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We study dynamics for asymmetric spin glass models, proposed by Hertz
et al. and Sompolinsky et al. in the 1980’s in the context of neural networks:
particles evolve via a modified Langevin dynamics for the Sherrington–
Kirkpatrick model with soft spins, whereby the disorder is i.i.d. standard
Gaussian rather than symmetric. Ben Arous and Guionnet (Probab. Theory

Related Fields 102 (1995) 455–509), followed by Guionnet (Probab. Theory

Related Fields 109 (1997) 183–215), proved for Gaussian interactions that as
the number of particles grows, the short-term empirical law of this dynamics
converges a.s. to a nonrandom law μ� of a “self-consistent single spin dy-
namics,” as predicted by physicists. Here we obtain universality of this fact:
For asymmetric disorder given by i.i.d. variables of zero mean, unit variance
and exponential or better tail decay, at every temperature, the empirical law
of sample paths of the Langevin-like dynamics in a fixed time interval has the
same a.s. limit μ�.

1. Introduction. Consider the dynamics for asymmetric spin glass models, studied in
the context of neural networks, for example, by Hertz et al. [20] and Cristani and Sompolinsky
[12], given by

(1.1) dX
(i)
t = dB

(i)
t − U ′

1
(
X

(i)
t

)
dt + β√

N

N∑

j=1

JijX
(j)
t dt (i = 1, . . . ,N),

where Bt is N -dimensional Brownian motion, Xt ∈ [−s, s]N for some finite s, the potential
U1 is some smooth function satisfying that U1(x) → ∞ as |x| → s (e.g., a double-well po-
tential at ±1 with s= 2), the parameter β > 0 is the inverse-temperature and the interactions
Jij are quenched (frozen) i.i.d. standard Gaussian random variables.

If instead one were to take a symmetric disorder (that is, Jij = Jji i.i.d. standard Gaussian
for each pair {i, j}) then the stochastic differential system (SDS) (1.1) would be precisely
Langevin dynamics for the soft-spin Sherrington–Kirkpatrick (SK) model; see, for example,
[23, 27, 28] and [3, 4, 19] for studies of the short-term dynamics in that case.

The asymmetric nature of the disorder Jij aids some aspects of the analysis via the extra
independence, yet makes the dynamics nonreversible, whence various useful tools (e.g., the
Fluctuation Dissipation Theorem (FDT) used in [28] to analyze the symmetric case) become
unavailable. As argued, for example, in [12] (see also [14, 22] on the related Hopfield model
[21]), the asymmetric disorder seems a better model for the interactions between neurons (cf.
Remark 1.4 for other flavors of the model in the context of neural networks).

Many of the dynamical quantities of interest, such as spin autocorrelation and response
functions, may be read from the thermodynamic limit (N → ∞) of the empirical measure

Received January 2020; revised August 2020.
MSC2020 subject classifications. Primary 60K35; secondary 60F10, 60H10, 82C31, 82C44.
Key words and phrases. Interacting random processes, Langevin dynamics, SDEs, universality.

2864



UNIVERSALITY FOR LANGEVIN-LIKE SPIN GLASS DYNAMICS 2865

μN of sample-paths of the N particles in a given time interval [0, T ]; that is,

(1.2) μN = 1

N

N∑

i=1

δ
X

(i)
·

∈M1
(
C
(
[0, T ]

))
.

Ben Arous and Guionnet [2], followed by [19] (cf. [4]) were able to show that, from an i.i.d.
initial state, μN converges a.s. to a law μ� of a self-consistent single-spin dynamics, a non-
Markovian diffusion involving only one spin, as predicted for this system in [12]. The proofs
in [2, 19] (and in follow-up works on variants of this model, e.g., Glauber-like dynamics [17,
26] and the dynamics where the SDS has an extra nonlinearity [15]) relied in an essential way
on special properties of Gaussian random variables.

In the related SK model, the first rigorous proof [18, 30] that the free energy has an a.s.
limit was specific to Gaussian disorder, as was the identification of this limit. Talagrand [29]
later proved that the same limit must be obtained under interactions of Bernoulli ±1 random
variables. This universality property was further generalized in [9, 10] to any i.i.d. interactions
given by a variable J satisfying EJ = 0 and EJ 2 = 1.

Our goal in this work is to obtain a similar universality result for the system (1.1), where
a self-consistent a.s. limit was till now rigorously verified only in the case of Gaussian inter-
actions. To be precise, consider the probability measures Pβ

N of the triplet (J,B·,X·) corre-
sponding to the SDS (1.1) with an initial state that is a product ν⊗N

0 which places no mass on
the boundary, that is,

ν0 ∈ M1((−s, s)),

and the C2((−s, s)) potential function U1(x) → ∞ as |x| → s fast enough to confine the
solution of (1.1) within (−s, s). Specifically, suppose (as in [2], p. 458), that

(1.3) lim
|x|↑s

∫ x

0
e2U1(t)

(∫ t

0
e−2U1(v) dv

)
dt = ∞,

which is satisfied for instance by U1(x) = − log(s2 − x2). In this context, the heuristic rea-
soning for the expected universality, as in the case of the free energy in the SK model, is due
to the invariance principle, whereby one expects the interaction term N−1/2JXt in (1.1) to
approximately follow a Gaussian law when N → ∞, irrespective of the marginal laws of the
independent disorder variables Jij . However, even for fully independent (i.e., nonsymmet-
ric), Gaussian disorder, the limit μ� of μN is characterized only as the global minimum of
a certain rate function, corresponding to the variational problem of a large deviation prin-
ciple (LDP). Consequently, one has to establish the sought-after universality at the level of
large deviations. For {Jij } which are fully i.i.d. Gaussian variables and high temperature
(i.e., β2

s
2T < 1), such LDP was proved in [2] by relying on exact Gaussian calculus for the

Radon–Nykodim derivative (RND) w.r.t. a reference system with independent particles, cor-
responding to the β = 0 measure (the corresponding a.s. convergence μN → μ� was there-
after extended in [19] to all β < ∞). Unfortunately, such explicit calculus does not exist
for any other law of interactions. Moreover, any attempt to control the RND of Gaussian vs.
non-Gaussian interactions via an argument such as Lindeberg’s method must be done with
utmost care, since it typically yields only an N−c additive error term, which is potentially
multiplied—and hence outweighed—by an ecN factor from the RND (see Remark 1.3).

Our results hold for any random interactions consisting of independent {Jij }, whose laws
may depend on i, j,N , subject only to the following moment and tail assumptions:

EJij = 0, EJ 2
ij = 1,(1.4)

lim
ε→0

sup
i,j,N

{
E
[
eε|Jij |]}< ∞;(1.5)
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FIG. 1. Comparison of the diffusions (1.1) under different disorder laws: standard Gaussian Jij (orange) vs.
Bernoulli ±1 set by sign(Jij ) (blue), with N = 100 particles, β = 1, s= 2, the double-well potential at ±1 given

by U1(x) = − log(s2 − x2) − x2 + 1
3x4 and a common N -dimensional Brownian motion Bt driving the systems.

