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A B S T R A C T 
In this work, we present the galaxy clustering measurements of the two DES lens galaxy samples: a magnitude-limited sample 
optimized for the measurement of cosmological parameters, MAGLIM , and a sample of luminous red galaxies selected with 
the REDMA GIC algorithm. MA GLIM / REDMA GIC sample contains o v er 10 million/2.5 million galaxies and is divided into six/five 
photometric redshift bins spanning the range z ∈ [0.20, 1.05]/ z ∈ [0.15, 0.90]. Both samples co v er 4143 de g 2 o v er which we 
perform our analysis blind, measuring the angular correlation function with an S/N ∼ 63 for both samples. In a companion 
paper, these measurements of galaxy clustering are combined with the correlation functions of cosmic shear and g alaxy–g alaxy 
lensing of each sample to place cosmological constraints with a 3 × 2pt analysis. We conduct a thorough study of the mitigation 
of systematic effects caused by the spatially varying surv e y properties and we correct the measurements to remo v e artificial 
clustering signals. We employ several decontamination methods with different configurations to ensure the robustness of our 
corrections and to determine the systematic uncertainty that needs to be considered for the final cosmology analyses. We validate 
our fiducial methodology using lognormal mocks, showing that our decontamination procedure induces biases no greater than 
0.5 σ in the ( "m , b ) plane, where b is the galaxy bias. 
Key words: cosmological parameters – cosmology: observations – dark energy – large-scale structure of the Universe. 
1  I N T RO D U C T I O N  
The current Standard Model of Cosmology, # CDM, provides an 
excellent fit to current observations, including distance measure- 
$ E-mail: rodriguez-monroy@ijclab.in2p3.fr (MR); nweaverd@umich.edu 
(NW); elvin-poole.1@osu.edu (JE) 

ments to Type Ia supernovae (SN Ia; Riess et al. 1998 ; Perlmutter 
et al. 1999 ), the cosmic microwave background (CMB) fluctuations 
(Spergel et al. 2003 ; Planck Collaboration XI 2020 ), and the large- 
scale structure of the Universe (Alam et al. 2017 ; Abbott et al. 
2019 ; Alam et al. 2021 ), with only six free parameters. In addition, 
photometric galaxy surv e ys, such as the Kilo-Degree Survey (KiDS, 
de Jong et al. 2013 ), Hyper Suprime-Cam Subaru Strategic Program 
(HSC-SSP; Aihara et al. 2018 ) and the Dark Energy Surv e y (DES, 
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2666 DES Collaboration 
The Dark Energy Surv e y Collaboration 2005 ) are now reaching 
a level of sensitivity that competes and complements the precise 
determinations from CMB observatories. The comparison of the 
measurements of the late Univ erse, pro vided by galaxy surv e ys, 
and the early Univ erse, pro vided by CMB measurements, allows 
for powerful tests of the nature of cosmic acceleration and general 
relativity. The precision that photometric surv e ys are able to reach 
in the determination of cosmological parameters comes from the 
combination of dif ferent observ ables, mainly from weak lensing 
and clustering of galaxies, in the so-called 3 × 2pt analysis, whose 
methodology is described in DES Collaboration ( 2018a ), van Uitert 
et al. ( 2018 ), Joudaki et al. ( 2018 ), Heymans et al. ( 2021 ), and Krause 
et al. ( 2021 ) (and references therein). 

In this work, we present the clustering measurements of the 
lens galaxy samples that enter in the DES Year 3 (Y3) 3 × 2pt 
(DES Collaboration et al. 2022 ) and the 2 × 2pt (Elvin-Poole 
et al. 2021 ; P ande y et al. 2021 ; Porredon et al. 2021a ; Prat et al. 
2021 , in combination with the shear field or g alaxy–g alaxy lensing) 
analyses. The cosmological information is extracted from the large- 
scale structure (LSS) measurements using the angular two-point 
correlation function that characterizes the spatial distribution of 
galaxies in tomographic photometric redshift bins. Ho we ver, the 
measurement of the angular correlation function is affected by 
spatially varying surv e y properties that must be taken into account 
and corrected to extract the full cosmological power of DES. These 
systematic effects come from the observing conditions and translate 
into changes in the selection function across the observed footprint 
or with redshift. 

As photometric surv e ys hav e become more extended in area, both 
the impact of these surv e y properties or observational effects, and 
the diminishing statistical errors, have spurred the development of a 
variety of techniques to correct for them in clustering measurements. 
Already in SDSS (Scranton et al. 2002 ; Myers et al. 2006 ) and 
2MASS (Maller et al. 2005 ), cross-correlations with different surv e y 
properties and masking were used to check for possible sources of 
systematic error, which were deemed to be insignificant given the 
statistical errors. Ross et al. ( 2011 ) compared several methodologies 
(masking, cross-correlation correction and computing weights for 
the data) in SDSS-III. The cross-correlation correction method was 
applied to early DES data (DES-SV) in Crocce et al. ( 2016 ), and was 
studied by Elsner, Leistedt & Peiris ( 2016 ) (there called ‘template 
subtraction’) who derived its characteristic bias. The application 
of weights have increasingly become a popular method, applied 
for instance in BOSS (Ross et al. 2017 , 2020 ), eBOSS (Laurent 
et al. 2017 ; Raichoor et al. 2021 ), DES-SV (Kwan et al. 2017 , 
comparing with the cross-correlation method), DES Y1 data (Elvin- 
Poole et al. 2018 ), and DESI targets (Kitanidis et al. 2020 ). Rather 
than applying weights to the observed data, the inverse-weights 
can be applied to the random sample used for correlation function 
analyses, as shown in Morrison & Hildebrandt ( 2015 ) and applied 
to eBOSS data via a multilinear regression analysis in (Bautista 
et al. 2018 ; Icaza-Lizaola et al. 2020 ). These approaches have been 
refined in recent years as the importance of addressing these spatial 
systematics has grown (Vakili et al. 2020 ; Wagoner et al. 2021 ; 
Weaverdyck & Huterer 2021 ), including the development of machine 
learning approaches using neural networks (NNs; Rezaie et al. 2020 ) 
or self-organizing maps (Johnston et al. 2021 ). Some approaches 
have operated only at the level of the power spectrum, including 
mode projection methods (Rybicki & Press ( 1992 ) with examples 
of applications and further developments shown in Leistedt et al. 
( 2013 ), Leistedt & Peiris ( 2014 ), Elsner et al. ( 2016 ), and Elsner, 
Leistedt & Peiris ( 2017 ). Weaverdyck & Huterer ( 2021 ) re vie wed 

several of the above techniques and sho wed ho w mode projection 
methods operating on the pseudo-power spectrum are related to 
multilinear regression methods, identifying residual biases in both 
approaches. 

We present the methods we apply to DES-Y3 data in order to 
mitigate these effects, the full set of validation tests we perform, 
both on data and on simulations, and its final implementation on the 
data. These corrections enable robust measurements of the clustering 
amplitude of lens galaxies. The results of this analysis are used as 
the clustering input for the full 3 × 2pt cosmological analysis in 
DES-Y3 (DES Collaboration et al. 2022 ). 

