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A B S T R A C T 
We present the calibration of the Dark Energy Surv e y Year 3 (DES Y3) weak lensing (WL) source galaxy redshift distributions 
n ( z) from clustering measurements. In particular, we cross-correlate the WL source galaxies sample with redMaGiC galaxies 
(luminous red galaxies with secure photometric redshifts) and a spectroscopic sample from BOSS/eBOSS to estimate the redshift 
distribution of the DES sources sample. Two distinct methods for using the clustering statistics are described. The first uses 
the clustering information independently to estimate the mean redshift of the source galaxies within a redshift window, as done 
in the DES Y1 analysis. The second method establishes a likelihood of the clustering data as a function of n ( z), which can 
be incorporated into schemes for generating samples of n ( z) subject to combined clustering and photometric constraints. Both 
methods incorporate marginalization o v er various astrophysical systematics, including magnification and redshift-dependent 
galaxy-matter bias. We characterize the uncertainties of the methods in simulations; the first method reco v ers the mean z of 
tomographic bins to RMS (precision) of ∼0.014. Use of the second method is shown to vastly impro v e the accuracy of the shape 
of n ( z) derived from photometric data. The two methods are then applied to the DES Y3 data. 
Key words: galaxies: distances and redshifts – cosmology: observations. 

1  I N T RO D U C T I O N  
The Dark Energy Surv e y (DES) is a photometric surv e y that has 
imaged 5000 deg 2 of the sky. The DES Y3 ‘3x2’ analysis (DES 
Collaboration 2021 ) using data taken during the first three seasons of 
! E-mail: marcogatti29@gmail.com (MG); ggiannini@ifae.es (GG) 

observations constrains cosmological parameters by combining three 
different measurements of two-point correlation functions: cosmic 
shear (Amon et al. 2021 ; Secco et al. 2021 ), g alaxy–g alaxy lensing 
(Prat et al. 2020 ), and galaxy clustering (Rodr ́ıguez-Monroy et al. 
2020 ). The cosmic shear measurement probes the angular correlation 
of more than 100 000 000 galaxy shapes from the weak lensing (WL) 
sample (Gatti et al. 2021 ), divided into four tomographic bins. The 
cross-correlation of galaxy shapes and the positions of red luminous 
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1224 M. Gatti et al. 
galaxies identified by the redMaGiC algorithm (Rozo et al. 2016 ) 
is measured by g alaxy–g alaxy lensing. Lastly, g alaxy clustering 
measures the autocorrelation of the positions of redMaGiC galaxies. 
A magnitude-limited sample (Porredon et al. 2021 ) will be also 
used as lens sample alternatively to redMaGiC in a second analysis 
(Porredon et al. 2021 ), with the goal of improving the cosmological 
constraints. 

The correct cosmological interpretation of these measurements 
relies on an accurate estimate of the redshift distributions of the 
samples, which can otherwise lead to biases in the inferred cosmo- 
logical parameters (e.g. Huterer et al. 2006 ; Hildebrandt et al. 2012 ; 
Choi et al. 2016 ; Hoyle et al. 2018 ). Photometric surv e ys hav e been 
relying on different methodologies to derive redshift distributions 
(Hildebrandt et al. 2010 ; S ́anchez et al. 2014 ), mostly based on 
galaxies’ multiband photometry (photo- z methods, or PZ). Ho we ver, 
these methods are ultimately limited by the redshift ambiguities 
in few-band colours, and the limited and incomplete spectroscopic 
samples available to calibrate the colour–redshift relations. 

Clustering- z methods (Newman 2008 ; M ́enard et al. 2013 ; Choi 
et al. 2016 ; Davis et al. 2017 ; Johnson et al. 2017 ; Morrison 
et al. 2017 ; Gatti et al. 2018 ; van den Busch et al. 2020 ) offer an 
alternative to standard photo- z methods to infer redshift distributions. 
In short, clustering- z methods exploit the two-point correlation signal 
between a photometric ‘unknown’ sample and a ‘reference’ sample 
of high-fidelity redshift galaxies divided into thin bins, to infer the 
redshift distributions of the photometric sample. One of the biggest 
advantages of clustering- z methods is that the reference sample does 
not have to be representative of the photometric sample. Clustering- z 
methods (or WZ) have been in the past years successfully applied 
to both data (Rahman et al. 2015 , 2016a , b ; Scottez et al. 2016 ; 
Davis et al. 2017 , 2018 ; Hildebrandt et al. 2017 , 2021 ; Johnson 
et al. 2017 ; Cawthon et al. 2018 ; Bates et al. 2019 ; van den Busch 
et al. 2020 ) and simulations (McQuinn & White 2013 ; Schmidt et al. 
2013 ; Scottez et al. 2017 ; Gatti et al. 2018 ), and they represent 
one credible supplement to standard photo- z methods for the new, 
upcoming generation of data sets (Scottez et al. 2017 ). 

Clustering- z methods have been used both to provide an inde- 
pendent redshift distribution estimate and to calibrate distributions 
inferred from photo- z methods. In the DES Y1 cosmological anal- 
ysis, we opted for the latter approach (Davis et al. 2017 ; Hoyle 
et al. 2018 ). In particular, we used high-quality photometric redshifts 
provided by redMaGiC galaxies (Rozo et al. 2016 ) to measure the 
clustering- z signal with the WL source-galaxy sample. The use of 
high-quality photometric redshifts rather than spectroscopic redshifts 
was moti v ated by the higher statistical power of the redMaGiC 
sample, owing to the large number of redMaGiC galaxies (650 000 
for DES Y1) in the DES footprint. Due to the limited redshift range 
of the redMaGiC sample, clustering- z estimates could not have been 
used to determine n ( z) in its entirety on their own, but they have been 
used to calibrate the mean redshift of the distributions measured by 
other DES photo- z methods (with the mean taken o v er the redMaGiC 
z bounds). A similar approach has been implemented by the KiDS 
team in their recent cosmological analysis (van den Busch et al. 
2020 ; Hildebrandt et al. 2021 ), where they used cross-correlation 
estimates to calibrate the mean redshifts inferred from other photo- z 
methods. They used a number of different spectroscopic samples as 
a reference sample, which guaranteed a greater redshift co v erage but 
less statistical power compared to the use of redMaGiC galaxies. 

The strategy for calibration of the WL redshift distributions for 
DES Y3 impro v es in multiple respects on the Y1 strategy outlined in 
Gatti et al. ( 2018 ). From the clustering-redshift side, we e x ecute two 
different methods to combine clustering information with redshift 

distributions from photometry. The first approach is to use clustering- 
z to estimate the mean redshift 〈 z〉 wz , and assign a clustering- z 
likelihood to any candidate n ( z) from photo- z techniques based on 
the value of its mean 〈 z〉 pz (similar to the DES Y1 analysis). We 
will refer to this as the ‘mean-matching’ approach. The second, new 
method is to pose both the clustering- z and the photo- z measurements 
as probabilities p [ D | n ( z)] of the observational data D given redshift 
distributions n ( z); then to sample the full n ( z) from the posterior 
p [ n ( z)] implied by multiplying these probabilities. We will refer to 
this as the ‘full-shape’ method. 

We furthermore impro v e o v er Y1 in the modelling of the clustering 
signal, accounting for the redshift evolution of the galaxy-matter bias 
and the clustering of the underlying dark matter density field, which 
were neglected in the DES Y1 analysis. In the second method that 
calibrates the shape of the redshift distributions, we also marginalize 
o v er magnification effects. Finally, we use a combination of two 
different reference samples: redMaGiC galaxies with high-quality 
photometric redshifts; and a spectroscopic sample from the com- 
bined BOSS (Baryonic Oscillation Spectroscopic Surv e y, Da wson 
et al. 2013 ) and eBOSS (extended-Baryon Oscillation Spectroscopic 
Surv e y, Da wson et al. 2016 ; Ahumada et al. 2020 ; Alam et al. 2021 ) 
catalogues. Only redMaGiC galaxies were used in DES Y1. On one 
hand, redMaGiC galaxies span the full DES Y3 footprint (Rodr ́ıguez- 
Monroy et al. 2020 ) and are characterized by a higher number density 
than BOSS/eBOSS galaxies, which co v er only ≈ 17 per cent of the 
DES Y3 footprint. On the other hand, the latter sample spans a wider 
redshift range and has better redshift estimates, which makes the 
combination of the two samples desirable. 

The fiducial photo- z estimates for the DES Y3 WL sample are 
provided by a self-organizing map-based scheme (hereafter SOMPZ, 
Buchs et al. 2019 ; Myles et al. 2021 ). The SOMPZ method provides 
a means to generate samples of the n ( z) for all tomographic bins 
that encompass the uncertainties in the photometric inference of 
the distributions. The mean-matching clustering- z method may be 
used to confirm or adjust the n ( z) samples generated by SOMPZ. 
We use the full-shape method as the fiducial method for DES Y3, 
generating samples of n ( z) from the combined SOMPZ and clustering 
likelihoods. In either route, the DES Y3 cosmological analysis is 
done by sampling o v er the finite set of realizations generated by 
SOMPZ + clustering-z. 

We note that there exist other strategies to combine clustering- z 
and photo- z estimates. For example, S ́anchez & Bernstein ( 2019 ) and 
Alarcon et al. ( 2020 ) sho w ho w to combine photo- z and clustering- z 
estimates using a hierarchical Bayesian model (Leistedt, Mortlock 
& Peiris 2016 ). The application of these methods to DES data is left 
for future work. 

This paper is organized as follows. In Section 2, we describe the 
two different methodologies used in DES Y3 to calibrate photo- z 
posteriors using clustering- z estimation, and explain how to assign 
a likelihood to the cross-correlation information. The simulations 
and the data sets used in this paper are described and compared in 
Section 3. In Section 4, we perform extended tests in simulations 
assessing the systematic uncertainty of the methods. The calibration 
on DES Y3 data is presented in Section 5, and in Section 6 we discuss 
future prospects for this method and present our conclusions. 
2  M E T H O D O L O G Y  
We describe the clustering- z (WZ) methodology as generally as 
possible in this section, deferring to Section 3 the description (and 
the choice of the binning) of the particular samples adopted for DES 
Y3. 
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Clustering redshifts 1225 
2.1 Modelling and measuring the correlation signal 
Clustering- z methods rely on the assumption that the cross- 
correlation between two samples of objects is non-zero only in the 
case of o v erlap of the distribution of objects in physical space, due 
their mutual gravitational influence. Let us consider two samples: 

(i) An unknown sample, whose redshift distribution n u ( z) has to 
be measured, namely our WL source sample, and 

(ii) A r efer ence sample, whose redshift distribution n r ( z) is known 
(either from spectroscopic redshifts or from high-precision photo- 
metric redshifts). 

We compute the angular clustering signal w ur as a function of the 
separation angle θ between the unknown sample and the reference 
population. Under the assumption of linear biasing and the Limber 
approximation (Limber 1953 ), the clustering signal can be written as 
(e.g. Krause et al. 2017 ): 
w ur ( θ ) = ∫ d z ′ n u ( z ′ ) n r ( z ′ ) b u ( z ′ ) b r ( z ′ ) w DM ( θ, z ′ ) + M( θ ) , (1) 
where n u ( z ′ ) and n r ( z ′ ) are the unknown- and reference-sample 
redshift distributions (normalized to unity o v er the full redshift 
interval), b u ( z ′ ) and b r ( z ′ ) are the linear galaxy-matter biases of the 
two samples, and w DM ( θ , z ′ ) is the dark-matter two-point angular 
correlation function. The term M ( θ ) refers to the contribution of 
lensing magnification effects; description and full expressions for 
the terms w DM ( θ , z ′ ) and M ( θ ) are detailed below (equation 7 and 
equation A1). Note that while we acknowledge that the assumption 
of linear biasing is not expected to hold at small scales, we are 
nevertheless confident to be able to estimate the systematic bias 
introduced by this premise, as explained in Section 2.2. We also note 
that the Limber approximation is a standard assumption in clustering- 
z works, and it is expected to have a minimal impact on our results 
(e.g. McQuinn & White 2013 ). 

Following M ́enard et al. ( 2013 ), the correlation function is mea- 
sured as a function of angle, and averaged over angular scales to 
produce a ‘scalar’ value via 
w̄ ur = ∫ θmax 

θmin d θ W ( θ ) w ur ( θ ) , (2) 
where W ( θ ) ∝ θ−γ is a weighting function. We adopt γ = 1 to 
yield optimal S/N on the scalar in the presence of shot noise. The 
integration limits in the integral in equation (2) correspond to fixed 
physical scales. In this work, we choose to span the physical interval 
between 1.5 and 5.0 Mpc (Section 4). We use the Davis & Peebles 
( 1983 ) estimator for the cross-correlation signal, 
w ur ( θ ) = N Rr 

N Dr D u D r ( θ ) 
D u R r ( θ ) − 1 , (3) 

where D u D r ( θ ) and D u R r ( θ ) are, respectively, data–data and data–
random pairs. The pairs are properly normalized through N Dr and 
N Rr , corresponding to the total number of galaxies in the reference 
sample and in the reference random catalogue. If weights for the 
reference catalogue of galaxies (or for the catalogue of randoms) are 
provided, N Dr (or N Rr ) is the sum of the weights of the catalogue, 
and D u D r ( θ ) (or D u R r ( θ )) is the weighted number of pairs. Note that 
weights can also be assigned to the unknown sample; in that case, 
the weighted number of pairs D u D r ( θ ) (or D u R r ( θ )) also accounts 
for the weights of the unknown sample. As in Gatti et al. ( 2018 ), 
we use the Davis & Peebles estimator rather than the Landy & 
Szalay ( 1993 ) estimator since the former involves using a catalogue 
of random points for just one of the two samples. This allows us 

to a v oid creating high-fidelity random catalogues for the DES Y3 
source galaxy sample, whose selection function is very complex and 
non-trivial to replicate, besides being computationally very costly. 
For our analysis, we only rely on random points for the reference 
sample, whose selection function and mask are well understood. We 
note that in the rest of the paper we adopted the Davis & Peebles 
estimator even when measuring the autocorrelation of the reference 
samples, but we checked that using the Landy & Szalay estimator 
lead to negligible variations. 

