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A B S T R A C T 
Cosmological information from weak lensing surv e ys is maximized by sorting source galaxies into tomographic redshift sub- 
samples. Any uncertainties on these redshift distributions must be correctly propagated into the cosmological results. We present 
HYPERRANK , a new method for marginalizing o v er redshift distribution uncertainties, using discrete samples from the space of all 
possible redshift distributions, improving over simple parametrized models. In HYPERRANK , the set of proposed redshift distribu- 
tions is ranked according to a small (between one and four) number of summary values, which are then sampled, along with other 
nuisance parameters and cosmological parameters in the Monte Carlo chain used for inference. This approach can be regarded as 
a general method for marginalizing o v er discrete realizations of data vector variation with nuisance parameters, which can conse- 
quently be sampled separately from the main parameters of interest, allowing for increased computational efficiency. We focus on 
the case of weak lensing cosmic shear analyses and demonstrate our method using simulations made for the Dark Energy Surv e y 
(DES). We show that the method can correctly and efficiently marginalize o v er a wide range of models for the redshift distribution 
uncertainty . Finally , we compare HYPERRANK to the common mean-shifting method of marginalizing o v er redshift uncertainty, 
validating that this simpler model is sufficient for use in the DES Year 3 cosmology results presented in companion papers. 
Key words: gravitational lensing: weak – methods: numerical – galaxies: distances and redshifts – large-scale structure of 
Universe. 

1  I N T RO D U C T I O N  
As photometric galaxy surv e ys be gin to map large fractions of the 
sky at deeper magnitudes, stringent control of systematic errors 
! E-mail: juan.cordero@postgrad.manchester.ac.uk 

and uncertainties is required to take full advantage of the statistical 
power of such surv e ys. Combining measurements of weak lensing 
and spatial clustering of distant galaxies (and cross-correlations of 
these two signals as g alaxy–g alaxy lensing) has steadily become 
a v ery competitiv e probe of the expansion history of the Universe 
and its constituents (e.g. Dark Energy Surv e y Collaboration 2018 ; 
Hikage et al. 2019 ; Hamana et al. 2020 ; Heymans et al. 2021 ). 
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DES-Y3: redshift uncertainty marginalization 2171 
The Dark Energy Surv e y Year 3 (DES-Y3 DES Collaboration 2021 ) 
results, of which this work forms a part, contain information from 
o v er 100 million galaxies. One of the key required measurements in 
such analyses is the line-of-sight distribution of both the galaxies for 
which the shapes are measured (the source sample) and the generally 
lower redshift galaxies used to trace the massive structures acting as 
lenses for the source sample (the lens sample). In an approach known 
as ‘tomography’ (Hu 1999 ), the source sample is subdivided into 
different bins of distance, allowing us to further study the evolution 
of massive structure across cosmic time by observing how the lensing 
signal changes as a function of distance. Knowledge of the distance 
distribution to the source sample is a crucial ingredient in this. Of 
particular interest for modern cosmology, the statistical properties of 
dark matter structures as a function of cosmic time are a promising 
probe of dark energy. 

Cosmological redshift z is the observable most commonly used 
as a proxy for the distances to both galaxy samples but the methods 
to estimate distance via redshifts often suffer from limitations that 
make this one of the most difficult uncertainties to adequately model 
for the cosmological analysis. Estimating the redshift with high 
accuracy using spectroscopy is prohibitively expensive in telescope 
time for the large numbers of galaxies required for cosmology 
using weak lensing and suffers from selection effects caused by 
the incompleteness at fainter magnitudes (e.g. Hartley et al. 2020 ). 
Photometric redshift (photo- z) methods instead estimate the redshift 
based on measurements of fluxes in a number of photometric 
bands, and present a viable alternative in terms of sky and redshift 
co v erage and completeness, but suffer from relatively much larger 
uncertainties given the highly degenerate problem of estimating z 
based on wide band photometry. A wide range of photo- z methods 
are used to estimate redshifts from band magnitudes; see Schmidt 
et al. ( 2020 ) and references therein for a recent re vie w. 

Current galaxy surv e ys rely on a combination of spectroscopic and 
photometric redshifts, plus clustering patterns, to train, calibrate, and 
v alidate dif ferent methods. These methods can be broadly classified 
into three types, based on the information and ancillary data used 
to estimate redshift. (i) Template fitting methods (see section 3.1 of 
Schmidt et al. 2020 , for a re vie w), which rely on finding the best- 
fitting template redshift from a library of spectral energy distributions 
(SED) characterizing a range of galaxy types. (ii) Machine learning- 
based techniques (see section 3.2 of Schmidt et al. 2020 , for a 
re vie w), which map the colour space into redshifts. While the range 
of approaches used is fairly wide, the general idea consists of using 
a training set of secure redshifts obtained using either spectroscopy 
or large sets of narrow-band filter photometric observations to train 
the algorithm. (iii) Using spatial correlation between galaxies and a 
set of tracers with secure redshift information to obtain additional 
constraints on redshift (often known as ‘clustering redshifts’). See 
the introductory sections of Gatti et al. ( 2022 ); Cawthon et al. ( 2020 ) 
for recent re vie ws. 

Irrespective of the chosen method, there will be an irreducible 
uncertainty in the galaxy distances arising from the finite number 
of photons received in each band, the widths of the bands, and our 
limited knowledge of true galaxy SEDs. Where galaxies are observed 
only in a few ( ∼1–10) photometric bands, there are also fundamental 
degeneracies where two galaxies at very different redshifts can 
produce identical observed data. This uncertainty must be propagated 
through to cosmological constraints. Galaxies are conventionally 
grouped into a small number ( ∼5 for current experiments) of to- 
mographic redshift bins. Cosmological observables of weak lensing, 
galaxy clustering, and galaxy–galaxy lensing formed from each of 
these tomographic bin subsamples are dependent on the number 

density distribution of the sources as a function of redshift within 
each bin, n ( z). If each individual galaxy’s redshift were known with 
perfect precision and accuracy, these n ( z) would be non-overlapping, 
and their shapes would follow the true distribution in redshift 
of galaxies that are really in these bins. Ho we ver, in real cases, 
where the one-point summary statistic used for binning is noisy, 
biased, or both, the n ( z) within different tomographic bins acquire 
stretched tails that often o v erlap across the full redshift range of the 
surv e y. 

In order to constrain cosmological parameters, expected weak 
lensing observables for a galaxy sample with the estimated n ( z) 
and in a given cosmology are computed and compared with the 
data. Monte Carlo methods are then used to map the posterior for 
cosmological model parameters and hence constrain our physical 
model for the Universe. In this inference process, uncertainties 
on the measured n ( z) for each tomographic bin are marginalized 
o v er, typically widening the uncertainties on the cosmological 
parameters of interest. Incorrectly quantifying the uncertainty on 
the n ( z) or incorrectly marginalizing o v er it can significantly affect 
cosmological parameter estimation and model selection. Indeed, 
Joudaki et al. ( 2020 ) have argued that the adoption of different models 
for the calibration of redshift distributions and their uncertainties 
for weak lensing experiments can explain the observed apparently 
significant difference in cosmological parameters between different 
weak lensing experiments and Cosmic Microwave Background 
experiments. 

In this paper we introduce HYPERRANK , a new method which 
allows uncertainties in galaxy redshift distributions n ( z) to be 
propagated into Monte Carlo chains generating cosmological results. 
HYPERRANK takes as input a finite set of samples of n ( z) drawn 
from the distribution implied by the redshift calibration process. It 
maps these on to a low-dimensional space of continuous variables, 
which the cosmology sampler can treat as free parameters. We 
test that HYPERRANK does this both correctly , in that the allowed 
uncertainty is fully explored, and efficiently , in that fewer likelihood 
e v aluations are computed than in the case where an arbitrary choice 
of n ( z) realization is made at each step. This approach allows for the 
inclusion of a much wider range of types of uncertainty on n ( z) to 
be used in cosmological inference than have been included in the 
majority of previous analyses. 

