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Abstract

The integrable focusing nonlinear Schrédinger equation admits soliton solutions whose associated spec-
tral data consist of a single pair of conjugate poles of arbitrary order. We study families of such multiple-pole
solitons generated by Darboux transformations as the pole order tends to infinity. We show that in an appro-
priate scaling, there are four regions in the space-time plane where solutions display qualitatively distinct
behaviors: an exponential-decay region, an algebraic-decay region, a non-oscillatory region, and an oscil-
latory region. Using the nonlinear steepest-descent method for analyzing Riemann-Hilbert problems, we
compute the leading-order asymptotic behavior in the algebraic-decay, non-oscillatory, and oscillatory re-
gions.
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1. Introduction

The one-dimensional focusing cubic nonlinear Schrédinger (NLS) equation

1
iwt+5wxx+|w|2w=o, x,1€R, (1)

is well known to be a completely integrable equation admitting solitons, i.e. localized traveling-
wave solutions. Each initial datum from an appropriate function space (Schwartz space is suffi-
cient for our needs) is associated with a set of scattering data, consisting of poles and norming
constants encoding solitons, as well as a reflection coefficient encoding radiation. The scattering
data for a standard soliton consist of a complex-conjugate pair of first-order poles (and an asso-
ciated norming constant) and an identically zero reflection coefficient. However, for any n € Z .,
the NLS equation also has solutions whose scattering data consist of a complex-conjugate pair of
poles order n (plus n auxiliary parameters that are higher-order analogues of norming constants)
and no reflection. These mulitple-pole solitons (n > 2) have very different qualitative behavior
than standard solitons. At sufficiently large time scales, the nth-order pole soliton resembles n
solitons approaching each other, interacting, and then separating again. This complicated in-
teraction displays a remarkable degree of structure at different scales as n increases. These
distinguished scales include:

The near-field limit  The scaling X := nx, T := n°t is appropriate for studying the rogue-wave-
type behavior near the origin. Here the key feature is a single peak with amplitude of order n.
Locally the solution satisfies for each fixed 7' a certain differential equation in the Painlevé-III
hierarchy. This regime was analyzed by two of the authors in [1], the first large-n analysis of
nth-order pole solitons. The asymptotic solution seems to be a type of universal behavior, also
appearing in the study of high-order Peregrine breathers for the NLS equation with constant,
non-zero boundary conditions [2].

The far-field limit Define

X

Xi=-—, 1= 2
n

As the pole order n — oo, then the (), 7)-plane can be partitioned into n-independent regions in

which the multiple-pole soliton has distinct behaviors, such as rapid oscillations of frequency n

or decay to zero. This scaling was previously studied in [1] and is the focus of the current work.

The long-time limit If x and ¢ are unscaled, then as t — 00 the nth-order pole soliton asymp-
totically resembles a train of n distinct one-solitons. Asymptotics as t — 0o were obtained by
Olmedilla in [14] for nth-order pole solitons for fixed order n = 2 and n = 3 by solving Gel ’fand-
Levitan-Marchenko equations with an appropriate kernel and arriving at a representation for the
nth-order pole soliton that involves determinants of size n via Cramer’s rule. Large-¢ asymptotics
for multiple-pole solutions of arbitrary but finite and fixed order n were obtained by Schiebold
in [18] using the earlier algebraic results [16] by the same author.

The generic nth-order pole soliton depends on a complex parameter & (the spectral pole in the
upper half-plane) and n constant nonzero row vectors (dy,j,d,j) € C?, j =1,...,n (higher-
order analogues of the norming constants). This function can be constructed via n iterated
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Fig. 1. The far-field scaling. Plots of |w[2"] (ny,nt; (1,3),i)| for =3.5 < x < 3.5 and —2.5 <t < 2.5, where
1//[2”] (nx,nt; (1,3),1i) is a multiple-pole soliton solution of the nonlinear Schrodinger equation (1). In each plot c; =1,
cp=3,and & =i. Left: n =2, Center: n =4. Right: n = 8.

Darboux transformations as described in [1, §2]. Working directly with a Riemann-Hilbert prob-
lem characterization in the context of the robust inverse-scattering transform framework provides
fundamental eigenfunction matrices that are analytic at & after each iteration by encoding the
effect of the Darboux transformation in the form of a jump condition instead of a singularity
in the spectral plane. In order to obtain well-defined limits as n — oo, we first fix nonzero
complex numbers ¢; and ¢, and set ¢ := (cq, c2) € (C*)? (here C* := C \ {0}). We then take
(dy,j,daj):= (e tey, € Ley) for j=1,...,n and take the limit ¢ — 0. See Fig. 1 for plots of
representative multiple-pole solitons in the far-field scaling. This construction procedure is given
in Appendix A for completeness of our work, and it yields a representation of these multiple-pole
solitons lﬂ[z”] (x, t; ¢, &) given in Riemann-Hilbert Problem 1 below, which is convenient for our
purposes of asymptotic analysis.

A related avenue of research pioneered by the work of Gesztesy, Karwowski, and Zhao in [10]
is the so-called countable superposition of solitons. The authors considered a sequence of dis-

2

. . . . . 0 .
tinct eigenvalues {—« ; } | along with associated norming constants {c;} i and zero reflection

coefficient for the Schrddinger operator. For each finite N € N, the scattering data {«, c j}7=1
defines a reflectionless N-soliton solution Vy(x,t) of the Korteweg-de Vries equation. Under
certain summability and growth conditions on {«;, cj} as N — o0, the authors established a
limiting solution V4 (x, t) of the Korteweg-de Vries equation that is reflectionless, global, and
smooth. The study of countable superposition of solitons was extended to the focusing NLS equa-
tion (1) later by Schiebold in [15] and [17] for a sequence of distinct eigenvalues {A j}?‘;l of the
Zakharov-Shabat problem in the upper half-plane along with the associated norming constants
again subject to appropriate growth conditions. Drawing a comparison, the solutions we study
can be thought of as a countable superposition as n — —+o00 over N, albeit with A; = & for all
J € N. Due to the repeated choice of the exceptional points A ;, however, the family of solutions
we study fall outside of the classes studied in these works. Indeed, following the proof of [1,
Lemma 1], it is easy to see that w210, 0; ¢, &) = 83($)c1c§|c|_2n, and hence the amplitudes
of the solutions 2" (x, t; ¢, £) explode as n — +o0. Therefore, there is not a limiting profile in
the unscaled (x, t)-plane as n — 400, contrary to the case in [10,15,17]. On the other hand, for
eachn e N, w[z’”(x, t; ¢, &) defines a global classical solution (in fact, real-analytic in (x, ¢)) of
the focusing NLS equation (1). This is a consequence of analytic Fredholm theory applied to the
Riemann-Hilbert Problem [, which has analytic dependence on (x, #) with a compact jump con-
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Fig. 2. The boundaries of the far-field regions. Left: The algebraic-decay, exponential-decay, non-oscillatory, and oscil-
latory regions (denoted by A, E, N, and O, respectively), along with the various boundary curves for & = i. Right: The
boundary curves superimposed on W[z”] (ny,nt; (1,3),i)| with c; =1, ¢p =3, and § =i for —3.5 < x <3.5 and
—25<t<25.

tour (see [2, Proposition 3] for details). Regularity properties of these solutions for fixed n € N
were also recently established using determinant representations [19].

In the present work we show that in the far-field scaling ¥?"l(ny, nt; ¢, £) has four qual-
itatively different behaviors depending on the values of x and t, and we give the leading-
order large-n asymptotic behavior for all x and t off the boundary curves. As n — oo,
W[Z"] (nx,nt; ¢, &) exhibits the following four behaviors:

The exponential-decay region In this region the solution decays exponentially fast to zero as
n — oo. This was proven in [1]. In the Riemann-Hilbert analysis the model problem has no
bands (indicating no order-one contributions) and no parametrices (indicating no algebraically
decaying contributions).

The algebraic-decay region Here the leading-order solution decays as n~!/2 and is given ex-
plicitly in terms of elementary functions. The Riemann-Hilbert model problem consists of no
bands and two parabolic-cylinder parametrices giving the leading-order contribution to the solu-
tion.

The non-oscillatory region In this region the leading-order solution is independent of #n and can
be written explicitly up to the solution of a septic equation. The model Riemann-Hilbert problem
has a single band.

The oscillatory region In the final region the solution exhibits rapid oscillations with frequency
of order n within an amplitude envelope of order one. The leading-order behavior is written in
terms of genus-one Riemann-theta functions. The corresponding Riemann-Hilbert model prob-
lem has two bands.

The four far-field regions depend on & but are independent of ¢. The regions are illustrated for
& =i inFig. 2.

1.1. The far-field regions

In order to give our exact results we start by defining the region boundaries. We write £ =
a+if,aeR,B>0.
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Definition of the boundaries of the algebraic-decay region Define

o x,T;8) =iy +)»217)+10g<);t__é:‘5 ) 3)

This is the controlling phase function in the exponential-decay and algebraic-decay regions. The
critical points of ¢(}) satisfy

2t — @) + (x +200)(A —a)> + 282t (h — ) + (B%x — 2B + 2ap%7) = 0. )

First, set t =0 and 0 < x < % Then ¢(A) has two real distinct critical points 21 and 2@,

where we choose AV < A(?) (the third critical point is at infinity). See Fig. 7. The algebraic-
decay region (with x > 0) consists of those x and 7 values that can be reached by continuously
varying y and t with no two critical points coinciding. In this region if T 7 0 then ¢(A) has three
distinct real critical points, which we label A@ < A(D < 1@ if £ > 0 and AV < 1@ < 2O jf
T < 0. The region is bounded by the locus of points in the (x, 7)-plane satisfying

(16a*B + 3222 8% +168°)t* + 3203 Bx — 160> + 32083 x — 144ap?)73
+ (40%B x> — 24?5 + 88> x> — 1287 x + 1088) 1% + Bafx> — 12axH)T + (Bx* —2x?)
=0.

(%)

For real o and positive B, this algebraic curve consists of three arcs in the (x, t)-plane that
intersect pairwise at the three points

330 +98 3J§> - (3J§a+9ﬂ —3@)
9 : P := 9 (6)
4p2 82 4p? 8p>

P%:=(0,0), Pt :=<

(each of these three points corresponds to A(D = A = A(®) The arc with endpoints P~ and

P passes through the point (%, O) on the yx-axis and is denoted by Lag. This arc is a boundary
between the algebraic-decay and the exponential-decay regions and corresponds to A(D = 12,
The arc from P° to P is denoted by ,CXN (and corresponds to A(D = 1) while that from P°
to P~ is denoted by L, (and corresponds to 13 =10 Both of these arcs form boundaries
between the algebraic-decay region and the non-oscillatory region. Note that if £ = i, the defining

condition (5) for the boundary of the algebraic-decay region simplifies to
164+ 8x% = 72x + 108)t2 + (x* —2x3) =0. @)

Definition of the exponential-decay / oscillatory boundary ~We now define Ego, the boundaries

between the exponential-decay and oscillatory regions when x > 0. Set t = 0 and choose x > %

Then ¢() has a complex-conjugate pair of critical points AT and A~, where we choose AT to
be in the upper half-plane. See Fig. 6. Here we have that %(¢ (1 %)) # 0. The exponential-decay
region consists of those (), ) pairs we can reach by continuously varying x and t such that no
two critical points coincide and such that the level lines 91 (¢ (1)) = 0 never intersect either of the
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two critical points with nonzero imaginary part (which we continue to label as A¥). In this region
if 7 % 0 then there is a third finite critical point which is real and that we label as A(?). The curve
L g corresponds to AT = A~. The curve Ego (respectively, L) is defined as those points with
7 > 0 (respectively, T < 0) such that R(p(AT)) = R(p(17)) = 0. Both EEO and L, are simple,
semi-infinite curves with endpoints P+ and P, respectively.

