− , θab
+ ] and ξ̂ cd [θ cd

− , θ cd
+ ] amounts to integration over all pairs of locations within our survey mask that fall into the angular bins [θab

− , θab
+ ]

and [θ cd
− , θ cd

+ ]. Schematically, this leads to terms of the form

Cov = 1
N

∫

(ab)∈mask,bin

d#ad#b

∫

(cd)∈mask,bin

d#cd#dξ ac(θac)ξ bd (θbd ) + . . . , (D1)

where compared to equation (69) we have now explicitly included a normalization factor that is proportional to the product of the number of
pairs of locations within our mask that fall into the angular bins [θab

− , θab
+ ] and [θ cd

− , θ cd
+ ],

N ∝ Nab
pair

[
θab
− , θab

+
]

Ncd
pair

[
θ cd
− , θ cd

+
]

. (D2)

We have argued in Section 6.6 that the approximation of Efstathiou (2004) for evaluating the impact of masking on the two-point function
covariance can roughly be understood as making the replacements
∫

d#a . . . W (#a)ξ ac(θac) ≈ ξ̄ ac

∫
d#a . . . W (#a)δ2

Dirac(#a − #c) (D3)

and
∫

d#b . . . W (#b)ξ bd (θbd ) ≈ ξ̄ bd

∫
d#b . . . W (#b)δ2

Dirac(#b − #d ) , (D4)

where ξ̄ ac is the integral of ξ ac(θac) over the two-dimensional angular distance vector θac and ξ̄ bd is the integral of ξ bd(θbd) over θbd .
Within these approximations, the right-hand side of equation (D1) can only be non-zero if the angular bins [θab

− , θab
+ ] and [θ cd

− , θ cd
+ ] are

identical. If that is the case, then the covariance becomes

Cov ≈ ξ̄ ac ξ̄ bd

N

∫

(ab)∈mask,bin

d#ad#b + . . . . (D5)

However, the integral on the right-hand side of this equation is nothing but Nab
pair[θ

ab
− , θab

+ ], so we have

Cov
{
ξ̂ ac[θ−, θ+], ξ̂ bd [θ−, θ+]

}
∝ 1

Nab
pair[θ−, θ+]

, (D6)

with proportionality coefficients that do not depend on the survey mask. So if our above understanding of the approximation proposed by
Efstathiou (2004) is (at least approximately) correct, then its ratio with respect to the fsky approximation (i.e. the approximation where one
computes the covariance of a full-sky survey and then re-scales it with the sky fraction fsky of the survey footprint) should be given by the
inverse ratio of the exact value of Nab

pair[θ−, θ+] to the fsky calculation

Nab
pair,fsky

[θ−, θ+] = 4π2(θ2
+ − θ2

−)fskynanb . (D7)

In Fig. D1, we show the ratio of Npair to Npair,fsky (green dashed lines) and compare it to the ratios of different covariance terms when
computed with either the fsky approximation or the approximation of Efstathiou (2004) (cosmic variance term: blue dotted lines; mixed term:
solid orange lines). The upper panel of the figure computes these ratios for the galaxy clustering two-point function w(θ ) in the first lens bin of
our fiducial configuration while the lower panel considers the cosmic shear correlation function ξ+(θ ) for our first source bins (other redshift
bins and two-point functions behave similarly). For w(θ ), these different ratios indeed closely agree with each other. The agreement between
the ratio of pair counts and the ratio of the different approximations for the mixed terms is especially striking. It is most likely caused by the
fact that for the mixed covariance terms one of the two replacements in equations (D3) and (D4) is actually exact. Even for ξ+(θ ), the ratio of
the different approximations for the mixed term is well described by the ratio of pair counts on most scales. For the cosmic variance of ξ+(θ ),
one can on the other hand observe a strong deviation. This does not necessarily signify a breakdown of our arguments but may be caused by
the fact that cosmic shear is a spin-2 field. The calculations of Efstathiou (2004) do in fact only hold for scalar fields and our extension of their
formulae to shear correlation functions is only approximate (see e.g. Challinor & Chon 2005, for more general calculations). Since we have
identified the mixed terms to carry the strongest impact of masking on the total covariance, we do not address this any further. Instead, we
consider the agreement between pair count ratios and mixed term ratios observed in Fig. D1 as sufficient justification for the re-scaling ansatz
of the different covariance terms presented in Section 6.6.

A P P E N D I X E : P M E TO I N V E S T I G AT E T H E I M PAC T O F M A S K I N G O N I N D I V I D UA L C OVA R I A N C E
T ERMS

In this appendix, we briefly summarize the PME method that went into Fig. 9. The covariance of the 2×2pt (i.e. non-cosmic shear) part of our
data vector has contributions from shape noise because of the presence of the mixed term described in Section 4. To pinpoint further which
parts of our analytical covariance contribute to the elevation in χ2 (and to further motivate our heuristic modelling ansatz for masking effect
in the covariance presented in Section 6.6), we rerun 100 of the FLASK simulations with shape noise turned off. We then use the covariances
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Figure D1. Ratio of exact galaxy pair counts Npair to pair counts computed using equation (D7) (green dashed lines) compared to the ratios of different
covariance terms when computed with either the fsky approximation or the approximation of Efstathiou (2004) (cosmic variance term: blue dotted lines; mixed
term: solid orange lines).

