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ABSTRACT

Cosmological information from weak lensing surveys is maximized by sorting source galaxies into tomographic redshift sub-
samples. Any uncertainties on these redshift distributions must be correctly propagated into the cosmological results. We present
HYPERRANK, a new method for marginalizing over redshift distribution uncertainties, using discrete samples from the space of all
possible redshift distributions, improving over simple parametrized models. In HYPERRANK, the set of proposed redshift distribu-
tions is ranked according to a small (between one and four) number of summary values, which are then sampled, along with other
nuisance parameters and cosmological parameters in the Monte Carlo chain used for inference. This approach can be regarded as
a general method for marginalizing over discrete realizations of data vector variation with nuisance parameters, which can conse-
quently be sampled separately from the main parameters of interest, allowing for increased computational efficiency. We focus on
the case of weak lensing cosmic shear analyses and demonstrate our method using simulations made for the Dark Energy Survey
(DES). We show that the method can correctly and efficiently marginalize over a wide range of models for the redshift distribution
uncertainty. Finally, we compare HYPERRANK to the common mean-shifting method of marginalizing over redshift uncertainty,
validating that this simpler model is sufficient for use in the DES Year 3 cosmology results presented in companion papers.

Key words: gravitational lensing: weak —methods: numerical — galaxies: distances and redshifts —large-scale structure of
Universe.

and uncertainties is required to take full advantage of the statistical
power of such surveys. Combining measurements of weak lensing
As photometric galaxy surveys begin to map large fractions of the and spatial clustering of distant galaxies (and cross-correlations of
sky at deeper magnitudes, stringent control of systematic errors these two signals as galaxy—galaxy lensing) has steadily become

a very competitive probe of the expansion history of the Universe

and its constituents (e.g. Dark Energy Survey Collaboration 2018;
* E-mail: juan.cordero @ postgrad.manchester.ac.uk Hikage et al. 2019; Hamana et al. 2020; Heymans et al. 2021).

1 INTRODUCTION
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The Dark Energy Survey Year 3 (DES-Y3 DES Collaboration 2021)
results, of which this work forms a part, contain information from
over 100 million galaxies. One of the key required measurements in
such analyses is the line-of-sight distribution of both the galaxies for
which the shapes are measured (the source sample) and the generally
lower redshift galaxies used to trace the massive structures acting as
lenses for the source sample (the lens sample). In an approach known
as ‘tomography’ (Hu 1999), the source sample is subdivided into
different bins of distance, allowing us to further study the evolution
of massive structure across cosmic time by observing how the lensing
signal changes as a function of distance. Knowledge of the distance
distribution to the source sample is a crucial ingredient in this. Of
particular interest for modern cosmology, the statistical properties of
dark matter structures as a function of cosmic time are a promising
probe of dark energy.

Cosmological redshift z is the observable most commonly used
as a proxy for the distances to both galaxy samples but the methods
to estimate distance via redshifts often suffer from limitations that
make this one of the most difficult uncertainties to adequately model
for the cosmological analysis. Estimating the redshift with high
accuracy using spectroscopy is prohibitively expensive in telescope
time for the large numbers of galaxies required for cosmology
using weak lensing and suffers from selection effects caused by
the incompleteness at fainter magnitudes (e.g. Hartley et al. 2020).
Photometric redshift (photo-z) methods instead estimate the redshift
based on measurements of fluxes in a number of photometric
bands, and present a viable alternative in terms of sky and redshift
coverage and completeness, but suffer from relatively much larger
uncertainties given the highly degenerate problem of estimating z
based on wide band photometry. A wide range of photo-z methods
are used to estimate redshifts from band magnitudes; see Schmidt
et al. (2020) and references therein for a recent review.

Current galaxy surveys rely on a combination of spectroscopic and
photometric redshifts, plus clustering patterns, to train, calibrate, and
validate different methods. These methods can be broadly classified
into three types, based on the information and ancillary data used
to estimate redshift. (i) Template fitting methods (see section 3.1 of
Schmidt et al. 2020, for a review), which rely on finding the best-
fitting template redshift from a library of spectral energy distributions
(SED) characterizing a range of galaxy types. (ii) Machine learning-
based techniques (see section 3.2 of Schmidt et al. 2020, for a
review), which map the colour space into redshifts. While the range
of approaches used is fairly wide, the general idea consists of using
a training set of secure redshifts obtained using either spectroscopy
or large sets of narrow-band filter photometric observations to train
the algorithm. (iii) Using spatial correlation between galaxies and a
set of tracers with secure redshift information to obtain additional
constraints on redshift (often known as ‘clustering redshifts’). See
the introductory sections of Gatti et al. (2022); Cawthon et al. (2020)
for recent reviews.

ITrrespective of the chosen method, there will be an irreducible
uncertainty in the galaxy distances arising from the finite number
of photons received in each band, the widths of the bands, and our
limited knowledge of true galaxy SEDs. Where galaxies are observed
only in a few (~1-10) photometric bands, there are also fundamental
degeneracies where two galaxies at very different redshifts can
produce identical observed data. This uncertainty must be propagated
through to cosmological constraints. Galaxies are conventionally
grouped into a small number (~5 for current experiments) of to-
mographic redshift bins. Cosmological observables of weak lensing,
galaxy clustering, and galaxy—galaxy lensing formed from each of
these tomographic bin subsamples are dependent on the number
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density distribution of the sources as a function of redshift within
each bin, n(z). If each individual galaxy’s redshift were known with
perfect precision and accuracy, these n(z) would be non-overlapping,
and their shapes would follow the true distribution in redshift
of galaxies that are really in these bins. However, in real cases,
where the one-point summary statistic used for binning is noisy,
biased, or both, the n(z) within different tomographic bins acquire
stretched tails that often overlap across the full redshift range of the
survey.

In order to constrain cosmological parameters, expected weak
lensing observables for a galaxy sample with the estimated n(z)
and in a given cosmology are computed and compared with the
data. Monte Carlo methods are then used to map the posterior for
cosmological model parameters and hence constrain our physical
model for the Universe. In this inference process, uncertainties
on the measured n(z) for each tomographic bin are marginalized
over, typically widening the uncertainties on the cosmological
parameters of interest. Incorrectly quantifying the uncertainty on
the n(z) or incorrectly marginalizing over it can significantly affect
cosmological parameter estimation and model selection. Indeed,
Joudaki et al. (2020) have argued that the adoption of different models
for the calibration of redshift distributions and their uncertainties
for weak lensing experiments can explain the observed apparently
significant difference in cosmological parameters between different
weak lensing experiments and Cosmic Microwave Background
experiments.

In this paper we introduce HYPERRANK, a new method which
allows uncertainties in galaxy redshift distributions n(z) to be
propagated into Monte Carlo chains generating cosmological results.
HYPERRANK takes as input a finite set of samples of n(z) drawn
from the distribution implied by the redshift calibration process. It
maps these on to a low-dimensional space of continuous variables,
which the cosmology sampler can treat as free parameters. We
test that HYPERRANK does this both correctly, in that the allowed
uncertainty is fully explored, and efficiently, in that fewer likelihood
evaluations are computed than in the case where an arbitrary choice
of n(z) realization is made at each step. This approach allows for the
inclusion of a much wider range of types of uncertainty on n(z) to
be used in cosmological inference than have been included in the
majority of previous analyses.