In Section 2, we re vie w methods of quantifying uncertainties on 
the redshift distributions of galaxy samples used for cosmology, 
moti v ating the introduction of the new HYPERRANK method, which 
is then described in Section 3, in both the simplest 1D case and an 
extended multidimensional case. In Section 4, we then perform tests 
of the performance of HYPERRANK on a simulated version of the 
DES-Y3 experiment. In Section 4.2, we verify that in cases where 
redshift distribution uncertainty is known, HYPERRANK correctly 
marginalizes o v er this uncertainty, for four representative models 
of the uncertainty. In Section 4.3, we also show that the use of 
HYPERRANK to explore the uncertainties results in better performance 
(in terms of fewer numbers of Monte Carlo steps required) than 
random, un-ranked exploration of realizations of possible redshift 
distributions. We also explore the performance of a number of 
different choices of variables on which to perform the ranking 
and find, for our fiducial case, the number of discrete samples 
from the possible redshift distributions that are required for the 
cosmological results to converge to those of a known case where 
continuous sampling is possible. Section 5 describes the application 
of HYPERRANK to the real DES-Y3 data, with the results presented 
in Amon et al. ( 2022 ). Finally, in Section 6, we discuss our results 
and conclude. 
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2172 J. P. Cordero et al. 
2  MAR GINALIZATION  O F  REDSHIFT  
U N C E RTA I N T Y  
In general, for an inference problem in which we have a model 
containing parameters of interest θ (such as the cosmological param- 
eters) and a set of nuisance parameters α (such as parameters relating 
to redshift distribution uncertainty), we form posterior probability 
distributions: 
P ( θ, α| x ) ∝ L ( x | θ, α) P ( θ, α) , (1) 
where L ( x | θ, α) is the likelihood function for the data x and P ( θ , 
α) is a prior probability distribution. When generating samples from 
the posterior with a Monte Carlo process, the nuisance parameters 
are typically sampled jointly with the parameters of interest and 
then marginalized o v er, pro viding a marginal posterior on the model 
parameters θ in which the uncertainty on α is accounted for. In 
the particular case of redshift distributions in cosmology analyses, 
a common approach is to provide a fiducial tomographic redshift 
distribution and characterize its uncertainty using the nuisance 
parameter of a shift $z, along the z −axis. A different parameter 
$z i is used for each tomographic bin, with each drawn from a 
Gaussian prior informed by observations and/or simulations. This 
approach is depicted in the upper panel of Fig. 1 and has been 
used in DES SV (Bonnett et al. 2016 ), DES Y1 (Hoyle et al. 
2018 ), HSC (Hikage et al. 2019 ), and KiDS-1000 (Joachimi et al. 
2021 ). Ho we ver , while con venient and capturing the uncertainty 
in the mean of redshift distributions, which is strongly correlated 
with cosmology, it is not physically well moti v ated and severely 
restricts the possible functional forms, which a proposed n ( z) may 
take. 

In contrast to the $z approach, we may wish to consider al- 
ternatives that allow for a much wider range of uncertainty in the 
functional forms of the n ( z). It is possible to take a simulation- 
based approach, in which realizations for the possible n ( z) of a 
surv e y are generated by multiple realizations of mock versions 
of the surv e y created from independent patches of cosmological 
simulations. Alternativ ely, we may e xplicitly parametrize the n ( z) 
as a set of histogram bin heights n ( z i ), which give the counts of 
sources within a small redshift interval and try to infer these quantities 
from the data. This approach creates principled models of the joint 
probability distribution function for all of these bin heights, given 
the photometric data available on the observed galaxies. This is 
most readily done as a Bayesian Hierarchical Model and has been 
recently advocated in Leistedt, Mortlock & Peiris ( 2016 ), S ́anchez & 
Bernstein ( 2019 ), and Rau, Wilson & Mandelbaum ( 2020 ). Outputs 
from this procedure are samples from the joint posterior for all of 
the histogram bin heights which together make up the full shape 
of the n ( z). Each sample consists of a possible realization of what 
the full n ( z) could look like, discretized as n ( z i ). An ideal approach 
would be to treat each of these n ( z i ) as a model parameter and 
jointly infer them with the cosmological model parameters before 
marginalization. In reality, this is impractical; the redshift resolution 
required to capture important features of the model, which impact 
cosmological inference but are not convolved with broad redshift 
kernels, such as intrinsic alignments would demand hundreds of 
additional nuisance parameters. Current implementations of galaxy 
surv e y analysis pipelines (such as that in COSMOSIS used for DES 
Zuntz et al. 2015 ) typically take ∼1–10 s per likelihood e v aluation, 
meaning the addition of hundreds of parameters would mean the 
samplers used (MCMC such as EMCEE F oreman-Macke y et al. 2013 
or nested sampling such as MULTINEST Feroz, Hobson & Bridges 
2009 or POLYCHORD Handley, Hobson & Lasenby 2015 ) could not 

Figure 1. Upper : the $z marginalization scheme, where a fiducial redshift 
distribution (black dashed) is shifted horizontally at each Monte Carlo step by 
a value drawn from a Gaussian distribution (inset, with draw from the 2 σ tail 
highlighted in red). Lower : discrete realizations of possible n ( z) are shown 
with colours corresponding to the mean redshift of each realization 〈 z〉 , which 
can be mapped to a ranking hyper-parameter H, which is then marginalized 
o v er on the Monte Carlo chain. Inset shows the uniform distribution for H 
which is sampled from, and the centres of the regions corresponding to each 
coloured n ( z) realization. 
map the full posterior in a timely manner. It should be noted that 
Hildebrandt et al. ( 2017 ) were able to run 750 MCMC chains in 
order to use a different bootstrap resampling realization of their n ( z) 
each time, before combining these chains; we do not expect this to 
be feasible for the DES-Y3 pipeline. Other methods have also been 
proposed to address the uncertainty associated to large number of 
nuisance parameters. Gaussian mixture models are flexible and may 
be analytically marginalized o v er (Hadzhiyska et al. 2020 ; St ̈olzner 
et al. 2021 ), and the use of flat or Gaussian priors to characterize 
variations to sets of arbitrary functions can be used to e v aluate 
the posterior using a Gaussian likelihood (Taylor & Kitching 2010 ; 
Kitching & Taylor 2011 ). 

Here, we consider an alternative approach in which the set of 
samples from the n ( z) posterior, each consisting of a collection of 
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DES-Y3: redshift uncertainty marginalization 2173 

Figure 2. The log posterior for the HYPERRANK parameter of a single 
tomographic bin when holding all other parameters fixed, contrasting the 
cases of random ranking (which gives no smooth posterior for the sampler 
to explore) with mean redshift ranking (which does give a smooth posterior 
surface). 
histogram values for each tomographic bin, are generated outside 
(before) the cosmological parameter inference Markov chain. This 
set of realizations can then be used by choosing a new n ( z) in every 
likelihood e v aluation within the cosmological parameter inference 
chain, allowing higher-order modes of uncertainty in n ( z) to be 
propagated into cosmological parameter constraints. It is important 
to note that the n ( z) realizations are drawn simultaneously for all 
tomographic bins, which also allows the propagation of uncertainty 
originating from correlations between tomographic bins. 

A way of performing this analysis would be to randomly sample 
a different redshift distribution on each likelihood e v aluation within 
the Monte Carlo chain. This has potential ne gativ e effects on the 
behaviour of Monte Carlo samplers, which rely on the posterior 
function being a smooth function of the sampled parameters. A 
random approach can break the smoothness of the likelihood (as 
shown in Fig. 2 ) in the other parameter dimensions leading to 
unnecessarily high sample rejection rates, requiring large number 
of likelihood e v aluations for convergence and potentially disrupting 
convergence criteria for different samplers. 

