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Abstract

The integrable focusing nonlinear Schrödinger equation admits soliton solutions whose associated spec-
tral data consist of a single pair of conjugate poles of arbitrary order. We study families of such multiple-pole 
solitons generated by Darboux transformations as the pole order tends to infinity. We show that in an appro-
priate scaling, there are four regions in the space-time plane where solutions display qualitatively distinct 
behaviors: an exponential-decay region, an algebraic-decay region, a non-oscillatory region, and an oscil-
latory region. Using the nonlinear steepest-descent method for analyzing Riemann-Hilbert problems, we 
compute the leading-order asymptotic behavior in the algebraic-decay, non-oscillatory, and oscillatory re-
gions.
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1. Introduction

The one-dimensional focusing cubic nonlinear Schrödinger (NLS) equation

iψt + 1

2
ψxx + |ψ |2ψ = 0, x, t ∈ R, (1)

is well known to be a completely integrable equation admitting solitons, i.e. localized traveling-
wave solutions. Each initial datum from an appropriate function space (Schwartz space is suffi-
cient for our needs) is associated with a set of scattering data, consisting of poles and norming 
constants encoding solitons, as well as a reflection coefficient encoding radiation. The scattering 
data for a standard soliton consist of a complex-conjugate pair of first-order poles (and an asso-
ciated norming constant) and an identically zero reflection coefficient. However, for any n ∈Z+, 
the NLS equation also has solutions whose scattering data consist of a complex-conjugate pair of 
poles order n (plus n auxiliary parameters that are higher-order analogues of norming constants) 
and no reflection. These mulitple-pole solitons (n ≥ 2) have very different qualitative behavior 
than standard solitons. At sufficiently large time scales, the nth-order pole soliton resembles n
solitons approaching each other, interacting, and then separating again. This complicated in-
teraction displays a remarkable degree of structure at different scales as n increases. These 
distinguished scales include:

The near-field limit The scaling X := nx, T := n2t is appropriate for studying the rogue-wave-
type behavior near the origin. Here the key feature is a single peak with amplitude of order n. 
Locally the solution satisfies for each fixed T a certain differential equation in the Painlevé-III 
hierarchy. This regime was analyzed by two of the authors in [1], the first large-n analysis of 
nth-order pole solitons. The asymptotic solution seems to be a type of universal behavior, also 
appearing in the study of high-order Peregrine breathers for the NLS equation with constant, 
non-zero boundary conditions [2].

The far-field limit Define

χ := x

n
, τ := t

n
. (2)

As the pole order n → ∞, then the (χ , τ )-plane can be partitioned into n-independent regions in 
which the multiple-pole soliton has distinct behaviors, such as rapid oscillations of frequency n
or decay to zero. This scaling was previously studied in [1] and is the focus of the current work.

The long-time limit If x and t are unscaled, then as t → ±∞ the nth-order pole soliton asymp-
totically resembles a train of n distinct one-solitons. Asymptotics as t → ±∞ were obtained by 
Olmedilla in [14] for nth-order pole solitons for fixed order n = 2 and n = 3 by solving Gel’fand-
Levitan-Marchenko equations with an appropriate kernel and arriving at a representation for the 
nth-order pole soliton that involves determinants of size n via Cramer’s rule. Large-t asymptotics 
for multiple-pole solutions of arbitrary but finite and fixed order n were obtained by Schiebold 
in [18] using the earlier algebraic results [16] by the same author.

The generic nth-order pole soliton depends on a complex parameter ξ (the spectral pole in the 
upper half-plane) and n constant nonzero row vectors (d1,j , d2,j ) ∈ C2, j = 1, ..., n (higher-
order analogues of the norming constants). This function can be constructed via n iterated 
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Fig. 1. The far-field scaling. Plots of |ψ [2n](nχ, nτ ; (1, 3), i)| for −3.5 ≤ χ ≤ 3.5 and −2.5 ≤ τ ≤ 2.5, where 
ψ [2n](nχ, nτ ; (1, 3), i) is a multiple-pole soliton solution of the nonlinear Schrödinger equation (1). In each plot c1 = 1, 
c2 = 3, and ξ = i. Left: n = 2, Center: n = 4. Right: n = 8.

Darboux transformations as described in [1, §2]. Working directly with a Riemann-Hilbert prob-
lem characterization in the context of the robust inverse-scattering transform framework provides 
fundamental eigenfunction matrices that are analytic at ξ after each iteration by encoding the 
effect of the Darboux transformation in the form of a jump condition instead of a singularity 
in the spectral plane. In order to obtain well-defined limits as n → ∞, we first fix nonzero 
complex numbers c1 and c2 and set c := (c1, c2) ∈ (C∗)2 (here C∗ := C \ {0}). We then take 
(d1,j , d2,j ) := (ε−1c1, ε−1c2) for j = 1, ..., n and take the limit ε → 0+. See Fig. 1 for plots of 
representative multiple-pole solitons in the far-field scaling. This construction procedure is given 
in Appendix A for completeness of our work, and it yields a representation of these multiple-pole 
solitons ψ [2n](x, t; c, ξ) given in Riemann-Hilbert Problem 1 below, which is convenient for our 
purposes of asymptotic analysis.

A related avenue of research pioneered by the work of Gesztesy, Karwowski, and Zhao in [10]
is the so-called countable superposition of solitons. The authors considered a sequence of dis-
tinct eigenvalues {−κ2

j }∞j=1 along with associated norming constants {cj }∞j=1 and zero reflection 

coefficient for the Schrödinger operator. For each finite N ∈ N , the scattering data {κj , cj }Nj=1
defines a reflectionless N -soliton solution VN(x, t) of the Korteweg-de Vries equation. Under 
certain summability and growth conditions on {κj , cj } as N → +∞, the authors established a 
limiting solution V∞(x, t) of the Korteweg-de Vries equation that is reflectionless, global, and 
smooth. The study of countable superposition of solitons was extended to the focusing NLS equa-
tion (1) later by Schiebold in [15] and [17] for a sequence of distinct eigenvalues {λj }∞j=1 of the 
Zakharov-Shabat problem in the upper half-plane along with the associated norming constants 
again subject to appropriate growth conditions. Drawing a comparison, the solutions we study 
can be thought of as a countable superposition as n → +∞ over N , albeit with λj ≡ ξ for all
j ∈ N . Due to the repeated choice of the exceptional points λj , however, the family of solutions 
we study fall outside of the classes studied in these works. Indeed, following the proof of [1, 
Lemma 1], it is easy to see that ψ [2n](0, 0; c, ξ) = 8	(ξ)c1c

∗
2 |c|−2n, and hence the amplitudes 

of the solutions ψ [2n](x, t; c, ξ) explode as n → +∞. Therefore, there is not a limiting profile in 
the unscaled (x, t)-plane as n → +∞, contrary to the case in [10,15,17]. On the other hand, for 
each n ∈N , ψ [2n](x, t; c, ξ) defines a global classical solution (in fact, real-analytic in (x, t)) of 
the focusing NLS equation (1). This is a consequence of analytic Fredholm theory applied to the 
Riemann-Hilbert Problem 1, which has analytic dependence on (x, t) with a compact jump con-
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Fig. 2. The boundaries of the far-field regions. Left: The algebraic-decay, exponential-decay, non-oscillatory, and oscil-
latory regions (denoted by A, E, N, and O, respectively), along with the various boundary curves for ξ = i. Right: The 
boundary curves superimposed on |ψ [2n](nχ, nτ ; (1, 3), i)| with c1 = 1, c2 = 3, and ξ = i for −3.5 ≤ χ ≤ 3.5 and 
−2.5 ≤ τ ≤ 2.5.

tour (see [2, Proposition 3] for details). Regularity properties of these solutions for fixed n ∈ N
were also recently established using determinant representations [19].

In the present work we show that in the far-field scaling ψ [2n](nχ, nτ ; c, ξ) has four qual-
itatively different behaviors depending on the values of χ and τ , and we give the leading-
order large-n asymptotic behavior for all χ and τ off the boundary curves. As n → ∞, 
ψ [2n](nχ, nτ ; c, ξ) exhibits the following four behaviors:

The exponential-decay region In this region the solution decays exponentially fast to zero as 
n → ∞. This was proven in [1]. In the Riemann-Hilbert analysis the model problem has no 
bands (indicating no order-one contributions) and no parametrices (indicating no algebraically 
decaying contributions).

The algebraic-decay region Here the leading-order solution decays as n−1/2 and is given ex-
plicitly in terms of elementary functions. The Riemann-Hilbert model problem consists of no 
bands and two parabolic-cylinder parametrices giving the leading-order contribution to the solu-
tion.

The non-oscillatory region In this region the leading-order solution is independent of n and can 
be written explicitly up to the solution of a septic equation. The model Riemann-Hilbert problem 
has a single band.

The oscillatory region In the final region the solution exhibits rapid oscillations with frequency 
of order n within an amplitude envelope of order one. The leading-order behavior is written in 
terms of genus-one Riemann-theta functions. The corresponding Riemann-Hilbert model prob-
lem has two bands.

The four far-field regions depend on ξ but are independent of c. The regions are illustrated for 
ξ = i in Fig. 2.

1.1. The far-field regions

In order to give our exact results we start by defining the region boundaries. We write ξ =
α + iβ , α ∈R, β > 0.
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Definition of the boundaries of the algebraic-decay region Define

ϕ(λ;χ, τ ; ξ) := i(λχ + λ2τ) + log

(
λ − ξ∗

λ − ξ

)
. (3)

This is the controlling phase function in the exponential-decay and algebraic-decay regions. The 
critical points of ϕ(λ) satisfy

2τ(λ − α)3 + (χ + 2ατ)(λ − α)2 + 2β2τ(λ − α) + (β2χ − 2β + 2αβ2τ) = 0. (4)

First, set τ = 0 and 0 < χ < 2
β

. Then ϕ(λ) has two real distinct critical points λ(1) and λ(2), 

where we choose λ(1) < λ(2) (the third critical point is at infinity). See Fig. 7. The algebraic-
decay region (with χ > 0) consists of those χ and τ values that can be reached by continuously 
varying χ and τ with no two critical points coinciding. In this region if τ 
= 0 then ϕ(λ) has three 
distinct real critical points, which we label λ(0) < λ(1) < λ(2) if τ > 0 and λ(1) < λ(2) < λ(0) if 
τ < 0. The region is bounded by the locus of points in the (χ , τ )-plane satisfying

(16α4β + 32α2β3 + 16β5)τ 4 + (32α3βχ − 16α3 + 32αβ3χ − 144αβ2)τ 3

+ (24α2βχ2 − 24α2χ + 8β3χ2 − 72β2χ + 108β)τ 2 + (8αβχ3 − 12αχ2)τ + (βχ4 − 2χ3)

= 0.

(5)

For real α and positive β , this algebraic curve consists of three arcs in the (χ , τ )-plane that 
intersect pairwise at the three points

P 0 := (0,0), P + :=
(

−3
√

3α + 9β

4β2 ,
3
√

3

8β2

)
, P − :=

(
3
√

3α + 9β

4β2 ,
−3

√
3

8β2

)
(6)

(each of these three points corresponds to λ(1) = λ(2) = λ(0)). The arc with endpoints P − and 

P + passes through the point 
(

2
β
,0
)

on the χ -axis and is denoted by LAE. This arc is a boundary 

between the algebraic-decay and the exponential-decay regions and corresponds to λ(1) = λ(2). 
The arc from P 0 to P + is denoted by L+

AN (and corresponds to λ(1) = λ(0)), while that from P 0

to P − is denoted by L−
AN (and corresponds to λ(2) = λ(0)). Both of these arcs form boundaries 

between the algebraic-decay region and the non-oscillatory region. Note that if ξ = i, the defining 
condition (5) for the boundary of the algebraic-decay region simplifies to

16τ 4 + (8χ2 − 72χ + 108)τ 2 + (χ4 − 2χ3) = 0. (7)

Definition of the exponential-decay / oscillatory boundary We now define L±
EO, the boundaries 

between the exponential-decay and oscillatory regions when χ > 0. Set τ = 0 and choose χ > 2
β

. 
Then ϕ(λ) has a complex-conjugate pair of critical points λ+ and λ−, where we choose λ+ to 
be in the upper half-plane. See Fig. 6. Here we have that �(ϕ(λ±)) 
= 0. The exponential-decay 
region consists of those (χ, τ) pairs we can reach by continuously varying χ and τ such that no 
two critical points coincide and such that the level lines �(ϕ(λ)) = 0 never intersect either of the 
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two critical points with nonzero imaginary part (which we continue to label as λ±). In this region 
if τ 
= 0 then there is a third finite critical point which is real and that we label as λ(0). The curve 
LAE corresponds to λ+ = λ−. The curve L+

EO (respectively, L−
EO) is defined as those points with 

τ > 0 (respectively, τ < 0) such that �(ϕ(λ+)) = �(ϕ(λ−)) = 0. Both L+
EO and L−

EO are simple, 
semi-infinite curves with endpoints P + and P −, respectively.

Definition of the oscillatory / non-oscillatory boundary Finally, we define L+
NO, the boundary 

between the oscillatory and non-oscillatory regions when τ > 0. Given a complex number a =
a(χ, τ), define

R(λ) ≡ R(λ;χ, τ) := ((λ − a(χ, τ))(λ − a(χ, τ)∗))1/2 (8)

with asymptotic behavior R(λ) = λ + O(1) as λ → ∞ and branch cut from a∗ to a (we will 
completely specify the branch cut momentarily). Set

g′(λ) := R(λ)

R(ξ∗)(ξ∗ − λ)
− R(λ)

R(ξ)(ξ − λ)
− 2iτR(λ) + iχ + 2iτλ + 1

λ − ξ∗ − 1

λ − ξ
. (9)

Then a(χ, τ) is chosen so that g′(λ) = O(λ−2) as λ → ∞. The function ϕ′(λ) − g′(ϕ) (which 
will turn out to be the derivative of the controlling phase function in the non-oscillatory region) 
has two real zeros if (χ, τ) ∈ L+

AN. One zero is simple (corresponding to λ(2) from the algebraic-
decay region) and one zero is double (corresponding to λ(0) = λ(1) from the algebraic-decay 
region). See Fig. 9. Keeping χ fixed and increasing τ , the double zero splits into one real zero 
(denoted by λ(1)) and two square-root branch points at a and a∗. The simple real zero persists 
and is again denoted by λ(2). See Fig. 11. We now choose the branch cut for R(λ) (and thus 
the cut for g′(λ) as well) to run from a∗ to λ(1) to a. As χ increases, the non-oscillatory region 
continues until the two real zeros coincide: λ(1) = λ(2). This is the condition for the contour LNO
separating the non-oscillatory and oscillatory regions.

The exponential-decay, algebraic-decay, non-oscillatory, and oscillatory regions are now de-
fined by these boundary curves as illustrated in Fig. 2.