In Section 2, we review methods of quantifying uncertainties on
the redshift distributions of galaxy samples used for cosmology,
motivating the introduction of the new HYPERRANK method, which
is then described in Section 3, in both the simplest 1D case and an
extended multidimensional case. In Section 4, we then perform tests
of the performance of HYPERRANK on a simulated version of the
DES-Y3 experiment. In Section 4.2, we verify that in cases where
redshift distribution uncertainty is known, HYPERRANK correctly
marginalizes over this uncertainty, for four representative models
of the uncertainty. In Section 4.3, we also show that the use of
HYPERRANK to explore the uncertainties results in better performance
(in terms of fewer numbers of Monte Carlo steps required) than
random, un-ranked exploration of realizations of possible redshift
distributions. We also explore the performance of a number of
different choices of variables on which to perform the ranking
and find, for our fiducial case, the number of discrete samples
from the possible redshift distributions that are required for the
cosmological results to converge to those of a known case where
continuous sampling is possible. Section 5 describes the application
of HYPERRANK to the real DES-Y3 data, with the results presented
in Amon et al. (2022). Finally, in Section 6, we discuss our results
and conclude.
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2 MARGINALIZATION OF REDSHIFT
UNCERTAINTY

In general, for an inference problem in which we have a model
containing parameters of interest 6 (such as the cosmological param-
eters) and a set of nuisance parameters « (such as parameters relating
to redshift distribution uncertainty), we form posterior probability
distributions:

PO, alx) o L(x]0, «)P(0, ), 1)

where L£(x|0, ) is the likelihood function for the data x and P(0,
«) is a prior probability distribution. When generating samples from
the posterior with a Monte Carlo process, the nuisance parameters
are typically sampled jointly with the parameters of interest and
then marginalized over, providing a marginal posterior on the model
parameters 0 in which the uncertainty on « is accounted for. In
the particular case of redshift distributions in cosmology analyses,
a common approach is to provide a fiducial tomographic redshift
distribution and characterize its uncertainty using the nuisance
parameter of a shift Az, along the z —axis. A different parameter
Az; is used for each tomographic bin, with each drawn from a
Gaussian prior informed by observations and/or simulations. This
approach is depicted in the upper panel of Fig. 1 and has been
used in DES SV (Bonnett et al. 2016), DES Y1 (Hoyle et al.
2018), HSC (Hikage et al. 2019), and KiDS-1000 (Joachimi et al.
2021). However, while convenient and capturing the uncertainty
in the mean of redshift distributions, which is strongly correlated
with cosmology, it is not physically well motivated and severely
restricts the possible functional forms, which a proposed n(z) may
take.

In contrast to the Az approach, we may wish to consider al-
ternatives that allow for a much wider range of uncertainty in the
functional forms of the n(z). It is possible to take a simulation-
based approach, in which realizations for the possible n(z) of a
survey are generated by multiple realizations of mock versions
of the survey created from independent patches of cosmological
simulations. Alternatively, we may explicitly parametrize the n(z)
as a set of histogram bin heights n(z;), which give the counts of
sources within a small redshift interval and try to infer these quantities
from the data. This approach creates principled models of the joint
probability distribution function for all of these bin heights, given
the photometric data available on the observed galaxies. This is
most readily done as a Bayesian Hierarchical Model and has been
recently advocated in Leistedt, Mortlock & Peiris (2016), Sdnchez &
Bernstein (2019), and Rau, Wilson & Mandelbaum (2020). Outputs
from this procedure are samples from the joint posterior for all of
the histogram bin heights which together make up the full shape
of the n(z). Each sample consists of a possible realization of what
the full n(z) could look like, discretized as n(z;). An ideal approach
would be to treat each of these n(z;) as a model parameter and
jointly infer them with the cosmological model parameters before
marginalization. In reality, this is impractical; the redshift resolution
required to capture important features of the model, which impact
cosmological inference but are not convolved with broad redshift
kernels, such as intrinsic alignments would demand hundreds of
additional nuisance parameters. Current implementations of galaxy
survey analysis pipelines (such as that in COSMOSIS used for DES
Zuntz et al. 2015) typically take ~1-10 s per likelihood evaluation,
meaning the addition of hundreds of parameters would mean the
samplers used (MCMC such as EMCEE Foreman-Mackey et al. 2013
or nested sampling such as MULTINEST Feroz, Hobson & Bridges
2009 or POLYCHORD Handley, Hobson & Lasenby 2015) could not
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Figure 1. Upper: the Az marginalization scheme, where a fiducial redshift
distribution (black dashed) is shifted horizontally at each Monte Carlo step by
a value drawn from a Gaussian distribution (inset, with draw from the 20 tail
highlighted in red). Lower: discrete realizations of possible n(z) are shown
with colours corresponding to the mean redshift of each realization (z), which
can be mapped to a ranking hyper-parameter #, which is then marginalized
over on the Monte Carlo chain. Inset shows the uniform distribution for H
which is sampled from, and the centres of the regions corresponding to each
coloured n(z) realization.

map the full posterior in a timely manner. It should be noted that
Hildebrandt et al. (2017) were able to run 750 MCMC chains in
order to use a different bootstrap resampling realization of their n(z)
each time, before combining these chains; we do not expect this to
be feasible for the DES-Y3 pipeline. Other methods have also been
proposed to address the uncertainty associated to large number of
nuisance parameters. Gaussian mixture models are flexible and may
be analytically marginalized over (Hadzhiyska et al. 2020; Stolzner
et al. 2021), and the use of flat or Gaussian priors to characterize
variations to sets of arbitrary functions can be used to evaluate
the posterior using a Gaussian likelihood (Taylor & Kitching 2010;
Kitching & Taylor 2011).

Here, we consider an alternative approach in which the set of
samples from the n(z) posterior, each consisting of a collection of
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Figure 2. The log posterior for the HYPERRANK parameter of a single
tomographic bin when holding all other parameters fixed, contrasting the
cases of random ranking (which gives no smooth posterior for the sampler
to explore) with mean redshift ranking (which does give a smooth posterior
surface).

histogram values for each tomographic bin, are generated outside
(before) the cosmological parameter inference Markov chain. This
set of realizations can then be used by choosing a new n(z) in every
likelihood evaluation within the cosmological parameter inference
chain, allowing higher-order modes of uncertainty in n(z) to be
propagated into cosmological parameter constraints. It is important
to note that the n(z) realizations are drawn simultaneously for all
tomographic bins, which also allows the propagation of uncertainty
originating from correlations between tomographic bins.

A way of performing this analysis would be to randomly sample
a different redshift distribution on each likelihood evaluation within
the Monte Carlo chain. This has potential negative effects on the
behaviour of Monte Carlo samplers, which rely on the posterior
function being a smooth function of the sampled parameters. A
random approach can break the smoothness of the likelihood (as
shown in Fig. 2) in the other parameter dimensions leading to
unnecessarily high sample rejection rates, requiring large number
of likelihood evaluations for convergence and potentially disrupting
convergence criteria for different samplers.

Here, we present HYPERRANK, a way to overcome these compu-
tational limitations, while still exploring the space of uncertainty
available from the discrete n(z) realizations. In HYPERRANK, we
construct a mapping between the index of an ordered set of n(z)
realizations and a continuous parameter #, such that the likelihood
function £(6, H) is smooth on this new space and the prior P(H)
preserves an equal weighting of the n(z) samples through assigning
them to an evenly spaced grid.