Here, we present HYPERRANK , a way to o v ercome these compu- 
tational limitations, while still exploring the space of uncertainty 
available from the discrete n ( z) realizations. In HYPERRANK , we 
construct a mapping between the index of an ordered set of n ( z) 
realizations and a continuous parameter H, such that the likelihood 
function L ( θ, H) is smooth on this new space and the prior P ( H) 
preserves an equal weighting of the n ( z) samples through assigning 
them to an evenly spaced grid. 
3  T H E  H Y P E R - R A N K I N G  M E T H O D  
After a discrete set of realizations of tomographic bin redshift 
distributions n i ( z) have been generated, we wish to correctly and 
efficiently marginalize o v er the uncertainty embodied by them, 
within a cosmological parameter inference Monte Carlo chain. 
We introduce the idea of HYPERRANK -ing in which the full set 
of realizations is mapped on to a small (in this work between 
one and four) number of parameters H. The n ( z) realizations are 
ordered according to a set of descriptive values d , which are a 

priori expected to correlate strongly with values of the cosmological 
parameters of interest. This ordering preserves the tomographic 
nature of each realization, meaning the sampling stage selects the set 
of all tomographic bins’ distributions simultaneously, without mixing 
different realizations. The rank parameters H become the nuisance 
parameters that are sampled (and subsequently marginalized o v er) 
in the cosmological analysis. Choosing descriptive values d , which 
correlate with the cosmological parameters of interest, ensures that 
the likelihood varies as smoothly as possible along each dimension 
of the rank parameters. The ranking parameters H j = H( αj ) must 
also be such that realizations with similar descripti ve v alues are 
mapped close to each other. Furthermore, the H j must be such that 
a uniform prior on H preserves equal probability on all input n ( z) 
samples. We consider the cases below first in which we have one 
ranking parameter and then multiple ranking parameters. We choose 
to mainly use the mean redshift 〈 z〉 and mean inverse comoving 
distance 〈 1/ χ〉 of each tomographic bin as descriptive values d here, 
but emphasize that the HYPERRANK method is not limited to these 
two options only. We expect the choice of ranking method to only 
affect sampling efficiency and not the inferred parameter contours. 
3.1 1D case 
We initially consider the case in which a single HYPERRANK param- 
eter is used to rank all realizations. Since the mean redshift of the 
distribution n ( z) varies the o v erall amplitude of lensing expected 
for a given source galaxy sample, it is expected to correlate with 
the cosmological parameters of interest (here, the matter amplitude 
parameter S 8 ). We therefore consider a basic HYPERRANK approach 
in which there is only one descriptive parameter per realization of 
the full n ( z) and it is based on the weighted mean redshift of a 
combination of tomographic bins, 
d = ∑ 

w i 〈 z〉 i ∑ 
w i , (2) 

where i is the index of each tomographic bin and w i is the 
corresponding weight, which can embody (for instance) the number 
of assigned galaxies to each tomographic bin. The n ( z) realizations 
are then ranked according to their descriptive value d and mapped to 
a continuous hyper-parameter H ∈ [0 , 1), which is then sampled in 
the Monte Carlo chain. Each sampled value of H corresponds to a 
stored n ( z) realization which is then used in the likelihood e v aluation. 
This approach is demonstrated in the lower panel of Fig. 1 , which 
shows a small sample of n ( z) realizations coloured according to their 
mean redshift and assigned a range of H values depending on their 
ranked position. 

An alternative set of descriptive values are the mean inverse 
comoving distance of sources, 〈 1/ χ〉 . The correlation of this quantity 
with cosmological posterior value can be moti v ated by its relation to 
the lensing efficiency functions used in the calculation of the shear 
power spectrum, which can be written as, 
P κ ( ( ) = 9 H 4 0 )2 

m 
4 c 4 

∫ χH 
0 g 2 ( χ ) P δ( (/χ ; χ ) 

a 2 ( χ ) d χ , (3) 
where χH , a ( χ ), and P δ are the comoving horizon, scale factor, and 
matter power spectrum, respectively, and the lensing efficiency g ( χ ) 
at comoving distance χ is defined as: 
g( χ ) = ∫ χH 

χ

n ( χ ′ ) χ ′ − χ

χ ′ d χ ′ , (4) 
and depends on the comoving distance distribution n ( χ ) of sources, 
or equi v alently their redshift distribution n ( z). By e v aluating at 
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2174 J. P. Cordero et al. 
χ = 0 and differentiating the abo v e definition for the lensing 
efficiency, we obtain 
g( χ ) | χ= 0 = 1 (5) 
g ′ ( χ ) ∣∣

χ= 0 = −〈 1 /χ〉 n , (6) 
where g ′ ( χ ) = d g /d χ , which are boundary conditions for the lensing 
efficiency functions, hence control their overall shape. See Tessore & 
Harrison ( 2020 ) for discussions of the importance of constraining 
g ′ ( χ ) in weak lensing studies. 

The mapping of distributions is not invariant to the choice of 
ordering being the mean redshift or the mean inverse comoving 
distance. In one dimension, both are examples of ranking parameters 
capable of providing the smooth likelihood necessary for efficient 
mapping of the posterior (as can be seen in Fig. 2 ), as well as correctly 
including the space of uncertainty spanned by the provided set of n ( z) 
realizations. In Section 4, below we consider only the mean redshift 
ranking for the 1D case, but observed a comparable performance for 
the inverse comoving distance ranking in our tests. 
3.2 Multidimensional case 
While the 1D approach presents a clean and simple strategy to arrange 
and select realizations for each likelihood e v aluation, it does not 
prevent cases where two realizations with very different descriptive 
values are assigned a similar rank – e.g. two realizations have very 
distinct 〈 z〉 i in individual redshift bins, but similar when averaged 
o v er bins as per equation (2). Indeed, in our initial tests with DES- 
Y3 simulations, it was found that this was often the case, leading 
to realizations ranked closely by a single mean redshift parameter 
having significantly different posterior values, hence leading to poor 
efficiency in the cosmology chains. To address this, we describe 
a generalization to rank distributions using multiple dimensions, 
which allows to use more than one descriptive parameter d to assign 
the proposal n ( z) realizations to a space of hyper-parameters H. 
Matching of the number of descriptive values and the dimensionality 
of the redshift distributions (e.g. number of tomographic bins) is not 
a requirement, and we find here that the best performance is achieved 
when this is not the case. 

Each of the N p proposals for n ( z) is assigned a position in a uniform 
multidimensional grid, u , according to a set of N d descripti ve v alues 
d = d 1 , ..., d N d . This grid is contained inside a N d − dimensional 
unit hypercube, and the continuous parameters H j ∈ [0 , 1) N d are 
sampled in the Monte Carlo chain. For each H value chosen by the 
sampler, the method returns the closest H i in the grid, which has 
been assigned to one of the N p n ( z) realizations. 

We now need to consider how to preserve the notion of ordering 
the set of n ( z) by descriptive values in this multidimensional space, 
preserving the notion of a ‘neighbourhood’, where realizations 
with similar descriptive properties are grouped close together. One 
approach to find the optimal relative positions is to use the solution to 
the Linear Sum Assignment Problem (e.g. Burkard & Derigs 1980 ). 
Given a set of N p w ork ers (points in the descriptive value space), we 
want to find an assignment to N p fixed jobs (i.e. fixed grid positions 
in the unit hypercube), such that the sum of the cost to assign each 
w ork er to one and only one job (the distance from descriptive value 
space to hypercube position) is minimized: 
min ∑ 

C ij X ij , 
where C ij is the cost matrix of assigning each sample d i to each 
point u j of the grid, and X ij is a binary matrix indicating which 

position is assigned to each set of descriptive values. If we use an 
Euclidean distance metric such that C ij = | d i − u j | 2 , the resultant 
assignment minimizes the total distance mo v ed by the points to the 
positions on the grid, ensuring that any notion of neighbourhood 
between points in the original space of descriptive parameters is 
preserved in their new unit hypercube grid positions. We implement 
this technique by first linearly rescaling the d i so that they span a unit 
hypercube. Fig. 3 shows the resultant 2D assignment for a set of 500 
realizations, each comprised of a set of four tomographic bins, using 
as descriptive parameters the mean redshifts of tomographic bins 1 
and 4, arranged in a 25 × 20 map. Because of the finite number of 
available realizations, the use of additional dimensions can quickly 
have the undesired effect of reducing the amount of realizations 
available with which to fill each direction of the multidimensional 
grid. This can result in the exacerbation of the convergence problem, 
with few available samples creating large jumps in posterior as a 
function of the H parameters. For example with 4096 realizations, 
double the grid size is available with N d = 3 dimensions compared 
to N d = 4. 