Left: sample path of X
(I )
0 X

(I )
t for a uniform particle I ∈ {1, . . . ,N}. Right: average of 100 samples of X

(I )
0 X

(I )
t .

that is, independent {Jij } of zero mean, unit variance and a uniform exponential, or better,
tail decay. (In fact, the uniformity over j in (1.5) is not needed and this assumption may be
relaxed into the conditions (1.6)–(1.8) stated later; see Remark 1.2.)

Let W s

T be the metric space C([0, T ] → [−s, s]) of paths equipped with the distance

d2(x, y) =
(

1

T

∫ T

0

∣∣x(t) − y(t)
∣∣2 dt

)1/2
.

Our main result is the a.s. convergence of μN , in the weak topology corresponding to the
metric space W s

T , to the self-consistent limit μ� of [2, 4, 19].

THEOREM 1.1. Let μN be the empirical measure defined on (1.2) on sample paths of the

Langevin spin glass dynamics (1.1) with independent interactions satisfying (1.4) and (1.5).
Then, for every β > 0, T < ∞ and s > 0, we have that a.s. in the interactions J and the

diffusion, μN → μ� in M1(W
s

T ) weakly as N → ∞.

As a corollary we obtain, for instance, that the dynamics with interactions that are, for
example, centered Bernoulli(1

2) or centered Exp(1) random variables (see Figure 1) have the
same limit as the one derived in [2, 4, 19] for the standard Gaussian case.

REMARK 1.2. Theorem 1.1 remains valid when replacing the assumption (1.5) by the
following, less explicit, yet somewhat more relaxed conditions:

lim
ε→0

sup
i≤N

θ∈(0,ε]

1

θ2N

N∑

j=1

log
(
E
[
eθJij

]
∨E

[
e−θJij

])
< ∞,(1.6)

1

Nγ

N∑

i,j=1

E
(
|Jij |3

)
→ 0 for some γ <

5

2
,(1.7)

lim
N→∞

{
N−1/2‖J‖2→2

}
< ∞ almost surely.(1.8)

The approach of [2] is to establish a weak LDP for the empirical law of the dynamics, in
an approximate system of equations where interactions are frozen over a finite number of
sub-intervals (see (2.1)), under the topology derived from sup-norm distance between sample
paths. One then boosts it via exponential tightness into a full LDP, where the extra assump-
tion β2

s
2T < 1 for exponential tightness in [2], is later dispensed of in [19]. The LDP further
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extends to the original SDS, implying in particular the law of large numbers (LLN). Theo-
rem 1.1 applies beyond Gaussian disorder, albeit for the slightly weaker topology derived
from L2-distance.

REMARK 1.3. As demonstrated in Figure 1, even when using the same Brownian mo-
tion, the sample path for a typical (random) coordinate of the solutions of (1.1) under two
different disorder laws are not close to one another: one must average over the disorder ma-
trix J in order to establish the similarity of the limiting μN . Going this route, any attempt to
control the RND between the average of the measure P

β
N w.r.t. our non-Gaussian interaction

J and the average of such a measure with Gaussian interactions Ĵ requires one to estimate
a term of the form EJ[eF ]/EĴ[eG] conditioned on the sample paths and Brownian motions.
The analysis of this RND becomes particularly delicate since, even upon establishing that
EJ,̂J[eF − eG] ≤ (1 +N−c	)N , we must control the effect of the random variable 	 in order
to deduce that the overall ratio is exp(o(N)).

REMARK 1.4. Various extensions of the model studied here appeared in the context of
disordered neural networks. For instance, in [7, 8] (also see [6]) the model allows time delays
in the interaction between the particles, a time-dependent self-interaction, and any bounded
Lipschitz-continuous pairwise interaction (which in the setup of [2, 4, 19] was a bi-linear
map). In studies of networks of Hopefield neurons, for example, [15] and the references
therein, the evolution of X

(i)
t has interaction terms Jij as pre-factors of a nonlinear uniformly

bounded function of the X
(j)
t ’s, in lieu of a confining potential U . Both of these lines of

extensions were studied under the assumption that the interaction variables Jij are Gaussian,
while [24], Section 4, and [5], Section 4.5, follow the same general approach as taken here to
establish for such neural networks the universality of the limit of μN for sufficiently small T

and for sub-Gaussian i.i.d. {Jij }. It is plausible that our methods here would be useful in the
analysis of these models without those limitations.

In Section 2 we describe the SDS of piecewise frozen interactions and establish that The-
orem 1.1 is a direct consequence of Propositions 2.2 and 2.3. Thereafter, in Section 3 we
establish Proposition 2.2, namely the relevant LLN for the approximating SDS, whereas in
Section 4 we prove Proposition 2.3, which couples the approximating SDS to the (original)
dynamics (1.1) of interest.

2. Proof of Theorem 1.1: Piecewise frozen interactions. We start by showing that the
conditions in Remark 1.2 indeed relax (1.4)–(1.5).

LEMMA 2.1. Conditions (1.4) and (1.5) imply the conditions (1.6)–(1.8).

PROOF. Taking the expectation of

eθJij − θJij ≤ 1 + θ2

ε2
eε|Jij | ∀|θ | ≤ ε

w.r.t. the zero-mean law of Jij , followed by the logarithm of both sides, as log(1 + y) ≤ y on
R+ it follows that

logE
[
eθJij

]
≤ θ2

ε2
E
[
eε|Jij |] ∀|θ | ≤ ε, i, j,N.

Thereby, (1.6) follows from (1.5). Similarly, with |J |3 ≤ 6
ε3 eε|J |, upon taking the expectation

of both sides w.r.t. the law of Jij , we get (1.7) (for 5
2 > γ > 2). As for (1.8), let A := β√

N
J
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denote the scaled disorder matrix and Z1, Z2 be two N -dimensional symmetric matrices,
which are independent of A and of each other, with independent entries above and on their
main diagonal satisfying both (1.4) and (1.5). Then, for nonrandom γ ∈ R consider the 2N -
dimensional symmetric matrices

Wγ :=

⎛
⎜⎝

γ√
N

Z1 A

AT γ√
N

Z2

⎞
⎟⎠ ,

noting that

‖A‖2→2 := sup
‖z‖2=1

{
‖Az‖2

}
= λmax

(
ATA

)1/2 = λmax(W0)

≤ λmax(Wβ) − βλmin
(
N−1/2Z1

)
− βλmin

(
N−1/2Z2

)
.