estimated from the different FLASK runs to derive corrections to our covariance model. This can be done – even with only a limited number
of simulations – with the method of PME that was described by Friedrich & Eifler (2018). At the first order, their expansion estimates the
precision matrix ' (i.e. the inverse covariance matrix) as

'̂ = C−1
model − C−1

model(B̂ − Bmodel)C−1
model . (E1)

Here, the matrix Bmodel can be the full covariance model, in which case B̂ is the full covariance estimated from FLASK, or it could be the
shape-noise free part of the covariance, in which case B̂ will be the covariance estimated from the shape-noise free FLASK simulations.
Friedrich & Eifler (2018) have also derived a second-order correction to equation (E1), but given the small magnitude of our observed χ2

elevation we restrict ourselves to the first-order expansions, which should also reduce the noise of the PME. Note that equation (E1) does not
contain the inverse of any noisy matrix. This is why PME works well even in the presence of only few numerical simulations (a benefit that is
even further boosted because the matrix B can be chosen to represent only sub-parts of the covariance).

For each FLASK measurement of the 2×2pt data vector, we estimate the first-order PME from the remaining 196 FLASK data vectors
(respectively from the ∼100 shape-noise free data vectors). The average resulting χ2 values between each data vector and the mean of all
data vectors are displayed in Fig. 9 and compared to the χ2 values obtained when applying the analytical masking corrections presented
in Section 6.6 to either the shape-noise free covariance terms or the full covariance. The average χ2 when using the analytical, best-guess
covariance matrix is ≈318.8 for a total of 302 data points in the 2×2pt data vector. This corresponds to a bias in χ2 of about 5.5 per cent.
The PME estimate of the inverse covariance manages to push this down to ≈307.9 (≈304.8 with our analytic ansatz), hence decreasing the
bias in χ2 to about 1.9 per cent (< 1 per cent for the analytic ansatz). If the PME correction term is computed with the shape-noise free FLASK

covariance, then the bias only slightly reduces to 〈χ2〉 ≈ 314.3 (≈316.6 with our analytic ansatz). Hence, the shape-noise-dependent mixed
terms in the covariance indeed seem to be the main cause of our remaining χ2 offset. This was also found by Joachimi et al. (2020) for the
latest analysis of the KiDS. These mixed terms do not depend on the connected four-point function of the density field (cf. Section 3) and the
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Figure F1. (S8, #m) constraints for a given noisy realization of the DES-Y3 3×2pt data vector analysed using: a fiducial covariance matrix (blue); a covariance
matrix evaluated at σ8 = σ fiducial

8 − 2σσ8 (green); and a covariance matrix evaluated at σ8 = σ fiducial
8 + 2σσ8 (red). The green and red posteriors were obtained

by importance sampling the fiducial samples.

only approximation we make in their calculation is the treatment of our survey footprint through the fsky approximation. Hence, we follow
Joachimi et al. (2020) in our conclusion that this approximation is the main driver of the residual errors in our covariance model.

A P P E N D I X F : I M PAC T O F E X T R E M E C O S M O L O G I E S O N PA R A M E T E R C O N S T R A I N T S

To demonstrate that the importance sampling technique employed in Section 6.8 indeed manages to capture even strong changes in the
likelihood, we repeat the tests presented there with covariance matrices that drastically differ from our fiducial covariance model. In particular,
we shift the value of σ 8 for which the covariance model is evaluated by ±2σ of the marginalized σ 8 constraints expected from DES-Y3. Note
that it is a radical change because it ignores parameter degeneracies; i.e. such a shift of σ 8 without changes in other parameters would be
detected at high significance. Fig. F1 shows the likelihood contours in the S8–#m plane obtained both from our fiducial covariance and from
importance sampling with the altered covariance matrices. One can now clearly see a change in contour width. However, as we have shown in
Section 6.8, this effect is far less significant for realistic parameter uncertainties in the covariance model.

APPENDIX G: EFFECTIVE SHAPE NOISE WHEN USI NG METACALI BRATI ON

In Section 6.10, we have considered how the sampling noise contribution to covariance of the galaxy–galaxy lensing two-point function can
be expressed in terms of an effective shape noise when each source galaxy is weighted by a certain weight (e.g. weight wj for the jth galaxy,
with the average weight 〈wj〉j = 1). The expressions derived there have to change when taking into account responses Rj of a shape catalogue
generated with metacalibration (Sheldon & Huff 2017). In that case, a measurement of γ̂t [θ1, θ2] becomes

γ̂t [θ1, θ2] =
∑

pxl i, source j "
ij
[θ1,θ2] δl,i εt,j→i ws

j∑
pxl i, source j "

ij
[θ1,θ2] ws

jRj

. (G1)

One can rewrite this to conform with the derivations of Section 6.10 by defining

γ̂t [θ1, θ2] =
∑

pxl i, source j "
ij
[θ1,θ2] δl,i

εt,j→i

Rj
ws

jRj

∑
pxl i, source j "

ij
[θ1,θ2] ws

jRj

≡
∑

pxl i, source j "
ij
[θ1,θ2] δl,i ε̃t,j→i w̃s

j∑
pxl i, source j "

ij
[θ1,θ2] w̃s

j

. (G2)

Now the transformed weights w̃s
j should be normalized to 〈w̃s

j 〉 = 1 and then be used together with the transformed ellipticities ε̃j to calculate
σ ε,eff from equation (90). This is what we have done for Fig. 12.
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