In the case of N d = 1, where a single characteristic value describes 
each realization and the arrangement of points is done o v er a grid in 
the interval [0,1), the optimal distribution is the one which ranks the 
points in order, corresponding to the case described in Section 3.1. 
Analogous to the 1D case, we propose the use of mean redshift 〈 z〉 or 
mean inv erse como ving distance 〈 1/ χ〉 of the individual tomographic 
bins as sources of descriptive values to map the realizations to the 
hypercube. 

Ideally, the dimensionality N d of the hyper-ranked space is low 
enough to maintain an efficient cosmological sampler, but high 
enough that the variation in the log posterior probability from 
equation (1) in small regions of H is )1. This would allow any 
sampling process to smoothly traverse the full space of all n ( z) 
variations that influence the parameters of interest. 

We can optimize the reduction of the nuisance-variable vector α
(e.g. all of the freedom of n ( z)) into a lower dimensional hyperspace 
by using the Karhunen–Lo ̀eve (KL) transformation. When the ob- 
servational data vector D has a Gaussian likelihood with covariance 
matrix C D and mean value ˆ D ( θ, α), we find the eigenvectors e k of 
the matrix 
(

∂D 
∂α

)T 
C −1 

D (∂D 
∂α

)
. (7) 

where the deri v ati ves are taken about some reference values of θ
and α. The best choice of HYPERRANK descriptive values ( d 1 , d 2 , 
. . . , d K ) will be to order the eigenvectors by decreasing eigenvalues, 
and assign d k = αe k for each input sample. Successi ve d k v alues 
have decreasing influence on the cosmological model. The sum 
of the eigenvalues at k > K then describes the ‘roughness’ of 
the log-posterior in the H space. Using this principal component 
analysis (PCA)-style approach, we can choose the first K components 
of the decomposition as descriptive values to inform the ranking 
map and assign each component to one HYPERRANK parameter 
each. 

The main caveat is that this approach defines a set of descriptive 
values, which are optimal only near the reference cosmology chosen 
to compute the KL components. While ideally one w ould w ant to 
use a large number of dimensions to help construct a space where 
the posterior is as smooth as possible, this comes at the expense 
of having to construct a grid with a low number of points per 
dimension, if the number of input samples of n ( z) is held fixed. This 
can result in a noisy posterior as a function of the hyper-parameter 
H if a given dimension of H is sparsely sampled and has large 
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DES-Y3: redshift uncertainty marginalization 2175 

Figure 3. 25 × 20 ranking map generated using the mean redshift for tomographic bins 1, 2, and 4 from a set of 500 redshift distributions. Panels show 
distributions located in the same positions, but the colour scale shows the mean redshift for the corresponding tomographic bin. It can be seen that the mapping 
scheme permits realizations to remain close to other realizations with similar descripti ve v alues used for the mapping, and has a smooth variation in the directions 
of the hyper-parameters mapped to each dimension of the grid. The arrangement does not necessarily result in a smooth ordering of all tomographic bins, as can 
be seen from the middle panel where the mean redshift from a bin not used of the mapping is displayed. 
steps between samples. While a large number of realizations can 
help construct a grid with a reasonably large number of realizations 
per side of the grid, the method to solve the linear sum assignment 
problem scales as O( N 3 p ), which quickly becomes unmanageable. In 
Section 4.3, we explore the effects of dimension of the ranking and 
choice of descriptive value have on sampling efficiency, testing the 
mean redshift, inverse comoving distance, and KL approaches with 
three components each. 
4  TESTS  O N  SIMULATIONS  
We now test the HYPERRANK method for marginalizing o v er redshift 
distribution uncertainty and explore its configuration, with the target 
of using it for the weak lensing source redshift distributions in the 
DES Year 3 cosmological analysis. We investigate the HYPERRANK 
method’s ability to marginalize o v er the n ( z) uncertainty: 

(i) correctly , in that it proportionately explores the space of 
possible n ( z) represented by the discrete realizations, which are 
provided as an input. 

(ii) efficiently , in that as fe w likelihood e v aluations as practically 
possible are required before the Monte Carlo process converges to 
the posterior. 

We test the correctness by comparing the reco v ered posteriors 
on the S 8 = σ8 √ 

)m / 0 . 3 cosmological parameter obtained from a 
cosmological inference pipeline. We generate sets of n ( z) samples 
using a number of well defined procedures in which the method for 
generating realizations involves drawing a $z shift from a known 
analytic distribution. We then run analyses using HYPERRANK to 
marginalize o v er these uncertainties and compare the results to 
a set of chains in which the known analytic distributions from 
which the $z were drawn are used again to marginalize o v er 
the nuisance parameter. Hence, we verify that, in the case where 
discrete samples represent a model for uncertainty on n ( z), the use 
of HYPERRANK correctly explores this uncertainty. The tests show 
that HYPERRANK is capable of correctly marginalizing o v er redshift 
distribution uncertainties in cases where a correct and simple model 
for them is known, without making assumptions on the form of the 
uncertainty model. This model-agnosticism represents an advantage 
in the case of real experiments, where it may not be known a priori 

if one or any of the simple models is adequate for obtaining small, 
unbiased posteriors. 

We also compare the results from analyses using HYPERRANK 
to ones in which discrete n ( z) realizations but no ranking (or 
equi v alently random ranking) are used, showing that the imposition 
of the HYPERRANK ranking does not bias or unduly constrain the 
cosmological parameter space explored. 

We test the impro v ement in computational efficiency gained 
from using HYPERRANK by comparing 1D and multidimensional 
implementations of HYPERRANK to a mode in which no ranking is 
performed and at each likelihood e v aluation an n ( z) is chosen from 
the available realizations at random. 

Finally, we also test the convergence of HYPERRANK for the 
configuration required for DES-Y3 cosmology, finding the number 
of n ( z) realizations that are required before systematic errors on 
the cosmology parameters from the discreteness introduced by 
HYPERRANK become negligible. 

