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We study dynamics for asymmetric spin glass models, proposed by Hertz
et al. and Sompolinsky et al. in the 1980’s in the context of neural networks:
particles evolve via a modified Langevin dynamics for the Sherrington—
Kirkpatrick model with soft spins, whereby the disorder is i.i.d. standard
Gaussian rather than symmetric. Ben Arous and Guionnet (Probab. Theory
Related Fields 102 (1995) 455-509), followed by Guionnet (Probab. Theory
Related Fields 109 (1997) 183-215), proved for Gaussian interactions that as
the number of particles grows, the short-term empirical law of this dynamics
converges a.s. to a nonrandom law u, of a “self-consistent single spin dy-
namics,” as predicted by physicists. Here we obtain universality of this fact:
For asymmetric disorder given by i.i.d. variables of zero mean, unit variance
and exponential or better tail decay, at every temperature, the empirical law
of sample paths of the Langevin-like dynamics in a fixed time interval has the
same a.s. limit py.

1. Introduction. Consider the dynamics for asymmetric spin glass models, studied in
the context of neural networks, for example, by Hertz et al. [20] and Cristani and Sompolinsky
[12], given by

N
(1.1) dx{" =dB® —U{(x?)dr + L SoupxPar (i=1,...,N),

where B, is N-dimensional Brownian motion, X, € [—s, 5]V for some finite s, the potential
U, is some smooth function satisfying that Uj(x) — oo as |x| — s (e.g., a double-well po-
tential at &1 with s = 2), the parameter 8 > 0 is the inverse-temperature and the interactions
Jij are quenched (frozen) i.i.d. standard Gaussian random variables.

If instead one were to take a symmetric disorder (that is, J;; = Jj; 1.1.d. standard Gaussian
for each pair {i, j}) then the stochastic differential system (SDS) (1.1) would be precisely
Langevin dynamics for the soft-spin Sherrington—Kirkpatrick (SK) model; see, for example,
[23, 27, 28] and [3, 4, 19] for studies of the short-term dynamics in that case.

The asymmetric nature of the disorder J;; aids some aspects of the analysis via the extra
independence, yet makes the dynamics nonreversible, whence various useful tools (e.g., the
Fluctuation Dissipation Theorem (FDT) used in [28] to analyze the symmetric case) become
unavailable. As argued, for example, in [12] (see also [14, 22] on the related Hopfield model
[21]), the asymmetric disorder seems a better model for the interactions between neurons (cf.
Remark 1.4 for other flavors of the model in the context of neural networks).

Many of the dynamical quantities of interest, such as spin autocorrelation and response
functions, may be read from the thermodynamic limit (N — o0) of the empirical measure
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un of sample-paths of the N particles in a given time interval [0, T']; that is,

N
(1.2) N = %;w e M;(C([0, T1)).

i=
Ben Arous and Guionnet [2], followed by [19] (cf. [4]) were able to show that, from an i.i.d.
initial state, puy converges a.s. to a law u, of a self-consistent single-spin dynamics, a non-
Markovian diffusion involving only one spin, as predicted for this system in [12]. The proofs
in [2, 19] (and in follow-up works on variants of this model, e.g., Glauber-like dynamics [17,
26] and the dynamics where the SDS has an extra nonlinearity [15]) relied in an essential way
on special properties of Gaussian random variables.

In the related SK model, the first rigorous proof [18, 30] that the free energy has an a.s.
limit was specific to Gaussian disorder, as was the identification of this limit. Talagrand [29]
later proved that the same limit must be obtained under interactions of Bernoulli +1 random
variables. This universality property was further generalized in [9, 10] to any i.i.d. interactions
given by a variable J satisfying EJ =0 and EJ? = 1.

Our goal in this work is to obtain a similar universality result for the system (1.1), where
a self-consistent a.s. limit was till now rigorously verified only in the case of Gaussian inter-
actions. To be precise, consider the probability measures ]P’f, of the triplet (J, B., X.) corre-

sponding to the SDS (1.1) with an initial state that is a product ngN which places no mass on
the boundary, that is,

vp € M1((—5,9)),

and the C»((—s, s)) potential function U;(x) — oo as |x| — s fast enough to confine the
solution of (1.1) within (—s, ). Specifically, suppose (as in [2], p. 458), that