But Wβ is a
√

2β multiple of an 2N -dimensional Wigner matrix while N−1/2Zi for
i = 1,2, are a pair of N -dimensional Wigner matrices. The Füredi–Komlós [16] argument
applies to each of these three matrices, yielding that limN→∞{λmax(Wβ)} ≤ 2

√
2β and

limN→∞{λmin(N
−1/2Zi)} ≥ −2 for i = 1,2. This completes the proof.1 �

A key ingredient in our proof is the analysis of the approximate dynamics of [2], Section 3,
now for a general disorder {Jij }. Specifically, fixing an integer κ , let

tk = kT /κ for k = 0, . . . , κ,

partitioning the interval [0, T ) into κ disjoint sub-intervals [tk−1, tk). We denote by P̃
β
N,κ the

probability measure of the triplet (J,B·, X̃·) corresponding to the diffusion X̃t starting from
X̃0 = X0 and given by

(2.1) dX̃t = dBt − ∇U(X̃t ) dt + β√
N

JX̃tk−1 dt
(
t ∈ [tk−1, tk],1 ≤ k ≤ κ

)
,

that is, the interaction term between the particles is frozen along each sub-interval [tk−1, tk).
(See Figure 2 for a simulation of the approximate dynamics.)

The fact that both (2.1) and the original diffusion (1.1) have unique weak solutions, fol-
lows from [2], Proposition 2.1, which established this fact for every (Jij ). Furthermore, this
solution is in fact strong (see, e.g., [25], exercises (2.10)(1◦) and (2.15)(2◦) in p. 383 and
p. 386).

Next, for any finite a2, denote by P
β,a2
N the measure P

β
N restricted to the event

(2.2) Aa2 :=
{
‖A‖2→2 ≤ a2

}
.

We further use �
β
N for the averaged over A law of the empirical measure μN , with �

β,a2
N sim-

ilarly standing for the sub-probability measure in which the expectation over A is restricted
by an indicator on the event Aa2 . In analogy with (1.2), let μ̃N,κ be the empirical measure

of the solution to (2.1), with �̃
β,a2
N,κ denoting its law integrated over the disorder restricted to

Aa2 .

1The result of [16] is for matrices of bounded entries and convergence in probability; the proof remains valid

under the condition of uniform boundedness of exponential moments of the entries of
√

NA: see the detailed
exposition in [1], Section 2.1.6, for the case of i.i.d. entries. The extension to nonidentically distributed entries
and a.s. convergence, respectively, is immediate (see [1], Ex. 2.1.27 and 2.1.29).
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FIG. 2. Solution of the diffusion (1.1) with Bernoulli ±1 disorder variables, N = 100 and β = 1 (blue) vs. the

approximating system (2.1) with subinterval length 0.1 (green) and subinterval length 0.2 (purple).

Recall that W s

T is the metric space C([0, T ] → [−s, s]) equipped with the distance

d2(x, y) =
(

1

T

∫ T

0

∣∣x(t) − y(t)
∣∣2 dt

)1/2
.

We further equip the space M1(W
s

T ) with the corresponding Wasserstein metric

dW2(φ,ψ) := inf
ξ=(ξ1,ξ2)

ξ1=φ,ξ2=ψ

{∫
d2(x, y)2 dξ(x, y)

}1/2
,

denoting hereafter by B(μ�, δ) the ball of radius δ around μ� in that metric.

PROPOSITION 2.2. Suppose (1.4), (1.6) and (1.7) hold. Then, for every T ,a2 < ∞ and

δ > 0 there exists some κ0 < ∞ such that for every κ ≥ κ0,
∞∑

N=1

�̃
β,a2
N,κ

(
B(μ�, δ)

c)< ∞.

Next, let Qβ,a2
N denote the joint law of J, X̃t and Xt , restricted to Aa2 , where we use the

same N -dimensional Brownian motion Bt for both processes.

PROPOSITION 2.3. Suppose (1.4), (1.6) and (1.7) hold. Then, for every T ,a2 < ∞ and

δ > 0, there exists some κ0 < ∞ such that for every κ ≥ κ0,
∞∑

N=1

Q
β,a2
N

(
1

NT

∫ T

0
‖Xt − X̃t‖2

2 dt > δ

)
< ∞.

Coupling each coordinate of Xt with the corresponding one of X̃t , one has that

dW2(μN , μ̃N,κ)2 ≤ 1

N

N∑

i=1

d2
(
X(i), X̃(i))2 = 1

NT

∫ T

0
‖Xt − X̃t‖2

2 dt.

Thus, combining Proposition 2.2, Proposition 2.3 and the triangle inequality for dW2(·, ·) we
have that for any T finite, a2 finite and δ > 0

∞∑

N=1

P
β
N

(
dW2(μN ,μ�) > 2

√
δ,Aa2

)
< ∞,
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which by Borel–Cantelli I, implies that for any δ > 0 and a2 finite,

Pβ
[

lim
N→∞

{
dW2(μN ,μ�)

}
> 2

√
δ, lim

N→∞
‖A‖2→2 < a2

]
= 0.

In view of (1.8), the proof of Theorem 1.1 is thus complete.

3. Proof of Proposition 2.2. Our proof relies on the following application of the multi-
variate Lindeberg’s method of [11], Theorem 1.1.

LEMMA 3.1. Suppose the random vector J ∈ RN has independent entries {Jj } such that

EJj = 0 and EJ 2
j = 1. Then, for every N,κ ≥ 1, nonrandom X = (xkj ) ∈ Rκ×N , b ∈ Rκ , and

the quadratic function

(3.1) h(z) = 1

2
‖Xz − b‖2

2
(
z ∈ RN ),

setting c0 = 1
2e−

√
3/2(3

1
4 + 3− 1

4 ) one has that

(3.2)
∣∣Ee−h(J) −Ee−h(̂J)

∣∣≤ c0

N∑

j=1

(
XTX

)3/2
jj

(
E|Jj |3 +E|Ĵ |3

)
,

where Ĵ = (Ĵj ) ∈ RN has i.i.d. standard Gaussian entries. In addition,

(3.3) E
[
exp

(
h(0) − h(̂J)

)]
≥ det

(
I + XXT)−1/2

.

PROOF. Having mutually independent entries of J whose first and second moments
match those of Ĵ, eliminates the first two terms of the bound on the LHS of (3.2) that we
get by applying [11], Theorem 1.1, for the smooth function f (z) = e−h(z). Denoting the
first three partial derivatives of a function f w.r.t. zj by fj , fjj and fjjj , the proof of [11],
Theorem 1.1, provides a sharper bound than stated in its last term, namely

∣∣Ef (J) −Ef (̂J)
∣∣≤ 1

6

N∑

j=1

‖fjjj‖∞
(
E|Jj |3 +E|Ĵ |3

)
.