Throughout these tests, we use the DES-Y3 modelling choices, 
likelihood and pipeline software, and configuration, which are 
described in detail in Amon et al. ( 2022 ) and Secco et al. ( 2022 ). 
We only consider cosmic shear in our data vector, which reduces 
the dimensionality of the space of parameters to be sampled in the 
MC inference and enhances the effect of redshift systematics in the 
source sample. Nevertheless, this method can be applied when using 
cosmic shear in a full 3x2pt analysis, including galaxy clustering 
and g alaxy–g alaxy lensing and can also be used to marginalize o v er 
systematic uncertainties of the lens in addition to the source samples 
described here. 
4.1 Generation of fiducial redshift distribution 
Here, we briefly describe the method by which the cosmic shear 
data vector and fiducial n ( z) used in our tests were generated. The 
methodologies and simulations are described in detail in Myles et al. 
( 2021 ), Gatti et al. ( 2022 ), and DeRose et al. ( 2021 ). 
4.1.1 Buzzard simulation 
The BUZZARD simulations (DeRose et al. 2021 ) are a set of 
mock DES-Y3 surv e ys created from a suite of dark-matter N-body 
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Figure 4. The BUZZARD redshift distributions. Left: the black lines show the redshift distribution n Fid ( z) for each of the four redshift bins, averaged over 
all realizations. The light blue, red, green, and brown lines show the full set of realizations for redshift bins 1 through 4, respectively, depicting the potential 
differences between independent samples of n ( z) posterior, and their peculiarities at the histogram level. Right: histogram of mean redshift for each of the four 
tomographic bins, computed from the ensemble of distributions on the left-hand panel. Solid orange line traces the Gaussian fit to the histogram, described by 
the width σ ( $z) abo v e each panel. 
simulations using a memory-optimized version of L-GADGET2 
(Springel 2005 ). Galaxies and their main morphological properties 
are added using ADDGALS (DeRose et al. 2019 ), matching pro- 
jected clustering statistics and colour-magnitude relations observed 
in the Sloan Digital Sky Survey Main Galaxy Samples (SDSS MGS 
as described in Blanton et al. 2005 ; Abazajian et al. 2009 ). DES ugriz 
and VISTA JHK photometry is obtained from the simulated SEDs 
generated by ADDGALS . 
4.1.2 SOMPZ redshift distributions 
The simulated photometry catalogues from BUZZARD constitute the 
primary data set to construct the fiducial n ( z) for our tests, using 
the SOMPZ method (fully described in Myles et al. 2021 ). This 
method makes use of three sets of observations: the full DES-Y3 
wide field sample, the DES-Y3 Deep Fields (Hartley et al. 2022 ) 
sample, and compilation of spectroscopic redshift surv e ys. Galaxies 
from the wide sample are grouped into phenotypes using the Self- 
Organized Maps (SOM) method of dimensional reduction (see e.g. 
Masters et al. 2015 ; Myles et al. 2021 ; Wright et al. 2020 ). The 
Balrog machinery (which injects synthetic sources into DES data 
and reco v ers their properties, see Ev erett et al. 2022 ) is then used to 
quantify the probability of a given Deep Fields galaxy appearing to 
hav e a giv en phenotype when observ ed in the wide field. A second 
SOM dimensional reduction is then applied to the Deep Fields galaxy 
observations, with the spectroscopic sample used to characterize 
the true redshift distribution for each deep phenotype. In this way, 
information can ef fecti vely pass from the small, limited spectroscopic 
sample to the much larger wide sample through the intermediary of 
the deep sample. 

In addition to this method of creating a best-estimate fiducial 
redshift distribution, we further consider realizations of possible 
n ( z) inferred from the simulated data using the method of Myles 
et al. ( 2021 ), S ́anchez et al. ( 2020 ), and S ́anchez & Bernstein ( 2019 ). 
This applies a three-step Dirichlet (3sDir) sampling to model the 
uncertainties on n ( z) histogram bin heights from sources, including 
shot noise, sample variance, photometric calibration uncertainty, 
and method errors. We use a set of 500 realizations generated this 
way, noting that samples are drawn jointly for all four tomographic 
redshift bins. The resulting estimated redshift distributions for 

BUZZARD are shown as the coloured lines in the left-hand panel 
of Fig. 4 . The fiducial realization n Fid ( z) is obtained from averaging 
the 500 realizations at the histogram level and re-normalizing, 
and are shown as the black solid lines in the left-hand panel 
of Fig. 4 . 
4.2 Exploration of uncertainties 
As a supplement to these full SOMPZ + 3sDir realizations of the 
BUZZARD n ( z) for testing, we also now take the fiducial n ( z) and 
construct sets of realizations of potential n ( z) using simple parametric 
models for the uncertainty. We use analytic distributions to generate 
sets of mean redshift shifts $z for each uncertainty model. We then 
compare the posteriors on cosmological parameters (and the ef fecti ve 
$z nuisance parameters) reco v ered by two chains: 

(i) a chain in which HYPERRANK takes these realizations as an 
input set of proposed n ( z) 

(ii) a chain with $z nuisance parameter marginalization, using 
as a likelihood the same analytic distribution, which was used to 
generate the realizations 

To perform our sampling we use the MULTINEST sampler, with 
500 live points, tolerance = 0.3, and efficiency = 0.01. 
We follow the set-up for the DES-Y3 cosmic shear analysis de- 
scribed by Amon et al. ( 2022 ) and Secco et al. ( 2022 ) in terms 
of angular scale cuts, tomographic redshift binning, and modelling 
choices and marginalization o v er other nuisance parameters, such as 
shear calibration biases or Intrinsic Alignment model parameters. 
In most of the tests, and unless explicitly noted, we use the 
default 3D HYPERRANK configuration described in the starting of 
Section 5. 

We will describe each test in the following section, as well as the 
results for each one presented in Figs 5 –8 . In each of these figures, 
the top panels show the 1D posterior constraints reco v ered on S 8 and 
the means of the redshift distributions in each tomographic bin 〈 z〉 i . 
The lower panels in each figure show the 2D posterior constraints on 
these parameters. Dashed grey lines correspond to mean values of the 
fiducial redshift distribution in each tomographic bin, and in the S 8 
panel to the values inferred from a chain run without marginalization 
o v er redshift nuisance parameters. 
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Figur e 5. Upper : mar ginalized 1 σ confidence regions for the S 8 , and 〈 z 〉 i parameters for the uncorrelated Gaussian model of n ( z ) uncertainty described in 
Section 4.2.1. Different f m values refer to different o v erall amplitudes of uncertainty, and for each value of f m we show both the posterior from chains using 
HYPERRANK and the $z marginalization schemes. Lower : 2D posteriors on the same parameters. Dashed grey lines correspond to mean values of the fiducial 
redshift distribution in each tomographic bin, and in the S 8 panel the 1 σ region inferred from a chain run without marginalization o v er redshift nuisance 
parameters is also shown. 

Figur e 6. Upper : mar ginalized 1 σ confidence regions for the S 8 , and 〈 z 〉 i parameters for the uncorrelated Gamma distribution model of n ( z ) uncertainty 
described in Section 4.2.2. Different k values refer to different amounts of skewness in the uncertainty distributions and for each value of k we show both the 
posterior from chains using HYPERRANK and the $z marginalization schemes. Lower : 2D posteriors on the same parameters. Dashed grey lines correspond to 
mean values of the fiducial redshift distribution in each tomographic bin, and in the S 8 panel the 1 σ region inferred from a chain run without marginalization 
o v er redshift nuisance parameters is also shown. 
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Figur e 7. Upper : mar ginalized 1 σ confidence regions for the S 8 , and 〈 z〉 i parameters for the correlated Gaussian distribution model of n ( z) uncertainty described 
in Section 4.2.3. Dif ferent ρ v alues refer to different amounts of correlation between tomographic bins in the uncertainty distributions and for each value of ρ, 
we show both the posterior from chains using HYPERRANK and the $z marginalization schemes. Lower : 2D posteriors on the same parameters. Dashed grey 
lines correspond to mean values of the fiducial redshift distribution in each tomographic bin, and in the S 8 panel the 1 σ region inferred from a chain run without 
marginalization o v er redshift nuisance parameters is also shown. 

Figur e 8. Upper : mar ginalized 1 σ confidence regions for the S 8 , and 〈 z〉 i parameters for the amplified deviations model of n ( z) uncertainty described in 
Section 4.2.4. Different λ values refer to different amplifications uncertainty in the n ( z) distributions and for each value of λ, we show both the posterior from 
chains using HYPERRANK and the $z marginalization schemes. Lower : 2D posteriors on the same parameters. Dashed grey lines correspond to mean values 
of the fiducial redshift distribution in each tomographic bin, and in the S 8 panel the 1 σ region inferred from a chain run without marginalization o v er redshift 
nuisance parameters is also shown. 
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4.2.1 Gaussian distributions for $z 
We begin with the simple error model in which the $z approach used 
in other analyses and described abo v e is the correct one. Within each 
tomographic bin, we draw values of $z from a Gaussian distribution 
with width σ ( $z). Realizations for n ( z) are then generated by 
shifting the fiducial n Fid ( z), along the redshift axis by the drawn 
$z. In order to assess performance and convergence, we test this 
for several different levels of uncertainty, with the σ ( $z) being 
modified by a multiplicative factor f m . For our fiducial σ ( $z), we 
use the values appropriate for DES-Y3 provided by BUZZARD (see 
right-hand panel of Fig. 4 ). We then use values of f m = { 1, 5, 10 } . 
We then run the full cosmological parameter estimation pipeline 
on the simulated data vector using these redshift distributions, 
once marginalizing o v er the uncertainties using the Gaussian $z 
method and once using the HYPERRANK method on the set of 
realizations. 

