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A B S T R A C T 
We develop a novel data-driven method for generating synthetic optical observations of galaxy clusters. In cluster weak lensing, 
the interplay between analysis choices and systematic effects related to source galaxy selection, shape measurement, and 
photometric redshift estimation can be best characterized in end-to-end tests going from mock observations to reco v ered cluster 
masses. To create such test scenarios, we measure and model the photometric properties of galaxy clusters and their sky 
environments from the Dark Energy Surv e y Year 3 (DES Y3) data in two bins of cluster richness λ ∈ [30; 45), λ ∈ [45; 60) and 
three bins in cluster redshift ( z ∈ [0 . 3; 0 . 35), z ∈ [0 . 45; 0 . 5) and z ∈ [0 . 6; 0 . 65). Using deep-field imaging data, we extrapolate 
galaxy populations beyond the limiting magnitude of DES Y3 and calculate the properties of cluster member galaxies via 
statistical background subtraction. We construct mock galaxy clusters as random draws from a distribution function, and 
render mock clusters and line-of-sight catalogues into synthetic images in the same format as actual surv e y observations. 
Synthetic galaxy clusters are generated from real observational data, and thus are independent from the assumptions inherent 
to cosmological simulations. The recipe can be straightforwardly modified to incorporate extra information, and correct for 
surv e y incompleteness. New realizations of synthetic clusters can be created at minimal cost, which will allow future analyses 
to generate the large number of images needed to characterize systematic uncertainties in cluster mass measurements. 
Key words: gravitational lensing: weak – galaxies: clusters: general – cosmology: observations. 

1  I N T RO D U C T I O N  
The study of galaxy clusters has in recent years became a prominent 
pathw ay tow ards understanding the non-linear growth of cosmic 
structure, and towards constraining the cosmological parameters of 
the universe (Allen, Evrard & Mantz 2011 ; Kravtsov & Borgani 
2012 ; W einberg et al. 2013 ). W eak gravitational lensing provides a 
practical method to study the mass properties of clusters. It relies 
" E-mail: t.varg a@ph ysik.lmu.de 

on estimating the gravitational shear imprinted on to the shapes of 
background source galaxies. The lensing effect is directly connected 
to the gravitational potential of the lens, and its measurement is 
readily scalable to an ensemble of targets in wide-field surv e ys 
(Bartelmann & Schneider 2001 ). For this reason, the lensing based 
mass calibration of galaxy clusters has become a standard practice 
for galaxy cluster based cosmological analyses (Rozo et al. 2010 ; 
Mantz et al. 2015 ; Planck Collaboration 2016 ; Costanzi et al. 2019 ; 
Bocquet et al. 2019 ; DES Collaboration 2020 ). 

Methods for estimating the shapes of galaxies include model 
fitting and measurements of second moments, with several innov ati ve 
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4866 T. N. Varga et al. 
approaches developed in recent literature (Miller et al. 2013 ; Zuntz 
et al. 2013 ; Bernstein & Armstrong 2014 ; Refregier & Amara 
2014 ; Huff & Mandelbaum 2017 ; Sheldon & Huff 2017 ; Sheldon 
et al. 2020 ). Irrespective of the chosen family of algorithms, the 
performance of the shear estimates cannot be a priori guaranteed, 
and needs to be validated in a series of tests (Jarvis et al. 2016 ; 
Fenech Conti et al. 2017 ; Zuntz et al. 2018 ; Mandelbaum et al. 2018 ; 
Samuroff et al. 2018 ; Kannawadi et al. 2019 ). These rely on synthetic 
observations: ima g e simulations which are then used to estimate 
the bias and uncertainty of the different methods in a controlled 
environment (Massey et al. 2007 ; Bridle et al. 2009 ; Mandelbaum 
et al. 2015 ; Samuroff et al. 2018 ; Kannawadi et al. 2019 ; Pujol et al. 
2019 ; MacCrann et al. 2021 ). 

Galaxy clusters present a unique challenge for validating weak 
lensing measurements for a multitude of reasons: they deviate from 
the cosmic median line of sight in terms of the abundance and 
properties of cluster member galaxies (Hansen et al. 2009 ; To et al. 
2020 ) resulting in increased blending among light sources (Simet 
& Mandelbaum 2015 ; Euclid Collaboration 2019 ; Eckert et al. 
2020 ; Everett et al. 2020 ), host a diffuse intra-cluster light (ICL) 
component (Gruen et al. 2019 ; Zhang et al. 2019 ; Kluge et al. 2020 ; 
Sampaio-Santos et al. 2021 ) influencing photometry, and induce 
characteristically stronger shear at small scales (McClintock et al. 
2019 ). 

In this study, we create synthetic galaxy clusters, and optical 
observations of these synthetic galaxy clusters in an unsupervised 
way from a combination of observational data sets. To achieve this, 
we measure and model the average galaxy content of redMaPPer 
selected galaxy clusters in Dark Energy Surv e y Year 3 (DES Y3) 
data along with the measurement and model for galaxies in the 
foreground and background. During this procedure, the DES Y3 
wide-field surv e y (Sevilla-Noarbe et al. 2020 ) is augmented with 
information from deep-field imaging data (Hartley et al. 2021 ), 
resulting in enhanced synthetic catalogue depth and better resolved 
galaxy features. Each synthetic cluster and its line of sight is 
generated as a random draw from a model distribution, which enables 
creating the large numbers of mock cluster realizations required for 
benchmarking precision measurements. This approach shortcuts the 
computational cost and limited representation of reality of numerical 
simulations. The synthetic catalogues of cluster member galaxies 
and foreground and background galaxies along with the small-scale 
model for light around the cluster centres are then rendered into 
images in the same format as actual surv e y observations and can 
be further processed with the standard data reduction and analysis 
pipelines of the surv e y. 

The synthetic cluster images are controlled environments, where 
all light can be traced back to a source specified in the underlying 
model. A mass model calibrated by McClintock et al. ( 2019 ) is used 
to imprint a realistic lensing signal on background galaxies, which 
will enable future studies to perform end-to-end tests for reco v ering 
cluster masses from a weak lensing analysis of synthetic images, 
incorporating photometric processing, shear and photometric redshift 
measurement and systematic calibration for lensing profiles and maps 
in a fully controlled environment. This is different from insertion 
based methods (Suchyta et al. 2016 , Everett et al. 2020 ), where 
synthetic galaxies are added on to real observations: Our method 
involves a generalization step a v oiding re-using identical clusters 
multiple times, the full control of synthetic data allows quantifying 
the specific impact of the different cluster properties on the lensing 
measurement. 

The primary focus of this work is to present the algorithm and a 
pilot implementation for generating synthetic cluster observations 

for the DES Y3 observational scenario mimicking the stacked 
lensing strategy of McClintock et al. ( 2019 ) and DES Collaboration 
( 2020 ). Due to the transparent nature of the framework, changes 
and impro v ements aiming for increased realism: e.g. corrections 
for input photometry incompleteness or high resolution, deep cluster 
imaging, can be directly added to the model in future studies. For this 
reason, the presented algorithm is expected to be easily generalized 
and expanded to other ongoing (HSC: Hyper Suprime-Cam, 1 Aihara 
et al. 2018 ; KiDS: Kilo-Degree Survey, 2 de Jong et al. 2013 ) and 
upcoming (Vera C. Rubin Observatory, 3 Ivezi ́c et al. 2019 ; Euclid, 4 
Laureijs et al. 2011 ; Nancy Grace Roman Space Telescope, 5 Spergel 
et al. 2015 ) weak lensing surv e ys as well. 

The structure of this paper is the following. In Section 2, we 
introduce the DES year 3 (Y3) data set; in Section 3, we outline the 
statistical approach used in modelling the synthetic lines of sight; in 
Section 4, we describe the concrete results of the galaxy distribution 
models derived from the DES Y3 data set, and finally in Section 5, 
we outline the method for generating mock observations for DES 
Y3. In the following, we assume a flat # CDM cosmology with $m 
= 0.3 and H 0 = 70 km s −1 Mpc −1 , with distances defined in physical 
coordinates, rather than comoving. 
2  D E S  Y 3  DATA  
The first three years of DES observations were made between 2013 
August 15 and 2016 February 12 (DES Collaboration 2016 ; Sevilla- 
Noarbe et al. 2020 ). This Y3 wide-field data set has achieved nearly 
full footprint co v erage albeit at shallower depth, with on average 
4 tilings in each band ( g , r , i , z) out of the eventually planned 10 
tilings. From the full 5000 deg 2 , the ef fecti v e surv e y area is reduced to 
approximately 4400 deg 2 due to the masking of the Large Magellanic 
Cloud and bright stars. In parallel to the wide-field surv e y a smaller, 
deep field surv e y is also conducted co v ering a total unmasked area 
of 5.9 deg 2 in four patches (Hartley et al. 2021 ). These consist of un- 
dithered pointings of the Dark Energy Camera (DECam; Flaugher 
et al. 2015 ) repeated on a weekly cadence, resulting in data 1.5–2 
mag deeper than the wide-field surv e y. The DES Y3 footprint is 
shown on Fig. 1 . We use three of the four of DES Y3 Deep Fields 
denoted as SN-C, SN-E, and SN-X. These consist of eight partially 
o v erlapping tilings: three tilings for SN-C and SN-X, and two of the 
SN-E. Their location is also shown on Fig. 1 . 
2.1 Wide-field data 
The primary photometric catalogue of DES Y3 is the Y3A2 GOLD 
data set (Sevilla-Noarbe et al. 2020 ). This includes catalogues of 
photometric detections and parameters from the wide-field surv e y 
as well as the corresponding maps of the characteristics of the 
observations, foreground masks, and star–galaxy classification. 

Data processing starts with single-epoch images for which de- 
trending and photometric corrections are applied. They are subse- 
quently co-added to facilitate the detection of fainter objects. The 
base set of photometric detections is obtained via SE XTRACTOR 
(Bertin & Arnouts 1996 ) from r + i + z coadds. The fiducial 
photometric properties for these detections are derived using the 
1 ht tp://hsc.mt k.nao.ac.jp/ssp/
2 http:// kids.strw.leidenuniv.nl/ index.php 
3 ht tps://www.lsst .org/
4 http:// sci.esa.int/ euclid/ 
5 ht tps://wfirst .gsfc.nasa.gov/
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Figure 1. Footprint of targeted clusters in DES Y3. Blue markers: location 
of Deep field regions SN-C, SN-E, SN-X (marker size not to scale). The 
colourscale indicates the number density of galaxy clusters ( n c ) identified by 
the redMaPPer algorithm. 
single-object-fitting (SOF) algorithm based on the ngmix (Sheldon 
2015 ) software that performs a simultaneous fit of a bulge + disc 
composite model (CModel, cm ) to all available exposures of a given 
object while modelling the point spread function (PSF) as a Gaussian 
mixture for each exposure. An expansion of this model is the multi- 
object-fitting (MOF; Sevilla-Noarbe et al. 2020 ) approach where 
in addition to the abo v e first step friends-of-friends (FoF) groups 
of galaxies are identified based on their fiducial models, and in a 
subsequent step the galaxy models are corrected for all members of a 
FoF group in a combined fit. While for the Y3A2 GOLD data set the 
SOF and MOF photometry were found to yield similar solutions, it is 
expected that in crowded environments the MOF photometry would 
perform better, due to its more advanced treatment of blending. 