This paper is organized as follows: In Section 2, we describe 
the modeling of the galaxy clustering angular correlation function 
used throughout the Y3 analysis. In Section 3, we introduce the 
Y3 data and the galaxy samples derived from it. In Section 4, 
we present the description of different observing conditions and 
their representation. In Section 5, we present the methodology, with 
special attention to the decontamination pipeline (Sections 5.3.1 and 
5.3.2). In Section 6, we show the galaxy clustering results after 
applying the correction methods. This correction is validated in 
Section 7. In Section 8, we discuss the post-unblinding findings 
about the amplitude of the angular correlation functions in terms of 
the considered surv e y properties. Finally, we present the conclusions 
in Section 9. 
2  M O D E L L I N G  
The observed projected galaxy density contrast δi 

obs ( ̂  n ) of galaxies in 
tomography bin i at position ˆ n can be written as 
δi 

g , obs ( ̂  n ) = ∫ d χ W i δ ( χ ) δ(3D) 
g ( ̂  n χ , χ ) 

︸ ︷︷ ︸ 
δi 

g , D ( ̂ n ) 
+ δi 

g, RSD ( ̂  n ) + δi 
g ,µ( ̂  n ) , (1) 

with χ the comoving distance, W i δ = n i g ( z ) d z / d χ the normalized 
selection function of galaxies in tomographic bin i . Here the first 
term is the line-of-sight projection of the three-dimensional galaxy 
density contrast, δ(3D) 

g ; the remaining terms are the contributions 
from linear redshift-space distortions (RSDs) and magnification ( µ), 
which are described in Krause et al. ( 2021 ). 

We model the galaxy density assuming a local, linear galaxy bias 
model (Fry & Gaztanaga 1993 ), where the galaxy and matter density 
fluctuations are related by δg ( x ) = b δm ( x ), with density fluctuations 
defined by δ ≡ ( n ( x ) − n̄ ) / ̄n . We model the linear galaxy bias to be 
constant across each tomographic bin, denoted as b i . The validity 
of these assumptions to the accuracy of the Y3 3 × 2pt analysis 
is demonstrated in Krause et al. ( 2021 ) (see section V.B.2 and 
also DeRose et al. 2021 , where it is determined that the redshift 
evolution of linear galaxy bias within redshift bins is negligible for 
the clustering and g alaxy–g alaxy lensing combined analyses). 

The angular power spectrum consists of six different terms, 
corresponding to auto- and cross-power spectra of galaxy density, 
RSD and magnification. For Y3, we use the exact (non-Limber) 
computation for angular clustering. For a quantitative analysis of 
the impact of the Limber approximation on near-future data sets, see 
Fang et al. ( 2020 ). For example, the exact expression for the density–
density contribution to the angular clustering power spectrum is 
C ij δg , D δg , D ( ' ) = 2 

π

∫ 
d χ1 W i δ ( χ1 ) ∫ d χ2 W j δ ( χ2 ) 

×
∫ 

d k 
k k 3 P gg ( k, χ1 , χ2 ) j ' ( kχ1 ) j ' ( kχ2 ) , (2) 
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DES Y3: clustering and systematics mitigation 2667 
with j ' ( k χ ) Bessel functions of order ' and P gg ( k , z 1 , z 2 ) the 3D 
galaxy power spectrum in real space. The full expressions including 
magnification and RSD are given in Fang et al. ( 2020 ). Schematically, 
the integrand in equation (2) is split into the contribution from non- 
linear evolution, for which unequal time contributions are negligible 
so that the Limber approximation is sufficient, and the linear- 
e volution po wer spectrum, for which time e volution factorizes. 1 

The angular correlation function is then given by 
w i ( θ ) = ∑ 

' 
2 ' + 1 

4 π P ' ( cos θ ) C ii δg , obs δg , obs ( ' ) , (3) 
where P ' are the Legendre polynomials. 

Throughout this paper, we use the COSMOSIS framework 2 (Zuntz 
et al. 2015 ) to compute correlation functions, and to infer cosmo- 
logical parameters. The evolution of linear density fluctuations is 
obtained using the CAMB (Lewis & Bridle 2002 ) module 3 and then 
converted to a non-linear matter power spectrum P NL ( k ) using the 
updated HALOFIT recipe (Takahashi et al. 2012 ). Nevertheless, the 
baseline model used for this analysis assumes linear galaxy bias, so 
the relation between galaxy and matter power spectra is given by P gg 
= b 2 P mm ( k ) (see Krause et al. 2021 , for a more general expression 
and for the validation of this model). 

We model (and marginalize o v er) photometric redshift bias un- 
certainties as an additive shift )z i in the galaxy redshift distribution 
n i g ( z) for each redshift bin i : 
n i g ( z) → n i g ( z − )z i ) , (4) 
and a stretch parameter to characterize the uncertainty on the width 
for some of the tomographic bins and samples: 
n i g ( z) → n i g (σ i 

z [ z − 〈 z〉 ] + 〈 z〉 ) . (5) 
The priors on the )z i and σz i nuisance parameters are measured 

and calibrated directly using the angular cross-correlation between 
the DES sample and a spectroscopic sample, as described in Cawthon 
et al. ( 2020 ). We use the same )z i and σz i as in the Y3 3 × 2pt 
analysis for all tests of robustness of the parameter constraints, as 
listed in Table 3 . 
3  DATA  
The Dark Energy Surv e y collected imaging data with the Dark 
Energy Camera (DECam; Flaugher et al. 2015 ) mounted on the 
Blanco 4m telescope at the Cerro Tololo Inter-American Observatory 
(CTIO) in Chile during six years, from 2013 to 2019. The observed 
sky area covers ∼5000 deg 2 in five broad-band filters, grizY , covering 
near-infrared and visible w avelengths. This w ork uses data from 
the the first 3 yr (from 2013 August to 2016 February), with 
approximately four o v erlapping e xposures o v er the full wide-field 
area, reaching a limiting magnitude of i ∼ 23.3 for signal-to-noise 
ratio (S/N) = 10 point sources. The data were processed by the 
DES Data Management system (Morganson et al. 2018 ) and, after 
a complex reduction and vetting procedure, compiled into object 
catalogues. The catalogue used here amounts to nearly 400 million 
sources (available publicly as Data Release 1 4 ; DES Collaboration 
2018b ). We calculate additional metadata in the form of quality 
flags, surv e y flags, surv e y property (SP) maps, object classifiers, and 
1 https:// github.com/xfangcosmo/ FFTLog- and- beyond . 
2 https:// bitbucket.org/ joezuntz/cosmosis . 
3 http://camb.info . 
4 https:// des.ncsa.illinois.edu/ releases/dr1 . 

photometric redshifts to build the Y3 GOLD data set (Sevilla-Noarbe 
et al. 2021 ). 