1.2. Results

We now give our main results, the leading-order asymptotic behavior in each of the four 
regions. The symmetry properties of ψ [2n](x, t) stated in Proposition 1 allow us to restrict our 
analysis to the first quadrant of the (χ, τ) plane without loss of generality.

Theorem 1. (The exponential-decay region). Fix χ > 0 and τ ≥ 0 so that (χ, τ) is in the 
exponential-decay region. Then

ψ [2n](nχ,nτ) = O(e−δn), n → +∞, (10)

for some constant δ > 0.

Theorem 1 was proven in [1, §3].
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Theorem 2. (The algebraic-decay region). Fix χ > 0 and τ ≥ 0 so that (χ, τ) is in the algebraic-
decay region. Let λ(1), λ(2), and λ(0) be the real critical points of ϕ(λ) as defined in §1.1 with 
λ(0) < λ(1) < λ(2) if τ > 0 and λ(1) < λ(2) (and λ(0) = ∞) if τ = 0. Define

p := 1

2π
log

(
1 +

∣∣∣∣c2

c1

∣∣∣∣
2
)

and ν := arg

(
c2

c1

)
, (11)

where log(·) and arg(·) each have the principal branch. Also introduce

θ(λ;χ, τ) := −iϕ(λ;χ, τ) (12)

and

φ[n](χ, τ ) := p log(n) + 2p log
(
λ(2)(χ, τ ) − λ(1)(χ, τ )

)
+ π

4
+ p log(2) − arg(�(ip)), (13)

where �(·) is the standard gamma function. Then

ψ [2n](nχ,nτ) =
√

2p e−iν

n1/2

(
e−2inθ(λ(1);χ,τ)(−θ ′′(λ(1);χ, τ))−ip√−θ ′′(λ(1);χ, τ)

e−iφ[n](χ,τ)

+e−2inθ(λ(2);χ,τ)θ ′′(λ(2);χ, τ)ip√
θ ′′(λ(2);χ, τ)

eiφ[n](χ,τ)

)
+O(n−1), (14)

n → +∞.

Theorem 2 is proven in §2. Fig. 3 compares the exact solution to the leading-order behavior 
for various values of n.

Theorem 3. (The non-oscillatory region). Fix χ ≥ 0 and τ > 0 so that (χ, τ) is in the non-
oscillatory region. Recall that in this region R(λ) and g′(λ) are defined in (8) and (9), respec-
tively. Let a(χ, τ) be defined as before so that g′(λ) = O(λ−2) as λ → ∞, and define K(χ, τ)

by (110) and f (∞; χ, τ) by (122). Then

ψ [2n](nχ,nτ) = −i	(a(χ, τ ))e−2f (∞;χ,τ)e−2inK(χ,τ) +O
(

1

n1/2

)
, n → +∞. (15)

Theorem 3 is proven in §3. Fig. 4 compares the exact solution to the leading-order behavior 
for various values of n.

Theorem 4. (The oscillatory region). Fix χ ≥ 0 and τ > 0 so that (χ, τ) is in the oscillatory 
region. Define a ≡ a(χ, τ) and b ≡ b(χ, τ) by (140), F1 ≡ F1(χ, τ) by (166), F0 ≡ F0(χ, τ) by 
(167), A(λ) ≡ A(λ; χ, τ) by (171), B ≡ B(χ, τ) by (172), J ≡ J (χ, τ) by (177), U ≡ U(χ, τ)

by (178), and Q ≡ Q(χ, τ) by (187). Introduce the genus-one Riemann-theta function

�(λ) ≡ �(λ;B) :=
∑

ekλ+ 1
2 Bk2

. (16)

k∈Z
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Fig. 3. Convergence of the leading-order asymptotic approximation in the algebraic-decay region for ξ = i and c =
(1, 3) at τ = 1

10 . Solid black curves are for the exact solution ψ [2n](nχ, n 1
10 ; (1, 3), i) while dashed red curves are 

for the leading-order approximation given by Theorem 2. For this time slice the algebraic-decay region (with χ ≥ 0) is 
approximately 0.7756 < χ < 2.0050. Left-to-right: n = 2, n = 4, n = 8. Top-to-bottom: The absolute value, real part, and 
imaginary part. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Then

ψ [2n](nχ,nτ) = �(A(∞) − A(Q) − iπ − B
2 + F1U)�(A(∞) + A(Q) + iπ + B

2 )

�(A(∞) − A(Q) − iπ − B
2 )�(A(∞) + A(Q) + iπ + B

2 − F1U)

×i	(b − a)e−2F1J−2F0 +O
(

1

n

)
, n → +∞.

(17)

Theorem 4 is proven in §4. Fig. 5 compares the exact solution to the leading-order behavior 
for various values of n.

1.3. The far-field Riemann-Hilbert problem

We now introduce the basic Riemann-Hilbert problem used to define the multiple-pole soli-
tons we study. This representation was derived in [1] using the recently introduced robust inverse-
scattering transform [3].

Riemann-Hilbert Problem 1 (The unscaled Riemann-Hilbert problem). Fix a pole location ξ =
α + iβ ∈C+, a vector of connection coefficients c ≡ (c1, c2) ∈ (C∗)2, and a non-negative integer 
n. Define D0 ⊂ C to be a circular disk centered at the origin containing ξ in its interior. Let 
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Fig. 4. Convergence of the leading-order asymptotic approximation in the non-oscillatory region for ξ = i and c = (1, 3)

at τ = 3
√

3
8 . Solid black curves are for the exact solution ψ [2n](nχ, n 3

√
3

8 ; (1, 3), i) while dashed red curves are for the 
leading-order approximation given by Theorem 3. For this time slice the non-oscillatory region is exactly − 9

4 ≤ χ ≤ 9
4 . 

Left-to-right: n = 2, n = 4, n = 8. Top-to-bottom: The absolute value, real part, and imaginary part.

(x, t) ∈ R2 be arbitrary parameters. Find the unique 2 × 2 matrix-valued function M[n](λ; x, t)
with the following properties:

Analyticity: M[n](λ; x, t) is analytic for λ ∈ C \ ∂D0, and it takes continuous boundary 
values from the interior and exterior of ∂D0.
Jump condition: The boundary values on the jump contour ∂D0 (oriented clockwise) are 
related as

M[n]
+ (λ;x, t) = M[n]

− (λ;x, t)e−i(λx+λ2t)σ3S
(

λ − ξ

λ − ξ∗

)nσ3

S−1ei(λx+λ2t)σ3, λ ∈ ∂D0,

(18)
where

S ≡ S(c1, c2) := 1

|c|
[
c1 −c∗

2
c2 c∗

1

]
(19)

and σ3 is the third Pauli matrix

σ3 :=
[

1 0
0 −1

]
. (20)
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Fig. 5. Convergence of the leading-order asymptotic approximation in the oscillatory region for ξ = i and c = (1, 3) at 
τ = 2. Solid black curves are for the exact solution ψ [2n](nχ, n2; (1, 3), i) while dashed red curves are for the leading-
order approximation given by Theorem 4. For this time slice the oscillatory region is approximately −3.178 < χ < 3.178. 
Left-to-right: n = 2, n = 4, n = 8. Top-to-bottom: The absolute value, real part, and imaginary part.

Normalization: M[n](λ; x, t) = I +O(λ−1) as λ → ∞.

Given the solution M[n](λ; x, t), the function

ψ [2n](x, t; c, ξ) := 2i lim
λ→∞λ[M[n](λ;x, t; c, ξ)]12 (21)

is a 2nth-order pole soliton solution of (1). We first present the following elementary symmetry 
properties of multiple-pole solitons of order 2n.

Proposition 1. Let c = (c1, c2) ∈ C∗ and ξ = α + iβ with α ∈ R and β > 0 be given. The 
multiple-pole solitons ψ [2n](x, t; (c1, c2), ξ) enjoy the following symmetry properties:

ψ [2n](−x, t; (c1, c2), ξ) = ψ [2n](x, t; (−c∗
2,−c∗

1),−ξ∗), (22)

ψ [2n](x,−t; (c1, c2), ξ) = ψ [2n](x, t; (c∗
1, c∗

2),−ξ∗)∗. (23)

A proof of based on the uniqueness of solutions of Riemann-Hilbert Problem 1 is given in 
Appendix B.

We analyze Riemann-Hilbert Problem 1 in the large-n regime using the Deift-Zhou nonlinear 
steepest-descent method [9], which consists of making a series of invertible transformations in 
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order to arrive at a problem that can be approximated in the large-n limit. The first transformation 
introduces the far-field scaling while simplifying the form of the jump matrix. This Riemann-
Hilbert problem for N[n](λ) will be our starting point for analysis in each of the far-field regions. 
Define

N[n](λ;χ, τ) :=
{

M[n](λ;nχ,nτ)e−in(λχ+λ2τ)Sein(λχ+λ2τ), λ ∈ D0,

M[n](λ;nχ,nτ)
(

λ−ξ∗
λ−ξ

)nσ3
, λ /∈ D0.

(24)

As N[n](λ; χ, τ) is related to M[n](λ; nχ, nτ) outside D0 via multiplication on the right by a 
diagonal matrix that tends to the identity matrix as λ → ∞, the recovery formula remains un-
changed:

ψ [2n](nχ,nτ ; c, ξ) = 2i lim
λ→∞λ

[
N[n](λ;χ, τ ; c, ξ)

]
12

. (25)

Riemann-Hilbert Problem 2 (The far-field Riemann-Hilbert problem). Fix a pole location ξ =
α + iβ ∈C+, a vector of connection coefficients c ≡ (c1, c2) ∈ (C∗)2, and a non-negative integer 
n. Define D0 ⊂ C to be a circular disk centered at the origin containing ξ in its interior. Let 
(χ, τ) ∈ R2 be arbitrary parameters. Find the unique 2 × 2 matrix-valued function N[n](λ; χ, τ)

with the following properties:

Analyticity: N[n](λ; χ, τ) is analytic for λ ∈ C \ ∂D0, and it takes continuous boundary 
values from the interior and exterior of ∂D0.
Jump condition: The boundary values on the jump contour ∂D0 (oriented clockwise) are 
related as N[n]

+ (λ; χ, τ) = N[n]
− (λ; χ, τ)V[n]

N (λ; χ, τ), where

V[n]
N (λ;χ, τ) := e−nϕ(λ;χ,τ)σ3S−1enϕ(λ;χ,τ)σ3 . (26)

Normalization: N[n](λ; χ, τ) = I +O(λ−1) as λ → ∞.

With Proposition 1 at hand, we restrict our attention to the first quadrant of the (x, t)-plane, 
hence that of the (χ, τ)-plane, for the remainder of this paper.

2. The algebraic-decay region

Pick (χ, τ) in the algebraic-decay region. Our first objective is to understand the signature 
chart of �(ϕ(λ; χ, τ)).

Lemma 1. In the algebraic-decay region, there is a domain Dup in the upper half-plane with the 
following properties:

• Dup contains ξ , is bounded by curves along which �(ϕ(λ)) = 0, and abuts the real axis 
along a single interval (denoted (λ(1), λ(2))).

• �(ϕ(λ)) > 0 for all λ ∈ Dup.
• �(ϕ(λ)) < 0 for all λ in the upper half-plane in the complement of Dup but sufficiently close 

to Dup.
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Fig. 6. Signature charts of �(ϕ(λ; χ, τ)) for ξ = i in the exponential-decay region, along with the critical points λ+ and 
λ− (and, when it exists, λ(0)). Left: Positions in the (χ , τ )-plane relative to the boundary curves. Center: χ = 2.1, τ = 0. 
Right: χ = 2.3, τ = 0.6.

Similarly, there is a domain Ddown in the lower half-plane such that:

• Ddown contains ξ∗, is bounded by curves along which �(ϕ(λ)) = 0, and abuts the real axis 
along the same interval as D.

• �(ϕ(λ)) < 0 for all λ ∈ Ddown.
• �(ϕ(λ)) > 0 for all λ in the lower half-plane in the complement of Ddown but sufficiently 

close to Ddown.

Proof. It is instructive to compare with the signature chart in the exponential-decay region. In 
[1] it was proven that in the exponential-decay region there is a closed loop in the λ-plane sur-
rounding ξ on which �(ϕ(λ)) = 0. Inside this curve �(ϕ(λ)) > 0, while outside the curve for λ
sufficiently close to the curve �(ϕ(λ)) < 0. In the lower half-plane the signature chart is sym-
metric with the signs flipped. If τ = 0 there are two critical points λ+ and λ− that are complex 
conjugates; if τ 
= 0 there is an additional real critical point λ(0). See Fig. 6.

Passing from the exponential-decay region to the algebraic-decay region, the boundary curve 
LAE is marked by the condition λ+ = λ−. When these two critical points coincide they are real, 
and thus lie on a zero-level curve of �(ϕ(λ)). This means that the two closed curves surrounding 
ξ and ξ∗ along which �(ϕ(λ)) = 0 must intersect at λ+ = λ− for (χ, τ) on LAE. In the notation 
used in the algebraic-decay region the double critical point is λ(1) = λ(2). See the top right and 
bottom right panels in Fig. 7.

Now, as (χ, τ) moves into the algebraic-decay region from LAE, the double critical point 
splits into the two real critical points λ(1) and λ(2). By definition, no critical points coincide 
inside the algebraic-decay region. In particular, this means that in the algebraic-decay region 
there is a domain Dup in the upper half-plane that contains ξ , abuts the real axis along the interval 
(λ(1), λ(2)), and is bounded by curves along which �(ϕ(λ)) = 0. Furthermore, �(ϕ(λ)) > 0 for 
all λ ∈ Dup, and �(ϕ(λ)) < 0 for all λ in the upper half-plane sufficiently close to Dup. There is 
an analogous domain Ddown in the lower half-plane containing ξ∗ such that �(ϕ(λ)) < 0 for all 
λ ∈ Ddown, and �(ϕ(λ)) > 0 for all λ in the lower half-plane sufficiently close to Ddown. See the 
top middle and bottom middle panels in Fig. 7. �

Define the domain D to be the union of Dup, Ddown, and the interval (λ(1), λ(2)), so that ∂D is 
a simple Jordan curve passing through λ(1) and λ(2) along which �(ϕ(λ)) = 0. We write �up for 
the portion of ∂D in the upper half-plane and �down for the portion of ∂D in the lower half-plane. 
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Fig. 7. Signature charts of �(ϕ(λ; χ, τ)) for ξ = i in the algebraic-decay region, along with the critical points λ(1) and 
λ(2) (and, when it exists, λ(0)). Top left: χ = 1.2, τ ≈ 0.2023. Top middle: χ = 1.65, τ = 0.25. Top right: χ ≈ 2.03, 
τ = 0.25. Bottom left: Positions in the (χ , τ )-plane relative to the boundary curves. Bottom middle: χ = 1.65, τ = 0. 
Bottom right: χ = 2, τ = 0.