Now we assume that the reference sample is divided into redshift 
bins centred at z i , each narrow enough that we can approximate 
n r , i ( z) ≈ δD ( z − z i ), with δD being Dirac’s delta distribution and the 
integrands in equation (1) other than n r can be treated as constant. 
Equations (1) and (2) become: 
w̄ ur ( z i ) ≈ n u ( z i ) b u ( z i ) b r ( z i ) ̄w DM ( z i ) + M̄ ( z i ) , (4) 
where barred quantities indicate the y hav e been averaged over 
angular scales as per equation (2). In what follows we will, for 
simplicity, drop the bar. The abo v e quantity is al w ays estimated at 
the redshift z i of the i -th thin reference sample bin. 

The goal is to use equation (4) to infer n u ( z), the unknown redshift 
distribution, from the multiple measures w ur ( z i ). But it is important 
to note that this equation follows from a simplifying assumption. 
We assumed the galaxy-matter bias to be described by a single 
number at all scales; this is true at large scales in the linear regime, 
but we do not expect this to hold at the small scales used in this 
work (1.5 to 5.0 Mpc). In the non-linear re gime, ev en the fact 
that the terms inside the integral factorizes into b r ( z i ) b u ( z i ) w DM ( z i ) 
is not guaranteed (Bernardeau et al. 2002 ; Desjacques, Jeong & 
Schmidt 2018 ). The linear-bias assumption introduces a systematic 
uncertainty that depends on the scales adopted and the samples under 
study and that will be quantified in the following sections. 

The evolution of the quantities b r ( z i ), b u ( z i ), w DM ( z i ) and M ( z i ) 
needs to be characterized to correctly reco v er the redshift distribution 
of the unknown sample. We turn now to how to model or estimate 
these terms. 

(i) The galaxy-matter bias evolution of the r efer ence sample 
b r ( z) . As long as the redshifts of the reference sample are accurate 
enough, and we assume linear biasing, we can estimate b r ( z) 
by measuring the angle-averaged estimate of the autocorrelation 
function of the reference sample divided into thin redshift bins ( δz 
= 0.02) centred at z i : 
w rr ( z i ) = ∫ d z ′ [b r ( z ′ ) n r, i ( z ′ ) ]2 

w DM ( z ′ ) . (5) 
If the bins are suf ficiently narro w so as to consider the biases and 
w DM constant o v er the distributions, the y can be pulled out of the 
abo v e inte grals: 
w rr ( z i ) = b 2 r ( z i ) w DM ( z i ) ∫ d z ′ n 2 r, i ( z ′ ) . (6) 
Knowledge of the redshift distributions of the narrow bins is then 
required to use equation (6) to estimate b r ( z i ). Lastly, we need to 
model w DM ( z) to correctly reco v er b r ( z). 

(ii) The galaxy-matter bias evolution of the unknown sample 
b u ( z) . In principle, the autocorrelation of the unknown sample 
constrains this. Ho we ver in our case, n u ( z) is broad and unknown, and 
b u likely varies substantially across the sample, so the information on 
b u from the autocorrelation is weak and entangled with n u itself. The 
de generac y between b u and n u is the fundamental limiting factor 
of clustering- z methods. Mitigation schemes exist, based on the 
use of additional information to constrain the evolution of b u : e.g. 
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1226 M. Gatti et al. 
Matthews & Newman ( 2010 ) use the additional constraints coming 
from the autocorrelation function of the tomographic bins (without 
dividing the samples into thin bins); or the method implemented 
in van den Busch et al. ( 2020 ), who use the additional constraint 
coming from the normalization of the redshift distribution of the 
full unknown catalogue not divided into tomographic bins. However, 
these methods are not free from shortcomings, so we decided not 
to attempt correcting for b u . Since it is difficult to place a priori 
constraints on b u , when forward modelling the clustering signal 
we chose to parametrize it in a flexible way (see Section 2.2.2), 
ef fecti vely treating it as a free function. 

(iii) The dark matter two-point correlation function w DM ( z) . 
This can be modelled assuming a given cosmology and a non-linear 
power spectrum. At fixed z i , this can be written as: 
w DM ( z i ) = ∫ d θW ( θ ) ∑ 2 % + 1 

4 π P % ( cos θ ) 
× 1 

χ ( z i ) 2 H ( z i ) P NL ( l + 1 / 2 
χ ( z i ) , z i ) , (7) 

where χ is the comoving distance and H ( z i ) is the Hubble expansion 
rate at redshift z i . P % ( x ) is the Legendre polynomial of order % . P NL ( k , 
χ ) is the 3D non-linear matter power spectrum at wavenumber k 
(which, in the Limber approximation, is set equal to ( l + 1/2)/ χ ( z i )) 
and at the cosmic time associated with redshift z i . We find that the 
redshift evolution of w DM ( z i ) depends little on the particular value 
of cosmological parameters, whereas the dependence of the o v erall 
amplitude of w DM ( z i ) with respect to cosmology is absorbed by our 
systematic functions. Based on this, we hold cosmology fixed when 
computing w DM ( z i ), assuming the values in Planck Collaboration 
VI ( 2020 ). We then verify a posteriori that this approximation is 
valid by repeating our analysis using very different values for the 
cosmological parameters ( (m = 0.4, σ 8 = 0.7), finding that the 
impact on our conclusions is negligible. Note that some of the 
mitigation schemes adopted in literature to correct the galaxy-matter 
bias evolution of the unknown sample also automatically estimate 
w DM ( z i ) from the data (Matthews & Newman 2010 ; van den Busch 
et al. 2020 ), but they are not adopted in this work. 

(iv) Magnification signal M ( z i ) . WL magnification (Narayan 
1989 ; Villumsen, Freudling & da Costa 1997 ; Moessner & Jain 1998 ) 
changes the observed spatial density of galaxies: the enhancement 
in the flux of magnified galaxies can locally increase the number 
density, as more galaxies pass the selection cuts/detection threshold 
of the sample; at the same time, the same volume of space appears 
to co v er a different solid angle on the sk y, generally causing the 
observed number density to decrease. For a flux-limited sample, the 
net effect is driven by the slope of the luminosity function of the 
sample, here conveniently parametrized through the parameter α, 
and it has an impact on the measured clustering signal. Formally, the 
magnification term depends on the galaxy-matter bias and parameter 
α of the two samples, as well as on the redshift distribution of 
the unknown sample: M ( z i ; αr , αu , b r , b u , n u ). More details about 
our modelling of the magnification effects are given in Appendix A, 
although we anticipate magnification effects have a negligible impact 
on our analysis, due to our analysis choices. To keep our notation 
light, when possible, we will simply indicate magnification effects 
as M ( z i ), dropping the dependence on other factors. 

Under the assumption of thin reference bins, linear galaxy-matter 
bias, and using the linearized version of the equation describing 
magnification effects (Appendix A), equation (4) becomes a linear 
system of equations, and can be solved to obtain an estimate of n u ( z i ). 
This would be similar to standard clustering- z methods which use 

the cross-correlation signal as a starting point to infer the redshift 
distributions of the unknown sample (Newman 2008 ; McQuinn & 
White 2013 ; M ́enard et al. 2013 ; Schmidt et al. 2013 ). 

Alternatively, if an estimate of the n u ( z i ) is provided by e.g. a 
photo- z method, equation (4) can be used to e v aluate the expected 
correlation signal w ur ( z i ) and compare it to the one measured in data, 
i.e. a forward modelling approach (see e.g. Choi et al. 2016 ). 

This work represents a significant advancement o v er DES Y1, 
because in the Y1 analysis none of the terms described abo v e were 
modelled. We assumed b r ( z i ), b u ( z i ), and w DM ( z i ) to be constant 
within each photo- z bin, and used the simulations to estimate the 
systematic error induced by this assumption. In DES Y1 we also did 
not model M ( z i ), but we decided to exclude the redshift range (i.e. 
the tails of the redshift distributions) where magnification effects 
are expected to have a non-negligible impact. On the contrary, in this 
work we model b r ( z i ), w DM ( z i ), and, depending on the method, M ( z i ). 
2.2 Assigning likelihood to the cr oss-corr elation information 
We use the clustering data { w ur ( z i ), w rr ( z i ) } , to place a likelihood 
L [ W Z| n u ( z) ] of obtaining the clustering- z data given some estimate 
of the true n u ( z). The clustering- z data will be used to e v aluate the 
likelihood of many candidate n u ( z) functions, typically drawn from 
some combination of PZ and spectroscopic data. In the DES Y1 
analysis, such realizations were taken as n u ( z) = n pz ( z + +z), where 
n pz ( z) was a single ‘best’ photo- z estimate and +z a free parameter. 
The Y3 approach is more general, with many realizations of the 
full function n u ( z) being drawn. In any case we need only to define 
L [ W Z| n u ( z) ] . To do so, we make use of two approaches, described 
below. 
2.2.1 Mean-matching method 
This method works by compressing the n ( z) functions to a single 
statistic, their mean 〈 z〉 . In this ‘simpler’ method, we do not model 
magnification effects, so the mean is taken o v er a restricted range of 
z, where a reference sample is available and w ur ( z) ) M ( z), such 
that we can neglect magnification effects. For this method, cutting the 
tails can be preferable even when estimates of magnification effects 
in the tails are available. This is due to the fact that small errors in 
the magnification estimates in the tails can have a large impact on 
the mean of the redshift distribution, lowering the capability of the 
method to constrain the mean redshift. 

Following the DES Y1 analysis, we choose a fixed interval [ z min , 
z max ] = [ 〈 z 〉 pz − 2 σ pz , 〈 z 〉 pz + 2 σ pz ], where 〈 z〉 pz and σ pz are 
the mean and root mean square of a canonical n pz ( z). In case the 
fixed interval includes a range where there is no reference sample 
co v erage, it is further reduced to ensure there are enough galaxies in 
the reference sample to provide a meaningful clustering- z estimate 
(see Section 4.1 for more details). We first create a nominal ‘naive’ 
estimator ˜ n u ( z) using equation (4) which would be proportional to 
an unbiased estimator if linear bias holds and b u ( z) is constant: 
˜ n u ( z i ) ∝ w ur ( z i ) 

b r ( z i ) w DM ( z i ) , (8) 
Then we define mean redshifts for the clustering- z data and the 
proposed n pz ( z) as 
〈 z〉 wz = ∫ z max 

z min d z z ̃  n u ( z) 
∫ z max 

z min d z ̃  n u ( z) (9) 
MNRAS 510, 1223–1247 (2022) 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/510/1/1223/6431641 by U
niversity of Pennsylvania user on 18 August 2022



Clustering redshifts 1227 
〈 z〉 pz = ∫ z max 

z min d z z n pz ( z) 
∫ z max 

z min d z n pz ( z) (10) 
The likelihood of the WZ data given a proposed n u ( z) is then taken 

to be a Gaussian distribution in the 〈 z〉 values: 
L [ WZ | n u ( z) ] ≡ N (〈 z 〉 pz − 〈 z 〉 wz , σ〈 z〉 ) (11) 

The uncertainty σ 〈 z〉 must incorporate the estimated measurement 
noise and also systematic errors from shortcomings of the underlying 
model. Section 4.1 gives the results of using simulations to set these 
uncertainties. The assumption of Gaussianity is a reasonable choice 
even in absence of systematics, as per the central limit theorem 
(the mean redshift compresses the information from many different 
redshifts). Moreo v er, we parametrize the impact of systematics 
effects in such a way they can be described by a Gaussian likelihood, 
and systematic effects dominate our total error budget. 
2.2.2 Full-shape method 
This method dispenses with the mean statistic and 
simply compares the observed w ur ( z i ) data to a model 
ˆ w ur [ z i ; n u ( z) , b r ( z) , b u ( z) , αr ( z) , αu ( z) , s ] that incorporates potential 

systematic effects. The model is an alteration of equation (4): 
ˆ w ur ( z i ) = n u ( z i ) b r ( z i ) w DM ( z i ) × Sys ( z i , s ) + M( z i ) . (12) 

The functions n u ( z ), b r ( z ), and M ( z ) are assumed to be given 
beforehand, and w DM is calculated from theory as described in equa- 
tion (7). The Sys function multiplies the clustering signal by some 
redshift-dependent value that is parameterized by s = { s 1 , s 2 , . . . } 
that we will marginalize o v er. The role of the Sys function is to 
absorb all uncertainties in b u and its redshift dependence, as well as 
uncertainties due to failures in the linear bias model itself, and in the 
determination of b r ( z). The choice of Sys function and the priors on 
its parameters are guided by simulations as described in Section 4.2. 
As a rule of thumb, we expect the Sys function amplitude to slowly 
vary across redshift, and to be of the same magnitude of a typical 
galaxy-matter bias (i.e. around unity). We note that in principle we 
could also have absorbed the redshift dependence of w DM , or the 
magnification contribution M ( z), into the Sys function. We did not 
proceed this way since we know how to model these contributions, 
although this comes at the expense of a more complex model. Lastly, 
we note that formally the magnification contribution also depends 
on the bias b u ; this is marginalized separately, together with the 
magnification parameter of the unknown sample αu (more details are 
given in Appendix A). 

With a model for w ur in hand, we assume that the measurement 
errors in the data are Gaussian and define a likelihood 
L [ WZ | n u ( z ) , b r ( z ) , αr ( z ) , w DM ( z ) ] 

∝ ∫ d s d p exp [−1 
2 ( w ur − ˆ w ur ) T , −1 

w ( w ur − ˆ w ur ) ]p ( s ) p ( p ) , 
(13) 

where p = { b u , αu } enters in the modelling of the magnification term. 
The data and model for w ur are taken here to be v ectors o v er z i , 
and , w is the covariance matrix of the data (from shot noise and 
sample variance). The nuisance parameter sets s and p each have 
their own priors. It is the extent of these priors that regulates the 
level of systematic error allowed for in the inference of n u ( z) from 
the clustering- z data. The systematic function and these priors are 
quantified in Section 4.2. 

The covariance matrix , w is estimated from simulated data 
through a jackknife (JK) approach, using the following expression 
(Quenouille 1949 ; Norberg et al. 2009 ): 
ˆ , ( x i , x j ) = ( N JK − 1) 

N JK 
N JK ∑ 
k= 1 

(
x k i − x̄ i ) (x k j − x̄ j ) , (14) 

where the sample is divided into N JK = 1000 subregions of roughly 
equal area, x i is a measure of the statistic of interest ( = w ur ) in the 
i -th bin of the k -th sample, and x̄ i is the mean of the resamplings. 
The jackknife regions are safely larger than the maximum scale 
considered in our clustering analysis. The correction from Perci v al 
et al. ( 2021 ) is implemented when computing the inverse covariance, 
although it has a modest impact ( ∼10 per cent on the amplitude of 
the cov ariance) gi ven the number of jackknife regions and the data 
vector length. 