From this catalogue, we build the different galaxy samples for LSS 
studies. For robustness, we decided to use two different types of lens 
galaxies, MA GLIM and REDMA GIC , which are used as lens samples 
for galaxy clustering and for combination with weak lensing for the 
3 × 2pt analysis. These two samples are described in the following 
subsections. 5 
3.1 Y3 MAGLIM sample 
The main lens sample considered in this work, MAGLIM , is the result 
of the optimization carried out in Porredon et al. ( 2021b ). The sample 
is designed to maximize the cosmological constraining power of the 
combined clustering and g alaxy–g alaxy lensing analysis (also known 
as 2 × 2pt) keeping the selection criterion as simple as possible. The 
selection cuts, based on the table columns from Sevilla-Noarbe et al. 
( 2021 ), are as follows: 

(i) flags foreground = 0 & flags footprint = 1 & bi- 
tand( flags badregions ,2) = 0 & bitand( flags gold ,126) = 0; 

(ii) star-galaxy separation with EXTENDED CLASS MASH SOF 
= 3; 

(iii) i < 4 · z phot + 18; 
(iv) i > 17.5; 
The first cut is a quality flag to remo v e badly measured objects 

or objects with issues in the processing steps. It also remo v es 
problematic regions due to astrophysical foregrounds. The second cut 
remo v es stars from the galaxy sample. The faint magnitude cut in the 
i band depends linearly on the photometric redshift, z phot , and selects 
bright galaxies. The photometric redshift estimator used for this 
sample is the Directional Neighbourhood Fitting ( DNF ; De Vicente, 
S ́anchez & Sevilla-Noarbe 2016 ) algorithm (see also Porredon et al. 
2021a ), in particular its mean estimate using 80 nearest neighbours 
in colour and magnitude space, by performing a hyperplane fit. The 
brighter magnitude cut remo v es residual stellar contamination from 
binary stars and other bright objects. 

The number and width of the redshift bins is studied in Porredon 
et al. ( 2021b ), where they e v aluate the impact of this kind of choices 
on the 2 × 2pt constraining power in wCDM (Fisher forecasts and 
MCMC sampling of the posterior distributions of "m , σ 8 , and w). 
We split the sample into six tomographic lens bins, with bin edges 
z phot = [0.20, 0.40, 0.55, 0.70, 0.85, 0.95, 1.05]. These edges have 
been slightly modified with respect to Porredon et al. ( 2021b ) in 
order to impro v e the photometric redshift calibration (De Vicente 
et al. 2016 ). We refer the reader to Porredon et al. ( 2021b ) for more 
details about the optimization of this sample and its comparison with 
REDMAGIC and other flux-limited samples. The main properties of 
the sample are summarized at the top panel of Table 1 . 
3.2 Y3 REDMAGIC sample 
The REDMAGIC algorithm selects luminous red galaxies (LRGs) 
according to the magnitude–colour–redshift relation of red sequence 
galaxy clusters, calibrated using an o v erlapping spectroscopic sam- 
ple. This sample is defined by an input threshold luminosity L min 
5 Moreo v er, from Y3 GOLD . we also define the BAO SAMPLE , a galaxy 
sample especially defined for studies on the baryonic acoustic oscillation 
scales (Carnero Rosell et al. 2021 ), which is not used here, but undergoes an 
analogous treatment of its spatial systematics. 
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2668 DES Collaboration 
Table 1. MAGLIM (top table) and REDMAGIC (bottom table) characterization 
parameters: number of galaxies, N g , and number density, 〈 n g 〉 , blind galaxy 
bias, b i , and scales excluded per redshift bin. 
Redshift bin N g 〈 n g 〉 b i θ > [arcmin] 

MAGLIM 
0.20 < z < 0.40 2236 462 0.150 1.5 33.88 
0.40 < z < 0.55 1599 487 0.107 1.8 24.35 
0.55 < z < 0.70 1627 408 0.109 1.8 17.41 
0.70 < z < 0.85 2175 171 0.146 1.9 14.49 
0.85 < z < 0.95 1583 679 0.106 2.3 12.88 
0.95 < z < 1.05 1494 243 0.100 2.3 12.06 

REDMAGIC 
0.15 < z < 0.35 330 243 0.022 1.7 39.23 
0.35 < z < 0.50 571 551 0.038 1.7 24.75 
0.50 < z < 0.65 872 611 0.059 1.7 19.66 
0.65 < z < 0.80 442 302 0.030 2.0 15.62 
0.80 < z < 0.90 377 329 0.025 2.0 12.40 
Notes . The number densities are in units of arcmin −2 and the scales excluded 
correspond to 8 Mpc h −1 for both samples, as described in Krause et al. 
( 2021 ). The blind galaxy bias values correspond to the fiducial values that 
were assumed to create the lognormal mocks used in this analysis, not the 
best-fitting values from 3 × 2pt. 
and constant co-moving density. The full REDMAGIC algorithm 
is described in Rozo et al. ( 2016 ). REDMAGIC is the algorithm 
used for the fiducial clustering sample of the DES Y1 3 × 2pt 
cosmology analyses (DES Collaboration 2018a ; Elvin-Poole et al. 
2018 ), with some updates improving the redshift estimates and 
selection uniformity, besides the usage of new photometry from Y3 
GOLD . 

We define the Y3 REDMAGIC sample in five tomographic 
lens bins, selected on the REDMAGIC redshift point estimate 
quantity zredmagic . The bin edges used are z REDMAGIC = 
[0 . 15 , 0 . 35 , 0 . 50 , 0 . 65 , 0 . 80 , 0 . 90]. The first three bins use a lumi- 
nosity threshold of L min > 0.5 L ∗ and are known as the high density 
or highdens sample. The last two redshift bins use a luminosity 
threshold of L min > 1.0 L ∗ and are known as the high luminosity or 
highlum sample. 

The REDMAGIC selection also includes the following cuts on 
quantities from the Y3 GOLD catalogue and REDMAGIC calibration: 

(i) Remo v ed objects with FLAGS GOLD in 8 | 16 | 32 | 64. 
(ii) Star galaxy separation with EXTENDED CLASS MASH SOF 

≥2. 
(iii) Cut on the red-sequence goodness of fit χ2 < χ2 

max ( z). 
The main properties of the sample are summarized in the bottom 

part of Table 1 . See Sevilla-Noarbe et al. ( 2021 ) for further details 
on these quantities. 
3.3 Angular mask 
The total sky area covered by the Y3 GOLD catalogue footprint is 
4946 deg 2 . We then mask regions where astrophysical foregrounds 
(bright stars or large nearby galaxies) are present, or where there are 
known processing problems (‘bad regions’), reducing the total area 
by 659 . 68 deg 2 (Sevilla-Noarbe et al. 2021 ). The angular mask is 
defined as a HEALPIX 6 (G ́orski et al. 2005 ) map of resolution N side 
= 4096. Pixels with fractional coverage smaller than 80 per cent 
6 https://healpix.sourceforge.io . 