Fig. 8. The lenses and lens boundaries in the algebraic-decay region.

See Fig. 8. We are now ready to carry out our first Riemann-Hilbert transformation, which will 
deform the jump contour from ∂D0 to �up ∪ �down. Set

O[n](λ;χ, τ) :=

⎧⎪⎨
⎪⎩

N[n](λ;χ, τ)V[n]
N (λ;χ, τ), λ ∈ D0 ∩ Dc,

N[n](λ;χ, τ)V[n]
N (λ;χ, τ)−1, λ ∈ Dc

0 ∩ D,

N[n](λ;χ, τ), otherwise.

(27)
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Then, orienting �up ∪�down clockwise, the function O[n](λ) satisfies exactly the same Riemann-
Hilbert problem as N[n](λ) with ∂D0 replaced by �up ∪ �down. Note that the matrix S−1 has the 
following two factorizations:

S−1 =
[

1
c∗

2
c1

0 1

][ |c|
c1

0
0 c1|c|

][
1 0

− c2
c1

1

]
(use for λ ∈ �up),

S−1 =
[

1 0
− c2

c∗
1

1

][
c∗

1|c| 0

0 |c|
c∗

1

][
1

c∗
2

c∗
1

0 1

]
(use for λ ∈ �down).

(28)

Following the exponential-decay region analysis in [1], we define the following four contours:

• �out
up runs from λ(1) to λ(2) in the upper half-plane entirely in the region where �(ϕ(λ)) < 0.

• �in
up runs from λ(1) to λ(2) entirely in Dup (so �(ϕ(λ)) > 0), and can be deformed to �up

without passing through ξ .
• �out

down runs from λ(2) to λ(1) in the lower half-plane entirely in the region where �(ϕ(λ)) > 0.
• �in

down runs from λ(1) to λ(2) entirely in Ddown (so �(ϕ(λ)) < 0), and can be deformed to 
�down without passing through ξ∗.

We also write

�lens := �out
up ∪ �in

up ∪ �out
down ∪ �in

down and � := �up ∪ �down ∪ �lens. (29)

We next define the following four domains:

• Lout
up is the domain in the upper half-plane bounded by �out

up and ∂D.

• Lin
up is the domain in the upper half-plane bounded by �in

up and ∂D.
• Lout

down is the domain in the lower half-plane bounded by �out
down and ∂D.

• Lin
down is the domain in the lower half-plane bounded by �in

down and ∂D.

See Fig. 8.
Using these lenses, we make the change of variables

Q[n](λ;χ, τ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O[n](λ;χ, τ)

[
1

c∗
2

c1
e−2nϕ(λ;χ,τ)

0 1

]
, λ ∈ Lin

up,

O[n](λ;χ, τ)

[
1 0

− c2
c1

e2nϕ(λ;χ,τ) 1

]−1

, λ ∈ Lout
up ,

O[n](λ;χ, τ)

[
1 0

− c2
c∗

1
e2nϕ(λ;χ,τ) 1

]
, λ ∈ Lin

down,

O[n](λ;χ, τ)

[
1

c∗
2

c∗
1
e−2nϕ(λ;χ,τ)

0 1

]−1

, λ ∈ Lout
down,

O[n](λ;χ, τ), otherwise.

(30)
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Then Q[n](λ; χ, τ) is analytic for λ /∈ �, has the normalization Q[n](λ; χ, τ) = I + O
(
λ−1
)

as 
λ → ∞, and satisfies the jump condition Q[n]

+ (λ; χ, τ) = Q[n]
− (λ; χ, τ)V[n]

Q (λ; χ, τ) for λ ∈ �, 
where

V[n]
Q (λ;χ, τ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1

c∗
2

c1
e−2nϕ(λ;χ,τ)

0 1

]
, λ ∈ �in

up ,

[ |c|
c1

0

0 c1|c|

]
, λ ∈ �up ,

[
1 0

− c2
c1

e2nϕ(λ;χ,τ) 1

]
, λ ∈ �out

up ,

[
1 0

− c2
c∗

1
e2nϕ(λ;χ,τ) 1

]
, λ ∈ �in

down ,

⎡
⎣ c∗

1|c| 0

0 |c|
c∗

1

⎤
⎦ , λ ∈ �down ,

⎡
⎣1

c∗
2

c∗
1
e−2nϕ(λ;χ,τ)

0 1

⎤
⎦ , λ ∈ �out

down .

(31)

We perform the following sectionally analytic substitutions to eliminate the jump matrices sup-
ported on �up and �down at the expense of introducing a jump discontinuity across the interval

I := [λ(1), λ(2)] ⊂ R (32)

separating the regions Dξ and Dξ∗ :

R[n](λ;χ, τ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q[n](λ;χ, τ)

[ |c|
c1

0

0 c1|c|

]
, λ ∈ Dup \ �in

up ,

Q[n](λ;χ, τ)

⎡
⎣ c∗

1|c| 0

0 |c|
c∗

1

⎤
⎦ , λ ∈ Ddown \ �in

down ,

Q[n](λ;χ, τ), otherwise.

(33)

This substitution preserves the normalization R[n](λ) = I + O
(
λ−1
)

as λ → ∞ and R[n](λ) is 
analytic for λ /∈ � ∪ I . We orient I from λ(1) to λ(2). Then R[n](λ) satisfies the jump condition 
R[n]

+ (λ; χ, τ) = R[n]
− (λ; χ, τ)V[n]

(λ; χ, τ) for λ ∈ � ∪ I , where
R
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V[n]
R (λ;χ, τ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1

c1c
∗
2

|c|2 e−2nϕ(λ;χ,τ)

0 1

]
, λ ∈ �in

up ,

[
1 0

− c2
c1

e2nϕ(λ;χ,τ) 1

]
, λ ∈ �out

up ,

[
1 0

− c∗
1c2

|c|2 e2nϕ(λ;χ,τ) 1

]
, λ ∈ �in

down ,

[
1

c∗
2

c∗
1
e−2nϕ(λ;χ,τ)

0 1

]
, λ ∈ �out

down ,⎡
⎣ |c|2

|c1|2 0

0 |c1|2
|c|2

⎤
⎦ , λ ∈ I.

(34)

This piecewise analytic transformation also preserves the recovery formula

ψ [2n](nχ,nτ) = 2i lim
λ→∞λ[R[n](λ;χ, τ)]12. (35)

Some algebraic manipulations of the jump matrix are now in order. First, we recall θ(λ; χ, τ) :=
−iϕ(λ; χ, τ) from (12) and then note that the elements of the diagonal jump matrix supported 
on I satisfy

|c|2
|c1|2 = 1 +

∣∣∣∣c2

c1

∣∣∣∣
2

= e2πp, p := 1

2π
log

(
1 +

∣∣∣∣c2

c1

∣∣∣∣
2
)

> 0. (36)

Now, set

κ :=
∣∣∣∣c2

c1

∣∣∣∣> 0, ν := arg

(
c2

c1

)
, (37)

where arg(·) denotes the principal branch, and observe that

c1c
∗
2

|c|2 = c∗
2

c∗
1

|c1|2
|c|2 = κe−iνe−2πp. (38)

Thus, we can rewrite the jump matrix (34) as

V[n]
R (λ;χ, τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1 κe−iνe−2πpe−2inθ(λ;χ,τ)

0 1

]
, λ ∈ �in

up ,[
1 0

−κeiνe2inθ(λ;χ,τ) 1

]
, λ ∈ �out

up ,[
1 0

−κeiνe−2πpe2inθ(λ;χ,τ) 1

]
, λ ∈ �in

down ,[
1 κe−iνe−2inθ(λ;χ,τ)

0 1

]
, λ ∈ �out

down ,

e2πpσ3 , λ ∈ I.

(39)
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By Lemma 1, all of the jump matrices except for the diagonal jump matrix e2πpσ3 supported on 
I decay exponentially fast to the identity matrix as n → ∞ away from the critical points λ(1) and 
λ(2). The asymptotic analysis now closely follows [2, §4.1].

2.1. Parametrix construction

We eliminate the constant jump condition on I and deal with the non-uniform decay near the 
points λ(1) and λ(2) with the aid of a global parametrix T[n](λ). First, define an outer parametrix
by

T(∞)(λ;χ, τ) :=
(

λ − λ(1)(χ, τ )

λ − λ(2)(χ, τ )

)ipσ3

, (40)

where the powers ±ip are taken as the principal branch so that the locus where (λ − λ(1))(λ −
λ(2))−1 is negative coincides with the interval I . It is clear that T(∞)(λ; χ, τ) = I + O(λ−1) as 
λ → ∞ and it can be easily verified that T(∞)(λ; χ, τ) is analytic for λ in C \ I , satisfying the 
jump condition

T(∞)
+ (λ;χ, τ) = T(∞)

− (λ;χ, τ)e2πpσ3 , λ ∈ I. (41)

We now move onto constructing inner parametrices that will satisfy the jump conditions 
exactly in small, n-independent disks D(1) and D(2) centered at λ(1) and λ(2), respectively. Before 
proceeding, we note that

θ ′′(λ(1);χ, τ) < 0 and θ ′′(λ(2);χ, τ) > 0 (42)

for (χ, τ) in the algebraic-decay region. To see this, recall from §1.1 that the interval 0 < χ < 2
β

with τ = 0 is always contained in the algebraic-decay region. Direct calculation shows that

θ ′(λ;χ,0) = χ(λ − α)2 + β2χ − 2β

(λ − α)2 + β2 , θ ′′(λ;χ,0) = 4β(λ − α)

(α2 + β2 − 2αλ + λ2)2 (43)

(recall ξ = α+iβ). From the first equation it is immediate that λ(1) < 0 < λ(2) for τ = 0 since 0 <
χ < 2

β
. Then the second equation shows that θ ′′(λ) < 0 whenever λ < α (and so, in particular, 

θ ′′(λ(1)) < 0) and that θ ′′(λ) > 0 whenever λ > α (and so, in particular, θ ′′(λ(2)) > 0). Now 
θ(λ; χ, τ) is continuous for real λ, χ , and τ (with the exception of an additive jump of 2πi

across the logarithmic branch cut), and thus the only way the concavity at the critical points can 
change is if two critical points coincide. However, this condition is exactly the boundary of the 
algebraic-decay region, and thus (42) holds true everywhere in the algebraic-decay region.

Now, recalling that θ ′(λ(1); χ, τ) = 0 and θ ′(λ(2); χ, τ) = 0, we define the conformal map-
pings f1(λ; χ, τ) and f2(λ; χ, τ) locally near λ = λ(1) and λ = λ(2), respectively, by

f1(λ;χ, τ)2 := 2(θ(λ(1);χ, τ) − θ(λ;χ, τ)) and

f (λ;χ, τ)2 := 2(θ(λ;χ, τ) − θ(λ(2);χ, τ)),
(44)
2
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where we choose the solutions satisfying f ′
1(λ

(1); χ, τ) < 0 and f ′
2(λ

(2); χ, τ) > 0. Now intro-
ducing the rescaled conformal coordinates

ζ1 := n1/2f1(λ;χ, τ), ζ2 := n1/2f2(λ;χ, τ) (45)

and taking the rotation by π performed by f1 into account, the jump conditions satisfied by

U(1)(λ;χ, τ) := R[n](λ;χ, τ)e−inθ(λ(1);χ,τ)σ3e−iνσ3/2
[

0 1
−1 0

]
, λ ∈D(1) (46)

and by

U(2)(λ;χ, τ) := R[n](λ;χ, τ)e−inθ(λ(2);χ,τ)σ3e−iνσ3/2, λ ∈D(2) (47)

have the same form when expressed in terms of the respective conformal coordinates ζ = ζ1 and 
ζ = ζ2 and when the jump contours are locally taken to be the rays arg(ζ ) = ±π/4, arg(ζ ) =
±3π/4, and arg(−ζ ) = 0. Moreover, the resulting jump conditions coincide precisely with those 
in Riemann-Hilbert Problem A.1 for a parabolic cylinder parametrix in [12, Appendix A]. See 
Figure 9 in [12] for the relevant jump contours and matrices. Note that the condition κ2 = e2πp −
1 for consistency of jump conditions at ζ = 0 holds. We now let U(ζ ) denote the unique solution 
of the Riemann-Hilbert Problem A.1 in [12, Appendix A]. Here U(ζ ) is analytic for ζ in the 
five sectors | arg(ζ )| < 1

4π , 1
4π < arg(ζ ) < 3

4π , − 3
4π < arg(ζ ) < − 1

4π , 3
4π < arg(ζ ) < π , and 

−π < arg(ζ ) < − 3
4π . It takes continuous boundary values on the excluded rays and at the origin 

from each sector. Furthermore, U(ζ )ζ ipσ3 = I + O(ζ−1) as ζ → ∞ uniformly in all directions 
and from each sector. We also have that U(ζ )ζ ipσ3 has a complete asymptotic series expansion in 
descending integer powers of ζ as ζ → ∞, with all coefficients being independent of the sector 
in which ζ → ∞ [12, Appendix A.1]. In more detail, as given in (A.9) in [12], we have

U(ζ )ζ ipσ3 = I + 1

2iζ

[
0 r(p, κ)

−q(p, κ) 0

]
+
[
O(ζ−2) O(ζ−3)

O(ζ−3) O(ζ−2)

]
, ζ → ∞, (48)

where

r(p, κ) := 2eiπ/4√π
eπp/2eip ln(2)

κ�(ip)
, q(p, κ) := − 2p

r(p, κ)
. (49)

We introduce the inner parametrices T(1)(λ) and T(2)(λ) by

T(1)(λ;χ, τ) := Y(1)(λ;χ, τ)U(n1/2f1(λ;χ, τ))

[
0 −1
1 0

]
eiνσ3/2einθ(λ(1);χ,τ)σ3 , λ ∈D(1)

(50)
and

T(2)(λ;χ, τ) := Y(2)(λ;χ, τ)U(n1/2f2(λ;χ, τ))eiνσ3/2einθ(λ(2);χ,τ)σ3 , λ ∈ D(2), (51)

where the holomorphic prefactor matrices Y(1)(λ) and Y(2)(λ) will now be chosen to match well 
with the outer parametrix T(∞) on the disk boundaries ∂D(j), j = 1, 2. Define
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H(1)(λ;χ, τ) := (λ(2) − λ)−ipσ3

(
λ(1) − λ

f1(λ;χ, τ)

)ipσ3 [
0 1

−1 0

]
, λ ∈ D(1),

H(2)(λ;χ, τ) := (λ − λ(1))ipσ3

(
f2(λ;χ, τ)

λ − λ(2)

)ipσ3

, λ ∈D(2).