Note that the clustering- z likelihood in equation (13) depends ex- 
plicitly on the estimated bias and magnification coefficient b r and αr 
of the reference sample, and depends implicitly on the cosmological 
model through the dark-matter clustering w DM . Thus in principle, this 
likelihood and the inferences on n u ( z) must be recalculated for each 
change in cosmological model. We have, ho we ver, tested numerically 
that the full expression for L [ WZ | n ( z)] has negligible dependence on 
the cosmological parameters or the reference-sample properties once 
the marginalization o v er systematic nuisances s and p are done. This 
is because the systematic variables have enough freedom to absorb 
the small changes in the model wrought by changes in cosmology. 
It is therefore allowable for us to compute equation (13) using a 
fiducial cosmology and fiducial values of b r and αr , and use the 
inferred redshift distributions in a cosmological inference that might 
vary these parameters. 
3  DATA  A N D  SIMULATED  DATA  
This section describes the various photometric and spectroscopic 
catalogues that feed into the clustering- z measurements. The full 
analysis is also conducted on simulated catalogues; for each element 
of the real analysis, we also describe how its simulated counterpart 
was generated. 
3.1 DES Y3 data 
The DES observed ∼5000 square degrees of the Southern hemisphere 
in five different broad photometric bands ( grizY ) over 6 yr using 
the Dark Energy Camera (DECam, Flaugher et al. 2015 ), a 570- 
me gapix el camera built by the DES Collaboration and stationed at 
the Cerro Tololo Inter-American Observatory (CTIO) 4-m Blanco 
telescope. DES will measure the shapes of about 300 million galaxies 
up to redshift z ∼ 1.4. In this paper, we focus on the analysis of the 
first 3 yr (Y3) of observations. DES Y3 data span the full area of 
the surv e y, 4143 de g 2 after masking for fore grounds and problematic 
regions, a major advance over the 1321 deg 2 of DES Y1 ( Drlica- 
Wagner et al. 2018 ; Troxel et al. 2018 ). The complete DES (Y6) 
reaches greater depth than Y3 data; furthermore, the data are more 
uniform in depth.. The total number of objects detected in DES Y3 
is ≈ 390 000 000 . Object detection and measurements are described 
in Sevilla-Noarbe et al. ( 2021 ). 
3.2 Buzzard N -body simulation 
We use one realization of the DES Y3 Buzzard catalogue v2.0 
(DeRose et al. 2019 ). Initial conditions were generated using 2LPTIC 
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1228 M. Gatti et al. 

Figure 1. Redshift distributions of the redMaGiC samples, binned using the 
redMaGiC photo- z estimates, in data and in simulations. 
(Crocce, Pueblas & Scoccimarro 2006 ) and the N -body run using 
L-GADGET2 (Springel 2005 ). Cosmological parameters have been 
chosen to be (m = 0.286, σ 8 = 0.82, (b = 0.047, n s = 0.96, h = 0.7. 
Light-cones are generated on the fly starting from three boxes with 
different resolutions and size (1050 3 , 2600 3 , and 4000 3 Mpc 3 h −3 
boxes and 1400 3 , 2048 3 , and 2048 3 particles), to accommodate the 
need of a larger box at high redshift. Haloes are identified using the 
public code ROCKSTAR (Behroozi, Wechsler & Wu 2013 ) and they 
are populated with galaxies using ADDGALS (DeRose et al. 2019 ). 
Galaxies are assigned magnitudes and positions based on the relation 
between redshift, r -band absolute magnitude, and large-scale density 
found in a subhalo abundance matching model (Conroy, Wechsler & 
Kravtsov 2006 ; Lehmann et al. 2017 ) in higher resolution N -body 
simulations. SEDs are assigned to galaxies from the SDSS DR7 
Value Added galaxy catalog (Blanton et al. 2005 ) by imposing the 
matching with the SED–luminosity–density relationship measured 
in the SDSS data. SEDs are K -corrected and inte grated o v er the DES 
filter bands to generate DES grizY magnitudes. Lensing effects are 
calculated using the multiple plane ray-tracing algorithm CACLENS 
(Becker 2013 ), which provides weak-lensing shear, magnification, 
and lensed galaxy positions for the light-cone outputs. 
3.3 Reference sample 1: redMaGiC galaxies 
The first reference sample used in this clustering- z analysis consists 
of DES redMaGiC galaxies. The redMaGiC algorithm selects red 
luminous galaxies with high-quality photometric redshift estimates 
(Rozo et al. 2016 ). This is achieved by fitting each galaxy to a 
red sequence template; galaxies are then selected only if they pass a 
goodness of fit and luminosity threshold. In DES, redMaGiC galaxies 
are used as lens sample in the g alaxy–g alaxy lensing analysis and 
in the clustering analysis (Prat et al. 2020 ; Rodr ́ıguez-Monroy et al. 
2020 ). Two samples are selected with different number density by 
means of two distinct luminosity thresholds: a first sample called 
‘high density’ selected with a cut L/L ∗ > 0.5 and a sample called 
‘high luminosity’ selected with a cut L/L ∗ > 1. A combined sample 
is then obtained by joining these two samples, using the high-density 
sample for redshifts z < 0.65, the high-luminosity sample for higher 
redshifts. 

In simulations, the redMaGiC sample is selected with the same 
algorithm used in the data. A comparison between the redshift 
distributions for the redMaGiC samples in data and in simulations 
is shown in Fig. 1 , illustrating the good agreement between the two. 

Small differences are due to small discrepancies in the evolution 
of the red-sequence between the simulation and the data. Both in 
simulations and in data, the redMaGiC sample is divided into 40 
bins of width +z = 0.02 spanning the 0.14 < z < 0.94 range 
of the redMaGiC catalogue. 1 The particular choice of the bin 
width is not expected to impact our conclusions, as long as bins 
are small enough compared to the typical variation scales of the 
WL n ( z) and the galaxy-matter biases of the two samples. The 
total number of redMaGiC galaxies is 3041 935 in the data, and 
2594 036 in the simulation. The difference in the number density 
is due to the aforementioned discrepancy in the evolution of the 
red-sequence between data and simulations. This implies that the 
statistical uncertainties of the clustering- z estimates obtained using 
the redMaGiC sample are larger in simulations compared to data. We 
do not expect this to be important, as we show in Section 4.1 that the 
clustering- z methodology is dominated by systematic uncertainties, 
and the statistical uncertainties are negligible. 

We compare the typical redMaGiC photo- z scatter and bias found 
in data versus in simulations in Fig. 2 . Since only a portion of the 
data have spec-z information, we reweight the magnitude distribution 
of the spectroscopic sample such that it matches the magnitude 
distribution of the redMaGiC galaxies before computing the statistics 
shown in Fig. 2 . This reweighting is performed separately for each 
redshift bin. Note that the typical scatter of redMaGiC photo- z is 
similar to our bin width, which might call into question the choice of 
bin width for redMaGiC galaxies. Ho we v er, we v erify in Section 4.1 
that even with this set-up, redMaGiC photo- z uncertainties are not a 
dominant source of systematic error for our methodology. Therefore, 
we decided that using a larger bin width for redMaGiC galaxies was 
not necessary. 

Using cross-correlation techniques, Cawthon et al. ( 2020 ) noted 
that photo- z uncertainties in redMaGiC galaxies at z > 0.8 might 
be underestimated. We do not think this constitutes a problem 
for the current analysis, as redMaGiC photo- z uncertainties are 
a subdominant systematic in our methodology (Section 4.1), and 
clustering- z constraints at z > 0.8 are driven by the BOSS/eBOSS 
sample (Section 4.2.2). 

A catalogue of random points for redMaGiC galaxies is generated 
uniformly o v er the footprint. Both in data and in simulations, weights 
are assigned to redMaGiC galaxies such that spurious correlations 
with observational systematics are cancelled. Note that due to 
low-statistics issues, the weights do not resolve fluctuations on 
scales rele v ant for this work, but only capture large-scale spurious 
correlations. The methodology used to assign weights is described 
in Rodr ́ıguez-Monroy et al. ( 2020 ), and it is the same for data 
and simulations. The main difference between data and Buzzard 
simulations is that the latter only models depth variations across the 
footprint, while data are subject to a larger number of systematics 
which are not modelled in simulations. This should not affect any 
conclusion drawn here: the weights remove the spurious dependence 
of the number density with respect to an y systematic, re gardless of 
their number, at least at the level needed for two-point correlation 
functions to be unbiased (Rodr ́ıguez-Monroy et al. 2020 ). This of 
course holds as long as all the systematics affecting the data are 
taken into account when producing the weights. 

1 We note that the simulated redMaGiC sample spans a slightly wider range in 
redshift; we none the less cut the redshift interval at z = 0.90 to be consistent 
with the data. 
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Clustering redshifts 1229 

Figure 2. The bias (left) and scatter (right) of z redMaGiC for the simulated redMaGiC sample (solid lines) compared to the data (dashed lines). 

Figure 3. Spatial co v erage of the two reference samples used in this work. 
Purple indicates the co v erage by redMaGiC galaxies, pink indicates the 
co v erage by BOSS and eBOSS galaxies. 
3.4 Reference sample 2: spectroscopic galaxies 
The second reference sample used in this work is a combination of 
spectroscopic samples from the Sloan Digital Sky Survey (SDSS, 
Gunn et al. 2006 ; Eisenstein et al. 2011 ; Blanton et al. 2017 ). 
In particular, we combine SDSS galaxies from BOSS (Dawson 
et al. 2013 ; Smee et al. 2013 ) and from eBOSS (Dawson et al. 
2016 ; Ahumada et al. 2020 ; Alam et al. 2021 ). The BOSS sample 
includes the LOWZ and CMASS catalogues from the SDSS DR 12, 
fully described in Reid et al. ( 2016 ), while we included the large- 
scale structure catalogues from emission-line galaxies (ELGs, see 
Raichoor et al. 2017 for the target selection description), luminous 
red galaxies (LRGs, target selection described in Prakash et al. 2016 ), 
and quasi-stellar objects (QSOs) (Hou et al. 2021 ) from eBOSS, 
which were provided to DES for clustering- zs usage by agreement 
between DES and eBOSS. The different samples are stacked together, 
and used as one single reference sample in this work. Each sample 
comes with its own catalogue of random points, which account for 
selection ef fects. Dif ferent catalogues of random points are stacked 
together. We made sure the ratio of the number of randoms with 
respect to the number of galaxies was the same for each random 
catalogue before combining them. Both in simulations and in data, 
the BOSS/eBOSS sample is divided into 50 bins spanning the 0.1 < 
z < 1.1 range of the catalogue (width +z ∼ 0.02). The area co v erage 
is smaller compared to redMaGiC galaxies, as shown in Fig. 3 . The 

Table 1. List of the spectroscopic samples from BOSS/eBOSS o v erlapping 
with the DES Y3 footprint used as reference galaxies for clustering- zs in this 
work. 

Spectroscopic samples 
Name Redshifts N gal Area 
LOWZ (BOSS) z ∼ [0.0, 0.5] 45 671 ∼860 deg 2 
CMASS (BOSS) z ∼ [0.35, 0.8] 74 186 ∼860 deg 2 
LRG (eBOSS) z ∈ [0.6, 1.0] 24 404 ∼700 deg 2 
ELG (eBOSS) z ∈ [0.6, 1.1] 89 967 ∼620 deg 2 
QSO (eBOSS) z ∈ [0.8, 1.1] 7759 ∼700 deg 2 
redshift distribution of the samples is shown in Fig. 4 , and the area 
co v erage and number of objects of each sample are summarized in 
Table 1 . Note that some of the galaxies in the BOSS/eBOSS sample 
are also in the redMaGiC catalogue: ∼1 per cent of the redMaGiC 
galaxies are matched to ∼10 per cent of the BOSS/eBOSS galaxies, 
within 1 arcsec. We did not remo v e these galaxies from the redMaGiC 
sample, as they have a negligible impact both on our constraints and 
on the covariance between the two samples (as it will be clear in the 
following sections, the constraints from both samples are systematic- 
dominated). 

To replicate the spectroscopic BOSS/eBOSS sample in simula- 
tions, we selected bright galaxies with similar sk y co v erage and 
redshift distribution as the ones in data. We did not try to further 
match other properties of the sample, e.g. the galaxy-matter bias 
likely differs from that of the real data. We note that the clustering- z 
methodology corrects for the reference bias, so at no point in the 
analysis of the real data are we assuming that the simulations have 
the same bias. 
3.5 WL sample 
The WL sample in data is created using the METACALIBRATION 
pipeline, which is fully described in Gatti et al. ( 2021 ). After creation 
of the DES Y3 ‘Gold’ catalogue (Sevilla-Noarbe et al. 2021 ), the 
METACALIBRATION pipeline measures the shapes of each detected 
object. Selection cuts for the sample are described in Gatti et al. 
( 2021 ) and are chosen from results of tests on both sky data and image 
simulations (MacCrann et al. 2022 ), and are designed to minimize 
systematic biases in the shear measurement. Galaxies are weighted 
by the inverse variance of shear measurement, which increases 
the statistical power of the catalogue. The final sample comprises 
100 204 026 objects, for an ef fecti ve number density of n eff = 5.59 
gal arcmin −2 . Galaxies are further divided into four tomographic 
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1230 M. Gatti et al. 
bins, and redshift distribution estimates for each of the tomographic 
bins are provided by the SOMPZ method (Buchs et al. 2019 ; Myles 
et al. 2021 ). The tomographic bins are selected such that the y hav e 
roughly equal raw number density. 