are remo v ed. In addition, we require homogeneous depth across 
the footprint for both galaxy samples, removing too shallow or 
incomplete regions. As a summary, we use the following Y3 GOLD 
and REDMAGIC specific map quantities to define the final common 
area: 

(i) footprint = 1; 
(ii) foregrounds = 0; 
(iii) badregions ≤1; 
(iv) fracdet > 0.8; 
(v) depth i band ≥22.2; 
(vi) z MAX, highdens ≥0.65; 
(vii) z MAX, highlum ≥0.95. 

where the depth for the i -band magnitude is obtained using the 
SOF photometry (detailed in Sevilla-Noarbe et al. 2021 ) (as used 
in MAGLIM ) and the conditions on ZMAX are inherited from the 
REDMAGIC redshift span. The z MAX quantity is the maximum redshift 
at which a REDMAGIC galaxy can be detected with the luminosity 
threshold employed (0.5 L ∗ for REDMAGIC highdens and 1.0 L ∗ for 
highlum ), given the depth of the survey at that location. We only 
remo v e pix els where z MAX is lower than the upper edge of the 
redshift bin, so we have Z MAX, highdens < 0.65 and z MAX, highlum < 0.95 
for this sample. Initially (well before unblinding), we considered an 
upper redshift bin edge of 0.95, but this was reduced to 0.90 due to 
poor co v erage in the spectroscopic sample employed for validation 
(Cawthon et al. 2020 ). Ho we ver, we decided to keep the definition 
of the angular mask at Z MAX, highlum ≥ 0.95 for compatibility with 
other parts of the DES Y3 analysis for which the angular mask was 
already fixed. This is also a more conserv ati ve cut, since it removes 
pixels at the edge of the depth cut. The final analysed sky area is 
4143 deg 2 . 
4  SURVEY  PROPERTIES  
4.1 SP maps 
Through their impact on the galaxy selection function, surv e y 
properties can modify the observed galaxy density field. In order 
to correct these effects, we develop spatial templates for potential 
contaminants by creating HEALPIX sky maps of survey properties (‘SP 
maps’), which we then use to characterize and remo v e contamination 
from the observed density fields (see Leistedt et al. 2016 , for the 
details of the original implementation of this mapping in DES). 
Each pixel of a given SP map corresponds to a summary statistic 
that characterizes the distribution of values of the measured quantity 
o v er multiple observations. Table 2 summarizes the surv e y properties 
considered in this analysis along with the summary statistics used 
to produce the SP maps. As foreground sources of contamination 
we use a star map created with bright DES point sources, labeled 
stellar dens (the star map from which the stellar density map is 
made, stars 1620 , has the cut 16 < i < 20), and the interstellar 
extinction map from Schlegel, Finkbeiner & Davis ( 1998 ), sfd98 . 7 
More detailed information on the construction of these maps can be 
found in Sevilla-Noarbe et al. ( 2021 ). Hereafter, we will use SP map 
to refer to SP and foreground maps generically. 
7 We hav e v erified that substituting the DES point sources map with the 
Gaia EDR3 star map (Gaia Collaboration 2020 ) and the sfd98 map with the 
Planck 2013 thermal dust emission map (Planck CollaborationVI 2014 ) has 
no significant impact on the results. 
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DES Y3: clustering and systematics mitigation 2669 
Table 2. Surv e y properties used for the systematics mitigation effort of the 
DES Y3 Key Project, along with their physical units and the statistics used 
to generate SP maps from the stacking of images. 
Quantity Units Statistics 
airmass ∅ WMEAN, MIN, MAX 
fwhm arcsec WMEAN, MIN, MAX 
fwhm fluxrad arcsec WMEAN, MIN, MAX 
exptime s SUM 
t eff ∅ WMEAN, MIN, MAX 
t eff exptime s SUM 
skybrite electrons/CCD pixel WMEAN 
skyvar (electron s/CCD pixel) 2 WMEAN, MIN, MAX 
skyvar sqrt electrons/CCD pixel WMEAN 
skyvar uncertainty electrons/ s × coadd pixel 
sigma mag zero mag QSUM 
fgcm gry mag WMEAN, MIN 
maglim mag 
sof depth mag 
magauto depth mag 
stars 1620 # stars 
stellar dens stars/ deg 2 
sfd98 mag 
Notes . As foreground sources of contamination, we use a DES bright stars 
map and the dust extinction map from Schlegel et al. ( 1998 ). We use both 
the raw number count of DES point sources, stars 1620 , and the density, 
stellar dens . We use an SP map for each statistic in each photometric band 
in { g , r , i , z } (with the exception of stars 1620 , stellar dens , and sfd98 ), 
resulting in 107 total SP maps. 
4.2 Reduced PCA map basis 
The Y1 analysis used 21 SP maps selected a priori. Ho we ver, a 
reduced set of SP maps is equi v alent to setting a hard prior of no 
contamination from those SP maps that are unused, so we should be 
careful to not discard spatial templates that carry unique information 
about potential systematics (Weaverdyck & Huterer 2021 ). For Y3 
we have initially increased the number of SP maps considered to 107. 
By expanding the library of SP maps used for cleaning, we relax the 
implicit priors and adopt a more data-driven approach to cleaning 
observational systematics from the clustering data. 

Many of the Y3 additional SP maps we use are alternative summary 
statistics for characterizing the observed quantity, such as MIN and 
MAX instead of the weighted mean (WMEAN), which results in a 
high correlation between SP maps. We therefore create an orthogonal 
set of SP maps by using the principal components of the pixel 
covariance matrix across all 107 SP maps (standardized to zero mean 
and unit variance) at N side = 4096. 8 This provides an orthornormal 
basis set of SP maps that can be ordered according to the total variance 
they capture in the space spanned by the 107 SP maps. We will refer 
to these principal component maps as PC maps to differentiate from 
SP maps in the standard (STD) basis, where each map represents a 
single SP (e.g. exptime ). From this point forward, we will use ‘SP’ 
map to more generically refer to maps that may be in either the PC 
or STD basis. We retain the first 50 PC maps, which account for 
∼98 per cent of the variance of the full 107 map basis. This allows 
8 We use this resolution because we wish to apply the correction to the data at 
the maximum resolution available. This is provided by DESDM (Morganson 
et al. 2018 ), which generates the SP maps at N side = 4096, which is a good 
compromise between computational speed and needed resolution for this 
cosmological analysis. We verify that the difference in the variance explained 
by A) the principal component maps at N side = 4096 and then degraded to 512 
and B) the maps obtained after performing a PCA at N side = 512 is negligible. 