(52)

Here all the power functions are taken as the principal branch, and hence H(1)(λ) and H(2)(λ)

are holomorphic as matrix-valued functions of λ in their domain of definition. Recalling the 
transformations (46) and (47), note that the outer parametrix T(∞)(λ) can be expressed locally 
as

T(∞)(λ)e−inθ(λ(1))σ3e−iνσ3/2
[

0 1
−1 0

]

= n−ipσ3/2e−iνσ3/2e−inθ(λ(1))σ3H(1)(λ)ζ
−ipσ3
1 , λ ∈D(1)

(53)

and

T(∞)(λ)e−inθ(λ(2))σ3e−iνσ3/2 = nipσ3/2e−iνσ3/2e−inθ(λ(2))σ3H(2)(λ)ζ
−ipσ3
2 , λ ∈D(2). (54)

In light of these formulae, we choose

Y(1)(λ) = Y(1)(λ;χ, τ,n) := n−ipσ3/2e−iνσ3/2e−inθ(λ(1);χ,τ)σ3 H(1)(λ;χ, τ) (55)

and

Y(2)(λ) = Y(2)(λ;χ, τ,n) := nipσ3/2e−iνσ3/2e−inθ(λ(2);χ,τ)σ3 H(2)(λ;χ, τ), (56)

noting that both of these matrix-valued functions remain bounded as n → ∞ and Y(j)(λ; χ, τ)

is a holomorphic function for λ ∈D(j), j = 1, 2. Then from (50) and (53) it follows that

T(1)(λ)T(∞)(λ)−1

= n−ipσ3/2e−iνσ3/2e−inθ(λ(1))σ3H(1)(λ)U(ζ1)ζ
ipσ3
1 H(1)(λ)−1einθ(λ(1))σ3eiνσ3/2nipσ3/2

(57)

for λ ∈ ∂D(1), and from (51) and (54) it follows that

T(2)(λ)T(∞)(λ)−1

= nipσ3/2e−iνσ3/2e−inθ(λ(2))σ3H(2)(λ)U(ζ2)ζ
ipσ3
2 H(2)(λ)−1einθ(λ(2))σ3eiνσ3/2n−ipσ3/2

(58)

for λ ∈ ∂D(2).
Finally, we define the global parametrix T[n](λ; χ, τ) by

T[n](λ;χ, τ) :=

⎧⎪⎨
⎪⎩

T(1)(λ;χ, τ), λ ∈ D(1),

T(2)(λ;χ, τ), λ ∈ D(2),

T(∞)(λ;χ, τ), otherwise.

(59)
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Note that T[n](λ; χ, τ) is a sectionally analytic function of λ, the determinant of T[n](λ; χ, τ))

is identically 1, and T[n](λ; χ, τ) = I +O(λ−1) as λ → ∞.

2.2. Error analysis and asymptotics

We proceed by quantifying the error made in approximating R[n](λ; χ, τ) by the global 
parametrix T[n](λ; χ, τ). Consider the ratio

W[n](λ;χ, τ) := R[n](λ;χ, τ)T[n](λ;χ, τ)−1. (60)

Now W[n] extends as a sectionally analytic function of λ to C \ (∂D(1) ∪ ∂D(2) ∪ �W), where

�W := � \
(
D(1) ∪D(2)

)
= (�in

up ∪ �out
up ∪ �in

down ∪ �out
down) \

(
D(1) ∪D(2)

)
(61)

denotes the portion of � across which W[n] has a jump discontinuity. Take ∂D(1) and ∂D(2) to 
have clockwise orientations. Thus, W[n] satisfies a jump condition of the form

W[n]
+ (λ;χ, τ) = W[n]

− (λ;χ, τ)V[n]
W (λ;χ, τ), λ ∈ ∂D(1) ∪ ∂D(2) ∪ �W. (62)

Since T(∞)(λ) defined in (40) is analytic across any arc of �W, we have

V[n]
W (λ;χ, τ) = W−(λ;χ, τ)−1W+(λ;χ, τ)

= T(∞)(λ;χ, τ)R[n]
− (λ;χ, τ)−1R[n]

+ (λ;χ, τ)T(∞)(λ;χ, τ)−1, λ ∈ �W,
(63)

where the product R[n]
− (λ; χ, τ)−1R[n]

+ (λ; χ, τ) coincides with V[n]
R (λ; χ, τ) given in (39). Since 

the exponential factors e±2inθ(λ;χ,τ) in (39) are restricted to the exterior of the disks D(1) and 
D(2) in (63), and T(∞)(λ; χ, τ) is independent of n, there exists a constant d ≡ d(χ, τ) > 0 such 
that

sup
λ∈�W

‖V[n]
W (λ;χ, τ) − I‖ = O(e−nd(χ,τ)), n → ∞, (64)

where ‖ · ‖ denotes the matrix norm induced from an arbitrary vector norm on C2. On the re-
maining jump contours ∂D(1) ∪ ∂D(2) for W[n](λ) (see (62)), we have

V[n]
W (λ;χ, τ) = T(j)(λ;χ, τ)T(∞)(λ;χ, τ)−1, λ ∈ ∂D(j), j = 1,2. (65)

Now, observe that the factors conjugating U(ζj )ζ
ipσ3
j , j = 1, 2 in (57) and (58) all remain 

bounded as n → ∞. Recalling that ζj is proportional to n−1/2 for z ∈D(j), from (48) we obtain

sup
λ∈∂D(1)∪∂D(2)

‖V[n]
W (λ;χ, τ) − I‖ = O(n−1/2), n → ∞. (66)

The jump condition (62) implies that

W[n]
+ (λ) − W[n]

− (λ) = W[n]
− (λ)(V[n]

(λ) − I), (67)
W
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and W[n](λ; χ, τ) = I + O(λ−1) as λ → ∞ since both R[n](λ; χ, τ) and T[n](λ; χ, τ)−1 are 
normalized to the identity as λ → ∞. Therefore, it follows from the Plemelj formula that

W[n](λ;χ, τ) = I + 1

2πi

∫
∂D(1)∪∂D(2)∪�W

W[n]
− (s;χ, τ)(V[n]

W (s;χ, τ) − I)

s − λ
ds,

λ ∈C \ (∂D(1) ∪ ∂D(2)∪�W
)
.

(68)

Precisely as in [2, §4.1], one can let λ tend to a point on the contour ∂D(1) ∪ ∂D(2) ∪�W from 
the right side with respect to the orientation to obtain a closed integral equation for W−(λ; χ, τ)

defined on ∂D(1) ∪ ∂D(2) ∪ �W away from the self-intersection points. The resulting integral 
equation is uniquely solvable by a Neumann series on L2(∂D(1) ∪ ∂D(2) ∪ �W) for sufficiently 
large n, and its solutions satisfy the estimate

W[n]
− (λ;χ, τ) − I = O(n−1/2), n → ∞ (69)

in the L2(∂D(1) ∪ ∂D(2) ∪ �W) sense. We refer the reader to [2, §4.1] for the details regarding 
this argument. From the integral equation (68) we now extract the Laurent series expansion of 
W[n](λ; χ, τ) convergent for sufficiently large λ:

W[n](λ;χ, τ) = I − 1

2πi

∞∑
k=1

λ−k

∫
∂D(1)∪∂D(2)∪�W

W[n]
− (s;χ, τ)(V[n]

W (s;χ, τ) − I)sk−1 ds, (70)

for |λ| > sup{|s| : s ∈ ∂D(1) ∪ ∂D(2) ∪ �W}.
On the other hand, T(∞)(λ; χ, τ) is a diagonal matrix tending to the identity as λ → ∞. From 

(35) and (60) it follows that

ψ [2n](nχ,nτ) = 2i lim
n→∞λ[W[n](λ;χ, τ)]12. (71)

This, together with the Laurent series expansion (70), yields the expression

ψ [2n](nχ,nτ) = − 1

π

⎛
⎜⎝ ∫

∂D(1)∪∂D(2)∪�W

[W[n]
− (s;χ, τ)]11[V[n]

W (s;χ, τ)]12 ds

+
∫

∂D(1)∪∂D(2)∪�W

[W[n]
− (s;χ, τ)]12([V[n]

W (s;χ, τ)]22 − 1) ds

⎞
⎟⎠ .

(72)

Now, because the domain of integration in the integrals above is a compact contour, the L1-
norm on ∂D(1) ∪ ∂D(2) ∪ �W is subordinate to the L2-norm. Therefore, combining the L∞-type 
estimates (64) and (66) with the L2-type estimate (69), we arrive at
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ψ [2n](nχ,nτ) = − 1

π

∫
∂D(1)∪∂D(2)∪�W

[V[n]
W (s;χ, τ)]12 ds +O(n−1), n → ∞. (73)

Here the error term is uniform for (χ, τ) chosen from any compacta inside the interior of the 
algebraic-decay region. Moreover, the same formula holds with a different error term, of the 
same order, if we replace the integration contour ∂D(1) ∪ ∂D(2) ∪ �W with ∂D(1) ∪ ∂D(2) due to 
the exponential decay in the estimate (64):

ψ [2n](nχ,nτ) = − 1

π

∫
∂D(1)∪∂D(2)

[V[n]
W (s;χ, τ)]12 ds +O(n−1), n → ∞. (74)

Using (57) and (58) together with the normalization (48) in (65) lets us write, as n → ∞,

[V[n]
W (λ)]12 = n−ipe−iνe−2inθ(λ(1))

2in1/2f1(λ)
q([H(1)(λ)]12)

2 +O(n−1), λ ∈ ∂D(1) (75)

and

[V[n]
W (λ)]12 = nipe−iνe−2inθ(λ(2))

2in1/2f2(λ)
r([H(2)(λ)]11)

2 +O(n−1), λ ∈ ∂D(2) , (76)

where r ≡ r(p, k) and q ≡ q(p, k) are given in (49), and both of the error estimates are uniform 
on the relevant circles. As fj (λ) has a simple zero at λ(j), and the matrix elements of H(j)(λ)

are analytic in D(j), j = 1, 2, the integrals of the explicit leading terms in (57) and (58) can be 
evaluated by a residue calculation at λ = λ(1) and at λ = λ(2), respectively. Doing so gives

ψ [2n](nχ,nτ) = e−iν

n1/2

[
n−ipe−2inθ(λ(1);χ,τ)

f ′
1(λ

(1);χ, τ)
q([H(1)(λ(1);χ, τ)]12)

2

+nipe−2inθ(λ(2);χ,τ)

f ′
2(λ

(2);χ, τ)
r([H(2)(λ(2);χ, τ)]11)

2

]
+O(n−1), n → +∞.

(77)

To get a more explicit formula, note first that by the definitions (44) we have

f ′
1(λ

(1);χ, τ) = −
√

−θ ′′(λ(1);χ, τ) and f ′
2(λ

(2);χ, τ) =
√

θ ′′(λ(2);χ, τ). (78)

Next, we calculate the terms [H(1)(λ(1))]12 and [H(2)(λ(2))]11 in (77) explicitly. Applying l’Hôpi-
tal’s rule in the definitions (53) and (54) gives

H(1)(λ(1)) = (λ(2) − λ(1))−ipσ3

( −1

f ′
1(λ

(1))

)ipσ3
[

0 1
−1 0

]
(79)

and
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H(2)(λ(2)) = (λ(2) − λ(1))ipσ3
(
f ′

2(λ
(2))
)ipσ3

. (80)

Thus, we have obtained

q([H(1)(λ(1))]12)
2

f ′
1(λ

(1))
= −(λ(2) − λ(1))−2ip(−θ ′′(λ(1)))−ip q√−θ ′′(λ(1))

,

r([H(2)(λ(2))]11)
2

f ′
2(λ

(2))
= (λ(2) − λ(1))2ipθ ′′(λ(2))ip

r√
θ ′′(λ(2))

.

(81)

Finally, since p > 0 and κ > 0, it can be deduced that q(p, κ) = −r(p, κ)∗ using the identity 
given in [13, Equation (5.4.3)] for the modulus of the gamma function on the imaginary axis. 
With these at hand, one can check that |r| = |r(p, κ)| = √

2p, and consequently Equation (77)
can be rewritten as Equation (14). This completes the proof of Theorem 2.

Since the completion of the first draft of this work, one of the authors and Miller showed [4]
that Theorem 2 holds for a more general, continuum family of solutions {q(x, t; G, M)}M>0 (in 
the notation of [4]) of the focusing NLS equation (1), which includes fundamental rogue wave 
solutions studied in [2,4] as well as a special case of multiple-pole solitons considered in this 
work with the choices

G := S−1 = 1√
2

[
1 1

−1 1

]
and G := S−1 = 1√

2

[
1 −1
1 1

]
, (82)

which corresponds to setting c1 = c2 = 1 and c1 = −c2 = 1, respectively, along with ξ = i.

3. The non-oscillatory region

We now study the non-oscillatory region. In this region the leading-order solution arises from 
a single band in the model Riemann-Hilbert problem. To see this it is necessary to introduce a so-
called g-function, a standard technique in the asymptotic analysis of Riemann-Hilbert problems 
(see, for instance, [8,11]). Define g(λ; χ, τ) as the unique solution of the following Riemann-
Hilbert problem. Recalling the definitions of the real numbers λ(1) < λ(2) from Theorem 3, we 
take the branch cut of the function

λ �→ log

(
λ − ξ∗

λ − ξ

)
(83)

appearing in the phase ϕ(λ; χ, τ) (cf. (3)) to be a Schwarz-symmetric arc �c which connects 
λ = ξ and λ = ξ∗ while passing through the midpoint of λ(1) and λ(2), which will be derived in 
more detail later on.

Riemann-Hilbert Problem 3 (The g-function in the non-oscillatory region). Fix a pole location 
ξ ∈ C+, a pair of nonzero complex numbers (c1, c2), and a pair of real numbers (χ, τ) in the 
non-oscillatory region. Determine the unique contour �(χ, τ) and the unique function g(λ; χ, τ)

satisfying the following conditions.

