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Recent advances in topological mechanics have revealed unusual phenomena such as topologically

protected floppy modes and states of self-stress that are exponentially localized at boundaries and

interfaces of mechanical networks. In this paper, we explore the topological mechanics of epithelial

tissues, where the appearance of these boundary and interface modes could lead to localized soft or

stressed spots and play a role in morphogenesis. We consider both a simple vertex model (VM)

governed by an effective elastic energy and its generalization to an active tension network (ATN) which

incorporates active adaptation of the cytoskeleton. By analyzing spatially periodic lattices at the Maxwell

point of mechanical instability, we find topologically polarized phases with exponential localization of

floppy modes and states of self-stress in the ATN when cells are allowed to become concave, but not in

the VM.

I. Introduction

The mechanics of epithelial tissues, where living cells closely
pack a surface and mechanically interact with one another, is
crucial for many morphogenetic processes, such as gastrulation,
wound healing, embryogenesis, etc.1–6 These processes can
require particular cellular arrangements that are associated with
specific mechanical properties, which have been studied inten-
sely through analyses of the stresses and strains on the epithelial
network.7–13 The relation between structure and mechanics in
epithelial tissues not only offers a gateway for a deeper under-
standing of many of these natural processes but also opens
possible paths to engineer potentially beneficial synthetic pro-
cesses. In particular, boundaries and interfaces often play crucial
roles in the mechanics of epithelial tissues, because they offer a
platform where the dynamics of cells are most rich. A thorough
understanding of the mechanics on the boundaries and inter-
faces would be very helpful to characterize these phenomena.

Recent advances in theories of topological mechanics
provide a fundamental framework for understanding
mechanics on boundaries and interfaces of marginally stable
(i.e., ‘‘Maxwell’’) networks and how these mechanical properties
are robustly controlled by topological features in the bulk.14–16

Many designs have been proposed utilizing topologically

protected mechanical properties to produce novel cellular
topological mechanical metamaterials with unusual properties
such as reconfigurable surface stiffness, stress distribution,
and localized modes.17–20

Interestingly, epithelial tissues often operate at or near the
verge of mechanical instability,21–24 as they are then able both
to support stress and to accommodate transformations during
various biological processes. Moreover, it has recently been
shown that topological floppy boundary modes can show up in
disordered biopolymer networks when excited by active
driving.25 It is thus interesting to ask whether topological
mechanical properties on boundaries and interfaces can also
arise in epithelial tissues.

In this paper, we study topological mechanics in epithelial
tissue sheets based on two models, namely a simple (passive)
vertex model (VM) and an active tension network (ATN)
model.26,27 We adapt these models so as to put them at the
Maxwell condition where the number of degrees of freedom is
equal to the number of constraints. This condition is crucial for
topological polarization to appear. We observe that in the ATN
topologically polarized phases exist and that these phases
only arise when cells become concave. This is based on the
observation that topological phase transitions in these models
can only occur when edges of cells form straight lines, which leads
to gap closing and only happens at the onset of convexity change.
We cannot, though, exclude the possibility of topological
polarization via the creation and annihilation of Weyl points in
the convex configuration.

This topological polarization indicates exponentially local-
ized floppy modes and states of self-stress on boundaries and
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interfaces of the system. Mechanically, boundaries and inter-
faces with exponentially localized floppy modes are much softer
in comparison to other parts of the tissue. In contrast, if a
boundary does not have exponentially localized floppy modes,
it would appear as rigid as the interior of the tissue. On the
other hand, interfaces in the tissue with exponentially localized
states of self-stress tend to accumulate both external stress and
internal stress from cell activity. These properties are solely
owing to the cell geometry of the bulk of the tissue, instead of to
special cell activities at the boundary or interface. This is a
manifestation of the ‘‘topological protection’’ of these floppy
modes and states of self-stress, which endows the aforementioned
phenomena with remarkable robustness: any weak interactions or
slight changes in the geometry, as long as they do not change the
topological phase of the bulk of the tissue, will not destroy the
boundary and interface mechanical response.

These topological mechanical properties may lead to inter-
esting behaviors such as robust localization of dynamics or
stress. It would be of interest to study how these topological
properties relate to phenomena involving tissue boundary/
interface dynamics, such as dorsal closure28,29 and invasion
of larval tissue by histoblast nests30,31 in Drosophila, epiboly in
teleost fish,32 and collective migration and wound healing in a
variety of in vitro and in vivo systems.33,34

II. The models

In their simplest form, epithelial tissues comprise a monolayer
of adjacent cells, which can often be approximated by polygons.
Thus, the mechanics of an epithelial tissue can be analyzed by
studying a two-dimensional sheet of edge-sharing polygons.
A variety of variants on the basic theme of a vertex model, in
which the degrees of freedom are the positions of the polygon
vertices, have been proposed and can explain many observations
of mechanical phenomena in epithelial tissues.21,35–42 These
include both passive models in which cell shapes are assumed
to be governed by an (effective) energy and extensions that
explicitly account for various active processes in living tissues.
Here, we reserve the term vertex model (VM) for a particular,
common choice of a passive energy described below in Section IIA.
We also consider an interesting example of an active model,
the active tension network (ATN) model, where mechanical
equilibrium is attained when both force balance at each vertex
and the ‘‘stall tension’’ on each edge are reached, with the
result that the tension on each edge can effectively be specified
independently (subject to force balance constraints).

In this section, we first briefly introduce the VM and the ATN
to analyze the counting of the degrees of freedom and
constraints in them. We then discuss the conditions under
which these models become ‘‘Maxwell networks’’, meaning
that they have balanced degrees of freedom and constraints,
providing the right condition for topological floppy modes to
arise. We also determine the force-balance conditions for these
models, the equilibrium states of which are both stressed.

A. Models of epithelial cell sheets

In the remainder of this paper, we consider tissue sheets
parameterized by a set of vertex coordinates {

-

Ri}. We use the
term VM specifically to refer to a model where the dynamics of
these coordinates is assumed to be governed by a mechanical
energy with the form35

E ¼ 1

2

X
f

KP Pf � P0

� �2þKA Af � A0

� �2h i
; (1)

where KP is the elastic constant of cortical tension that con-
strains the perimeter of cells, and KA is an area elastic constant
that could arise, for example, from an interplay between cell
incompressibility in 3D and resistance to cell height differences
across the tissue. The sum is over all cells in the tissue, which
are labeled by f and have perimeter Pf and area Af.

Tissues governed by the energy of eqn (1) have been shown
to exhibit a jammed phase, where any displacements of vertices
cost elastic energy and the system develops a shear modulus,
when the ratio P0

� ffiffiffiffiffiffi
A0

p
drops below a critical value.21 In this

jammed phase, the tissue is stabilized by an equilibrium
tension, as we discuss below in the constraint counting.

In the ATN, instead of a passive tension that attempts to
restore a preferred perimeter in each cell, the edges are active
and try to reach a preferred ‘‘stall tension’’, determined by the
local activity of the actomyosin bundle along the edge and
cadherin clusters between the cells. Mechanical equilibrium of
the tissue is reached when forces balance at each vertex
and each edge is at its stall tension. Ref. 27 introduced a relaxa-
tional dynamics that specifies how the myosin concentration and
the tension on each edge evolve towards this equilibrium state. To
study topological modes, however, we are only interested in small
displacements from mechanical equilibrium. In this case, we may
treat the edge tensions as constants, corresponding to the long-
time, elastic-like behavior of the tissue. A similar limit was taken in
ref. 27 in the discussion of the ‘‘isogonal’’ soft modes.

Thus, for the purposes of this paper an ATN is simply a
model in which each edge is endowed with a fixed tension Tij
(where i and j denote the two vertices joined by the edge) and
each cell has a pressure Pf = 2KA(Af � A0) conjugate to its area.
The Tij’s and Pf’s must be chosen so that the net force on each
vertex vanishes when the vertices are at their equilibrium
positions but are otherwise arbitrary. The model can then be
viewed as having an effective energy whose differential for
small vertex displacements from mechanical equilibrium is
given by

dE rif g½ � ¼
X
hi;ji

TijdRij þ
X
f

Pf dAf (2)

where Rij ¼ ~Ri � ~Rj

�� �� is the distance between these two vertices.

B. Mechanical stability and Maxwell’s counting

In order to analyze topological mechanics in the VM and the
ATN, we need to first count the degrees of freedom and
constraints in these models and identify the ‘‘Maxwell condition’’
where the balance of degrees of freedom and constraints is met.