The results of this test are shown in Fig. 5 . In the upper panel, 
we show the 1D error bars reco v ered on S 8 ≡ σ 8 ( )m /0.3) 0.5 and 
the means of the redshift distributions in the four tomographic bins 
〈 z〉 i . Dashed grey lines correspond to mean values of the fiducial 
redshift distribution in each tomographic bin, and in the S 8 panel the 
1 σ region inferred from a chain run without marginalization over 
redshift nuisance parameters is also shown. In the lower panel, we 
also show the 2D posteriors for combinations of these parameters. We 
see that HYPERRANK gives posteriors consistent with those obtained 
using the standard $z marginalization approach. While at first glance 
this is a trivial example, it shows that the method is, at the very least, 
able to reco v er the same effects of redshift uncertainty when samples 
describe the same type of uncertainty we typically describe by means 
of a $z nuisance parameter. 
4.2.2 Non-Gaussian distributions for $z 
Modelling the distribution of $z for each tomographic redshift bin 
as a Gaussian is a simple model choice that may not be an adequate 
representation of the true range and correlation structure of the $z 
nuisance parameters, potentially resulting in a biased posterior and 
under/o v er-estimated uncertainties. In the right-hand panel of Fig. 4 , 
we show histograms of the $z between the fiducial n ( z) and the 500 
realizations generated using the full uncertainty model. These show 
appreciable non-Gaussianity, with skews and heavy tails that can 
be accentuated by the hard boundary at z = 0 for all distributions, 
especially tomographic bins at low redshift. We investigate the impact 
of the non-Gaussianity in the distribution of $z by sampling $z 
values from a highly skewed Gamma distribution: 
f ( $z; k, θ ) = $z k−1 e −$z/θ

θ k . ( k ) (8) 
(where .( k ) is the integral Gamma function e v aluated at k ) to shift 
our fiducial distribution n Fid ( z). We use scale parameters θ such 
that the σ ( $z) for each tomographic bin is equal to that of the 
prior with the largest uncertainty in Section 4.2.1 ( f m = 10, σ ( $z) 
∼ 0.05). We fix the shape parameter k of the Gamma distribution 
to a set of values k = 1, 2, 3 to ensure the distribution of mean 
shifts of all tomographic bins have a positive skewness with a long 
tail to high values, and to explore the effect of different degrees 
of non-Gaussianity. The distribution of values is then centred so 
that the mean shift value is equal to zero, which generates a set 
of Gamma distributed $z with the same variance and mean to that 
of the f m = 10 prior, but with a skewness that cannot be captured 
by the use of a standard Gaussian prior. We then again run two 

chains, one marginalizing o v er redshift uncertainty using the Gamma 
function $z model, and one using HYPERRANK on the generated 
realizations. 

The result of these chains is shown in Fig. 6 . The differences on the 
S 8 parameter remain comparable to the typical dispersion seen for 
this number of distributions. As in Figs 5 and 7 , in the case of the 〈 z〉 
sampled values, small differences appear between HYPERRANK and 
$z chains, but they are distributed very similarly as seen in the lower 
panels of Fig. 6 , deviating in the same way from the reference values 
of the n Fid ( z) distribution and no marginalization run. One aspect 
of the way $z values are reported by COSMOSIS can be responsible 
for the differences, as the 〈 z〉 values shown here are the sampled $z 
plus the means of the fiducial distribution n Fid ( z). Because of the 
cut imposed at z = 0, this can result in a slightly inaccurate mean 
redshift value being computed here. 
4.2.3 Correlations between tomographic bins 
Another aspect of uncertainty the simplest $z scheme does not di- 
rectly account for is the potential correlation between the uncertainty 
from different tomographic bins (though see appendix A of Hoyle 
et al. 2018 , in which the diagonal elements of the covariance matrix 
are inflated to account for potential off-diagonal elements). Since 
each tomographic bin is shifted independently, combinations of $z 
values which would not be expected to appear in multiple realizations 
of the surv e y or photo- z analysis are equally sampled. In addition to 
this, the use of a single fiducial shifted n ( z) blurs the potential effect of 
correlation at the histogram bin level. Correlation can come from the 
binning of galaxies and from how the shapes of the distributions and 
their moments can change when galaxies are re-assigned to another 
histogram or tomographic bin in a different realization of a photo-z 
analysis. Depending on the nature of the colour-redshift de generac y, 
correlation can also appear between non contiguous tomographic 
bins. 

In this case, the standard $z scheme can not be expected to pre- 
serve the effects of such correlations, as the set of N tomo $z nuisance 
parameters are sampled independently from their corresponding 
priors in the Monte Carlo chain. By contrast, drawing a value of 
the HYPERRANK parameter(s) in a chain jointly specifies the n ( z) to 
be used in all tomographic bins and preserves these correlations, 
which can potentially lead to tighter contours on the cosmological 
parameters since the space of $z values is restricted to those allowed 
by the samples. Depending on the sign of the correlation, this can also 
result on a shift of the contours if the $z values fa v our a combination 
of high or low mean redshift only (positive correlation), instead of a 
combination of low and high mean redshift (ne gativ e correlation). To 
explore the potential effects of these correlations at the tomographic 
bin level on inferred cosmological parameters, we generate three 
sets of mean-shifted realizations of the fiducial BUZZARD n Fid ( z) by 
values of $z sampled from a covariance matrix with increasing 
correlation between tomographic bin pairs (1,2) and (3,4). This 
is intended to be a simple model of leakage of galaxies between 
adjacent tomographic bins, with more complicated models for bin 
correlation also possible. We generate the samples so their Pearson 
correlation coefficients take the values ρ = { 0.25, 0.5, 0.75 } , and 
employ the same coefficient for both bin pairs while leaving all other 
bin pairs uncorrelated ( ρ = 0). To better visualize the effects of these 
correlations once again, we use an amplified σ ( $z) prior to describe 
the diagonal of the covariance matrix, equal to the f m = 10 prior 
described in Section 4.2.1. We again run two chains, one in which 
a correlated Gaussian $z marginalization is used by drawing values 
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from a correlated prior with the same correlation matrix to that used 
to generate the proposal samples, and one in which a HYPERRANK 
marginalization is used. 

The result of this test is shown in Fig. 7 . We can again see 
that HYPERRANK correctly reco v ers the uncertainty in $z and S 8 
represented by the 2D posteriors. 
4.2.4 Higher-order modes of uncertainty 
The abo v e tests show that HYPERRANK is capable of correctly 
marginalizing o v er redshift distribution uncertainties in cases where 
a correct and simple model for them is known. Finally, in this section, 
we use a set of realizations of n ( z), which represent a fully flexible 
model of the uncertainty in n ( z), following the approach of Myles 
et al. ( 2021 ) and summarized in Section 4.1.2, as applied to the 
BUZZARD simulation. 

As abo v e for the cases of dif ferent v alues of f m , we apply a 
procedure to these realizations to artificially increase the level of 
uncertainty they represent. Starting from the set of 500 realizations, 
we amplify the difference between each of the n ( z i ) values and the 
value of the fiducial distribution, n f ( z i ), such that n ′ ( z i ) = n ( z i ) + 
λ[ n ( z i ) − n f ( z i )]. Hence, we decide to use the typical dispersion 
values found for 500 realizations for that amplification as the 
reference to e v aluate the contours obtained with HYPERRANK . For this 
test, we generate three sets of distributions: one with no amplification, 
λ = 0; and two with amplified peculiarities, λ = { 1 . 5 , 3 } . While 
the average n ( z) obtained from the amplified realizations remains 
unaltered, this procedure can result in a slightly wider equi v alent 
Gaussian prior σ ( $z) to those of the un-amplified realizations. Thus, 
we also obtain the σ ( $z) values for each set of distributions and use 
them to compare HYPERRANK to the standard $z marginalization. 