3 THE HYPER-RANKING METHOD

After a discrete set of realizations of tomographic bin redshift
distributions 7;(z) have been generated, we wish to correctly and
efficiently marginalize over the uncertainty embodied by them,
within a cosmological parameter inference Monte Carlo chain.
We introduce the idea of HYPERRANK-ing in which the full set
of realizations is mapped on to a small (in this work between
one and four) number of parameters 7. The n(z) realizations are
ordered according to a set of descriptive values d, which are a
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priori expected to correlate strongly with values of the cosmological
parameters of interest. This ordering preserves the tomographic
nature of each realization, meaning the sampling stage selects the set
of all tomographic bins’ distributions simultaneously, without mixing
different realizations. The rank parameters H become the nuisance
parameters that are sampled (and subsequently marginalized over)
in the cosmological analysis. Choosing descriptive values d, which
correlate with the cosmological parameters of interest, ensures that
the likelihood varies as smoothly as possible along each dimension
of the rank parameters. The ranking parameters H; = H(c;) must
also be such that realizations with similar descriptive values are
mapped close to each other. Furthermore, the H; must be such that
a uniform prior on H preserves equal probability on all input n(z)
samples. We consider the cases below first in which we have one
ranking parameter and then multiple ranking parameters. We choose
to mainly use the mean redshift (z) and mean inverse comoving
distance (1/x) of each tomographic bin as descriptive values d here,
but emphasize that the HYPERRANK method is not limited to these
two options only. We expect the choice of ranking method to only
affect sampling efficiency and not the inferred parameter contours.

3.1 1D case

We initially consider the case in which a single HYPERRANK param-
eter is used to rank all realizations. Since the mean redshift of the
distribution n(z) varies the overall amplitude of lensing expected
for a given source galaxy sample, it is expected to correlate with
the cosmological parameters of interest (here, the matter amplitude
parameter Sg). We therefore consider a basic HYPERRANK approach
in which there is only one descriptive parameter per realization of
the full n(z) and it is based on the weighted mean redshift of a
combination of tomographic bins,

d— Zwi(z)i’ @

Do wi

where i is the index of each tomographic bin and w; is the
corresponding weight, which can embody (for instance) the number
of assigned galaxies to each tomographic bin. The n(z) realizations
are then ranked according to their descriptive value d and mapped to
a continuous hyper-parameter H € [0, 1), which is then sampled in
the Monte Carlo chain. Each sampled value of H corresponds to a
stored n(z) realization which is then used in the likelihood evaluation.
This approach is demonstrated in the lower panel of Fig. 1, which
shows a small sample of n(z) realizations coloured according to their
mean redshift and assigned a range of ‘H values depending on their
ranked position.

An alternative set of descriptive values are the mean inverse
comoving distance of sources, (1/) ). The correlation of this quantity
with cosmological posterior value can be motivated by its relation to
the lensing efficiency functions used in the calculation of the shear
power spectrum, which can be written as,

IHAQ? XH Ps(l/x;
Pk(e)=ﬁ/o g%x)%dx, A3)

where xy, a(x), and P;s are the comoving horizon, scale factor, and
matter power spectrum, respectively, and the lensing efficiency g(x)
at comoving distance yx is defined as:

XH A
g(x)=/ n() =L ay, )
X X

and depends on the comoving distance distribution n() of sources,
or equivalently their redshift distribution n(z). By evaluating at
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x = 0 and differentiating the above definition for the lensing
efficiency, we obtain

80— =1 (&)
800, _o=—(1/2n, (6)

where g'(x) = dg/dy, which are boundary conditions for the lensing
efficiency functions, hence control their overall shape. See Tessore &
Harrison (2020) for discussions of the importance of constraining
g (x) in weak lensing studies.

The mapping of distributions is not invariant to the choice of
ordering being the mean redshift or the mean inverse comoving
distance. In one dimension, both are examples of ranking parameters
capable of providing the smooth likelihood necessary for efficient
mapping of the posterior (as can be seen in Fig. 2), as well as correctly
including the space of uncertainty spanned by the provided set of n(z)
realizations. In Section 4, below we consider only the mean redshift
ranking for the 1D case, but observed a comparable performance for
the inverse comoving distance ranking in our tests.

3.2 Multidimensional case

While the 1D approach presents a clean and simple strategy to arrange
and select realizations for each likelihood evaluation, it does not
prevent cases where two realizations with very different descriptive
values are assigned a similar rank — e.g. two realizations have very
distinct (z); in individual redshift bins, but similar when averaged
over bins as per equation (2). Indeed, in our initial tests with DES-
Y3 simulations, it was found that this was often the case, leading
to realizations ranked closely by a single mean redshift parameter
having significantly different posterior values, hence leading to poor
efficiency in the cosmology chains. To address this, we describe
a generalization to rank distributions using multiple dimensions,
which allows to use more than one descriptive parameter d to assign
the proposal n(z) realizations to a space of hyper-parameters H.
Matching of the number of descriptive values and the dimensionality
of the redshift distributions (e.g. number of tomographic bins) is not
arequirement, and we find here that the best performance is achieved
when this is not the case.

Each of the N, proposals for n(z) is assigned a position in a uniform
multidimensional grid, u, according to a set of N, descriptive values
d=d,, ..., dy,. This grid is contained inside a N; — dimensional
unit hypercube, and the continuous parameters H; € [0, 1)V are
sampled in the Monte Carlo chain. For each H value chosen by the
sampler, the method returns the closest 4; in the grid, which has
been assigned to one of the N, n(z) realizations.

We now need to consider how to preserve the notion of ordering
the set of n(z) by descriptive values in this multidimensional space,
preserving the notion of a ‘neighbourhood’, where realizations
with similar descriptive properties are grouped close together. One
approach to find the optimal relative positions is to use the solution to
the Linear Sum Assignment Problem (e.g. Burkard & Derigs 1980).
Given a set of N, workers (points in the descriptive value space), we
want to find an assignment to N, fixed jobs (i.e. fixed grid positions
in the unit hypercube), such that the sum of the cost to assign each
worker to one and only one job (the distance from descriptive value
space to hypercube position) is minimized:

min Z C,‘j X,‘j ,
where Cj; is the cost matrix of assigning each sample d; to each
point u; of the grid, and Xj; is a binary matrix indicating which
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position is assigned to each set of descriptive values. If we use an
Euclidean distance metric such that C;; = |dj — Ujlz, the resultant
assignment minimizes the total distance moved by the points to the
positions on the grid, ensuring that any notion of neighbourhood
between points in the original space of descriptive parameters is
preserved in their new unit hypercube grid positions. We implement
this technique by first linearly rescaling the d; so that they span a unit
hypercube. Fig. 3 shows the resultant 2D assignment for a set of 500
realizations, each comprised of a set of four tomographic bins, using
as descriptive parameters the mean redshifts of tomographic bins 1
and 4, arranged in a 25 x 20 map. Because of the finite number of
available realizations, the use of additional dimensions can quickly
have the undesired effect of reducing the amount of realizations
available with which to fill each direction of the multidimensional
grid. This can result in the exacerbation of the convergence problem,
with few available samples creating large jumps in posterior as a
function of the H parameters. For example with 4096 realizations,
double the grid size is available with N; = 3 dimensions compared
to Nd =4.