Paper Soft Matter

Pu
bl

is
he

d 
on

 3
1 

A
ug

us
t 2

02
1.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f M

ic
hi

ga
n 

Li
br

ar
y 

on
 8

/1
8/

20
22

 8
:0

1:
12

 P
M

. 
View Article Online

https://doi.org/10.1039/d1sm00637a


8626 |  Soft Matter, 2021, 17, 8624–8641 This journal is © The Royal Society of Chemistry 2021

This condition puts the system at the verge of mechanical
instability, allowing unusual topologically protected modes to
arise.14,16

For both models, deviations from a mechanically balanced
state can be described by the displacement field of the vertices
{-ui} = (ux1, u

y
1,. . .,u

x
V, u

y
V) for all V vertices. Thus, each vertex i

displaces from its mechanical equilibrium state -
ri to a new

position -
ri -

-

Ri =
-
ri +

-
ui.

We now consider what constraints a displacement field in
each model must satisfy to be a zero mode (ZM) that costs no
elastic energy (dE = 0). In both the VM and the ATN, the
mechanical equilibrium states we expand around are stressed,
which means edges bear nonzero tension. As we derive in more
detail in Appendix A, this results in an ‘‘irrotational’’ constraint
from each stressed edge,

(-ui �
-
uj) � l̂ij = 0, (3)

where i, j denote the two vertices connected by this edge, and
l̂ij = (-rj �

-
ri)/|

-
rj �

-
ri| is the unit vector pointing from vertex i to j

in the equilibrium state.
The area term of each cell contributes a constraint that the

cell area needs to be preserved by any ZM (for details see
Appendix A). To set up the notation, we consider a cell with

Vf vertices labeled as i = 1,. . .,Vf, and ~U i ¼ ~uiþ1 �~ui being the
relative displacement between the neighboring sites. We use
~Li ¼~riþ1 �~ri to denote the vector connecting the two vertices in
the equilibrium state we expand around. The constraint that
the area is preserved can then be written as

XVf�1

i¼1

XVf�1

j4 i

~U iþ1 �~Li � ~U i � ~Liþ1

� �
¼ 0: (4)

These two constraints [eqn (3) and (4)] are the same between
the VM and the ATN. The VM has an additional term which
preserves the perimeter of each cell,

XVf

i

~U i � l̂i;iþ1 ¼ 0: (5)

Therefore, the number of constraints in the VM is NC = 2F + E,
where F is the number of cells and E is the number of edges
in the network. This follows from the fact that each cell
provides a constant perimeter and a constant area constraint,
and each edge provides a no-rotation constraint because it’s
stressed. In contrast, in the ATN the number of constraints is
NC = F + E, as the cell perimeter does not need to be conserved
for ZMs.

The number of degrees of freedom is NDOF = 2V in both
models, because two coordinates are required to specify the
position of each vertex in two dimensions. Assuming that all
vertices have coordination number z = 3 (3 edges meet at each
vertex, which is natural for polygonal tilings), we have E = zV/2 =
3V/2. Using Euler’s characteristics43 we have F = E � V = V/2.
Therefore, the total number of constraints on the VM including
the area constraint is NC = 5V/2 4 NDOF and the model is
over-constrained in the presence of stress. The numbers of

constraints and of degrees of freedom become equal when the
area constraint is neglected, leading to NC = 2V = NDOF, making
the system a Maxwell network.

On the other hand, the ATN is a Maxwell network with the
area constraint included, as in this case, NC = F + E = 2V = NDOF.

As we mentioned above, our choice of the elastic energy
terms for these models is guided by the requirement of placing
the models at the Maxwell point, so that topological modes are
permitted. Thus, for the VM we henceforth consider only the
limit that the cortical tension of the cells is the dominant
contribution to the energy, i.e. KA - 0. That is, we drop the area
elasticity contribution, or, equivalently, assume that pressure
differences between cells are negligible. This limit has been
considered in several previous studies on this model.21–23,27 In
contrast, for the ATN, we consider the generic case where
pressure differences between cells may be significant and the
area contribution cannot be ignored.

We emphasize that all of these choices are made solely in
order to place the two models at the Maxwell point, where
topologically protected zero modes are possible. In particular,
we do not claim that these particular limits have any special
biophysical importance a priori; rather, under these necessary
criteria for Maxwell lattices, we are interested in whether or not
the VM and ATN have unusual topological properties that
might be of biological interest. Importantly, ref. 44–46 show
that small deviations from these ideal limits through the
inclusion of weak additional terms in the energy (e.g., adding
back the area term in the VM or introducing deviations from
fixed tensions in the ATN) preserve the topological polarization,
and only weakly lift the energy of the ZMs. Thus, we expect that
our qualitative conclusions will continue to hold in the vicinity
of the Maxwell point.

The counting argument we give here for the VM is consistent
with that provided by Bi and Yan.23 Their count NC = (E � E0) +
F, where E0 is the number of edges without tension, includes
contributions from each tensioned edge and from each face.
In our case, the energy expansion is done around a pre-stressed
network where every edge carries a tension, so that E0 = 0, our
constraint count NC = E + F then matches that in ref. 23.

The Maxwell–Calladine index theorem asserts that in a
mechanical network, the difference between the number of
ZMs and the number of states of self-stress (SSSs, i.e., eigenmodes
of the stress distribution leaving all components of a network in
force balance) is given by the difference between the numbers of
degrees of freedom and of constraints,14,15,47

NZM � NSSS = NDOF � NC. (6)

Thus, if a network is Maxwell (defined as NDOF = NC in the bulk,
i.e. neglecting any boundary effects), it must have equal
numbers of ZMs and SSSs in the bulk. This condition means
that an infinite Maxwell lattice has no ZMs unless there are SSSs.
For a finite sized system under open boundary conditions,
however, a subextensive number of ZMs arise due to the
removed constraints on the boundary. Whether these ZMs are
localized or extensive, and where they localize, is a topologically
protected property, characterized by a topological winding number.14
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The topological state, in turn, is determined by the architecture of
the tissue network, i.e., by the angles and lengths of the edges.

It is worth emphasizing that these counting arguments
are done in a stressed equilibrium state in both models. This
is different from most current models of topological
mechanics. If there were no stress, the no-rotation constraints
associated with the edges would be lifted, and the tissue
would be under-constrained, with an extensive number of
floppy modes.

C. Force-balance condition

The fact that the force equilibrium states in both the VM and
the ATN are stressed requires that any choice of the state we
choose to expand around, and study topological modes, needs
to satisfy force balance.

The force balance condition can be derived by requiring O(-u)
terms in the elastic energy to vanish [eqn (1) for the VM and
eqn (2) for the ATN]. As we derive in detail in Appendix A, for
the VM, after dropping area terms, this condition takes
the form

Tijl̂ij + Tikl̂ik + Till̂il = 0, (7)

for each site i, where as we defined above, l̂ij, l̂ik, l̂il are the edge
directions from vertex i to vertices j, k, l, which are the nearest
neighbors of i. In addition,

Tij = Ta + Tb, Tik = Ta + Tc, Til = Tb + Tc, (8)

are the tensions on the edges ij, ik, il respectively, originating
from the cortical tension Ta, Tb, Tc from the cells a, b, c. The
cortical tension of a cell f can be calculated as

Tf ¼
@Ef

@Pf
(9)

for the VM.
In the ATN, as we discussed above, the Maxwell condition is

satisfied when the area term is included, so the force balance
condition on vertex i is given by

Tij l̂ij þ Tikl̂ik þ Til l̂il þ
1

2
Pabn̂ablij þ

1

2
Pbcn̂bclil þ

1

2
Pcan̂calik ¼ 0

(10)

where Pab = Pa � Pb, Pbc = Pb � Pc, Pca = Pc � Pa are the
differences of pressures Pa, Pb, Pc of cells a, b, c respectively.
The pressure differences exert effective forces on the vertices
because the vertex positions are the only degrees of freedom in
the vertex model. Thus, all terms in the energy, including the
terms involving cell area that give rise to the pressures, must
translate into forces on the vertices. Physically, one can think of
these forces on the vertices as arising from a pressure differ-
ence that acts at each point along an edge, giving rise to a net
force Pabn̂ablij on edge ij after integration along the edge. This
force tries to move the edge perpendicular to itself; as the
position of the edge is completely specified by the positions of
the two vertices at its ends, this is equivalent to exerting the
force on each vertex given in eqn (10). n̂ab, n̂ca, n̂bc are the unit
vectors normal to edge ij of length lij pointing from cell a to cell

b, edge ik of length lik pointing from cell c to cell a, and edge il
of length lil pointing from cell b to cell c respectively, as shown
in Fig. 1. The 3 terms in the second row of eqn (10) represent
the force on the vertex that comes from the pressure difference
of the 3 adjacent cells.