us to capture the dominant features of the additional maps while 
reducing the risk of removing real LSS signal from overfitting (we 
note that we use PCA to decorrelate the STD maps and after that we 
find it convenient to reduce their number, so we employ this same 
formalism for this task). We test the impact of adjusting the number 
of PC maps used in Section 8 and Appendix D, finding that the 
full set of 107 maps results in galaxy weights that o v ercorrect and 
correlate significantly with LSS. The fiducial set of maps employed 
to decontaminate the data are these first 50 PC maps, although we 
have also run validation tests with the STD maps, as we explain in 
the next sections. 
5  ANALYSI S  TOOLS  A N D  M E T H O D O L O G Y  
5.1 Clustering estimator 
The analysis of the galaxy clustering is performed by measuring 
the angular two-point correlation function, w( θ ), in photometric 
redshift bins. In this analysis, we work with HEALPIX (G ́orski et al. 
2005 ) maps of the SPs and galaxy density from lognormal mock 
catalogues. The decontamination methods generate HEALPIX weight 
maps as well. Weights are actually obtained for each SP pixel, so we 
also work with pix elized v ersions of our galaxy samples, and use a 
pix el-based v ersion of the Landy–Szalay estimator (Landy & Szalay 
1993 ), following the notation of Crocce et al. ( 2016 ): 
ˆ w ( θ ) = N pix ∑ 

i= 1 
N pix ∑ 
j= 1 

( N i − N̄ ) × ( N j − N̄ ) 
N̄ 2 * i, j , (6) 

where N i is the galaxy number density in pixel i , N̄ is the mean galaxy 
number density o v er all pixels within the footprint, and * i, j is a top- 
hat function that is equal to 1 when pixels i and j are separated by an 
angle θ within the bin size )θ . The fractional co v erage of each pix el 
is taken into account in the calculation of N i and N̄ . These correlation 
functions are calculated using TREECORR 9 (Jarvis, Bernstein & Jain 
2004 ). We verify on the data that the difference between this pixel 
version of the estimator at both N side = 4096 and 512 and that using 
random points is negligible for the angular scales we consider. 
5.2 Lognormal mocks 
We rely on a set of lognormal mock realizations of the observed data 
to e v aluate the significance of the correlation between data and SP 
maps following the methodology of Elvin-Poole et al. ( 2018 ) and 
Xavier, Abdalla & Joachimi ( 2016 ). For each of our galaxy samples, 
we create a set of 1000 mocks that matches their mean galaxy 
number density and power spectrum. We generate full-sky mock 
catalogues at a HEALPIX resolution of N side = 512, corresponding 
to ∼0 . ◦11 pixels. We then apply the DES-Y3 angular mask. This 
angular resolution is small enough to be used for the scales employed 
in the cosmology analysis. The usage of these mocks is co v ered 
in Section 5.3.1. We also create sets of contaminated lognormal 
mocks that we later use to validate our decontamination methods. 
These mocks incorporate the effect of SP maps observed on the 
data. Appendix A contains more details about their creation and 
contamination. 

9 ht tps://rmjarvis.git hub.io/TreeCor r . 
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5.3 Correction methods 
The observed galaxy sample has contamination from observing 
conditions and foregrounds, which modify the selection function 
across the surv e y footprint. Our goal is to correct these effects in 
the lens galaxy samples. To do so, we create a set of weights to 
apply to the galaxy samples, constructed from a list of SP maps. 
The weighted sample is then used for measurements of w( θ ) and for 
combination with weak lensing measurements (DES Collaboration 
et al. 2022 ; Elvin-Poole et al. 2021 ; P ande y et al. 2021 ; Porredon et al. 
2021a ). This approach has been successfully applied to the angular 
correlation function of the DES Year 1 clustering measurements 
(Elvin-Poole et al. 2018 ), as well as in SDSS-III (e.g. in Ross et al. 
2011 , 2017 ), eBOSS (Laurent et al. 2017 ; Bautista et al. 2018 ; Icaza- 
Lizaola et al. 2020 ; Ross et al. 2020 ; Raichoor et al. 2021 ), and KiDS 
(Vakili et al. 2020 ). 

Most correction procedures can be interpreted as regression meth- 
ods, with the true o v erdensity field corresponding to the residuals 
after regressing the observed density field against a set of SP maps. 
Adding SP maps is equi v alent to adding additional explanatory 
variables to the regression, which increases the chance of o v erfitting. 
Such o v erfitting will reduce the magnitude of the inferred o v erdensity 
field (i.e. shrink the size of regression residuals), and thus overfitting 
will generically lead to a reduced clustering signal. 

There are several approaches to address this. One can a priori 
restrict the number of SP maps to reduce the level of false correction. 
This is equi v alent to asserting that there is no contamination from the 
discarded SP maps, which risks biasing the data from unaccounted- 
for systematic effects. A second option is to clean with all of the 
SP maps and then debias the measured clustering based on an 
estimate of the expected level of false correction (e.g. pseudo- C ' 
mode projection; Elsner et al. 2016 , 2017 ; Alonso et al. 2019 ). This 
approach can be interpreted as a simultaneous ordinary least-squares 
regression with a step to debias the po wer spectrum. Map-le vel 
weights that may enter in the analysis of other observables, such 
as g alaxy–g alaxy lensing, can be produced from this approach, but 
they will be overly aggressive if the number of SP maps is large. 
Wagoner et al. ( 2021 ) extend this approach by incorporating the pixel 
covariance and using Markov chain Monte Carlo to include map-level 
error estimates, but this again becomes less feasible if the number of 
SP maps is too large. Finally, one can take an approach between these 
extremes, reducing the number of SP maps used for fitting, but doing 
so in a data-driven manner. We apply two different methods that take 
this third approach. They make different assumptions, but were both 
found to perform well in simulated tests in Weaverdyck & Huterer 
( 2021 ). The SP maps we run these two methods on is our fiducial 
set of 50 PC maps that we introduced in Section 4. In addition, we 
present a third method that we use to test linearity assumptions made 
by the other two. 
5.3.1 Iterative Systematics Decontamination ( ISD ) 
In this subsection, we describe the fiducial correction method that we 
use for DES Y3, called ISD . It is an extension of the methodology 
applied in Y1 (Elvin-Poole et al. 2018 ). 

ISD is organized as a pipeline that corrects the PC map (or any 
generic SP map) effects by means of an iterative process whose steps 
can be summarized as (i) identify the most significant PC map, (ii) 
obtain a weight map from it, (iii) apply it to the data, and (iv) go back 
to (i). The algorithm stops when there are no more maps with an 
effect larger than an a priori fixed threshold. Each step is described 
in more detail in the following lines. 

To begin with, we degrade each PC map to N side = 512 and then 
we compute the relation between their values and n o / 〈 n o 〉 , where n o 
is the observed density of galaxies at a given part of the sky and 〈 n o 〉 
is the average density o v er the full footprint. In the following, we 
refer to this as the 1D relation. To obtain the statistical significance 
of the observed correlations, we bin the 1D relation into 10 equal- 
sky areas for each PC map and estimate a covariance matrix for 
the 1D relation bin means of that PC map using the set of 1000 
uncontaminated mocks described in Section 5.2. Since the bins are 
defined as equal area, the statistical error associated with each bin is 
similar and no one region dominates the fit. We use this covariance 
matrix for determining the best-fitting parameters of a function to 
approximate the 1D relation, as well as to assess its goodness of fit. 