In the case of N; = 1, where a single characteristic value describes
each realization and the arrangement of points is done over a grid in
the interval [0,1), the optimal distribution is the one which ranks the
points in order, corresponding to the case described in Section 3.1.
Analogous to the 1D case, we propose the use of mean redshift (z) or
mean inverse comoving distance (1/x ) of the individual tomographic
bins as sources of descriptive values to map the realizations to the
hypercube.

Ideally, the dimensionality N, of the hyper-ranked space is low
enough to maintain an efficient cosmological sampler, but high
enough that the variation in the log posterior probability from
equation (1) in small regions of H is «1. This would allow any
sampling process to smoothly traverse the full space of all n(z)
variations that influence the parameters of interest.

We can optimize the reduction of the nuisance-variable vector «
(e.g. all of the freedom of n(z)) into a lower dimensional hyperspace
by using the Karhunen-Loeve (KL) transformation. When the ob-
servational data vector D has a Gaussian likelihood with covariance
matrix Cp, and mean value D(0, &), we find the eigenvectors e* of
the matrix

() e (2)
da b da )

where the derivatives are taken about some reference values of 6
and «. The best choice of HYPERRANK descriptive values (d;, da,
..., dg) will be to order the eigenvectors by decreasing eigenvalues,
and assign d; = ae’ for each input sample. Successive d; values
have decreasing influence on the cosmological model. The sum
of the eigenvalues at k > K then describes the ‘roughness’ of
the log-posterior in the #H space. Using this principal component
analysis (PCA)-style approach, we can choose the first K components
of the decomposition as descriptive values to inform the ranking
map and assign each component to one HYPERRANK parameter
each.

The main caveat is that this approach defines a set of descriptive
values, which are optimal only near the reference cosmology chosen
to compute the KL components. While ideally one would want to
use a large number of dimensions to help construct a space where
the posterior is as smooth as possible, this comes at the expense
of having to construct a grid with a low number of points per
dimension, if the number of input samples of n(z) is held fixed. This
can result in a noisy posterior as a function of the hyper-parameter
H if a given dimension of H is sparsely sampled and has large
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Figure 3. 25 x 20 ranking map generated using the mean redshift for tomographic bins 1, 2, and 4 from a set of 500 redshift distributions. Panels show
distributions located in the same positions, but the colour scale shows the mean redshift for the corresponding tomographic bin. It can be seen that the mapping
scheme permits realizations to remain close to other realizations with similar descriptive values used for the mapping, and has a smooth variation in the directions
of the hyper-parameters mapped to each dimension of the grid. The arrangement does not necessarily result in a smooth ordering of all tomographic bins, as can
be seen from the middle panel where the mean redshift from a bin not used of the mapping is displayed.

steps between samples. While a large number of realizations can
help construct a grid with a reasonably large number of realizations
per side of the grid, the method to solve the linear sum assignment
problem scales as (’)(N;), which quickly becomes unmanageable. In
Section 4.3, we explore the effects of dimension of the ranking and
choice of descriptive value have on sampling efficiency, testing the
mean redshift, inverse comoving distance, and KL approaches with
three components each.

4 TESTS ON SIMULATIONS

We now test the HYPERRANK method for marginalizing over redshift
distribution uncertainty and explore its configuration, with the target
of using it for the weak lensing source redshift distributions in the
DES Year 3 cosmological analysis. We investigate the HYPERRANK
method’s ability to marginalize over the n(z) uncertainty:

(i) correctly, in that it proportionately explores the space of
possible n(z) represented by the discrete realizations, which are
provided as an input.

(ii) efficiently, in that as few likelihood evaluations as practically
possible are required before the Monte Carlo process converges to
the posterior.

We test the correctness by comparing the recovered posteriors
on the Sy = 0g+/$2,/0.3 cosmological parameter obtained from a
cosmological inference pipeline. We generate sets of n(z) samples
using a number of well defined procedures in which the method for
generating realizations involves drawing a Az shift from a known
analytic distribution. We then run analyses using HYPERRANK to
marginalize over these uncertainties and compare the results to
a set of chains in which the known analytic distributions from
which the Az were drawn are used again to marginalize over
the nuisance parameter. Hence, we verify that, in the case where
discrete samples represent a model for uncertainty on n(z), the use
of HYPERRANK correctly explores this uncertainty. The tests show
that HYPERRANK is capable of correctly marginalizing over redshift
distribution uncertainties in cases where a correct and simple model
for them is known, without making assumptions on the form of the
uncertainty model. This model-agnosticism represents an advantage
in the case of real experiments, where it may not be known a priori

if one or any of the simple models is adequate for obtaining small,
unbiased posteriors.

We also compare the results from analyses using HYPERRANK
to ones in which discrete n(z) realizations but no ranking (or
equivalently random ranking) are used, showing that the imposition
of the HYPERRANK ranking does not bias or unduly constrain the
cosmological parameter space explored.

We test the improvement in computational efficiency gained
from using HYPERRANK by comparing 1D and multidimensional
implementations of HYPERRANK to a mode in which no ranking is
performed and at each likelihood evaluation an n(z) is chosen from
the available realizations at random.

Finally, we also test the convergence of HYPERRANK for the
configuration required for DES-Y3 cosmology, finding the number
of n(z) realizations that are required before systematic errors on
the cosmology parameters from the discreteness introduced by
HYPERRANK become negligible.

Throughout these tests, we use the DES-Y3 modelling choices,
likelihood and pipeline software, and configuration, which are
described in detail in Amon et al. (2022) and Secco et al. (2022).
We only consider cosmic shear in our data vector, which reduces
the dimensionality of the space of parameters to be sampled in the
MC inference and enhances the effect of redshift systematics in the
source sample. Nevertheless, this method can be applied when using
cosmic shear in a full 3x2pt analysis, including galaxy clustering
and galaxy—galaxy lensing and can also be used to marginalize over
systematic uncertainties of the /ens in addition to the source samples
described here.

4.1 Generation of fiducial redshift distribution

Here, we briefly describe the method by which the cosmic shear
data vector and fiducial n(z) used in our tests were generated. The
methodologies and simulations are described in detail in Myles et al.
(2021), Gatti et al. (2022), and DeRose et al. (2021).

4.1.1 Buzzard simulation

The BUZZARD simulations (DeRose et al. 2021) are a set of
mock DES-Y3 surveys created from a suite of dark-matter N-body
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Figure 4. The BUZZARD redshift distributions. Left: the black lines show the redshift distribution nr;4(z) for each of the four redshift bins, averaged over
all realizations. The light blue, red, green, and brown lines show the full set of realizations for redshift bins 1 through 4, respectively, depicting the potential
differences between independent samples of n(z) posterior, and their peculiarities at the histogram level. Right: histogram of mean redshift for each of the four
tomographic bins, computed from the ensemble of distributions on the left-hand panel. Solid orange line traces the Gaussian fit to the histogram, described by

the width o (Az) above each panel.

simulations using a memory-optimized version of L-GADGET2
(Springel 2005). Galaxies and their main morphological properties
are added using ADDGALS (DeRose et al. 2019), matching pro-
jected clustering statistics and colour-magnitude relations observed
in the Sloan Digital Sky Survey Main Galaxy Samples (SDSS MGS
as described in Blanton et al. 2005; Abazajian et al. 2009). DES ugriz
and VISTA JHK photometry is obtained from the simulated SEDs
generated by ADDGALS.