Definition of the oscillatory / non-oscillatory boundary Finally, we define EIJ\IFO, the boundary
between the oscillatory and non-oscillatory regions when 7 > 0. Given a complex number a =
a(x, 1), define

R(G) =R 4. 1) 1= (k= alr. )G — a2 ()

with asymptotic behavior R(A) = A 4+ O(1) as A — oo and branch cut from a* to a (we will
completely specify the branch cut momentarily). Set

') = R ___R® —2iTRO\) +ix +2ith+ ! b
ST RENE -0 RE)E -2 X —Er A—&

€))

Then a(x, ) is chosen so that g/(A) = O(A~2) as A — oo. The function ¢’ (1) — g’ (¢) (which
will turn out to be the derivative of the controlling phase function in the non-oscillatory region)
has two real zeros if (x, 1) € EKN. One zero is simple (corresponding to A® from the algebraic-
decay region) and one zero is double (corresponding to A9 = A(D from the algebraic-decay
region). See Fig. 9. Keeping x fixed and increasing t, the double zero splits into one real zero
(denoted by A1) and two square-root branch points at @ and a*. The simple real zero persists
and is again denoted by A(?. See Fig. 11. We now choose the branch cut for R(A) (and thus
the cut for g’(%) as well) to run from a* to A() to a. As x increases, the non-oscillatory region
continues until the two real zeros coincide: A()) = A This is the condition for the contour Lno
separating the non-oscillatory and oscillatory regions.

The exponential-decay, algebraic-decay, non-oscillatory, and oscillatory regions are now de-
fined by these boundary curves as illustrated in Fig. 2.

1.2. Results
We now give our main results, the leading-order asymptotic behavior in each of the four
regions. The symmetry properties of 2" (x, t) stated in Proposition 1 allow us to restrict our

analysis to the first quadrant of the (x, t) plane without loss of generality.

Theorem 1. (The exponential-decay region). Fix x > 0 and t > 0 so that (x,t) is in the
exponential-decay region. Then

Yy, nt) = 0™, n— +oo, (10)
for some constant § > 0.

Theorem 1 was proven in [1, §3].
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Theorem 2. (The algebraic-decay region). Fix x > 0 and t > 0 so that (x, t) is in the algebraic-
decay region. Let AV, @, and 19 be the real critical points of ¢()) as defined in §1.1 with
A0 <D < 3D ifr > 0and AV < 2@ (and A = o) if T = 0. Define

2
) and v:=arg (6—2), (1)
cl

where log(-) and arg(-) each have the principal branch. Also introduce

2
c1

1
=—1 1
Lo

O x, 1) i=—ip; X, T) 12)

and
¢ (1. 7) = plog(m) +2plog (A® (1. 7) =2V (x. ) + T + plog@) —ara(T(p)). (13)

where T'(-) is the standard gamma function. Then

_i _2in0 .- .
(2n] _ ZpeiV [e 2inf (x ’X’T)(—Q//(A(l); X, 7))"P i (r)
w (nX7 nt) 1/2 e

" V=0"(Ws x, 1)

e~ 2002009 (32, 5 TP

VO Gy 1)

ew[’”(x’f)) +0(0™h, (14)
n — —+o00.

Theorem 2 is proven in §2. Fig. 3 compares the exact solution to the leading-order behavior
for various values of n.

Theorem 3. (The non-oscillatory region). Fix x > 0 and t > 0 so that (x,t) is in the non-
oscillatory region. Recall that in this region R(\) and g'()) are defined in (8) and (9), respec-
tively. Let a(x, t) be defined as before so that g’ (\) = O(A_z) as » — oo, and define K (x, t)
by (110) and f(o0; x, t) by (122). Then

. ; 1
w[zn](nx’n.[)z_is(a(X,.L,))e—Zf(OO,X,‘E)e—Zan(XJ)—|—O(m), n — +00. (15)

Theorem 3 is proven in §3. Fig. 4 compares the exact solution to the leading-order behavior
for various values of n.

Theorem 4. (The oscillatory region). Fix x > 0 and t > 0 so that (x, t) is in the oscillatory
region. Define a=a(x,t) and b =b(x, t) by (140), F1 = F1(x, 1) by (166), Fy = Fyo(x, ) by
(167), Ay =AM x,t) by (171), B=B(x,t) by (172), J=J(x,7t) by (177), U=U (¥, 7)
by (178), and Q = Q(x, t) by (187). Introduce the genus-one Riemann-theta function

O =0 B):= Y MF1BK, (16)
keZ
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n=2 n=4 n=2~8
L5, L5

| Wb [2n] ‘
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0 0 / L A
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Fig. 3. Convergence of the leading-order asymptotic approximation in the algebraic-decay region for £ =i and ¢ =

(1,3) at T = % Solid black curves are for the exact solution 1//[2”] (ny, n%; (1,3), i) while dashed red curves are
for the leading-order approximation given by Theorem 2. For this time slice the algebraic-decay region (with x > 0) is
approximately 0.7756 < x < 2.0050. Left-to-right: n = 2, n = 4, n = 8. Top-to-bottom: The absolute value, real part, and
imaginary part. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Then

_ O(A(00) — A(Q) —im — 5 + FLU)O(A(0) + A(Q) + i + )
 O(A(00) — A(Q) — i — )O(A(0) + A(Q) +in + £ — FU)

Y2y, nt)
(17)

1
xiJ(b —a)e 217 2F 4 © (—) , n— 4oo.
n

Theorem 4 is proven in §4. Fig. 5 compares the exact solution to the leading-order behavior
for various values of n.

1.3. The far-field Riemann-Hilbert problem

We now introduce the basic Riemann-Hilbert problem used to define the multiple-pole soli-
tons we study. This representation was derived in [ 1] using the recently introduced robust inverse-
scattering transform [3].

Riemann-Hilbert Problem 1 (The unscaled Riemann-Hilbert problem). Fix a pole location § =
o +ip € C*t, avector of connection coefficients ¢ = (¢, ¢2) € (C*)?, and a non-negative integer

n. Define Do C C to be a circular disk centered at the origin containing £ in its interior. Let
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n=2

n=38

S(pl)

Fig. 4. Convergence of the leading-order asymptotic approximation in the non-oscillatory region for £ =i and ¢ = (1, 3)

att = % Solid black curves are for the exact solution 1//[2"] (nx,n %; (1, 3), i) while dashed red curves are for the

leading-order approximation given by Theorem 3. For this time slice the non-oscillatory region is exactly 7% <x= 2

7
Left-to-right: n =2, n =4, n = 8. Top-to-bottom: The absolute value, real part, and imaginary part.

(x,1) € R? be arbitrary parameters. Find the unique 2 x 2 matrix-valued function M"!(x; x, 1)
with the following properties:

Analyticity: M["](A; x,t) is analytic for A € C \ 9Dy, and it takes continuous boundary
values from the interior and exterior of d Dy.

Jump condition: The boundary values on the jump contour d Dy (oriented clockwise) are
related as

. A — nos3 )
MU (ks x, ) =M™ (s x, f)e"i0x+22 003 g <—‘5) SlefGx 422003 5 gy

A —E&*
(13)
where
. _lla =g
S=S8(c1,2) '_I?I[Q t } (19)
and o3 is the third Pauli matrix
1 0
03 1= |:O _1i|. (20)
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n=2 n=4 n=2~8
2 2 2
N 1 1
>
0L—= el | : 0 :
-4-3-2-1012 34  —4-3-2-10 1 2 3 4 —4-3-2-101 2 3 4
2 2 2
1 1 1
s
E% 0 0 0
& -1 -1
-2 -2 -2
—4-3-2-10 1 2 3 4 —4-3-2-10 1 2 3 4 —4-3-2-10 1 2 3 4
2 2 2
1 1 1
ii 0 R 0 ; 0
& o .
_ 9 B
—-4-3-2-10 1 2 3 4 —4-3-2-10 1 2 3 4 —4-3-2-10 1 2 3 4
X X X

Fig. 5. Convergence of the leading-order asymptotic approximation in the oscillatory region for £ =i and ¢ = (1, 3) at
T = 2. Solid black curves are for the exact solution 1//[2”] (ny,n2; (1,3), i) while dashed red curves are for the leading-
order approximation given by Theorem 4. For this time slice the oscillatory region is approximately —3.178 < x < 3.178.
Left-to-right: n =2, n =4, n = 8. Top-to-bottom: The absolute value, real part, and imaginary part.

Normalization: MM (0; x, 1) =1+ O(L71) as A - oo.
Given the solution M (A; x, t), the function

Y2 (x,1r¢,8) =2i lim AMM G x, 15 e, €)hn Q1)
— 00

is a 2n"-order pole soliton solution of (1). We first present the following elementary symmetry
properties of multiple-pole solitons of order 2n.

Proposition 1. Let ¢ = (¢1,¢2) € C* and € = a + i with o € R and B > 0 be given. The
multiple-pole solitons ¥'2M (x, t; (c1, c2), €) enjoy the following symmetry properties:
Y (—x (e ), §) = v L (=5, =) =69, (22)
Y, 1 (1, 02, ) = PG 1 (e 03 =89 (23)
A proof of based on the uniqueness of solutions of Riemann-Hilbert Problem 1 is given in
Appendix B.

We analyze Riemann-Hilbert Problem [ in the large-n regime using the Deift-Zhou nonlinear
steepest-descent method [9], which consists of making a series of invertible transformations in
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order to arrive at a problem that can be approximated in the large-n limit. The first transformation
introduces the far-field scaling while simplifying the form of the jump matrix. This Riemann-
Hilbert problem for NI"!(%) will be our starting point for analysis in each of the far-field regions.
Define

M[n]()\; ny, n.L.)e—in(k)(+Azr)86in(kx+kzr)’ = DO’

#\ 107 24
M[zz](k;nx,nf) (%)"U%’ % ¢ Do. (24)

NG o) = {

As NIy X, T) is related to MM X,nt) outside Dg via multiplication on the right by a
diagonal matrix that tends to the identity matrix as A — oo, the recovery formula remains un-
changed:

Y2y nrs e, ) =20 lim 2 [NPGs e 6)] (25)
A—00 12
Riemann-Hilbert Problem 2 (The far-field Riemann-Hilbert problem). Fix a pole location £ =
o +ip € C*t, avector of connection coefficients ¢ = (c1, ¢2) € (C*)2, and a non-negative integer
n. Define Dy C C to be a circular disk centered at the origin containing £ in its interior. Let
(x,7) € R% be arbitrary parameters. Find the unique 2 x 2 matrix-valued function N"!(%; x, 1)
with the following properties:

Analyticity: NP (1; x, ) is analytic for A € C \ 8Dy, and it takes continuous boundary
values from the interior and exterior of d Dy.

Jump condition: The boundary values on the jump contour d Dg (oriented clockwise) are
related as Ngf]()»; X, T)= N[f]()»; X ‘L’)Vl[\?]()»; X,T), Where

Vl[\?]()‘; X, T) 1= e X103 g1 gnepix. )03 (26)
Normalization: N (x; x, 1) =T+ OO~ 1) as A — oo.

With Proposition | at hand, we restrict our attention to the first quadrant of the (x, #)-plane,
hence that of the (x, 7)-plane, for the remainder of this paper.

2. The algebraic-decay region

Pick (x, t) in the algebraic-decay region. Our first objective is to understand the signature
chart of R(p(X; x, 7)).

Lemma 1. In the algebraic-decay region, there is a domain Dyp in the upper half-plane with the
following properties:

o Dy, contains &, is bounded by curves along which R(¢(1)) =0, and abuts the real axis
along a single interval (denoted M, 1@y).

o N(p)) > 0 forall A € Dyp.

e N(p(A)) <0 for all A in the upper half-plane in the complement of D—up but sufficiently close
t0 Dyp.

330



D. Bilman, R. Buckingham and D.-S. Wang Journal of Differential Equations 297 (2021) 320-369

15
— 1 —_
05 "
- e ‘ 2O N'e
0
A e e
0.5
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Fig. 6. Signature charts of %(¢(A; x, 7)) for & = in the exponential-decay region, along with the critical points A and
1~ (and, when it exists, A(O)). Left: Positions in the (), T)-plane relative to the boundary curves. Center: x =2.1,7 =0.
Right: x =2.3, 7 =0.6.