The 10 σ detection limit for galaxies using SOF photometry in the 
Y3A2 catalogue is g = 23.78, r = 23.56, i = 23.04, z = 22.39 defined 
in the AB system (Sevilla-Noarbe et al. 2020 ). There is a 99 per cent 
completeness for galaxies with i < 22.5. Star–galaxy separation is 
performed based on the morphology derived from SOF and MOF 
quantities, which for the i < 22.5 sample has 98.5 per cent efficiency 
and 99 per cent purity, yielding approximately 226 million extended 
objects out of a base sample of 390 million detections. SOF and MOF 
derived magnitudes are corrected for atmospheric and instrumental 
effects and for interstellar extinction to obtain the final corrected 
magnitudes. 
2.2 RedMaPPer cluster catalogue 
We consider an optically selected sample of galaxy clusters identified 
by the redMaPPer algorithm in the DES Y3 data (Rykoff et al. 2014 ). 
The base input for this cluster finding is the Y3A2 SOF photometry 
catalogue described abo v e, from which redMaPPer identifies galaxy 
clusters as o v erdensities of red-sequence galaxies. This analysis uses 
redMaPPer version v6.4.22 + 2. An optical mass proxy richness λ
is assigned to each cluster defined by the ef fecti ve number of red- 
sequence member galaxies brighter than 0 . 2 L ∗. Cluster redshifts 
are estimated based on the photometric redshifts of likely cluster 
members yielding a nearly unbiased estimate with a scatter of σ z /(1 
+ z) ≈ 0.006 (McClintock et al. 2019 ). 

We consider a locally volume-limited sample of clusters extending 
up to z ≈ 0.65, set by the surv e y completeness depth of i ≈ 22.6. This 
redMaPPer cluster catalogue contains more than 869 000 clusters 
down to λ > 5 and more than 21 000 abo v e λ > 20. The spatial 
distribution of the latter higher richness sample is shown on Fig. 1 , 
and the richness and redshift distribution is shown on Fig. 2 . In 

Figure 2. Distribution of redMaPPer clusters in DES Y3 data set in the 
volume-limited sample. Solid black rectangles: narrow redshift selection. 
Blue dotted rectangles : DES Y1 cluster cosmology selection. 
addition to the cluster catalogue, a catalogue of reference random 
points is also provided, which are drawn from the part of the footprint 
where surv e y conditions permit the detection of a cluster of giv en 
richness and redshift. 

Finally, we note that redMaPPer uses SOF-derived photometric 
catalogues instead of MOF; ho we ver, this is expected to have no 
impact on the result of this work as we only utilize the positions, 
richnesses, and redshifts of the clusters. 
2.3 Deep-field data 
The DES supernova and deep field survey is organized into four 
distinct fields: SN-S, SN-X, SN-C, and SN-E (Kessler et al. 2015 ; 
Abbott et al. 2019 ; Hartley et al. 2021 ). In this work, we only 
consider the SN-X, SN-C, SN-E fields co v ering a total unmasked 
area of 4.64 deg 2 that overlap with the VISTA Deep Extragalactic 
Observations (VIDEO) surv e y (Jarvis et al. 2013 ), pro viding J , H , K 
band co v erage. 

In this study, we consider only the detections derived from 
the COADD TRUTH stacking strategy that aims to optimize for 
reaching approximately 10 × the wide-field surv e y depth while 
requiring that the deep field resolution (FWHM) be no worse that the 
median FWHM in the wide-field data (Hartley et al. 2021 ). 

A difference compared to Y3A2 GOLD is that the MOF algorithm 
is run with ‘forced photometry’ where astrometry and deblending are 
done using DECam data, and infrared bands incorporated only for 
the photometry measurement. This approach results in a coadded 
consistent photometric depth of i = 25 mag. The photometric 
performance of these solutions were compared between the DES 
wide and deep field data sets using a joint set of photometric sources, 
finding very good agreement on the derived colours (see fig. 12 of 
Hartley et al. 2021 ). Additionally, for the deep field photometry the 
ngmix algorithm is run using the bulge + disc composite model 
with fixed size ratio between the bulge and disc components (in 
the following denoted as bdf to distinguish from the wide-field 
processing). 

A photometric redshift estimate is derived by Hartley et al. ( 2021 ) 
for the deep-field galaxies via the EAzY algorithm (Brammer, van 
Dokkum & Coppi 2008 ). These photometric redshift estimates are 
obtained by fitting a mixture of stellar population templates to the 
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4868 T. N. Varga et al. 
ugrizJHK band fluxes of the deep field galaxies. The possible galaxy 
redshifts and stellar template parameters are varied jointly to obtain 
a redshift probability density function. The redshift estimates are 
validated using a reference set of spectroscopic galaxy redshifts 
o v er the same footprint, and Hartley et al. ( 2021 ) finds o v erall 
good performance for bright and intermediate depths that ho we ver 
deteriorates into a very large outlier fraction for the faintest galaxies 
( i > 24). In light of this, we note that our algorithm for modelling 
the properties of cluster member galaxies presented in this analysis 
does not rely on redshifts, and we consider photometric redshifts 
only for describing the line-of-sight distribution of foreground and 
background galaxies. Due to the substantially shallower limiting 
depth of the DES Y3 wide-field surv e y, the impact of the increased 
fraction of very faint ( i > 24) redshift outliers is expected to be 
negligible. 
3  STATISTICAL  M O D E L  
3.1 Analysis choices 
The focus of this study is to measure and model the galaxy content of 
redMaPPer selected galaxy clusters within a bin of cluster properties, 
and to use this measurement to create mock galaxy clusters. The 
cluster member model is complemented by a measurement and model 
for the properties of foreground and background galaxies. Each mock 
cluster is constructed to be representative in terms of its member 
galaxies of the whole bin of cluster properties, and does not aim to 
capture cluster-to-cluster or line-of-sight to line-of-sight variations. 

By construction, the clusters identified by redMaPPer are al w ays 
centred on a bright central galaxy (BCG). Central galaxies form a 
unique and small subset of all galaxies, and therefore we treat them 
separately from non-central galaxies. In our synthetic observations, 
we consider for each cluster bin a mock central galaxy that has the 
mean properties of the observed redMaPPer BCG properties within 
that bin. In this study, we only consider clusters selected on richness 
and redshift (mimicking DES Collaboration 2020 ) and do not aim 
to incorporate correlated scatter between additional observables and 
mass properties at fixed selection. Thus, the task for the rest of 
this section is to model the properties and distribution of non- 
central, foreground and background galaxies, in the following simply 
denoted as galaxies. Faint stars are treated in the same framework 
as foreground galaxies, while bright stars, transients, streaks, and 
other imperfections that are masked during data processing are not 
incorporated in this model. 6 

Throughout this analysis, we assume that galaxies are to first 
order sufficiently described by a set of observable features, primarily 
provided by the DES photometric processing pipeline. The key fea- 
tures are i -band magnitude m i with de-reddening and other rele v ant 
photometric corrections applied, colours c = ( g − r, r − i, i − z), 
galaxy redshift z g , and morphology parameters s describing the scale 
radius, ellipticity and flux ratio of the two components of the ngmix 
SOF/MOF bulge + disc galaxy model. The full list of features and 
their relation to the DES Y3 data products is listed in Table A1 . 

Our aim is to model the distribution of cluster member galaxies, 
and foreground and background galaxies in the space of the abo v e 
features as a function of projected separation R from galaxy clusters 
of richness λ and redshift z. These distributions cannot be directly 
measured from the DES wide-field surv e y, as individual cluster 
member galaxies cannot be identified with sufficient completeness 
6 Nevertheless, these can be added after the synthetic images are generated. 

from photometric data alone, and the bulk of the galaxy populations 
lie beyond the completeness threshold magnitude of i ≈ 22.5, 
where photometric errors come to dominate the derived features. 
To counteract this limitation, we adopt a two-step approach: First, a 
target distribution of well-measured reference features, in this case 
a set of reference colours and radius ( c ref ; R| λ, z) is measured in 
the wide-field surv e y (Sections 3.2 and 3.3). In the second step, the 
wide-field target distribution is used as a prior for resampling the 
galaxy features measured in the DES Deep Fields (Section 3.5). 
Comparing the target distribution around clusters and around a 
set of reference random points enables us to isolate the feature 
distribution of cluster members (Section 3.6). Thus, the resampling 
transforms the deep-field feature distribution into an estimate on the 
full feature distribution of cluster member galaxies, while keeping 
additional features measured accurately only in the deep-field data 
and extrapolate the cluster population to fainter magnitudes. 

Fig. 3 shows an illustration of a mock cluster generated as a result 
of this analysis at the level of a galaxy catalogue and also as a fully 
rendered DES Y3-like coadd image, along with an actual redMaPPer 
cluster taken from the DES Y3 footprint with similar richness and 
redshift. 
3.2 Data preparation 
We group galaxy clusters into two bins of richness λ ∈ [30; 45) and 
[45; 60), and three bins of redshift z ∈ [0 . 3; 0 . 35), [0 . 45; 0 . 5) and 
0 . 6; 0 . 65), where each sample is processed separately. Our binning 
scheme is moti v ated by the selections of McClintock et al. ( 2019 ) 
and DES Collaboration ( 2020 ), shown in Fig. 2 . In this pathfinder 
study, ho we v er, we only co v er their central richness bins, and enforce 
a narrower redshift selection to reduce the smearing of observed 
photometric features (e.g. red sequence) due to mixing of different 
redshift cluster members. While this smearing is not a limitation 
for the presented model, reduced smearing and redshift mixing will 
enable useful sanity checks in e v aluating performance. 

The base data set for this study is a subset of the Y3A2 GOLD 
photometric catalogue selected via the flags listed in Table A2 , 
queried from the DES Data Management system (DESDM; Mohr 
et al. 2008 ). The flags are chosen to yield a high-completeness galaxy 
sample while excluding photometry failures. For each cluster in a 
given cluster selection, we select all entries from this base catalogue 
that are within a pre-defined search radius θquery ≈ 6 deg around the 
cluster using the HEALPix algorithm (G ́orski et al. 2005 ). 

Directly manipulating the abo v e data set is not feasible, therefore 
we select a weighted, representative subsample of entries. First, we 
measure the total radial number profile of galaxies around the clusters 
in radial bins arranged as [10 −3 ; 0 . 1) arcmin, and in 50 consecutive 
logarithmically spaced radial bins between 0.1 and 100 arcmin. Then, 
from each radial range we draw N draw = min ( N bin ; N th ) galaxies, 
where N bin is the number of galaxies in the radial bin and N th = 
10 000 is a threshold number. 

The random draws are equally partitioned across the N clust 
clusters. 7 To account for the number threshold N th , for each drawn 
galaxy a weight 
w bin = N bin /N draw (1) 
is assigned. Therefore, the number of tracers representing the galaxy 
distribution is reduced in an adaptive way. For each selected galaxy, 
7 That is from the vicinity of each cluster approximately N draw /N clust galaxies 
are drawn without replacement from each radial bin. 
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Figure 3. Real and synthetic galaxy cluster side by side. Top: gri colour composite image of a real redMaPPer galaxy cluster in the DES Y3 footprint. Second 
row: gri colour composite image of a synthetic galaxy cluster representative of λ ∈ [45 60), z ∈ [0 . 3; 0 . 35). Third row: Brightness distribution of the synthetic 
light sources for cluster members (red/brown) and foreground and background objects (blue). Darker shades and larger symbols correspond to brighter objects. 
Bottom row: Exaggerated shear map of background sources (red ellipses) with the shade representing redshift, cluster members (black), and foreground sources 
(green). 
the full catalogue row is transferred from the GOLD catalogue, and 
through the random draws the same galaxy can enter multiple times, 
but at different radii. 