X t
(1.3) lim [ V1O (/ e 201 dv) dt = o0,
Ix[1s Jo 0
which is satisfied for instance by U;(x) = — log(s2 — x2). In this context, the heuristic rea-

soning for the expected universality, as in the case of the free energy in the SK model, is due
to the invariance principle, whereby one expects the interaction term N ~'/2JX, in (1.1) to
approximately follow a Gaussian law when N — oo, irrespective of the marginal laws of the
independent disorder variables J;;. However, even for fully independent (i.e., nonsymmet-
ric), Gaussian disorder, the limit . of wy is characterized only as the global minimum of
a certain rate function, corresponding to the variational problem of a large deviation prin-
ciple (LDP). Consequently, one has to establish the sought-after universality at the level of
large deviations. For {J;;} which are fully i.i.d. Gaussian variables and high temperature
(i.e., B25°T < 1), such LDP was proved in [2] by relying on exact Gaussian calculus for the
Radon—-Nykodim derivative (RND) w.r.t. a reference system with independent particles, cor-
responding to the 8 = 0 measure (the corresponding a.s. convergence uy — . Was there-
after extended in [19] to all 8 < oo). Unfortunately, such explicit calculus does not exist
for any other law of interactions. Moreover, any attempt to control the RND of Gaussian vs.
non-Gaussian interactions via an argument such as Lindeberg’s method must be done with
utmost care, since it typically yields only an N ~¢ additive error term, which is potentially
multiplied—and hence outweighed—by an eV factor from the RND (see Remark 1.3).

Our results hold for any random interactions consisting of independent {J;;}, whose laws
may depend on 7, j, N, subject only to the following moment and tail assumptions:

(1.4) EJ;; =0, EJS =1,
(1.5) lim sup {E[*Ii1]} < oo;

5_>0i,j,N
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FIG. 1. Comparison of the diffusions (1.1) under different disorder laws: standard Gaussian J;j (orange) vs.
Bernoulli £1 set by sign(J;;) (blue), with N =100 particles, p = 1, s = 2, the double-well potential at £1 given

by Ui(x) =— log(s2 —x3)—x2+ %x4 and a common N -dimensional Brownian motion B; driving the systems.

Left: sample path of X(()I)X,(I) for a uniform particle I € {1, ..., N}. Right: average of 100 samples of X(()I)X,(I).

that is, independent {J;;} of zero mean, unit variance and a uniform exponential, or better,
tail decay. (In fact, the uniformity over j in (1.5) is not needed and this assumption may be
relaxed into the conditions (1.6)—(1.8) stated later; see Remark 1.2.)

Let W3 be the metric space C([0, T] — [—s, s]) of paths equipped with the distance

1 /T 1/2
d(x, ) = (7f0 |x(t)—y(t)}2dt> .

Our main result is the a.s. convergence of uy, in the weak topology corresponding to the
metric space W;, to the self-consistent limit w, of [2, 4, 19].

THEOREM 1.1. Let un be the empirical measure defined on (1.2) on sample paths of the
Langevin spin glass dynamics (1.1) with independent interactions satisfying (1.4) and (1.5).
Then, for every B >0, T < 0o and s > 0, we have that a.s. in the interactions J and the
diffusion, iy — s in M(W3) weakly as N — oo.

As a corollary we obtain, for instance, that the dynamics with interactions that are, for
example, centered Bernoulli(%) or centered Exp(1) random variables (see Figure 1) have the
same limit as the one derived in [2, 4, 19] for the standard Gaussian case.

REMARK 1.2. Theorem 1.1 remains valid when replacing the assumption (1.5) by the
following, less explicit, yet somewhat more relaxed conditions:

. 1 Y 0. s
(1.6) elgr(l) ISEJI\)/ N Zilog(E[e ilvE[e ?i]) < oo,
0€(0,¢] I=
- 5
(1.7) — E()J;j]}) = 0 forsome y < =
NY Lz 2’
(1.8) lim {N7"?||J]l2—2} < oo almost surely.
N—o00

The approach of [2] is to establish a weak LDP for the empirical law of the dynamics, in
an approximate system of equations where interactions are frozen over a finite number of
sub-intervals (see (2.1)), under the topology derived from sup-norm distance between sample
paths. One then boosts it via exponential tightness into a full LDP, where the extra assump-
tion ﬂzszT < 1 for exponential tightness in [2], is later dispensed of in [19]. The LDP further
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extends to the original SDS, implying in particular the law of large numbers (LLN). Theo-
rem 1.1 applies beyond Gaussian disorder, albeit for the slightly weaker topology derived
from L>-distance.

REMARK 1.3. As demonstrated in Figure 1, even when using the same Brownian mo-
tion, the sample path for a typical (random) coordinate of the solutions of (1.1) under two
different disorder laws are not close to one another: one must average over the disorder ma-
trix J in order to establish the similarity of the limiting . Going this route, any attempt to
control the RND between the average of the measure Pﬁ, w.r.t. our non-Gaussian interaction
J and the average of such a measure with Gaussian interactions J requires one to estimate
a term of the form EJ[eF ] /]Ej[eG] conditioned on the sample paths and Brownian motions.
The analysis of this RND becomes particularly delicate since, even upon establishing that
EJ’j[eF —e91 < (1+N°E)N, we must control the effect of the random variable Z in order
to deduce that the overall ratio is exp(o(V)).