For h(z) of (3.1), we have ∇h = XT(Xz − b), so hjj = (XTX)jj is constant, with hjjj = 0

and |hj | ≤
√

2hhjj by Cauchy–Schwarz. Substituting r =
√

2h we thus have that

∣∣(e−h)
jjj

∣∣=
∣∣hjjj − 3hjhjj + h3

j

∣∣e−h ≤ h
3/2
jj sup

r≥0

{
e− 1

2 r2(
3r + r3)}= 6c0h

3/2
jj ,

from which the RHS of (3.2) follows. To get (3.3) note that the multivariate Gaussian g := XĴ

has zero mean and covariance XXT. Consequently,

E
[
eh(0)−h(̂J)]= E

[
e− 1

2 ‖g‖2
2+〈g,b〉]≥ E

[
e− 1

2 ‖g‖2
2
]
= det

(
I +E

[
ggT])−1/2

,

as claimed in (3.3). �

Let P̂β
N,κ and �̂

β
N,κ be the counterparts of P̃β

N,κ and �̃
β
N,κ when the disorder J is replaced

by Ĵ whose entries are i.i.d. standard Gaussian random variables. Fixing the random variables

(3.4) M(i)
κ := 1

2

∥∥b(i)
∥∥2

2, b
(i)
k :=

X̃
(i)
tk

− X̃
(i)
tk−1

−
∫
tk
tk−1

U ′
1(X̃

(i)
s ) ds

√
tk − tk−1

, k = 1, . . . , κ,



UNIVERSALITY FOR LANGEVIN-LIKE SPIN GLASS DYNAMICS 2871

we control �̃
β
N,κ for some δ

(i)
N → 0 in terms of its counterpart �̂

β
N,κ and

(3.5) �N,κ := 1

N

N∑

i=1

log
(
1 + δ

(i)
N eM

(i)
κ
)
,

where

(3.6) δ
(i)
N = c1N

−3/2
N∑

j=1

E|Jij |3.

LEMMA 3.2. Assume the independent {Jij } satisfy (1.4). Then, for any T ,β, κ there exist

N0 and c1 finite, such that for every N ≥ N0,

d�̃
β
N,κ

d�̂
β
N,κ

≤ eN�N,κ .

PROOF. Let

(3.7) �
β
N,κ(μ̃N,κ) := 1

N

N∑

i=1

logEJ

[
exp

(〈
b(i),g(i)〉− 1

2

∥∥g(i)
∥∥2

2

)]
,

where Jij are independent and the coordinates of each g(i) ∈Rκ (i = 1, . . . ,N ) are

(3.8) g
(i)
k :=

N∑

j=1

xkjJij , xkj := β
√

T√
Nκ

X̃
(j)
tk−1

, k = 1, . . . , κ.

We further define �̂
β
N,κ(μ̃N,κ) as in (3.7)–(3.8), except for using {̂g(i)} and the i.i.d. stan-

dard normal variables {Ĵij } instead of {g(i)} and {Jij }, respectively. Note that by Girsanov’s
theorem we have the Radon–Nykodim derivative

(3.9)
dP̃

β
N,κ

dP̃0
N,κ

= exp

(
N∑

i=1

[〈
b(i),g(i)〉− 1

2

∥∥g(i)
∥∥2

2

])
.

Indeed, under P̃0
N,κ we get from (3.4) that

√
T√
κ
b

(i)
k = B

(i)
tk

− B
(i)
tk−1

, so having in (2.1) the

interaction vector Gt = β√
N

JX̃tk−1 throughout [tk−1, tk], it is easy to verify that then

〈
b(i),g(i)〉=

∫ T

0
G

(i)
t dB

(i)
t ,

∥∥g(i)
∥∥2

2 =
∫ T

0

(
G

(i)
t

)2
dt.

Further, Novikov’s condition holds here since

Ẽ0
N,κ

(
exp

(
1

2

N∑

i=1

∥∥g(i)
∥∥2

2

)∣∣∣∣∣J
)

< ∞,

due to the uniform bound on {xkj } of (3.8) (as ‖X̃t‖∞ ≤ s). Under P̃0
N,κ = P0

N we have that
J is independent of (X̃·), thereby yielding that

(3.10) EJ

[
dP̃

β
N,κ

dP0
N

]
= exp

(
N�

β
N,κ(μ̃N,κ)

)
,
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where we also crucially used the independence of the rows of J to arrive at the specific form
on RHS. Being a function of only μ̃N,κ , the RHS of (3.10) coincides with the Radon–Nykodim
derivative restricted to these empirical measures, namely

d�̃
β
N,κ

d�0
N

= exp
(
N�

β
N,κ(μ̃N,κ)

)
.

The same argument applies for the Radon–Nykodim derivative of �̂
β
N,κ with respect to �0

N .
To complete the proof it thus suffices to show that

�
β
N,κ(μ̃N,κ) − �̂

β
N,κ(μ̃N,κ) ≤ �N,κ .(3.11)

Unraveling (3.4)–(3.8) this follows upon showing that for each 1 ≤ i ≤ N ,

(3.12) E
[
e−h(i)(J(i))]−E

[
e−h(i) (̂J)]≤ δ

(i)
N eh(i)(0)E

[
e−h(i) (̂J)],

where Ĵ is a standard multivariate Gaussian, J(i) = (Ji1, . . . , JiN ) ∈ RN and h(i)(·) of (3.1)
with b(i) of (3.4) and {xkj } of (3.8). Since X̃

(j)
t ∈ [−s, s], we have that

|xkj |2 ≤ (βs)2T

κN
=⇒

(
XTX

)
jj ≤ (βs)2T

N
,
(
XXT)

kk′ ≤
(βs)2T

κ
.

Thus, from Lemma 3.1 the RHS of (3.3) is bounded below in our case by 1/c2 for some
c2 = c2(βs

√
T , κ) finite, while for some c3 = c3(βs

√
T ) finite, the LHS of (3.12) is at most

c3N
−3/2∑

j≤N (E|Jij |3 +E|Ĵ |3). With E|Jij |3 ≥ 1 and E|Ĵ |3 =
√

8/π , taking c1 = c2c3(1+√
8/π) in (3.6) guarantees that (3.12) would hold and thereby completes the proof of the

lemma. �

The following elementary lemma is needed for proving Lemma 3.4 (namely, to show that
�N,κ → 0 a.s. when N → ∞).

LEMMA 3.3. Suppose vectors J = (J1, . . . , JN ) ∈ RN are composed of independent co-

ordinates {Ji} such that for some ε > 0, v < ∞, and all N ≥ N0,

(3.13) sup
θ∈(0,ε]

{
1

θ2N

N∑

j=1

log
(
E
[
eθJj

]
∨E

[
e−θJj

])
}

≤ v.

For any a < ∞, if α < 1
4v

∧ ε
4a

and N ≥ N1 := N0 ∨ 2
εa

, then

sup
{u∈RN :‖u‖∞≤N−1/2}

E
[
exp

(
α〈u,J〉2)

1{‖J‖1≤aN}
]
≤ f�(αv) < ∞.