We fit the 1D relation to a linear function of the PC map values 
n o , i 
〈 n o 〉 = m × s i + c, (7) 
by minimizing χ2 , which we then denote χ2 

model . The index i runs 
o v er the PC map bins. Similarly, we compute the goodness of fit for 
the case where n o / 〈 n o 〉 is a constant function f ( s ) = 1 labelled χ2 

null . 
Finding that n o / 〈 n o 〉 fits well to this constant function is equi v alent 
to finding that this particular PC has no impact on the galaxy density 
field. To calculate both χ2 definitions, we make use of the (10 × 10) 
covariance matrix obtained from the lognormal mocks. 

The degree of impact of a given PC map on the data is e v aluated 
using 
)χ2 = χ2 

null − χ2 
model . (8) 

To decide whether this impact is statistically significant or not, we 
run the exact same procedure described above on 1000 lognormal 
mock realizations. In this way, we obtain the probability distribution 
of )χ2 . We define )χ2 (68) as the value below which are 68 per cent 
of the )χ2 values from the mocks. Then, we consider an SP map 
significant if 
S 1D = )χ2 

)χ2 (68) > T 1D , (9) 
where T 1D is a significance threshold that is fixed beforehand. The 
square root of this quotient is proportional to the significance in terms 
of σ . 

After identifying the most contaminating map, s i , the next step is 
to obtain a weights map, w s , i , to correct its impact. We compute this 
weights map as 
w s,i = 1 

F ( s i ) , (10) 
where F ( s i ) is a linear function of s i with which its 1D relation is 
fitted. In general, this function depends on the nature of the SP map, 
although the aim is to use functions as simple as possible to prevent 
o v erfitting. In the case of PC maps, we find no significant deviations 
from linearity in the 1D relations (see Appendix E). 

After obtaining the weight map, the pipeline normalizes it to w̄ s = 
1. Then, it is applied to the data in such a way that N p gal → N p gal × w p s , 
where p is an index that runs o v er the footprint pixels at N side = 4096. 
The process is repeated iteratively, identifying at each iteration the 
most significant PC map and correcting for it until all the PC maps 
have a significance lower than T 1D . At iteration i , the weights from 
iterations 1 to i have been applied. Fig. 1 shows the 1D relation of 
a given PC map that has been identified as a significant contaminant 
(dots) and after correcting for it (triangles). 
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Figure 1. Example of how ISD works. We illustrate this by showing the 
observ ed pix el number density (relative to the mean o v er the full footprint) 
as a function of a PC map pixel v alue, e v aluated in 10 equal area bins. We 
refer to this as 1D relation. The method identifies the PC map pca 8 as the 
most significant one at iteration 0 (i.e. no weights have been applied yet) at 
the first redshift bin of MAGLIM . The corresponding 1D relation is depicted 
by the red triangles and the red line corresponds to their best-fitting linear 
function. After correcting for the contaminating template with weights (given 
by equation 10) at iteration 1, the impact of this PC map on the data is highly 
reduced. The blue points and their best-fitting linear function (blue line) show 
that the 1D relation is now compatible with no effect. 

The weights associated to each significant PC map are incorpo- 
rated multiplicatively to the total weight map, w T , that is 
w T = f ∏ 

i= 1 w s, i , (11) 
where i runs o v er the number of PC maps it is necessary to weight 
for. w T is then the total weight map that contains the information 
about the individual contaminants. These are the weights we apply 
to the data to mitigate the contamination. This total weight map is 
also normalized so its mean value o v er the full footprint is 1. The 
pipeline runs this procedure for each redshift bin independently. 
5.3.2 Elastic Net ( ENET ) 
We also generated sets of weights using the ENET method described 
in Weaverdyck & Huterer ( 2021 ) on the list of 50 PC maps. In this 
work, ENet has been used to perform robustness tests. Recall that the 
ISD method estimates contamination via a series of 1D regressions 
that are used to construct a total weight map via equation (11). 
In contrast, ENET estimates the amplitude of contamination for all 
PC maps simultaneously, by maximizing the following log-posterior 
o v er α: 
P( α) ∝ − 1 

2 N pix || δobs − S α|| 2 2 − λ1 || α|| 1 − λ2 
2 || α|| 2 2 , (12) 

where αi is the contamination amplitude for PC map s i , S is a matrix 
with the pixelated PC maps as columns, 10 and 
δobs ,j = f det, j N j 

∑ N pix 
j ( f det, j N j ) /N pix − 1 , (13) 

10 In practice, we standardize PC maps to have mean 0 and unit standard 
deviation before computing equation (12). 

where f det, j is the fraction of pixel j that is not masked. The first term 
in equation (12) corresponds to the standard Gaussian likelihood 
that is maximized for an ordinary least-squares regression. The 
regularizing terms act as components of a mixed, zero-centred prior 
on the elements of α. The mixture consists of a Laplace and Gaussian 
distribution, with their precisions controlled by λ1 and λ2 . The 
Laplace component is sharply peaked at zero, encouraging sparsity in 
the coefficients. We determine the values of λ1 and λ2 by minimizing 
the mean squared error of the predictions on held-out portions of the 
footprint via five-fold cross-validation. This allows the data to pick 
the precision and form of the prior based on predictive power. 

We use the scikit-learn (Pedregosa et al. 2011 ) implemen- 
tation of ElasticNetCV , with a hyperparameter space of λ1 /( λ1 
+ λ2 ) ∈ { 0.1, 0.5, 0.9 } and 20 values of ( λ1 + λ2 ) spanning four 
orders of magnitude (automatically determined from the input data). 
We degrade all maps to N side = 512, and compute equation (12) 
using a training mask that only includes pixels with f det ≥ 0.1 
(detection fraction from the Y3 GOLD STD maps that is inherited 
by the PC maps). We performed many subsequent tests changing the 
definition of this training mask, with little observed impact on the 
final w( θ ). Using ENET on the STD maps we also extended S to 
include quadratic terms of form s 2 i , and/or terms of form s i s stellardens , 
but these showed decreased predictive power on held-out samples, 
suggesting that the risk of o v erfitting from these additional maps 
dominates o v er additional contamination the y identify. 

The total weight map is computed (still at N side = 512) as 
w ENET 

T = [ F ENET ( S ) ] −1 = (1 + S ̂  α) −1 . (14) 
The ISD and ENET methods make different assumptions and 

take significantly different approaches to select important SP maps 
while minimizing the impact of o v ercorrection. ENET ne glects the 
co variance of pix els, as well as the differing clustering properties 
of the SP maps, but it is less dependent on the basis of SP maps 
than is ISD . It a v oids some of the difficulties the ISD method has 
when SP maps are highly correlated or contamination is distributed 
weakly across a combination of many maps, and hence missed by 
1D marginal projections. We therefore expect the ENET method to 
be a useful robustness test of the fiducial ISD method, and it is also 
used to estimate the systematic contribution to the w( θ ) covariance 
(see Section 6). 
5.3.3 Neural net weights (NN-weights) 
To e v aluate the robustness of the assumptions made and codes used 
in producing galaxy-density weights, we created a third alternative 
process with different choices and independent code – in particular, 
abandoning the assumption that the mean galaxy density is a linear 
or polynomial function of all SP maps. The basic principle remains 
the same, namely that a function w( s ) of the vector s of SP values is 
found that maximizes the uniformity of the observed catalogue. In 
this case, ho we ver, the function is realized by an NN, in a manner 
very similar to that of Rezaie et al. ( 2020 ). 