REMARK 1.4. Various extensions of the model studied here appeared in the context of
disordered neural networks. For instance, in [7, 8] (also see [6]) the model allows time delays
in the interaction between the particles, a time-dependent self-interaction, and any bounded
Lipschitz-continuous pairwise interaction (which in the setup of [2, 4, 19] was a bi-linear
map). In studies of networks of Hopefield neurons, for example, [15] and the references
therein, the evolution of X t(l) has interaction terms J;; as pre-factors of a nonlinear uniformly

bounded function of the X ,(j )’s, in lieu of a confining potential U. Both of these lines of
extensions were studied under the assumption that the interaction variables J;; are Gaussian,
while [24], Section 4, and [5], Section 4.5, follow the same general approach as taken here to
establish for such neural networks the universality of the limit of wx for sufficiently small T
and for sub-Gaussian i.i.d. {J;;}. It is plausible that our methods here would be useful in the
analysis of these models without those limitations.

In Section 2 we describe the SDS of piecewise frozen interactions and establish that The-
orem 1.1 is a direct consequence of Propositions 2.2 and 2.3. Thereafter, in Section 3 we
establish Proposition 2.2, namely the relevant LLN for the approximating SDS, whereas in
Section 4 we prove Proposition 2.3, which couples the approximating SDS to the (original)
dynamics (1.1) of interest.

2. Proof of Theorem 1.1: Piecewise frozen interactions. We start by showing that the
conditions in Remark 1.2 indeed relax (1.4)—(1.5).

LEMMA 2.1. Conditions (1.4) and (1.5) imply the conditions (1.6)—(1.8).
PROOF. Taking the expectation of
92
=01 <1+ =il g <e
I3

w.r.t. the zero-mean law of J;;, followed by the logarithm of both sides, as log(1 + y) <y on
R it follows that

02
logE[e"] < B[] VIOl <e,i, j, N.

Thereby, (1.6) follows from (1.5). Similarly, with |J|? < g%esu |, upon taking the expectation
of both sides w.r.t. the law of J;;, we get (1.7) (for % >y > 2). As for (1.8), let A := %J
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denote the scaled disorder matrix and Z;, Z; be two N-dimensional symmetric matrices,
which are independent of A and of each other, with independent entries above and on their
main diagonal satisfying both (1.4) and (1.5). Then, for nonrandom y € R consider the 2N -
dimensional symmetric matrices

noting that
IAlla2:= sup {[|Az]l2} = Amax(ATA)"/?

lzll2=1

= )\max(wﬁ) - ﬁkmin(N_l/ZZI) - ﬁkmin(N_l/2Z2)-

= Amax (WO)

But Wg is a V2B multiple of an 2N-dimensional Wigner matrix while N~'/2Z; for
i = 1,2, are a pair of N-dimensional Wigner matrices. The Fiiredi-Komlés [16] argument
applies to each of these three matrices, yielding that mNﬁw{kmax(Wﬁ)} < 2«/5,3 and
h_mN_)oo{kmin(N_l/zli)} > —2 fori =1, 2. This completes the proof.1 O

A key ingredient in our proof is the analysis of the approximate dynamics of [2], Section 3,
now for a general disorder {J;;}. Specifically, fixing an integer «, let

ty=kT/k fork=0,...,«,

partitioning the interval [0, T') into k disjoint sub-intervals [t;_1, ty). We denote by I?"]‘i, . the
probability measure of the triplet (J, B., X) corresponding to the diffusion X, starting from
Xo = Xp and given by

2.1)  dX,=dB,—VU(X,)dt + %Ji(tkl dt (t €lte—1, &, 1 <k <k),
that is, the interaction term between the particles is frozen along each sub-interval [t;_1, ).
(See Figure 2 for a simulation of the approximate dynamics.)

The fact that both (2.1) and the original diffusion (1.1) have unique weak solutions, fol-
lows from [2], Proposition 2.1, which established this fact for every (J;;). Furthermore, this
solution is in fact strong (see, e.g., [25], exercises (2.10)(1°) and (2.15)(2°) in p. 383 and
p- 386).

Next, for any finite a, denote by ]P)’]‘i,’a2 the measure Pfi, restricted to the event

(2.2) Aay = {llAll2—2 < a2}

We further use Hz‘i/ for the averaged over A law of the empirical measure p y, with Hfi,’az sim-
ilarly standing for the sub-probability measure in which the expectation over A is restricted
by an indicator on the event A,,. In analogy with (1.2), let fiy . be the empirical measure

of the solution to (2.1), with ﬁﬁ, LLZ denoting its law integrated over the disorder restricted to

Ag,.