It is worth noting that the tensions Tij, Tik, Til in the ATN are
independent variables for each edge, unlike the tensions in the
VM which are related to one another via eqn (8).

To summarize, the two main differences between the VM
and the ATN, regarding mechanics around an equilibrium
state, are that (i) the perimeter does not need to remain
constant for ZMs in the ATN—the edges adjust to their pre-
ferred tensions instead of returning to the preferred perimeter,
and thus the area term is included in order to bring the model
to the Maxwell condition, and (ii) tensions on edges in the
ATN are independent on each edge, rather than determined
by cortical tensions which are variables associated with cells. As
we can see in the next section, we find this condition important
in allowing the system to become topologically polarized, in the
cases we studied.

III. Topological mechanics

In this section we investigate topological mechanics in the VM
and the ATN and discuss a phase diagram of the ATN showing
where topologically polarized phases arise as a function of the
architecture of the cell sheet.

A. Compatibility and equilibrium matrices

The compatibility (C) and equilibrium (Q) matrices are the
starting point to describe topological mechanics in Maxwell
networks. In simple ball-and-spring networks, these matrices

Fig. 1 A schematic of the variables used in the force-balance condition
eqn (7) and (10). The forces on vertex i caused by the tension on the edges
are shown as red arrows, and the forces due to the pressure of the cells are
shown as purple arrows.
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map between degrees of freedom space and constraints space,
and their null spaces give ZMs and SSSs, respectively.14

For an epithelial cell sheet, the compatibility and equilibrium
matrices need to be generalized to describe the constraints that
are more complicated in nature compared to simple ball-and-
spring networks.

For the VM, as we discussed above, the constraints come
from the no-rotation condition of each edge and the perimeter
of each cell, so the matrix is given by

C � u ¼
e?

DP

 !
(11)

whereas the mapping by the Q matrix is such that

Q �
t?

TP

 !
¼ f (12)

where e> and t> are E-dimensional vectors of transverse motion
(i.e., rotation) of and force on all the edges, DP and Tp are
F-dimensional vectors of the changes of perimeters and cortical
tensions of all the cells, u and f are 2V-dimensional vectors of the
displacements of and forces on the vertices. Because F + E = 2V,
both C and Q are 2V � 2V dimensional square matrices.

It may appear confusing to see transverse forces t> on edges,
whereas in the elastic energy the edges just bear cortical tension.

A way to understand it is that we are expanding around a
stressed state, where the edges already carry an equilibrium
stress T. Displacements of vertices cause rotation of edges e>

which leads to a transverse change to the tensions, which is t>.
This change of tension is perpendicular to the edge direction in
the reference state, making it t>, but the total tension is along
the displaced edge direction. Thus, t> is allowed to exist as a
state of self-stress.

In the ATN, the C and Q matrices are similar to that of the
VM, except that the cortical tension is replaced by an area
constraint,

C � u ¼
e?

DA

 !
; (13)

Q �
t?

P

 !
¼ f ; (14)

where DA and P are F dimensional vectors of changes of area
and pressure of all the cells.

In both models, similar to the ball-and-spring network
models, we have C = QT. In the VM, because the elastic energy
is conserved, a dynamical matrix can be defined as

D = QKC, (15)

which gives the quadratic expansion of energy around the
equilibrium state, and K is a diagonal matrix includes the
values of transverse spring constants k> (which comes from
tensions on the edges as we show in Appendix A) and the elastic
constant of cortical tensions KP as the diagonal entries for the
VM, but the entries for the ATN would be the transverse spring
constants k> and the area elastic constant KA. As we discuss
below, the actual spring constants are not important for the
topological mechanics of these epithelial tissue models (as long
as K is positive definite), as topological mechanics is primarily
concerned with topologically protected ZMs and SSSs.

E ¼ 1

2
u �D � u: (16)

This conserved elastic energy is not required for our
discussions of topological modes.

The null-space of the C matrix and the Q matrix give ZMs
and SSSs, similar to what happens in regular spring-and-mass
networks. In particular, ZMs in the VM are vertex displacements
that cause no rotation for the edges and no change in the
perimeter of the cells, whereas ZMs in the ATN are vertex
displacements that cause no rotation for the edges and no
change in the area for the cells. On the other hand, SSSs in
the VM are eigenmodes of transverse forces on edges and
cortical tensions on cells that leave no net force on any vertices,
whereas SSSs in the ATN in this model are eigenmodes of
transverse forces on edges and pressure on cells that leave no
net force on any vertices.

It is worth noting that these matrices are determined by the
O(u2) terms in the expansion of the elastic energy, as we
discussed in Section IIB and Appendix A. The O(u) terms vanish

Fig. 2 An epithelial tissue sheet taking a periodic lattice structure with
two cells A and B per unit cell. The basis contains 4 vertices and 6 edges as
labeled in red. The primitive vectors a

-
i are labeled in blue. The same

vertices and edges that are translated according to the primitive vectors
are labeled in green.
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when we expand around an equilibrium reference state, and
lead to the force-balance condition, as discussed in Section IIC.
These O(u) terms do not affect the topological mechanics of the
sheet. Instead, they determine what type of reference states are
allowed.

B. Periodic epithelial sheets and topological polarization

To explore topological mechanics in epithelial sheets, we first start
from periodic lattices, for convenient analysis of topological states
in momentum space. Specifically, we consider the network topo-
logy of the tissue to be a honeycomb lattice, i.e., each cell has
6 edges and 3 edges meet at each vertex. Real epithelial tissue can
vary both in terms of the number of edges per cell, and the number
of edges meeting at a vertex, but we start from this simple model
for our analysis of topological mechanics. In particular, we allow
the shape of the cells to deviate from a regular hexagon to tune the
geometry of the network and introduce topological phases.

Specifically, we focus on the case where each unit cell of the
periodic lattice contains two epithelial cells, because inversion
symmetry is always preserved if we only have one epithelial cell
in the unit cell, and the tissue then cannot have a topologically
polarized phase.14

In this 2-cell unit cell, we have 4 vertices at coordinates

s1 = (0, 0), s2 = (1.5, 0), s3 ¼ 0;
ffiffiffi
3

p� �
, s4 ¼ 1:5;

ffiffiffi
3

p� �
for the critical

configuration described in the next section and 6 edges in the
basis, and the network is constructed following an oblique

Bravais lattice with primitive vectors ~a1 ¼
3

2
;

ffiffiffi
3

p

2

 !
;

~a2 ¼ 0; 2
ffiffiffi
3

p� �
. The number of degree of freedom per unit cell

nDOF = 8, and the number of constraints per unit cell nC = 6 + 2 =
nDOF where the 6 represents the 6 no-rotation constraints from
the 6 edges, and 2 represents the constraints associated with
the two faces (perimeter for the VM and area for the ATN).

To construct the compatibility matrix, we start from the ZM
conditions discussed in Section IIB, namely, eqn (3) and (5)
for the VM, and eqn (3) and (4) for the ATN. Using these
conditions, we can construct compatibility matrices C(q) in
momentum space that satisfy the mapping described in
eqn (11) for the VM and eqn (13) for the ATN. The null space of
these compatibility matrices give the ZMs of these models. The
details of the compatibility matrix are given in the Appendix B.

The topological polarization can then be determined from
these compatibility matrices, via the calculation of the winding
numbers of detC(q) around the first Brillouin zone,14

N i ¼
1

2p

I
Ci

dq � rqIm ln detCðqÞ; (17)

where the two paths C1, C2 wrap the first Brillouin zone along

the two reciprocal vectors
-

b1,
-

b2. And a representation of the
contour is shown in Fig. 3. A topological polarization can then
be defined

~RT ¼ �
X
i

ni~ai; (18)

where -
ai are the 2 primitive vectors. Here the two integers

(n1, n2) are related to the two winding numbers calculated
above by a constant shift, ni ¼ N i þ Di, that accounts for the
asymmetry of the choice of the unit cell (the ‘‘gauge degree of

freedom’’ as discussed in ref. 14), such that
-

RT provides a
symmetric description of the polarization. For the choice of
unit cell we use, as described in Fig. 2, (D1, D2) = (2, �1). This is

chosen such that the unpolarized case has
-

RT = 0.