The outcome of the abo v e is a galaxy photometry catalogue 
containing the projected radius R of each entry measured from 
the targeted cluster sample with a weight for each entry. The 
measurement is repeated for a sample of reference random points 
selected in the same richness and redshift range as the cluster 
sample. This second data set is representative of the field galaxy 

distributions; ho we ver, through the spatial and redshift distribution 
of the reference random points, it also incorporates the impact of 
surv e y inhomogeneities and masking. 

F ore ground stars appear in the projected vicinity of each galaxy 
cluster on the sky and also within the deep-field areas, and enter 
into the photometry data set. The model presented in this study is 
not dependent on separation between stars and galaxies, as stars 
are automatically remo v ed during statistical background subtrac- 
tion. Nevertheless, the photometric properties of stars compared to 
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4870 T. N. Varga et al. 
galaxies increases the computational cost, as the difference between 
the proposal and target distribution increases when a large number of 
stars are included. To counteract this we employ a size–luminosity 
cut i − mag < −50 + log 10 (1 + T ) + 22 to remo v e the bulk of 
the stellar population, 8 where T is the ef fecti ve size of a detection 
defined as listed in Table A1 . These objects will be re-added at a later 
stage to produce surv e y-like observations. 
3.3 Kernel density r epr esentation of sur v ey data 
Our aim is to generalize the features of a finite set of observed galaxies 
into an estimate on their multi v ariate feature probability density 
function (PDF). We achieve this task via kernel density estimation 
(KDE), which is a type of unsupervised learning algorithm (Parzen 
1962 ; Hastie, Tibshirani & Friedman 2001 ). In brief, the finite set of 
data points are convolved with a Kernel function K ( r , h ), where h is 
the bandwidth which sets the smoothing scale during the PDF recon- 
struction. We adopt a multi v ariate Gaussian kernel function K ( r , h ) 
formulated for d dimensional data with a single bandwidth h equal to 
the standard deviation. This way gaps and undersampled regions are 
modelled to have non-zero probability. For the practical calculation 
of KDEs, we make use of the scikit-learn implementation of 
the abo v e algorithm. 9 A benefit of this KDE implementation is that 
it is numerically optimized for large number of features, allowing for 
efficient future expansions, augmentations of the set of considered 
galaxy properties. 

The photometry catalogue has features with very disparate 
scales. 10 This means that any single bandwidth h (smoothing scale) 
is not equally applicable for all dimensions. To address this, we 
standardize and transform the input features before the KDE step into 
a set of new features that are better described by a single bandwidth 
parameter. First, we subtract the mean of each feature, then perform 
a principle component analysis (PCA) to find the eigendirections 
of the input features (Hastie et al. 2001 ) via the scikit-learn 
implementation 11 and map the features of each galaxy into a set 
of eigenfeatures. Finally, these are standardized by dividing each 
eigenfeature by its estimated standard deviation among the sample. 

In order to find the optimal bandwidth h for each KDE, we perform 
k -fold leave-one-out cross-validation (Hastie et al. 2001 ). Here, the 
same base data is split into k equal parts, and from these each part 
is once considered as the test data, and the remainder is used as the 
training data. In this approach, the score S = 1 

N ∑ N 
j ln p n ( x j , h ) is 

calculated k = 5 times on different training and test combinations, 
and from this a joint cross-validation score is estimated. The final 
KDE is then constructed from the full data set, using the bandwidth 
maximizing the cross-validation score. 

Using PCA standardization, bandwidths can be expressed relative 
to the standard deviation σ = 1 of the various standardized eigen- 
features. Based on this, we e v aluate the cross-v alidation score on a 
logarithmically spaced bandwidth grid from 0.01 σ to 1.2 σ for each 
KDE constructed. We find that h = 0.1 σ simultaneously provides 
a good bandwidth estimate for the deep-field and the wide-field 
8 This simple size–luminosity cut was adopted as the DES deep field star 
galaxy separation was not yet finalized during the data preparation stage of 
this analysis. Any differences between that and the current form are expected 
to manifest only in the run time requirement of the rejection sampling step. 
9 ht tps://scikit -learn.org/stable/modules/densit y.ht ml 
10 E.g. the value range and distribution of galaxy magnitudes and galaxy 
colours is markedly different. 
11 ht tps://scikit -learn.org/stable/modules/decomposit ion.ht ml 

KDEs, for this reason we adopt it as a global bandwidth for further 
calculations. 
3.4 Cluster and field population estimates 
Our aim is to model the radial feature distribution of cluster member 
galaxies for different samples of galaxy clusters. These must be sep- 
arated from the distribution of foreground and background galaxies 
which we expect to be similar to the galaxies of the mean survey 
line of sight. The input data product for the following calculations is 
the feature PDF estimated from the various deep-field and wide-field 
galaxy catalogues for each, using the KDE approach in Section 3.3. 
The full list of feature definitions are shown in Table A1 . 

Photometric redshift estimates available for the DES wide-field 
(Hoyle et al. 2018 ; Myles et al. 2021 ) are not precise enough to 
isolate a sufficiently pure and complete sample of cluster member 
galaxies across the full range of galaxy populations (e.g. not only the 
red sequence). Therefore, to a v oid the abo v e limitation, we perform 
a statistical background subtraction (Hansen et al. 2009 ) to estimate 
the feature distribution of pure cluster member galaxies. In this 
framework, we describe the line-of-sight galaxy distribution around 
galaxy clusters p clust as a two-component system of a cluster member 
population p memb , and a field population which is approximated by 
the distribution around reference random points p rand . This yields 
p memb ( θ, R) = ˆ n r 

ˆ n c − ˆ n r 
[

ˆ n c 
ˆ n r p clust ( θ , R) − p rand , ( θ , R) ] (2) 

where in practice both p.d.f-s on the right-hand side are KDEs 
constructed from the wide-field data set, θ is the list of features 
considered, and R is the projected separation from the targeted 
positions on the sky. ˆ n c and ˆ n r refer to the mean number of galaxies 
detected within R max around clusters and random points. 

The abo v e approach is only applicable for those features θ and 
their respecti ve v alue ranges which are co v ered by the wide-field 
data set. Furthermore, the formalism implicitly assumes that the 
p.d.f-s are dominated by the intrinsic distribution of properties, and 
not by measurement errors. To fulfill this requirement the wide-field 
data must be restricted to a parameter range where photometry errors 
play a subdominant role, and the completeness of the surv e y is high. 
This necessitates excluding the bulk of the galaxy population from 
the naive background subtraction scheme. 

Especially important in relation to this study are galaxies whose 
flux is great enough to meaningfully contribute to the total light in a 
part of the sky, yet are not fully resolved or cannot be detected with 
confidence using standard surv e y photometry pipelines (Suchyta 
et al. 2016 , Everett et al. 2020 ). Nevertheless, these partial or non- 
detections have a significant impact on the photometric performance 
of surv e y data products (Hoekstra, Viola & Herbonnet 2017 ; Euclid 
Collaboration 2019 ; Eckert et al. 2020 ). Therefore, they must be 
modelled and included in the statistical description of a line of 
sight. A distinct undetected population of galaxies is associated with 
galaxy clusters, which are the faint-end of the cluster member galaxy 
population. The feature distribution of these galaxies is markedly 
different from the distribution of faint galaxies in the field (cosmic 
mean) line of sight. 
3.5 Sur v ey depth and feature extrapolation 
To characterize the properties of galaxies too faint to have complete 
detections in the DES wide-field surv e y, we make use of the DES 
Deep Fields. Owing to significantly greater exposure time over 
many epochs, the completeness depth of the Deep Fields in the 
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Synthetic galaxy clusters based on DES Y3 4871 
COADD TRUTH mode is ∼2 mag deeper than the Wide Fields 
(Hartley et al. 2021 ), and the measured fluxes and models of galaxy 
morphology are less impacted by noise at fixed magnitude compared 
to the DES Y3 GOLD wide-field catalogue. Even for i < 22.5, 
there are features measured more robustly for Deep Fields such as 
the ngmix SOF/MOF morphology model parameters. Ho we ver, the 
colours of photometric sources detected in both data sets are found to 
be largely robust against the differences in the photometry analysis 
choices (see section 2.3 of Everett et al. 2020 ). Therefore, we aim to 
combine the galaxy distributions of the Deep Fields and the wide- 
field using colours to inform the extrapolation of the various feature 
distributions to fainter magnitudes. 

First, we denote our target distribution p D ( θ , R| λ, z), where the 
subscript D indicates that the distribution is estimated from the Deep 
Fields down to a completeness limit of i ≈ 24.5. Similarly, we denote 
distributions estimated from the wide-field data set to the wide-field 
limiting magnitude with subscript W , and denote restricting a deep- 
field derived quantity to the shallower wide-field depth with | W . In 
the following we decompose θ into two sets of features: θwide which 
can be measured from the wide-field data set, and θdeep which can 
only be reliably measured from the Deep Fields: 
p D ( θ, R| λ, z) ≡ p D ( θdeep , θwide , R| λ, z) . (3) 
Here, we note that R , λ, and z are features and quantities which also 
only originate from the wide-field data set. We note that all features 
in θwide can also be measured with confidence in the Deep Fields, 
but the reverse is not necessarily true. 

Let us formulate equation (3) as a transformation of a naive 
proposal distribution: 
p D ( θdeep , θwide , R| λ, z) = p D: prop ( θdeep , θwide , R| λ, z) 

×F ( θdeep , θwide , R| λ, z) . (4) 
Here, we separate the task into two parts, where the proposal distri- 
bution p D : prop carries information measured from the Deep Fields, 
and the multiplicative term F represents the required transformation 
of the PDF. As there is no cluster information from the deep-field 
surv e y, the proposal PDF cannot depend on λ and z: 
p D; prop ( θdeep , θwide , R| λ, z) = p D; prop ( θdeep , θwide , R) , (5) 
and for the same reason in the proposal distribution of θdeep and θwide 
cannot be correlated with R : 
p D: prop ( θdeep , θwide , R| λ, z) = p D ( θdeep , θwide ) · p D: prop ( R) . (6) 
Here, p D ( θdeep , θwide ) can be directly measured from the deep-field 
surv e y, and p D : prop ( R ) is chosen to capture the approximately uniform 
surface density of galaxies, e.g. p D : prop ( R ) ∝ R . 

The remaining task is to find an appropriate multiplicative term 
F ( θdeep , θwide , R| λ, z) which transforms the proposal distribution 
p D : prop into the target distribution ˜ p D . In the following, we denote 
with a tilde distributions or estimates that co v er the full feature 
space, but are constrained by approximations due to information not 
accessible to us. Since ˜ p D depends on λ, z and R , and p D : prop is 
independent of these, the F term must contain all such information. 
Furthermore, the correlation between θdeep and R cannot be measured 
from wide-field data, therefore we approximate F as 
˜ F ( θwide , R| λ, z) ≈ F ( θdeep , θwide , R| λ, z) . (7) 

A necessary consistency constraint placed on ˜ F is expressed as 
˜ p D ( θwide , R| λz) | W = p D; prop ( θwide , R) | W × ˜ F ( θwide , R| λ, z) (8) 

= p W ( θwide , R| λ, z) , (9) 

where the W subscript indicates a PDF estimated from wide-field 
data, and the | W subscript denotes that the otherwise greater magni- 
tude range is restricted to the wide-field completeness magnitude of 
i ≈ 22.5. From the abo v e constraint it is then possible to find the 
simplest form of F , as 
˜ F ( θwide , R| λ, z) = 1 

ˆ V p W ( θwide , R| λ, z) 
p D; prop ( θwide , R) | W (10) 

= 1 
ˆ V p W ( θwide , R| λ, z) 

p D ( θwide ) | W · p D; prop ( R) , (11) 
where ˆ V is a normalization factor to account for the different volumes 
of the wide-field and deep-field parameter spaces, e.g. the difference 
in the limiting depth of i < 22.5 versus i < 24.5. 