PROOF. Fixing α > 0, associate with each nonrandom u ∈ RN such that ‖u‖∞ ≤ N−1/2

the variable Yu :=
√

2α〈u,J〉, noting that for α ≤ ε/(4a) and any such u

{
‖J‖ ≤ aN

}
=⇒ |Yu| ≤ a

√
2αN ≤ ε

2

√
N/(2α) := rN .

Taking N ≥ N0 yields in view of (3.13) (at θ = λ
√

2α/N ), that

(3.14) E
[
eλYu

]
≤ e2αvλ2 ∀|λ| ≤ 2rN .

Recall the elementary bound, valid for all r ≥ 1

(3.15) ey2/2
1[−r,r](y) ≤ 2

∫ 2r

−2r
eλye−λ2/2 dλ√

2π
.
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Further, since rN ≥
√

εaN/2 ≥ 1 for all N ≥ N1, upon combining the bounds (3.14), (3.15)
with Fubini’s theorem, we find that for any such α, Yu and for all N ≥ N1,

E
[
eY 2

u /2
1{‖J‖1≤aN}

]
≤ 2

∫ ∞

−∞
e2αvλ2

e−λ2/2 dλ√
2π

:= f�(αv) < ∞,

as claimed. �

Equipped with Lemma 3.3 we proceed to verify that a.s. �N,κ → 0 when N → ∞.

LEMMA 3.4. Suppose the independent variables {Jij } satisfy (1.6) and (1.7). Then, for

any T ,β, a2, κ and all η > 0,

(3.16)
∞∑

N=1

P̃
β,a2
N,κ (�N,κ > 2η) < ∞.

PROOF. Set M̂
(i)
κ := 1

2‖b̂(i)‖2
2 for b̂

(i)
k := b

(i)
k − g

(i)
k . Then, for any q ∈ (0,1] and rN ≥ 0,

(3.17) M(i)
κ ≤ (1 + q)M̂(i)

κ + q−1∥∥g(i)
∥∥2

2 ≤ (1 + q)M̂(i)
κ + rN + q−1∥∥g(i)

∥∥2
21{‖g(i)‖2

2≥qrN }.

With δ̂
(i)
N := erN δ

(i)
N we thus get from (3.5) and log(1 + yeR) ≤ R + log(1 + y), for R,y ≥ 0,

that

�N,κ ≤ 1

N

N∑

i=1

log
(
1 + δ̂

(i)
N e(1+q)M̂

(i)
κ
)
+ 1

qN

N∑

i=1

∥∥g(i)
∥∥2

21{‖g(i)‖2
2≥qrN } := �̂N,κ + �N,κ .

Taking ϕ := 1 − q = 2
3(γ − 1) for 1 < γ < 5/2 of (1.7) and rN → ∞ slowly enough, we find

that as N → ∞,

(3.18) δ̂N := 1

N

∑

i=1

(̂
δ
(i)
N

)ϕ ≤
(
c1e

rN
)ϕ

N−γ
N∑

i,j=1

E|Jij |3 → 0.

Further, under P̃
β
N,κ the variables {b̂(i)

k } are i.i.d. standard Gaussian, independent of J. In

particular, (2M̂κ)1/2 is the Euclidean norm of a κ-dimensional, standard Gaussian random
vector, which has the density ĉκrκ−1e−r2/2 at r ∈ [0,∞) for some ĉκ < ∞. Thus, the ele-
mentary inequality (1 + u)ϕ ≤ 1 + uϕ , valid for u ≥ 0 and ϕ < 1, yields the bound

Ẽ
β
N,κ

[(
1 + δ̂e(1+q)M̂

(i)
κ
)ϕ]≤ 1 + (̂δ)ϕ ĉκ

∫ ∞

0
rκ−1e−(qr)2/2 dr = 1 + (̂δ)ϕq−κ .

Combining this with Markov’s inequality, yields for the i.i.d. M̂
(i)
κ , that

P̃
β
N,κ(�̂N,κ > η) ≤ e−ϕηN

N∏

i=1

Ẽ
β
N,κ

[(
1 + δ̂

(i)
N e(1+q)M̂

(i)
κ
)ϕ]≤ e−N(ϕη−q−κ δ̂N ).

In view of (3.18), we thus deduce that

(3.19)
∞∑

N=1

P̃
β
N,κ(�̂N,κ > η) < ∞

and complete the proof of the lemma upon checking that for any η > 0,

(3.20)
∞∑

N=1

P̃
β,a2
N,κ (�N,κ > η) < ∞.
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To this end, first note that if ‖A‖2→2 ≤ a2, then necessarily

(3.21)
N∑

i=1

∥∥g(i)
∥∥2

2 = T

κ

κ∑

k=1

‖AX̃tk−1‖2
2 ≤ T a2

2s
2N.

Thus, the random set S� := {i ≤ N : ‖g(i)‖2
2 ≥ qrN } has at most

�N :=
⌈
T a2

2s
2N/(qrN )

⌉
= o(N)

elements. By the union bound over the at most
( N
�N

)
= exp(o(N)) ways to choose a nonran-

dom set S ⊆ [N ] of size �N , it suffices for (3.20) to show that

(3.22) lim
N→∞

sup
|S|=�N

1

N
log P̃β

N,κ(RS > qηN,Aa2) < 0 where RS :=
∑

i∈S

∥∥g(i)
∥∥2

2.

To this end, fixing S ⊂ [N ] of size �N , consider the measure P̃
β;S
N,κ where we set β = 0 at

all coordinates i ∈ S of (2.1), while not changing the value of β when i /∈ S . One then has
similarly to (3.9) the following Radon–Nykodim derivative, expressed in terms of b(i) of (3.4)
and g(i) of (3.8) by

dP̃
β
N,κ

dP̃
β;S
N,κ

= exp
(∑

i∈S

〈
b(i),g(i)〉− 1

2
RS

)
.(3.23)

The RHS of (3.23) is bounded for any θ > 0 (using the trivial bound xy ≤ (x2 + y2)/2 for
x = (1 + θ)−1/2b(i) and y = (1 + θ)1/2g(i)) by

exp
(

MS

1 + θ
+ θ

2
RS

)
where MS := 1

2

∑

i∈S

∥∥b(i)
∥∥2

.

In addition, maxi{N−1/2∑N
j=1 |Aij |} ≤ ‖A‖2→2 for any N -dimensional matrix, yielding for

a := a2/β , that

Aa2 ⊆ A
S
a :=

⋂

i∈S

{
N∑

j=1

|Jij | ≤ aN

}
.

Combining the preceding bounds, we arrive at

P̃
β
N,κ(RS > qηN,Aa2) ≤ Ẽ

β;S
N,κ

[
exp

(
MS

1 + θ
+ θ

2
RS

)
1{RS>qηN}1AS

a

]

≤ e−θqηN/2Ẽ
β;S
N,κ

[
exp

(
MS

1 + θ
+ θRS

)
1
AS

a

]
.