C. Critical configurations

We start our analysis of topological phases in these lattices by
identifying critical configurations where ZMs are bulk modes.
These critical configurations are analogous to the regular
square and kagome lattices,16 and the Mikado model with
straight fibers,25 where ZMs (other than trivial translations)
arise under periodic boundary conditions (PBC).

These critical configurations are vital points to construct a
phase diagram for topological boundary modes in these
problems. This can be seen from the Maxwell–Calladine index
theorem [eqn (6)]. Under PBC, Maxwell system have NDOF = NC

so in general there are no ZMs or SSSs except for the trivial
translations. When lattices are at geometric singularities (i.e.
critical configurations), such as bonds forming straight lines,
additional SSSs arise under PBC, leading to additional ZMs,
because NZM � NSSS = 0 is always satisfied. These ZMs and SSSs
are bulk modes as opposed to boundary modes, as they
satisfy PBC.

Similarly, the VM and the ATN also develop these SSS-ZM
pairs under PBC when edges of the cells form straight lines.
There are two such critical configurations in the 2-cell unit cell
lattice, as shown in Fig. 4, and they give rise to bulk ZMs.
In these critical configurations, edges in these straight lines can
carry equal t> which are balanced on all nodes, giving rise to
SSSs. The corresponding ZMs are shown in Fig. 4, where cells in
each straight vertical ‘‘strip’’ shift relative to one another,
leaving all edges parallel to their original direction. These
ZMs preserve all edge directions, perimeter, and area, so they
are ZMs in both the VM and the ATN. Our lattices yield these
two types of critical configuration because of our choice of the
2-cell unit cells. Other critical configurations involving wider
strips can also arise when one chooses bigger unit cells.

Fig. 3 A representation of the first Brillouin zone and the contours C1, C2

taken for the integral in eqn (17). The black dots are the reciprocal lattice
sites, the red arrows are the reciprocal lattice vectors b

-
1, b
-

2, and the region
enclosed by the blue lines is the 1st Brillouin zone. The representation of
paths of direction C1 are labeled with the dashed purple lines and the paths
of direction C2 are labeled with the dashed orange lines. The reason we
take multiple contours along each direction is that we need to identify
potential changes of topological winding numbers across different contours
along the same direction to identify the existence of Weyl points.
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Columnar structures of this type are seen in a variety of
epithelial tissues.41,48–54

At these critical configurations, the lowest phonon band has
o = 0 lines due to these bulk ZMs, and the momentum space
o = 0 lines are perpendicular to these straight lines in the real-
space lattice. The o = 0 lines of the critical configurations of
different straight line directions are shown in Fig. 6(f) and
10(d). As a result, the topological winding number [eqn (17)] is
ill-defined at these critical configurations. The system becomes
gapped when the geometry is perturbed, leading to phases with
different topological polarizations, as we discuss below.

D. Polarized phases

In order to search for topologically polarized phases, we choose
to study geometries of cell sheets perturbed around the critical
configuration in Fig. 4(a) where straight lines of edges form
along the -

a2 direction, as it is a simple geometry with high
symmetries. In this analysis we find topologically polarized
phases in the ATN, which we discuss below. Due to fewer free
parameters in choosing force-balanced reference states, the VM
does not show any topologically polarized phases. We will
comment on this at the end of this section.

To construct a phase diagram for the ATN, we place vertex
number 2 (as labeled in Fig. 2) at different positions, which
breaks the straight lines and lift the bulk ZM-SSS pairs. At each
given displacement (x1, x2) of vertex number 2 [from the critical
state Fig. 4(a)], we define a new lattice (which is a distinct
reference state), and calculate winding numbers using eqn (17).
The result is shown in Fig. 5. The phase diagram around critical
configuration in Fig. 4(b) is included in the Appendix C.

A few interesting features arise in this phase diagram. First,
as vertex number 2 moves vertically along the straight lines, the
system stays critical, as the bulk modes of shifting cells

vertically remain being ZMs. Second, as vertex number 2 moves
to the left, all cells become convex, and the cell sheet is always
unpolarized (

-

RT = 0) in this type of geometry. Third, as vertex
number 2 moves to the right, all cells become concave, and the
sheet can become polarized up or down, separated by a region
where Weyl modes arise. Weyl modes are singularities of the
vibrational modes (o = 0) in the Brillouin zone that are
protected by topological winding numbers. In particular, when
the integral path in eqn (17) shifts across a Weyl point, the
winding number jumps by an integer value, as this contour
integral has a nonzero winding number at the Weyl points
themselves. As a result, they mark the change of topological
polarizations for modes with different wave numbers. These
Weyl points appear and annihilate in pairs as the geometry of
the system changes.55

Some representative configurations of these phases and their
phonon dispersion relations are shown in Fig. 6. The phonon
dispersion of the corresponding lattice configurations are shown

by calculating
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detD qx; qy

� �q
where the spring constant matrix K

Fig. 4 Critical configurations with edges of cells forming straight lines
along a

-
2 (a) and a

-
1 (b). Examples of bulk ZMs in these configurations are

shown with red arrows (vertex displacements) and dashed lines (deformed
configurations).

Fig. 5 Topological phase diagram of the cell sheet lattice as an ATN
around critical configuration in Fig. 4(a). The geometry of the lattice is such
that vertices 1, 3, 4 stay fixed, while vertex 2 is displaced by (x1, x2) which
are the axes of the phase diagram. The phase diagram is overlaid on the
real space lattice to make the geometry clear. The thick black line marks
critical configurations, and 5 different topological phases are observed.
The yellow region is un-polarized. The cyan, red, and green regions are
topologically polarized with R

-
T along a

-
2, �a

-
2, and a

-
1 respectively, as

indicated by the white arrows. In the purple region the lattice displays Weyl
points and thus topologically protected bulk floppy modes. Six represen-
tative configurations of these regions (marked by black dots) along with
their phonon dispersions are shown in Fig. 6.
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is taken to be an identity matrix. We also plot some topological

boundary ZMs for configurations with
-

RT = �-
a2 [(a and b) in

Fig. 6] in Fig. 7, where the ZMs are localized at the top and
bottom edges respectively. To make these plots, we take fixed
wave numbers along the lattice boundary parallel to -

a1 and have
PBC along this direction. We have open boundary conditions at
the top and bottom boundaries and calculate these ZMs. It is
visible from these plots that the modes preserve the edge
directions and the cell areas, and are indeed ZMs of the sheet.

For each column of unit cells, two ZMs emerge due to the
open boundary on the top and the bottom. This can be seen
from Fig. 2 where cutting an open boundary along -

a1 removes
two constraints (one edge and one area) per column of unit
cells. In the topologically polarized phases with

-

RT = -
a2

[Fig. 6(a)] both modes are localized on the top boundary
[Fig. 7(a and b)], leaving the bottom boundary rigid because it
is ZM free. In the topologically polarized phases with

-

RT = �-
a2

[Fig. 6(b)] both modes are localized on the bottom boundary
[Fig. 7(c and d)], leaving the top boundary rigid.

It is interesting to note that the decay length of the
-

RT = -a2
configuration appears to be very long [Fig. 7(a)]. This is due to
the fact that the polarized phase with

-

RT = -
a2 is a very narrow

region on the phase diagram. Note that at the critical phase, the
decay length is infinity (the ZMs are bulk modes). As a result,
the geometric perturbation of the unit cells in this phase is not
large enough to significantly decrease the decay length of the
ZMs before hitting Weyl modes configurations.

At critical configurations [Fig. 6(f)], as we mentioned above,
the ZMs are bulk modes. For these lattices, one of the two ZMs
per column is the same as the ZM computed under PBC
[Fig. 4(a)], whereas the other one involves an interesting
‘‘breathing’’ motion of the columns of unit cells, as shown in
Fig. 8. One might think of this mode as a boundary mode
because of its seemingly larger magnitude of displacement on the
top and bottom. However, this is a bulk ZM, since the displacements
increases linearly from the center to the boundaries (instead of
exponential growth), resulting in constant strain. The ZMs of
the topologically polarized phases can be seen as the evolution

Fig. 6 Representative examples of cell sheet lattices in different regions of the phase diagram (Fig. 5). (a) A polarized lattice with R
-

T = a
-

2. (b) A polarized
lattice with R

-
T = �a

-
2. (c) An unpolarized lattice. (d) A polarized lattice with R

-
T = a

-
2. (e) A lattice with Weyl modes. (f) A lattice at critical configuration. For

each panel, the real space lattice is shown on the left and the phonon dispersion relations (o as a function of qx, qy) is shown on the right. The two red
arrows show the reciprocal lattice vectors b

-
1, b

-
2. Note the Weyl points in (e) represented as black dots.
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and linear combination of these two bulk ZMs at the critical
configuration.