4.1.2 SOMPZ redshift distributions

The simulated photometry catalogues from BUZZARD constitute the
primary data set to construct the fiducial n(z) for our tests, using
the SOMPZ method (fully described in Myles et al. 2021). This
method makes use of three sets of observations: the full DES-Y3
wide field sample, the DES-Y3 Deep Fields (Hartley et al. 2022)
sample, and compilation of spectroscopic redshift surveys. Galaxies
from the wide sample are grouped into phenotypes using the Self-
Organized Maps (SOM) method of dimensional reduction (see e.g.
Masters et al. 2015; Myles et al. 2021; Wright et al. 2020). The
Balrog machinery (which injects synthetic sources into DES data
and recovers their properties, see Everett et al. 2022) is then used to
quantify the probability of a given Deep Fields galaxy appearing to
have a given phenotype when observed in the wide field. A second
SOM dimensional reduction is then applied to the Deep Fields galaxy
observations, with the spectroscopic sample used to characterize
the true redshift distribution for each deep phenotype. In this way,
information can effectively pass from the small, limited spectroscopic
sample to the much larger wide sample through the intermediary of
the deep sample.

In addition to this method of creating a best-estimate fiducial
redshift distribution, we further consider realizations of possible
n(z) inferred from the simulated data using the method of Myles
etal. (2021), Sanchez et al. (2020), and Sanchez & Bernstein (2019).
This applies a three-step Dirichlet (3sDir) sampling to model the
uncertainties on n(z) histogram bin heights from sources, including
shot noise, sample variance, photometric calibration uncertainty,
and method errors. We use a set of 500 realizations generated this
way, noting that samples are drawn jointly for all four tomographic
redshift bins. The resulting estimated redshift distributions for
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BuzzARD are shown as the coloured lines in the left-hand panel
of Fig. 4. The fiducial realization n r;4(z) is obtained from averaging
the 500 realizations at the histogram level and re-normalizing,
and are shown as the black solid lines in the left-hand panel
of Fig. 4.

4.2 Exploration of uncertainties

As a supplement to these full SOMPZ + 3sDir realizations of the
BUZZARD n(z) for testing, we also now take the fiducial n(z) and
construct sets of realizations of potential n(z) using simple parametric
models for the uncertainty. We use analytic distributions to generate
sets of mean redshift shifts Az for each uncertainty model. We then
compare the posteriors on cosmological parameters (and the effective
Az nuisance parameters) recovered by two chains:

(i) a chain in which HYPERRANK takes these realizations as an
input set of proposed n(z)

(ii) a chain with Az nuisance parameter marginalization, using
as a likelihood the same analytic distribution, which was used to
generate the realizations

To perform our sampling we use the MULTINEST sampler, with
500 live points, tolerance = 0.3, and efficiency = 0.01.
We follow the set-up for the DES-Y3 cosmic shear analysis de-
scribed by Amon et al. (2022) and Secco et al. (2022) in terms
of angular scale cuts, tomographic redshift binning, and modelling
choices and marginalization over other nuisance parameters, such as
shear calibration biases or Intrinsic Alignment model parameters.
In most of the tests, and unless explicitly noted, we use the
default 3D HYPERRANK configuration described in the starting of
Section 5.

We will describe each test in the following section, as well as the
results for each one presented in Figs 5-8. In each of these figures,
the top panels show the 1D posterior constraints recovered on Sg and
the means of the redshift distributions in each tomographic bin (z);.
The lower panels in each figure show the 2D posterior constraints on
these parameters. Dashed grey lines correspond to mean values of the
fiducial redshift distribution in each tomographic bin, and in the Sg
panel to the values inferred from a chain run without marginalization
over redshift nuisance parameters.
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Amplified Peculiarities

Hyperrank A = 0 —— -+ - - --
al —4— + || - -
Hyperrank A = 1.5 + —.—=— +.— —.JI— —.+
Azl —4— —el | —o— —¢— —e L
Hyperrank A = 3.0 4 —P— —.—:— —:—0— —0—:— —0—:—
- — +_ — ..l_ | *—— + _‘._l_
AH T T T T I I T T T T T T I T
0.70  0.75 0.80 0.25 0.30 0.35 0.52 0.54 0.72 0.74 0.76 0.875 0.900 0.925
Ss {zh (2)2 {2)s {2)a
040 T 040 040
; — Amplified Real, A =0 =y | —Amplified Real, A = 1.5 el | — Amplified Real, A = 3.0
— na24_ . — 0324 ™ — a2l T
502D __p, STy - A = TG -2
0.24 ' 0.24 0] =
0.64 ; : 0.64 H 0.64 4
£ 036 : : 20561 i P RS P /,.4'53?
o -“?-- ----- -?.-" "o ---@_-- __..é_.. S Jf? £
e (.80 4 E i = .80 4 E E E o4 0.80 4 )__;3; i
Zon —"'d}""' ---- 'él'" Ton '@" “@‘ __@_-___ KDY U";-!J
0.96 | : : : : 0.96 | i i : : 096 i | .
= - A | B— NS | DN “COSNT | FIT NSNS . L | B | IR T - T ) = N o 1l _Leeh | o S
I S I o g TN < e o

0.75 [l,(IEli,;H H‘J? 114[),:1?! 0 :’hli 064 0 r?_z [l,j‘ill

S {zh (z)2 {2)3

Figure 8. Upper: marginalized 1o confidence regions for the Sg, and (z); parameters for the amplified deviations model of n(z) uncertainty described in
Section 4.2.4. Different A values refer to different amplifications uncertainty in the n(z) distributions and for each value of A, we show both the posterior from
chains using HYPERRANK and the Az marginalization schemes. Lower: 2D posteriors on the same parameters. Dashed grey lines correspond to mean values
of the fiducial redshift distribution in each tomographic bin, and in the Sg panel the 1o region inferred from a chain run without marginalization over redshift

nuisance parameters is also shown.

MNRAS 511, 2170-2185 (2022)

0.75 [i,{!lll,‘b«l [L]IZ (J{D,im 0 :"\6 0 'tH 0 I7"2 li,;(l]

Sy {zh (2)2 (=)

0.75 0.9 :24 ILI!‘Z (lAUlH [),:’tﬁ 0 EH 0 I?'Z 0 ‘NU

Sy

{(zh (2)2 (z)3

220z 1snbny 8| uo Jasn eluealAsuusd 1o Alsiaaiun Aq ¥€+91.59/0/1.2/2/1 L S/e|onie/Seiuw/woo dno-olwspese//:sdny woJj papeojumoq


art/stac147_f7.eps
art/stac147_f8.eps

4.2.1 Gaussian distributions for Az

We begin with the simple error model in which the Az approach used
in other analyses and described above is the correct one. Within each
tomographic bin, we draw values of Az from a Gaussian distribution
with width o(Az). Realizations for n(z) are then generated by
shifting the fiducial n;4(z), along the redshift axis by the drawn
Az. In order to assess performance and convergence, we test this
for several different levels of uncertainty, with the o(Az) being
modified by a multiplicative factor f;,. For our fiducial o (Az), we
use the values appropriate for DES-Y3 provided by BUZZARD (see
right-hand panel of Fig. 4). We then use values of f,, = {1, 5, 10}.
We then run the full cosmological parameter estimation pipeline
on the simulated data vector using these redshift distributions,
once marginalizing over the uncertainties using the Gaussian Az
method and once using the HYPERRANK method on the set of
realizations.