IThe result of [16] is for matrices of bounded entries and convergence in probability; the proof remains valid
under the condition of uniform boundedness of exponential moments of the entries of v/N A: see the detailed
exposition in [1], Section 2.1.6, for the case of i.i.d. entries. The extension to nonidentically distributed entries
and a.s. convergence, respectively, is immediate (see [1], Ex. 2.1.27 and 2.1.29).
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F1G. 2. Solution of the diffusion (1.1) with Bernoulli £1 disorder variables, N = 100 and =1 (blue) vs. the
approximating system (2.1) with subinterval length 0.1 (green) and subinterval length 0.2 (purple).

Recall that W7 is the metric space C ([0, T] — [—s, s]) equipped with the distance

T 1/2
do(x,y) = ! x(6) — y(t)|* dt
T Jo

We further equip the space M (W3 ) with the corresponding Wasserstein metric

1/2
A V)= g}f {fdz(x W2 dE(x, y)} ,

§1=¢.5=

denoting hereafter by B(u., 6) the ball of radius § around . in that metric.

PROPOSITION 2.2. Suppose (1.4), (1.6) and (1.7) hold. Then, for every T, ay < oo and
8 > 0 there exists some ko < 00 such that for every k > ko,

Z %% (B(u., 8)°) <

Next, let Qﬁ,’” denote the joint law of J, X ¢ and X, restricted to A,,, where we use the
same N -dimensional Brownian motion B; for both processes.

PROPOSITION 2.3.  Suppose (1.4), (1.6) and (1.7) hold. Then, for every T, ay < oo and
& > 0, there exists some kg < 00 such that for every K > ko,

ZQﬂaz( ! /T ||X,—)?,||%dt>8> < 00
NT

N=1

Coupling each coordinate of X; with the corresponding one of X, one has that

1 N o 1 (T -
d v <Y d X(’),X(’)Z:—/ X, — X,||2dt.
Wy (NS AN i) =N L o ( ) NT Jo | X: 5

Thus, combining Proposition 2.2, Proposition 2.3 and the triangle inequality for dw, (-, -) we
have that for any 7T finite, a, finite and § > 0

o0
Z ]P)ﬁl(dW2(/’LN» 1) > 28, Agy) < 00,
N=1
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which by Borel-Cantelli I, implies that for any § > 0 and a; finite,

PA[ Tim {dw, (un. )} > 295, Tm [|All22 <a2] =0.
N—o0 N—o0

In view of (1.8), the proof of Theorem 1.1 is thus complete.

3. Proof of Proposition 2.2. Our proof relies on the following application of the multi-
variate Lindeberg’s method of [11], Theorem 1.1.

LEMMA 3.1.  Suppose the random vector J € RN has independent entries {J i} such that
EJ; =0and IEJJ-2 = 1. Then, for every N, k > 1, nonrandom X = (xy;) € R<*N ‘b e R¥, and
the quadratic function

1
3.1) h(z)zille—bH% (zeRY),

setting co = %e‘ﬁ/z(ﬁ + 3_%) one has that

=R N
(3.2) BV —Ee D) <o 3 (XTX) VA (EI 1P +EITP),
j=1

where J = (.7}) € RN has i.i.d. standard Gaussian entries. In addition,

(3.3) E[exp(h(0) — h(J))] = det(I + XX") /2.

PROOF. Having mutually independent entries of J whose first and second moments
match those of j, eliminates the first two terms of the bound on the LHS of (3.2) that we
get by applying [11], Theorem 1.1, for the smooth function f(z) = ¢ . Denoting the
first three partial derivatives of a function f w.r.t. z; by f;, f;; and fj;;, the proof of [11],
Theorem 1.1, provides a sharper bound than stated in its last term, namely

-1 N
Ef@-EfD)] = G Y ol fijiloo B P +ELTP).
j=1
For h(z) of (3.1), we have Vi = X"(Xz — b), so hjj = (XTX)jj is constant, with 4;;; =0
and |hj| < ,/2hh;; by Cauchy—Schwarz. Substituting = +/2h we thus have that

— — 3/2 _1,2 3/2
|(€ h)jjj|:|hjjj—3hjhjj+h?{e hfhjj Sl>113{e 2 (3r—|—l’3)}:6c‘0hj§ ,

from which the RHS of (3.2) follows. To get (3.3) note that the multivariate Gaussian g := XJ
has zero mean and covariance XX". Consequently,

E["®~1D] = B¢~ 21813+ &P > B[~ 21813] = det(1 + E[gg"]) />,
as claimed in (3.3). O

Eet f@ﬁ, . and ﬁfi,’ .. be the counterparts of Iﬁfv . and ﬁfi,’ . When the disorder J is replaced
by J whose entries are i.i.d. standard Gaussian random variables. Fixing the random variables

o . .
2 i) . Xt(;l() - Xt(;i)_l — Jy U Xy ds
2 b = , =1,...,k,

V=t

. 1 .
(34 M= §||b(’)
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we control Hﬁ, . for some 8, ) 5 0 in terms of its counterpart l'[ﬁ and