The WL sample is reproduced with high fidelity in the Buzzard 
simulation by applying flux and size cuts to the simulated galaxies 
that mimic the DES Y3 source selection thresholds. The WL galaxy 
sample in Buzzard is selected with the aim of reproducing the same 
selection applied in DES Y3 data in terms of size, signal-to-noise 
ratio, and colours. Shape noise has been added to the galaxies to 
match the measured shape noise of the DES Y3 WL sample. 
3.5.1 Photo- z estimates: SOMPZ 
The SOMPZ method uses spectroscopic and multiband photometric 
information, and data from a number of deep fields (Hartley et al. 
2022 ) where additional photometry in the infrared bands YJKs and 
u -band is available, besides the standard 5-band ( grizY ) photometry 
available in the DES wide field. This additional information is used 
to break the degeneracies in the photo- z estimates of the DES wide- 
field galaxies (which have fewer bands available). This is achieved 
by creating two Self-Organizing Maps (SOM, Kohonen 1982 ), one 
mapping the deep/spectroscopic galaxies into a 2D grid of cells using 
their 8-band fluxes, and another mapping the WL sample galaxies 
into a 2D grid using the riz photometry. A probabilistic mapping 
from the wide-field SOM to the deep-field SOM is generated using 
the ‘Balrog’ source-injection simulations (Everett et al. 2020 ) and 
a map from the deep-field SOM to redshift is estimated using the 
spectroscopic data. 

The tomographic bins are constructed as follows: a first set of edge 
values are arbitrarily selected. Each galaxy of the redshift sample is 
then assigned to the tomographic bin in which its redshift estimate 
falls. A number of galaxies at this point share the same photometry 
cell of the wide-field SOM and same tomographic bin, so the cell in 
its entirety is assigned to the bin to which the majority of its galaxies 
live. The initial bin edges are adjusted to yield approximately the 
same number of galaxies, and finally the whole procedure is repeated 
with the new bin edges. After completing this procedure, the final 
bin edges are [0.0, 0.358, 0.631, 0.872, 2.0] for the Y3 WL source 
catalogue. 

The full Y3 SOMPZ procedure is described in Myles et al. 
( 2021 ). A number of factors contribute to the error budget of the 
method: (1) shot noise (i.e. the limited number of galaxy redshifts 
av ailable); (2) sample v ariance (i.e. the fact that the spectroscopic and 
deep fields span a limited area); (3) systematic uncertainties in the 
spectroscopic/multiband photometry samples; (4) uncertainty in the 
methodology in general; (5) photometric calibration uncertainties in 
the Y3 deep fields, i.e. the uncertainty on the zero-point calibration 
in each band. 

The total error budget is dominated by the photometric calibration 
uncertainty in the low-redshift bin, while it is dominated by sample 
variance and biases in the spectroscopic/multiband photometric 
samples in the high-redshift bins (Myles et al. 2021 ). 

The SOMPZ method incorporates methods for assessing the like- 
lihood L [ PZ | n u ( z)] of obtaining the various SOMPZ data elements 
(SOM cell counts, etc.) given a candidate set of n u ( z) redshift 
distributions for the tomographic bins, which account for shot noise 
and sample variance in the various catalogues used by SOMPZ. 
The construction of this likelihood and the methods for sampling 
candidate n ( z) distributions from it are given by S ́anchez & Bern- 
stein ( 2019 ). Potential selection biases in the spectroscopic redshift 

Figure 4. Redshift distribution of the BOSS/eBOSS sample in data. 
assignments are estimated by compiling n ( z) realizations obtained 
by calibrating with three different sets of spectroscopic/multiband 
photometric samples. Redshift uncertainties related to the zero-point 
calibration are added after the SOMPZ realizations are informed by 
the clustering measurements (Myles et al. 2021 ). This is done for 
efficiency reasons and it does not affect the main results of this work. 

The SOMPZ process is completely reproduced in simulations, 
including the creation of spectroscopic catalogues from small- 
area surv e ys, but these simulations do not take into account the 
uncertainties related to unknown redshift selection biases in the 
spectroscopic/multiband samples. As a result of the slight differences 
of the simulated Y3 source sample data equi v alent, the bin edges in 
the equi v alent Buzzard catalogue are [0.0, 0.346, 0.628, 0.832, 2.0]. 
Estimates of the n ( z) obtained in simulations are shown in Fig. 5 . 
4  RESULTS  O N  SI MULATI ONS  A N D  
SYSTEMATIC  E R RO R S  
In this section, we present the results of our two calibration strategies 
performed in simulations. In particular, we aim to e v aluate the sys- 
tematic uncertainties of each method, and verify that the calibration 
procedure in simulations works as expected. Note that at no point 
are the simulations used to make corrections to the data; rather the 
simulations are used to (1) estimate the level of uncertainty to assign 
to various systematic errors, and (2) validate that the method yields 
results for n ( z) consistent with truth. 

Before focusing on the details of the two calibration procedures, 
we show in Fig. 6 the redshift distributions estimates obtained 
using the clustering- z n u ( z) estimator (following equation 8) on 
simulations, compared to the true distributions. The angular scales 
considered in the clustering measurements have been chosen to span 
the physical interval between 1.5 and 5.0 Mpc. These bounds (which 
are applied to the data as well) are selected so that the upper bound 
is below the range used for the w( θ ) statistics used in cosmological 
analyses, thus allowing the clustering- z likelihoods to be essentially 
statistically independent of cosmology, and permitting us to produce 
n ( z) samples in an MCMC chain that runs before, and independent 
of, the cosmology. The values of b r in the clustering- z analysis are 
not required to match those used in the cosmological analyses. The 
lower bound is chosen to produce high signal-to-noise ratio S / N while 
mitigating failures of the linear bias model. 

We start with an idealized case: the distributions shown in Fig. 6 are 
obtained using redMaGiC galaxies as a reference binned using true 
redshift. In simulations we also have an accurate estimate of b u ( z), 
obtained from the autocorrelations of each of the tomographic bins of 
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Clustering redshifts 1231 

Figure 5. SOMPZ redshift distributions, as estimated in simulations (upper panels) and in data (lower panels), for the four tomographic bins considered in this 
analysis. The bands represent the 68 per cent confidence interval spanned by the SOMPZ n(z) realizations. 

Figure 6. Sources redshift distributions estimated using clustering- z in simulations for an idealized set-up (see the text in Section 4), compared to the truth 
(black lines). The top panels show the redshift distributions; the middle panels show the ratio between the true n ( z) and the n ( z) estimated using clustering- z; 
and the bottom panels show the mean of the redshift distributions. The red lines represent the clustering- z estimates obtained using the estimator introduced 
by equation (8). The blue lines represent the clustering- z estimated obtained further correcting for the term b u , which is only possible in simulations. The 
four different tomographic bins used in the DES Y3 cosmological analysis are shown. We used redMaGiC galaxies as the reference sample, binned using true 
redshifts. For this plot, we also subtracted from the clustering- z n ( z) estimates the expected magnification contribution in simulations (Appendix A); this has 
only a mild effect at high redshift ( z > 0.6) for the first two bins. The redshift distributions are normalized o v er the same interval. The grey shaded regions 
indicate the interval considered for the mean matching method. The mean of the distributions shown in the bottom panels is computed only considering the grey 
intervals. Error bars only include statistical uncertainties. 
the unkno wn sample, di vided into thin bins of width +z = 0.02. 2 This 
is not possible in data since the precision of the photometric redshift 
2 In order to measure the autocorrelations, we generated randoms properly 
accounting for the WL mask. We also created systematic weights for the WL 
sample using the same procedure used for redMaGiC galaxies (although we 
found they have a negligible impact). 

is not sufficient to divide the sample in bins of adequate width. Fig. 6 
shows the impact on the estimated n ( z)’s of assuming we know b u ( z) 
with good accuracy (in cyan), dividing equation (8) by b u ( z). We 
note that correcting for b u drives both the shape of the distributions 
and the mean value closer to the truth, which are otherwise biased. 
As we cannot estimate b u in data, this highlights that variation in b u 
introduces a systematic uncertainty that has to be quantified. Note 
that the errors bars in Fig. 6 only include statistical uncertainties . 
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1232 M. Gatti et al. 
Table 2. Mean-matching method : We display the total systematic error budget on the mean redshift, for the two 
reference samples used in this work. We also report the contribution due to each single source of systematic uncertainty, 
as a function of tomographic bin. As for the redMaGiC systematic, we also report in parentheses the values of the 
uncertainties we would have obtained if we had not included the correction factor in the bias estimation (see Section 4.1). 
Systematic tomo bin 1 tomo bin 2 tomo bin 3 tomo bin 4 
methodology: 0.002 ± 0.003 0.001 ± 0.002 0.000 ± 0.001 0.001 ± 0.002 
magnification: 0.004 0.005 0.003 0.004 
WL galaxy bias unc: 0.013 0.013 0.013 0.013 
redMaGiC syst: 0.000 (0.014) 0.001 (0.007) 0.002 (0.000) 0.005 (0.003) 
total systematic redMaGiC : 0.014 0.014 0.014 0.015 
statistical redMaGiC : 0.003 0.002 0.001 0.002 
total systematic BOSS/eBOSS: 0.014 0.014 0.014 0.014 
statistical BOSS/eBOSS: 0.007 0.006 0.004 0.006 

In the following subsections, we tested the accuracy of our 
calibration procedure using the two different approaches outlined 
in Section 2, i.e. the mean-matching and the full-shape methods. 
4.1 Method 1 (mean-matching): systematic uncertainties 
estimation in simulations 
We test in this section the mean-matching clustering- z photo- z 
calibration method. The metric used here to assess the accuracy of 
our methodology is the difference between the mean of the reco v ered 
redshift distribution and the true mean, as follows: 
+ 〈 z〉 ≡ |〈 z〉 true − 〈 z〉 WZ | . (15) 
As described in Section 2.2, 〈 z〉 is calculated o v er a restricted redshift 
interval 〈 z〉 SOMPZ − 2 σ SOMPZ < z < 〈 z〉 SOMPZ + 2 σ SOMPZ to reduce 
the impact of magnification 3 . The redshift intervals are of course 
also truncated at the bounds of the reference sample. The same 
redshift intervals are used for simulations as for data (see Fig. 6 ). 
The intervals used are [0.14,0.62], [0.18,0.80], [0.46, 0.90], [0.48, 
0.90] for redMaGiC and [0.10,0.62], [0.18,0.80], [0.46, 0.98], [0.48, 
1.06] for BOSS/eBOSS. 
4.1.1 Systematic uncertainties 
We quantify here the systematic uncertainties of the mean matching 
method. Since the mean-matching method reduces each n ( z) to its 
windowed mean 〈 z〉 , the systematic errors will be quantified by the 
uncertainties that they imply should be added (in quadrature) to 
the σ z values of equation (11). We note that the absolute value of 
the terms in equation (8) are irrele v ant for this method, as we are 
only interested in how the y evolv e with redshift. In principle, in 
the absence of magnification, assuming perfect reference sample 
redshift accuracy (e.g. redMaGiC redshifts to be exact), assuming 
that we are able to successfully estimate all the terms in equation (8), 
and assuming that we know the galaxy-matter bias evolution of 
the unknown sample, we should correctly reco v er the mean of the 
unknown redshift distributions. The abo v e assumptions might not 
hold when applying this methodology in data, causing a systematic 
3 In principle, performing a symmetric cut in comoving distance rather than 
in redshift should reduce the impact of magnification effects more efficiently. 
We followed the DES Y1 prescription, which implements a symmetric cut in 
redshift. We note, ho we ver, that a symmetric cut in distance (rather than in 
redshift) would have changed the location of the interval edges by at most +z 
∼ 0.03, hence it would have had a negligible impact on our methodology. 

bias in the calibration, In particular, + 〈 z〉 can differ from zero because 
of the following reasons: 

(i) The approximations that allowed us to factorize the integral 
in equation (1) into b r ( z ) b u ( z ) w DM ( z ) might not hold (e.g. linear 
bias model, infinitesimally thin bins), leading to inaccuracies in the 
modelling at small scales. We will quote these as methodology 
systematics . This systematic does not depend on the reference 
sample used. 

(ii) Magnification contribution. In the mean matching approach, 
we do not correct for magnification effects, as we cut the tails of 
the redshift distributions. This systematic quantifies how effective 
our cut is. We will refer to this as magnification systematic . This is 
a subdominant effect in our total error budget. We defer a detailed 
description of magnification effects and how they are e v aluated to 
Appendix A. 

(iii) The clustering- z estimator ignores the redshift evolution of 
the galaxy-matter bias of the unknown sample ( WL galaxy bias 
uncertainty ). This systematic does not depend on the reference 
sample used. 

(iv) The reference sample is binned using photometric redshifts 
and not spectroscopic redshifts. This only applies to the redMaGiC 
case. We will refer to this as redMaGiC systematic . 
We studied the performance of the estimator described in equation (8) 
for four cases, starting from an ideal environment free from the effects 
of systematics and introducing one uncertainty at the time, leading to 
a more complex, realistic case. This allows us to estimate separately 
the magnitude of each systematic independently. In the following 
tests, we will only use the redMaGiC galaxies as a reference sample 
to estimate the systematic uncertainties. Indeed, the BOSS/eBOSS 
sample should be affected by the same systematic uncertainties as 
the redMaGiC sample, except for the redMaGiC systematic. 

We begin with the most ideal case possible, shown in Fig. 6 , which 
we already described at the beginning of this section. Recall that for 
this case we used redMaGiC galaxies as a reference binned using 
true redshifts, we corrected for the bias evolution of the unknown and 
reference sample, and we corrected for the redshift evolution of the 
clustering of dark matter. The + 〈 z〉 mean for this case provides an 
estimate of the methodology systematic, and it is reported in the first 
line of Table 2 . This value is compatible with zero within statistical 
uncertainty (estimated through jackknife resampling), indicating 
that for the scales considered in this work (1.5–5.0 Mpc), the 
approximation of linear bias model, and infinitesimally thin redshift 
bins are good enough for the purpose of calibrating the mean with 
clustering information. 
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We next quantify the impact of ignoring the redshift evolution of 

the galaxy-matter bias of the unknown sample b u ( z), as this cannot be 
measured in data. We estimate the size of this effect in the simulation 
by assuming a constant b u for each tomographic bin, and we obtain 
the resultant shifts of + 〈 z〉 of (0.010,0.013,0.006,0.001). The effects 
of redshift-dependent b u ( z) on the mean and on the shape of the 
clustering- z n ( z) are shown in Fig. 6 : the red and blue values differ 
only in the presence of the b u ( z) term in the latter. Given that the WL 
galaxy bias uncertainty is the dominant uncertainty of the clustering- 
z method, we take the conserv ati ve approach of assigning an RMS 
systematic value to every bin that is equal to largest + 〈 z〉 found in 
Buzzard, i.e. + 〈 z〉 = 0.013 estimated for the second bin. This σ z 
contribution is listed in the third row of Table 2 . 