From the combination of equations (6) and (11), we can then write 
our estimate of the target distribution as 
˜ p D ( θdeep , θwide , R| λ, z) ≈ p D ( θdeep , θwide ) p W ( θwide , R| λ, z) 

ˆ V · p D ( θwide ) | W , (12) 
where p D ; prop ( R ) drops out, and the approximation is composed en- 
tirely of p.d.f-s which can be directly measured from the wide-field or 
deep-field data. In simple terms, p D ( θdeep , θwide ) describes the corre- 
lation between features seen only in the Deep Fields and features seen 
also in the wide-field surv e y, while p W ( θwide , R| λ, z) /p D ( θwide ) | W 
captures the imprint of the cluster on the feature distributions. This 
framework conserves the colour-dependent luminosity function, and 
obeys 
˜ p D ( θdeep | θwide , R, λ, z) ≡ p D ( θdeep | θwide ) . (13) 
Ṡince magnitudes are part of θdeep , this means that the final PDF 
estimate inherits the luminosity function of the Deep Fields, along 
with all additional features that are measured in the Deep Fields. 

An illustration of the outcome and the ingredients of this approach 
is shown on Fig. 4 . There, the centre left-hand panel shows the target 
distribution: the colour–magnitude diagram of galaxies measured 
in projection with R ∈ [10 −0 . 5 ; 1) arcmin around redMaPPer galaxy 
clusters with λ ∈ [45; 60 and z ∈ [0 . 3; 0 . 35) in the DES wide-field 
surv e y. The leftmost panel shows a wide-field and the restricted deep- 
field feature (colour) distribution. The rightmost panel shows the 
proposal distribution of galaxies measured in the DES Deep Fields, 
with the wide-field completeness magnitude shown as the vertical 
dashed line. The centre right-hand panel shows the transformed deep- 
field distribution according to equation (12), where the radial colour 
distribution around the cluster sample was used as the target PDF 
The colour scale is identical in the three panels with iso-probability 
contours o v erlayed. F or simplicity, we take θwide = c wide as a set of 
colours measured in both the wide-field surv e y and deep-field surv e y, 
and θdeep = ( m, s , c deep , z g ) is a vector composed of magnitudes, 
colours, morphology parameters, and redshifts measured in the deep- 
field surv e y according to Table A1 . 
3.6 Rejection sampling 
In the KDE frame work, e v aluating the PDF is computationally much 
more e xpensiv e than dra wing random samples from it. Therefore, 
we adopt an approach where instead of directly performing the 
background subtraction we aim to generate random samples from 
the target distribution ˜ p D; memb . For this we make use of an approach 
known as rejection sampling (MacKay 2002 ). In short, this generates 
random variables distributed according to a target distribution p targ by 
performing random draws from a proposal distribution p prop , which 
are then accepted or rejected according to a decision criterion. 
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Figure 4. Illustration of the re-weighting approach according to equation (12) and the various ingredients for the radial range R ∈ [10 −0 . 5 ; 1) arcmin around 
redMaPPer galaxy clusters with λ ∈ [45; 60 and z ∈ [0 . 3; 0 . 35). Left: Colour PDF estimates for the wide-field shown in magenta, and the depth restricted Deep 
Field shown in green. Centre left: Colour–magnitude diagram of galaxies in the DES wide-field surv e y (not directly used in the transformation). This is the target 
which the transformation aims to reproduce for i < 22.5. Centre right: Transformed deep-field distribution according to equation (12). Right: Colour–magnitude 
diagram of galaxies measured in the DES Deep Fields. Dashed vertical lines: Wide-field completeness magnitude i ≈ 22.5. The colour scale and contour levels 
are identical in the three panels. For the i < 22.5 magnitude range, the colour-based re-weighting shown on the centre right-hand panel is in very good agreement 
with the colour–magnitude distribution of the cluster line of sight shown on the centre left-hand panel. The colour scale is capped to the same level on the three 
right-hand panels to allow direct comparison of the distributions. 
3.6.1 Background subtraction through resampling 
The cluster member galaxy population can be statistically defined as 
the feature dependent galaxy excess compared to a reference random 
line of sight shown in equation (2). In the language of rejection 
sampling, p memb can be calculated by stochastically estimating the 
volume between two PDFs (MacKay 2002 ). In our case, the two 
distributions are p rand and ˆ n c 

ˆ n r p clust , the scaled feature PDF of galaxies 
measured in projection around reference random points and galaxy 
clusters respectively, and ˆ n r and ˆ n c refer to the normalization factors, 
respectively. 

In the following we empirically sample p memb . For each sample: 
(i) Draw a proposal sample β i ∼ p prop ∼ U , where β i is drawn 

from a uniform distribution whose support co v ers the support of 
both p clust and p clust . 

(ii) Perform a uniform random draw u i ∼ U[0; 1). 
(iii) Evaluate the acceptance condition 

p rand ( β i ) < u i · ˆ n c 
ˆ n r sup( p clust ( β i )) < ˆ n c 

ˆ n r p clust ( β i ) , (14) 
and repeat from the previous step until the condition is fulfilled 
and a sample can be accepted. The rejection sampling recipe 
guarantees that accepted samples will be distributed according to 
p memb . (MacKay 2002 ). 

Since in practice p clust is not known exactly, we can rewrite 
Inequality (14) by replacing it with an appropriately chosen value 
M which fulfils that ˆ n c 

ˆ n r p clust < M and p rand < M : 
p rand ( β i ) < u i · ˆ n c 

ˆ n r M < ˆ n c 
ˆ n r p clust ( β i ) . (15) 

We further increase the acceptance rate by drawing samples β i from 
an appropriately chosen proposal distribution p prop instead of from a 
uniform distribution. In this case, the inequality modifies as 

p rand ( β i ) 
ˆ n c 
ˆ n r M · p prop < u i < p clust ( β i ) 

M · p prop , (16) 
where ˆ n c / ̂  n r is the av erage relativ e o v erdensity of galaxy counts in 
the cluster line of sight compared to a reference random line of sight. 

3.6.2 Combining resampling and extrapolation 
The primary use of equation (16) o v er directly performing the 
subtraction of the rescaled PDFs is that it can incorporate the 
extrapolation according to equation (12) . For this, we adopt the 
proposal distribution as defined by equation (6): 
p prop = p prop ( θdeep , θwide , R| λ, z) 

= p D ( θdeep , θwide ) · p W ; rand ( R| λ, z) 
= p D ( m, c , s , z g ) · p W ; rand ( R| λ, z) , (17) 

which we use to draw the proposal random samples from. Further- 
more, we define a restricted proposal distribution which contains 
only features contained within θ ref , that is 
p rp = p rp ( θwide , R| λ, z) 

= p D ( c wide ) · p W ; wide ( R| λ, z) , (18) 
which can be directly compared with p clust and p rand . 

Combining the abo v e, we can generate random samples from the 
surv e y e xtrapolated ˜ p memb , by dra wing samples { m i , c i , s i , z g; i , R i } 
from equation (17), and considering the subset which fulfils the 
extrapolated membership criteria 
ˆ n r 
ˆ n c p W ; rand (c ref 

wide;i , R i | λ, z )
M · p D (c ref 

wide ; i ) · p W ; rand ( R i | λ, z) < u i (19) 
and 
u i < p W ; clust (c ref 

wide ; i , R i | λ, z )
M · p D (c ref 

wide ; i ) · p W ; rand ( R i | λ, z) . (20) 
Here, c ref 

wide denotes a set of reference colours selected from c wide : 
{ g − r; r − i} z1 , { g − r; r − i} z2 and { r − i; i − z} z3 for the three 
cluster redshift bins, respectively. These colours are chosen to bracket 
the red sequence at the respective redshift ranges in a manner similar 
to Rykoff et al. ( 2014 ). 

The abo v e two inequalities define the decision criterion for the 
combined statistical background subtraction and extrapolation, and 
serve as the basis of the computation in this work. Note that these 
criteria already implicitly contain the e v aluation of equation (12) 
yielding an estimate of ˜ p memb , and are composed entirely of factors 
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Synthetic galaxy clusters based on DES Y3 4873 
which can be directly estimated from either the wide-field or the 
deep-field galaxy data sets. 

As a null-test, we can also perform the same resampling for 
the galaxies around random points, which using the same proposal 
distribution as abo v e, is defined by the criterion 
u i < ˆ n r 

ˆ n c p W ; rand (c ref 
wide ; i , R i | λ, z )

M · p D (c ref 
wide ; i ) · p W ; rand ( R i | λ, z) , (21) 

which generates samples from the extrapolated field galaxy distribu- 
tion ˜ p rand . 

In the abo v e formulas, the factor M must be chosen appropriately 
to ensure that the ratios are al w ays less than or equal to unity. In 
practice there is no recipe for M , and the suitable value must be 
found for the actual samples proposed. Furthermore, measurement 
noise leads to small fluctuations in the KDEs which especially in the 
wings of the distributions manifests as p targ / p prop being very poorly 
constrained. To regularize this behaviour, we relax the requirement 
on M and in practice only require the criterion to be fulfilled for 
99 per cent of the proposed points. We explore the M range in an 
iterative fashion up to 500, and find no significant change in the 
distribution of the samples for M > 40, thus we adopt M = 100 
throughout this study. 

The random draws can be repeated until a sufficiently large 
sample is accepted for the cluster member and the field object 
data set. Accepted draws can either be used directly to construct 
mock observations, or alternatively a KDE can then be constructed 
to estimate the PDF of the cluster members and extrapolated field 
galaxies separately. 

A practical limitation of this sampling method is that since the 
proposal R i values are drawn from the full considered radial range 
around clusters and reference random points, the larger radial ranges 
will be much better sampled than the lower radius ranges because of 
the increase in surface area. In our implementation, we counteract this 
by simultaneously considering multiple nested shells of o v erlapping 
radial intervals to ensure the efficient co v ering of the full radial 
range. While each of these PDFs is individually normalized to unity, 
we express the relative probability p l of a member galaxy residing in 
a given radial interval r l around a cluster as 
p l ≈ ˆ n c; l − ˆ n r; l 

p l ( i < 22 . 5) 
/ ∑ 

l 
ˆ n c; l − ˆ n r; l 

p l ( i < 22 . 5) , (22) 
where ˆ n c; l , ˆ n r; l is the average number of galaxies around clusters and 
random points residing in the radial bin in the wide-field data set, 
and p l ( i < 22.5) is the probability that based on the KDE in radial 
bin l a galaxy is bright enough to be in the wide-field selection. 
While this formalism is similar to the direct background subtraction 
scheme defined in Section 3.4, it is only used to approximate the 
relative weight of different radial ranges, and does not influence the 
estimation of the feature PDFs within the radial ranges. 
4  M O D E L  RESULTS  
4.1 Input feature KDEs 
For each sample of galaxy clusters, we present the measurements 
and the corresponding KDE estimates for the two primary input 
distrib utions: The distrib ution of features around clusters in the wide- 
field data, and the distribution of features in the deep-field data set. 
We note that each KDE is constructed globally for all features and the 
full value range, and not only for the shown conditional distributions. 