The results of this test are shown in Fig. 5. In the upper panel,
we show the 1D error bars recovered on Sg = 07g(£2,,/0.3)*> and
the means of the redshift distributions in the four tomographic bins
(z);. Dashed grey lines correspond to mean values of the fiducial
redshift distribution in each tomographic bin, and in the Sg panel the
lo region inferred from a chain run without marginalization over
redshift nuisance parameters is also shown. In the lower panel, we
also show the 2D posteriors for combinations of these parameters. We
see that HYPERRANK gives posteriors consistent with those obtained
using the standard Az marginalization approach. While at first glance
this is a trivial example, it shows that the method is, at the very least,
able to recover the same effects of redshift uncertainty when samples
describe the same type of uncertainty we typically describe by means
of a Az nuisance parameter.

4.2.2 Non-Gaussian distributions for Az

Modelling the distribution of Az for each tomographic redshift bin
as a Gaussian is a simple model choice that may not be an adequate
representation of the true range and correlation structure of the Az
nuisance parameters, potentially resulting in a biased posterior and
under/over-estimated uncertainties. In the right-hand panel of Fig. 4,
we show histograms of the Az between the fiducial n(z) and the 500
realizations generated using the full uncertainty model. These show
appreciable non-Gaussianity, with skews and heavy tails that can
be accentuated by the hard boundary at z = 0 for all distributions,
especially tomographic bins at low redshift. We investigate the impact
of the non-Gaussianity in the distribution of Az by sampling Az
values from a highly skewed Gamma distribution:

Agk=1e=22/0

f(Az;k,0) = W

3
(where I'(k) is the integral Gamma function evaluated at k) to shift
our fiducial distribution nr;4(z). We use scale parameters 6 such
that the o(Az) for each tomographic bin is equal to that of the
prior with the largest uncertainty in Section 4.2.1 (f,, = 10, 0 (Az)
~ 0.05). We fix the shape parameter k of the Gamma distribution
to a set of values k = 1, 2, 3 to ensure the distribution of mean
shifts of all tomographic bins have a positive skewness with a long
tail to high values, and to explore the effect of different degrees
of non-Gaussianity. The distribution of values is then centred so
that the mean shift value is equal to zero, which generates a set
of Gamma distributed Az with the same variance and mean to that
of the f,, = 10 prior, but with a skewness that cannot be captured
by the use of a standard Gaussian prior. We then again run two
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chains, one marginalizing over redshift uncertainty using the Gamma
function Az model, and one using HYPERRANK on the generated
realizations.

The result of these chains is shown in Fig. 6. The differences on the
Sg parameter remain comparable to the typical dispersion seen for
this number of distributions. As in Figs 5 and 7, in the case of the (z)
sampled values, small differences appear between HYPERRANK and
Az chains, but they are distributed very similarly as seen in the lower
panels of Fig. 6, deviating in the same way from the reference values
of the ny;,(z) distribution and no marginalization run. One aspect
of the way Az values are reported by COSMOSIS can be responsible
for the differences, as the (z) values shown here are the sampled Az
plus the means of the fiducial distribution nz;,(z). Because of the
cut imposed at z = 0, this can result in a slightly inaccurate mean
redshift value being computed here.

4.2.3 Correlations between tomographic bins

Another aspect of uncertainty the simplest Az scheme does not di-
rectly account for is the potential correlation between the uncertainty
from different tomographic bins (though see appendix A of Hoyle
et al. 2018, in which the diagonal elements of the covariance matrix
are inflated to account for potential off-diagonal elements). Since
each tomographic bin is shifted independently, combinations of Az
values which would not be expected to appear in multiple realizations
of the survey or photo-z analysis are equally sampled. In addition to
this, the use of a single fiducial shifted n(z) blurs the potential effect of
correlation at the histogram bin level. Correlation can come from the
binning of galaxies and from how the shapes of the distributions and
their moments can change when galaxies are re-assigned to another
histogram or tomographic bin in a different realization of a photo-z
analysis. Depending on the nature of the colour-redshift degeneracy,
correlation can also appear between non contiguous tomographic
bins.

In this case, the standard Az scheme can not be expected to pre-
serve the effects of such correlations, as the set of Ny Az nuisance
parameters are sampled independently from their corresponding
priors in the Monte Carlo chain. By contrast, drawing a value of
the HYPERRANK parameter(s) in a chain jointly specifies the n(z) to
be used in all tomographic bins and preserves these correlations,
which can potentially lead to tighter contours on the cosmological
parameters since the space of Az values is restricted to those allowed
by the samples. Depending on the sign of the correlation, this can also
result on a shift of the contours if the Az values favour a combination
of high or low mean redshift only (positive correlation), instead of a
combination of low and high mean redshift (negative correlation). To
explore the potential effects of these correlations at the tomographic
bin level on inferred cosmological parameters, we generate three
sets of mean-shifted realizations of the fiducial BUZZARD 7 r;4(z) by
values of Az sampled from a covariance matrix with increasing
correlation between tomographic bin pairs (1,2) and (3,4). This
is intended to be a simple model of leakage of galaxies between
adjacent tomographic bins, with more complicated models for bin
correlation also possible. We generate the samples so their Pearson
correlation coefficients take the values p = {0.25, 0.5, 0.75}, and
employ the same coefficient for both bin pairs while leaving all other
bin pairs uncorrelated (p = 0). To better visualize the effects of these
correlations once again, we use an amplified o (Az) prior to describe
the diagonal of the covariance matrix, equal to the f,, = 10 prior
described in Section 4.2.1. We again run two chains, one in which
a correlated Gaussian Az marginalization is used by drawing values
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from a correlated prior with the same correlation matrix to that used
to generate the proposal samples, and one in which a HYPERRANK
marginalization is used.

The result of this test is shown in Fig. 7. We can again see
that HYPERRANK correctly recovers the uncertainty in Az and Sg
represented by the 2D posteriors.

4.2.4 Higher-order modes of uncertainty

The above tests show that HYPERRANK is capable of correctly
marginalizing over redshift distribution uncertainties in cases where
a correct and simple model for them is known. Finally, in this section,
we use a set of realizations of n(z), which represent a fully flexible
model of the uncertainty in n(z), following the approach of Myles
et al. (2021) and summarized in Section 4.1.2, as applied to the
BUZZARD simulation.

As above for the cases of different values of f,,, we apply a
procedure to these realizations to artificially increase the level of
uncertainty they represent. Starting from the set of 500 realizations,
we amplify the difference between each of the n(z;) values and the
value of the fiducial distribution, #/(z;), such that n'(z;) = n(z;) +
Mn(z;) — /(z;)]. Hence, we decide to use the typical dispersion
values found for 500 realizations for that amplification as the
reference to evaluate the contours obtained with HYPERRANK. For this
test, we generate three sets of distributions: one with no amplification,
A = 0; and two with amplified peculiarities, 2 = {1.5, 3}. While
the average n(z) obtained from the amplified realizations remains
unaltered, this procedure can result in a slightly wider equivalent
Gaussian prior o (Az) to those of the un-amplified realizations. Thus,
we also obtain the o (Az) values for each set of distributions and use
them to compare HYPERRANK to the standard Az marginalization.