Similarly, there is a domain Dgown in the lower half-plane such that:

e Dyown contains £*, is bounded by curves along which R(¢(A)) = 0, and abuts the real axis
along the same interval as D.

o N(p(L)) <O0forall A € Dyown.

e N(p(X)) > 0 for all A in the lower half-plane in the complement of Dgown but sufficiently
close to Dgown.

Proof. It is instructive to compare with the signature chart in the exponential-decay region. In
[1] it was proven that in the exponential-decay region there is a closed loop in the A-plane sur-
rounding & on which R(p(A)) = 0. Inside this curve 9i(¢ (1)) > 0, while outside the curve for A
sufficiently close to the curve 9(¢ (X)) < 0. In the lower half-plane the signature chart is sym-
metric with the signs flipped. If T = 0 there are two critical points AT and A~ that are complex
conjugates; if T # 0 there is an additional real critical point A¥). See Fig. 6.

Passing from the exponential-decay region to the algebraic-decay region, the boundary curve
LaE is marked by the condition At = A~. When these two critical points coincide they are real,
and thus lie on a zero-level curve of % (¢ (1)). This means that the two closed curves surrounding
£ and £* along which R (¢ (1)) = 0 must intersect at o™ = A~ for (x, ) on LAE. In the notation
used in the algebraic-decay region the double critical point is AV = 1@ See the top right and
bottom right panels in Fig. 7.

Now, as (x,t) moves into the algebraic-decay region from Lag, the double critical point
splits into the two real critical points (1) and A®). By definition, no critical points coincide
inside the algebraic-decay region. In particular, this means that in the algebraic-decay region
there is a domain Dy, in the upper half-plane that contains &, abuts the real axis along the interval
M, 1@, and is bounded by curves along which R (p(A)) = 0. Furthermore, R (p(A)) > 0 for
all . € Dyp, and N(e(1)) < O for all A in the upper half-plane sufficiently close to Dyp. There is
an analogous domain Dgowy in the lower half-plane containing £* such that R (@ (1)) < O for all
A € Dgown, and N (¢ (1)) > 0 for all A in the lower half-plane sufficiently close to Dgown- See the
top middle and bottom middle panels in Fig. 7. O

Define the domain D to be the union of Dyp, Ddown, and the interval 0D @)y, so that 9D is
a simple Jordan curve passing through A" and A® along which R(p(1)) = 0. We write [yp for
the portion of d D in the upper half-plane and I"gown for the portion of d D in the lower half-plane.
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Fig. 7. Signature charts of R (¢ (X; x, v)) for £ =i in the algebraic-decay region, along with the critical points A and
A2 (and, when it exists, A(O>). Top left: x = 1.2, T ~ 0.2023. Top middle: x = 1.65, T = 0.25. Top right: x ~ 2.03,
v = 0.25. Bottom left: Positions in the (), t)-plane relative to the boundary curves. Bottom middle: x = 1.65, v = 0.

Bottom right: x =2, t =0.
;t

out,
down

-1 0 1

Fig. 8. The lenses and lens boundaries in the algebraic-decay region.

See Fig. 8. We are now ready to carry out our first Riemann-Hilbert transformation, which will
deform the jump contour from 9 Do to I'yp U I'gown. Set

N["](A;X,I)VK’](A;XJ), A€ DyN DC,
ol(x; x,7) = {NI"(n; i, r)Vl[\Z'](k; x,. 1)L ae D§N D,
N x, 1),

27

otherwise.
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Then, orienting I'yp U I'gown clockwise, the function 0" () satisfies exactly the same Riemann-
Hilbert problem as N (L) with 8Dy replaced by I'yp U I'gown. Note that the matrix S ~! has the
following two factorizations:

S|l o 1 0
S—1=|:(1) cll:||:61 c_1:|[_0_2 1] (use for A € I'yp),
el €1

1 o]la o]l
S'= c lel
EXI bk

Following the exponential-decay region analysis in [1], we define the following four contours:

(=)

(28)

— _n*an*

j| (use for A € I'gown)-

Fﬁg‘ runs from A1) to A® in the upper half-plane entirely in the region where % (¢ (1)) < 0.
F{fll) runs from A() to 1@ entirely in Dyp (so i(¢(A)) > 0), and can be deformed to I'yp
without passing through £&.

Fgg&m runs from A to AV in the lower half-plane entirely in the region where N (p(1)) > 0.
rin runs from A(D to A entirely in Dgown (50 R(@(1)) < 0), and can be deformed to
[gown Without passing through £*.

down

We also write

Flens = Tgat UTIM UTS, UTH - and T :=Tup U Tgown U Dlens. (29)

down

We next define the following four domains:

Lyy' is the domain in the upper half-plane bounded by Ty and 8 D.
Lirl is the domain in the upper half-plane bounded by F{&, and 9 D.
L°“‘ is the domain in the lower half-plane bounded by I'®** and 9 D.

i down down
. ng)wn is the domain in the lower half-plane bounded by ' gl)wn and 0D.
See Fig. 8.
Using these lenses, we make the change of variables
_1 ‘2 e—ana(k X.T)
ol x, 7) 0 reLy,
oM x, 1) 0 A e Lou
» X Cz 2n(p()» 0 up
Q"M x, 1) = I 0 (30)
ol (A %, 7) —a 2mp(k X0 ] re ng)wn’
L 1
(1 22190 x.0) .
ol A x,7) 0 Ae ngwn’
O["](A; X, T), otherwise.
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Then Q!(x; x, 7) is analytic for A ¢ I, has the normalization Q"(x; x,7) =1+ O (A‘l) as

A — 00, and satisfies the jump condition Q[j_z](k; X,T)= Q[_"](A; x> r)V[(;](A; x,T) for A eT,
where

(1 De—21005x,7) _
1 , reln ,
0 1 »
SR i|
c
; Aely,
C
L0 g
| ! 0 A e Tout
_a gl | up
- (5]
Vg’](k; X, 1) i=14r 1 0 ‘ (31
_%82n¢(k:x,r) 1i| , A€ Fg:)wn ’
Fo .
|(C)| lel |° A € Cdown »
I
I 1 ﬁe—bw(kzx,r)
C
: ’ re F?igzvn ‘
0 1

We perform the following sectionally analytic substitutions to eliminate the jump matrices sup-
ported on I'yp and I'gown at the expense of introducing a jump discontinuity across the interval

=D 2 PDIcR (32)

separating the regions D¢ and Degx:

2

ko .
Q[”](A;x,r)[‘(; } %€ Dy \ T,
fel
R™MG: . 1) = G _ (33)
Q"0 x, 1) ‘3‘ o | *€Daown\ T
<
Q" x, 1), otherwise.

This substitution preserves the normalization R™ (1) =1 + O (A7) as 1 — oo and R™(2) is
analytic for A ¢ I'U I. We orient I from A(D to 2. Then RI"I(1) satisfies the jump condition
R ¢, 1) =R . ) VI (s x. 1) for & € DU T, where
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[ 99 p=2np(ix.T) ,
le|? . Aelp,
0 1
i 1 0
out
— 2,210 x,7) 1:| ’ re FuP ’
c]
i 1 0 .
1n
Vg](k; X, T)i= _%eh(p(x;x‘r) 1:| A€ Tgoun (34)
L C
(1 Qe—2n0(ix.0)
] t
0 “ 1 ’ re Fggwn ’
[ 1
af O rel
o lal |’ '
L lef?

This piecewise analytic transformation also preserves the recovery formula

Y (ny, nt) =2i Jim ARM G 1, Do (35)
—0Q

Some algebraic manipulations of the jump matrix are now in order. First, we recall 6(; x, 7) :=
—i@(X; x, ) from (12) and then note that the elements of the diagonal jump matrix supported
on [ satisfy

el al’_ 1 af
= =| =€, p:=—1log|l+|—=| | >0. (36)
le1]? 1 27 c1
Now, set
c c
K= f >0, v:i=arg (f) , 37
where arg(-) denotes the principal branch, and observe that
ces Gl _omp
W = E |c|2 =Ke e . (38)
Thus, we can rewrite the jump matrix (34) as
_1 —iv ,—2mp ,—2in0(A;x,7) .
ke Ve e . nerin
0 1 P
I 1 0
t
—kelV2inf 0. T) 1] ’ relyy,
Vil x, o =1T 1 0 . (39)
relp
_Kgive—aneQinQ(k;x,r) 1 ’ down ’
_1 Kefivef2in9(k;x,r) i e Fout
0 1 ’ down ’
e-2”P”3, rel.
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By Lemma 1, all of the jump matrices except for the diagonal jump matrix 2773 supported on
I decay exponentially fast to the identity matrix as n — oo away from the critical points A" and
1) The asymptotic analysis now closely follows [2, §4.1].

2.1. Parametrix construction

We eliminate the constant jump condition on / and deal with the non-uniform decay near the
points A and 1® with the aid of a global parametrix TP ().). First, define an outer parametrix
by

(40)

=20 (x, 1) ipos
r=2@(x, 1) '

TG0 x, 1) = (

where the powers =i p are taken as the principal branch so that the locus where (A — A(D)(A —
A@)~1 g negative coincides with the interval 7. It is clear that T (A: x,T) =1+ OG 1 as
A — oo and it can be easily verified that T (%; x, ) is analytic for A in C \ I, satisfying the
jump condition

TO0; 1) =T (s x, )€™, rel. A1

We now move onto constructing inner parametrices that will satisfy the jump conditions
exactly in small, n-independent disks D1 and D® centered at A" and A, respectively. Before
proceeding, we note that

0"V x, 1) <0 and 0"(A?;x,7)>0 (42)

for (x, ) in the algebraic-decay region. To see this, recall from §1.1 that the interval 0 < x < %
with T = 0 is always contained in the algebraic-decay region. Direct calculation shows that

48(A — )

X —a)? 4+ By —28 _
(a2 4 B2 —2ar +22)2

liq. ey

(43)

(recall £ = o +ip). From the first equation it is immediate that A(D < 0 < 1@ for T = 0since 0 <

X < % Then the second equation shows that 6” (1) < 0 whenever A < « (and so, in particular,

0" (A1) < 0) and that 6” (1) > 0 whenever A > « (and so, in particular, #”(1?) > 0). Now
O(A; x, T) is continuous for real A, x, and t (with the exception of an additive jump of 2mi
across the logarithmic branch cut), and thus the only way the concavity at the critical points can
change is if two critical points coincide. However, this condition is exactly the boundary of the
algebraic-decay region, and thus (42) holds true everywhere in the algebraic-decay region.