Under P̃β;S
N,κ the variables {b(i)

k , i ∈ S, k ≤ κ} of (3.4) are i.i.d. standard Gaussian. With MS

being the sum of half the squares of these variables, we clearly have that for some f0(·) finite,
any θ > 0 and all κ,S ,

Ẽ
β;S
N,κ

[
eMS/(1+θ)]= f0(θ)κ|S|.

Denoting by FN := σ(b
(i)
k , xkj , k ≤ κ, i, j ≤ N) the σ -algebra generated by b

(i)
k of (3.4) and

{xkj } of (3.8), it thus suffices for (3.22) to show the existence of nonrandom θ > 0, N1 and
f1 = f1(θ) < ∞, such that for all N ≥ N1 and S ⊆ [N ],

(3.24) Ẽ
β;S
N,κ

[
eθRS1

AS
a

| FN

]
≤ f1(θ)|S|.
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To this end, recall that under P̃β;S
N,κ the vectors {Ji := (Jij ) ∈ RN , i ∈ S} of mutually indepen-

dent entries are independent of FN . Further, in view of (3.8),

RS =
∑

i∈S

κ∑

k=1

〈xk,Ji〉2,

where xk = (xkj ) ∈ RN is such that ‖xk‖∞ ≤
√

T/(Nκ)βs. We thus have that

Ẽ
β;S
N,κ

[
eθRS1

AS
a

∣∣FN

]
≤ fN,κ

(
θTβ2

s
2)|S|

,

fN,κ(α) := max
i≤N

sup
{uk∈RN :‖uk‖∞≤N−1/2}

E

[
exp

(
α

κ

κ∑

k=1

〈uk,Ji〉2

)
1
A

{i}
a

]
.

By Jensen’s inequality fN,κ(α) ≤ fN,1(α). Further, thanks to our assumption (1.6), the vec-
tors Ji of independent coordinates satisfy the condition (3.13) for some ε > 0, v < ∞ which
are independent of i and N . Hence, taking θ > 0 so α = θTβ2

s
2 be as in Lemma 3.3, results

for N ≥ N1 with fN,κ(α) ≤ f�(αv) finite, thus establishing (3.24) and thereby concluding
the proof of the lemma. �

Setting Ŵ s

T as the metric space C([0, T ] → [−s, s]) equipped with the distance

d∞(x, y) = sup
t∈[0,T ]

∣∣x(t) − y(t)
∣∣,

we next effectively prove an exponential tightness of �̃
β
N,κ in the corresponding weak topol-

ogy (using an entropy bound, this has been proved in [4] for Gaussian disorder).

LEMMA 3.5. Fixing T ,β, κ, a2, α, there exists Kα ⊂M1(Ŵ
s

T ) compact, with

lim sup
N→∞

1

N
log �̃

β,a2
N,κ

(
K

c
α

)
< −α.

PROOF. It follows from (3.9) that for M
(i)
κ := 1

2‖b(i)‖2
2 and b(i) of (3.4),

dP̃
β
N,κ

dP0
N

≤ exp

(
N∑

i=1

M(i)
κ

)
.

By (3.21) and the LHS of (3.17), having ‖A‖2→2 ≤ a2 yields that

N∑

i=1

M(i)
κ ≤ 2

N∑

i=1

M̂(i)
κ + T a2

2s
2N.

Further, under P̃β
N,κ the variables {b̂(i)

k } are i.i.d. standard Gaussian, independent of A, hence

for any A ⊂M1(Ŵ
s

T ) and r ′ = (r − T a2
2s

2)/2 ≥ 1,

(3.25) �̃
β,a2
N,κ (A) ≤ eκrN�0

N (A) + �̃
β
N,κ

(
N∑

i=1

M̂(i)
κ ≥ κr ′N

)
.

The CGF log Ẽβ
N,κ [eθM̂

(1)
κ ] = κ�(θ) which is independent of N and A (hence also on β), is

finite at θ < 1 and has κ�′(0) = Ẽ
β
N,κM̂κ = κ/2. Thus, θ ≥ �(θ) for small enough θ > 0, so
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applying Markov’s inequality, we get for such θ > 0 and i.i.d. M̂
(i)
κ , that for some r̂ = r̂(α, κ)

finite,

(3.26) �̃
β
N,κ

(
N∑

i=1

M̂(i)
κ ≥ κr̂N

)
≤ exp

(
−Nκ

[
θ r̂ − �(θ)

])
< exp(−αN).

Thus, thanks to (3.25) and (3.26), it suffices to verify that �0
N are exponentially tight in

M1(Ŵ
s

T ). To this end, recall that this is the law of the empirical measure μN of independent

(X
(i)
· ) (namely, the solutions of the SDS (1.1) which are uncoupled at β = 0). These i.i.d.

variables take value in a Polish space Ŵ s

T , whence �0
N is exponentially tight in the induced

weak topology (see [13], Lemma 6.2.6). �

We have the following upon combining [2] and Lemma 3.5.

LEMMA 3.6. For every β,κ,T , a2 there exists a good rate function Iκ on M1(Ŵ
s

T ) such

that, for any closed F ⊂M1(Ŵ
s

T ),

lim sup
N→∞

1

N
log �̂

β,a2
N,κ (F) ≤ −Iκ(F).

In addition, Iκ(F) → I (F) as κ → ∞ and I (·) is a good rate function whose unique mini-

mizer is μ�.

PROOF. The large deviations upper bound with a good rate function Iκ(·) is estab-
lished in [2], Theorem 3.1(1)–(2), for F compact and �̂

β,a2
N,κ . The exponential tightness from

Lemma 3.5 applies in particular for the Gaussian disorder Ĵ, thereby extending the validity of
such upper bound to all closed sets F . Finally, [2], Proposition 4.3(1), shows the convergence
of Iκ(·) to some I (·) whose global minimizer μ� is unique. �

PROOF OF PROPOSITION 2.2. We actually prove a slightly stronger statement, where
B(μ�, δ) denotes instead the ball of radius δ > 0 and center μ� in M1(Ŵ

s

T ). Fixing
T ,β, δ, a2, we have by Lemma 3.2 and the union bound, that for any κ , N ≥ N0(κ) and
all η > 0,

�̃
β,a2
N,κ

(
B(μ�, δ)

c)≤ P̃
β,a2
N,κ (�N,κ > 2η) + e2ηN�̂

β,a2
N,κ

(
B(μ�, δ)

c).
In view of Lemma 3.4 it thus suffices to show that for any δ > 0 and all κ ≥ κ0(δ)

(3.27) lim sup
N→∞

1

N
log �̂

β,a2
N,κ

(
B(μ�, δ)

c)< 0.