In contrast to ISD and ENET , we apply this method on the STD 
basis of maps. In addition, two important changes to the weighting 
procedure were made to a v oid ha ving the NN o v ertrain, in the sense 
of absorbing true cosmological density fluctuations into the obser- 
vational density factor w. First, the input STD maps were limited 
to those that should in principle fully describe the characteristics 
of the coadd images: the fwhm , skyvar uncertainty , exptime and 
fgcm gry e xposure-av eraged values for each of the griz bands, the 
sfd98 extinction estimate, and a gaia density estimate of local stellar 
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Figure 2. DES Y3 galaxy clustering results for MAGLIM (top panel) and REDMAGIC (bottom panel). The green points correspond to the angular correlation 
function of the ISD -PC < 50 weighted data, while the red points correspond to the uncorrected data. The solid black line shows the best-fitting theory prediction 
from the DES Y3 3 × 2pt # CDM results of each sample (DES Collaboration et al. 2022 ). Note that for MAGLIM , we also show the best fit from the analysis 
including all six redshift bins (dashed black line), although the fiducial 3 × 2pt cosmology results from this sample only include its first four bins. The shaded 
regions correspond to the scales that are excluded for cosmological constraints. 
density constructed from Gaia EDR3 (Gaia Collaboration 2020 ). We 
confirm that weights constructed with these STD maps eliminate any 
correlation of galaxy density on airmass or depth , and additionally 
find that fgcm gry has no significant effect, so it is dropped, leaving 
14 STD maps. The second major change to a v oid o v ertraining is 
to institute N -fold cross-validation: the footprint is divided into 
healpixels at N side = 16, which are randomly divided into N distinct 
‘folds’. The weights for each fold are determined by training the NN 
on the other N − 1 folds, halting the training when the loss function 
for the target fold stops improving. We use N = 3. 

The weights are created on a healpixelization at N side = 4096. 
With n i , f i , and w i being the galaxy counts, useful-area fraction, and 
weight estimate for each healpix el, respectiv ely, the NN is trained to 
minimize the binary cross-entropy : 
S ≡ ∑ 

n i > 0 log ̄n f i w i + ∑ 
n i = 0 log ( 1 − n̄ f i w i ) . (15) 

In a further departure from the standard weighting scheme, we take 
the input vector s to be the logarithm of each input STD map (except 
for sfd98 , which is already a logarithmic quantity), then linearly 
rescale each dimension to have its 1–99 percentile range span (0,1). 
We mask the < 1 per cent of surv e y area for which any such rescaled 
SP has s i outside the range ( − 0.5, 1.5), knowing that the NN will 
fail to train properly on rare values of STD maps. 

Using the KERAS software, 11 we define the weight function for a 
given galaxy bin as 
log w( s ) = α · s + N N ( s ) , (16) 
where α defines a nominal power-law relationship between the STD 
maps and the expected galaxy density, and NN is a three-layer 
perceptron describing deviations from pure power -law beha viour. 
11 https://keras.io . 

The training of all folds for all redshift bins can be done o v ernight 
on a single compute node. 
6  RESULTS  
ISD returns a list of maps with significant impact on galaxy clustering 
and that we need to weight for in each redshift bin of the samples. 
We studied the impact of observing conditions at three different 
significance threshold values, T 1D = 2 , 4 , 9. Increasing this thresh- 
old is equi v alent to relaxing the strictness of the decontamination, 
decreasing the number of significant SP maps. After testing for o v er 
and undercorrection on mocks, the fiducial choice of significance 
threshold is T 1D = 2 (see Sections 7 and 8 for more details). 

We find that, in general, both samples show a similar trend and 
they are more impacted by observing conditions at higher redshift. 
Generally, more SP maps are significant for the MAGLIM sample 
than for REDMAGIC . The measured angular 2pt correlation functions 
on the weighted samples can be seen in Fig. 2 . The S/N 12 of this 
detection is ∼63 for both samples (using only the first four bins of 
MAGLIM ). The data have been corrected for systematic contamination 
by applying the ISD -PC < 50 weights. After the correction, they are 
in good agreement (green points) with the best-fitting cosmology 
from 3 × 2pt. The deviation in the first redshift bin for REDMAGIC is 
known to come from an inconsistency between clustering results and 
g alaxy–g alaxy lensing in this sample. We defer the discussion of this 
important result from the point of view of observational systematics 
to Section 8. We note also that for MAGLIM we depict two best- 
fitting correlation functions: the best-fitting model from 3 × 2pt 
analysis using its six redshift bins (dashed black lines) and excluding 
12 The signal-to-noise ratio is defined as S/N ≡ w data ( θ) C −1 w model ( θ) √ 

w model ( θ) C −1 w model ( θ) , where 
C is the w( θ ) part of the covariance matrix and w model ( θ ) is the best-fitting 
model from 3 × 2pt. 
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its last two bins (solid black lines). The DES fiducial constraints 
are obtained without the last two bins (shaded in grey in Fig. 2 ), 
as explained in Porredon et al. ( 2021a ). The shaded regions in this 
figure depict the scales excluded (see Table 1 ) from our data vectors. 
These regions are not used to obtain constraints on cosmological 
parameters. The uncorrected w( θ ) are shown as red crosses. We 
note that the impact of systematic corrections is easily larger than 
the statistical uncertainty in the measurements, and are therefore 
necessary for unbiased cosmological inference, as we will illustrate 
below. These corrections are more important at higher redshift bins 
in both galaxy samples. For a comparison of this correction with 
respect to DES Y1 galaxy clustering, see Elvin-Poole et al. ( 2018 ). 