The results from this test are shown in Fig. 8 . As can be seen, the 
HYPERRANK and $z chains again reco v er highly consistent contours 
on the S 8 and 〈 z〉 parameters. For the λ = 0 case, the $z posterior on 
S 8 is 2.6 per cent narrower than the HYPERRANK one, for λ = 1.5 the 
$z posteriors are 16 per cent wider, and for λ = 3.0 the $z posterior 
is 18 per cent wider. This follows the idea that HYPERRANK is capable 
of better modelling of these more complex uncertainties, but that in 
the λ = 0 (DES-Y3-like) regime, $z is an acceptable approximation. 
4.3 Sampling efficiency and ranking mode 
As well as the correct exploration of the uncertainties, we also wish 
to see the effect of the HYPERRANK procedure on the efficiency of 
mapping the posterior of cosmological and nuisance parameters. For 
a randomly sampled set of distributions, the likelihood is not a smooth 
function of the parameters being sampled (see Fig. 2 ). Therefore, the 
parameter space volume cannot be sampled consistently in higher 
likelihood regions since there is no correlation between the sampled 
nuisance parameter and cosmology posterior. Any proposal step in 
the Monte Carlo algorithm typically does not have the intended effect, 
since proposed jumps in the redshift nuisance parameters are now 
across a random, discontinuous likelihood. This leads to the sampler 
requiring many more likelihood e v aluations to find new samples 
of the posterior. We define sampling efficiency η as the number of 
replacements (samples of the posterior) made by MULTINEST o v er 
the total number of likelihood e v aluations required for convergence, 
with higher η representing better performance. 

We test the different mapping schemes described in Section 3 
comparing 1D and 3D 〈 z〉 , 3D 〈 1/ χ〉 and a KL approach where the 
first K = 3 components are used. We compare the sampling efficiency 

Figure 9. The sampling efficiency η for the different mapping schemes 
described in Section 3, for three prior amplifications values f m ( f m = 1 is the 
original BUZZARD redshift distributions). The spread of points at each location 
shows the differences due to different initial random seeds. The rankings are 
ordered from left to right as a function of perceived complexity, with a random 
ranking being the most naive approach and a 3D KL corresponding to the 
most complex to implement. Horizontal dashed lines show the efficiencies 
obtained by marginalizing the same equi v alent uncertainty σ ( $z) using the 
$z method, obtained after averaging five runs with each equi v alent prior. 
between them and against a naive sampling where realizations are 
chosen at random on each likelihood e v aluation. To reduce the effect 
of sampling noise due to the stochastic nature of the sampler, we 
repeat each run five times with different initial random seeds for the 
sampler. 

Fig. 9 shows the sampling ef ficiencies η at dif ferent f m v alues as a 
function of different choices for descripti ve v alues d , all compared to 
the average efficiency from five runs obtained using the $z approach 
(dashed horizontal lines). The different colours used represent this 
test for dif ferent v alues of the f m parameter. In all cases it is clear 
that the more complex choices of d using multiple dimensions are 
more efficient at exploring the space of uncertainties, with 3D 〈 z〉 
and 3D 〈 1/ χ〉 showing better performance at all f m values. This is 
expected since the addition of more dimensions helps breaking the 
de generac y of the posterior values present when a single parameter 
is used and all the information of the n ( z) realizations is compressed 
into a single value. 

The KL approach, also tested in three dimensions, provides an 
impro v ement o v er random and 1D sampling, but does not reach the 
same levels of efficiency for methods of equal dimensionality. with 
respect to a reference data vector obtained at a fixed cosmology, 
and the relative importance of each n ( z) element can change as the 
sampler mo v es in a cosmology space. 

Perhaps one surprising result occurs when comparing the random 
approach against 1D 〈 z〉 in the un-amplified case ( f m = 1), in which 
the former appears ∼ 10 per cent more efficient. We believe this is 
caused by the relatively small contribution of n ( z) uncertainty to the 
posterior in the f m = 1 regime, as all realizations have very similar 
mean values across all tomographic bins. This can lead to a very 
small change of smoothness of the posterior at a fixed cosmology 
when moving from a random ordering to a 1D ordering, resulting in 
similar efficiencies. While we do not show the effect of additional 
dimensions for a similar type of descriptive value d (i.e. 4D 〈 z〉 ), 
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Figure 10. Reco v ered cosmological parameters for four different ranking 
approaches described in the text: 3D rankings by mean redshift and inverse 
comoving distance of tomographic bins, 3D ranking by principal components 
of the data vector, and random sampling of realizations. The contours shown 
correspond to the case where realizations sampled with HYPERRANK describe 
an uncorrelated Gaussian distribution with an amplification factor of the 
uncertainty f m = 5. For f m = 1, 10, the contours are also very similar between 
the different ranking schemes. 
some test runs suggest that their efficiency is not noticeably better 
than a 3D approach, at the expense of noisier posteriors on the H 
parameters. This is likely caused by the larger discontinuities in the 
posterior surface as a function of H, which is a consequence of 
the lower resolution of the multidimensional grid in higher N d (as 
discussed in Section 3.2). 

Based on these results, we consider a 3D approach an appropriate 
default configuration, with a preference for 〈 z〉 since its computation 
does not involve the use of a fiducial cosmology, unlike 〈 1/ χ〉 
(which requires calculation of χ ( z) for equation (4), done here and 
typically elsewhere at a fixed cosmology). When considering which 
three of the four tomographic bins to choose to use as HYPERRANK 
dimensions, we recommend that tomographic bins should be ordered 
in terms of the variance in the descripti ve v alue (e.g. the spread 
of different mean redshifts across different realizations), with the 
tomographic bin with lo west v ariance in the descripti ve v alue not 
used as a HYPERRANK dimension. 

In Fig. 10 , we show posterior contours reco v ered for each of the 
different ranking schemes, including the ‘Random’ scheme in which 
no ranking is performed. The consistency of these contours confirms 
that the HYPERRANK procedure does not affect the cosmology 
reco v ered while impro ving the efficienc y of a chain with respect 
to un-ranked, random sampling of n ( z) realizations. 
4.3.1 Convergence 
In HYPERRANK , discrete samples from the posterior o v er the subset 
of redshift nuisance parameters are generated outside of the main 
chain used to sample o v er the cosmological and other nuisance 
parameters. This means a limited and discrete set of values of 
the nuisance parameters are available to the main sampling, as 
opposed to the continuous range of parameters within a specified 

prior which would be available otherwise. While it could be possible 
to form an interpolation between closely ranked samples to boost 
their number, such interpolated samples would no longer carry the 
intended property of being true samples from the posterior for n ( z), 
with the interpolation scheme ef fecti vely becoming part of the model 
and correlation structure for histogram bin heights, with a set of 
hidden hyper-parameters. It is also unclear how such an interpolation 
could include the correlations across tomographic bins, which we 
have found to be an important describing factor of the samples. 

Without interpolation, there will be a transition from the regime in 
which there are too few realizations of n ( z) available to effectively 
explore the redshift distribution uncertainty, and the limit where 
infinitely many realizations would be available, corresponding to the 
continuous case. Here, we investigate the convergence of HYPER- 
RANK marginalization with respect to the number of n ( z) samples 
generated, for the case of our DES-Y3 simulated data set. 

We first generate several sets of distributions where each real- 
ization is a shifted version of a fiducial n Fid ( z), and the shifts are 
drawn from a Gaussian prior, following a similar approach to the $z 
method described in Section 2. We generate eight sets of redshift 
distributions, each containing 3 3 , 4 3 , 5 3 , 6 3 , 7 3 , 8 3 , 9 3 , and 10 3 
realizations, which are then ranked using the 3D default configuration 
described at the end of Section 3.2. 