The results from this test are shown in Fig. 8. As can be seen, the
HYPERRANK and Az chains again recover highly consistent contours
on the Sg and (z) parameters. For the A = 0 case, the Az posterior on
Sg is 2.6 per cent narrower than the HYPERRANK one, for A = 1.5 the
Az posteriors are 16 per cent wider, and for A = 3.0 the Az posterior
is 18 per cent wider. This follows the idea that HYPERRANK is capable
of better modelling of these more complex uncertainties, but that in
the 1 = 0 (DES-Y3-like) regime, Az is an acceptable approximation.

4.3 Sampling efficiency and ranking mode

As well as the correct exploration of the uncertainties, we also wish
to see the effect of the HYPERRANK procedure on the efficiency of
mapping the posterior of cosmological and nuisance parameters. For
arandomly sampled set of distributions, the likelihood is not a smooth
function of the parameters being sampled (see Fig. 2). Therefore, the
parameter space volume cannot be sampled consistently in higher
likelihood regions since there is no correlation between the sampled
nuisance parameter and cosmology posterior. Any proposal step in
the Monte Carlo algorithm typically does not have the intended effect,
since proposed jumps in the redshift nuisance parameters are now
across a random, discontinuous likelihood. This leads to the sampler
requiring many more likelihood evaluations to find new samples
of the posterior. We define sampling efficiency 1 as the number of
replacements (samples of the posterior) made by MULTINEST over
the total number of likelihood evaluations required for convergence,
with higher n representing better performance.

We test the different mapping schemes described in Section 3
comparing 1D and 3D (z), 3D (1/x) and a KL approach where the
first K = 3 components are used. We compare the sampling efficiency
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Figure 9. The sampling efficiency n for the different mapping schemes
described in Section 3, for three prior amplifications values f;, (f;, = 1 is the
original BUZZARD redshift distributions). The spread of points at each location
shows the differences due to different initial random seeds. The rankings are
ordered from left to right as a function of perceived complexity, with arandom
ranking being the most naive approach and a 3D KL corresponding to the
most complex to implement. Horizontal dashed lines show the efficiencies
obtained by marginalizing the same equivalent uncertainty o (Az) using the
Az method, obtained after averaging five runs with each equivalent prior.

between them and against a naive sampling where realizations are
chosen at random on each likelihood evaluation. To reduce the effect
of sampling noise due to the stochastic nature of the sampler, we
repeat each run five times with different initial random seeds for the
sampler.

Fig. 9 shows the sampling efficiencies n at different f,, values as a
function of different choices for descriptive values d, all compared to
the average efficiency from five runs obtained using the Az approach
(dashed horizontal lines). The different colours used represent this
test for different values of the f,, parameter. In all cases it is clear
that the more complex choices of d using multiple dimensions are
more efficient at exploring the space of uncertainties, with 3D (z)
and 3D (1/yx) showing better performance at all f,, values. This is
expected since the addition of more dimensions helps breaking the
degeneracy of the posterior values present when a single parameter
is used and all the information of the n(z) realizations is compressed
into a single value.

The KL approach, also tested in three dimensions, provides an
improvement over random and 1D sampling, but does not reach the
same levels of efficiency for methods of equal dimensionality. with
respect to a reference data vector obtained at a fixed cosmology,
and the relative importance of each n(z) element can change as the
sampler moves in a cosmology space.

Perhaps one surprising result occurs when comparing the random
approach against 1D (z) in the un-amplified case (f;, = 1), in which
the former appears ~ 10 per cent more efficient. We believe this is
caused by the relatively small contribution of n(z) uncertainty to the
posterior in the f,, = 1 regime, as all realizations have very similar
mean values across all tomographic bins. This can lead to a very
small change of smoothness of the posterior at a fixed cosmology
when moving from a random ordering to a 1D ordering, resulting in
similar efficiencies. While we do not show the effect of additional
dimensions for a similar type of descriptive value d (i.e. 4D (z)),
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Figure 10. Recovered cosmological parameters for four different ranking
approaches described in the text: 3D rankings by mean redshift and inverse
comoving distance of tomographic bins, 3D ranking by principal components
of the data vector, and random sampling of realizations. The contours shown
correspond to the case where realizations sampled with HYPERRANK describe
an uncorrelated Gaussian distribution with an amplification factor of the
uncertainty f,, = 5. For f,,, = 1, 10, the contours are also very similar between
the different ranking schemes.

some test runs suggest that their efficiency is not noticeably better
than a 3D approach, at the expense of noisier posteriors on the H
parameters. This is likely caused by the larger discontinuities in the
posterior surface as a function of #, which is a consequence of
the lower resolution of the multidimensional grid in higher N, (as
discussed in Section 3.2).

Based on these results, we consider a 3D approach an appropriate
default configuration, with a preference for (z) since its computation
does not involve the use of a fiducial cosmology, unlike (1/x)
(which requires calculation of x(z) for equation (4), done here and
typically elsewhere at a fixed cosmology). When considering which
three of the four tomographic bins to choose to use as HYPERRANK
dimensions, we recommend that tomographic bins should be ordered
in terms of the variance in the descriptive value (e.g. the spread
of different mean redshifts across different realizations), with the
tomographic bin with lowest variance in the descriptive value not
used as a HYPERRANK dimension.

In Fig. 10, we show posterior contours recovered for each of the
different ranking schemes, including the ‘Random’ scheme in which
no ranking is performed. The consistency of these contours confirms
that the HYPERRANK procedure does not affect the cosmology
recovered while improving the efficiency of a chain with respect
to un-ranked, random sampling of n(z) realizations.

4.3.1 Convergence

In HYPERRANK, discrete samples from the posterior over the subset
of redshift nuisance parameters are generated outside of the main
chain used to sample over the cosmological and other nuisance
parameters. This means a limited and discrete set of values of
the nuisance parameters are available to the main sampling, as
opposed to the continuous range of parameters within a specified
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prior which would be available otherwise. While it could be possible
to form an interpolation between closely ranked samples to boost
their number, such interpolated samples would no longer carry the
intended property of being true samples from the posterior for n(z),
with the interpolation scheme effectively becoming part of the model
and correlation structure for histogram bin heights, with a set of
hidden hyper-parameters. It is also unclear how such an interpolation
could include the correlations across tomographic bins, which we
have found to be an important describing factor of the samples.

Without interpolation, there will be a transition from the regime in
which there are too few realizations of n(z) available to effectively
explore the redshift distribution uncertainty, and the limit where
infinitely many realizations would be available, corresponding to the
continuous case. Here, we investigate the convergence of HYPER-
RANK marginalization with respect to the number of n(z) samples
generated, for the case of our DES-Y3 simulated data set.

We first generate several sets of distributions where each real-
ization is a shifted version of a fiducial ng;4(z), and the shifts are
drawn from a Gaussian prior, following a similar approach to the Az
method described in Section 2. We generate eight sets of redshift
distributions, each containing 33,43 53, 6%, 7%, 8%, 9% and 10°
realizations, which are then ranked using the 3D default configuration
described at the end of Section 3.2.

Since we expect the approximate minimum number of realizations
required for this convergence to depend on the level of uncertainty
in the n(z), we generate two additional sets of proposal distributions
by multiplying the o (Az) obtained above, by a factor f,, = 5, 10.
We then repeat the generation of proposal realizations with five
different random seeds for each of the three f,, values, and for
each of the eight sets of realizations containing different number
of proposals. By comparing the standard deviation on the central,
lower, and upper confidence values for Sg as a function of the number
of realizations, we can find an approximate minimum number of
realizations required for the standard deviation of error bars from
HYPERRANK to converge to that obtained using the Az approach
(which is formally correct for this set of realizations). In Fig. 11,
we observe that for all three levels of uncertainty, described by the
amplification factor f,,, 1000 realizations yield standard deviation of
the error bars obtained using HYPERRANK comparable to the ones
using the Az approach.