All these configurations can satisfy force balance in the ATN, by
properly choosing tension of the edges and pressure of the cells.

This can be seen by considering these configurations as mechan-
ical networks with central force springs and pressure on cells (as
discussed in Section IIC). Given the hexagonal topology of the
cells and all vertices at z = 3, the network is Maxwell regarding
pre-stress, so there must be at least two global SSSs that make
the system force balance under PBC at any geometry.16 It is
worth pointing out that, by definition, all models in which the
only degrees of freedom are the vertices ignore the curvature of
the cell edges induced by the pressure difference between the
cells, which may be formally justified in the limits that the edges
have a large bending stiffness or that the edge tensions are
much larger than the forces exerted by pressure differences. In
addition, as we mentioned above, topological polarization in
these cell sheet lattices requires concave cell shapes. In this
situation, force balance at the vertex with the concave angle
might typically be expected to require active compression
(i.e. negative Tij) on at least one edge. In particular, it is clearly
the case that some Tij must be negative if pressure differences
between cells are small enough. Although we cannot categorically
exclude that some equilibrium configuration with concave cells
and large pressure differences exists where all of the tensions are
positive, we also have never been able to come up with such a
counterexample. We thus hypothesize that topological polariza-
tion normally requires negative tensions.

Fig. 7 Examples of topological ZMs in polarized ATNs. (a and b) A lattice
with R

-
T = a

-
2 [same as the lattice in Fig. 6(a)] shows two ZMs both localized

on the top boundary. (c and d) A lattice with R
-

T = �a
-

2 [same as the lattice
in Fig. 6(b)] shows two ZMs both localized on the bottom boundary. The
ZMs are calculated with PBC along the a

-
1 direction, taking a wavevector q

-

such that q
-�a-1 = p.

Fig. 8 The ‘‘breathing’’ mode at the critical configuration, where the
straight strips get thinner and broader in an alternating order. The network
is under PBC for the left-right boundary, and open boundary condition for
the top-bottom boundary.
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Coming back to the VM, the reason that the VM doesn’t
show any topological polarization is due to the more constraining
force-balance condition in the VM. As shown in eqn (8), instead of
freely chosen cell edge tensions as in the ATN, cell edge tensions
in the VM come from cortical tensions of the cells, and must
satisfy eqn (8). Consequently, the number of free parameters of
equilibrium states is reduced. In particular, for the 4 sites in the
unit cell, according to the force balance equation in eqn (7) and
the cortical tension equation eqn (8), we have

�(T1 + T2)
-

l2 + (2T1)
-

l3 + (T1 + T2)
-

l1 = 0, (19)

�(T1 + T2)
-

l2 + (2T2)
-

l6 + (T1 + T2)
-

l1 = 0, (20)

�(T1 + T2)
-

l4 + (2T2)
-

l6 + (T1 + T2)
-

l5 = 0, (21)

�(T1 + T2)
-

l4 + (2T2)
-

l3 + (T1 + T2)
-

l5 = 0, (22)

where T1, T2 are the cortical tensions of the two cells in the unit
cell. Eqn (20)–(22) impose an additional constraint of the force
equilibrium state (T1)

-

l3 = (T2)
-

l6. This extra constraint means
that

-

l3 is parallel to
-

l6 which makes the 2 cells in the unit cell to
have almost the same geometry with only length difference for
edges

-

l3 and
-

l6 (see Fig. 2). Thus under inversion around the
center of edge

-

l5, the unit cell overlaps itself up to only the
length difference, with all cell-edge angles preserved. As we
discussed above, the only way the unit-cell geometry enters the
mechanics of the cell sheet in the VM is through these edge
angles, and the lengths of the edges are irrelevant. As a result,
the mechanics of the VM with two cells per unit cell always has
inversion symmetry due to force balance, and thus cannot
topologically polarize. The only way to polarize the VM is to
either allow larger unit cell (3 or more cells in each unit cell and
not under columnar arrangement) or to introduce disorder.
Alternatively, force-balance constraints may be lifted by
allowing external forces imposed by the substrate, which offers
us a larger parameter space to have topologically polarized cell
configurations.

The discussions in this section are all based on periodic
lattices. They could potentially be extended to generic, disordered
cell sheets with the connectivity topology of honeycomb networks.
In Appendix D we sketch a transfer matrix method25 that can be
applied to disordered cell sheets to investigate possible topological
phases in future studies. Detailed studies of disordered cell sheets
are beyond the scope of this paper.

IV. Discussion

In this paper, we study topological mechanics in two theoretical
models of epithelial tissues, namely the VM and the ATN. We
identify topologically polarized phases in the ATN where ZMs
and SSSs localize on boundaries of the tissue in a topologically
polarized way. In contrast, the VM doesn’t support topologically
polarized phases in the periodic lattice structures we studied,
due to the more constraining nature of its force-balance
condition. It is in principle possible that topological polarization
could develop in the VM if larger unit cells or disordered

configurations are considered, but such configurations are
beyond the scope of the current paper.

In order to study topological mechanics in the ATN, we place
the system at the Maxwell point with balanced degrees of
freedom and constraints. To this end, we consider a generic
case where the pressure difference between cells is not ignored
so the area constraint needs to be included. We study these cell
sheets in a periodic lattice setting of honeycomb topology, and
the unit cell consists of two cells, for simplicity. Our results
show that all lattices of convex cells are topologically equivalent
and do not show any topological polarization. Topologically
polarized phases arise when the cells become concave, which
usually implies that some cell edges carry active compression
rather than tension. These topologically polarized phases are
characterized by exponentially localized ZMs and SSSs on
boundaries and interfaces pointed to by the topological polar-
ization vector. This indicates that when non-convex cellular
shapes are experimentally observed on epithelial tissues, one
may expect to discover topologically-polarized mechanical
phenomena as we discuss here. A special note we need to make
here is that for the topologically polarized phase to occur, only
infinitesimal concavity is needed. In the critical configuration
(Fig. 4), contraction is essentially off at the horizontal edges
(in comparison to the contraction on the vertical edges). Thus,
infinitesimal compression is sufficient for the cells to become
concave and polarized (see Fig. 6). Although active tensions on
cell edges are typically contractile, it is possible in some
circumstances for passive elastic contributions from the cross-
linked cytoskeleton to resist compression, yielding negative
effective tensions on timescales relevant for cell motion;56,57

similarly, cell–cell adhesion makes a negative contribution to
edge tension.58

Mechanical topological polarization results in strongly asym-
metric mechanical responses, similar to what have been observed
in spring-and-mass models.16–19,25,59 In general, topological ZMs
and SSSs localize at opposite sides of a topologically polarized
system, where the topological polarization

-

RT points to the
edge/interface with extra ZMs. In particular, if the topological
polarization

-

RT points towards an open edge, it exhibits extra
exponentially localized ZMs, while an open edge on the opposite
side loses ZMs and may become rigid if all ZMs are polarized to
the opposite side. Moreover, interfaces connecting domains of
tissue of opposite topological polarizations can host exponentially
localized ZMs (SSSs) when there is a net flux of topological
polarization

-

RT towards (away from) this interface.
Topologically protected ZMs induce localized softness at

boundaries and interfaces of the tissue. Compared to normal
tissues, where boundaries are usually softer than the bulk in an
isotropic way, topologically polarized tissues exhibit softness in
a highly anisotropic manner, where some boundaries (ones
opposite to the direction of

-

RT) appear to be as rigid as the bulk,
and some interfaces (ones with accumulated ZMs due to
different

-

RT from domains around them) may be as soft as a
normal boundary.

Similarly, topologically protected SSSs induce unusual local
stiffness. At the level of linear response, as shown in ref. 15, 18
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and 20, when a material is under external load, stress is
‘‘attracted’’ to interfaces with localized SSSs. At the nonlinear
level, stress response may be further controlled by cellular
rearrangements, as discussed in ref. 41 and 42, but the effect
of SSSs may still play an important role in these rearrangements
as spots of focused stress. Biologically, this elevated local stress
may cause interesting consequences in cells at these interfaces.

In addition, even in the bulk of a topologically polarized
tissue far from boundaries or interfaces, the mechanical
response to local perturbations (from cell activity or from
external forces) can show strong directionality. It has been
shown in ref. 60 that in a topologically polarized mechanical
network stress and displacement propagate in opposite
directions.