Now, recalling that 9’()»“; x,7) =0 and 9/(A(2); x,T) =0, we define the conformal map-
pings f1(A; x, ) and f2(A; x, 7) locally near A = AL and A =21 @, respectively, by

A x,0?:=200Y; x, 1) —6(; x,7)) and

44
L0, =200 x, 1) — 00,2 ¢, 1)), @
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where we choose the solutions satisfying fl/(k(l); X, 7) <0 and f2/()\(2); X, T) > 0. Now intro-
ducing the rescaled conformal coordinates

qi=n" i), i=n'2H0sx, 1) (45)

and taking the rotation by m performed by f into account, the jump conditions satisfied by

U(l)(k;x,r):=R["](/\;X,r)e_i"e(’\(l);X’f)"3e_i”"3/2[Ol (1)] reDd®  46)

and by
UD (s 1, 1) =R x, 1)e 00D 00msg=ivos/2 5 e p@ (47)

have the same form when expressed in terms of the respective conformal coordinates { = ¢ and
¢ = ¢ and when the jump contours are locally taken to be the rays arg(¢) = £m /4, arg(¢) =
437 /4, and arg(—¢) = 0. Moreover, the resulting jump conditions coincide precisely with those
in Riemann-Hilbert Problem A.1 for a parabolic cylinder parametrix in [12, Appendix A]. See
Figure 9 in [12] for the relevant jump contours and matrices. Note that the condition «? = ¢>™” —
1 for consistency of jump conditions at ¢ = 0 holds. We now let U(¢) denote the unique solution
of the Riemann-Hilbert Problem A.l in [12, Appendix A]. Here U(¢) is analytic for ¢ in the
five sectors |arg(¢)| < %n, %n <arg(¢) < %n, —%n <arg(¢) < —;lln, %n < arg(¢) <m, and
—m <arg(l) < —%n. It takes continuous boundary values on the excluded rays and at the origin
from each sector. Furthermore, U(¢)¢?7% =1 4+ O(¢~") as ¢ — oo uniformly in all directions
and from each sector. We also have that U(¢)¢ 7?3 has a complete asymptotic series expansion in
descending integer powers of ¢ as { — oo, with all coefficients being independent of the sector
in which ¢ — oo [12, Appendix A.1]. In more detail, as given in (A.9) in [12], we have

0 r(p,x>]+[0<;—2> 0@

_q(pv K) 0 O(é‘_?’) O(;——Z)] ) é‘ — 00, (48)

. 1
1po3 __
U)¢ —H+—2i§ [

where

enp/Zeipln(Z) ( ) 2I7
N ,K) 1=
«Tap) 17

r(p,k):= 2674 (49)

r(pK)
We introduce the inner parametrices TV (1) and T by

TO0 x, 1) =YV 05 x, DU fi(s x, 1)) [(1) _01} ¢iv03/24in00 Vs oy 5 (@)

(50)
and

TO0: 1. 1) = YO0 x. DURY2 o0 x, 7)€"/ 2000003 5 e p@ - (51)

where the holomorphic prefactor matrices Y (1) and Y® (1) will now be chosen to match well
with the outer parametrix T on the disk boundaries 9D, j =1, 2. Define
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m_y \7”
Hmu;x,r)::(x@)—Af"!"’ﬁ(—A A) [0 1] reD,

A -1 0
Sk x, o) (52)

» A1)\ PR
H<2>(A;x,r>:=<A—A<“>”"”(7]3( f@)) ., 1eD®@.

Here all the power functions are taken as the principal branch, and hence HD (L) and H® (1)
are holomorphic as matrix-valued functions of XA in their domain of definition. Recalling the

transformations (46) and (47), note that the outer parametrix T (1) can be expressed locally
as

(©0) 11 —in0(0. Moy —ivaz2| 0 1
T (M)e e [_1 0

(53)
_ n—ipa3/2e—iua3/2e—in9(x<l>)a3H(l)(/\)Cfipos’ rep®
and
() ()L)e—ine(;x@))@e—ivo3/2 _ nipa3/2e—iva3/2e—in9(x<2>)a3H(Z) (A){{i’m, reD®. (54)
In light of these formulae, we choose
Y(l)(k) _ Y(])(A; X, T, 1) = n7ipcr3/2efiv<73/287in9(A(l);X,r)U3H(1)(k; ) (55)
and
Y® 0) = Y@ (b x> Ton) 1= 2iP03/2 p=iv03/2 ,—ind (L2 x D)o g (2) (s %, 7), (56)

noting that both of these matrix—valu;:d functions remain bounded as n — oo and YV (A; X,T)
is a holomorphic function for A € DY), j =1, 2. Then from (50) and (53) it follows that

TO )T (1)

57
— n—iPU3/ze—iV03/26—i”9()t(]))03H(1)()\‘)U(Cl)glip‘UH(l)()L)—1ein@()x(]))U3eiva3/2nipa3/2 57)
for A € 9DWM | and from (51) and (54) it follows that
TOW)T (1) 7!
(58)

_ nip(r3/267iva3/2€7in8(k(2))03 H? ()»)U({z);ép@ H? (k)fl ein(-)(k(z))cr3eiva3/2n7ip<73/2

for A € D@,
Finally, we define the global parametrix T"(%; x, ) by

TOM; x, 1), reDW,
T x, 1) = {TP0; ¢, 1), 2eD?, (59)
T(OO)(A; X,T), otherwise.
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Note that T"1(x; X, T) is a sectionally analytic function of A, the determinant of T (), X,T))
is identically 1, and TV(A; x, 1) =1 + O(A~!) as A — oo.

2.2. Error analysis and asymptotics

We proceed by quantifying the error made in approximating R"(%; x, v) by the global
parametrix Tl (A; x, t). Consider the ratio

WG ¢, 7)== R G x0T s ¢ o7 (60)
Now W™ extends as a sectionally analytic function of A to C \ (3D U aD® U I'yy), where

Tw:=T\ (D<1> U 1D><2>) — (R U U UTSE )\ (D<1> U D<2)) (61)

p down

denotes the portion of I" across which W!"! has a jump discontinuity. Take D" and 9D@ to
have clockwise orientations. Thus, Wl satisfies a jump condition of the form

WG, D =W oV s 1), A edD® uaD® uTy. (62)
Since T (1) defined in (40) is analytic across any arc of I'w, we have

Vil Gs x, D =Wo (i x, 07 W (s x, 1)

(63)
=T 0 x, DR 1, O RGOS 1, OT®0; ¢, 07, LeTw,
where the product R[_"]()L; X, r)’lREf] (A; x, T) coincides with VK']()»; X, T) given in (39). Since
the exponential factors e*2"0(:xT) in (39) are restricted to the exterior of the disks D! and
D® in (63), and T (X; x, 7) is independent of 7, there exists a constant d = d(x, t) > 0 such
that

sup [V (s x, 1) =Tl = O "%™),  n— oo, (64)
rel'w
where | - || denotes the matrix norm induced from an arbitrary vector norm on C 2. On the re-

maining jump contours aDM U D@ for WM (1) (see (62)), we have
Vil x, D =TY 0 0, T 0 x, 1)~ AedbV, j=1,2. (65)

Now, observe that the factors conjugating U(;,‘)g]l:p %, j=1,21in (57) and (58) all remain
bounded as n — 0o. Recalling that ¢; is proportional to n~12 for z e DY, from (48) we obtain

sup VW s 1, 0) =T = 0%, n— oc. (66)
2edDDUID @

The jump condition (62) implies that
W) — Wi Gy = wirl o vl Gy — T, (67)
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and W, 1) =14+ O~ as & — oo since both R (; x, 7) and T (A; x, )~ ! are
normalized to the identity as A — oo. Therefore, it follows from the Plemelj formula that

1 W s x, D (ViglGss ¢, o) — T
W["]()»;X,'L')Z]I+—. f 2 x, DV (85 x5 7) )ds,
2mi s —A

ADDUID AUy (68)

reC\ (DD UIDPury).

Precisely as in [2, §4.1], one can let A tend to a point on the contour aDM UID®@ UT'w from
the right side with respect to the orientation to obtain a closed integral equation for W_(}; x, t)
defined on aD U dD® U I'yy away from the self-intersection points. The resulting integral
equation is uniquely solvable by a Neumann series on L2(3D") U dD® U I'yy) for sufficiently
large n, and its solutions satisfy the estimate

WOy, ) —T=00 3, n— oo (69)

in the L2(dDM U dD® U I'yy) sense. We refer the reader to [2, §4.1] for the details regarding
this argument. From the integral equation (68) we now extract the Laurent series expansion of
WU (; x, T) convergent for sufficiently large A:

l o
WHGs 1) =1 — %Zr" / WY (s 5, (Vi (s; x, 1) = Ds* 1 ds, (70)

k=1 aDmUID@Ury

for |A| > sup{|s|: s € DD UID®@ UTw).

On the other hand, T (X; x, ) is a diagonal matrix tending to the identity as A — oco. From
(35) and (60) it follows that

Y (ny, nt) =2i lim AW x, Do (71)
n—oo

This, together with the Laurent series expansion (70), yields the expression

[2n] 1 P ],
W (nx,nt)z—; [W— (S7 er)]ll[VW (Sa Xar)]lzds

aDMUID @ Uy (72)

[ W oIV ke - Dds
aDMUID@ Uy
Now, because the domain of integration in the integrals above is a compact contour, the L'-
norm on 9D U IDP U 'y is subordinate to the L2-norm. Therefore, combining the L>®-type

estimates (64) and (66) with the L-type estimate (69), we arrive at
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1
Yy ne) = —— / [V (s DI2ds + 0™, n—o0.  (73)
14
aDMUID @ Ul'y
Here the error term is uniform for (x, t) chosen from any compacta inside the interior of the
algebraic-decay region. Moreover, the same formula holds with a different error term, of the

same order, if we replace the integration contour dD" U 9D U 'y with dDD U D due to
the exponential decay in the estimate (64):

w[znl(nx,nt):—% / [Vg,'(,](s;x,t)]lzds—i—(’)(n_]), n — 0o. (74)

aDMDyUsD @
Using (57) and (58) together with the normalization (48) in (65) lets us write, as n — o0,

—ipe—ive—2in9(A(l))

(1) 2 -1 )
2in'/2 f1 (1) qg(HY M)]12)*+0mn™ "), xredD (75)

[n] _n
[Viy M)]i2 =

and

ipe—iue—zino(x@))

2in'72 fr(0)

Vil 1 =2 rHPWLD* +0@™), redd®,  (76)

where r =r(p, k) and g = q(p, k) are given in (49), and both of the error estimates are uniform
on the relevant circles. As f;(1) has a simple zero at 1) and the matrix elements of H) (%)
are analytic in D), j = 1,2, the integrals of the explicit leading terms in (57) and (58) can be
evaluated by a residue calculation at A = A(1 and at A = A?), respectively. Doing so gives

gD AD; ¥, )112)?

e
Y2 (ny, nt) =
nl/2 1 105 x, 1)

ipe—2i110(k(2);x,r)

—iv |:nipe2in6()»(l);x,t)

n

+Wr([H(2)(W); X I)]“)z} +0m™h, n— +o.
2 ) )

(77

To get a more explicit formula, note first that by the definitions (44) we have

AW x, 1) =—/=0"0D; x, 1) and AP x, 1) =1/0"0D; x, 7). (78)

Next, we calculate the terms [H"” (1(D)]15 and [H® (A®)]; in (77) explicitly. Applying I’ Hopi-
tal’s rule in the definitions (53) and (54) gives

HO G0 = @ _ 3 0y=ipes (=L )"0 1 70
femy) -1 o

and
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H® ()»(2)) — ()\(2) _ )L(l))ip% <f2/(k(2)))ipn3 ) (80)

Thus, we have obtained

q([H(l)()\(l))]lz)z _ _(A(Z) 3 A(l))—ZiP(_Q’/(A(l)))_ip q

FiD) J=6"0.0) "

(81)
r((H® 0.@)]y)? @) _ 5 (1)y2i ' 4
S AR I DY e Y ipg" )\(2) [ —
£6.2) ( RN

Finally, since p > 0 and « > 0, it can be deduced that g(p, k) = —r(p, k)* using the identity
given in [13, Equation (5.4.3)] for the modulus of the gamma function on the imaginary axis.
With these at hand, one can check that |r| = |r(p, k)| = «/2p, and consequently Equation (77)
can be rewritten as Equation (14). This completes the proof of Theorem 2.

Since the completion of the first draft of this work, one of the authors and Miller showed [4]
that Theorem 2 holds for a more general, continuum family of solutions {g(x, t; G, M)} -0 (in
the notation of [4]) of the focusing NLS equation (1), which includes fundamental rogue wave
solutions studied in [2,4] as well as a special case of multiple-pole solitons considered in this
work with the choices

1 1 1 I 1 -1
=S l= = -1 = —
G:=S§ _ﬁ[—l 1i| and G:=8§ ﬁ[l | i|, (82)
which corresponds to setting ¢ = ¢ = 1 and ¢] = —c; = 1, respectively, along with § =i.