Analyticity: g(λ) is analytic for λ ∈ C except on �, where it achieves continuous boundary 
values. The contour � is simple, bounded, and symmetric across the real axis.
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Jump condition: The boundary values taken by g(λ) are related by the jump condition

g+(λ) + g−(λ) − 2ϕ(λ) = −2iK, λ ∈ �, (84)

where K = K(χ, τ) is a real-valued constant to be determined. Furthermore,

�(ϕ(λ) − g+(λ)) = �(ϕ(λ) − g−(λ)) = 0, λ ∈ �. (85)

Normalization: As λ → ∞, g(λ) satisfies the condition

g(λ) = O
(
λ−1
)

(86)

with the limit being uniform with respect to direction.
Symmetry: g(λ) satisfies the symmetry condition

g(λ) = −g(λ∗)∗. (87)

We now solve Riemann-Hilbert Problem 3 by first solving for g′(λ). Note that the function 
g′(λ) satisfies the jump condition

g′+(λ) + g′−(λ) = 2iχ + 4iλτ + 2

λ − ξ∗ − 2

λ − ξ
, λ ∈ � (88)

and the normalization

g′(λ) = O
(
λ−2
)

, λ → ∞. (89)

Momentarily suppose that the contour � is known and has endpoints a ≡ a(χ, τ) and a∗ ≡
a(χ, τ)∗. We orient � from a∗ to a. Define

R(λ) := ((λ − a)(λ − a∗))1/2 (90)

chosen with branch cut � and asymptotic behavior R(λ) = λ + O(1) as λ → ∞. Then, by the 
Plemelj formula we have

g′(λ) = R(λ)

2πi

∫
�

2iχ + 4isτ + 2
s−ξ∗ − 2

s−ξ

R+(s)(s − λ)
ds. (91)

These integrals can be calculated explicitly via residues by turning the path integral along � into 
an integral along a large closed loop, yielding

g′(λ) = R(λ)

R(ξ∗)(ξ∗ − λ)
− R(λ)

R(ξ)(ξ − λ)
− 2iτR(λ) + iχ + 2iτλ + 1

λ − ξ∗ − 1

λ − ξ
. (92)

Imposing the normalization condition (89), we require the terms proportional to λ0 and λ−1 in 
the large-λ expansion of (92) to be zero:
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O(1) : χ + τ(a + a∗) + i

R(ξ∗)
− i

R(ξ)
= 0, (93)

O(λ−1) : χ

2
(a + a∗) + τ

(
3

4
(a + a∗)2 − aa∗

)
+ iξ∗

R(ξ∗)
− iξ

R(ξ)
= 0. (94)

Multiplying (93) by ξ∗ and using it to eliminate iξ∗
R(ξ∗) in (94), we have

χ

(
S

2
− α + iβ

)
+ τ

(
3

4
S2 − P − (α − iβ)S

)
= −2β

(P − (α + iβ)S + (α + iβ)2)1/2 , (95)

where we have written ξ = α + iβ and defined

S := a + a∗, P := aa∗. (96)

Square both sides of equation (95) and clear the denominator. Noting that the quantities χ , τ , S, 
P , α, and β are all real, we see that the imaginary part is zero if

P = 8(α2 + β2)τ (Sτ + χ) + (S − 2α)(3St + 2χ)2

4τ(3Sτ + 2χ − 2ατ)
. (97)

Plugging this value for P into the real part gives a septic equation for S, which we do not record 
here. This septic equation has three complex-conjugate pairs of roots and one real root, which is 
S. We can then compute P from (97), and finally compute a from the known values of P and S. 
Since g′(λ) is integrable at λ = ∞, the function g(λ) is now defined by

g(λ) :=
λ∫

∞
g′(s)ds, (98)

where the path of integration does not pass through �. Although this determines g as the unique 
antiderivative that satisfies g(λ) = O(λ−1), it is more convenient to determine the value of the 
(integration) constant K that appears in the jump condition (84) by a different calculation. The 
very same g-function and its different variations recently played a central role in the asymptotic 
analysis of high-order rogue waves in a work [4] by one of the authors with Miller, and we will 
use the approach taken there. Before doing this, we proceed with finalizing the choice of �.

From (91) we see that redefining � changes the branch cut of R(λ) but only changes g′(λ)

(and thus g(λ)) by an overall sign. Therefore, the choice of � does not change the contours on 
which �(ϕ(λ) − g(λ)) = 0. We thus redefine � to be the unique simple contour from a∗ to a on 
which �(ϕ(λ) − g(λ)) = 0 and for which �(ϕ(λ) − g(λ)) is positive to either side in the upper 
half-plane and negative to both sides in the lower half-plane. The following lemma shows that 
such a choice is possible and furthermore gives the necessary facts about ϕ(λ) − g(λ) we will 
need to carry out the steepest-descent analysis.

Lemma 2. In the non-oscillatory region, there is a domain Dup in the upper half-plane with the 
following properties:
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• Dup contains ξ , is bounded by curves along which �(ϕ(λ) − g(λ)) = 0, and abuts the real 
axis along a single interval denoted by (λ(1), λ(2)).

• �(ϕ(λ) − g(λ)) > 0 for all λ ∈ Dup.
• One arc of the boundary of Dup is the contour �up := � ∩ C+ from λ(1) to a, along which 

�(ϕ(λ) − g(λ)) > 0 for any λ sufficiently close to either side of �up.
• The remaining boundary of Dup in the upper half-plane is a contour from a to λ(2) (denoted 

�up) along which �(ϕ(λ) − g(λ)) < 0 for any λ in the exterior of Dup but sufficiently close 
to Dup.

The domain Ddown in the lower half-plane, defined as the reflection through the real axis of Dup, 
has the following properties:

• Ddown contains ξ∗, is bounded by curves along which �(ϕ(λ) − g(λ)) = 0, and abuts the 
real axis along the same interval as Dup.

• �(ϕ(λ) − g(λ)) < 0 for all λ ∈ Ddown.
• One arc of the boundary of Ddown is the contour �down := � ∩ C− from a∗ to λ(1), along 

which �(ϕ(λ) − g(λ)) < 0 for any λ sufficiently close to either side of �down.
• The remaining boundary of Ddown in the lower half-plane is a contour from λ(2) to a∗

(denoted �down) along which �(ϕ(λ) − g(λ)) > 0 for any λ in the exterior of Ddown but 
sufficiently close to Ddown.

Proof. From (3) and (92) we see that

ϕ′(λ) − g′(λ) = R(λ)

(
2iτ − 1

R(ξ∗)(ξ∗ − λ)
+ 1

R(ξ)(ξ − λ)

)
. (99)

From here we see that φ′(λ) − g′(λ) has two square-root branch points at a and a∗. Setting the 
term in parentheses equal to zero and rewriting as a quadratic expression in λ, we see φ′(λ) −
g′(λ) also has two other zeros that we label as λ(1) and λ(2). The fact that λ(1) and λ(2) must be 
real, as well as the topological structure of the signature chart of �(ϕ(λ) − g(λ)), follows from 
analytic continuation from the boundary curve LAN (at which g(λ) ≡ 0). See Fig. 9. �

We now revisit the jump condition (84) and proceed with the determination of the constant 
K . Note that the endpoints λ = a and λ = a∗ of � have already been determined in the earlier 
construction. Recall that g(λ) is analytic for λ ∈C \ � with g(λ) = O(λ−1) as λ → ∞. The fact 
that ξ is contained in the region Dup and that �up is a subset of the boundary of Dup ensures that 
� ∩ �c = ∅. Thus, we may proceed as in [4] and express g(λ) in the form g(λ) = R(λ)k(λ), 
where k(λ) is necessarily analytic for λ ∈ C \ � with continuous boundary values except at the 
endpoints λ = a, a∗ where g(λ) is required to be bounded. Then, requiring k(λ) = O(λ−2) as 
λ → ∞, (84) implies that

k+(λ) − k−(λ) = 2ϕ(λ) − 2iK

R+(λ)
, λ ∈ �, (100)

hence the Plemelj formula gives
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Fig. 9. Signature charts of �(ϕ(λ; χ, τ) − g(λ; χ, τ)) for ξ = i in the non-oscillatory region, along with the critical 
points λ(1) and λ(2) and the band endpoints a and a∗ . Top: χ = 1.65, τ ≈ 0.8983. Center left: Positions in the (χ , 
τ )-plane relative to the boundary curves. Center: χ = 1.65, τ = 0.65. Center right: χ = 9

4 , τ = 3
√

3
8 . Bottom: χ = 1.65, 

τ ≈ 0.3488.

k(λ) = 1

iπ

∫
�

ϕ(s) − iK

R+(s)(s − λ)
ds. (101)

Enforcing the condition k(λ) = O(λ−2) as λ → ∞ in the representation (101) results in the 
condition

∫
�

ϕ(λ) − iK

R+(λ)
dλ = 0. (102)

First, recall that R(λ) = λ + O(1) as λ → ∞. Thus, for an arbitrary clockwise-oriented loop C
surrounding the branch cut � of R(λ) we can obtain by a residue calculation at λ = ∞:
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∫
�

dλ

R+(λ)
= 1

2

∮
C

dλ

R(λ)
= −iπ. (103)

As the integral above is nonzero, the condition (102) successfully determines the constant K . 
The remaining integral

∫
�

ϕ(λ)

R+(λ)
dλ =

∫
�

i(χλ + τλ2)

R+(λ)
dλ +

∫
�

log
(

λ−ξ∗
λ−ξ

)
R+(λ)

dλ (104)

in (102) can also be computed similarly. Using the expansion

R(λ)−1 = λ−1 + 1

2
(a + a∗)λ−2 + 1

4

(
(a + a∗)2 + 1

2
(a − a∗)2

)
λ−3 +O(λ−4), λ → ∞,

(105)
we find that

∫
�

i(χλ + τλ2)

R+(λ)
dλ = π

[
1

2
χ(a + a∗) + 1

4
τ

(
(a + a∗)2 + 1

2
(a − a∗)2

)]
. (106)

Next, to evaluate the second integral on the right-hand side of (104) we again let C be a 
clockwise-oriented loop surrounding the branch cut � of R(λ) but excluding the branch cut 
�c of the logarithm in the integrand. Then, since the integrand is integrable at λ = ∞, letting C′
be a counter-clockwise oriented contour that surrounds �c but that excludes � yields

∫
�

log
(

λ−ξ∗
λ−ξ

)
R+(λ)

dλ = 1

2

∮
C

log
(

λ−ξ∗
λ−ξ

)
R(λ)

dλ = 1

2

∮
C′

log
(

λ−ξ∗
λ−ξ

)
R(λ)

dλ. (107)

Now, recalling that R(λ) is analytic on �c, we may collapse the contour C′ to both sides of �c
and use the fact that the boundary values of the logarithm differ by 2πi on �c to obtain

∫
�

log
(

λ−ξ∗
λ−ξ

)
R+(λ)

dλ = iπ

∫
�c

1

R(λ)
dλ. (108)

Combining (106) and (108) gives

∫
�

ϕ(λ)

R+(λ)
dλ = π

[
1

2
χ(a + a∗) + 1

4
τ

(
(a + a∗)2 + 1

2
(a − a∗)2

)]
+ iπ

∫
�c

1

R(λ)
dλ, (109)

which, together with (104) results in

K(χ, τ) =
[

1

2
χ(a + a∗) + 1

4
τ

(
(a + a∗)2 + 1

2
(a − a∗)2

)]
+ i

∫
1

R(λ)
dλ, (110)
�c
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which is real-valued.
We are now ready to carry out the first Riemann-Hilbert transformation. Let the domain D be 

the union of Dup, Ddown, and the interval (λ(1), λ(2)). Note D is bounded by �up ∪�up ∪�down ∪
�down. Recall the function N[n](λ) satisfying Riemann-Hilbert Problem 2 and make the change 
of variables

O[n](λ;χ, τ) :=

⎧⎪⎨
⎪⎩

N[n](λ;χ, τ)V[n]
N (λ;χ, τ), λ ∈ D0 ∩ Dc,

N[n](λ;χ, τ)V[n]
N (λ;χ, τ)−1, λ ∈ Dc

0 ∩ D,

N[n](λ;χ, τ), otherwise.

(111)

Now O[n](λ) satisfies the same Riemann-Hilbert problem as N[n](λ) with the jump contour ∂D0

replaced by ∂D. Next, we introduce the g-function via

P[n](λ;χ, τ) := O[n](λ;χ, τ)e−ng(λ;χ,τ)σ3 . (112)

The jump condition for P[n](λ) is now

P[n]
+ (λ) = P[n]

− (λ)e−n(ϕ(λ)−g−(λ))σ3S−1en(ϕ(λ)−g+(λ))σ3, λ ∈ ∂D. (113)

We define the following contours:

• �out
up runs from λ(1) to a in the upper half-plane entirely in the region exterior to D in which 

�(ϕ(λ) − g(λ)) > 0.
• �in

up runs from λ(1) to a entirely in Dup (so �(ϕ(λ) − g(λ)) > 0), and can be deformed to 
�up without passing through ξ .

• �out
up runs from a to λ(2) in the upper half-plane entirely in the region where �(ϕ(λ) −g(λ)) <

0.
• �in

up runs from a to λ(2) entirely in Dup (so �(ϕ(λ) − g(λ)) > 0), and can be deformed to 
�up without passing through ξ .

• �out
down (oriented from a∗ to λ(1)), �in

down (oriented from a∗ to λ(1)), �out
down (oriented from λ(2)

to a∗), and �in
down (oriented from λ(2) to a∗) are the reflections through the real axis of �out

up , 
�in

up, �out
up , and �in

up, respectively.

Define the following eight domains:

• Kout
up (respectively, K in

up) is the domain in the upper half-plane bounded by �out
up (respectively, 

�in
up) and �up.

• Lout
up (respectively, Lin

up) is the domain in the upper half-plane bounded by �out
up (respectively, 

�in
up) and �up.

• Kout
down, K in

down, Lout
down, and Lin

down are the reflections through the real axis of Kout
up , K in

up, Lout
up , 

and Lin , respectively.
up
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Fig. 10. The domains (left) and contours (right) used in the definition of Q[n](λ) in the non-oscillatory region.

See Fig. 10. On � we will use the following alternative factorizations of S−1:

S−1 =
[

1 − c∗
1

c2

0 1

][
0 |c|

c2− c2|c| 0

][
1 − c1

c2

0 1

]
(use for λ ∈ �up),

S−1 =
[

1 0
c1
c∗

2
1

][
0

c∗
2|c|

− |c|
c∗

2
0

][
1 0
c∗

1
c∗

2
1

]
(use for λ ∈ �down).

(114)

We open lenses by defining

Q[n](λ;χ, τ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P[n](λ;χ, τ)

[
1 − c∗

1
c2

e−2n(ϕ(λ;χ,τ)−g(λ;χ,τ))

0 1

]
, λ ∈ K in

up,

P[n](λ;χ, τ)

[
1 − c1

c2
e−2n(ϕ(λ;χ,τ)−g(λ;χ,τ))

0 1

]−1

, λ ∈ Kout
up ,

P[n](λ;χ, τ)

[
1 0

c1
c∗

2
e2n(ϕ(λ;χ,τ)−g(λ;χ,τ)) 1

]
, λ ∈ K in

down,

P[n](λ;χ, τ)

[
1 0

c∗
1

c∗
2
e2n(ϕ(λ;χ,τ)−g(λ;χ,τ)) 1

]−1

, λ ∈ Kout
down,

P[n](λ;χ, τ)

[
1

c∗
2

c1
e−2n(ϕ(λ;χ,τ)−g(λ;χ,τ))

0 1

]
, λ ∈ Lin

up,

P[n](λ;χ, τ)

[
1 0

− c2
c1

e2n(ϕ(λ;χ,τ)−g(λ;χ,τ)) 1

]−1

, λ ∈ Lout
up ,

P[n](λ;χ, τ)

[
1 0

− c2
c∗

1
e2n(ϕ(λ;χ,τ)−g(λ;χ,τ)) 1

]
, λ ∈ Lin

down,

P[n](λ;χ, τ)

[
1

c∗
2

c∗
1
e−2n(ϕ(λ;χ,τ)−g(λ;χ,τ))

0 1

]−1

, λ ∈ Lout
down,

P[n](λ;χ, τ), otherwise.