It is worth pointing out that we made the simplifying
assumption that having boundaries and interfaces does not
interfere with the active stresses in the tissue sheet. Rigorously
speaking, force balance may be violated at these boundaries
and interfaces. This will lead to local deformations to re-
balance the stress, causing locally perturbed geometry at the
boundaries and interfaces. Alternatively, these active stresses
can be balanced by external forces from the substrate the cell
sheet attaches on (the extracellular matrix) or other biological
components in contact with the sheet, so that the homogeneous
lattice configurations are maintained. We conjecture that the
topological mechanical properties will survive despite these
perturbations, given their topological robustness. It has been
recently shown that topological mechanical properties are
indeed robust against various perturbations from disorder to
stress,25 and random damage20 of the networks. Detailed numerical
studies of these cell sheets with actual open boundaries and inter-
faces will be the subject of future studies.

Biologically, these topologically robust mechanical properties
may lead to interesting consequences. When cells are arranged
such that ZMs localize at certain boundaries and interfaces, the
greatly decreased local stiffness may allow significant changes of
cell shape and trigger special biological processes. On the other
hand, when cells are arranged such that SSSs localize at certain
interfaces, stress significantly increases at these locations, which
may trigger processes such as cell proliferation or the cell sheet
to buckle out-of-plane at these controlled locations.
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Appendix A: expansion of elastic
energy

In this appendix we expand the elastic energy of both the VM
and the ATN, as stressed elastic media, and derive the force
balance condition from the first order terms of the expansion
and constraints for ZMs from the second order terms of the
expansion.

1. Elastic energy

The change of the elastic energy in both the VM and the ATN
can be generically written as

dE ¼
X
hiji

~TijdRij þ
X
f

~Pf dAf : (A1)

This expression takes the same form as the differential elastic
energy of the ATN [eqn (2)], but it also applies to the VM when it
is considered an expansion of eqn (1) where the T̃ij’s come from the
cortical tensions as we discuss below. We introduce a 2V dimen-
sional vector u = (ux1, u

y
1,. . .,u

x
n, u

y
n) to denote the displacement of all

vertices, and expand the elastic energy change up to the 2nd order

in u. We add a tilde on the tension and pressure, T̃ij, ~Pf to denote
that they may contain OðuÞ terms.

Between the VM and the ATN, the major difference is
reflected in the edge tension Tij. These tensions are controlled
by the cortical tensions Ta and Tb of the adjacent cells a and b in
the VM, whereas in the ATN they are adjusted by the myosin
dynamics on the edge to reach their stall values. Thus, as
discussed in Section IIA, we assume here that the edge tensions
in the ATN are constant,

T̃ij = Tij (A2)

for the ATN but

~Tij ¼ KPðPa � P0Þ þ ðPb � P0Þ þ
1

2
dPa þ

1

2
dPb

¼ Ta þ Tb þ
KP

2
dPa þ dPbð Þ

(A3)

for the VM, where the cell perimeters are to be evaluated at the
equilibrium configuration. This expression comes from an
expansion of the cortical tension term of eqn (1) around
a stressed state with ‘‘pre-stretch’’ Pf � P0. The change of
perimeter for each cell can be expressed in terms of the
displacement field u. To second order we have

dPf ¼ u � rPf þ
1

2
u � rrTPf � uT
� �

(A4)

where r = (qx1,q
y
1,. . .,q

x
n,q

y
n) and rrT is the Hessian matrix. Here

the differential is taken with respect to u so that qx1 = q/qux1.
Since the perimeter Pf ¼

P
hiji

Rij , the derivative for the

perimeter dPf in eqn (A4) can be rewritten as

dPf ¼
X
hiji

u � rRij þ
1

2
u � rrTRij � uT
� �

: (A5)

The area contributions are treated the same in both models
including the change in pressure due to the displacements u,

~Pf ¼ KA ðAf � A0Þ þ
1

2
dAf

	 

¼ Pf þ

KA

2
dAf ; (A6)

where Af is to be evaluated at mechanical equilibrium. This
expression comes from an expansion of the area term of eqn (1)
around a stressed state with ‘‘pre-area-expansion’’ Af � A0.
The change of cellular area dAf can be expanded as
(to second order)
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dAf ¼ u � rAf þ
1

2
u � rrTAf � uT
� �

(A7)

Thus, combining eqn (A3) to eqn (A7) we obtain the 2nd
order expansion of dE with respect to the displacement field u
in the VM as

dEVM ¼
X
hiji

ðTaþTbÞðu �rRijÞþ
KP

2
ðu �rðPaþPbÞÞðu �rRijÞ
� �

þðTaþTbÞ
2

ðu �rrTRij �uTÞþ
X
f

Pf u �rAf

� �

þKA

2
u �rAf

� �2þ1

2
Pf u �rrTAf �uT
� �

þOðu3Þ

(A8)

Similarly, for the ATN, we have the energy expansion

dEATN ¼
X
hiji

Tijðu � rRijÞ þ
Tij

2
u � rrTRij � uT
� �

þ
X
f

Pf u � rAf

� �
þ KA

2
u � rAf

� �2

þ 1

2
Pf u � rrTAf � uT
� �

þO u3
� �

(A9)

2 Force-balance condition

The force balance condition comes from the fact that the
expansions of eqn (A8) and (A9) must have vanishing OðuÞ
terms, so that there is no net force on any vertex. This condition
takes the form

dEð1Þ ¼
X
hiji

Tijðu � ðrRijÞÞ þ
X
f

Pf ðu � rAf Þ ¼ 0 (A10)

for any choice of the displacement field u. This equation
is exactly the force balance condition described in eqn (10) of
the main text for the ATN. For the VM, we keep only the first
term in eqn (A10), because we drop the area term in order to
satisfy Maxwell’s condition. This leads to eqn (7) of the
main text.

3 The Hessian

Now we turn to examine the Oðu2Þ terms in the expansions
and identify the constraints. For the VM, as discussed in the
main text, we only treat the cortical tension as dominant
contribution to the elastic energy in order to place the model
to the Maxwell condition. The 2nd order terms in eqn (A8)
are thus

dE
ð2Þ
VM ¼

X
hiji

KP

2
ðu � rðPa þ PbÞÞðu � rRijÞ
� �

þ ðTa þ TbÞ u � rrTRij � uT
� � (A11)

The Oðu2Þ terms for the ATN from eqn (A9) are

dE
ð2Þ
ATN ¼

X
hiji

Tij

2
u � rrTRij � uT
� �

þ
X
f

KA

2
ðu � rAf Þ2

þ 1

2
Pf u � rrTAf � uT
� � (A12)

These Oðu2Þ terms lead to an elastic energy that consists of
all complete square terms. Because these complete square
terms must all be zero to make the elastic energy vanish, they
provide constraints discussed Section IIB in the main text. We
derive these complete square terms below.

For a cell fmodeled as an Vf-polygon, the perimeter and area
can be written as

Pf ¼
XVf

i¼1

li (A13)

Af ¼
1

2

XVf�1

i¼1

XVf�1

j4 i

lxj l
y
i � l

y
j l

x
i

� �
; (A14)

where
-

li =
-
ri+1 �

-
ri +

-
ui+1 �

-
ui is the length of edge i of face f the

same way as defined in Section II. Thus the expansion on
perimeter and area can be arranged in orders of u as:

li ¼ l
ð0Þ
i þ l

ð1Þ
i þ l

ð2Þ
i þO l

ð3Þ
i

� �
(A15)

where
-

l(0)i = |-ri+1 �
-ri| (A16)

l(1)i = u�rli = (-ui+1 �
-ui)�n̂i (A17)

l
ð2Þ
i ¼ u � rrTli � uT ¼ 1

2li
n̂i � ð~uiþ1 �~uiÞj j2 (A18)

with n̂i being the unit vector of
-

l(0)i , which is the bond direction
before displacements. Subjecting eqn (A17) and (A18) into
eqn (A8) and (A9) allows us to find explicit expressions in terms
of the displacements u.