3. The non-oscillatory region

We now study the non-oscillatory region. In this region the leading-order solution arises from

a single band in the model Riemann-Hilbert problem. To see this it is necessary to introduce a so-

called g-function, a standard technique in the asymptotic analysis of Riemann-Hilbert problems

(see, for instance, [8,11]). Define g(A; x, t) as the unique solution of the following Riemann-

Hilbert problem. Recalling the definitions of the real numbers A" < A from Theorem 3, we
take the branch cut of the function

A—E*
)i log ( ) (83)

r—=§

appearing in the phase ¢(X; x, t) (cf. (3)) to be a Schwarz-symmetric arc X. which connects
A =& and A = &* while passing through the midpoint of A’ and 1, which will be derived in
more detail later on.

Riemann-Hilbert Problem 3 (The g-function in the non-oscillatory region). Fix a pole location
£ € CT, a pair of nonzero complex numbers (c, c2), and a pair of real numbers (x, 7) in the
non-oscillatory region. Determine the unique contour ¥ (x, t) and the unique function g(}; x, )
satisfying the following conditions.

Analyticity: g(}) is analytic for A € C except on X, where it achieves continuous boundary
values. The contour X is simple, bounded, and symmetric across the real axis.
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Jump condition: The boundary values taken by g(}) are related by the jump condition
g+ +g-(N) —201)=-2iK, AreX, (84)
where K = K (x, 7) is a real-valued constant to be determined. Furthermore,
Ne@) —g+() =NR(eR) —g-(1) =0, reX. (85)
Normalization: As . — 0o, g()) satisfies the condition
=0 (rl) (86)

with the limit being uniform with respect to direction.
Symmetry: g(}) satisfies the symmetry condition

g =—g("*. 87)

We now solve Riemann-Hilbert Problem 3 by first solving for g’(1). Note that the function
g’ (A) satisfies the jump condition

. . 2 2

and the normalization
=0 (,\—2) . A o0 (89)

Momentarily suppose that the contour ¥ is known and has endpoints a = a(x, t) and a* =
a(y, t)*. We orient ¥ from a* to a. Define

R(A) := ((h —a)(h —a*))!/? (90)

chosen with branch cut ¥ and asymptotic behavior R(A) = A + O(1) as A — oo. Then, by the
Plemelj formula we have

RGO [ 2ix +4isT+ 25 — 2,
g/()x)z 27(”)/ s—& s Sds. (91)
x

Ry(s)(s =)

These integrals can be calculated explicitly via residues by turning the path integral along X into
an integral along a large closed loop, yielding

oy — KB RY S RG) tix 2t —— — . (92)
ST RENE -1 REE - X —E A—E

Imposing the normalization condition (89), we require the terms proportional to A° and A~! in
the large-) expansion of (92) to be zero:
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i i

o) : * - —0, 93
1 x+r(a+a)+R(§*) RE) 93)
o0 %(a fat) 4t G(a ta*)?— aa*) 4 R’é*) _ R’é) —0. (94)

Multiplying (93) by £* and using it to eliminate % in (94), we have

(5 ) (352 P—( ')S)— 2 93)
X\ et ) e\ gs — P @i = G GBSt @B

where we have written £ = « 4 i and defined
S:=a+a*, P:=aad". (96)

Square both sides of equation (95) and clear the denominator. Noting that the quantities x, 7, S,
P, o, and B are all real, we see that the imaginary part is zero if

b 8(a + BA)T(ST + %) + (S —2a)(3St +2x)?
B 4t(3ST 4+ 2x — 2a7) '

o7

Plugging this value for P into the real part gives a septic equation for .S, which we do not record
here. This septic equation has three complex-conjugate pairs of roots and one real root, which is
S. We can then compute P from (97), and finally compute a from the known values of P and S.
Since g’(A) is integrable at A = 0o, the function g(A) is now defined by

A

g = / g'(s)ds, (98)

o]

where the path of integration does not pass through X. Although this determines g as the unique
antiderivative that satisfies g(1) = O(A~!), it is more convenient to determine the value of the
(integration) constant K that appears in the jump condition (84) by a different calculation. The
very same g-function and its different variations recently played a central role in the asymptotic
analysis of high-order rogue waves in a work [4] by one of the authors with Miller, and we will
use the approach taken there. Before doing this, we proceed with finalizing the choice of X.

From (91) we see that redefining ¥ changes the branch cut of R()) but only changes g'(1)
(and thus g(A)) by an overall sign. Therefore, the choice of ¥ does not change the contours on
which R(p(X) — g(1)) = 0. We thus redefine X to be the unique simple contour from a* to a on
which R(p (1) — g(A)) = 0 and for which Ji(p(A) — g(1)) is positive to either side in the upper
half-plane and negative to both sides in the lower half-plane. The following lemma shows that
such a choice is possible and furthermore gives the necessary facts about (1) — g(1) we will
need to carry out the steepest-descent analysis.

Lemma 2. In the non-oscillatory region, there is a domain Dy, in the upper half-plane with the
following properties:
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o Dy contains &, is bounded by curves along which R(¢(X) — g(1)) =0, and abuts the real
axis along a single interval denoted by (A\(V, 1),

o N(p(h) —g) >0 forall A € Dyp.

e One arc of the boundary of Dyp is the contour Lyp :== X N C* from AV to a, along which
R(pA) — gQ)) > 0 for any A sufficiently close to either side of Lyp.

o The remaining boundary of Dyp in the upper half-plane is a contour from a to 1@ (denoted
Lup) along which R(e(X) — g(A)) < 0 for any A in the exterior ofD_up but sufficiently close
0 Dyp.

The domain Dgown in the lower half-plane, defined as the reflection through the real axis of Dyp,
has the following properties:

e Dgown contains &*, is bounded by curves along which R(@(L) — g(A)) = 0, and abuts the
real axis along the same interval as Dyy.

e N(p(A) —gr)) <0 forall A € Dyown.

e One arc of the boundary of Dgown IS the contour Lgown := X N C~ from a* to A along
which R(p(X) — g(A)) < 0 for any X\ sufficiently close to either side of gown-

e The remaining boundary of Dgown in the lower half-plane is a contour from 1 to a*
(denoted T qown) along which R(p(A) — g(A)) > 0 for any A in the exterior of Dgown but
sufficiently close to Dgown.

Proof. From (3) and (92) we see that

’ ’ . 1 1
vR s =kG (2” RENE —n | REE - A)) | o
From here we see that ¢’ (1) — g’(1) has two square-root branch points at a and a*. Setting the
term in parentheses equal to zero and rewriting as a quadratic expression in A, we see ¢’(A) —
g’ () also has two other zeros that we label as 2D and A@ . The fact that AV and A® must be
real, as well as the topological structure of the signature chart of f(¢(A) — g(1)), follows from
analytic continuation from the boundary curve £aN (at which g(A) =0). See Fig. 9. O

We now revisit the jump condition (84) and proceed with the determination of the constant
K. Note that the endpoints A = a and A = a* of X have already been determined in the earlier
construction. Recall that g(1) is analytic for A € C \ X with g(1) = OO~ as A = oo. The fact
that £ is contained in the region Dyp and that Xy, is a subset of the boundary of Dy, ensures that
¥ N X, = @. Thus, we may proceed as in [4] and express g(A) in the form g(A) = R(A)k(N),
where k(1) is necessarily analytic for A € C \ ¥ with continuous boundary values except at the
endpoints A = a, a* where g()) is required to be bounded. Then, requiring k(1) = O(LA~2) as
A — 00, (84) implies that

L _ 2p(0) - 20K
+(A)—k,(x)_W, reT, (100)

hence the Plemelj formula gives
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Fig. 9. Signature charts of R(p(X; x, 7) — g(A; x, v)) for & =i in the non-oscillatory region, along with the critical
points A and 2@ and the band endpoints a and a*. Top: x = 1.65, T ~ 0.8983. Center left: Positions in the (x,

7)-plane relative to the boundary curves. Center: x = 1.65, t = 0.65. Center right: x = % T= %E Bottom: y =1.65,
7 ~(0.3488.

1 o) —iK

Enforcing the condition k(X)) = O("2) as A — oo in the representation (101) results in the
condition

/ oM —iK o, (102)
Ry (M)

First, recall that R(A) =X 4+ O(1) as A — oo. Thus, for an arbitrary clockwise-oriented loop C
surrounding the branch cut ¥ of R(A) we can obtain by a residue calculation at A = oco:
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/ ar__ 1y§d—’\ = —ir. (103)
R0y 2L RO
p)) C

As the integral above is nonzero, the condition (102) successfully determines the constant K.
The remaining integral

: 2 log (5=
/ 4% dx:/—l(xwr” )al/\+/—(A E)dx (104)
> >

J R Ry(0) Ry(M)

in (102) can also be computed similarly. Using the expansion

1 1 1
RO =171+ E(a +a A2+ 1 <(a +a"?*+ E(a — a*)2> AT +00TY, A — oo,

(105)
we find that

[(XA+TA2 1 1 1
/%mzn [Ex(a +a)+ T ((a+a*)2+ S —a*)2>]. (106)
Next, to evaluate the second integral on the right-hand side of (104) we again let C be a
clockwise-oriented loop surrounding the branch cut ¥ of R(A) but excluding the branch cut
3. of the logarithm in the integrand. Then, since the integrand is integrable at A = oo, letting C’
be a counter-clockwise oriented contour that surrounds X but that excludes X yields

R+ (M) ) R()) T2 R())
C C’

/log(%)ﬁ_l%%dk_l%%ﬁ, (107)
)

Now, recalling that R()) is analytic on X, we may collapse the contour C’ to both sides of X
and use the fact that the boundary values of the logarithm differ by 277 on X to obtain

log (=%
fMdk:iﬂ’/Ld}\.. (108)
J Ri()) R(2)

e

Combining (106) and (108) gives

/ OO gomn|Sx@ta+ e (@+a + - *)2) ti dex 109)
R, ) =7 Zxa a 41 a+ta 2a a im Ry (
b

P

which, together with (104) results in

1

md,\, (110)

1 * 1 2 1 *\2 .
K(x,71)= 5X(a+a)+zt<(a+a) +§(a—a)> +l/

e
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which is real-valued.

We are now ready to carry out the first Riemann-Hilbert transformation. Let the domain D be
the union of Dyp, Ddown, and the interval M, 1®) Note D is bounded by Zup UTyp U T down U
Y down. Recall the function NI"1(%) satisfying Riemann-Hilbert Problem 2 and make the change
of variables

NG x, Vs x, 1), AeDon DS,
0" ¢, 1) = ANIG; x, 1)V Os ¢, 07!, AeDgn D, (111)
NG x, 1), otherwise.

Now O"l(3) satisfies the same Riemann-Hilbert problem as N["1(1) with the jump contour d Dg
replaced by d D. Next, we introduce the g-function via

P[n](k; X, T) = O[n]()»; X, .L,)e—ng()»;x,r)m. (112)

The jump condition for P"}(3) is now

PL’_I](A) — P[_"]()\)e*"(w()»)*g— (1))038*1 en(fﬂ()u)*g-#()»))@ . Ae€adD. (113)

We define the following contours:

. Eggt runs from A1 to ¢ in the upper half-plane entirely in the region exterior to D in which
R(e() — g (1) > 0.

° 2{;}) runs from AV to a entirely in Dyp (so N(e(A) — g(A)) > 0), and can be deformed to
Xyp without passing through &.

o 32 runs from a to ®) in the upper half-plane entirely in the region where %i(¢(A) — g (1)) <
0.

° FHE) runs from a to A® entirely in Dyp (s0 NR(@(A) — g(X)) > 0), and can be deformed to
I'yp without passing through §.

o XU (oriented from a* to A1), B = (oriented from a* to AV), TQX  (oriented from A(?

down
out

to a*), and Fiﬂ)wn (oriented from 2@ o a*) are the reflections through the real axis of 2up s

in out in ;
Xup» Tip » and ', respectively.