(115)
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Using (113), (114), and (28), we see that Q[n](λ) satisfies the jumps Q[n]
+ (λ) = Q[n]

− (λ)V[n]
Q (λ), 

where the jumps on the various contours are given by

�up :
[

0 |c|
c2

e−2inK

− c2|c|e2inK 0

]
, �down :

⎡
⎣ 0

c∗
2|c| e−2inK

−|c|
c∗

2
e2inK 0

⎤
⎦ , �up :

[ |c|
c1

0
0 c1|c|

]
,

�down :
⎡
⎣ c∗

1|c| 0

0 |c|
c∗

1

⎤
⎦ , �in

up :
[

1 − c∗
1

c2
e−2n(ϕ−g)

0 1

]
, �out

up :
[

1 − c1
c2

e−2n(ϕ−g)

0 1

]
,

�in
down :

[
1 0

c1
c∗

2
e2n(ϕ−g) 0

]
, �out

down :
[

1 0
c∗

1
c∗

2
e2n(ϕ−g) 0

]
, �in

up :
[

1
c∗

2
c1

e−2n(ϕ−g)

0 1

]
,

�out
up :

[
1 0

− c2
c1

e2n(ϕ−g) 0

]
, �in

down :
[

1 0
− c2

c∗
1
e2n(ϕ−g) 0

]
, �out

down :
[

1
c∗

2
c∗

1
e−2n(ϕ−g)

0 1

]
.

(116)
Lemma 2 shows that, except for the four constant jumps, all of the jumps decay exponentially to 
the identity for λ bounded away from a, a∗, λ(1), and λ(2). We are thus ready to define the outer 
model Riemann-Hilbert problem.

Riemann-Hilbert Problem 4 (The outer model problem in the non-oscillatory region). Fix a 
pole location ξ ∈ C+, a pair of nonzero complex numbers (c1, c2), and a pair of real numbers 
(χ, τ) in the non-oscillatory region. Determine the 2 ×2 matrix R(∞)(λ; χ, τ) with the following 
properties:

Analyticity: R(∞)(λ; χ, τ) is analytic for λ ∈C except on �up ∪�down ∪�up ∪�down, where 
it achieves continuous boundary values on the interior of each arc.
Jump condition: The boundary values taken by R(∞)(λ; χ, τ) are related by the jump con-
ditions R(∞)

+ (λ; χ, τ) = R(∞)
− (λ; χ, τ)V(∞)

R (λ; χ, τ), where

V(∞)
R (λ;χ, τ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0 |c|

c2
e−2inK

− c2|c|e
2inK 0

]
, λ ∈ �up,[

0
c∗

2|c|e
−2inK

−|c|
c∗

2
e2inK 0

]
, λ ∈ �down,[ |c|

c1
0

0 c1|c|

]
, λ ∈ �up,[

c∗
1|c| 0

0 |c|
c∗

1

]
, λ ∈ �down.

(117)

Normalization: As λ → ∞, the matrix R(∞)(λ; χ, τ) satisfies the condition
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R(∞)(λ;χ, τ) = I +O(λ−1) (118)

with the limit being uniform with respect to direction.

The first step in solving for R(∞)(λ) is to remove the dependence on c1 and c2. Define the 
function

f (λ) := R(λ)

2πi

⎡
⎢⎣∫
�up

log
(

c2|c|
)

R+(s)(s − λ)
ds +

∫
�down

log
( |c|

c∗
2

)
R+(s)(s − λ)

ds

+
∫

�up

log
( |c|

c1

)
R(s)(s − λ)

ds +
∫

�down

log
(

c∗
1|c|
)

R(s)(s − λ)
ds

⎤
⎥⎦ .

(119)

Then f (λ) satisfies the jump conditions

f+(λ) + f−(λ) = − log

( |c|
c2

)
, λ ∈ �up,

f+(λ) + f−(λ) = − log

(
c∗

2

|c|
)

, λ ∈ �down,

f+(λ) − f−(λ) = − log

(
c1

|c|
)

, λ ∈ �up,

f+(λ) − f−(λ) = − log

( |c|
c∗

1

)
, λ ∈ �down,

(120)

and the symmetry

f (λ) = −(f (λ∗))∗. (121)

We also have that f (λ) is bounded as λ → ∞, and

f (∞) := lim
λ→∞f (λ) = − 1

2πi

⎡
⎢⎣∫
�up

log
(

c2|c|
)

R+(s)
ds +

∫
�down

log
( |c|

c∗
2

)
R+(s)

ds

+
∫

�up

log
( |c|

c1

)
R(s)

ds +
∫

�down

log
(

c∗
1|c|
)

R(s)
ds

⎤
⎥⎦ .

(122)

We note f (∞) is a purely imaginary number. Introduce

S(λ) := ef (∞)σ3R(∞)(λ)e−f (λ)σ3 . (123)

Thus, we have S+(λ) = S−(λ)VS(λ), where
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VS(λ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0 |c|

c2
ef+(λ)+f−(λ)e−2inK

− c2|c|e
−(f+(λ)+f−(λ))e2inK 0

]
, λ ∈ �up,[

0
c∗

2|c|e
f+(λ)+f−(λ)e−2inK

−|c|
c∗

2
e−(f+(λ)+f−(λ))e2inK 0

]
, λ ∈ �down,[ |c|

c1
e−(f+(λ)−f−(λ)) 0

0 c1|c|e
f+(λ)−f−(λ)

]
, λ ∈ �up,[

c∗
1|c|e

−(f+(λ)−f−(λ)) 0

0 |c|
c∗

1
ef+(λ)−f−(λ)

]
, λ ∈ �down.

(124)

From the conditions (120) for f (λ) we see the jump simplifies to

S+(λ) = S−(λ)e−inKσ3

[
0 1

−1 0

]
einKσ3, λ ∈ �. (125)

Along with the normalization condition S(λ) = I +O(λ−1), this specifies that S(λ) must be

S(λ) = e−inKσ3

⎡
⎢⎣

γ (λ) + γ (λ)−1

2

−iγ (λ) + iγ (λ)−1

2
iγ (λ) − iγ (λ)−1

2

γ (λ) + γ (λ)−1

2

⎤
⎥⎦ einKσ3, (126)

where

γ (λ) :=
(

λ − a

λ − a∗

)1/4

(127)

is cut on � and has asymptotic behavior γ (λ) = 1 +O(λ−1) as λ → ∞. Thus, we have

R(∞)(λ) = e−inKσ3

⎡
⎢⎣

γ (λ) + γ (λ)−1

2
ef (λ)−f (∞) γ (λ) − γ (λ)−1

2i
e−f (λ)−f (∞)

−γ (λ) − γ (λ)−1

2i
ef (λ)+f (∞) γ (λ) + γ (λ)−1

2
e−f (λ)+f (∞)

⎤
⎥⎦ einKσ3 .

(128)
To complete the definition of the global model solution R(λ), we need to define local paramet-
rices R(1)(λ), R(2)(λ), R(a)(λ), and R(a∗)(λ) in small, fixed disks D(1), D(2), D(a), and D(a∗)

centered at λ(1), λ(2), a, and a∗, respectively. These local parametrices satisfy two conditions:

• R(•)(λ) satisfies the same jump conditions as Q[n](λ) for λ ∈ D(•), where • ∈ {1, 2, a, a∗}.
• R(•)(λ) =

{
R(∞)(λ)(I +O(n−1/2)), λ ∈ ∂D(•), where • ∈ {1,2},
R(∞)(λ)(I +O(n−1)), λ ∈ ∂D(•) where • ∈ {a, a∗}.

While we will not need their explicit form, the parametrices R(1)(λ) and R(2)(λ) can be con-
structed explicitly using parabolic cylinder functions (see, for example, §2), while the paramet-
rices R(1)(λ) and R(2)(λ) can be constructed explicitly using Airy functions (see, for example, 
[7]). Then the function
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R(λ) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R(1)(λ), λ ∈D(1),

R(2)(λ), λ ∈D(2),

R(a)(λ), λ ∈D(a),

R(a∗)(λ), λ ∈D(a∗),

R(∞)(λ), otherwise

(129)

is a valid approximation to Q[n](λ) everywhere in the complex λ-plane as n → ∞. In particular, 
we have

Q[n](λ) =
(
I +O(n−1/2)

)
R(λ). (130)

Working our way through the various transformations, we see that, for |λ| sufficiently large,

[M[n](λ;nχ,nτ)]12 =
(

λ − ξ∗

λ − ξ

)n

[N[n](λ;χ, τ)]12 =
(

λ − ξ∗

λ − ξ

)n

[O[n](λ;χ, τ)]12

=
(

λ − ξ∗

λ − ξ

)n

e−ng(λ;χ,τ)[P[n](λ;χ, τ)]12 =
(

λ − ξ∗

λ − ξ

)n

e−ng(λ;χ,τ)[Q[n](λ;χ, τ)]12

=
(

λ − ξ∗

λ − ξ

)n

e−ng(λ;χ,τ)
(
[R(∞)(λ;χ, τ)]12 +O(n−1/2)

)

=
(

λ − ξ∗

λ − ξ

)n

e−ng(λ;χ,τ)−f (λ;χ,τ)−f (∞;χ,τ)

×
(

γ (λ;χ, τ) − γ (λ;χ, τ)−1

2i
e−2inK(χ,τ) +O(n−1/2)

)
.

(131)

From

γ (λ) − γ (λ)−1 = a∗ − a

2λ
+O(λ−2), (132)(

λ − ξ∗

λ − ξ

)n

= 1 +O(λ−1), (133)

and

e−ng(λ)−f (λ)−f (∞) = e−2f (∞) +O(λ−1), (134)

we see

lim
λ→∞λ[M[n](λ;nχ,nτ)]12

= a∗(χ, τ ) − a(χ, τ)

4i
e−2f (∞;χ,τ)e−2inK(χ,τ) +O(n−1/2). (135)

Along with (21), this establishes Theorem 3.
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4. The oscillatory region

Finally, we consider the oscillatory region. From the Riemann-Hilbert point of view, this re-
gion is distinguished by a two-band model problem. We begin by solving the following Riemann-
Hilbert problem for G(λ; χ, τ).

Riemann-Hilbert Problem 5 (The G-function in the oscillatory region). Fix a pole location 
ξ ∈ C+, a pair of nonzero complex numbers (c1, c2), and a pair of real numbers (χ, τ) in the 
oscillatory region. Determine the unique contours �up(χ, τ), �down(χ, τ), and �mid(χ, τ), the 
unique constants �(χ, τ) and d(χ, τ), and the unique function G(λ; χ, τ) satisfying the follow-
ing conditions.

Analyticity: G(λ) is analytic for λ ∈C except on �up ∪�down ∪�mid, where it achieves con-
tinuous boundary values. All three contours are simple and bounded. �down is the reflection 
of �up through the real axis. �mid is symmetric across the real axis and connects �down to 
�up.
Jump condition: The boundary values taken by G(λ) are related by the jump conditions

G+(λ) + G−(λ) = 2ϕ(λ) + �, λ ∈ �up,

G+(λ) + G−(λ) = 2ϕ(λ) − �∗ = 2ϕ(λ) + �, λ ∈ �down,

G+(λ) − G−(λ) = d, λ ∈ �mid.

(136)

Here � and d are purely imaginary constants. Furthermore,

�(ϕ(λ) − G+(λ)) = �(ϕ(λ) − G−(λ)) = 0, λ ∈ �up ∪ �down ∪ �mid. (137)

Normalization: As λ → ∞, G(λ) satisfies

G(λ) = O
(
λ−1
)

(138)

with the limit being uniform with respect to direction.
Symmetry: G(λ) satisfies the symmetry condition

G(λ) = −G(λ∗)∗. (139)

The symmetry condition immediately implies that d is purely imaginary. However, the fact 
that � is purely imaginary is a condition on �up and �down.

Assume that �up and �down are known. Suppose �up is oriented from b ≡ b(χ, τ) to a ≡
a(χ, τ) with 	(a) > 	(b) and �down is oriented from a∗ to b∗. The band endpoints a and b are 
uniquely determined by the conditions

G(λ) = O(λ−1), �(�) = 0. (140)

We now differentiate and solve for G′(λ). Observe that G′(λ) has jumps
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G′+(λ) + G′−(λ) = 2iχ + 4iλτ + 2

λ − ξ∗ − 2

λ − ξ
, λ ∈ �up ∪ �down (141)

and normalization

G′(λ) = O(λ−2), λ → ∞. (142)

Define

R(λ) := ((λ − a)(λ − a∗)(λ − b)(λ − b∗))1/2 (143)

to be the function cut on �up ∪ �down with asymptotic behavior R(λ) = λ2 +O(λ) as λ → ∞. 
Note that if we define the symmetric functions

s1 := a + a∗ + b + b∗, s2 := aa∗ + ab + ab∗ + a∗b + a∗b∗ + bb∗,

s3 := aa∗b + aa∗b∗ + abb∗ + a∗bb∗, s4 := aa∗bb∗,
(144)

then we can write

R(λ) = (λ4 − s1λ
3 + s2λ

2 − s3λ + s4)
1/2. (145)

By the Plemelj formula, we have

G′(λ) = R(λ)

2πi

∫
�up∪�down

2iχ + 4isτ + 2
s−ξ∗ − 2

s−ξ

R+(s)(s − λ)
ds. (146)

Similar to the calculation for g′(λ) in §3, an explicit residue computation gives

G′(λ) = iχ + 2iτλ + 1

λ − ξ∗ − 1

λ − ξ
+ R(λ)

R(ξ∗)(ξ∗ − λ)
− R(λ)

R(ξ)(ξ − λ)
. (147)

We now present a computationally effective method of determining a and b. Imposing the growth 
condition G′(λ) = O(λ−2) leads to the following three conditions arising from requiring the 
terms proportional to λ1, λ0, and λ−1 in the large-λ expansion of (147) to be zero:

O(λ) : 2τ + i

R(ξ∗)
− i

R(ξ)
= 0, (148)

O(1) : χ + τs1 + iξ∗

R(ξ∗)
− iξ

R(ξ)
= 0, (149)

O(λ−1) : χ

2
s1 + τ

(
3

4
s2

1 − s2

)
+ i(ξ∗)2

R(ξ∗)
− iξ2

R(ξ)
= 0. (150)

These are three real conditions on the two complex unknowns a and b (the fourth condition will 
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be �(�) = 0). Multiplying equation (148) by ξ∗ and plugging it into (149), we have

χ + τs1 − 2τξ∗ = −i
ξ∗ − ξ

R(ξ)
. (151)

Next, multiplying equation (148) by (ξ∗)2 and plugging it into (150), we have

χ

2
s1 + τ

(
3

4
s2

1 − s2

)
− 2τ(ξ∗)2 = −i

(ξ∗ − ξ)(ξ∗ + ξ)

R(ξ)
. (152)

Then, multiplying equation (151) by (ξ∗ + ξ) and equating it with (152), we have

s2 = 3

4
s2

1 +
(

1

2

χ

τ
− ξ∗ − ξ

)
s1 + 2ξξ∗ − (ξ∗ + ξ)

χ

τ
, (153)

which indicates that if s1 is real then s2 is real. Now use (153) to eliminate s2 in (151) (here s2
appears in R(ξ)). Take the real and imaginary parts to get two real equations on the three real 
variables s1, s3, and s4. These equations are both linear in s3 and s4, so s3 and s4 can be solved 
exactly in terms of s1. Thus, given s1, we can determine s2, s3, and s4, from which the system 
(144) can be inverted to obtain a and b. At this point we can define G(λ) by

G(λ) :=
λ∫

∞
G′(s)ds, (154)

where the path of integration is chosen to avoid �up ∪ �down ∪ �mid. Finally, we choose s1 so 
that, once a and b and thus G(λ) have been computed, d := G+(λ) −G−(λ) is purely imaginary 
(here d is independent of λ as long as λ ∈ �mid).