4.1.1 Distributions of wide-field galaxies around clusters 
Fig. 5 shows the measured feature distribution of galaxies around 
a selection of redMaPPer galaxy clusters with λ ∈ [45; 60) and z ∈ 
[0 . 3; 0 . 35). The features of this distribution are the reference colours 
c ref = ( g − r, r − i) and the projected radial separation R measured 
from the target galaxy cluster centres. Using these sets of features a 
KDE is constructed according to Section 3.3, whose model for the 
PDF is shown as the continuous curves and contours on Fig. 5 , while 
the 1D and 2D histograms represent the measured data. 

The top left two panels of Fig. 5 show galaxy colours at different 
projected radii from the cluster centre for all galaxies with i < 
22.5, while the bottom panels show the g − r - r − i colour–
colour diagram of galaxies with i < 22.5 in different radial bins. 
The histograms correspond to the measured distributions, while the 
contours represents the appropriate slice of the global KDE model. A 
prominent radial dependence is visible as the red sequence becomes 
increasingly dominant for small radii. The KDE model provides 
a good o v erall description of these galaxy distributions capturing 
the two-component nature of the galaxy population. It reco v ers the 
position and the approximate relative weight of the red sequence 
population. We note that since the targeted galaxy clusters span a 
redshift range (z = 0.05, the width of the observed red sequence 
population is measured to be wider, by this dispersion, compared to 
its intrinsic width. 

The top right-hand panel of Fig. 5 shows the surface number 
density profile ) gal ( R) = N ( R) / 2 πR of galaxies with i < 22.5 
around the selected cluster sample in the wide-field surv e y as the 
solid black curve. Coloured curves show the corresponding KDE 
models for the four nested shells. In addition to the target range of 
the KDEs that are shown as the full lines, as a consistency test the 
interior continuation of the KDE model for the outermost nested 
spherical bin is shown as the dotted line. This only shows mild 
deviation from the respective profile of the data, and the measured 
radial surface density profile and the KDE models show very good 
agreement. This means that the difference between the measured and 
modeled absolute density is very small over a range of two orders of 
magnitude, as set by the change in area element. 
4.1.2 Distributions of deep-field galaxies 
Fig. 6 shows the g − r - r − i and the r − i - i − z colour-colour 
diagrams of the deep-field galaxies in three different magnitude 
ranges. The measured distributions are shown as a 2D histograms, 
and the corresponding KDE model is represented by contours. This 
KDE model is constructed simultaneously for all features listed in 
Table A1 , and it provides an excellent description of the colour- 
colour -magnitude distrib ution of galaxies. 

Fig. 7 shows the same KDE model projected into the space of 
bulge / disc flux fraction (a morphology parameter) and redshift 
estimate. The left-hand panel of Fig. 7 shows the histograms of 
the measured bulge / disc flux fraction of the ngmix bdf galaxy 
model for two magnitude bins 19.5 < i < 21 and 21 < i < 22.5, 
along with the corresponding KDE model. Brighter galaxies are more 
likely to be bulge dominated (e.g. described by a de Vaucouleurs 
light profile) compared to fainter galaxies, which is in accordance 
with expectations from galaxy evolution (Gavazzi et al. 2010 ). The 
peak appearing at 0.5 is an imprint of the morphology prior of the 
deep-field photometry pipeline, and it becomes prominent for the 
fainter galaxy selection as there the available information to constrain 
morphology from surv e y observations diminishes. KDE estimates 
cannot reproduce the hard cut-off edges [0; 1] of the bulge / disc flux 
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Figure 5. Distribution of galaxy features with i < 22.5 around redMaPPer galaxy clusters ( λ ∈ [45; 60), z ∈ [0 . 3; 0 . 35) in the DES wide-field data set. Top 
left and centre: g − r and r − i colour histograms of galaxies in bins of projected radius. Histogram: DES data. Contours: KDE reconstruction. The radial 
bins correspond to the radial shells used in the calculation. Top right: Surface density profile of galaxies around the targeted cluster sample. black: measured 
profile. Colour: KDE reconstruction of the surface density profile, colour coded to the radial bins of the top left and centre panels. Bottom: g − r - r − i colour 
distribution of galaxies in the four radial shells. Each panel is normalized to the same colour and contour levels such that the broadening of the colour distribution 
of galaxies and the reduction in the prominence of the red sequence with increasing radius is clearly visible in the data and is well reproduced by the KDE. 
Histo gram: DES data. Contour s: KDE reconstruction. We note that the KDE is constructed globally for the full magnitude and feature ranges, and not only for 
the shown 2d marginal distribution. 

Figure 6. Distribution of g − r , r − i , i − z galaxy colours in the DES 
Deep Fields in bins of i -band magnitude. Histogram: DES data. Contours: 
KDE reconstruction. We note that the KDE is constructed globally for the 
full magnitude and feature ranges, and not only for the shown 2d marginal 
distribution. 
fraction value, and for this reason, we cap the distributions around 
0 and 1 to restrict the PDF model to the appropriate interval, so 
that values greater than 1 or lower than 0 receive a value of 1 or 
0, respectively. The right-hand panel of Fig. 7 shows the estimated 
redshift distribution of the deep-field galaxies, as predicted by the 

Figure 7. Distribution of galaxy morphology parameters in the DES Deep 
Fields, as listed in Table A1 . Histo gram: DES data. Contour s / curves: 
KDE reconstruction. We note that the KDE is constructed globally for the 
full magnitude and feature ranges, and not only for the shown marginal 
distributions. 
EAZY algorithm (Brammer et al. 2008 , see Section 2.3) along with 
the KDE reconstruction for two different magnitude ranges. For 
both the bulge/disc ratio and the redshift parameters, the KDE model 
provides a very good description of the measured data. We emphasize 
that these are different projections of the same model shown on 
Fig. 6 . 
4.2 Cluster member feature distributions 
The result of the statistical model is a set of random samples 
drawn from the feature PDF of the extrapolated cluster member 
galaxies, and a set of random samples which are drawn from the 
extrapolated field galaxy population. For both of these samples a 
KDE is constructed according to Section 3.3, whose purpose is 
to provide a computationally efficient way of generating further 
samples. This model co v ers the full set of features listed in Table A1 
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Synthetic galaxy clusters based on DES Y3 4875 

Figure 8. Joint galaxy feature model in the radial range R ∈ [10 −0 . 5 ; 1] arcmin, for the cluster sample with λ ∈ [45; 60) and z ∈ [0 . 3; 0 . 35). The parameters 
shown are summarized in Table A1 . Lower left-hand panels, ma g enta: Cluster member galaxies with i < 22.5. Lower left panels, black: field galaxies with i 
< 22.5. Upper right-hand panels, green: Extrapolated cluster member galaxies 22.5 < i < 24. Upper right-hand panels, grey: Extrapolated foreground and 
background galaxies with 22.5 < i < 24. The bump visible in the redshift PDF near the cluster redshift range (magenta dashed lines) is coincidental, it is a 
property of the DES deep-field galaxy distribution, also visible on Fig. 7 . 
to a deeper limiting magnitude of i = 24 and is shown on Fig. 8 
for a single cluster bin with λ ∈ [45; 60) and z ∈ [0 . 3; 0 . 35). In 
the following, we o v erview the noteworthy features reproduced by 
this model and present the line-of-sight structure and galaxy surface 
density distribution of our synthetic clusters. 
4.2.1 Line-of-sight model 
Our galaxy redshift distribution model used for creating synthetic 
cluster lines of sight is illustrated on Fig. 9 for a cluster sample with 
λ ∈ [45; 60) and z ∈ [0 . 3; 0 . 35) where the emulated redshift PDF 
of galaxies with i < 22.5 and within the radial range R ∈ [1; 3 . 16) 
arcmin is shown as the magenta histogram. This is a combination of 

a cluster member term located at the mean cluster redshift z = 0.325, 
and a field term. As a comparison the redshift PDF of deep-field 
galaxies is shown in blue for the same magnitude range. Owing to 
the extrapolation part of the analysis, the reconstructed line of sight 
is modelled down to the deep-field limiting magnitude of i < 24.5. 
It contains a faint cluster member population in addition to the faint 
end of the field galaxy population shown as the orange histogram, 
with the comparison redshift distribution of the deep-field galaxies 
shown as the green histogram. 

This line-of-sight model incorporates galaxy redshifts derived 
from the deep-fields using ugrizJHK bands. In turn, the reduced 
redshift uncertainty for deep-field galaxies allows us to take the 
lens geometry correctly into account to apply the lensing effect 
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Figure 9. Line-of-sight model for the redshift distribution of galaxies near 
clusters with λ ∈ [45; 60) and z ∈ [0 . 3; 0 . 35) within the projected radial range 
R ∈ [1; 3 . 16). Ma g enta, orang e: Redshift distribution model around clusters 
in different magnitude bins. Blue, green: Photometric redshift distribution 
measured in the DES Deep Fields in different magnitude bins. Grey dashed: 
Limits of the cluster redshift range. The cluster line-of-sight models show 
a significant deviation from the field line of sight, concentrated in a narrow 
redshift peak at z clust . 
for each galaxy. Fig. 9 also shows that the redshift distribution of 
galaxies near a cluster in projection is significantly different from 
the one in the Deep Fields. This aspect of the line-of-sight model 
enables us to construct mock observations, where we can test the 
response of photometric redshift estimates to the presence of the 
galaxy cluster. This manifests itself as the problem of boost factors or 
cluster member contamination (Sheldon et al. 2004 ; Melchior et al. 
2017 ; Varga et al. 2019 ), as well as propagating blending-related 
photometry effects on to the performance estimates of photometric 
redshifts. 
4.2.2 Surface density model 
The models for the galaxy surface density profiles are shown on 
Fig. 10 . The magnitude range is restricted to i < 22.5. In addition, 
the measured galaxy surface density profile is indicated by the orange 
shaded area, and the surface density profile around the corresponding 
sample of reference random points as the grey shaded area. The 
width of these areas indicates the Poisson uncertainty of the number 
of galaxies. 

The model for the field population is shown as the green lines 
on Fig. 10 . This distribution corresponds to the background model 
during the statistical background subtraction, but it is constructed 
by re-weighting and resampling deep-field galaxies. The excellent 
agreement between this and the profile measured around random 
points in the DES wide-field data is a strong consistency test of the 
statistical model, and is an indication that the statistical background 
subtraction works as intended. 

The model for the pure cluster member distribution is shown as 
the magenta curves on Fig. 10 , and it captures the radial variations 
in surface density, approaching zero at large radii, consistent with 
the finite extent of the cluster galaxy populations. The model for the 
full surface density profile is then obtained as the sum of the cluster 
member (magenta) and the field (green) population estimates, and 
this surface density profile is shown as the black dashed lines, which 
can then be directly compared with the galaxy profiles measured in 
the DES data around clusters (orange lines). The two show excellent 

agreement. The downturn of the surface density profiles at R < 0.1 
arcmin is due detection incompleteness caused by the central galaxy. 
In our model, this regime is ho we ver described by the BCG + ICL 
component components (see Section 5.3, compare with Fig. 13 ). The 
light profile of cluster centrals do show considerable variability on 
such small scales (see fig. 18 of Kluge et al. 2020 ), this is ho we ver 
not incorporated in the smooth ICL model of Gruen et al. ( 2019 ) 
adopted in this study. 
4.2.3 Cluster member and field galaxy features 
Galaxy clusters host a characteristic population of quiescent red 
galaxies distributed along the red-sequence, and also a non-red 
cluster member component. In projection, these cluster members 
are mixed together with foreground and background galaxies. 