Define the following eight domains:

e K SI‘;[ (respectively, K Lil?)) is the domain in the upper half-plane bounded by Eggt (respectively,

EL‘;)) and Xyp.
. Lﬁg‘ (respectively, Liur;)) is the domain in the upper half-plane bounded by I

FL‘;)) and I'yp.

out

up (respectively,

out in out in . . out in out
° Kdown_’ K fown® Ldown» @04 Ly, are the reflections through the real axis of Kup s Kup, Lup ,
and L, respectively.

up’
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A

yhout

‘down

‘)F‘;‘;'
(2)
‘)Fzgsm

-1 0

Fig. 10. The domains (left) and contours (right) used in the definition of Q["] () in the non-oscillatory region.

See Fig. 10. On ¥ we will use the following alternative factorizations of S~

We open lenses by defining

j}[ 0
1 0 0
-1
2 c%‘

lel

)
Iel

ol

0

I\?*l—q* —

[1 2000 X, 1) =g (s x,7)
PGy, | L T ,
0 1

[ _clp=2nlp(hix.)—g0ix.m) ]!
PG X, T) ¢
0 1
ol i 1 0
PO o pnieoix 500t 1 |
K y
o 1 0
PRGSO o panpinm—seaxy 1|
L ¢
Q" x. 1) = (1 G p=2n(pGix.m)—g(hix.1)
PG 1, 1) g ,
0 1
r -1
P ¢, 1) ! 0
X —Q2nleix, =g 1) ’
1
o 1 0
PR D _g pmeoim-saxon |
L o
(1 G 2motixn—g0irmn]
P ¢, 1) ‘i ,
0 1
Py, 1),

349

lel _a
o 2 ! 2 (use for A € Zyp),
= 0 0 1

1] (use for A € Zgown)-

in
A€ Kup,

out
re Ky,

re Kin

down’

Kout

down’

IS

in
A€ Ly,

out
reLy,,

AeLin

down’

= LOllt

down’

otherwise.

(114)

(115)
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Using (113), (114), and (28), we see that Q"1(%) satisfies the jumps Q! (1) = Q[jl](k)V[(;'](A),
where the jumps on the various contours are given by

S ' 0 ' |C_C2|e—2mK 5 : 0 | %e—ZmK . % 0
p _I%\EZMK 0 ’ own _%ezmk 0 > up 0 % ’
CT * . _ _
& 0 . _CL,—2n(p—g) 1 —%e=2n(e—g)
. Ic| in. |1 € out ,
Fdown |:0 ¥:|, Eup- |:O 2 | i|, Zup . |:0 2 . i|’
1
. 1 0 1 0 . 1 2 —2n(p—g)
* . = €
Eh%wn:[%ezn(w—g) o}’ Zgown - [Cleznwm 0}7 Tup [ e ’
) 3 0 1
3
1 0 ; 1 0 1 Qe2n(p-8)
Moy [_g_zeh(wfg) 0]» Tdown * [_%92n<w—g) o}’ Tdown ° [0 T :
1 1

(116)
Lemma 2 shows that, except for the four constant jumps, all of the jumps decay exponentially to
the identity for A bounded away from a, a*, 2D and 2@, We are thus ready to define the outer
model Riemann-Hilbert problem.

Riemann-Hilbert Problem 4 (The outer model problem in the non-oscillatory region). Fix a
pole location £ € C™T, a pair of nonzero complex numbers (cy, ¢2), and a pair of real numbers
(x, 7) in the non-oscillatory region. Determine the 2 x 2 matrix R (; X, T) with the following
properties:

Analyticity: R (); X, T) is analytic for A € C except on Xyp U Zdown U l'up U L'down, Where
it achieves continuous boundary values on the interior of each arc.

Jump condition: The boundary values taken by R (1; x, 7) are related by the jump con-
ditions RS_OO) A x,7)= R(_OO) A x, r)VifO) (A; x, T), where

B 0 |C_C2|e—2inK
_ e 2inkK 0 s A€ Zup,
el
r 0 %e—zinK
c
_MEZMK 0 , A€ Zdown,
(00) 4. _JL o
a rely
C_] El pa
L 0 [
- 0
|(C)| L*:| , A € Ugown.
L (91

Normalization: As » — 00, the matrix R(> (A; x, T) satisfies the condition
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R0 x,0)=1+00™" (118)
with the limit being uniform with respect to direction.

The first step in solving for R ()) is to remove the dependence on ¢ and c;. Define the
function

ko [ o () ., / ),

A) =
TW=%0 ) Ros-» Ri(5)(s —2)
U] E lown
’ ) (119)
le]
+ / leele) () ds + / loelE) (%) ds
R(s)(s — M) R(s)(s — A)
up Cdown
Then f(A) satisfies the jump conditions
J+ ) + f-(A) = —log (Lﬂ> A€ Xyp,
2
c*
f+()‘)+f—()‘)=_10g (ﬁ)a A € Zdowns
(120)
c
f+0) = f-(0) = —log (ﬁ) . hely,
|c|
f+()\)_f—()‘) —IOg (C_*> A € I'down,
1
and the symmetry
FO) == N" (121)
We also have that f(A) is bounded as A — oo, and
c le|
T 2mi R (s) Ry (s)
up Zdown
(122)
. / 10g<\cll)d N / log<m)d
———=ds s
R(s) R(s)
Fup Cdown
We note f(00) is a purely imaginary number. Introduce
S(L) := el IBRO) (1)~ M3, (123)

Thus, we have S+ (L) =S_(A)Vs(A), where
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I 0 lel o f+ )+ f- () p=2inK
C
G (I 2ink : 0 ¢ A E R,
L ¢
0 G o fr ()1~ (1) g=2inK
lel LEZ
el = (1004120 g2inK 0 ’ down:
_ )L o
VSO = Flel (e 00-7-00) 0 (124)
c
. & oS =1-0 | A € Lup,
L c
I %ef(ﬂr(/\)fff(k)) 0
c
0 lel o fe (== () | A € Ldown-
L ol
From the conditions (120) for f (1) we see the jump simplifies to
S (L) =S_(n)e inKos [_01 (1)} ko i ex. (125)

Along with the normalization condition S(1) =1 4+ O(1~!), this specifies that S(1) must be

Yy +y)Th =iy +iyn)!

S(A) = —inKo3 2 2 inKU3’ 126
Ay =e R —iyWT ymEyw | (126)
2 2
where
A —a 1/4
() = (/\ *) (127)
—da

is cut on ¥ and has asymptotic behavior y (A) = 1 + O(A~!) as A — oo. Thus, we have

YR FYWT o) pee YR YO sy s
R(®) ) = e inKo3 2 i 2i . oinKos
YW=y rorrree YR FYRT oyt

2i 2
(128)

To complete the definition of the global model solution R()), we need to define local paramet-
rices RO (1), R@ (1), R@ (1), and R@") (1) in small, fixed disks DD, D@ D@ and D@
centered at AV, @ 4, and a*, respectively. These local parametrices satisfy two conditions:

e R (1) satisfies the same jump conditions as Q"I(1) for A € D®), where o € {1,2, a, a*}.

ROM) RO W(I+Om=12)), 1edD®, wheree (1,2},

° —
ROWI+0m"), i1ecdoD® where e € {a,a*).

While we will not need their explicit form, the parametrices R ) and R® (1) can be con-

structed explicitly using parabolic cylinder functions (see, for example, §2), while the paramet-

rices R®D'(1) and R@ (1) can be constructed explicitly using Airy functions (see, for example,
[71). Then the function
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RD®), reb®,
R@M), reDb®,
R} :={R@®), reD@®, (129)
R@I (L), reD@),
R (1), otherwise

is a valid approximation to Q"J(1) everywhere in the complex A-plane as n — oo. In particular,
we have

Q") = (1+0m™ 1)) RG). (130)

Working our way through the various transformations, we see that, for |A| sufficiently large,

A—EF\" A—E"\"
[M[’l](k;nx,nf)]m:()\_i) [N["](K;X,f)]u:(k_i) [0 (x; x, a2
A — EX\" ) A —EF\" .

) e (IR Gy, D1z + O™

—£*\"
) e X D= f (A%, 1) f(003x,7)

A
. . -1
y <V()»,x,r)—y(k,x,r) e_z,-nK(X,wO(n_l/z)).

2i
(131)
From
*
y)—y) = “—M 21007, (132)
AL —E*\"
( - _i ) _ 1400, (133)
and
e 18— [~ [(20) _ g=2f(20) 1 (5, (134)
Wwe See
lim A[M"(x;nx, nt)l2
A—00
_ a*(x,t) —a(x, 1) e—2f(oo;x,t)e—2inK(x.t) + C’)(n_l/z). (135)

4i
Along with (21), this establishes Theorem 3.
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4. The oscillatory region

Finally, we consider the oscillatory region. From the Riemann-Hilbert point of view, this re-
gion is distinguished by a two-band model problem. We begin by solving the following Riemann-
Hilbert problem for G(A; x, 7).

Riemann-Hilbert Problem 5 (The G-function in the oscillatory region). Fix a pole location
£ € C*, a pair of nonzero complex numbers (c1, ¢2), and a pair of real numbers (), 7) in the
oscillatory region. Determine the unique contours Zyp (X, T), Zdown (X, T), and I'mia(x, 7), the
unique constants 2(x, ) and d(x, 7), and the unique function G (}; x, t) satisfying the follow-
ing conditions.

Analyticity: G (1) is analytic for A € C except on Zyp U Xgown U 'mid, Where it achieves con-
tinuous boundary values. All three contours are simple and bounded. ¥own is the reflection
of Xy, through the real axis. I'mig is symmetric across the real axis and connects Xgown to
Bup-

Jump condition: The boundary values taken by G (1) are related by the jump conditions

G +G_(W)=200)+ 2, A€ Zyp,
Go()+G_ (1) =2000) — 2 =260) + Q. 1 € Sioun, (136)
GL(A)—G_(A)=d, AeTlnig-

Here 2 and d are purely imaginary constants. Furthermore,
N — G (W) =N(eR) —G_(1) =0, 1€ XypU Zdown U I'mig- (137)
Normalization: As . — oo, G()) satisfies
G =0(x") (138)

with the limit being uniform with respect to direction.
Symmetry: G ()) satisfies the symmetry condition

G(L) =—-GOH*. (139)

The symmetry condition immediately implies that d is purely imaginary. However, the fact
that €2 is purely imaginary is a condition on Xy, and Zdown-

Assume that Xy, and gown are known. Suppose Xy is oriented from b = b(x, 7) to a =

a(x, t) with J(a) > JI(b) and Zgowy is oriented from a* to b*. The band endpoints a and b are
uniquely determined by the conditions

G =00"", R =0. (140)
We now differentiate and solve for G’(1). Observe that G'(L) has jumps
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G, (W) +G_(A) =2ix +4irt + =i & A € Zup U Sdown (141)
and normalization
G'LN)=00"%, r— oo. (142)
Define
RO = (A —a)(A —a*)(A —b)(h —b*)'/? (143)

to be the function cut on Xy, U Zgown With asymptotic behavior R(A) = 224+ 00 as A — oo.
Note that if we define the symmetric functions

si:=a+a*+b+b*, sp:=aa*+ab+ab*+a*b+a*b* + bb*,

(144)
s3:=aa*b+aa*b* + abb™ 4+ a*bb*, s4:=aa*bb*,
then we can write
R = A —512% + 5027 — 530 +50) /2. (145)
By the Plemelj formula, we have
RO 2ix +4isr+#—ﬁ
G'(\) = _ / (146)
2mi Ry —2)
2:upUEdown
Similar to the calculation for g’(1) in §3, an explicit residue computation gives
. . 1 1 RO R
G'W)=ix+2itr+ - + - . (147)
A= A—&  REHE*-L  REE-L)

We now present a computationally effective method of determining a and b. Imposing the growth
condition G’(1) = O(A~2) leads to the following three conditions arising from requiring the
terms proportional to A, 1, and A~ in the large-A expansion of (147) to be zero:

i i

OM): 2 — =0, 148
W20 G~ mE (148)
O): x+71s R S S (149)
AT REN T mE)
—1y. X 3, i g
O ): 251+‘L’<451 52)4—%(5*) m(é)_o. (150)

These are three real conditions on the two complex unknowns a and b (the fourth condition will
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be N () = 0). Multiplying equation (148) by &* and plugging it into (149), we have

X + 751 —2r§*=—i€*_$. (151)
R(E)
Next, multiplying equation (148) by (£*)? and plugging it into (150), we have
X 3 ET-86ET+E)
S5+ (15%—52> — 27" = e (152)
Then, multiplying equation (151) by (§* 4 &) and equating it with (152), we have
3 1
sz=—s%+(—1—s*—s)ﬁwzss*—(s*mﬁ, (153)
4 27 T

which indicates that if s; is real then s; is real. Now use (153) to eliminate s, in (151) (here s;
appears in P3(£)). Take the real and imaginary parts to get two real equations on the three real
variables s1, 53, and s4. These equations are both linear in s3 and s4, so 53 and s4 can be solved
exactly in terms of s1. Thus, given s, we can determine s;, s3, and s4, from which the system
(144) can be inverted to obtain a and b. At this point we can define G (1) by

A

G ::fG/(s)ds, (154)

o]

where the path of integration is chosen to avoid Xyp U Zdown U I'mia. Finally, we choose 51 so
that, once a and b and thus G (1) have been computed, d := G (1) — G_(A) is purely imaginary
(here d is independent of X as long as A € ['yiq).