1 Y ; (i)
(3.5) Py 1= 2 log(l +8WeMey,
i=1
where
. N
(3.6) 8y =N El; P,
j=1

LEMMA 3.2.  Assume the independent {J;;} satisfy (1.4). Then, for any T, B, « there exist
Ny and c\ finite, such that for every N > Ny,

=B
dl:\[NJ‘SeN(DN,K.
afy,
PROOF. Let
B~ I 5 ) 5@y _ Lyga))2
3.7) P (v =5 ) logEy|exp( (b, g%) = S]] |,
i=1
where J;; are independent and the coordinates of each g(i) eR¥(=1,...,N)are
M) YT 70
(3.8) g = Zxk, NP X k=1«

We further define f‘ﬁ, (LN i) as in (3.7)—(3.8), except for using {@0)} and the i.i.d. stan-

dard normal variables {f,-_ j} instead of {g®} and {J; i}, respectively. Note that by Girsanov’s
theorem we have the Radon—Nykodim derivative

b N
dPy ) gl L2
39 e —enp( 3. 122

i=1

Indeed, under Iﬁ(])\,,,{ we get from (3.4) that ‘f;b(l) Bt(,:) B,‘(Ql, so having in (2.1) the

interaction vector G; = \/%J X t_, throughout [t;_1, t;], it is easy to verify that then

. T .
(b, g = f G ap®, Hg(l)H%:[() GV dr.
Further, Novikov’s condition holds here since
=0 L& o2
Ex.|exp EZ“g I5 1) <oe
i=1

due to the uniform bound on {x;} of (3.8) (as ||)~(, lloo < 5). Under @9\,’,( = }P’(j)\, we have that
J is independent of (X)), thereby yielding that

(3.10)

BB
dPNK B ~
J[ ey }=exp(NrN,K<uN,K>),
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where we also crucially used the independence of the rows of J to arrive at the specific form

on RHS. Being a function of only iy ., the RHS of (3.10) coincides with the Radon—Nykodim
derivative restricted to these empirical measures, namely

78

dITy

0 = exp(NT}  (fin,0))-
N

The same argument applies for the Radon—-Nykodim derivative of ﬁfi,’,( with respect to H?v.
To complete the proof it thus suffices to show that

(3.11) IR (BEn) — Ty (Bn) < P
Unraveling (3.4)—(3.8) this follows upon showing that foreach 1 <i <N,
(3.12) E[e "0 — B[ D] < 60 OR[—1" D]
where J is a standard multivariate Gaussian, J(i) = (Ji1,..., Jin) € RN and h®D(.) of (3.1)
with b® of (3.4) and {x;;} of (3.8). Since X/’ & [—s, 5], we have that
2 27 2
2 _ (BT T (Bs)'T T (Bs)°T
|'ka| = «N (X X)JJ = N (XX )kk/ = K

Thus, from Lemma 3.1 the RHS of (3.3) is bounded below in our case by 1/c; for some
¢2 = c2(Bs/T, k) finite, while for some ¢3 = ¢3(Bs+/T) finite, the LHS of (3.12) is at most
e3aNT32Y iy B P+EITP). With E|J;;1 > 1 and E| J|? = /8/7, taking c| = c2e3(1+
+/8/m) in (3.6) guarantees that (3.12) would hold and thereby completes the proof of the
lemma. [J

The following elementary lemma is needed for proving Lemma 3.4 (namely, to show that
®y  — 0as. when N — 00).

LEMMA 3.3.  Suppose vectors J = (J1, ..., Jy) € RN are composed of independent co-
ordinates {J;} such that for some ¢ > 0, v < 00, and all N > Ny,

(3.13) sup Zlog [2TI]VE[e™i])} <v.
0e(0,¢]

For any a < 00, lfO{<4v/\4 and N > N —No\/a,then

sup Efexp(a (u, J)*) 151, <any] < f(av) < oo
(UeRN: [ulloo <N ~172)

PROOF. Fixing o > 0, associate with each nonrandom u € RV such that |[u||oc < N~1/2

the variable Yy := +/2«/(u, J), noting that for ¢ < ¢/(4a) and any such u

€
(Il <aN} = |Yul<av2alN < 2\/N/Qa):=ry.
Taking N > Ny yields in view of (3.13) (at 6 = A\/2a/N), that
(3.14) E[e*] < e V|A| <2ry.
Recall the elementary bound, valid for all r > 1

y 7}\2/2 d)\.