Finally, we estimate the systematic uncertainty in 〈 z〉 due to 
inaccuracies in the bin-shape integral in equation (6) for redMaGiC 
galaxies when they are placed into thin bins using their photo- 
z estimates. This is done in the simulation by comparing the 〈 z〉 
estimates obtained when binning the redMaGiC galaxies using true 
redshifts to estimates obtained when binning using redMaGiC photo- 
z. The photo- z accuracies of redMaGiC galaxies are better than those 
of the WL sample, but not as good as those of a spectroscopic sample. 
This can introduce two kinds of errors in 〈 z〉 : first, if all redMaGiC 
photo- z estimates were biased towards lower redshift, we would infer 
a similarly biased n ( z). Second, the change in shape or width of the 
n r ( z) because of photo- z errors can cause ∫ dz n r ( z) 2 to be wrong 
which propagates to a shift in 〈 z〉 . 

The shifts + 〈 z〉 that result from binning the redMaGiC galaxies 
using redMaGiC photo- z rather than true redshifts are given in the 
fourth row of T able 2 . W e do not report statistical uncertainties, as 
the y are ne gligible, since the shifts are computed taking the difference 
of two highly correlated measurements. The shifts are relatively 
small and unimportant in comparison to the b u uncertainties. We 
also report in parentheses the errors in 〈 z〉 we would have obtained 
had we not included the correction factor of equation (6) when 
estimating the galaxy-matter bias of redMaGiC galaxies. Given the 
difference between the two estimates, the correction due to the n 2 r ( z) 
integral clearly cannot be neglected when applying the methodology 
to data. Lastly, we also estimated the redMaGiC + 〈 z〉 using theory 
data vectors of the cross-correlation signal w ur , and modelling the 
redMaGiC redshift distributions in each reference bin assuming the 
redMaGiC photo- z uncertainties estimated from data (Fig. 2 ), rather 
than the ones from the Buzzard simulation. This test delivered + 〈 z〉 
of the same order of magnitude as the ones estimated directly in 
Buzzard and reported in Table 2 . 

Before reporting the total error budget for the mean matching 
method, we validate the assumption that we can assume a fixed 
cosmology when calculating the clustering of dark matter, w DM ( z). 
Assuming dif ferent v alues for the cosmological parameters ( (m = 
0.4, σ 8 = 0.7) results in a negligible shift, + 〈 z〉 < 10 −3 . 

The total error budget is reported at the end of Table 2 , and is 
obtained by adding in quadrature all the single sources of errors, 
assuming they are independent. The dominant source of uncertainty 
is the potential redshift evolution of the WL sample, which we do 
not model in the mean-matching analysis of the real data or in the 
validation analyses of the simulations, which are described next. 
4.1.2 Application of the method in simulations 
In order to apply the mean matching method in simulations, we 
run our clustering measurements using a realistic set-up, for the 
two reference samples considered in this work. Fig. 7 compares the 

n ( z) distributions obtained from simulations with redMaGiC and 
BOSS/eBOSS as reference samples. In particular, redMaGiC galax- 
ies have been binned using the redMaGiC photo- z estimates rather 
than the true redshifts and we did not correct for the bias evolution 
of the unknown sample. This plot highlights the differences between 
the two samples: redMaGiC has a smaller statistical uncertainty, but 
the BOSS/eBOSS sample has a wider co v erage in redshift, helping 
especially at higher z. The distributions are compatible within errors. 
We note that in order to correct for the bias evolution of the reference 
sample when using redMaGiC galaxies as a reference, we have to ap- 
ply a correction to the width of redMaGiC bins, as described in equa- 
tion (6), to account for the broader distributions that redMaGiC bins 
have compared to a top-hat bin. This correction is shown in Fig. 8 . 

Once we have n ( z) clustering- z estimates, we first verify that 
the clustering- z windowed mean redshift estimates obtained using 
the two reference samples are both compatible within uncertainties 
(including systematic and statistical) with the truth, and with 
SOMPZ estimates. This is shown in the lower panel of Fig. 7 . 
Note that the clustering- z windowed means are compatible by 
construction with the truth, given our modelling of the systematic 
uncertainties of the method. 

We can then proceed combining the clustering- z information 
with the SOMPZ method. Recall that the SOMPZ method can 
provide samples of the n u ( z)’s from its posterior distribution. We 
can importance-sample these SOMPZ samples by assigning each 
a weight through the likelihood given by equation (11). As we 
have two reference samples, we multiply the likelihoods obtained 
using the redMaGiC and BOSS/eBOSS samples; we assume the two 
likelihoods share the WL galaxy bias uncertainty but are otherwise 
considered independent, which is a reasonable assumption given the 
fact the total error budget of the methodology is systematic dominated 
and the o v erlap between the two sample is minimal. 

Fig. 9 shows, in red, the distributions of 〈 z〉 o v er SOMPZ 
realizations, one panel for each tomographic bin. Note that in this 
case, 〈 z〉 is taken o v er 0 < z < 4, not restricted to narrower 
ranges where the clustering- z signal is measured and large. The 
blue curves show the distributions of 〈 z〉 after having being weighted 
by the clustering- z likelihood. The means and standard deviations 
of 〈 z〉 of the SOMPZ realizations are also reported in Table 3 , 
with and without the importance weighting by mean-matching. The 
importance-weighted 〈 z〉 values are fully consistent with unweighted 
SOMPZ realizations, and with the truth for the simulations. 

The clustering- z information in fact offers little impro v ement in 
the constraints from the SOMPZ realization. The systematic errors 
we derive on 〈 z〉 are larger than the statistical errors with DES 
Y3 data (Table 2 ), and also larger than the total errors estimated 
for the SOMPZ method (Fig. 7 ). This means that for the DES Y3 
analysis, the mean-matching method can be useful as an independent 
cross-check of the SOMPZ methodology, but it does not significantly 
impro v e the constraints on the mean of the redshift distributions. 

This is not entirely surprising, because we have seen that the 
dominant systematic error in the mean-matching method (indeed for 
clustering- z in general) is the uncertainty in the redshift evolution 
of the bias of the unknown sample, b u ( z). Even a simple linear 
slope to b u ( z) will be imprinted on the inferred n u ( z) and shift 〈 z〉 , 
meaning that the dominant systematic error has its largest effect on 
this lowest order moment of n u ( z). Thus in some sense, 〈 z〉 is the 
statistic for which we should expect clustering- z techniques to be 
least informative. On the other hand, we expect b u ( z), and other 
sources of systematic error in the clustering- z method, to be smooth, 
low-order functions of z. We will therefore look next into the ability 
of clustering- z data to constrain the full shape of n u ( z). 
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Figure 7. Upper panels : the redshift distributions estimated per equation (8) for a realistic set-up (see the text in Section 4), compared to the truth (black lines). 
We show both the redshift distributions obtained using redMaGiC galaxies as a reference sample, binned using their redMaGiC photo- z estimates, and the ones 
obtained using BOSS/eBOSS galaxies as a reference sample. The grey bands show, as a comparison, the 1 σ region encompassed by the SOMPZ realizations. 
The vertical dotted (dashed) lines indicate the intervals where the windowed means of the redMaGiC (BOSS/eBOSS) hav e been computed. Centr al and bottom 
panels : windowed mean of the redshift distributions. The clustering- z estimates are represented by Gaussian histograms with mean equal to 〈 z〉 WZ and σ equal 
to the uncertainty of the method. The error budget of the clustering- z mean redshift estimates includes both statistical and systematic uncertainties (estimated in 
Section 4.1 and reported in Table 2 ), contrary to what was shown in Fig. 6 that only reported statistical uncertainties. 
4.2 Method 2 (full-shape): systematic uncertainty estimation in 
simulations 
In the full-shape likelihood of Section 2.2, we produce a model for 
the w( z) signal across the full redshift range co v ered by the reference 
samples (i.e. including the tails of the distributions) and produce a 
likelihood for the observed w( z) data. In practice, this allows us to 
constrain the full shape of the redshift distributions, not only the 
mean. Here we use the Buzzard simulations to set the priors for the 
systematic-error parameters within this model. 
4.2.1 Systematic uncertainty determination 
Recall that in Section 2, specifically equation (12), the cross- 
correlation signal is modelled starting from a proposed value 
for n u ( z) (e.g. provided by SOMPZ), the (measurable) reference- 
population properties b r ( z) and αr ( z), and nuisance parameters 
for the (poorly known) bias and magnification properties of the 
source population b u ( z) and αu ( z). We will set these last two 
as constant o v er redshift and marginalize o v er broad priors on 

these constants, to flexibly model the magnification signal. The 
underlying function w DM ( z) is estimated assuming a cosmological 
model. 

The final component of the ˆ w ur model is a function Sys ( z, s ) that 
multiplies the true clustering signal and will absorb the systematic 
errors described for the mean-matching method: failures of the 
linear-bias model itself; the unknown and redshift-dependent b u ( z); 
and possible errors in the n r ( z) functions for redMaGiC bins. The 
parameters s of this systematic function will be marginalized as well, 
as per equation (13). 

Our strategy will be to determine what the Sys ( z) function is in 
the Buzzard simulation, and then produce a prior on the s parameters 
which allows marginalization o v er a broad family of functions with 
similar form of deviation from unity. The Sys ( z) function is given 
substantial freedom for low-order, smooth variation with z, as we 
expect from all of the systematic errors, leaving the finer-scale 
information in w ur ( z) to constrain fine-scale behaviour in n u ( z), i.e. 
the shape of n u ( z). 

The blue data points in Fig. 10 plot the Sys ( z) functions observed 
in the Buzzard simulations, for both reference samples. Namely they 
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Figure 8. Redshift evolution of the galaxy-matter bias b r of simulated 
redMaGiC galaxies, estimated with different binning. In particular, the black 
line has been obtained binning redMaGiC galaxies using the true redshift, 
and the solid light blue line has been obtained binning redMaGiC galaxies 
using redMaGiC photo- z. The lower amplitude is due to the larger effective 
bin width due to the photometric uncertainties. The light blue dashed lines is 
computed from the light blue solid line after correcting for the larger width 
of the bins, following equation (6). 
plot 
Sys sim ( z i ) = w ur ( z i ) 

ˆ w ur ( z i )) , (16) 
where the model uses the true n u ( z ), b r ( z ), and n r ( z ) values. We 
e v aluate and plot this ratio only in the z interval where the w ur signal 
is large enough to have good signal-to-noise ratio and subdominant 
magnification contribution. The redMaGiC w ur ( z) uses redMaGiC 
photo- z’s for binning, just as the real data do. 

The Sys sim ratio deviates from unity due to systematic effects, as 
expected. We quantify this by the RMS of log [Sys sim ( z) ] , which 
are measured to be (0.11, 0.07, 0.07, 0.11) for the redMaGiC 
tomographic bins and (0.18, 0.15, 0.10, 0.15) for BOSS/eBOSS. 
From this we conserv ati vely decide that the Sys function needs to 
have the freedom to have RMS (log) fluctuations of ≈0.15 as 1 σ
deviations under its p( s ) function. 

We seek a parametric function Sys ( z; s ) and a prior p( s ) which 
have these desired properties: 

(i) The function and prior yield a good fit to the Sys sim measured 
in Buzzard. 

(ii) The prior can be tuned to yield typical RMS variations in 
log [Sys ( z) ] at similar level to that seen in Buzzard. 

(iii) The parametric form allows a similar smoothness of variation 
as seen in Buzzard, i.e. similar number of ‘wiggles’ across the 0 < z 
< 1.2 range where the WL source galaxies lie. 

(iv) The RMS of log [Sys ( z; s ) ] as we vary s under the prior p( s ) 
is a flat function of z. 

(v) The prior on s is simple to construct and to use in a Hamiltonian 
Monte Carlo chain. 

We chose the Sys ( z , s ) function to be given by: 

log [ Sys ( z, s ) ] = M ∑ 
k= 0 

√ 
2 k + 1 
0 . 85 s k P k ( u ) , (17) 

u ≡ 0 . 85 z − 0 . 5( z max + z min ) 
( z max − z min ) / 2 . (18) 

with P k ( z i ) being the k -th Legendre polynomial, M is the maximum 
order, and the second line linearly remaps the z interval [ z min , z max ] 
to [ −0.85, 0.85]. The fraction under the summation makes the basis 
functions close to orthonormal so that the RMS of log ( Sys ) is | s | 2 . The 
prior p( s ) is chosen to be a simple diagonal normal distribution with 
standard deviations { σ s 0 , . . . , σ sM } and means of zero. Mathematical 
details of this choice for the systematic function and its prior are given 
in Appendix B. 

A distinct set of nuisance parameters q = { p , s } (with p = 
{ b ′ u , α′ 

u } ) are assigned to each combination of tomographic bin and 
reference sample, and each of these eight sets of w ur measurements 
are fit independently. We set [ z min , z max ] to span the full range of 
the reference catalogue, [0.14,0.90] for redMaGiC and [0.10,1.06] 
for BOSS/eBOSS. We set M = 5 and we set the σs i to yield an 
expectation value of 0.15 for the RMS of log [Sys ( z) ] . The order 
M was chosen by finding the value beyond which the RMS residual 
stopped decreasing for a fit of equation (17) to the Sys ( z) function 
found in the simulated redMaGiC w ur ( z) data. The σs i prior is set 
to make the simulated Sys ( z) functions be ≈1 σ fluctuations from a 
constant. Since e s 0 is approximately the mean bias of the unknown 
sample, and we expect the mean bias b r to be more uncertain than the 
variation with redshift, we treat the prior on s 0 somewhat differently, 
giving it a wide prior σ s 0 = 0.6. The RMS of 0.15 is then allocated 
among the remaining elements k ≥ 1 of s which model redshift- 
dependent systematic errors. 

The nuisance parameter b ′ u used in magnification estimation is 
given a Gaussian prior with ( µ, σ ) = (1., 1.5) (which encompasses 
the bias of the WL sample as measured in simulation). The other 
magnification nuisance α′ 

u is given a mean estimated from image- 
injection simulations (Appendix A) and a conserv ati vely large 
uncertainty of σ = 1. 