The final step in the definition of G(A) is the choice of cuts. Similar to the non-oscillatory
case, we note from (146) that shifting Xy, or Zqown only changes G (A) by at most a sign, and
so has no effect on the placement of the contours along which f(¢ (1) — G (1)) = 0. Therefore,
we redefine Xy, to be the simple contour from b to a along which 3i(p(A) — G(1)) = 0 and
R(p(X) — G(A)) is positive to either side. The symmetry condition (139) then forces Xgown
to be the reflection of X, through the real axis. We also choose I'yig (whose main role is to
restrict the integration path in (154)) to be the contour from b* to b along which R(p(X) —
G (1)) = 0. The fact that such contours exist along which R(¢p(A) — G(1)) = 0 is proven next
in Lemma 3.

Lemma 3. In the oscillatory region, there is a domain Dyp in the upper half-plane with the
following properties:

o Dy contains & and is bounded by a simple Jordan curve along which R(p (1) — G(A)) =0.
This curve contains the points a and b.

o N(p(L) — G(A)) > 0 for all . € Dyp.

e One arc of the boundary of Dyp is the contour Ty from b to a, along which R(p(X) —
G (1)) > 0 for any X sufficiently close to either side of Zyp.
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o The remaining boundary of Dyp is a contour from a to b (denoted T'yp) along which
R@A) — G)) <0 for any A in the exterior ofD—Llp but sufficiently close to Dyp.

The domain Dgown in the lower half-plane, defined as the reflection of Dyp through the real axis,
has the following properties:

e Dgown contains £* and is bounded by a simple Jordan curve along which R(e(L) — G(L)) =
0.

e N(eA) —G)) <0 forall & € Dyown-

e One arc of the boundary of Dggwn is a contour (denoted Xgown) from a* to b*, along which
R(@p(A) — G()) < 0 for any A sufficiently close to either side of Zdown-

e The remaining boundary of Dgown is a contour from b* to a* (denoted T gown) along which
R(@A) — G)) > 0 for any A in the exterior of Dyown but sufficiently close to Dyown.

Proof. The proof is similar to that of Lemma 2. From (3) and (147), we see

’ FoaN 1 _ 1
o= (fﬁ(sxs —h REHE —A)) | (159

From the first factor R(L), we see ¢’ (1) — G’ (A) has four square-root branch points and the same
branch cut as 93()). From the second factor we can clear denominators and see that ¢ (A) — G())
has exactly one critical point. By symmetry this critical point must lie on the real axis, and thus
on a curve on which ¢(1) — G(1) = 0. The topology of the level curves and the structure of the
signature chart of M (p(L) — G (1)) is deduced from analytic continuation from either Lno (the
shared boundary with the non-oscillatory region) or from Lgo (the shared boundary with the
exponential-decay region). O

The signature chart of R (¢(A) — G (X)) is illustrated in Fig. 11. We now begin our transfor-
mations of Riemann-Hilbert Problem 2. Define

NGOG x, VR X, 1), A € DoN (Dup U Datown)’s
O x. 1) = INIQ x, VR ¢, )7 A€ DS (Dyp U Daown) (156)
NG x, 1), otherwise.

The jump for Ol"1(%) lies on Zup U Zdown U Fup U Ldown. Next, define
PO x, 1) =0 x, T)e "M, (157)
The matrix P[”](k) has an additional jump on I'jyig, namely

oG ()=G_ () 0 emd
PKI](U=P[—"](U[ 0 (G (=G (1) =P"G) 0 end | *€TDmid

(158)
Analogously to the non-oscillatory region, we define the contours
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1.5
1 (d
0.5
- 0
—-0.5
-1
—1.5
-2 -1 0 1 2
X
1.5 1.5 1.5
1 1 Q@ 1
+ - + -
0.5 0.5 \ 0.5 a=b
0 0 0
b
-0.5 —0.5 —0.5
- X + — +
-1 —1 a —1
—1.5 —1.5 —1.5
—2 1 -2 -1 0 1 -2 1

Fig. 11. Signature charts of R(¢(X; x, 1) — G(A; x, ) for & =i in the oscillatory region, along with the band endpoints
a, a*, b, and b*. Top: Positions in the (), 7)-plane relative to the boundary curves. Bottom right: x = 1.65, T ~ 0.8983.
Bottom middle: x =2.1, t =0.9. Bottom right: x ~2.502, t =0.9.

° Eggt runs from b to a in the upper half-plane entirely in the region exterior to Dy in which
ReR) —GA) > 0.

° Eg;, runs from b to a entirely in Dyp (so 9(¢(A) — G(1)) > 0), and can be deformed to Xy,
without passing through £&.

° rggt runs from a to b in the upper half-plane entirely in the region where R(p(X) — G(1)) <
0.

° FL‘;, runs from a to b entirely in Dyp (so R(@(A) — G(A)) > 0), and can be deformed to I'yp
without passing through &.

o X% (oriented from a* to b*), " (oriented from a* to b*), %% (oriented from b* to

down . down down .
a*), and I"HTOWH (oriented from b* to a*) are the reflections through the real axis of Eﬁg‘, 2{1‘;3,
Typ's and T, respectively.

Also define the domains

) Kggt (respectively, Kli]‘l‘)) is the domain in the upper half-plane bounded by Zggt (respectively,
Typ) and yp.

° ngt (respectively, L{]‘})) is the domain in the upper half-plane bounded by I"
I'ip) and Lyp.

o K Kl LS

and Ly, respectively.

out

up (respectively,

out in ; ; out g-in 7 out
L and L, are the reflections through the real axis of K", Ky, Ly,
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b b: up
0 - OF ygue, e Dmia
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05 % ~05
“1 “Aﬁ -1
~15 ~15
05 0 05 0

Fig. 12. The domains (left) and contours (right) used in the definition of Q™ (1) in the oscillatory region. The contour
miq is denoted by a dotted line.

See Fig. 12. Then we define QM) by opening lenses as in (115) (except with g(X) replaced by
G(1)). The jump matrices for Q"!(1) are as follows:

C*
‘ 0 %enﬁ . 0 ﬁenﬂ
2:up . _c_ze_nQ 0 s down —Me_"g 0 ,
C*

2

lel 0 i 0 e—nd 0
1—‘up : |: 8 %:| , Tdown : |: ‘(c)‘ |L£*|:| s Tmid: |: 0 end:| ,
1

. | —e—2n(p—G) 1 —Ge2n(9=G) , 1 0
EIIJIL N |:O (&) 1 s Eﬁ;t : 0 (&) | s g:)wn = E—Lez"(‘”*G) ol

2

1 0 . S —2n(p—G) 1 0
1 2e ¢
Zgown - [E_Zezn(wa) O} ) F:ﬂa : [O ‘ | ) Fﬁgt : [_%ezn(q)G) 0} )

2
. 1 0 1 Qe-20(9-6)
down ° |:_C_562n(wG) 0}, Town * [o T -
C

(159)

Lemma 3 shows that all of the non-constant jump matrices decay exponentially fast to the identity
matrix outside of small fixed neighborhoods D@, D®, ]D)(“*), and D® of a, b, a*, and b*,
respectively. We therefore arrive at the outer model problem.

Riemann-Hilbert Problem 6 (The outer model problem in the oscillatory region). Fix a pole
location £ € C™, a pair of nonzero complex numbers (cy, ¢2), and a pair of real numbers (x, )
in the oscillatory region. Determine the 2 x 2 matrix R (1; y, 7) with the following properties:

Analyticity: R (1; x, 7) is analytic for A € C except on Zup U Zdown YU Tup U Tdown U T'mid,
where it achieves continuous boundary values on the interior of each arc.

Jump condition: The boundary values taken by R (1; x, 1) are related by the jump con-
ditions RSFOO)()»; %, 1) =R x, r)Vﬁ’o)()\; X, T), where
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| 0 %enﬂ rLeX
__%e_ng 0 ’ l.lp7
i 0 %6"9
¢ , AEX ,
__%e_ng 0 down
(00) (50
o
VR ()"7 X’ T) = 8 C_l k] )\- < 1—*llpa
L lc]
m el 0
lel rel
le| |° down>
L0 —J
e md
0 e”d:| ) A € Iid.

Normalization: As ). — 0o, the matrix R(°®) (A; x, ©) satisfies the condition
R G x, 1) =14+00"h
with the limit being uniform with respect to direction.

To remove the dependence on cy, c2, 2, and d, we define

RN —n2 —log (g)d N —n2 — log (%)
i R —n) Re ()5 —A)

up Zdown
C*
1
log (I CI>

(2

F) =

ds +

__—\a) gy f g
R(s)(s —A) R —A) R(s)(s —A)

up Cdown [mid

Here F()) satisfies the jump conditions

C
Fy+F_=—-—nQ—log (u) , A€ Zyp,

Cc2

o*
Fy+F_=—-—nQ—log (ﬁ), A € down,

C

C

Fy —F_=log (u), A € Typ,
C1
*

Cc
Fy— F_=log <|—1|), A € Lgown,
C
F_,’_—F_:—nd, )\.ermld

and the symmetry
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F(\) =—(F(A*)*.
As A — oo we have
F(L) = Fia+ Fo+ 00,
where
—n2—1o le] —n —lo,
—1 " Ele " e (@
o — / R GV / ATV
2mi Ry (s) R4 (s)
up Zdown
Ic|
Re) 2ot ) weoe-n?
up [down mid
and
Ic|
51 1 —nQ —log (%) —nQ — 10g<|c|)
Fp'=——F — — — "2 sds+ — 2 5ds
2 2mi Ry (s) Ry (s)
up Zdown
lc|
———2sds ———2sds ——————5ds
R(s) R(s) R(s)(s —A)
up Cdown Cimid
Define
S(A) = 0B RO (n)eF M3,
Then S(}) is analytic for A ¢ Xyp U Zgown, has jumps
0 1
S+ (W) =S_-(») 1 ol A € Zyp U Xdown,
and has large-A behavior
SWefs =1+ 007, 1 — oo

(164)

(165)

(166)

(167)

(168)

(169)

(170)

We now build S(1) explicitly out of Riemann-theta functions. See [5,6], for example, for
similar constructions. The function $R(}) defines a genus-one Riemann surface constructed from
two copies of the complex plane cut on Xy, and Xgown. We introduce a basis of homology cycles
{a, b} as shown in Fig. 13. Here integration on the second sheet is accomplished by replacing

PR (1) by —93(L). Define the Abel map as
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-1.5
- -1 0 1

Fig. 13. The homology cycles a and b in relation to the branch cuts of 93(A). Thin solid lines lie on the first sheet while
the dotted line lies on the second sheet.