For the VM, the 1st quadratic term in eqn (A8) can be
rearranged to become a sum over faces

X
hiji

KP

2
ðu � rðPa þ PbÞÞðu � rRijÞ
� �

¼
X
f

KP

2

Xn
i

l
ð1Þ
i

" #2
: (A19)

The 2nd term after the edge to face summation rearrangements
becomes

X
hiji

ðTa þ TbÞðu � rrTRij � uTÞ ¼
X
f

Tf

Xn
i¼1

l
ð2Þ
i (A20)

where Tf is the cortical tension on cell f.
It is obvious now that all Oðu2Þ terms in the elastic energy of

the VM can be arranged into these complete square terms, the
total number of which is equal to F + E. For a ZM which leaves
the elastic energy zero, each of the complete square terms need
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to vanish. We thus arrive at ZM conditions for the VM

XVf

i

ð~uiþ1 �~uiÞ � n̂i ¼ 0 (A21)

n̂i � (-ui+1 �
-
ui) = 0 (A22)

which are eqn (5) and (3) in the main text. These constraints are
generically linearly independent unless the geometry is fine-
tuned such that a singularity arises.

We can do a similar analysis for the ATN, where we find that
the 1st term in eqn (A9)X

hiji

Tij

2
u � rrTRij � uT
� �

(A23)

result in exactly the same ZM condition as eqn (A22). The
2nd term X

f

KA

2
u � rAf

� �2 (A24)

has the completed square on u�rAf, which leads to the ZM
condition described in eqn (4) of the main text. Interestingly,
the 3rd term in eqn (A9)

1

2
Pf u � rrTAf � uT
� �

(A25)

only depends on the boundary displacements, because it
becomes the variation of the total area of the whole sheet after
summing over all faces. Explicitly, the Hessian of the area
rrTAf can be written in a matrix form as

rrTAf ¼

0 �1 0 0 0 1

1 0 �1 0 0 0

0 1 0 �1 0 0

0 0 1 0 �1 0

0 0 0 1 0 �1

�1 0 0 0 1 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

(A26)

using the sites ri of a face as the basis where iA [1,6]. Thus, this
term vanishes automatically for any internal vertex and does
not provide a new constraint. The total number of constraints
in the ATN is also F + E, placing it at the Maxwell point. One way
to physically understand the vanishing of this term is that the
total area of the cellular sheet would not change under the
displacement of internal vertices.

Appendix B: compatibility matrix
1. Compatibility matrix of the ATN

The compatibility matrix for the ATN can be constructed
according to the ZM conditions in eqn (3) and (4). For the unit
cell construction in Fig. 2, the momentum space compatibility
matrix C(k) is an 8 � 8 matrix because we have 4 sites, 2 faces
and 6 edges in a unit cell. From the condition eqn (3), we have
6 constraints for ZMs in the ATN,

n̂1 � (-u2 � eik1-u1) = e>1 (B1)

n̂2 � (-u1 �
-
u2) = e>2 (B2)

n̂3 � (e�ik2-u4 �
-
u1) = e>3 (B3)

n̂4 � (-u3 � e�ik2-u4) = e>4 (B4)

n̂5 � (-u4 �
-u3) = e>5 (B5)

n̂6 � (ei(k1�k2)-u2 �
-
u3) = e>6 (B6)

And from the area conditions in eqn (4), we have 2 more
constraints for ZMs in the ATN,

ð~u2 � eik1~u1Þ � ð~l2 þ~l3Þ þ ð~u1 �~u2Þ � ð�~l1 þ~l3Þ

� ðe�ik2~u4 �~u1Þ � ð~l2 �~l1Þ þ ð~u3 � e�ik2~u4Þ � ð~l5 �~l3Þ

þ ð~u4 �~u3Þ � ð�~l3 �~l4Þ

� ðeik1~u1 �~u4Þ � ð~l4 þ~l5Þ ¼ DA1

(B7)

and

ð~u4 � eik1~u3Þ � ð~l6 �~l5Þ þ ð~u3 �~u4Þ � ð~l6 þ~l4Þ

� ðeiðk1�k2Þ~u2 �~u3Þ � ð�~l4 �~l5Þ

þ ðeik2~u1 � eiðk1�k2Þ~u2Þ � ð�~l2 �~l6Þ

þ ðeik2~u2 � eik2~u1Þ � ð~l1 �~l6Þ

� ðeik1~u3 � eik2~u2Þ � ð�~l1 �~l2Þ ¼ DA2

(B8)

Putting the 8 equations from eqn (B1)–(B8) together results
in the compatibility matrix of size 8 � 8 in the basis of {uxi , u

y
i }

where i = 1, 2,. . .,4 with each constraint in each row, and each
degrees of freedom in each column. The determinant of this
matrix is used to compute the topological polarization. In these
equations, we defined the shorthand eik1 � eik

-�a-1, eik2 � eik
-�a-2,

which are the Bloch factors of the lattice.

2. Compatibility matrix of the VM

Similarly, we can construct the compatibility matrix for the
VM using eqn (3) and (5). The bond rotation constraint
eqn (3) have the same 6 equations as shown in eqn (B1)–
(B6). However, the perimeter conservation eqn (5) gives us 2
constraints,

ð~u2 � eik1~u1Þ �~l1 þ ð~u1 �~u2Þ �~l2 þ ðe�ik2~u4 �~u3Þ �~l3

þ ð~u3 � e�ik2~u4Þ �~l4 þ ð~u4 �~u3Þ �~l5 þ ðeik1~u1 �~u4Þ �~l6 ¼ DP1

(B9)

ð~u4 � eik1~u3Þ �~l1 þ ð~u3 �~u4Þ �~l2 þ ðeiðk1�k2Þ~u2 �~u3Þ �~l3

þ ðeik2~u1 � eiðk1�k2Þ~u2Þ �~l4 þ ðeik2~u2 � eik2~u1Þ �~l5

þ ðeik1~u3 � eik2~u2Þ �~l6 ¼ DP2:

(B10)
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The 8 � 8 compatibility matrix of the VM is constructed using
eqn (B1)–(B6), (B9), and (B10) again in the basis of {uxi , u

y
i }.

Appendix C: topological phase diagram
of networks close to critical
configurations along

-
a1

In Fig. 4 we show two critical configurations with bonds
forming straight lines, allowing bulk ZMs where cells translate
along strips along -

a2 (a) or
-
a1 (b). In the main text, we discussed

the phase diagram around the critical configuration (a).
We have done similar analysis of configurations around

critical configuration (b), and the results are shown in Fig. 9.
Similarly, the sheet is unpolarized when all cells are convex.
When the cells become concave, configurations of

-

RT = �-
a1, as

well as a region with Weyl points show up. We show some
examples of the geometry of these phases in Fig. 10.

It is interesting to note here that because 4 constraints per
unit cell are removed when a vertical cut is introduced on the
lattice to generate an open boundary along -

a2 (so as to show the
topological polarization along -

a1), 4 instead of 2 ZMs are
generated per unit cell. Therefore, topological polarization
-

RT = �-
a1 indicates that the ratio of ZMs at the left and right

boundary have ratios of 1 : 3 or 3 : 1 instead of 0 : 4 or 4 : 0. As a
result, we do not observe any boundary becoming completely
ZM free in this case, unlike the phase diagram we discussed in
the main text, where the top or the bottom boundaries can be
free of ZMs.

Appendix D: transfer matrix for
disordered cell sheets

In this appendix we develop a transfer matrix method for ZMs
in cell sheets, which can be applied to disordered cell sheets to
conveniently derive the ZM at given boundary conditions. The
transfer matrix for the VM and the ATN can be derived in
similar ways, thus we show both derivations in this Appendix.

In this transfer matrix construction, we assume that each
cell is a hexagon (of arbitrary shape) and each vertex has three
edges meeting at it, so the sheet still has the topology of a
honeycomb lattice, but no periodicity is required for the shapes
of the cells. The constructed transfer matrix will enable us to
derive the ZM displacements of the three ‘‘outgoing’’ edges
from the ZM displacements of the three ‘‘incoming’’ edges.
Therefore by propagating this transfer matrix through the
whole cell sheet, where each hexagonal cell has three in-flux
and three out-flux, we can compute the ZM of the whole sheet.

To derive this transfer matrix method, we consider one cell
and establish the edge conventions as shown in Fig. 11. Same

as in eqn (4), we define ~U i ¼ ~uiþ1 �~ui as the relative displace-
ment between the neighboring vertices. Because the ZM

cannot rotate the edges [eqn (3)], these vectors
-

Ui only have
components parallel to the original edge direction

Uk
i ¼ ~U � l̂i;iþ1; (D1)

where l̂i,i+1 is the direction of the edge connecting vertices i and
i + 1.