The dashed curves in Fig. 10 plot the Sys functions obtained 
from the maximum-posterior fits to the simulations’ w ur ( z) data, 
combining the priors on the nuisance parameters with the likelihood 
of equation (13). In all cases, the best fit models succeed in capturing 
the slo wly v arying component of the systematic. In some bins, some 
of the rapid variations in redshift are not well captured – this is 
expected, as we truncate the polynomial of the Sys function to order 
M = 5. While this could be impro v ed by increasing the maximum 
order M , we find in practice that these small discrepancies cause 
no significant bias in the reco v ered redshift distributions when the 
method is applied in simulations (see below). The fitted functions 
remain well behav ed o v er the full w ur redshift range even though 
the fit is done only for redshifts with strong signals. We conclude 
that this formulation of the systematic errors is sufficient to model 
the systematic errors in our clustering- z measurement in the Buzzard 
simulation, and we assume that marginalization o v er q will allow us 
to capture the uncertainties present in the real data as well. 

The grey curves in Fig. 10 show a few examples of Sys ( z; s ) 
functions obtained by random sampling of the prior p( s ). This 
illustrates the flexibility of our model for the systematic uncertainty, 
which is able to model a large variety of curves. 

It is useful to ask whether this implementation of systematic 
errors in the full-shape method is consistent with the systematic 
uncertainties derived for the mean-matching method. This can be 
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Figure 9. Mean redshift posteriors for the four tomographic bins obtained using the mean matching method in simulations. The red histograms represent the 
distribution of the mean redshift of the SOMPZ realizations, whereas the light-blue histograms show the mean redshift posteriors of the SOMPZ realizations 
using the clustering- z likelihood. The mean redshift of the SOMPZ realizations has been computed o v er a wide redshift interval (0 < z < 4), also including the 
redshift range where there is no clustering- z information. 

Table 3. Simulations . The mean redshift estimates of the SOMPZ distributions with and without clustering- z 
information, in simulations. 
Case tomo bin 1 tomo bin 2 tomo bin 3 tomo bin 4 
True 〈 z〉 : 0.315 0.513 0.743 0.910 
SOMPZ 〈 z〉 : 0.312 ± 0.008 0.505 ± 0.005 0.746 ± 0.003 0.907 ± 0.005 
SOMPZ + WZ (mean-matching) : 0.314 ± 0.008 0.505 ± 0.004 0.745 ± 0.003 0.906 ± 0.005 
SOMPZ + WZ (full-shape) : 0.312 ± 0.009 0.507 ± 0.005 0.747 ± 0.004 0.907 ± 0.005 

done by drawing many realizations of s from its prior, constructing 
a model ˆ w ur data vector using each realization of Sys ( z, s ) , and then 
treating this model as data input to the mean-matching method. Each 
realization of s then yields an estimate of + 〈 z〉 with respect to the 
true distribution. We obtained a typical | + 〈 z〉| in the range 0.010–
0.015 depending on the tomographic bin, in very good agreement 
with the total systematic uncertainties estimated in Table 2 for the 
mean-matching method. 
4.2.2 Application of the method in simulations 
Once our family of systematic functions is determined for the full- 
shape method, we may proceed to validating the performance of the 
combination of SOMPZ and the full-shape clustering- z method on 
the Buzzard simulations. This combination is implemented (both in 
simulations and in data) by sampling the n u ( z) functions for all four 
tomographic bins from a posterior defined by the product of: 

(i) the SOMPZ probability defined by Myles et al. ( 2021 ); 
(ii) the clustering- z probability defined by equation (13) for the 

w ur ( z i ) measured against the redMaGiC sample, marginalized o v er 
q as described in Appendix B; 

(iii) and likewise, the marginalized clustering- z probability de- 
rived for the BOSS/eBOSS sample, marginalized over q as described 
in Appendix B; 
The clustering- z probabilities use w ur ( z) o v er the full redshift range of 
their respective reference samples. The reference-sample magnifica- 
tion coefficients αr and the cosmology used to derive w DM ( z) are held 

fixed to nominal values. We verify below that the choices of αr and 
cosmology have insignificant impact on the outcome of the full-shape 
method. In this case, contrary to the mean-matching method, we 
consider the redMaGiC and BOSS/eBOSS likelihoods independent, 
i.e. they do not share the WL galaxy bias uncertainty. We did this 
because in the full-shape case we did not split our systematic function 
into different source of errors, owing to an increasing complexity in 
the modelling. Given the flexibility of Sys ( z, s ) and the conserv ati ve 
choice on the RMS of log [Sys ( z; s ) ], considering the redMaGiC and 
BOSS/eBOSS likelihoods independent should not be an issue for 
the methodology. The sampling of the joint SOMPZ + WZ posterior 
is done using a Hamiltonian Monte Carlo method described in 
Bernstein (in preparation). 

Fig. 11 compares the Buzzard true redshift distribution to the 
distributions drawn from only the SOMPZ likelihood and the 
distributions drawn from the joint SOMPZ + WZ posterior. The 
distributions of the mean redshifts per bin in the lower panels are 
not shown, but it is reported in Table 3 . It shows that the full-shape 
clustering- z likelihood adds little information on these mean z’s. 
This is as we expect from the results and discussion of the mean- 
matching method in Section 4.1.2. The plots in Fig. 11 , ho we ver, 
show that the addition of full-shape clustering- z likelihood produces 
a remarkable impro v ement in the fidelity of the shape of n u ( z) to 
the truth. To better quantify the impro v ement, we also show the 
signal-to-noise ratio (S/N) of the n u ( z) estimates, defined as the ratio 
between the SOMPZ n u ( z) and the 68 per cent confidence interval 
of the SOMPZ realizations. The S/N is generally increased by the 
inclusion of the clustering- z information; in particular, the S/N is 
increased up to a factor of 3 in the rele v ant redshift range where n ( z) 
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Figure 10. Systematic uncertainties of the full-shape method as measured in simulations following equation (16), for the four tomographic bins and for the two 
reference samples considered ( redMaGiC upper panels, BOSS/eBOSS, lower panels). The measured systematic uncertainties are represented by the light blue 
lines; the purple dashed lines represent the best fitting model. The grey lines represent 10 random realizations of the systematic uncertainty model assumed for 
the full-shape method and described by equation (17). Note that the rapid upturn of the systematic function in bin 2 in the case of the redMaGiC sample is due 
to a rapid evolution of the galaxy-matter bias of the unknown sample, related to a strong evolution of the properties of the galaxy population. Such an evolution 
is also present in other bins, but it is milder. When the BOSS/eBOSS sample is used, the lower sensitivity does not allow to appreciate this rapid change in the 
slope of the systematic function. 
is substantially different from 0. In the same S/N panels of Fig. 11 , 
we also show the contribution to the S/N increment due to redMaGiC 
galaxies or BOSS/eBOSS galaxies alone. The latter sample mostly 
contributes in the redshift range 0.8 < z < 1.0, whereas most of the 
clustering- z information at lower redshift comes from redMaGiC 
galaxies. 

The SOMPZ method has strong fine-scale fluctuations in n u ( z) 
due to sample variance on the small regions of sky used for its deep 
imaging and spectroscopy. The clustering- z correlation functions, on 
the other hand, are measured o v er the full DES Y3 footprint and have 
high S / N level. Although the clustering signal has a strong systematic 
uncertainty from the unknown WL bias, this systematic is slowly 
varying as a function of redshift and has less fine-scale fluctuations. 
The clustering- z likelihood is thus able to drive the n u ( z) outputs 
to a smooth distribution, at least o v er redshifts where clustering- z 
reference samples are available. 

We remind the reader that the clustering information alone cannot 
be used to infer the n u ( z), as the reference samples used in this 
work do not span the whole redshift range rele v ant for the DES Y3 
n u ( z). None the less, we can try to understand in simulations if the 
full-shape method would be unbiased independently of the SOMPZ 
information. We did this by importance-sampling realizations of the 
true n u ( z)s shifted around their mean redshift, and by assigning to 
each sample a weight through the likelihood given by equation (13). 
This test allowed us to reco v er the true n u ( z) within uncertainties, 
hence proving the method to be unbiased; for more details, see 
Appendix B. 

Finally, we verify that the choices of the parameters αr or the 
cosmology assumed to compute w DM do not impact the methodol- 
ogy. We find that assuming different values for the cosmological 
parameters ( (m = 0.4, σ 8 = 0.7) results in a shift in + 〈 z〉 < 
10 −3 on the calibrated SOMPZ redshift distributions. Concerning 
magnification, in order to roughly asses the impact of the exact 
values of the magnification coefficients αr , we verified that assuming 
values for αr that are −1 × the fiducial ones resulted in shifts + 〈 z〉 
< 10 −3 (see Appendix A for more details). We conclude that the 
full-shape lik elihoods, lik e the mean-matching, can be calculated in 
advance of and independent from the cosmology chains. 
5  APPLI CATI ON  TO  DATA  
We apply the clustering- z methods to DES Y3 data by first measuring 
the angle-averaged w ur ( z i ) (equation 2) of each WL source tomo- 
graphic bin sample against the redMaGiC and BOSS/eBOSS samples 
described in Section 3. These cross-correlation data are plotted in 
Fig. 12 . Note the exceptionally high S / N level of the redMaGiC 
data in particular, even at the rather fine binning of +z = 0.02 
that we use throughout. Bin-by-bin estimates of the reference bias 
b r ( z i ) are obtained using equation (6), with a dark-matter w DM ( z i ) 
predicted from theory for nominal cosmological parameters (Planck 
Collaboration VI 2020 ). 

Note that for the redMaGiC galaxies we calculated b r ( z i ) applying 
the correction to the galaxy-matter bias of the reference sample de- 
scribed by equation (5), using the fraction of the redMaGiC galaxies 
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1238 M. Gatti et al. 

Figure 11. For each tomographic bin, three panels are shown. Upper panels: SOMPZ redshift distributions, as estimated in simulations, with and without 
clustering information (full-shape method). The bands encompass 68 per cent confidence interval of the SOMPZ n ( z) realizations. Central panels: difference 
between the reco v ered n ( z) and the true n ( z) in simulations. Lower panels: S/N, defined as the ratio between the SOMPZ n u ( z) and its 68 per cent confidence 
interval of the SOMPZ realizations, with and without clustering information. The dashed (dotted) line has been obtained only using clustering- z constraints 
from redMaGiC (BOSS/eBOSS) galaxies. 
which have a spectroscopic redshift. As redMaGiC galaxies with 
spec-z counterparts tend to have brighter magnitudes compared to 
the full redMaGiC sample, we have applied a magnitude reweighting 
to those galaxies before computing the correction, so as to up- 

weigh (down-weigh) redMaGiC galaxies under (o v er) represented 
in the spec-z subsample. After the reweighting, the spec-z sample 
had the same magnitude distribution of the full redMaGiC sample. 
Imperfections in this process should be small based on the tests in 
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Figure 12. The measured w ur ( z) for the DES Y3 data are plotted for each of the four tomographic bins, using reference samples from BOSS/eBOSS (blue) and 
redMaGiC (red). 
previous sections and are included in the systematic uncertainties of 
the two methods. 

Lastly, we note that the redMaGiC estimates show a small, ne gativ e 
tail at high redshift, for the first WL tomographic bin. We believe 
this is due to a systematic effect not corrected by our lens weights, 
rather than magnification, which should be positive at those redshifts, 
according to our estimates. The Balrog estimates of the magnification 
coefficients should also include realistic systematic and observational 
biases, which might lead to ne gativ e magnification; the fact that our 
estimates are none the less positive indicates that this effect is due to 
some systematic that affects the redMaGiC number density and that 
anticorrelates with the WL density distribution. We know, indeed, 
that the redMaGiC sample is affected by some residual systematics, 
which does not affect cosmology (DES Collaboration 2021 ; P ande y 
et al. 2021 ), but manifests as a scale-, redshift-, and sky-area- 
independent phenomenological decorrelation parameter. Given the 
small amplitude of this effect, the fact that we also have constraints 
from another independent sample (BOSS/eBOSS), and that our 
clustering- z constraints are compatible with SOMPZ and shear-ratio 
(S ́anchez et al. 2021 ) prior to combination, we believe this should 
have a negligible impact on our results. 
5.1 Mean-matching results 
We use the mean-matching method as an independent check on the 
SOMPZ estimates of n u ( z) in each tomographic bins. This begins 
by calculating the naive (linear-theory, no-magnification, constant- 
b u ) redshift distribution ˜ n u ( z i ) from equation (8), plotted in Fig. 13 . 
We show the distributions obtained with the two reference samples, 
and, for comparison, the 1 σ region encompassed by the SOMPZ 
realizations. 

Following the prescription for mean-matching in equation (9), 
we first compute the mean of the redMaGiC and BOSS/eBOSS 
clustering- z distributions in the redshift interval where they overlap, 
also excluding the tails (as detailed at the beginning of Section 4.1). 
We measure differences in 〈 z〉 of ( −0 . 009 ± 0 . 010 , 0 . 006 ±
0 . 009 , 0 . 005 ± 0 . 006 , 0 . 022 ± 0 . 014), for the four tomographic 
bins. The quoted uncertainties take into account the statistical and 
systematic uncertainties as reported in Table 2 , except for the WL 
galaxy bias uncertainty that is assumed to be shared by the two 
samples. The statistical uncertainties are estimated through jackknife 

resampling. Statistical and systematic uncertainties are added in 
quadrature. We then compare the 〈 z〉 values derived for the clustering- 
z with two reference samples and the SOMPZ estimates of n u ( z): 
this is shown in the lower panels of Fig. 13 . In this case the 
full systematic mean-matching uncertainty from Table 2 has been 
included in the clustering- z values. The clustering- z values are fully 
consistent with the SOMPZ values in the mean-matching statistic, 
although they are weaker. The behaviour is very similar to what was 
seen in simulations. 
5.2 Full-shape results 
Following the procedure used on the simulations, we define a full- 
shape clustering- z likelihood using equations (12) and (13). We 
assume fiducial values for the magnification parameters for the 
redMaGiC sample, as estimated using Balrog (Suchyta et al. 2016 ; 
Everett et al. 2020 ). We do not have an estimate of the magnification 
parameters for BOSS/eBOSS galaxies available, so we assumed the 
same values used for redMaGiC galaxies. We confirm, however, 
that assuming values for the magnification parameters that are −1 
× the fiducial ones resulted in no rele v ant ef fect on the mean of 
the resultant redshift distributions. The nuisance-parameter priors 
derived from simulations in Section 4.2 are used, including those 
specifying the allowed variation with z in b u ( z) and other elements 
of the Sys ( z) function. 