Recall from Lemma 3.6, that I (Fδ) > 0 for the closed set Fδ = B(μ�, δ)
c and therefore

Iκ(Fδ) > 0 for all κ ≥ κ0(δ). We thus get (3.27) and thereby complete the proof of the theo-
rem, upon considering the LDP upper bound of Lemma 3.6 for this Fδ . �

4. Proof of Proposition 2.3. For β > 0, we couple Xt and X̃t using the same Brownian
motion: writing

Et := X̃t − Xt

we see that
d

dt
Et = ∇U(Xt ) − ∇U(X̃t ) + β√

N
J(X̃t�tκ/T � − Xt ),

E0 = 0.
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Let

Rt = ‖Et‖2 and A = β√
N

J.

Then

Rt

d

dt
Rt =

〈
Et ,

d

dt
Et

〉

= 〈Et ,AEt 〉 +
〈
Et ,∇U(Xt) − ∇U(X̃t )

〉
+
〈
Et ,A(X̃t�tκ/T � − X̃t )

〉
,

which, by the mean value theorem, is at most

‖A‖2→2R
2
t + R2

t c
′′ + ‖A‖2→2RtLt ,

where, for fixed ε > 0 and ρ > 0, we define

Lt = ‖X̃t�tκ/T � − X̃t‖2 and c′′ = sup
|x|≤s

(
−U ′′

1 (x)
)
.

Restricted to the event Aa2 , we have that

(4.1)
d

dt
Rt ≤

(
a2 + c′′)Rt + 3a2ρ

√
N,

up to the stopping time

τ̃ρ := inf{t ≥ 0 : Lt ≥ 3ρ
√

N}.

Solving the ODE that corresponds to equality in (4.1), starting at R0 = 0, results with

Rt ≤ 3a2

a2 + c′′
(
e(a2+c′′)t − 1

)
ρ
√

N ≤ δ
√

N

up to τ̃ρ , provided that

ρ ≤ δ

(
a2 + c′′

3a2

)
e−(a2+c′′)T .

In particular, for such ρ = ρ(δ, a2, T ) > 0 it then follows that

Q
β,a2
N

(
sup

t∈[0,T ]
Rt ≥ δ

√
N
)

≤ P
β,a2
N

(
τ̃ρ ≤ T ,Dc

ε

)
+ P

β,a2
N (Dε),

for any ε > 0, where

σ̃ (i)
ε = inf

{
t ≥ 0 :

∣∣X̃(i)
t

∣∣> s− ε
}
, Dε =

{
N∑

i=1

1{σ̃ (i)
ε <T } >

ρ2

s2 N

}
.

Recall from [2], Theorem 4.1(a), that μ� is absolutely continuous w.r.t. the law P0
1 of the

solution X
(1)
t , t ∈ [0, T ], of a single SDE (1.1) at β = 0. Further, P0

1({x : ‖x‖∞ = s}) = 0
thanks to (1.3), hence for any small ε > 0 and the corresponding closed subset

(4.2) μ� /∈ Fε :=
{
μ : μ

(
‖x‖∞ ≥ s− ε

)
≥ ρ2

s2

}
.

Fixing such ε > 0, we proceed to bound Lt . To this end, recall that for any t ∈ [tk, tk+1],

X̃t − X̃tk
= −

∫ t

tk

∇U(X̃ξ ) dξ + Bt − Btk
+ (t − tk)AX̃tk

.
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Hence, with t − tk ≤ T/κ , setting c′
ε := sup|x|≤s−ε |U ′

1(x)| we get that

N∑

i=1

1{σ̃ (i)
ε ≥T }

∣∣X̃(i)
t − X̃

(i)
tk

∣∣2 ≤
[
c′
ε

T

κ

√
N + ‖Bt − Btk

‖2 + T

κ
‖A‖2→2‖X̃tk

‖2

]2
.

At the same time, on the event Dc
ε we have that

N∑

i=1

1{σ̃ (i)
ε <T }

∣∣X̃(i)
t − X̃

(i)
tk

∣∣2 ≤ (2ρ)2N.

Consequently (using that ‖X̃tk
‖2 ≤ s

√
N and the restriction to the event Aa2 ) we deduce that

as soon as

κ ≥ κ1 :=
⌈(

c′
ε + a2s

)
T/ρ

⌉

we have by the independence of the Brownian increments (and a union bound),

P
β,a2
N

(
τ̃ρ ≤ T ,Dc

ε

)
≤ κP

(
sup

t∈[0, T
κ
]

{
‖Bt‖2

2
}
≥ ρ2N

)
.

To bound the latter, note that

u(t, x) = exp
[

x2

1 + 2t
− 1

2
log(1 + 2t)

]
,

is a positive, smooth solution of the heat equation ut + 1
2uxx = 0. Hence, by Ito’s formula

the integrable M
(i)
t := u(t,B

(i)
t ) are i.i.d. positive martingales, starting at M

(i)
0 = 1. Next,

increasing κ1 as needed in order to have

η := ρ2

1 + 2T/κ1
− 1

2
log(1 + 2T/κ1) > 0,

and applying Doob’s maximal inequality for the positive martingale M t = ∏N
i=1 M

(i)
t , we

deduce that for any κ ≥ κ1,

P
(

sup
t∈[0, T

κ
]

{
‖Bt‖2

2
}
≥ ρ2N

)
≤ P

(
sup

t∈[0, T
κ
]
{M t } ≥ eηN

)
≤ e−ηN .

Turning now to show that Pβ,a2
N (Dε) is summable in N for all κ ≥ κ1(ε, ρ), note that Dε ⊆

{μ̃N,κ ∈ Fε} for Fε of (4.2). Thus, proceeding as in the proof of Proposition 2.2, we have by
Lemma 3.2 and the union bound, that for any κ , N ≥ N0(κ) and all η > 0,

P
β,a2
N (Dε) ≤ �̃

β,a2
N,κ (Fε) ≤ P̃

β,a2
N,κ (�N,κ > 2η) + e2ηN�̂

β,a2
N,κ (Fε).

Thanks to Lemma 3.4, it thus suffices to establish that for all κ ≥ κ1,

(4.3) lim sup
N→∞

1

N
log �̂

β,a2
N,κ (Fε) < 0,

which as we have seen before, follows from Lemma 3.6 since μ� /∈ Fε (hence I (Fε) > 0).

Acknowledgments. We thank G. Ben Arous and A. Guionnet for a valuable feedback
on our preliminary draft and for pointing our attention to the references [4, 15, 17, 26].

Funding. A.D. was supported in part by NSF grant DMS- 1954337 and E.L. was sup-
ported in part by NSF Grant DMS-1812095. This research was further supported in part by
BSF Grant 2018088.



UNIVERSALITY FOR LANGEVIN-LIKE SPIN GLASS DYNAMICS 2879

REFERENCES

[1] ANDERSON, G. W., GUIONNET, A. and ZEITOUNI, O. (2010). An Introduction to Random Matrices. Cam-

bridge Studies in Advanced Mathematics 118. Cambridge Univ. Press, Cambridge. MR2760897
[2] BEN AROUS, G. and GUIONNET, A. (1995). Large deviations for Langevin spin glass dynamics. Probab.