5 APPLICATION TO DES YEAR 3

Based on the above tests, we derive an appropriate configuration for
using HYPERRANK on DES-Y3 (or similar) data:

(i) (z) ranking

(i) Three HYPERRANK parameter dimensions

(iii) Ranking according to tomographic bins 1, 2, and 4
(iv) At least 103 n(z) samples available to HYPERRANK

We then run a full shear-only cosmology chain on the BUZZARD
simulation of the DES-Y3 data set, with model parametrizations
and priors as discussed in the main cosmology papers (Amon et al.
2022; Secco et al. 2022), and with 1000 realizations of possible n(z)
generated using the full procedure of Myles et al. (2021). This, as
closely as possible, mimics the experimental data and set-up of the
DES-Y3 analysis. We also run a chain with this set-up, but with the
HYPERRANK marginalization of redshift uncertainties replaced by the
Az approach. This results of these two chains are shown in Fig. 12.
The left-hand panel shows the posteriors on mean redshift within
the four tomographic bins, produced directly by the Az analysis
and by taking the posterior weighted means within the HYPERRANK
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Figure 11. Standard deviation of the lower (purple), central (red), and
upper (cyan) values for the Sg parameter obtained using HYPERRANK for five
realizations of the ensemble of n(z) samples, as a function of the total number
of distributions to form the ensemble. From top to bottom, the equivalent
o (Az) width is amplified by a progressively larger number, f,,, with respect
to the original distributions of BUZZARD samples. Horizontal dashed lines
indicate the typical standard deviation for runs using the traditional Az
marginalization approach.

analysis. Good consistency can be seen in the space of mean redshifts
explored. The right-hand panel of Fig. 12 shows posteriors on
the cosmological parameters, and the HYPERRANK parameters for
each tomographic bin. For the cosmological parameters, we also
show the recovered posterior from the Az analysis, finding highly
consistent results between the two approaches. This suggests that
for the uncertainties which are modelled as a part of the DES-
Y3 analysis, the Az approach is adequate to fully explore their
effect on cosmic shear cosmological parameters. The Az approach
is hence adopted as fiducial in Amon et al. (2022) and Secco
et al. (2022) and subsequent DES-Y3 analyses, with the validation
test between HYPERRANK and Az shown here on the BUZZARD
simulation repeated for the real data vector in section E.1. of Amon
et al. (2022).

We also show the recovered posteriors on HYPERRANK ranking
parameters, showing that different subspaces of the ranked n(z)
realizations are indeed favoured in a systematic way, indicating the
cosmological data are in turn helping constrain the space of plausible
redshift distributions.

6 CONCLUSIONS

We have presented HYPERRANK, a new approach to marginalize
over redshift distribution uncertainties in weak lensing and galaxy
clustering experiments by ranking and mapping a set of proposal
redshift distributions to a set of continuous hyper-parameter, which
are then sampled in the Monte Carlo chain.

To test the accuracy of the method, we generated a series of n(z)
ensembles to describe different types of uncertainty, and compared
the obtained Sg error estimates and sampled uncertainty to those
obtained by only marginalizing over a shift Az along the redshift
direction for each tomographic bin.
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We showed that this approach provides equivalent results to the
ones obtained marginalizing over Az, when the realizations of the
ensemble are obtained by shifting the tomographic bins of a fiducial
distribution by a set of values drawn from the same prior used to
describe the Az uncertainty.

We generated additional ensembles to represent types of uncer-
tainty which cannot be fully characterized by a set of uncorre-
lated Gaussian shifts Az, and if unaccounted for, can lead to an
incorrect estimation of the marginalized cosmological parameters
posteriors. These included samples with Az shifts drawn from non-
Gaussian distributions, drawn from highly correlated multivariate
Gaussian distributions and from a set of realistic distributions
with amplified peculiarities, based on the estimates obtained from
the SOMPZ scheme on the BUZZARD simulations. In all cases,
HYPERRANK correctly explores the uncertainty described by the
input distribution ensemble, providing posteriors on the cosmo-
logical Sg and redshift tomographic bin means (z), which are
highly consistent with those from the estimates obtained using
marginalization with Az nuisance parameters, which are distributed
according to the input model (and hence are the correct model for the
uncertainty).

A set of tests were conducted to obtain an approximately optimal
configuration for the choice of descriptive values which are used
to rank the distributions and the subsequent effect on sampling
efficiency, resulting in the use of mean redshift of a subset of
tomographic bins, (z), being the choice of ranking parameter that
gives the best efficiency (lowest number of likelihood evaluations
per posterior sample required for convergence of the chain). As
estimation of the minimum number of samples required for posterior
estimates to become less noisy that the typical sampling noise
in standard Az marginalization is also provided for the expected
photometric redshift uncertainties of source distributions of the DES-
Y3 analysis.

Tests were conducted simulating a cosmic shear analysis where
only a subset of cosmological and systematic parameters are inferred,
compared to a full cosmic shear plus galaxy clustering case. Despite
this, HYPERRANK is not limited to cosmic shear analysis and can
be used without significant modifications on cosmic shear plus
galaxy clustering (3x2pt) analysis. We do not expect our conclu-
sions to vary significantly for 3x2pt analysis. Similarly, while tests
here focus on the propagation of uncertainty from source galaxy
redshift distributions, HYPERRANK can be used to simultaneously
and independently propagate uncertainties from the lens sample
of galaxies for galaxy clustering plus tangential shear (2x2pt)
and 3x2pt.

For the particular levels of uncertainty expected for the DES-
Y3 analysis, we showed that the difference in obtained confidence
contours between the standard approach using Az shifts and HYPER-
RANK are small, and hence concluded that Az was sufficient for the
requirements of DES-Y3. For the level of uncertainties present in
DES-Y3, we have demonstrated that it is satisfactory to use the Az
approach which, while not as accurate as the HYPERRANK approach,
typically allows for faster convergence of the Monte Carlo inference
chains, as can be seen as the dashed horizontal lines in Fig. 9, which
show the efficiencies for Az.

HYPERRANK provides a well-motivated approach for marginalizing
over the redshift distribution uncertainty affecting cosmological
galaxy clustering and weak lensing surveys. It is nominally capable
of marginalizing over any potential form of such an uncertainty,
subject to the ability to generate realizations samples of possible
n(z) using a model for the uncertainty. It thus also provides a much
more complete and flexible approach to the commonly used and
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Figure 12. Correlation between redshift distribution uncertainty nuisance parameters in the BUZZARD simulated DES-Y3 analysis, comparing the standard Az
approach (red) with the HYPERRANK approach presented in this work (blue). Left shows the recovered posteriors on mean redshifts of redshift distributions within
the tomographic bins considered. Right shows the recovered cosmological parameters for both approaches, and the HYPERRANK ranking parameters. Both show
good agreement between the two approaches for the modelled uncertainty expected in DES-Y3.

ad-hoc Az approach, while still being able to contain that particular
model and replicate findings made using it.
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repository https://bitbucket.org/joezuntz/cosmosis-standard-library
/src/des-y3/.
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