Since we expect the approximate minimum number of realizations 
required for this convergence to depend on the level of uncertainty 
in the n ( z), we generate two additional sets of proposal distributions 
by multiplying the σ ( $z) obtained abo v e, by a factor f m = 5, 10. 
We then repeat the generation of proposal realizations with five 
different random seeds for each of the three f m values, and for 
each of the eight sets of realizations containing different number 
of proposals. By comparing the standard deviation on the central, 
lower, and upper confidence values for S 8 as a function of the number 
of realizations, we can find an approximate minimum number of 
realizations required for the standard deviation of error bars from 
HYPERRANK to converge to that obtained using the $z approach 
(which is formally correct for this set of realizations). In Fig. 11 , 
we observe that for all three levels of uncertainty, described by the 
amplification factor f m , 1000 realizations yield standard deviation of 
the error bars obtained using HYPERRANK comparable to the ones 
using the $z approach. 
5  APPLI CATI ON  TO  D E S  Y E A R  3  
Based on the abo v e tests, we derive an appropriate configuration for 
using HYPERRANK on DES-Y3 (or similar) data: 

(i) 〈 z〉 ranking 
(ii) Three HYPERRANK parameter dimensions 
(iii) Ranking according to tomographic bins 1, 2, and 4 
(iv) At least 10 3 n ( z) samples available to HYPERRANK 
We then run a full shear-only cosmology chain on the BUZZARD 

simulation of the DES-Y3 data set, with model parametrizations 
and priors as discussed in the main cosmology papers (Amon et al. 
2022 ; Secco et al. 2022 ), and with 1000 realizations of possible n ( z) 
generated using the full procedure of Myles et al. ( 2021 ). This, as 
closely as possible, mimics the experimental data and set-up of the 
DES-Y3 analysis. We also run a chain with this set-up, but with the 
HYPERRANK marginalization of redshift uncertainties replaced by the 
$z approach. This results of these two chains are shown in Fig. 12 . 
The left-hand panel shows the posteriors on mean redshift within 
the four tomographic bins, produced directly by the $z analysis 
and by taking the posterior weighted means within the HYPERRANK 
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Figure 11. Standard deviation of the lower (purple), central (red), and 
upper (cyan) values for the S 8 parameter obtained using HYPERRANK for five 
realizations of the ensemble of n ( z) samples, as a function of the total number 
of distributions to form the ensemble. From top to bottom, the equi v alent 
σ ( $z) width is amplified by a progressively larger number, f m , with respect 
to the original distributions of BUZZARD samples. Horizontal dashed lines 
indicate the typical standard deviation for runs using the traditional $z 
marginalization approach. 
analysis. Good consistency can be seen in the space of mean redshifts 
explored. The right-hand panel of Fig. 12 shows posteriors on 
the cosmological parameters, and the HYPERRANK parameters for 
each tomographic bin. For the cosmological parameters, we also 
show the reco v ered posterior from the $z analysis, finding highly 
consistent results between the two approaches. This suggests that 
for the uncertainties which are modelled as a part of the DES- 
Y3 analysis, the $z approach is adequate to fully explore their 
effect on cosmic shear cosmological parameters. The $z approach 
is hence adopted as fiducial in Amon et al. ( 2022 ) and Secco 
et al. ( 2022 ) and subsequent DES-Y3 analyses, with the validation 
test between HYPERRANK and $z shown here on the BUZZARD 
simulation repeated for the real data vector in section E.1. of Amon 
et al. ( 2022 ). 

We also show the reco v ered posteriors on HYPERRANK ranking 
parameters, sho wing that dif ferent subspaces of the ranked n ( z) 
realizations are indeed fa v oured in a systematic way, indicating the 
cosmological data are in turn helping constrain the space of plausible 
redshift distributions. 
6  C O N C L U S I O N S  
We have presented HYPERRANK , a new approach to marginalize 
o v er redshift distribution uncertainties in weak lensing and galaxy 
clustering experiments by ranking and mapping a set of proposal 
redshift distributions to a set of continuous hyper-parameter, which 
are then sampled in the Monte Carlo chain. 

To test the accuracy of the method, we generated a series of n ( z) 
ensembles to describe different types of uncertainty, and compared 
the obtained S 8 error estimates and sampled uncertainty to those 
obtained by only marginalizing o v er a shift $z along the redshift 
direction for each tomographic bin. 

We showed that this approach provides equi v alent results to the 
ones obtained marginalizing o v er $z, when the realizations of the 
ensemble are obtained by shifting the tomographic bins of a fiducial 
distribution by a set of values drawn from the same prior used to 
describe the $z uncertainty. 

We generated additional ensembles to represent types of uncer- 
tainty which cannot be fully characterized by a set of uncorre- 
lated Gaussian shifts $z, and if unaccounted for, can lead to an 
incorrect estimation of the marginalized cosmological parameters 
posteriors. These included samples with $z shifts drawn from non- 
Gaussian distributions, drawn from highly correlated multi v ariate 
Gaussian distributions and from a set of realistic distributions 
with amplified peculiarities, based on the estimates obtained from 
the SOMPZ scheme on the BUZZARD simulations. In all cases, 
HYPERRANK correctly explores the uncertainty described by the 
input distribution ensemble, providing posteriors on the cosmo- 
logical S 8 and redshift tomographic bin means 〈 z〉 , which are 
highly consistent with those from the estimates obtained using 
marginalization with $z nuisance parameters, which are distributed 
according to the input model (and hence are the correct model for the 
uncertainty). 

A set of tests were conducted to obtain an approximately optimal 
configuration for the choice of descriptive values which are used 
to rank the distributions and the subsequent effect on sampling 
efficiency, resulting in the use of mean redshift of a subset of 
tomographic bins, 〈 z〉 n being the choice of ranking parameter that 
gives the best efficiency (lowest number of likelihood evaluations 
per posterior sample required for convergence of the chain). As 
estimation of the minimum number of samples required for posterior 
estimates to become less noisy that the typical sampling noise 
in standard $z marginalization is also provided for the expected 
photometric redshift uncertainties of source distributions of the DES- 
Y3 analysis. 

Tests were conducted simulating a cosmic shear analysis where 
only a subset of cosmological and systematic parameters are inferred, 
compared to a full cosmic shear plus galaxy clustering case. Despite 
this, HYPERRANK is not limited to cosmic shear analysis and can 
be used without significant modifications on cosmic shear plus 
galaxy clustering (3x2pt) analysis. We do not expect our conclu- 
sions to vary significantly for 3x2pt analysis. Similarly, while tests 
here focus on the propagation of uncertainty from source galaxy 
redshift distributions, HYPERRANK can be used to simultaneously 
and independently propagate uncertainties from the lens sample 
of galaxies for galaxy clustering plus tangential shear (2x2pt) 
and 3x2pt. 

For the particular levels of uncertainty expected for the DES- 
Y3 analysis, we showed that the difference in obtained confidence 
contours between the standard approach using $z shifts and HYPER- 
RANK are small, and hence concluded that $z was sufficient for the 
requirements of DES-Y3. For the level of uncertainties present in 
DES-Y3, we have demonstrated that it is satisfactory to use the $z 
approach which, while not as accurate as the HYPERRANK approach, 
typically allows for faster convergence of the Monte Carlo inference 
chains, as can be seen as the dashed horizontal lines in Fig. 9 , which 
show the efficiencies for $z. 

HYPERRANK provides a well-moti v ated approach for marginalizing 
o v er the redshift distribution uncertainty affecting cosmological 
galaxy clustering and weak lensing surv e ys. It is nominally capable 
of marginalizing o v er an y potential form of such an uncertainty, 
subject to the ability to generate realizations samples of possible 
n ( z) using a model for the uncertainty. It thus also provides a much 
more complete and flexible approach to the commonly used and 
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Figure 12. Correlation between redshift distribution uncertainty nuisance parameters in the BUZZARD simulated DES-Y3 analysis, comparing the standard $z 
approach (red) with the HYPERRANK approach presented in this work (blue). Left shows the reco v ered posteriors on mean redshifts of redshift distributions within 
the tomographic bins considered. Right shows the reco v ered cosmological parameters for both approaches, and the HYPERRANK ranking parameters. Both show 
good agreement between the two approaches for the modelled uncertainty expected in DES-Y3. 
ad-hoc $z approach, while still being able to contain that particular 
model and replicate findings made using it. 
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