Fig. 11 shows the model and measurements for the g − r colour 
distribution of galaxies as an illustration of the statistical learning 
model for the cluster sample with λ ∈ [45; 60) z ∈ [0 . 3; 0 . 35). The 
columns correspond to different bins of projected radius, and the rows 
to different magnitude ranges. The first two [19; 21) and [21; 22 . 5) 
ro ws sho w the model fitted to the DES wide-field data, while the third 
[23; 24) is a pure extrapolation based on the algorithm. The measured 
colour distributions from the DES wide-field data are shown as the 
orange histograms, with the coloured area representing the Poisson 
uncertainty of the measurement. As a comparison, for each cell 
the respective conditional colour distribution measured in the DES 
Deep Fields is shown (blue histogram). This population naturally 
has no radial dependence, and is thus identical in the different 
columns. 

Out of the abo v e two populations, only the deep-field one is 
measured down to the third magnitude bin i ∈ [23; 24), therefore 
the cluster measurement (orange) is not shown there. The colour 
distribution around clusters shows a strong radial trend, with the 
orange histogram approaching the blue with increasing radius. A 
dominant driver of this trend is increasing prominence of the red- 
sequence at low radii, which manifests as a peak in the colour 
distribution. The relative weight of the red-sequence is greater 
for brighter galaxies, and the difference between cluster and field 
lines of sight is also greater for brighter galaxies. As a reference, 
the location of the redMaPPer red-sequence model is indicated 
by the vertical grey dotted lines. These lines correspond to the 
1 σ range of the membership probability weighted colour distri- 
bution of redMaPPer cluster members for that cluster richness, 
redshift range. Both the location and the width of the peak of the 
cluster member histogram (shown in orange) are consistent with 
the properties of redMaPPer cluster members, indicating that it is 
indeed an imprint of the red sequence. We note that only galaxies 
with L > 0 . 2 L " are considered by redMaPPer as potential member 
galaxies and this does not fully co v er the faintest magnitude bin of this 
analysis. 

Fig. 11 shows the model for the projected galaxy distributions 
around galaxy clusters as the black dashed lines, which can be directly 
compared with the orange histogram. This model is derived without 
direct information about the wide-field galaxy luminosity function 
around clusters, and only using information from the deep-field data. 
Nevertheless, as visible on the upper two rows of Fig. 11 , the line-of- 
sight model can describe the magnitude dependent colour variations 
of the galaxy distributions, and well approximate the relative weight 
of the red-sequence peak, albeit slightly o v erestimating its width. 
The bottom row shows the model for galaxies in the line of sight 
with i ∈ [23; 24). Due to the extrapolation part of the approach, the 
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Figure 10. Surface density of galaxies around galaxy clusters with different richness and redshift. Orang e: Surf ace density profile measured around redMaPPer 
clusters. The width of the shaded area represents the Poisson uncertainty propagated into surface density. Grey vertical area: Ef fecti ve size of the cluster BCG 
( √ 

T ). The drop of the cluster LOS profile within this range represents a detection incompleteness due to the light of the central galaxy. In our model, this 
regime is instead described by the BCG + ICL component (see Section 5.3, compare with Fig. 13 ). Grey: Surface density of galaxies measured around reference 
random points. Green: model for the surface density profile of field galaxies within the cluster line of sight. Ma g enta: model for the surf ace density profile of 
cluster member galaxies in the cluster line of sight. Black dashed: Model for the total galaxy surface density profile in the cluster line of sight (the sum of the 
green and magenta curves). 

Figure 11. Conditional colour distribution of galaxies around galaxy clusters across four projected radial regimes (shown in the different columns) around 
galaxy clusters with λ ∈ [45; 60) and z ∈ [0 . 3; 0 . 35). The distribution of galaxies are shown in g − r , g − r , and r − i colours, respectively. There are three 
magnitude ranges shown (rows), the first two [19; 21) and [21; 22 . 5) are fitted to the DES wide-field data, while the third [23; 24) is a pure extrapolation based 
on the algorithm. Orange : Colour PDF measured as a histogram around galaxy clusters in DES data. The height of the shaded area indicates the Poisson 
uncertainty propagated into the normalized histogram. Blue : Colour distribution measured within the corresponding magnitude range in the DES Deep Fields. 
This distribution is identical for each column and for all cluster samples. Green : Model for the colour distribution of foreground and background galaxies in 
the line of sight. Ma g enta : Model for the colour distribution of cluster member galaxies. Black dashed : Model for the full line of sight, which can be directly 
compared with the orange histogram. Grey dotted : 1 σ location of the redMaPPer red-sequence cluster member galaxies. 
model extends to these fainter magnitudes, even though they are not 
directly measured in cluster lines of sight. 

The feature distributions of foreground and background galaxies 
are independent of the cluster galaxy population. Thus, it is expected 
that the residual field model is independent of radius. While the 
bright tip of the DES Deep Fields is not fully representative of 
the actual median DES wide-field surv e y due to sample variance, 
it still provides a reasonable reference distribution. Comparing the 
residual field model (green curve) with the deep-field distribution 

(blue histogram) on Fig. 11 shows no strong radial variations. The 
residual field indeed approximates the deep-field distribution, with 
only minor deviations visible at the faint end. 
4.2.4 Red fraction estimates 
The radial colour evolution of the cluster member galaxy population 
can be described by the approximate red fraction, whose radial profile 
for the three high richness bins is shown on Fig. 12 , along with the 
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Figure 12. Red fraction of cluster members as a function of projected radius 
for three different cluster redshift samples with λ ∈ [45; 60). 
colour cuts used in the definition. These regions are chosen to bracket 
the position of the red sequence which is dominant at low radii. Two 
magnitude ranges are shown: a brighter bin co v ering i ∈ [19; 22 . 5) 
coincides with the DES wide-field depth, and a fainter bin co v ering 
i ∈ [22 . 4; 24 . 5), which is derived from a purely extrapolated colour- 
colour distributions. While the figure shows only the higher richness 
samples, there appears to be no significant difference between the 
richness bins. 

The bright galaxy sample shows a clear monotonic trend in all 
redshift and richness samples, where the red-fraction decreases 
from approximately unity at very low projected radii to approxi- 
mately 30–40 per cent at large radii approaching 10 arcmin. This 
behaviour is consistent with previous measurements (Butcher & 
Oemler 1978 ; Hansen et al. 2009 ; Hennig et al. 2017 ). It is also 
in agreement with existing DES-like synthetic clusters derived from 
decorated gravity-only numerical simulations presented in DeRose 
et al. ( 2019 ) and Varga et al. ( 2019 ). The same behaviour is not 
uniformly true for the fainter, extrapolated red-fraction profiles. 
Some cluster bins show a prominent red galaxy population at the 
centre, the decline is much faster for these fainter populations than 
the brighter counterparts for the same clusters. At large radii the 
galaxy population appears to show a constant mix of red and blue 
members, and approach the preferentially bluer cosmic mean galaxy 
populations. 
5  SYNTHETIC  OBSERVATIONS  
5.1 Random draws of galaxy populations 
The model for non-central galaxies is composed of two main 
components: the distribution of cluster member galaxies (satellites) 
and the distribution of foreground and background galaxies. A 
synthetic cluster line-of-sight is created by random draws from the 
PDF of the different components. Here, each draw corresponds to 
adding a new galaxy to a mock catalogue with an angular and redshift 
position, and the photometric and morphological features contained 
within the model. 

A PDF carries no information about the absolute number of 
objects, therefore this needs to be set based on the observed number 
of galaxies. In real observations only the bright end of the luminosity 
function is observed in the surv e y (i.e. i < 22.5) therefore the 
number of fainter galaxies must be defined according to their relative 
probability in the model. 

A single mock galaxy cluster is constructed the following way: 
(i) For each radial range l , calculate ˆ N C; l and ˆ N R; l the mean 

number of galaxies with i < 22.5 around clusters and random points, 
respectively, in radial range l . 

(ii) For each radial range l , take a Poisson random number of 
galaxies based on the mean number as 
N M; l = Poisson ( 

ˆ N C; l − ˆ N R; l 
p memb ; l ( i < 22 . 5 ) 

) 
, (23) 

and 
N R; l = Poisson ( 

ˆ N R; l 
p rand ; l ( i < 22 . 5 ) 

) 
. (24) 

(iii) Draw cluster members N M ; l times from p memb; l and fore- 
ground and background galaxies N R ; l times from p rand; l . 

(iv) For cluster members set the redshift to z clust . 
(v) Convert the projected radius feature R i into 2D position 

assuming circular symmetry in a flat-sky approximation. 
The outcome of the abo v e recipe is a galaxy catalogue which contains 
cluster members and foreground and background galaxies each 
distributed according to their respective statistical models derived 
from the surv e y data, but extrapolated to a fainter limiting magnitude, 
and the surface density of galaxies is set to the mean surface density 
measured around galaxy clusters. 

In practice, we update step 1 by only measuring ˆ N C; l from data, 
and expressing ˆ N R; l as a function of ˆ N C; l using the statistical model. 
In practice, this is achieved by taking the ratio of accepted events 
during the rejection sampling (see Section 3.6) which only fulfill 
equation (21), to the amount of events which fulfill both equations 
(21) and (20). This latter formulation a v oids scenarios when due to 
measurement noise by chance ˆ N R; l > ˆ N C; l . 
5.2 Cluster lens model and galaxy shapes 
Synthetic weak lensing measurements require a mass model for the 
galaxy cluster to apply gravitational shear to the background galaxies. 
For this, we make use of the mass models and mass constraints found 
in McClintock et al. ( 2019 ). As that analysis did not find a significant 
redshift evolution in the richness-mass scaling, we can approximate 
the rele v ant mean cluster masses for the present mocks, that is M 200m 
≈ 10 14.45 M * for the λ ∈ [30; 45) bin and M 200m ≈ 10 14.65 M * for the 
λ ∈ [45; 60) bin across the three different redshift bins. 

In the following pathfinder study, we only consider the mass model 
for the 1-halo term which is dominant on the small scales explored in 
this study, and consists of a spherically symmetric mass distribution 
with Navarro–Frenk–White (NFW) mass profile (Navarro, Frenk & 
White 1996 ). This lens mass distribution is placed at the cluster 
redshift z clust and subsequently gravitational shear and magnification 
is applied to line-of-sight galaxies based on their true redshifts 
assigned by the model. The lensing effect induced by a NFW halo is 
expressed analytically following (Oaxaca Wright & Brainerd 1999 ). 
Reduced gravitational shear g is directly applied to each galaxy 
through the ngmix bdf galaxy model. The magnification ( µ) is 
ho we ver only applied as a simple approximation, by modulating 
the total flux of the galaxy light models F lensed ; i = µi F i in an 
a-chromatic way. This correctly captures the change in the total 
observed flux of each galaxy, but does not reproduce the increase in 
observed size. The impact of this approximation is expected to be 
minor given the very small apparent size of the high-redshift galaxies 
which experience the greatest magnification effect. 
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Synthetic galaxy clusters based on DES Y3 4879 
5.3 BCG and intra-cluster light model 
A prominent feature of galaxy clusters is the presence of a BCG 
and a surrounding distribution of intra-cluster light (ICL) emitted 
by a diffuse stellar component bound to the cluster halo. These 
components contain a significant fraction of the total optical light 
emitted by the cluster (Zhang et al. 2019 ; Kluge et al. 2020 ; Sampaio- 
Santos et al. 2021 ), therefore accounting for them is essential in a 
dedicated simulation of synthetic galaxy cluster observations. 