(3.15) e, ](y)<2/ N3
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Further, since ry > \/eaN /2 > 1 for all N > Ny, upon combining the bounds (3.14), (3.15)
with Fubini’s theorem, we find that for any such «, Yy and for all N > Ny,

dr

o
]E eYl%/Z:H_ < 2/ ezav)\ze_)hz/z = JxlOv) < OQ,
[ Lganzam] =2 | o = S

as claimed. [J
Equipped with Lemma 3.3 we proceed to verify that a.s. ® , — 0 when N — oo.

LEMMA 3.4.  Suppose the independent variables {J;;} satisfy (1.6) and (1.7). Then, for
any T, B,a>,k and all n > 0,

o
(3.16) Y B2 (@ > 21) < oo
N=1
PROOF. Set My := LIb®D|3 for by := b} — g Then, for any ¢ € (0, 1] and ry >0,

G171 MO <A+ )M +¢7 g3 < A+ DM +rv+a7 g 13110 32 gry -

With 3\([\’,) = e’NSJ(\’,) we thus get from (3.5) and log(1 + ye®) < R +1log(1 + y), for R, y > 0,
that

1 N . = (i) 1 N . ~
Py = > log(1 + 8y e TOMT) 4 N > [e® ||§]1{Hg<“||%2qm} = PN+ W
iz i=1

Taking ¢ :=1—¢q = %(y — 1D forl <y <5/20f(1.7) and ry — oo slowly enough, we find
that as N — oo,

-~ 1 o
(3.18) b= Z(") Y < (c1e™)!NT 3 E;1P 0.
j i,j=1
Further, under f"g, . the variables {i)\,(f)} are i.i.d. standard Gaussian, independent of J. In
particular, (ZZT/[\K)l/ 2 is the Euclidean norm of a «-dimensional, standard Gaussian random

. oA ) N
vector, which has the density ¢, r* Le=r"/2 at r € [0, 00) for some ¢, < co. Thus, the ele-

mentary inequality (1 + u)? <14 u?, valid for u > 0 and ¢ < 1, yields the bound
~ ~ (i) ~ o0 ~
B, [(1+8eM+OMT) 9] <1 4 B)9é, fo Plem @ 2 gr = 1 4 §)Pg .
Combining this with Markov’s inequality, yields for the i.i.d. M, ,gi) , that

N
P o) - = i 770 _ S
P%,K(CDN,K >n)<e onN HEII‘i’K[(l +§(I\I,)e(1+q)MK )90] <e N(pn—q~"n)
i=1
In view of (3.18), we thus deduce that

o0
(3.19) S B (B> ) < 00

and complete the proof of the lemma upon checking that for any n > 0,

o0

(3.20) 3 BRE (W > 1) < o0
N=1
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To this end, first note that if ||A|2—2 < ay, then necessarily

N
(3.21) ZHg(‘)H%— Z IAX_ |3 < Ta3s’N.

Thus, the random set S, :={i < N : ||g(i) ||% > gry} has at most
ty :=[Ta3s*N/(qrn)] = o(N)

elements. By the union bound over the at most ( gv ) =exp(o(N)) ways to choose a nonran-
dom set S C [N] of size £, it suffices for (3.20) to show that

1 ~ .
(3.22) lim sup NlOgPZ,K(RS >gnN, As,) <0 where Rs := ZHg(’)H%.

N_)OO|S\=€N ics

To this end, fixing S C [N] of size €y, consider the measure ]P’f, where we set § =0 at
all coordinates i € S of (2.1), while not changing the value of g when i ¢ S. One then has
similarly to (3.9) the following Radon-Nykodim derivative, expressed in terms of b") of (3.4)
and g of (3.8) by

s
dPy

NP
K _ b o0y _ Lp )
R eXp(Z< 8")= 3 Rs

ieS

(3.23)

The RHS of (3.23)‘ is bounded for any 6 > 0 (using the trivial bound xy < (x2 + y2)/2 for
x=(146)""2bD and y = (14 6)'/2g") by

Ms )
. = ®
ex p(l i 2R3> where Ms := ésHb |

In addition, max; {N ~1/2

a:=a»/p, that

7:1 |A;j|} < l|All2—2 for any N-dimensional matrix, yielding for

N
Agy CAS = ﬂ{Zum §aN}.

ieS\j=1

Combining the preceding bounds, we arrive at

~ ~B:S Mg 0
]P”;,,K(Rg >gnN, Ag,) < E;K [exp(m + = Rg)IL{RS>qu}1A§:|

Ms
_equ/Z]Eﬂ ;S [exp(m + 9RS>]].AS]

Under IP’/j .. the variables {b(l) i €S8,k <k} of (3.4) are i.i.d. standard Gaussian. With Mg
being the sum of half the squares of these variables, we clearly have that for some fj(-) finite,
any 6 > 0 and all k, S,