Before applying the full-shape method, we checked that the 
fiducial ˆ w ur model on data (obtained using SOMPZ n u ( z) as baseline) 
was compatible with the measured w ur marginalized o v er the sys- 
tematic function Sys(z). This check has been performed separately 
for redMaGiC and BOSS/eBOSS. We then use the Hamiltonian 
Monte Carlo method to draw samples from the joint posterior 
distribution of the SOMPZ likelihood and the clustering- z likelihoods 
for both redMaGiC and BOSS/eBOSS data. Fig. 14 shows the 
68 per cent confidence interval of the n u ( z) samples from the 
SOMPZ + WZ posterior, as well as those from the pure SOMPZ 
posterior. At redshifts where clustering- z information is available, 
it greatly reduces the point-by-point uncertainties in n u ( z), just 
as in the simulations. The clustering- z full-shape method is thus 
very successful at reducing the impact sample variance on SOMPZ 
estimators. This combined estimator also shows no sign of ne gativ e 
tail at high redshift in the first tomographic bin (as seen, instead, in 
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1240 M. Gatti et al. 

Figure 13. Illustration of the agreement among the SOMPZ n ( z) and the clustering- z n ( z) obtained using the naive redshift estimator and redMaGiC and 
BOSS/eBOSS galaxies as a reference sample. Upper panels : the naive redshift distributions estimated per equation (8) using clustering- z in data (i.e. no 
corrections for systematic errors or magnification). That is, these are the distributions employed in the mean-matching method. The redshift distributions 
obtained using redMaGiC galaxies as a reference sample, binned using their redMaGiC photo- z estimates, are in red. Those using BOSS/eBOSS galaxies 
as a reference sample are in blue. The grey bands show the 1 σ region encompassed by the SOMPZ realizations. The vertical dotted (dashed) lines indicate 
the intervals where the windowed means of the redMaGiC (BOSS/eBOSS) have been computed. The lower panels plot the windowed mean redshifts 〈 z〉 for 
each bin, as per equation (9), for the two clustering- z reference samples and for the SOMPZ samples. The clustering- z estimates are represented by Gaussian 
histograms with mean equal to 〈 z〉 WZ and σ equal to the uncertainty of the method. The SOMPZ histograms are obtained from the mean redshift of the SOMPZ 
n ( z) realizations. Good agreement is seen among all three estimators. 
the clustering measurement, Fig. 12 ). This stresses the importance 
of a combined analysis, which is more robust and is able to remo v e 
some of the potential problems or systematics affecting each of the 
two estimators when used individually. 

The averages and standard deviations of the mean- z distributions of 
the SOMPZ and SOMPZ + WZ posteriors are listed in Table 4 , along 
with the results of importance-weighting the SOMPZ samples with 
the mean-matching likelihood in equation (11). As expected from 
the simulations, the clustering- z information does not substantially 
alter the bin means derived from photo- z methods, in both the mean- 
matching and full-shape methods. The significant impro v ement in 
shape accuracy, as seen in Fig. 14 , is the principal product of the 
clustering- z method for DES Y3 analyses. 
6  C O N C L U S I O N S  
This work describes the use of clustering measurements to constrain 
the WL source galaxy redshift distributions for the Dark Energy 

Surv e y Year 3 (DES Y3) cosmological analyses. We cross-correlate 
the WL source galaxies (the ‘unknown’ sample u ) with ‘reference’ 
samples ( r ) from both the DES Y3 redMaGiC catalogue (LRGs with 
secure photometric redshifts) and BOSS/eBOSS galaxies (with spec- 
z estimates). The reference samples are divided into thin redshift bins 
centred at { z i } to yield two-point angular cross-correlation measure- 
ments w ur ( z i ), for each combination of reference sample and WL 
tomographic bin, follo wing no w-standard practices for clustering- z 
(WZ) methods. The w ur ( z i ) measurements are weighted o v er angular 
separation to maximize the o v erall S / N ratio while a v oiding the 
large angular scales used for cosmological measurements, in order 
to keep the clustering- z inferences statistically independent of the 
cosmological data vectors. 

We describe two distinct methods to constrain the redshift distri- 
butions n u ( z) of the unknown samples using the w ur ( z i ) data. The 
‘mean-matching’ method focuses on the mean 〈 z〉 of the redshift 
distribution o v er a redshift window bounded by the redshift range 
of the reference sample and the 2 σ extent of n u ( z). This method, 
similar to what was used in DES Y1 analyses (Davis et al. 2018 ; 
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Figure 14. SOMPZ redshift distributions, as estimated in data, with and without clustering information (full-shape method). The bands encompass the statistical 
and systematic uncertainties of the distributions. 

Table 4. Data . The mean redshift estimates of the SOMPZ distributions with and without clustering- z information. 
Case tomo bin 1 tomo bin 2 tomo bin 3 tomo bin 4 
SOMPZ 〈 z〉 : 0.318 ± 0.009 0.513 ± 0.006 0.750 ± 0.005 0.942 ± 0.011 
SOMPZ + WZ (mean-matching) : 0.317 ± 0.008 0.514 ± 0.006 0.750 ± 0.005 0.941 ± 0.011 
SOMPZ + WZ (full-shape) : 0.321 ± 0.008 0.517 ± 0.006 0.749 ± 0.005 0.940 ± 0.010 

Gatti et al. 2018 ), starts by computing the 〈 z〉 of a naive clustering- 
z estimate ˜ n u ( z i ) (per equation 8) that assumes linear biasing with 
constant b u and no magnification. From simulations, we estimate the 
additional uncertainty on 〈 z〉 that arises from systematic errors in 
the naive estimator, which we conservatively take as 0.014 and are 
dominated by the unknown redshift dependence of b u ( z). Finally, 
we can compare this clustering- z estimate of 〈 z〉 to that of the n u ( z) 
inferred from photo- z or some other independent method. For the 
DES Y3 data, we find the mean-matching method indicates full 
consistency between the SOMPZ photometric estimator and the 
clustering- z estimators, for all combinations of tomographic bin and 
reference sample. 

The systematic errors we derive on 〈 z〉 are larger than the statistical 
errors (estimated through jackknife) with DES Y3 data (Table 2 ), and 
also larger than the total errors estimated for the SOMPZ method 
(Fig. 13 ). Thus, this mean-matching approach has reached the limits 

of its usefulness, unless future experiments obtain narrower WL 
tomographic bins, and/or obtain external information on the relative 
bias of the unknown sample against the reference samples. Indeed the 
de generac y between n u ( z) and b u ( z) in the observable w ur ( z) is the 
fundamental limitation of the clustering- z approach. This does not, 
ho we ver, mean that we have exhausted the information available from 
the clustering- z data in general. As discussed at the end of Section 4.1, 
the mean z is probably the summary statistic of n u ( z) that is most 
degraded by the dominant systematic error, redshift-dependent bias 
b u ( z), because this unmodelled multiplicative contribution to w ur ( z) 
is a smooth function of redshift. Higher order moments, or more gen- 
erally the detailed shape of n u ( z), are less susceptible to clustering- z 
systematic errors, which are all expected to be smooth functions of z. 

To extract this information, we apply the ‘full-shape’ method, 
developed in Section 4.2, using w ur ( z) data to inform n u ( z). We allow 
our model ˆ w ur ( z) to incorporate an arbitrary multiplicative function 
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Sys ( z, s ) of redshift and nuisance parameters s that will mimic the 
effects of smooth systematic errors, such as b u ( z) and failure of 
the linear-bias model at small scales. Using simulations to choose 
this function and an appropriately flexible prior on s , we can now 
define a clustering- z likelihood for an arbitrary choice of n u ( z) that 
marginalizes o v er these nuisance parameters, as well as nuisances 
associated with lensing magnification signals that contaminate w ur ( z) 
(equation 13). 

We note that this method impro v es on previous applications of 
clustering- z methods to WL cosmology (e.g. Choi et al. 2016 ; Davis 
et al. 2017 ; van den Busch et al. 2020 ), which mostly have used 
the former to constrain simple shifts of photo- z-derived redshift 
distributions, i.e. n u ( z) = n PZ ( z + +z). These approaches can lead 
to biased results if the shape of the photo- z posterior differs from 
the truth, or if clustering systematics are not taken into account by 
a sufficiently flexible model, as noted by Gatti et al. ( 2018 ) and van 
den Busch et al. ( 2020 ). We impro v e on these approaches for DES 
Y3 by defining likelihoods for n u ( z) arising from both SOMPZ and 
clustering- z methods, and using Hamiltonian Monte Carlo (HMC) 
to sample n u ( z) realizations from the product of these independent 
likelihoods. This also allows us to combine the information of the 
redMaGiC and BOSS/eBOSS references into a single inference. 
Note that each sample of the chain specifies redshift distributions 
for all four tomographic bins, capturing any inter-bin correlations 
that arise from the SOMPZ inference. This SOMPZ + WZ technique 
is extremely successful at reducing the point-by-point uncertainty in 
n PZ ( z) that arises from sample variance in the small surv e ys typically 
used to calibrate photo- z methods. The results for DES Y3 data 
can be seen in Fig. 14 . The addition of the full-shape clustering- z 
information to SOMPZ yields n u ( z) samples that are much smoother 
and more realistic, taking advantage of the very high S / N that we have 
in w ur ( z) from the full footprint of DES Y3. This benefit is present 
despite the fact that the full-shape method does little to impro v e the 
SOMPZ’s estimate of the mean redshift of each bin. 

The final DES Y3 redshift calibration strategy includes a few 
additional minor tweaks to the SOMPZ + WZ samples, not addressed 
here. The n ( z) realizations are modified to account for uncertainties 
in the photometric calibration of the SOMPZ inputs, and the z < 0.1 
behaviour (which is not constrained by clustering- z data) is smoothed 
to a physically reasonable form. These steps mostly affect the first 
tomographic bin (Myles et al. 2021 ). An additional correction to 
all the n ( z) realizations is performed to account for the effects 
of blending, based on the work on image simulations described 
in MacCrann et al. ( 2022 ). Then, ideally, the realizations are 
sampled o v er during the cosmological analysis, using the hyperr ank 
technique (Cordero et al. 2021 ). In practice, ho we ver, in our fiducial 
cosmological run, we decided to parametrize the n ( z) uncertainties 
by shifts around their mean with a shift parameter +z. This choice 
was dictated by efficiency reasons, and by the fact that we verified in 
Cordero et al. ( 2021 ) that marginalizing o v er the mean of the redshift 
distributions rather than sampling o v er the multiple n ( z) realizations 
was sufficient for the DES Y3 analysis. The prior on +z is naturally 
provided by the scatter on the mean of the n ( z) realizations. Finally, 
when sampling the cosmological parameters, further constraints 
on the n ( z) are provided by the ‘shear-ratio’ test (S ́anchez et al. 
2021 ). The shear-ratio test uses small-scale g alaxy–g alaxy lensing 
measurements to further inform the shifts +z. In practice, when 
running the cosmological analysis, the shear-ratio likelihood is 
simply multiplied by the cosmological likelihood, since the two 
are independent. Having combined these sources of information 
on n ( z), we find in DES Collaboration ( 2021 ) that its uncertainties 
are insignificant contributors to the Y3 cosmological uncertainty, 

despite these data having the smallest statistical uncertainties of any 
photometric cosmology surv e y to date. 

The techniques used in this paper are applicable to other large 
imaging surv e ys. Further impro v ements in accurac y could be possi- 
ble from having a reference sample that has spectroscopic redshifts 
like BOSS/eBOSS (eliminating one systematic error source) but 
large area and very high S / N like the DES Y3 redMaGiC sample. 
Impro v ed prior knowledge of the magnification coefficients αu , αr 
would also be of use. Mitigation schemes to reduce the impact of 
the bias evolution of the target sample could also be implemented 
(Matthe ws & Ne wman 2010 ; v an den Busch et al. 2020 ). Importantly, 
the impact of bias evolution on clustering- z measures scales as ( +z) 2 , 
where +z is the rough width of each tomographic source bin, so 
impro v ed binning accuracy from photo- z’s will increase the value of 
clustering- zs. Ultimately the scheme of S ́anchez & Bernstein ( 2019 ) 
and Alarcon et al. ( 2020 ), where one samples the posterior of the 
actual mass density field, individual source z ′ s , and bias functions 
as constrained by the full catalogues, may offer stronger information 
than clustering- z methods that reduce the catalogues to the summary 
two-point statistics w ur ( z). But the methods applied to DES Y3 do 
make more complete use of the clustering- z data at summary-statistic 
level than has been done in the past. 
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APPENDIX  A :  MAGNIFICATION  EFFECTS  
We provide in this Appendix more details about the modelling of 
magnification effects M ( z i ) in the cross-correlation signal between 
the unknown and reference samples. Considering only the dominant 
terms (which account for the magnification of the unknown sample by 
the reference sample and the magnification of the reference sample by 
the unknown sample) and assuming linear bias, this can be written as: 
M( z i ) = ∫ d θW ( θ ) ∫ d l l 

2 π J 0 ( lθ ) ∫ d χ
χ2 

×
[ 
b r αu q r δq u κ + b ′ u αr q u δ q r κ] P NL ( l + 1 / 2 

χ
, z( χ ) ) , (A1) 

where the terms q δ and q κ read: 
q δ( χ ) = n [ z( χ ′ )] d z 

d χ ′ , (A2) 
q κ ( χ ) = 3 H 2 0 (m χ

c 2 a( χ ) 
∫ χ( z=∞ ) 

χ

d χ ′ n ( z( χ ′ )) d z 
d χ ′ χ ′ − χ

χ ′ . (A3) 
In the abo v e equations, n [ z ( χ )] is either n u ( z ) or n r, i ( z ). Under the 
approximation of thin redshift bins, we can write equation (A1) as 
a discrete summation o v er redshift bins of width +χ : 
M( z i ) = b r ( z i ) αu ( z i ) ∑ 

j>i 
[
D ij n u ( z j ) ]+ b ′ u ( z i ) αr ( z i ) 

×
∑ 
j>i 

[
D ij n u ( z i ) ] , (A4) 

with 
D ij = 3 H 2 0 (m 

c 2 w DM ( z i ) χ ( z i ) 
a( z i ) χ ( z j ) − χ ( z i ) 

χ ( z j ) +χj . (A5) 

The magnification coefficient α, for an ideal flux-limited sample, 
can be related to the slope s of the cumulative number counts 
e v aluated at flux limit: α ≡ 2.5 s − 1, with the slope formally defined 
as 
s = d 

d m log 10 n ( < m ) , (A6) 
where n ( < m ) is the cumulative number count as a function of 
magnitude m , and s is to be e v aluated at the flux limit of the sample. 
For a sample which is not flux limited, e v aluating the coefficient 
s is more complicated, and equation (A6) cannot be used. We use 
two different methods to estimate such coefficients for our samples, 
depending on whether we estimate them on data or on simulations 
(see below for further details). Estimates of α for both the reference 
and unknown samples are needed to properly model magnification 
effects. 