The final step in the definition of G(λ) is the choice of cuts. Similar to the non-oscillatory 
case, we note from (146) that shifting �up or �down only changes G(λ) by at most a sign, and 
so has no effect on the placement of the contours along which �(ϕ(λ) − G(λ)) = 0. Therefore, 
we redefine �up to be the simple contour from b to a along which �(ϕ(λ) − G(λ)) = 0 and 
�(ϕ(λ) − G(λ)) is positive to either side. The symmetry condition (139) then forces �down
to be the reflection of �up through the real axis. We also choose �mid (whose main role is to 
restrict the integration path in (154)) to be the contour from b∗ to b along which �(ϕ(λ) −
G(λ)) = 0. The fact that such contours exist along which �(ϕ(λ) − G(λ)) = 0 is proven next 
in Lemma 3.

Lemma 3. In the oscillatory region, there is a domain Dup in the upper half-plane with the 
following properties:

• Dup contains ξ and is bounded by a simple Jordan curve along which �(ϕ(λ) − G(λ)) = 0. 
This curve contains the points a and b.

• �(ϕ(λ) − G(λ)) > 0 for all λ ∈ Dup.
• One arc of the boundary of Dup is the contour �up from b to a, along which �(ϕ(λ) −

G(λ)) > 0 for any λ sufficiently close to either side of �up.
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• The remaining boundary of Dup is a contour from a to b (denoted �up) along which 
�(ϕ(λ) − G(λ)) < 0 for any λ in the exterior of Dup but sufficiently close to Dup.

The domain Ddown in the lower half-plane, defined as the reflection of Dup through the real axis, 
has the following properties:

• Ddown contains ξ∗ and is bounded by a simple Jordan curve along which �(ϕ(λ) −G(λ)) =
0.

• �(ϕ(λ) − G(λ)) < 0 for all λ ∈ Ddown.
• One arc of the boundary of Ddown is a contour (denoted �down) from a∗ to b∗, along which 

�(ϕ(λ) − G(λ)) < 0 for any λ sufficiently close to either side of �down.
• The remaining boundary of Ddown is a contour from b∗ to a∗ (denoted �down) along which 

�(ϕ(λ) − G(λ)) > 0 for any λ in the exterior of Ddown but sufficiently close to Ddown.

Proof. The proof is similar to that of Lemma 2. From (3) and (147), we see

ϕ′(λ) − G′(λ) = R(λ)

(
1

R(ξ)(ξ − λ)
− 1

R(ξ∗)(ξ∗ − λ)

)
. (155)

From the first factor R(λ), we see ϕ′(λ) −G′(λ) has four square-root branch points and the same 
branch cut as R(λ). From the second factor we can clear denominators and see that ϕ(λ) −G(λ)

has exactly one critical point. By symmetry this critical point must lie on the real axis, and thus 
on a curve on which ϕ(λ) − G(λ) = 0. The topology of the level curves and the structure of the 
signature chart of �(ϕ(λ) − G(λ)) is deduced from analytic continuation from either LNO (the 
shared boundary with the non-oscillatory region) or from LEO (the shared boundary with the 
exponential-decay region). �

The signature chart of �(ϕ(λ) − G(λ)) is illustrated in Fig. 11. We now begin our transfor-
mations of Riemann-Hilbert Problem 2. Define

O[n](λ;χ, τ) :=

⎧⎪⎨
⎪⎩

N[n](λ;χ, τ)V[n]
N (λ;χ, τ), λ ∈ D0 ∩ (Dup ∪ Ddown)

c,

N[n](λ;χ, τ)V[n]
N (λ;χ, τ)−1, λ ∈ Dc

0 ∩ (Dup ∪ Ddown),

N[n](λ;χ, τ), otherwise.

(156)

The jump for O[n](λ) lies on �up ∪ �down ∪ �up ∪ �down. Next, define

P[n](λ;χ, τ) := O[n](λ;χ, τ)e−nG(λ)σ3 . (157)

The matrix P[n](λ) has an additional jump on �mid, namely

P[n]
+ (λ) = P[n]

− (λ)

[
e−n(G+(λ)−G−(λ)) 0

0 en(G+(λ)−G−(λ))

]
= P[n]

− (λ)

[
e−nd 0

0 end

]
, λ ∈ �mid.

(158)
Analogously to the non-oscillatory region, we define the contours
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Fig. 11. Signature charts of �(ϕ(λ; χ, τ) −G(λ; χ, τ)) for ξ = i in the oscillatory region, along with the band endpoints 
a, a∗, b, and b∗ . Top: Positions in the (χ , τ )-plane relative to the boundary curves. Bottom right: χ = 1.65, τ ≈ 0.8983. 
Bottom middle: χ = 2.1, τ = 0.9. Bottom right: χ ≈ 2.502, τ = 0.9.

• �out
up runs from b to a in the upper half-plane entirely in the region exterior to Dup in which 

�(ϕ(λ) − G(λ)) > 0.

• �in
up runs from b to a entirely in Dup (so �(ϕ(λ) − G(λ)) > 0), and can be deformed to �up

without passing through ξ .

• �out
up runs from a to b in the upper half-plane entirely in the region where �(ϕ(λ) −G(λ)) <

0.

• �in
up runs from a to b entirely in Dup (so �(ϕ(λ) − G(λ)) > 0), and can be deformed to �up

without passing through ξ .

• �out
down (oriented from a∗ to b∗), �in

down (oriented from a∗ to b∗), �out
down (oriented from b∗ to 

a∗), and �in
down (oriented from b∗ to a∗) are the reflections through the real axis of �out

up , �in
up, 

�out
up , and �in

up, respectively.

Also define the domains

• Kout
up (respectively, K in

up) is the domain in the upper half-plane bounded by �out
up (respectively, 

�in
up) and �up.

• Lout
up (respectively, Lin

up) is the domain in the upper half-plane bounded by �out
up (respectively, 

�in
up) and �up.

• Kout
down, K in

down, Lout
down, and Lin

down are the reflections through the real axis of Kout
up , K in

up, Lout
up , 

and Lin , respectively.
up
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Fig. 12. The domains (left) and contours (right) used in the definition of Q[n](λ) in the oscillatory region. The contour 
�mid is denoted by a dotted line.

See Fig. 12. Then we define Q[n](λ) by opening lenses as in (115) (except with g(λ) replaced by 
G(λ)). The jump matrices for Q[n](λ) are as follows:

�up :
[

0 |c|
c2

en�

− c2|c|e
−n� 0

]
, �down :

[
0

c∗
2|c|e

n�

−|c|
c∗

2
e−n� 0

]
,

�up :
[ |c|

c1
0

0 c1|c|

]
, �down :

[
c∗

1|c| 0

0 |c|
c∗

1

]
, �mid :

[
e−nd 0

0 end

]
,

�in
up :

[
1 − c∗

1
c2

e−2n(ϕ−G)

0 1

]
, �out

up :
[

1 − c1
c2

e−2n(ϕ−G)

0 1

]
, �in

down =
[

1 0
c1
c∗

2
e2n(ϕ−G) 0

]
,

�out
down :

[
1 0

c∗
1

c∗
2
e2n(ϕ−G) 0

]
, �in

up :
[

1
c∗

2
c1

e−2n(ϕ−G)

0 1

]
, �out

up :
[

1 0
− c2

c1
e2n(ϕ−G) 0

]
,

�in
down :

[
1 0

− c2
c∗

1
e2n(ϕ−G) 0

]
, �out

down :
[

1
c∗

2
c∗

1
e−2n(ϕ−G)

0 1

]
.

(159)

Lemma 3 shows that all of the non-constant jump matrices decay exponentially fast to the identity 
matrix outside of small fixed neighborhoods D(a), D(b), D(a∗), and D(b∗) of a, b, a∗, and b∗, 
respectively. We therefore arrive at the outer model problem.

Riemann-Hilbert Problem 6 (The outer model problem in the oscillatory region). Fix a pole 
location ξ ∈ C+, a pair of nonzero complex numbers (c1, c2), and a pair of real numbers (χ, τ)

in the oscillatory region. Determine the 2 ×2 matrix R(∞)(λ; χ, τ) with the following properties:

Analyticity: R(∞)(λ; χ, τ) is analytic for λ ∈C except on �up ∪�down ∪�up ∪�down ∪�mid, 
where it achieves continuous boundary values on the interior of each arc.
Jump condition: The boundary values taken by R(∞)(λ; χ, τ) are related by the jump con-
ditions R(∞)

+ (λ; χ, τ) = R(∞)
− (λ; χ, τ)V(∞)

(λ; χ, τ), where
R
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V(∞)
R (λ;χ, τ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0 |c|

c2
en�

− c2|c|e
−n� 0

]
, λ ∈ �up,[

0
c∗

2|c|e
n�

−|c|
c∗

2
e−n� 0

]
, λ ∈ �down,[ |c|

c1
0

0 c1|c|

]
, λ ∈ �up,[

c∗
1|c| 0

0 |c|
c∗

1

]
, λ ∈ �down,[

e−nd 0

0 end

]
, λ ∈ �mid.

(160)

Normalization: As λ → ∞, the matrix R(∞)(λ; χ, τ) satisfies the condition

R(∞)(λ;χ, τ) = I +O(λ−1) (161)

with the limit being uniform with respect to direction.

To remove the dependence on c1, c2, �, and d , we define

F(λ) := R(λ)

2πi

⎛
⎜⎝∫

�up

−n� − log
( |c|

c2

)
R+(s)(s − λ)

ds +
∫

�down

−n� − log
(

c∗
2|c|
)

R+(s)(s − λ)
ds

+
∫

�up

log
( |c|

c1

)
R(s)(s − λ)

ds +
∫

�down

log
(

c∗
1|c|
)

R(s)(s − λ)
ds +

∫
�mid

−nd

R(s)(s − λ)
ds

⎞
⎟⎠ .

(162)

Here F(λ) satisfies the jump conditions

F+ + F− = −n� − log

( |c|
c2

)
, λ ∈ �up,

F+ + F− = −n� − log

(
c∗

2

|c|
)

, λ ∈ �down,

F+ − F− = log

( |c|
c1

)
, λ ∈ �up,

F+ − F− = log

(
c∗

1

|c|
)

, λ ∈ �down,

F+ − F− = −nd, λ ∈ �mid

(163)

and the symmetry
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F(λ) = −(F (λ∗))∗. (164)

As λ → ∞ we have

F(λ) = F1λ + F0 +O(λ−1), (165)

where

F1 := −1

2πi

⎛
⎜⎝∫

�up

−n� − log
( |c|

c2

)
R+(s)

ds +
∫

�down

−n� − log
(

c∗
2|c|
)

R+(s)
ds

+
∫

�up

log
( |c|

c1

)
R(s)

ds +
∫

�down

log
(

c∗
1|c|
)

R(s)
ds +

∫
�mid

−nd

R(s)(s − λ)
ds

⎞
⎟⎠

(166)

and

F0 := −s1

2
F1 − 1

2πi

⎛
⎜⎝∫

�up

−n� − log
( |c|

c2

)
R+(s)

sds +
∫

�down

−n� − log
(

c∗
2|c|
)

R+(s)
sds

+
∫

�up

log
( |c|

c1

)
R(s)

sds +
∫

�down

log
(

c∗
1|c|
)

R(s)
sds +

∫
�mid

−nd

R(s)(s − λ)
sds

⎞
⎟⎠ .

(167)

Define

S(λ) := eF0σ3R(∞)(λ)e−F(λ)σ3 . (168)

Then S(λ) is analytic for λ /∈ �up ∪ �down, has jumps

S+(λ) = S−(λ)

[
0 1

−1 0

]
, λ ∈ �up ∪ �down, (169)

and has large-λ behavior

S(λ)eF1λσ3 = I +O(λ−1), λ → ∞. (170)

We now build S(λ) explicitly out of Riemann-theta functions. See [5,6], for example, for 
similar constructions. The function R(λ) defines a genus-one Riemann surface constructed from 
two copies of the complex plane cut on �up and �down. We introduce a basis of homology cycles 
{a, b} as shown in Fig. 13. Here integration on the second sheet is accomplished by replacing 
R(λ) by −R(λ). Define the Abel map as
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Fig. 13. The homology cycles a and b in relation to the branch cuts of R(λ). Thin solid lines lie on the first sheet while 
the dotted line lies on the second sheet.

A(λ) := 2πi∮
a

ds
R(s)

λ∫
a∗

ds

R(s)
. (171)

We think of the integration as being on the Riemann surface (i.e. if the integration path passes 
through a branch cut then R(λ) flips to −R(λ)). The Abel map depends on the integration 
contour and changes value if an extra a cycle or b cycle is added. In particular, adding an extra 
a cycle to the integration contour adds 2πi to the Abel map, while an extra b cycle adds the 
quantity

B := 2πi∮
a

ds
R(s)

∮
b

ds

R(s)
. (172)

We define the lattice

� := 2πij + Bk, j, k ∈Z. (173)

Then the Abel map is well-defined modulo �. We compute

A+(λ) + A−(λ) = −B mod �, λ ∈ �up,

A+(λ) − A−(λ) = −2πi mod �, λ ∈ �mid,

A+(λ) + A−(λ) = 0 mod �, λ ∈ �down.