Theory Related Fields 102 455–509. MR1346262 https://doi.org/10.1007/BF01198846
[3] BEN AROUS, G. and GUIONNET, A. (1997). Symmetric Langevin spin glass dynamics. Ann. Probab. 25

1367–1422. MR1457623 https://doi.org/10.1214/aop/1024404517
[4] BEN AROUS, G. and GUIONNET, A. (1998). Langevin dynamics for Sherrington–Kirkpatrick spin glasses.

In Mathematical Aspects of Spin Glasses and Neural Networks. Progress in Probability 41 323–353.
Birkhäuser, Boston, MA. MR1601759

[5] CABANA, T. (2016). Large deviations for the dynamics of heterogeneous neural networks. Ph.D. thesis,
Université Pierre et Marie Curie—Paris VI.

[6] CABANA, T. and TOUBOUL, J. (2013). Large deviations, dynamics and phase transitions in large stochas-
tic and disordered neural networks. J. Stat. Phys. 153 211–269. MR3101195 https://doi.org/10.1007/
s10955-013-0818-5

[7] CABANA, T. and TOUBOUL, J. D. (2018). Large deviations for randomly connected neural networks: I.
Spatially extended systems. Adv. in Appl. Probab. 50 944–982. MR3877260 https://doi.org/10.1017/
apr.2018.42

[8] CABANA, T. and TOUBOUL, J. D. (2018). Large deviations for randomly connected neural networks: II.
State-dependent interactions. Adv. in Appl. Probab. 50 983–1004. MR3877261 https://doi.org/10.1017/
apr.2018.43

[9] CARMONA, P. and HU, Y. (2006). Universality in Sherrington–Kirkpatrick’s spin glass model. Ann. Inst.
Henri Poincaré Probab. Stat. 42 215–222. MR2199799 https://doi.org/10.1016/j.anihpb.2005.04.001

[10] CHATTERJEE, S. (2005). A simple invariance theorem. Preprint. Available at arXiv:math/0508213.
[11] CHATTERJEE, S. (2006). A generalization of the Lindeberg principle. Ann. Probab. 34 2061–2076.

MR2294976 https://doi.org/10.1214/009117906000000575
[12] CRISANTI, A. and SOMPOLINSKY, H. (1987). Dynamics of spin systems with randomly asymmetric

bonds: Langevin dynamics and a spherical model. Phys. Rev. A (3) 36 4922–4939. MR0918489
https://doi.org/10.1103/PhysRevA.36.4922

[13] DEMBO, A. and ZEITOUNI, O. (1998). Large Deviations Techniques and Applications, 2nd ed. Applications

of Mathematics 38. Springer, New York. MR1619036 https://doi.org/10.1007/978-1-4612-5320-4
[14] DERRIDA, B., GARDNER, E. and ZIPPELIUS, A. (1987). An exactly solvable asymmetric neural network

model. Europhys. Lett. 4 167–173.
[15] FAUGERAS, O., MACLAURIN, J. and TANRÉ, E. (2019). The meanfield limit of a network of Hopfield

neurons with correlated synaptic weights. Preprint. Available at arXiv:1901.10248.
[16] FÜREDI, Z. and KOMLÓS, J. (1981). The eigenvalues of random symmetric matrices. Combinatorica 1

233–241. MR0637828 https://doi.org/10.1007/BF02579329
[17] GRUNWALD, M. (1996). Sanov results for Glauber spin-glass dynamics. Probab. Theory Related Fields 106

187–232. MR1410687 https://doi.org/10.1007/s004400050062
[18] GUERRA, F. and TONINELLI, F. L. (2002). The thermodynamic limit in mean field spin glass models.

Comm. Math. Phys. 230 71–79. MR1930572 https://doi.org/10.1007/s00220-002-0699-y
[19] GUIONNET, A. (1997). Averaged and quenched propagation of chaos for spin glass dynamics. Probab.

Theory Related Fields 109 183–215. MR1477649 https://doi.org/10.1007/s004400050130
[20] HERTZ, J. A., GRINSTEIN, G. and SOLLA, S. A. (1987). Irreversible spin glasses and neural net-

works. In Heidelberg Colloquium on Glassy Dynamics (Heidelberg, 1986) (J. L. van Hemmen
and I. Morgenstern, eds.). Lecture Notes in Physics 275 538–546. Springer, Berlin. MR0916892
https://doi.org/10.1007/BFb0057533

[21] HOPFIELD, J. J. (1982). Neural networks and physical systems with emergent collective computational
abilities. Proc. Natl. Acad. Sci. USA 79 2554–2558. MR0652033 https://doi.org/10.1073/pnas.79.8.
2554

[22] KREE, R. and ZIPPELIUS, A. (1991). Asymmetrically diluted neural networks. In Models of Neural Net-

works (E. Domany, J. L. van Hemmen and K. Schulten, eds.). Phys. Neural Networks 193–212.
Springer, Berlin. MR1107535

[23] MÉZARD, M., PARISI, G. and VIRASORO, M. A. (1987). Spin Glass Theory and Beyond. World Scientific

Lecture Notes in Physics 9. World Scientific, Teaneck, NJ. MR1026102
[24] MOYNOT, O. and SAMUELIDES, M. (2002). Large deviations and mean-field theory for asymmetric random

recurrent neural networks. Probab. Theory Related Fields 123 41–75. MR1906437 https://doi.org/10.
1007/s004400100182



2880 A. DEMBO, E. LUBETZKY AND O. ZEITOUNI

[25] REVUZ, D. and YOR, M. (1999). Continuous Martingales and Brownian Motion, 3rd ed. Grundlehren

der Mathematischen Wissenschaften 293. Springer, Berlin. MR1725357 https://doi.org/10.1007/
978-3-662-06400-9

[26] RIEGER, H., SCHRECKENBERG, M. and ZITTARTZ, J. (1989). Glauber dynamics of the asymmetric SK-
model. Z. Phys. B, Condens. Matter 74 527–538.

[27] SOMPOLINSKY, H. and ZIPPELIUS, A. (1981). Dynamic theory of the spin-glass phase. Phys. Rev. Lett. 47

359–362.
[28] SOMPOLINSKY, H. and ZIPPELIUS, A. (1982). Relaxational dynamics of the Edwards–Anderson model

and the mean-field theory of spin-glasses. Phys. Rev. B 25 6860–6875.
[29] TALAGRAND, M. (2002). Gaussian averages, Bernoulli averages, and Gibbs’ measures. Random Structures

Algorithms 21 197–204.
[30] TALAGRAND, M. (2003). Spin Glasses: A Challenge for Mathematicians: Cavity and Mean Field Models.

A Series of Modern Surveys in Mathematics 46. Springer, Berlin. MR1993891


	Introduction
	Proof of Theorem 1.1: Piecewise frozen interactions
	Proof of Proposition 2.2
	Proof of Proposition 2.3
	Acknowledgments
	Funding
	References