By construction galaxy clusters identified by redMaPPer are 
al w ays centred on a bright red-sequence galaxy. This is a simplified 
view of reality, as in recent mergers or in non-equilibrium systems 
the central galaxy might not be red or the brightest, or there might 
be multiple similarly bright BCGs (Rykoff et al. 2014 ). Originating 
from the special location they inhabit, the central galaxies of massive 
haloes follow a different evolutionary track compared to satellite 
galaxies. It is observed that their properties are closely tied to 
the mass and properties of their cluster (Postman & Lauer 1995 ), 
and their luminosity function is approximately Gaussian at fixed 
cluster mass proxy and redshift (Hansen et al. 2009 ). Based on these 
observations, we model the synthetic central galaxy in the mocks as 
having the mean properties of the redMaPPer central galaxies in the 
cluster sample. The rele v ant mean central galaxy features are listed 
in Table A3 for the different cluster redshift and richness samples. 
The central galaxies are assumed to have a de Vaucouleurs light 
profile, and the only stochastic element in the model is their random 
orientation in the plane of the sky with fixed ellipticity | g | . 

The total light in the central region of a cluster is, ho we ver, not 
fully described by the abo v e model, as there is a continuous transition 
between the light usually associated with the central galaxy and the 
intra-cluster light (Kluge et al. 2020 ). Zhang et al. ( 2019 ) investigated 
the properties of the ICL for redMaPPer selected galaxy clusters 
with z clust ∈ [0 . 2; 0 . 3) within the DES Y1 data set. In a stacked 
analysis, they measured the diffuse light of the ICL down to a surface 
brightness of 30 mag arcsec −2 . Zhang et al. ( 2019 ) investigated the 
richness (mass) dependence of the ICL, finding a self-similarity of 
the light profile when expressed in units of R 200 m . The ICL–mass 
relation was further established by Sampaio-Santos et al. ( 2021 ) in 
an expanded re-analysis of the DES Y1 redMaPPer cluster sample. 
Using the measurements of Zhang et al. ( 2019 ), Gruen et al. ( 2019 ) 
constructed a simple model for the ICL observed around redMaPPer 
clusters in DES. This model extrapolates from the measurement of 
Zhang et al. ( 2019 ) in terms of cluster mass using the self-similarity of 
the profiles, and also in terms of cluster redshift by assuming a simple 
passi vely e volving stellar population within the ICL. We note that this 
latter assumption is closely related to the formation history and age 
of the ICL, which is poorly constrained from current observational 
studies due to the difficulty of high redshift observations. Thus, in 
case of a late-forming ICL, the abo v e e xtrapolation o v erestimates 
the total light contained in it at early times. Furthermore, the model 
neglects the mild radius dependent colour gradient in the ICL, where 
the outer ranges are slightly bluer. 

In the following, we adopt the ICL model of Gruen et al. ( 2019 ). As 
a simplification we assume that the colours of the ICL are identical 
to the mean colours of BCGs at that redshift and cluster richness 
sample. The ICL component extends to large radii as an approximate 
power-law surface density light profile, while the ngmix BCG light 
model is dominant in the inner regions. Because of their o v erlap, 
these components cannot be directly added to each other. Therefore, 
we define a tapered ICL model where the tapering scale is set by the 
size of the BCG component θS = √ 

T BCG , where T BCG is taken from 
the DES Y3 MOF photometry catalogue and is defined the same 

Figure 13. Synthetic centre of a mock galaxy cluster without (left) and with 
the intracluster light model applied (right). Real galaxy clusters host a large 
fraction of their stellar light in the form of ICL, which the simple BCG only 
light model cannot reproduce. This is seen in Figs 3 and 14 . 
way as the size parameter listed in Table A1 . To ensure the smooth 
joining of the BCG and ICL components we define the total light 
profile model as 
µ( θ ) = µBCG ( θ ) + (1 − 1 

1 + e 2( θ−θS ) 
)

µICL ( θ ) . (25) 
An illustration of this joint BCG + ICL light profile in the mock 
cluster images is shown on Fig. 13 . The two panels show an identical 
set of mock galaxies for a synthetic cluster corresponding to the 
cluster bin with λ ∈ [45; 60) and z ∈ [0 . 3; 0 . 35); ho we ver, the left- 
hand panel shows only the ngmix galaxy models, while the right- 
hand panel also shows the ICL component added. 
5.4 Sur v ey-lik e images 
Simulated galaxy images are the bedrock of estimating the per- 
formance of weak lensing methods, and therefore they were the 
topic of e xtensiv e study in the literature (Massey et al. 2007 ; Bridle 
et al. 2009 ; Mandelbaum et al. 2015 ; Jarvis et al. 2016 ; Samuroff 
et al. 2018 ; Zuntz et al. 2018 ). In the following, we make use of a 
simplified version of the image simulation pipeline developed for the 
Y3 analysis of DES (MacCrann et al. 2021 ). 

The construction starts with a catalogue of photometric objects 
which will inhabit the mock image. For this study, this catalogue 
contains the parameters of the ngmix bdf light distribution model 
for each entry that are pixel position in the image, shape ( g 1 ; g 2 ), 
size T , bulge / disc flux fraction, and fluxes in g , r , i , z bands. 
This catalogue corresponds to a random realization of a mock line- 
of-sight constructed according to Sections 5.1 and 5.2. Finally, the 
central galaxy is added as defined in Section 5.3. At this stage, stars 
and foreground objects can be added according to their density at 
the targeted galactic latitude. In the present pathfinder study, these 
are drawn from the population of stars excluded in Section 3.2. 
Furthermore, we only consider a simplified scenario and add a 
stellar sample drawn from the deep-field catalogue according to their 
relative density in the deep-field footprints. 

Synthetic images are created via a customized version of the DES 
Y3 image simulation pipeline (MacCrann et al. 2021 ), which renders 
images based on a galaxy image simulation package GalSim (Rowe 
et al. 2015 ), while using an extension package for the ngmix bdf 
light profile model used in the actual DES Y3 deep-field analysis. 12 
This model describes the galaxies as a combination of two terms: 
12 https:// github.com/esheldon/ ngmix , the ngmix.gmix.GmixBDF model. 
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4880 T. N. Varga et al. 
an exponential light profile (disc) and a de Vaucouleurs (bulge) light 
profile. Given that most galaxies in a DES-like surv e y are poorly 
resolved, an additional constraint is enforced by setting the ef fecti ve 
radius of both light profile components to be identical. 

In the following, we consider a simplified set-up of the obser- 
vational scenario of DES where we directly simulate the so-called 
co-added surv e y images. Under real circumstances due to variations 
in observing conditions and the point spread function (PSF) between 
exposures the net PSF in co-added images is difficult to model, thus 
the DES shape estimation pipeline itself takes single exposure images 
as input. In a simulation such variations can be factored out, which 
allows us to simplify the simulation setup into deeper mock co-added 
images with well-behaved PSFs. 

The synthetic co-added images are constructed the following way: 
(i) The image canvas is defined with its desired dimensions and 

pixel scale, in the case of DES, 0.27 arcsec/pixel. The canvas is 
defined as a 10k ×10k pixel rectangle. 

(ii) For each object a small cutout image (postage stamp) is 
constructed. The light model is defined using ngmix , convolved 
with a representation of the mock PSF, then rendered into a postage 
stamp. We model the PSF as a Gaussian with a full-width half- 
maximum (FWHM) of 0.9 arcsec, which is roughly equal to the 
median DES observing condition (Sevilla-Noarbe et al. 2020 ). 

(iii) After the creation of all postage stamps, they are added on to 
the main canvas at their intended pixel positions. 

(iv) A noise map is applied to the image. In this study, we take the 
noise properties of a randomly selected DES tile (DES2122 + 0209) 
and apply Gaussian noise matched to reproduce the median flux of 
the unmasked regions of the reference tile in the chosen observational 
band. Choosing the noise level for synthetic images is not straightfor- 
ward, as a substantial amount of light which is traditionally attributed 
to noise in fact originates from undetected faint stars and galaxies 
(Hoekstra et al. 2017 ; Euclid Collaboration 2019 ; Eckert et al. 2020 ). 
In the framework of the present analysis, many of these undetected 
sources are explicitly part of the rendered objects, therefore as a 
rough approximation we reduce the background noise variance by 
half for illustration purposes. 

(v) Finally, the tapered ICL model defined according to Section 5.3 
is e v aluated for the pixel positions of the mock image and the 
additional light component is added on to the synthetic observation. 
We assume that the ICL has the same ellipticity and major axis 
direction alignment as the central galaxy. 

The result of this recipe is illustrated on Fig. 3 where a gri -band 
colour composite image is shown for synthetic clusters side by side 
with redMaPPer clusters with similar observable parameters. While 
the synthetic images do contain an approximate stellar population 
based on faint stars observed in the Deep Fields, very bright stars 
that need to be masked are not currently reproduced in the mock 
observ ations. Furthermore, lo w redshift foreground objects such as 
galaxies with visible disc and spiral arm features are not contained in 
the scope of the present analysis. In addition to the colour composite 
images, Fig. 3 also illustrates the composition of the lines of sight. 
The third row of each figure shows the brightness distribution of the 
cluster component with brown/red symbols, and the foreground and 
background component with blue symbols. The shade and size of the 
symbols indicate the brightness with fainter objects shown as smaller 
markers. Many of the faint objects are barely or not at all discernible 
on the composite images. Yet these unresolved sources influence 
the performance of photometric methods (Hoekstra et al. 2017 ; 
Euclid Collaboration 2019 ; Everett et al. 2020 ). The bottom row 
of each figure shows the exaggerated gravitational shear imprinted 

on background sources (the ellipticities are increased by a factor 
of 20). The background sources are shown in as darker colour for 
low redshift and lighter colour for high redshifts. Cluster members 
are shown in black symbols, while foreground objects are shown in 
green. The different brightness values are indicated by the different 
marker sizes. 

While the galaxy populations of the λ ∈ [30; 45) and λ ∈ [45; 60) 
bins are found to be close in terms of their galaxy surface density pro- 
files, clusters show greater differences between the different redshift 
ranges. This is illustrated by Fig. 14 , which shows synthetic galaxy 
clusters with λ ∈ [45; 60) in the z ∈ [0 . 3; 0 . 35), z ∈ [0 . 45; 0 . 5) and 
z ∈ [0 . 6; 0 . 65) cluster samples. These colour composite images show 
a striking illustration of the changes in the visible properties of galaxy 
clusters across cosmic time. 
6  SUMMARY  A N D  C O N C L U S I O N S  
6.1 Method o v er view 
We present a pathfinder study to generate synthetic galaxy clusters 
and cluster observations in an unsupervised way from a combination 
of observational data taken by the Dark Energy Surv e y up to its third 
year of observations (DES Y3). Example realizations of synthetic 
galaxy cluster observations are shown on Figs 3 and 14 . Galaxy 
clusters present a unique challenge for validating weak lensing 
measurements due to the increased blending among light sources, 
the presence of the intra-cluster light (ICL), and the characteristically 
stronger shear imprinted on source galaxies. The aim of these 
synthetic observations is to enable future studies to address the 
abo v e factors by calibrating and validating the performance of galaxy 
cluster weak lensing in an end-to-end fashion from photometry, 
through shear and photometric redshift measurement and calibration 
to mass reco v ery from lensing profiles or lensing maps in a fully 
controlled environment. The focus of this paper is to introduce 
the statistical learning algorithm itself and to demonstrate a pilot 
implementation for DES Y3 data. This consists of the following 
steps: 

(i) We measure the galaxy content of redMaPPer galaxy clusters 
and their sky environments in projection, as a function of cluster 
richness and redshift (Section 3.2). 