At each cell, we assume there are three known displace-

ments Uk
1;U

k
2;U

k
3

n o
, and we will derive three unknown

displacements Uk
4;U

k
5;U

k
6

n o
. From the fact that the hexagonal

cell has to remain closed, we have

XVf

i¼1

Uk
i l̂i;iþ1 ¼ 0: (D2)

This gives us two equations, because it is a vectorial equation.
One more equation for ZMs comes from the perimeter con-
servation condition in eqn (5) in the VM

XVf

i¼1

~U � l̂i;iþ1 ¼
XVf

i¼1

Uk
i ¼ 0 (D3)

and from the area preservation condition in eqn (4) in the ATN.

XVf�1

i¼1

XVf�1

j4 i

~U j �~Li � ~U i � ~Lj

� �
¼ 0: (D4)

Eqn (D2)–(D4) allow us to write a transfer matrix M for both
models such that

M �
Uk
1

Uk
2

Uk
3

0
B@

1
CA ¼

Uk
4

Uk
5

Uk
6

0
B@

1
CA (D5)

Fig. 9 Phase diagram for changing site 2 coordinate in Case 1 with the
same representation style as Fig. 5. The gray boundary labels the outbound
of the unit cell with the 3 stationary sites besides vertex 2. The thick black
line marks critical configurations, and 5 different topological phases are
observed. The yellow region is un-polarized. The cyan, and red regions are
topologically polarized with R

-
T along a

-
1, and �a

-
1 respectively, where the

white arrows mark R
-

T. In the purple region the lattice displays Weyl points
and thus topologically protected bulk floppy modes. Four representative
configurations of these regions (marked by black dots) are shown in
Fig. 10.
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The transfer matrix M takes the form of a square non-
symmetric matrix for both models. In the VM,

MVM ¼�

1 1 1

cosy4 cosy5 cosy6

siny4 siny5 siny6

0
BBB@

1
CCCA

�1

�

1 1 1

cosy1 cosy2 cosy3

siny1 siny2 siny3

0
BBB@

1
CCCA

(D6)

where yi are the angles of the edges Li;iþ1 in the Cartesian
coordinate system. The transfer matrix M for the ATN has a
similar form as eqn (D6), with the elements in the first row
replaced by the terms given by eqn (D4).

These transfer matrices can be used to propagate the ZM across
the whole sheet cell by cell from given boundary conditions, as
shown in Fig. 12.

To study topological mechanics, we again start from the bulk

ZM configuration shown in Fig. 4(a), where ~U1 k ~U3 k ~U4 k ~U6.

In this configuration, both MVM and MATN yield one ZM with

eigenvalue l1 = �1 with a corresponding eigenvector ~n1 ¼
1
0
1

0
@

1
A

for the Uk
i . This is clearly the bulk ZM depicted in Fig. 4(a), where

edges 2 and 5 shift vertically.
However, the other two eigenmodes of this 3 � 3 transfer

matrix do not correspond to simple decompositions of other
edges of this cell. Specifically in ATN, one of these two modes
represents vertical shifts of neighboring columns with an
eigenvalue l2 = 1, whereas the other one represents a horizontal
broadening or narrowing of the network that has a corres-

ponding eigenvalue l3 ¼
jL5j
jL2j

, and this mode captures the

‘‘breathing’’ mode discussed in the main text. This differs from
other simpler cases of transfer matrices for topological
mechanics where modes symmetrically separate, making it
transparent to study ZM decay in different directions in those
systems.25,59

Fig. 10 Representative examples of cell sheet lattices in different regions of the phase diagram (Fig. 9) with the same style as Fig. 6. (a) A polarized lattice
with R

-
T = a

-
1. (b) A polarized lattice with R

-
T = �a

-
1. (c) An unpolarized lattice. (d) A lattice at critical configuration.

MATN ¼�

cos y4ðLy
5 þ Ly

6Þ � sin y4ðLx
5 þ Lx

6Þ cos y5ðLy
6 � Ly

4Þ � sin y5ðLx
6 � Lx

4Þ � cos y6ðLy
4 þ Ly

5Þ þ sin y6ðLx
4 þ Lx

5Þ

cos y4 cos y5 cos y6

sin y4 sin y5 sin y6

0
BBB@

1
CCCA

�1

�

�

cos y1ðLy
2 þ Ly

3Þ � sin y1ðLx
2 þ Lx

3Þ cos y2ðLy
3 � Ly

1Þ � sin y2ðLx
3 � Lx

1Þ � cos y3ðLy
1 þ Ly

2Þ þ sin y3ðLx
1 þ Lx

2Þ

cos y1 cos y2 cos y3

sin y1 sin y2 sin y3

0
BBB@

1
CCCA
(D7)
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For the rest of this appendix, we introduce perturbations to
the vertex positions and examine how the eigenvalues of the
transfer matrix change. In particular, we focus on the first mode
which has eigenvalue l1 = �1 at the critical configuration. The
sign of its first order correction dl1 indicates the directions of
decay in the ZM.

We use first order perturbation theory to find dl as a
function of the geometric perturbation of the vertex positions.
However, due to the non-symmetric nature of the transfer
matrix, the first order perturbation method needs a slight

modification from the usual perturbation theory because the
left and right eigenvectors of the matrix are not identical.

In first order perturbation theory for symmetric matrices,
the perturbation to the eigenvalues take the form E(1) =
hc(0)|dE|c(0)i. However for non-symmetric matrices, it takes
the form

dli ¼
mT

!0

i dM~n0i

mT

!0

i~n
0
i

where mT

!0

i ;~n
0
i are the left and right eigenvectors of the

unperturbed matrix M. The derivation of this form is supplied
as the following.

With some small geometric change from the critical
configuration, the transfer matrix M can be written as

M = M0 + dM, (D8)

the eigenvalues li can be expanded to the first order as

li E l0i + dl (D9)

and the right eigenvectors ~ni can be expanded to the first
order as

~ni �~n0i þ~dn (D10)

where M0, l0i , and~n0i are the transfer matrix and its eigenvalues
and eigenvectors when the geometry is at the critical
configuration, so that we know M0~n0i = l0i~n

0
i .

With these expansions, we have

ðM0 þ dMÞ ~n0i þ~dni
� �

¼ ðl0i þ dliÞð~n0i þ~dniÞ: (D11)

Multiplying out the terms and keep to the first order, we get

M0~n0i þM0~dni þ dM~n0i ¼ l0i~n
0
i þ li~dni þ dli~n0i : (D12)

The first terms cancel on both sides, so it becomes

M0~dni þ dM~n0i ¼ li~dni þ dli~n0i : (D13)

Now suppose~m0i is the left eigenvector ofM
0 with the eigenvalue

li, such that mT

!0

i M
0 ¼ mT


!0

i li, or equivalently, MT~m0i ¼ l0i~m
0
i .

Dotting this left eigenvector on both sides of the equation
gives us

mT

!0

i M
0~dni þ mT


!0

i dM~n0i ¼ mT

!0

i li~dni þ mT

!0

i dli~n
0
i (D14)

Now we can cancel out the first term on both sides again based
on the property of the left eigenvectors ~m0i , so we are left with

mT

!0

i dM~n0i ¼ mT

!0

i dli~n
0
i (D15)

Rearranging the equation, we have

dli ¼
mT

!0

i dM~n0i

mT

!0

i~n
0
i

(D16)

which is the first order correction to the eigenvalue li of the
transfer matrix.

Fig. 12 An illustration of how the transfer matrix can use the ‘‘incoming’’
edges to solve for the ‘‘outgoing’’ edges on a sheet of hexagonal cells for
ZMs. The red dots label the ‘‘incoming’’ edges, where Uk

i are given by
boundary conditions, and the blue dots represent the ‘‘outgoing’’ edges

where Uk
i are calculated. Across each cell, the transfer matrix allows us to

find out the ZM at the three outgoing edges as functions of the ZM at the
three incoming edges, and the direction of the ZM solution propagation is
labeled by the magenta arrows across cell edges. The choice of the in and
out directions is not unique on the sheet, and depends on which bound-
aries are fixed. The total number of incoming edges (red dots) is equal to

the total number of ZMs of the whole sheet, so determining Uk
i at these

edges determines the ZM of the whole sheet.

Fig. 11 The convention used in establishing the transfer matrix, sites and
edges are labeled as in the figure, and edge directions are chosen to be in
the clockwise direction.
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This perturbation theory can potentially be used to study
how ZMs exponentially grow or decay in disordered cell sheets.
We applied this method to the periodic lattices we studied in
the main text, and the results are consistent between the
momentum space calculation described in the main text and
the transfer matrix calculation. As we choose lattices in each
topological phase in Fig. 5, the sign changes of dl agrees with
the winding number jumps.
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