=B;S
E%’K [eMS/(l+9)] — fo(e)l(|$| .
Denoting by Fy := o(b,((i), Xkj,k <«,i, j < N) the o-algebra generated by b,(f) of (3.4) and

{xk;} of (3.8), it thus suffices for (3.22) to show the existence of nonrandom 6 > 0, Ny and
f1 = f1(0) < o0, such that for all N > Ny and S C [N],

(3.24) INEQ,‘?( [e9R51A§ | Fn] < 1)
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To this end, recall that under Iﬁﬁ,‘i the vectors {J; := (J;;) € RN i e S} of mutually indepen-
dent entries are independent of Fy . Further, in view of (3.8),

Rs=)"> (x.Ji)%
ieSk=1

where x; = (xx;) € RN is such that ||Xg||eo < T/(Nk)Bs. We thus have that

]E/;/,’S[ QRS]]_ $|fN] <fNK(9T/32 2)|S|

SN (o) := max sup |:exp< Zuk,J, )A{f):|'
k=1

=N fu eRV: g |0 <N—1/2)

By Jensen’s inequality fn (o) < fn,1(c). Further, thanks to our assumption (1.6), the vec-
tors J; of independent coordinates satisfy the condition (3.13) for some ¢ > 0, v < co which
are independent of i and N. Hence, taking 6 > 0 so « = T 8%s be as in Lemma 3.3, results
for N > Ny with fy (o) < fi(ov) finite, thus establishing (3.24) and thereby concluding
the proof of the lemma. [

Setting W\i as the metric space C ([0, T] — [—s, s]) equipped with the distance

doo(x,y) = sup |x(t) —
t€l0,T]

we next effectively prove an exponential tightness of ﬁg . in the corresponding weak topol-
ogy (using an entropy bound, this has been proved in [4] for Gaussian disorder).

LEMMA 3.5. Fixing T, B8, k, ap, o, there exists Ky C Ml(VV\i) compact, with

1
hmsupﬁlogl'lﬂ 2(K) < —a.

N—o0

PROOF. It follows from (3.9) that for M,gi) = %Hb(” ||% and b® of (3.4),

dBs (N .
= < exp E MWD Y.
0

dry, ‘

i=1

By (3.21) and the LHS of (3.17), having ||A||>—2 < a> yields that

N N
Y MP <23 MY +Ta3sN.
i=1 i=1

Further, under I?P"fv . the variables {Z,(f)} are i.i.d. standard Gaussian, independent of A, hence
for any A C M (W) and r’ = (r — Ta3s%)/2 > 1,
(3.25) R2 () < e NI (A) + 11}, (Z MY > Kr/N>.

i=1

The CGF log IE'K,’K[ele)] =k A(0) which is independent of N and A (hence also on ), is
finite at @ < 1 and has « A’(0) = INEﬁ,,KIT/I\K =« /2. Thus, 8 > A(0) for small enough 6 > 0, so
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applying Markov’s inequality, we get for such 6 > 0 and i.i.d. IT/I\,Ei), that for some 7 = 7(«, k)
finite,

N
(3.26) iy, (Z MO > K?N) < exp(—Nk[0F — A0)]) < exp(—aN).
i=1

Thus, thanks to (3.25) and (3.26), it suffices to verify that 1'1(1)\, are exponentially tight in
M1 (W3). To this end, recall that this is the law of the empirical measure 1y of independent

(X .(i)) (namely, the solutions of the SDS (1.1) which are uncoupled at 8 = 0). These i.i.d.
variables take value in a Polish space W7, whence HS)\, is exponentially tight in the induced
weak topology (see [13], Lemma 6.2.6). [

We have the following upon combining [2] and Lemma 3.5.

LEMMA 3.6.  Forevery B, k, T, ay there exists a good rate function I, on M (Wi) such
that, for any closed F C M1 (W3),

hmsup—log yle N F) < =1 (F).

N—o00

In addition, I,,(F) — I(F) as k — oo and 1 (-) is a good rate function whose unique mini-
mizer is .

PROOF. The large deviations upper bound with a good rate function I,(-) is estab-
lished in [2], Theorem 3.1(1)—(2), for F compact and ﬁga,f The exponential tightness from
Lemma 3.5 applies in particular for the Gaussian disorder 7, thereby extending the validity of
such upper bound to all closed sets F. Finally, [2], Proposition 4.3(1), shows the convergence
of I (-) to some /I (-) whose global minimizer u, is unique. [J

PROOF OF PROPOSITION 2.2.  We actually prove a slightly stronger statement, where
B(t44, 8) denotes instead the ball of radius § > O and center w, in M;(W3). Fixing
T, B.68,a>, we have by Lemma 3.2 and the union bound, that for any x, N > No(x) and
all n >0,