(ii) De velop and v alidate a KDE frame work for representing 
galaxy distributions as high-dimensional probability density func- 
tions of photometric and morphological features Section 3.3). This 
KDE generalizes the finite set of galaxy and cluster observations into 
a continuous model, and provides a numerically efficient, extendable 
framework for accommodating potential new galaxy features from 
external data. 

(iii) Derive a mathematical formalism to combine wide-field and 
deep-field surv e y data, augmenting and e xtrapolating our model 
beyond the depth and scope of the wide-field data (Section 3.5). 

(iv) Create a model for the cluster member galaxy content of 
redMaPPer clusters via statistical background subtraction in a mul- 
tidimensional feature space (Section 3.6). 

(v) Through a series of comparisons between the properties of 
observed and modeled galaxies drawn from the KDE, we demon- 
strate an excellent agreement in terms of real and synthetic galaxy 
catalogs of cluster lines of sight (Section 4). We note that this reflects 
primarily on the performance of the input catalogues used in creating 
the synthetic observations. A detailed analysis of the agreement 
between real data and the photometry derived from the synthetic 
images is delegated for future work. Corrections for the potential 
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Synthetic galaxy clusters based on DES Y3 4881 

Figure 14. Synthetic galaxy clusters corresponding to redMaPPer clusters with λ ∈ [45; 60) across the different redshift ranges. 
incompleteness of synthetic images can be addressed as a prior for 
equation (12). 

(vi) Combine the abo v e steps into an algorithm constructing and 
rendering new realizations of mock galaxy clusters into synthetic 
images (Section 5). 

This work addresses four distinct problems arising with simulated 
data: 

A The method does not rely on numerical simulations of baryonic 
structure formation and galaxy evolution to construct galaxy clusters 
and thus it is independent from assumptions and approximations 
inherent in cosmological simulations. 

B Synthetic galaxy clusters are generated to match their observed 
galaxy content in DES Y3. Extrapolations of the galaxy populations 
are performed where necessary, based on observational data. 

C The algorithm is formulated as a transparent, explicit recipe. 
Therefore, the different components can be readily modified where 

necessary and external information (e.g. survey incompleteness 
corrections, priors on cluster galaxy properties) can be added in 
a principled way. 

D Via the statistical learning approach, new, statistically inde- 
pendent realizations of synthetic galaxy cluster observations can be 
created at minimal computational cost. 

Finally, the generative cluster galaxy model encapsulates the 
properties of cluster member galaxies in DES Y3 observations, and 
thus can be used as a validation or augmentation data set for the 
results of numerical galaxy cluster simulations. 
6.2 Future outlook 
Due to the inherent complexity and scope of a full cluster weak 
lensing systematics control analysis, the o v erall effort is divided into 
multiple stages, of which this paper presents the initial step, and 
defines the framework for a data dri ven, customizable, generati ve 
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cluster model. Upcoming studies will focus on integrating the 
synthetic cluster image generation into the weak lensing analysis 
pipeline of DES, and following that will perform a direct end-to-end 
calibration for cluster lensing systematics. Since the synthetic cluster 
images mimic the observational setting of the real surv e y, applying 
standard surv e y data processing pipelines is e xpected to require only 
minor adaptations in analysis choices, and will provide the same data 
products as the real measurement. Of particular interest will be the 
quantification of detection efficiency in the crowded environments 
near cluster centres, and the impact of ICL and blending on the 
photometry solutions. These systematics propagate to photometric 
redshift errors, which we will be able to directly quantify . Similarly , 
running shear measurement pipelines on the synthetic images will 
allow a direct measurement on any additive or multiplicative shear 
bias caused by the presence of the ICL and cluster member galaxies. 
The primary outcome of the abo v e steps will be to quantify the scale 
dependent shear and photometric redshift bias induced by galaxy 
clusters, as a function of their observable features (e.g. redshift, 
richness, or other mass proxy). Due to the modular nature of the 
recipe for generating galaxy clusters, various ingredients (e.g. ICL; 
cluster member morphology) can be turned off for parts of the 
analysis, allowing to also constrain their specific impact on shear and 
photo- z bias. Such correction profiles are already used in literature 
to account for cluster member contamination, and can be propagated 
to the mass-observable during the likelihood analysis (McClintock 
et al. 2019 ). 

The planned analysis will be made possible in two distinct 
configurations. While the use-case described in this paper focuses 
on full line-of-sight image simulations, cluster-only images can also 
be straightforwardly generated to allow for mock image injections 
into the real surv e y observations in a manner similar to Everett et al. 
( 2020 ). 

A further future direction is increasing the realism and plausibility 
of the generative galaxy cluster model. The presented implemen- 
tation aims to reproduce the stacked observational scenario, while 
using only those data sets available within DES. Nevertheless, our 
framework is designed to allow easy augmentation with external data, 
such as numerical cosmological simulations of galaxy clusters (e.g. 
Magneticum, Dolag et al. in preparation; or illustrisTNG, Nelson 
et al. 2019 ), while ensuring that the final cluster model remains 
consistent with observations. These augmentations w ould tak e the 
form of replacing the p prop taken from the DES deep fields with the 
appropriate KDE model from the chosen external data. By using 
a proposal distribution already informed by the feature PDF of 
real cluster members, that information will be propagated to the 
generative cluster model. 

Deviations from the mean stacked line-of-sight model can be 
implemented by allowing the BCG and ICL properties, and the 
mass model to be also drawn from distributions, rather than 
being fixed to the mean value for each stack. Given a model 
for intrinsic or correlated scatter between BCG, member galaxy 
properties or the mass model, a further layer of rejection sampling 
can be added in Section 5. In that additional layer, from many 
realizations of galaxy cluster catalogs, subsets can be filtered 
out which reproduce the desired intrinsic or correlated scatter. 
Furthermore, in case there is access to a preferential direction in 
individual clusters (e.g. miscentering offset from multi-wavelength 
centroids, or cluster ellipticity major axis direction), that can be 
incorporated by replacing the scalar R in the formalism with a 
2D relative position + R = ( R 1 , R 2 ), augmenting the default circular 
symmetry of the cluster model. The presented KDE framework 
is designed anticipating such extension features; therefore, their 

incorporation to the generative cluster model is expected to be 
straightforward. 

While this work was done in preparation of a cluster weak lensing 
analysis using the DES Y3 data, owing to the transparent and modular 
nature of the presented recipe it is expected that the algorithm can 
be fitted to other similar weak lensing surv e ys with minimal effort. 
Given their great statistical power, current (DES; The Dark Energy 
Surv e y Collaboration 2005 ; KiDS, de Jong et al. 2013 ; HSC, Aihara 
et al. 2018 ) and upcoming (Rubin Observatory, Ivezi ́c et al. 2019 ; 
Euclid, Laureijs et al. 2011 ; Roman Space Telescope, Spergel et al. 
2015 ) weak lensing surv e ys are increasingly dominated by systematic 
uncertainties. For this reason, calibration and validation tools such 
as the one presented in this study will be indispensable in exploiting 
the cosmological and astrophysical information made accessible by 
large area sky surveys. 
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APPENDI X:  DATA  SELECTI ON  
The wide-field galaxy sample used in this study for the statistical 
modeling (Section 3) is obtained from the DES Y3 GOLD galaxy 
catalogue (Sevilla-Noarbe et al. 2020 ), using the criteria listed in 
Table A2 . The full list of galaxy features used in this study are listed 
in Table A1 along with their relation to the DES Y3 data products 
produced by Sevilla-Noarbe et al. ( 2020 ) and Hartley et al. ( 2021 ), 
corresponding to the wide-field and deep-field features, respectively. 
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Table A1. Features and their definitions from the column of the rele v ant photometric catalogues. Deep field features: DES Y3 deep and supernova fields (Hartley 
et al. 2021 ) for further explanation, see Section 2.3. Wide-field features: DES Y3 GOLD (Sevilla-Noarbe et al. 2020 ), for further explanation see Section 2.1. 
Feature Catalogue parameter Description 
Deep-field features 
m bdf mag dered 3 i -band MOF magnitude with photometric correction 
c bdf mag dered 2 - bdf mag dered 1 g − r MOF colour with photometric correction 

bdf mag dered 3 - bdf mag dered 2 r − i MOF colour with photometric correction 
bdf mag dered 4 - bdf mag dered 3 i − z MOF colour with photometric correction 

s sqrt( bdf g 0 2 + bdf g 1 2 ) absolute MOF ellipticity | e | 
FRACDEV bulge / disc flux fraction at fixed component size 
log 10 (1 + bdf T ) MOF size squared in arcsec 2 T = < x 2 > + < y 2 > 

z g z mc ugrizJHK -band based photo-z estimate from EAZY 
Wide-field features 
R log 10 √ 

( RA − ra ref ) 2 + ( DEC − dec ref ) 2 log 10 projected separation in arcmin from reference point 
m MOF CM MAG CORRECTED I i -band MOF magnitude with photometric correction 
c MOF CM MAG CORRECTED G - MOF CM MAG CORRECTED R g − r MOF colour with photometric correction 

MOF CM MAG CORRECTED R - MOF CM MAG CORRECTED I r − i MOF colour with photometric correction 
MOF CM MAG CORRECTED I - MOF CM MAG CORRECTED Z i − z MOF colour with photometric correction 

Table A2. Y3A2 GOLD catalogue query cuts used in obtaining the surv e y data from the DES Data Management 
System (DESDM; Mohr et al. 2008 ). 
Y3A2 GOLD column Value Description 
FLAGS FOOTPRINT 1 Restricts catalog to fiducial surv e y footprint 
FLAGS FOREGROUND 0 Excludes regions masked due to foreground objects 
bitand(FLAGS GOLD, 122) 0 Photometric processing failure exclusion based on SOF 
EXTENDED CLASS SOF 3 High purity galaxy sample based on SOF model 
Table A3. Properties of the mean BCG across the different cluster richness and redshift bins. For each BCG the 
bulge (de Vaucouleurs) fraction is set to unity. The T BCG parameter is the ef fecti ve area of the galaxy corresponding 
to the SOF size squared in arcsec 2 T = < x 2 > + < y 2 > . 
z ∈ λ ∈ 〈 i 〉 〈 g − r 〉 〈 r − i 〉 〈 i − z〉 〈 T BCG 〉 (arcsec 2 ) 〈| g |〉 
[0 . 3; 0 . 35) [30; 45) 17 .76 1 .36 0 .54 0 .32 28 .90 0 .14 
[0 . 3; 0 . 35) [45; 60) 17 .62 1 .38 0 .54 0 .31 33 .20 0 .14 
[0 . 45; 0 . 5) [30; 45) 18 .58 1 .85 0 .70 0 .37 21 .92 0 .15 
[0 . 45; 0 . 5) [45; 60) 18 .50 1 .85 0 .71 0 .37 28 .43 0 .14 
[0 . 6; 0 . 65) [30; 45) 19 .36 1 .83 1 .01 0 .44 16 .90 0 .17 
[0 . 6; 0 . 65) [35; 60) 19 .18 1 .83 1 .02 0 .45 22 .44 0 .16 

The mean photometric and morphological parameters of redMaPPer 
BCGs are listed in Table A3 . These are obtained by matching the 
galaxy properties of the Y3 GOLD catalogue with the catalogue of 
redMaPPer central galaxies based on the COADD OBJECT ID . 
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