(174)

We now define two differentials ω and �. Let

ω := 2πi∮
a

ds
R(s)

ds

R(s)
(175)

be the holomorphic differential normalized so 
∮
a
ω = 2πi. We also define

�0 := s2 − 1
2s1s

R(s)
ds, � = �0 −

⎛
⎝ 1

2πi

∮
�0

⎞
⎠ω (176)
a
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so that 
∮
a
� = 0. Here �0 is chosen to ensure that

J := lim
λ→∞

⎛
⎝λ −

λ∫
a∗

�

⎞
⎠ (177)

exists. We also set

U :=
∮
b

�. (178)

Now 
∫ λ

a∗ � satisfies the jump conditions

λ+∫
a∗

� = −U −
λ−∫

a∗
�, λ ∈ �up,

λ+∫
a∗

� = −
λ−∫

a∗
�, λ ∈ �down

(179)

(here we restrict the integration path to be on the first sheet). The Riemann-theta function defined 
by (16) has the properties [13]

�(−λ) = �(λ), �(λ + 2πi) = �(λ), �(λ + B) = e− 1
2 Be−λ�(λ). (180)

Also �(λ) = 0 if and only if λ = (iπ + 1
2B
)

mod �. Then for any Q ∈C, the function

q(λ) := �(A(λ) − A(Q) − iπ − B
2 − F1U)

�(A(λ) − A(Q) − iπ − B
2 )

e−F1
∫ λ
a∗ �, (181)

is well-defined, independent of the integration path (assuming the paths in A(λ) and 
∫ λ

a∗ are the 
same). The function q(λ) has a simple zero at λ = Q (to be determined). Consider the matrix

T(λ) :=⎡
⎢⎢⎢⎣

�(A(λ) + A(Q) + iπ + B
2 − F1U)

�(A(λ) + A(Q) + iπ + B
2 )

e−F1
∫ λ
a∗ �

�(A(λ) − A(Q) − iπ − B
2 + F1U)

�(A(λ) − A(Q) − iπ − B
2 )

eF1
∫ λ
a∗ �

�(A(λ) − A(Q) − iπ − B
2 − F1U)

�(A(λ) − A(Q) − iπ − B
2 )

e−F1
∫ λ
a∗ �

�(A(λ) + A(Q) + iπ + B
2 + F1U)

�(A(λ) + A(Q) + iπ + B
2 )

eF1
∫ λ
a∗ �

⎤
⎥⎥⎥⎦ .

(182)
From (174) and (179), T(λ) has the jump relations

T+(λ) = T−(λ)

[
0 1
1 0

]
, λ ∈ �up ∪ �down. (183)
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We need to slightly adjust the jump condition to that in (169) while at the same time removing 
the simple poles in the off-diagonal entries of T(λ). Analogously to (127), we define

γ (λ) :=
(

(λ − b)(λ − a∗)
(λ − a)(λ − b∗)

)1/4

(184)

to be the function cut on �up ∪ �down with asymptotic behavior γ (λ) = 1 +O(λ−1) as λ → ∞. 
This function satisfies γ+(λ) = −iγ−(λ) for λ ∈ �up ∪ �down. Define

f D(λ) := γ (λ) + γ (λ)−1

2
, f OD(λ) := γ (λ) − γ (λ)−1

2i
, (185)

so that

f D+ (λ) = f OD− (λ), f OD+ (λ) = −f D− (λ), λ ∈ �up ∪ �down. (186)

Define Q ≡ Q(χ, τ) to be the unique complex number such that

f D(Q)f OD(Q) = 0. (187)

We proceed under the assumption that Q is a simple zero of f OD(λ) and f D(λ) has no zeros. 
This is the case we observe numerically for the parameter values in Fig. 5. The alternate case 
when f D(Q) = 0 does not change the final answer and can be handled by a slight modification 
as described in [5]. If we choose S(λ) in the form

S(λ) =
[
C11 0

0 C22

][
f D(λ)[T(λ)]11 −f OD(λ)[T(λ)]12

f OD(λ)[T(λ)]21 f D(λ)[T(λ)]22

]
, (188)

where C11 and C22 are any constants, then the jump condition (169) is satisfied, and S(λ) is 
analytic for λ /∈ �up ∪ �down. Noting that f OD(λ) = O(λ−1) and f D(λ) = 1 +O(λ−1), we see 
the normalization (170) is satisfied if we choose

C11 := �(A(∞) + A(Q) + iπ + B
2 )

�(A(∞) + A(Q) + iπ + B
2 − F1U)

e−F1J ,

C22 := �(A(∞) + A(Q) + iπ + B
2 )

�(A(∞) + A(Q) + iπ + B
2 + F1U)

eF1J .

(189)

This completes the construction of S(λ), and thus of R(∞)(λ) via (168).
Define R(a)(λ), R(b)(λ), R(a∗)(λ), and R(b∗)(λ) as the local parametrices in small, fixed disks 

D(a), D(b), D(a∗), and D(b∗) centered at a, b, a∗, and b∗, respectively. Each of these parametrices 
can be constructed using Airy functions (see, for example, [7]). Then the global parametrix
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R(λ) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R(a)(λ), λ ∈D(a),

R(b)(λ), λ ∈D(b),

R(a∗)(λ), λ ∈D(a∗),

R(b∗)(λ), λ ∈D(b∗),

R(∞)(λ), otherwise

(190)

satisfies

Q[n](λ) =
(
I +O(n−1)

)
R(λ). (191)

Undoing the different Riemann-Hilbert transformations, we find that, for |λ| sufficiently large,

[M[n](λ;nχ,nτ)]12 =
(

λ − ξ∗

λ − ξ

)n

[N[n](λ;χ, τ)]12 =
(

λ − ξ∗

λ − ξ

)n

[O[n](λ;χ, τ)]12

=
(

λ − ξ∗

λ − ξ

)n

e−nG(λ;χ,τ)[P[n](λ;χ, τ)]12 =
(

λ − ξ∗

λ − ξ

)n

e−nG(λ;χ,τ)[Q[n](λ;χ, τ)]12

=
(

λ − ξ∗

λ − ξ

)n

e−nG(λ;χ,τ)
(
[R(∞)(λ;χ, τ)]12 +O(n−1)

)

=
(

λ − ξ∗

λ − ξ

)n

e−nG(λ;χ,τ)
(
e−F(λ;χ,τ)−F0(χ,τ)[S(λ;χ, τ)]12 +O(n−1)

)

=
(

λ − ξ∗

λ − ξ

)n

e−nG(λ;χ,τ)
(
−C11(χ, τ )f OD(χ, τ )e−F(λ;χ,τ)−F0(χ,τ)[T(λ;χ, τ)]12 +O(n−1)

)
.

(192)

We now apply

f OD(λ) = a − a∗ − b + b∗

4iλ
+O(λ−2), (193)

(
λ − ξ∗

λ − ξ

)n

= 1 +O(λ−1), (194)

and

e−F(λ)−F0−nG(λ) = e−F1λ−2F0(1 +O(λ−1)) (195)

to find

lim
λ→∞λ[M[n](λ;nχ,nτ)]12 =

�(A(∞) − A(Q) − iπ − B
2 + F1U)�(A(∞) + A(Q) + iπ + B

2 )

�(A(∞) − A(Q) − iπ − B
2 )�(A(∞) + A(Q) + iπ + B

2 − F1U)

× a∗ − a − b∗ + b
e−2F1J−2F0 +O(n−1),

(196)
4i
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where the right-hand side is a function of χ and τ . We then recover ψ [2n](nχ, nτ) from (21), 
thereby proving Theorem 4.

Appendix A. Construction of the multiple-pole solitons via Darboux transformations

We summarize the construction via Darboux transformations of the multiple-pole solitons that 
we study. Fix ξ = α + iβ with β > 0 and c = (c1, c2) ∈ (C∗)2. We start with the trivial initial 
condition ψ [0](x, t) ≡ 0 and repeatedly apply the same Darboux transformation n times to obtain 
a solution ψ [2n](x, t) with order 2n poles at ξ and ξ∗. See [1] for full details.

We construct the associated eigenvector matrix U[n](λ; x, t) iteratively. Define

U[0](λ;x, t) := e−i(λx+λ2t)σ3 . (A.1)

This is the background eigenvector matrix corresponding to ψ [n](x, t) ≡ 0. Recall the circular 
disk D0 from Riemann-Hilbert Problem 1 that is centered at the origin and contains ξ . Given 
U[n](λ; x, t), define

s[n](x, t) := U[n](ξ ;x, t)cT, N [n](x, t) := s[n](x, t)†s[n](x, t),

w[n](x, t) := cU[n](ξ ;x, t)T

[
0 −i

i 0

]
U[n]′(ξ ;x, t)cT.

(A.2)

Here † denotes the conjugate-transpose. From here, introduce

Y[n](x, t) := −4β2w[n](x, t)∗

4β2|w[n](x, t)|2 + N [n](x, t)2 s[n](x, t)s[n](x, t)T

[
0 −i

i 0

]

+ 2iβN [n](x, t)

4β2|w[n](x, t)|2 + N [n](x, t)2

[
0 −i

i 0

]
s[n](x, t)∗s[n](x, t)T

[
0 −i

i 0

]
,

Z[n](x, t) :=
[

0 −i

i 0

]
Y[n](x, t)∗

[
0 −i

i 0

]
(A.3)

and define

G[n](λ;x, t) := I + Y[n](x, t)

λ − ξ
+ Z[n](x, t)

λ − ξ∗ . (A.4)

Then we set

U[n+1](λ;x, t) :=
{

G[n](λ;x, t)U[n](λ;x, t), λ /∈ D0,

G[n](λ;x, t)U[n](λ;x, t)G[n](λ;0,0)−1, λ ∈ D0
(A.5)

and obtain the desired multiple-pole soliton solution of (1) by

ψ [2n+2](x, t) = ψ [2n](x, t) + 2i([Y[n](x, t)]12 − [Y[n](x, t)∗]21). (A.6)
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Appendix B. Elementary symmetry properties of the multiple-pole solitons

Fix ξ = α + iβ , α ∈ R, β > 0, and let

B(λ; ζ ) := λ − ζ

λ − ζ ∗ (B.1)

for convenience. First note that

B(−λ; ξ) = B
(
λ;−ξ∗)−1

. (B.2)

Next, from the definition (19) of S ≡ S(c1, c2), it is easy to verify that

σ3S(c1, c2)σ1 = S(−c∗
2,−c∗

1), σ1 :=
[

0 1
1 0

]
. (B.3)

Let θ denote the phase θ(λ; x, t) := λx + λ2t in (18). Define O
(
λ; x, t; (c1, c2), ξ

)
in terms of 

the solution M
(
λ; x, t; (c1, c2), ξ

)
of Riemann-Hilbert Problem 1 by

O
(
λ;x, t; (c1, c2), ξ

)= σ3M
(
λ;x, t; (−c∗

2,−c∗
1),−ξ∗)σ3, (B.4)

and recalling the jump condition (18) observe that

O+
(
λ;x, t; (c1, c2), ξ

)
= σ3M+

(
λ;x, t; (−c∗

2,−c∗
1),−ξ∗)σ3

= σ3M−
(
λ;x, t; (−c∗

2,−c∗
1),−ξ∗)

× e−iθ(λ;x,t)σ3S(−c∗
2,−c∗

1)B
(
λ;−ξ∗)nσ3S(−c∗

2,−c∗
1)−1eiθ(λ;x,t)σ3σ3

= O−
(
λ;x, t; (c1, c2), ξ

)
× σ3e

−iθ(λ;x,t)σ3S(−c∗
2,−c∗

1)B
(
λ;−ξ∗)nσ3S(−c∗

2,−c∗
1)−1eiθ(λ;x,t)σ3σ3

= O−
(
λ;x, t; (c1, c2), ξ

)
× e−iθ(λ;x,t)σ3

[
σ3S(−c∗

2,−c∗
1)σ1

]
B
(
λ;−ξ∗)−nσ3 [σ1S(−c∗

2,−c∗
1)−1σ3]eiθ(λ;x,t)σ3

= O−
(
λ;x, t; (c1, c2), ξ

)
× e−iθ(λ;x,t)σ3S(c1, c2)B

(
λ;−ξ∗)−nσ3S(c1, c2)

−1eiθ(λ;x,t)σ3,

(B.5)

where we have used (B.3) in the last equality. It now follows from (B.2) and θ(−λ; x, t) =
θ(λ; −x, t) that M(λ; −x, t; (c1, c2), ξ) and O(−λ; x, t; (c1, c2), ξ) satisfy the same jump condi-
tion. Moreover, they satisfy the same analyticity and normalization condition as λ → ∞. There-
fore, by uniqueness of the solutions of Riemann-Hilbert Problem 1, O(−λ; x, t; (c1, c2), ξ) =
M(λ; −x, t; (c1, c2), ξ). Then
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ψ [2n](−x, t; (c1, c2), ξ) = 2i lim
λ→∞λ[M(λ;−x, t; (c1, c2), ξ)]12

= 2i lim
λ→∞λ[O(−λ;x, t; (c1, c2), ξ)]12

= 2i lim
λ→∞λ[σ3M(−λ;x, t; (−c∗

2,−c∗
1),−ξ∗)σ3]12

= −2i lim
λ→∞λ[σ3M(λ;x, t; (−c∗

2,−c∗
1),−ξ∗)σ3]12

= 2i lim
λ→∞λ[M(λ;x, t; (−c∗

2,−c∗
1),−ξ∗)]12

= ψ [2n](x, t; (−c∗
2,−c∗

1),−ξ∗),

(B.6)

which proves (22). To prove (23), observe that B(λ∗; ξ)∗ = B(λ; ξ)−1, hence from (B.2) we have 
B(−λ∗; ξ)∗ = B(λ; −ξ∗). From this, together with [iθ(−λ∗; x, −t)]∗ = iθ(λ; x, t), it similarly 
follows that M(λ; x, −t; (c1, c2), ξ) and M(−λ∗; x, t; (c∗

1, c∗
2), −ξ∗)∗ solve the same Riemann-

Hilbert Problem. Then, again by uniqueness,

ψ [2n](x,−t; (c1, c2), ξ) = 2i lim
λ→∞λ[M(λ;x,−t; (c1, c2), ξ)]12

= 2i lim
λ→∞λ[M(−λ∗;x, t; (c∗

1, c∗
2),−ξ∗)∗]12

= −2i lim
λ→∞

(
λ∗[M(λ∗;x, t; (c∗

1, c∗
2),−ξ∗)]12

)∗
=
(

2i lim
λ→∞[λM(λ;x, t; (c∗

1, c∗
2),−ξ∗)]12

)∗

= ψ [2n](x, t; (c∗
1, c∗

2),−ξ∗)∗,

(B.7)

which finishes the proof of Proposition 1.
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