A
AG) = 2mi ds 171)
o« —d . .
sl ] 90

We think of the integration as being on the Riemann surface (i.e. if the integration path passes
through a branch cut then 93(A) flips to —93(X)). The Abel map depends on the integration
contour and changes value if an extra a cycle or b cycle is added. In particular, adding an extra
a cycle to the integration contour adds 2mi to the Abel map, while an extra b cycle adds the
quantity

2mi ds

B=—@ —. (172)
s T R(s)
9§a RO 4
We define the lattice
A :=2mij+ Bk, j,keZ. (173)

Then the Abel map is well-defined modulo A. We compute

AL(M+A_ (M) =—-Bmod A, i€ Iy,
AL(A) —A_(M)=—-2mimod A, A€ T, (174)
Ar(M)+A_(A) =0mod A, A€ Zdown-

We now define two differentials w and A. Let

2wi  ds (175)
wi=——
§, o5 R(s)

be the holomorphic differential normalized so fa w =2mi. We also define

Age SIS A 17§A (176)
0T TRj O ST T P o)

a
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so that 9§a A =0. Here Ay is chosen to ensure that

A
J:= lim A—/A 77
A—00
a*
exists. We also set
U:= f A. (178)
b
Now [ a)“* A satisfies the jump conditions
At A
/A:—U—/A, A € Xyp,
a* a*

179
", N (179)
/A:—/A, A € Ydown
a* a*

(here we restrict the integration path to be on the first sheet). The Riemann-theta function defined
by (16) has the properties [13]

O(-N)=0@1), OG+271i)=00), OO+B) =ec 2Be00). (180)

Also ®(1) =0if and only if A = (in + %B) mod A. Then for any Q € C, the function

_O(AM) - A(Q) —ir — 5 — F1U)

~Fi [ A 181
OAM —AQ) —in—B) © ’ (80

qd):

is well-defined, independent of the integration path (assuming the paths in A(A) and f:* are the
same). The function g (A) has a simple zero at A = Q (to be determined). Consider the matrix

TO) =

OA) + A(Q) +im + g - FlU)e*Fl A O(AM) — A(Q) — i — % + FlU)eFl A
O(AMW) +AQ) +im + 5 O(AMW) — AQ) —ir — 5)
MMM—A@ydn—g—ﬂdewﬁA Mﬂm+A@%Hn+§+ﬂU%ﬂ$A

O(AMW — A(Q) —im — 5 OAMW +AQ) +ir +5)

(182)
From (174) and (179), T(A) has the jump relations

T, (M) =T_(}) [? (1)} ., A€ ZupU Sdown (183)

363



D. Bilman, R. Buckingham and D.-S. Wang Journal of Differential Equations 297 (2021) 320-369

We need to slightly adjust the jump condition to that in (169) while at the same time removing
the simple poles in the off-diagonal entries of T(A). Analogously to (127), we define

_(=b)—a9\"*
o= (e m) e

to be the function cut on Xyp U Zgown With asymptotic behavior y (1) =1+ O(A‘l) as A — oo.
This function satisfies y (1) = —iy_(A) for A € Zyp U Zgown. Define

PG = M FOPG) = M)_Zif“w (185)
so that
[P0 =rPm), PP ==, xeZupU Saown. (186)
Define Q = Q(x, 7) to be the unique complex number such that
@) %) =o. (187)

We proceed under the assumption that Q is a simple zero of 2P (i) and £ (1) has no zeros.
This is the case we observe numerically for the parameter values in Fig. 5. The alternate case
when fP(Q) = 0 does not change the final answer and can be handled by a slight modification
as described in [5]. If we choose S(A) in the form

_{Cu1 O fD(A)[T(A)]ll _fOD()L)[T()\)]12i|
S(A)—[ 0 czz][fOD(x)[T(x)]ﬂ FPOIITMn | (188)

where C1; and Cp; are any constants, then the jump condition (169) is satisfied, and S(}) is
analytic for A ¢ Xyp U Zgown. Noting that P =00 Y and fP) =14+ 011, we see
the normalization (170) is satisfied if we choose

___OU+AD+in+T) gy
O(A(00) + A(Q) +im + § — FiU)

_ O(A() + AQ) +iT + 5) ey

A +AQ i+ B+ RU)

11
(189)

Cy:

This completes the construction of S(1), and thus of R (1) via (168).

Define R@ (L), R® 1), R@) (A), and R (1) as the local parametrices in small, fixed disks
D@ D®, ]D(“*), and D" centered at a, b, a*, and b*, respectively. Each of these parametrices
can be constructed using Airy functions (see, for example, [7]). Then the global parametrix
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R@D®1), 1eD@,
R® (), reDh®,
R = {R@ 1), reD@), (190)
R®I(), 2eD®),
R (%), otherwise

satisfies
Q) = (]I—i—(’)(n’l)) R(L). (191)

Undoing the different Riemann-Hilbert transformations, we find that, for |1| sufficiently large,

A—EX\" A — EF\"
MG nx, no)ln = ( - _i ) IN"IG; ¢, D)l = ( - _i ) [0 G; x, D)2

A—E* A—ET\" :
( - i ) TGP 0y, Dl = ( - _i ) e MCELDIQM (s ¢, Dlia
)\' *
= (A5 ) o0 (R 1. e + 06 7)
A — & .
_ ( - i > —nG(\;x, r) F(/\,x,r)—Fo(x,f)[S()L; X, T2 +(9(n_1)>
= (AA i ) e (—cu(x, ) fOP (x. D) FHHDRUDIT (L D] + O(n*‘)).
(192)
We now apply
Py =279 "277 41,_;7 LLANOREY (193)
)\' _ g* n B _1
<X_$> — 14007, (194)
and
e~ FW=Fo=nG@G) _ ,~Fii=2Fo (1 1 0~ 1Y) (195)
to find
Jim AMM (4 ny, nt)ln =
O(A(00) — A(Q) — i — & + FiU)®(A(c0) + A(Q) + i + &) (196)

O(A(0) — A(Q) — i — £)O(A(00) + A(Q) +im + B — FU)
a*—a—b* +be—2F1
4i

% 1_2F0+O(7’l_1),
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where the right-hand side is a function of x and 7. We then recover ¢[2n](n Xx,nt) from (21),
thereby proving Theorem 4.

Appendix A. Construction of the multiple-pole solitons via Darboux transformations

We summarize the construction via Darboux transformations of the multiple-pole solitons that
we study. Fix § = o + i with 8 > 0 and ¢ = (c1,2) € (C*)2. We start with the trivial initial
condition ¥[%1(x, r) = 0 and repeatedly apply the same Darboux transformation » times to obtain
a solution l/f[z”] (x, t) with order 2n poles at & and £*. See [1] for full details.

We construct the associated eigenvector matrix U"!(x; x, 1) iteratively. Define

U (s x, 1) 1= ¢TI H2003, (A1)

This is the background eigenvector matrix corresponding to ¥"(x, ) = 0. Recall the circular
disk Dy from Riemann-Hilbert Problem 1 that is centered at the origin and contains &. Given
Ul(a; x, 1), define

s, 1) =0 E x, 0", N (1) i=s" e, 0)Ts(x, 1),

[n] REpeS 7 e of RVl IS T (A2)
w (-xvt) L CU (é,x,t) l 0 U (é)xst)c .
Here { denotes the conjugate-transpose. From here, introduce
Yl (x gy = —48%wln (x, 1)* s (r. st (. 1) 0 —i
T 4B wl (x, )2 + NI (x, 1)2 ’ L0
2i:3N[’1](x 1) 0 —i [n] . [n] 710 —i
’ A3
+ B P+ NG 2 i 0 s (x, )*s™(x, 1) P E (A.3)
0 —i 0 —i
[n] — [n] *
Z (x,t)._[l. 0 i|Y (x,1) [i Oi|
and define
- Y, | 20
G\ x,t): =1+ Py + T (A4)
Then we set
UG . 1) = G x, HUM QL x, 1), A ¢ Dy, AS)
o GG x, HUM (4 x, HGM(3; 0,007, A e Dy
and obtain the desired multiple-pole soliton solution of (1) by
Y, 1) = PG ) 4+ 20 (Y 0, D12 = 1Y, 1) 10). (A.6)
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Appendix B. Elementary symmetry properties of the multiple-pole solitons

Fixé =a+if,x eR, 8> 0,and let

B(\; ¢) = r—¢ (B.1)
0= :
for convenience. First note that
B(—x;:€)=B(1 —£") 7. (B.2)
Next, from the definition (19) of S = S(cy, ¢3), it is easy to verify that
% 01
0’35(61, 62)01 = S(—CZ, —Cl), o] .= 1 0l (B.3)

Let 6 denote the phase 6(A; x,t) := Ax + A2t in (18). Define O(A; x,t; (c1, ), S) in terms of
the solution M(%; x, #; (c1, ¢2), &) of Riemann-Hilbert Problem 1 by

O(%; x,1; (c1, €2), &) = o3M(A; x, 15 (—c3, —c}), —§¥) o3, (B.4)

and recalling the jump condition (18) observe that

04 (% x,1; (c1,¢2), §)

= o3My (; x, 15 (—¢5, —c}), —6%) o3
=o3M_(%; x, 15 (=3, —c}), —£%)

« e—iﬁ()\;x,t)ags(_c;’ —CT)B(A; —é*)m}S(—c;, _CT)—leié)(A;x,t)cr3G3
=0_(A;x,1; (c1,¢2), )

y 0’3671.9()‘;)6’[)038(_5';» —CT)B(A; —5*)n038(—cg, _CT)7161'0()»;)@!)(;303
=0_(A:x,1; (c1,¢2), €)

e~ i0Gix.03 [038(=c3, —cDo1 ]| B(r; —&%) " [01S(~c3, —cP)Lazlel?Pixnos
=0_(n;x,1; (c1,2), £)

% efie(k;x,t)ogs(cl i cz)B()»; _g*)f'w‘%S(cl, cz)fleie(l;x’l)@,

(B.5)

where we have used (B.3) in the last equality. It now follows from (B.2) and 6(—A; x,¢t) =
O(A; —x, t) that M(A; —x, t; (c1,¢2), &) and O(=2; x, t; (c1, ¢2), &) satisfy the same jump condi-
tion. Moreover, they satisfy the same analyticity and normalization condition as A — oo. There-
fore, by uniqueness of the solutions of Riemann-Hilbert Problem 1, O(—A; x, t; (c1,¢2), &) =
M(O; —x,t; (c1,¢2),E). Then
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Y (—x, 1: (c1, ¢2), &) = 2i ,\lim AM@Q; —x, 15 (1, ¢2), §)]i2
—00

=2i lim A[O(=A;x, 15 (c1,¢2),§)]i2
A—>00

=2i lim AlosM(=2; x, 15 (—c3, —c}), —E%)o3]12
A—>00 (B.6)
==2i lim AlosM(; x, £; (=5, —c}), —=E%)o3]12
A—>00

=2i lim A[M(x; x,t; (—c3, —¢}), =€)
A—00
=yl(x, 15 (=c3, =), —€%),

which proves (22). To prove (23), observe that B(A*; £)* = B(}; E)_l, hence from (B.2) we have
B(—)\*; &)* = B(A; —&*). From this, together with [i0(—A*; x, —1)]* =i6(A; x, t), it similarly
follows that M(A; x, —t; (c1, ¢2), &) and M(—A"; x,1; (¢, ¢3), —&*)* solve the same Riemann-
Hilbert Problem. Then, again by uniqueness,

Y, =15 (e1, €2),8) =20 lim AIMGs; x, —1; (e1, ¢2), )i

L—00

=2i lim A[M(=2%;x,1; (¢, ¢3), —€%) "2
A—00

7 T; * *, Lk kY ek *

=-2i All)ngo ()» M x, 85 (cf, ¢3), —§ )]12) (B.7)

%
= <2i lim [AM(}; x, 1; (¢}, ¢3), —E*)hz)
A—00
= yP(x, 15 (cf, 63), —§9)",
which finishes the proof of Proposition 1.
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