When adopting the mean-matching method, magnifications effects 
are not modelled, but the tails of the distributions where magnification 
effects should be relevant are remo v ed. We v erify below that this 
method is efficient. On the other hand, in the full-shape method 
we do model magnification effects, according to equation (A4). In 
this latter case, while we absorb the contribution due to b u to the 
clustering signal into the Sys function, we leave b ′ u as a free parameter 
in the magnification term. We also leave αu as a free parameter, 
and marginalize o v er both parameters analytically when computing 
the likelihood. By doing so, we absorb uncertainties not only in 
these values but also in b r , αr , and in the linear-bias model adopted 
for magnification. Hence, formally, the b ′ u value appearing in the 
magnification is not assumed to equal the b u that might multiply w DM . 
We do not implement redshift dependence of p = { b u , αu } (although 
the formalism would allow it) because magnification signals are 
important only o v er limited ranges of z (i.e. in the tails, see e.g. Gatti 
et al. 2018 ) for a given tomographic bin of the WL sources. 
A1 Magnification coefficients estimates 
In order to estimate the magnification coefficients of our samples, 
we adopt two different strate gies. F or the coefficients in data we use 
Balrog image simulations (Suchyta et al. 2016 ; Everett et al. 2020 ) 
in a process briefly described here. Galaxy profiles are drawn from 
the DES deep fields (Hartley et al. 2022 ) and injected into real DES 
images. The full photometry pipeline (Sevilla-Noarbe et al. 2021 ), 
the redMaGiC , and WL sample selection are applied to the new 
images to produce simulated redMaGiC and WL samples with the 
same selection effects as the real data. To compute the impact of 
magnification, the process is repeated, this time applying a constant 
magnification to each injected galaxy. The magnification coefficients 
are then derived from the fractional increase in number density 
when magnification is applied. This method captures the impact of 
magnification on both the galaxy magnitudes and the galaxy sizes, 
including all sample selection effects and potential observational 
and systematic effects. See Everett et al. ( 2020 ) and Elvin-Poole 
et al. ( 2021 ) for further details. The coefficients have been estimated 
for redMaGiC in five wide redshift bins, centred at z = (0.25, 
0.425, 0.575, 0.75, 0.9), yielding the magnification coefficients αr 
= (0.3 ± 0.7, −1.5 ± 0.5, −0.7 ± 0.4, 1.2 ± 0.5, 1.0 ± 0.5). 
The accuracy of these estimates is limited by the number of Balrog 
injections, which are scarce for a sample as bright as redMaGiC . 
Since the full-shape matching method formally requires values of the 
magnification coefficients for each of the 40 bins of the redMaGiC 
sample, we interpolate these values in z using the scipy routine 
interp1d . Although this procedure might not be too accurate 
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given the large uncertainties of the values of αr , magnification effects 
are largely negligible, such that the interpolation details should 
not impact our main results. For the WL sample, using the same 
methodology, we infer αu = ( − 0.4 ± 0.2, −0.21 ± 0.10, 0.00 ± 0.10, 
0.31 ± 0.07), for the four tomographic bins, respectively. Note that 
these values do not have to be interpolated. 

For the values estimated for the samples in simulations we adopt 
a different strategy. In particular, we use the estimated convergence, 
κ , computed at the location of each galaxy, to apply a small 
magnification to the galaxy magnitudes ( + m ), and then select our 
samples with and without this + m applied and compute the fractional 
change of objects passing the selection + N / N in 10 equally spaced κ
bins. The gradient of this relation is then related to the magnification 
coefficient (Elvin-Poole et al. 2021 ). This method only captures the 
effect of magnification on the galaxy fluxes, as it is the only effect 
expected in simulations. We estimate αr = (0.2 ± 0.4, 0.05 ± 0.15, 
0.00 ± 0.08, 1.11 ± 0.12, 1.18 ± 0.06) for the redMaGiC sample, 
and αu = ( − 0.365 ± 0.002, −0.655 ± 0.002, −0.447 ± 0.002, 
0.836 ± 0.002) for the WL sample. 

Lastly, we note that estimates of the magnification coefficients 
are not available for BOSS/eBOSS galaxies, as we did not try 
to reproduce the complex BOSS/eBOSS selection function within 
Balrog image simulations. We also did not estimate these coefficients 
for the simulated BOSS/eBOSS sample. This is not a problem, as 
we verify below that BOSS/eBOSS does not have the sensitivity 
to measure magnification effects. When formally needed (for the 
full-shape method), though, we adopted the same coefficients as the 
redMaGiC sample. 
A2 Magnification impact on the clustering measurements 
We show the impact of magnification effects on the clustering signal 
in Fig. A1 . The figure has been produced assuming the expected 
clustering signal for the redshift distributions adopted in the Buzzard 
simulations, and for the magnification coefficients as computed in 
simulations.The magnification contributions are barely detectable: 
only for the first two tomographic bins, at high redshift, the deviations 
from the ‘clustering only’ signal due to magnification are slightly 
larger than the 68 per cent confidence interval of the redMaGiC 
measurement. 

Concerning the mean-matching method, it can be noted how the 
contribution is al w ays smaller than the 68 per cent confidence interval 
of the measurement when confined within the 2 σ interval of the 
mean matching method. The impact of magnification effects on 
the windowed mean when using the coefficients estimated for the 
simulations is at most + 〈 z〉 ≈ 0.002. Thus, it is of the same order 
of magnitude of the statistical uncertainty of the measurement. To 
be more conserv ati ve, for the mean matching approach we estimated 
the impact on + 〈 z〉 if the data had different (and potentially larger) 
values of αr and αu than the ones estimated in simulations. We 
computed the magnification term M ( θ ) assuming Gaussian priors 
αr ∼ N (0 , 2) and αu ∼ N (0 , 2), and measured the resultant scatter in 
+ 〈 z〉 . These priors are rather wide, but even with these broad priors, 
magnification is a negligible component of our final error model. 
Indeed, we obtained an RMS scatter on this metric of + 〈 z〉 RMS = 
(0.004, 0.005, 0.003, 0.004) for the four tomographic bins. We note 
that these values are up to a factor 10 smaller than what we would 
have obtained by including the tails of the redshift distributions, 
justifying the 2 σ cut. These values, in the second row of Table 2 , are 
taken as the magnification contribution to σ z . 

As for the full-shape method, magnification effects are modelled 
o v er the full range of redshift, using as input the estimated magnifi- 

Figure A1. Simulated clustering amplitude for the four tomographic bins. 
The blue and red coloured bands encompass the 68 confidence interval of 
the clustering measurement, obtained using BOSS/eBOSS and redMaGiC 
galaxies as a reference, respectively. The dashed, dotted, and solid lines 
represent the simulated clustering only signal, magnification only signal, 
and clustering with magnification signal, respectively. The vertical dashed 
lines indicate the 2 σ interval used in the mean matching approach. The four 
small panels show the deviations +w ur from the clustering only signal when 
magnification effects are included. Magnification effects are estimated using 
the values for the magnification coefficients as estimated in simulation. 
cation coef ficients. Ne vertheless, their impact is strongly reduced by 
the combination with the SOMPZ likelihood, which enforces the tails 
of the redshift distributions to have a small amplitude. To roughly 
asses the impact of the exact values of the magnification coefficients 
αr and αu , we performed the following test, both in simulations and 
on data: we verified that assuming values for αr or αu that are −1 
× the fiducial ones resulted in shifts + 〈 z〉 < 10 −3 . This highlights 
the importance of combining SOMPZ and clustering information to 
achieve a more robust estimator of the redshift distributions. 
APPENDI X  B:  FULL  ˆ w ur M O D E L  A N D  
A N  A LY T I C A L  M A R G I N  A L I Z AT I O N  
We provide here more details about the implementation of the full- 
shape method. The method assigns a likelihood (equation 13) of 
the observed w ur ( z i ) given a proposal for the redshift distributions 
{ n u ( z i ) } along with a set of other rele v ant parameters. The likelihood 
uses the model in equation (12). We will assume that the values of 
the dark-matter correlation w DM ( z i ), the reference-sample properties 
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Figure B1. Likelihood of the shift of the mean of the redshift distributions 
obtained using the full shape method in simulations, and using true redshift 
distrib utions (b ut shifted around their mean) as proposals distrib utions. 

b r ( z ) and αr ( z ), and the magnification coefficients D ij are provided 
along with n u ( z i ). We will consider as nuisance parameters the 
properties of the unknown population, namely the αu ( z) and b u ( z) 
used in magnification terms; plus any parameters s of the Sys ( z) 
function that allows for systematic errors. 

We will assume here that αu and b u are independent of redshift, 
though in principle a more general function, linear in some parame- 
ters, can be used without altering any of the methods herein. We note 
that we did not multiply the magnification terms by the systematic 
function: despite the fact that the magnification terms are not immune 
to systematic errors, we assumed that it was not necessary to further 
modelling those, as the αr , αu , and b̄ u parameters provide enough 
flexibility to the model and the magnification signal is much smaller 
than clustering to start with. We also note that the b u parameter is 
used only in the magnification term, and hence can be independent 
of the bias for clustering that is absorbed into the Sys ( z) function. 
This allows for the systematic errors in the magnification term to 
differ from those in the clustering term. 

The systematic-error function for clustering is given in the ex- 
ponentiated polynomial form in equations (17) and (18). Tuning 
the order M allows us to adjust the smoothness of the function, and 
exponentiation allows us to draw the coefficients s from 1D Gaussian 
priors while maintaining positive Sys ( z). Adjusting the σ s values of 
these priors tunes the RMS of the systematic variations, in a way 
made predictable by the orthogonality of the Legendre polynomials. 
We wish for independent, uniform Gaussian priors on the s i to 
propagate into RMS variation of log Sys ( z) that is approximately 
independent of z o v er [ z min , z max ]. The Le gendre polynomials hav e 
this property o v er most of their nominal domain u ∈ [ − 1, 1], but 
not near the edges of this range. For this reason we map [ z min , z max ] 
→ [ − 0.85, 0.85], as indicated by equation (18). 

Equation (13) requires us to marginalize o v er the nuisance- 
parameter vector q = { p s } (with p = b u , αu ). Doing so as part of 
a Markov chain would be unwieldy, as we would have to introduce 
eight free parameters for each of the four tomographic bins times 2 
reference samples. It is far better to e x ecute the marginalization on 
the fly during sampling if possible. The log-likelihood is not quite 
quadratic in q – the exponentiation of the polynomial in Sys ( z; s ) 
makes the model ˆ w ur non-linear in s . We opt to linearize the model 

about its maximum s 0 = { s k, 0 } : 
Sys ( z i , s ) ≈ Sys ( z i , s 0 ) 

×
[ 

1 + M ∑ 
k= 0 

√ 
2 k + 1 
0 . 85 P k ( u ) s k, 0 (s k − s k, 0 )

] 
. (B1) 

The deviation of the data from the model can then be rewritten in 
linear form, with w ur being a vector over redshifts, as 
w ur − ˆ w ur = c ( q 0 ) − A q , (B2) 
where c is a vector independent of q and A is a matrix composed of 
the linear terms in equation (B1) and elements of the magnification 
terms. 

If we assume the nuisance parameters we want to marginalize 
o v er to have a Gaussian prior q ∼ N ( µq , , q ), we can write the full 
likelihood as follows: 
L WZ ≈ | 2 π, wz | −1 / 2 | 2 π, p | −1 / 2 

×
∫ 

d q exp [−1 
2 ( c − A q ) T ˆ , −1 

wz ( c − A q ) ]

× exp [−1 
2 ( q − µq ) T ˆ , −1 

q ( q − µq ) ] . (B3) 
This is a Gaussian integral that can be reduced to linear algebra. 

In summary, the algorithm for the marginalization in equation (13) 
is as follows: 

(i) Find the values q 0 which maximize the integrand. This is done 
using Newton iterations. 

(ii) Evaluate the vector c and matrix A at this value of q 0 . 
(iii) Substitute these and the known , wz , µq , and , q into the 

analytic result for the Gaussian integral above. 
Although this marginalization is approximate, it does not actually 
need to be exact, because the chosen functional form for Sys ( z, s ) is 
somewhat arbitrary. All that is necessary is that the algorithm yields 
a likelihood L of the clustering- z data given a proposed n u ( z) that 
decreases in a meaningful and robust way as the data mo v e a way 
from the naive linear model. We prove that the full-shape method 
reco v ers the true n ( z) within uncertainties in Section 4.2.2, assuming 
the SOMPZ realizations as n u ( z) proposals. Here, we also show the 
result of a simpler test, performed in simulations, where the n u ( z) 
proposals are simply taken to be true redshift distributions shifted 
around their mean. This is a useful test because it is shows that the 
methodology is unbiased independently of the SOMPZ information. 
We use equation (B3) to assign each true n u ( z)s (shifted around 
their mean) a weight, using the clustering measurement and the 
magnification coefficients from the simulations. The key result is 
then the likelihood of the shifts +z, which has to be statistically 
compatible with 0. This is shown in Fig. B1 ; in particular, we 
obtain +z = 0.002 ± 0.008, −0.013 ± 0.011, −0.016 ± 0.008, 
0.002 ± 0.008 for the four tomographic bins, which indicates 
statistical compatibility with the truth. The models are a good fit 
to the data, with χ2 = 1.29, 0.67, 0.72, 0.63 for the redMaGiC 
sample, and χ2 = 1.19, 1.20, 0.58, 0.88 for the BOSS/eBOSS 
sample. 
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