% B 8)) < PR (@nc > 20) + 2V TN 2 (B(11. 5)°).
In view of Lemma 3.4 it thus suffices to show that for any § > 0 and all ¥ > «¢(8)

1
(3.27) limsup — log IR (B, 6)°) <

N—o0

Recall from Lemma 3.6, that I (Fs) > 0 for the closed set Fs = B(u4, §)¢ and therefore
I (Fs) > 0 for all k > ko(5). We thus get (3.27) and thereby complete the proof of the theo-
rem, upon considering the LDP upper bound of Lemma 3.6 for this 5. U

4. Proof of Proposition 2.3. For 8 > 0, we couple X, and X, using the same Brownian

motion: writing

we see that

ﬂ J()?t\_;,(/r] - Xt)7

VN

d -
& =VUX) = VUX) +

& =0.
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Let

Ri=1&l2 and A= J.

o=

Then

v in=(e te)
= (&, A&) +(&. VU X)) — VU X))+ (&, AX e r, — X)),
which, by the mean value theorem, is at most
|All2~2R? + REc” + [ All22Re Ly,

where, for fixed € > 0 and p > 0, we define

Lt = ||)?th,(/7~] - }?tuz and C// == Sup (_Ul//(x))

|x|<s

Restricted to the event 4,,, we have that

d
(4.1) R < (@ + )R+ 3apV/N,

up to the stopping time
%, :=inf{r >0: L, > 3p+/N}.

Solving the ODE that corresponds to equality in (4.1), starting at Ry = 0, results with

3 "
R, < a2 (e(aerc ) l)p\/ﬁf SN
a+c”

up to 7, provided that

1
o< 5(02 tc )e—(a2+0”)T‘
- 3ap

In particular, for such p = p(8, az, T) > 0 it then follows that

Q™ ( sup R = 8VN) <Pi™(%, < T, DS) + PR™ (D),
t€[0,T]

for any & > 0, where
50 =inf{r>0:(X{"|>s5—¢}, D= {Zﬂ{a;”d} ~ 5_2N}'
i=1

Recall from [2], Theorem 4.1(a), that u, is absolutely continuous w.r.t. the law ]P’(l) of the

solution X", 7 € [0, T}, of a single SDE (1.1) at 8 = 0. Further, P({x : [[x]lc =5}) =0
thanks to (1.3), hence for any small ¢ > 0 and the corresponding closed subset

2
42) M & T 5:{IL3M(||X||0025—8)Z§—2}.

Fixing such ¢ > 0, we proceed to bound L;. To this end, recall that for any ¢ € [tx, tx+1],

~ ~ t ~ ~
X - X, = —ft VU(Ks)dE + B — By + (1 — 4)AX,,.
k
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Hence, with r — t < T/« setting ¢, := SUP|y|<g—¢ |U{ (x)| we get that
- S0 _ g2 T r N
/
D Lol X" = Xy < [%;JN +1B; = By ll2 + — Al X |I2] :
i=1

At the same time, on the event D we have that

N

F0) _ 502 2
Do lp0 X = X7 < 20)°N.
i=1

Consequently (using that || }?tk l2 < s+/N and the restriction to the event .A,,) we deduce that
as soon as

Kk >kp:=[(c.+axs)T/p]|
we have by the independence of the Brownian increments (and a union bound),

PR (5, < T, Df) <«P( sup {IB/13} = p*N).

T
tel0, 1

To bound the latter, note that

2
1
t,x)=e — —log(1 +21) |,
u(t, x) xp[1+2t > g(l+ )}
is a positive, smooth solution of the heat equation u; + %u +x = 0. Hence, by Ito’s formula
the integrable Mt(') = ul(t, B,(’)) are i.i.d. positive martingales, starting at M(g’) = 1. Next,
increasing k1 as needed in order to have
P L og(1 427 /k1) = 0
=—————=lo k1) >0,
T =T 2T 28 !
and applying Doob’s maximal inequality for the positive martingale M, = INZI M,(i), we

deduce that for any « > k1,

P( sup {I1B/113} = p*N) <P( sup (M;}=e"™)<e™V,

10, L] 10, 1]

Turning now to show that P’gjaz(DS) is summable in N for all ¥ > «1(e, p), note that D, C
{ln .« € Fe} for F; of (4.2). Thus, proceeding as in the proof of Proposition 2.2, we have by
Lemma 3.2 and the union bound, that for any «, N > Ng(x) and all n > 0,

PN (De) < TINR(Fo) < BY2(@n e > 2m) + VTN (F).
Thanks to Lemma 3.4, it thus suffices to establish that for all ¥ > «,

: 1 Ty B.a2
4.3) lim sup I log Iy (Fe) <O,

N—o0

which as we have seen before, follows from Lemma 3.6 since u, ¢ F. (hence I (F;) > 0).
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