In Fig. 3 , we explicitly demonstrate the importance of our system- 
atics correction by placing constraints on "m and the clustering biases 
b i from the galaxy clustering correlation function alone. We do this 
by fitting the theory model presented in Section 2 to the data using 
COSMOSIS and the POLYCHORD sampling software (Handley, Hobson 
& Lasenby 2015a , b ). The covariance that we employ is given by 
COSMOLIKE (Krause & Eifler 2017 ) and it includes the systematic 
contributions that we introduce in Section 8.4. We again marginalize 
o v er shifts in the photometric redshift distributions and o v er their 
widths. These nuisance parameters are sensitive to the clustering 
amplitude. For both samples, the rest of the cosmological parameters 
are fixed to their respective DES Y3 fiducial best-fitting cosmology 
(note that for MAGLIM this only considers the first four redshift bins). 
For this reason, this constraint on "m should not be taken as a true 
constraint, but this illustrates how the changes in the measured w( θ ) 
can impact cosmology constraints. The priors for these cosmological 
and nuisance parameters are given in Table 3 . We obtain these 
contours for the unweighted and ISD -weighted data. As evidence 
of robustness of our choice of SP maps, we also show contours 
for another configuration of ISD ( ISD -STD34), where only 34 STD 
maps are considered (see Section 8.1 and appendix B of Carnero 
Rosell et al. ( 2021 ) for more details on this selection of SP maps). 
The corrections for the two ISD configurations are equi v alent within 
the statistical uncertainty. In Fig. 3 , we focus on the redshift bins 
that show the most prominent systematic shift in the w( θ ), namely 
the fourth and the fifth bins of the MAGLIM and REDMAGIC samples, 
respectiv ely. F or these bins, we find a difference in the mean of 
the posteriors of "m from uncorrected (red contours) and corrected 
data (blue contours) of 4.03 σ for MAGLIM and 6.79 σ for REDMAGIC , 
where σ is the standard deviation of the posterior distribution of this 
parameter for the corrected data. Failing to correct for the systematic 
impact of the SP maps would result in shifting the inferred galaxy 
bias parameters to higher values while significantly lowering "m . 
The significance of these shifts is somewhat larger than that obtained 
from the 3 × 2pt analysis, as we fix the rest of the cosmological 
parameters (while still varying nuisance parameters) such that the 
uncertainty is reduced. Note that because of correlations between the 
galaxy bias parameters and "m , a given redshift bin with relatively 
little change in w( θ ) due to weighting (e.g. bin 3 of MAGLIM ) can 
still have a significant shift in its inferred galaxy bias. 
7  W E I G H T S  VA LIDATION  
We validate our methodology on simulated catalogues to ensure 
that no biases are induced. We use unaltered lognormal mocks and 
also mocks that are artificially contaminated by our SP maps (see 
Appendix A for details on how we apply this contamination). We 
contaminate these mocks by applying the inverse of the weights 
determined from the data using ENET on the full list of 107 
STD maps. Decontamination, ho we ver, is performed using weights 

Figure 3. Constraints on "m and galaxy bias before and after applying 
our weighting methodology to the data for the fourth redshift bin of 
MAGLIM (top panel) and the fifth bin of REDMAGIC (bottom panel). We 
focus on the redshift bins where the impact of the systematic effects 
is more rele v ant in w( θ ) (see Fig. 2 ). Red contours correspond to the 
uncorrected data, while blue contours correspond to the corrected data. 
The absence of correction strongly biases our estimations. We also show 
constraints for ISD -STD34 weighted data (orange contours). We obtain 
similar behaviours for the rest of the redshift bins of both samples. The 
goodness of fit for the no weights, ISD -PC < 50 and ISD -STD34, cases are 
65 . 23 / 30 ( p = 2 × 10 −4 ), 42 . 25 / 30 ( p = 0 . 07), and 38 . 73 / 30 ( p = 0 . 13) 
for MAGLIM and 156 . 05 / 42 ( p = 5 × 10 −15 ), 66 . 10 / 42 ( p = 0 . 01), and 
68 . 91 / 42 ( p = 0 . 01) for REDMAGIC , respectively. There is an improvement 
in the p -value from ∼0 . 02 (no weights applied case) to ∼10 per cent 
(weights applied case). These χ2 values correspond to galaxy clustering- 
only fits. 
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Table 3. List of prior values used to constrain "m and the 
sample galaxy biases b i per redshift bin. 
Redshift bi y )z σ z 

MAGLIM 
0.20 < z < 0.40 ( − 0 .009,0.007) (0 .975,0.062) 
0.40 < z < 0.55 ( − 0 .035,0.011) (1 .306,0.093) 
0.55 < z < 0.70 ( − 0 .005,0.006) (0 .87,0.054) 
0.70 < z < 0.85 ( − 0 .007,0.006) (0 .918,0.051) 
0.85 < z < 0.95 (0 .002, 0.007) (1 .08,0.067) 
0.95 < z < 1.05 (0 .002, 0.008) (0 .845,0.073) 

REDMAGIC 
0.15 < z < 0.35 (0 .006,0.004) Fixed to 1 
0.35 < z < 0.50 (0 .001,0.003) Fixed to 1 
0.50 < z < 0.65 (0 .006,0.004) Fixed to 1 
0.65 < z < 0.80 ( − 0 .002,0.005) Fixed to 1 
0.80 < z < 0.90 ( − 0 .007,0.010) (1 .23,0.054) 

Both samples 
"m b i 

All redshifts [0.1,0.9] [0.8,3.0] 
Notes . The other cosmological parameters have been fixed to 
the fit values in the 3 × 2pt analysis as described in the text. 
Square brackets denote a flat prior, while parentheses denote a 
Gaussian prior of the form N ( µ, σ ). The shift ) z and stretch 
σ z parameters are defined in equations (4) and (5). In some 
cases, the latter is not marginalized o v er (fix ed). The redshift 
priors were determined in Cawthon et al. ( 2020 ). 

determined by ISD -PC < 50. This procedure adds an additional layer 
of protection: if we contaminate mocks with the weights from one 
method and decontaminate by the same method, the test is only 
checking sensitivity to forms of contamination to which we a priori 
know the method is sensitive to. Generating an equally plausible 
realization of contamination from an alternative method adds the 
benefit of potentially revealing blind spots in the method that is being 
validated. In Appendix B, we also perform a sanity check to confirm 
that we reco v er unbiased w( θ ) measurements at all angular scales 
under idealized circumstances, that is, contaminating and correcting 
for the exact same set of SP maps. 

We calculate w̄ dec ( θ ) and w̄ unc ( θ ) as the mean correlation function 
of 400 decontaminated and 400 uncontaminated mocks, respectively. 
Since the lognormal mocks are generated at N side = 512, which 
corresponds to separation angles of ∼6.9 arcmin between pixels, we 
compute the correlation functions at the 14 fiducial angular scales 
that are larger than this limit. Then we estimate the impact of the 
different biases (see next two Sections) on w( θ ) by means of the true 
mean in uncontaminated mocks, w̄ unc ( θ ): 
χ2 = ( ̄w dec ( θ ) − w̄ unc ( θ )) 0 × C −1 × ( ̄w dec ( θ ) − w̄ unc ( θ )) . (17) 
The covariance matrix, C , is the galaxy clustering part of the 
analytical cov ariance gi ven by COSMOLIKE , and it is also used for the 
clustering part of the 3 × 2pt cosmological analysis. If we find that 
any bias causes a change in the joint fit to all redshift bins according 
to the definition abo v e, equi v alent to χ2 > 3, then we marginalize 
o v er this bias in our final analysis. This threshold was chosen such 
that the impact on χ2 would be a small compared to the expected 
width of the χ2 distribution of the w( θ ) data vector. As we detail in 
Section 8.4, we marginalize o v er biases by modifying the covariance 
matrix to account for these sources of systematic uncertainty. The 
fiducial covariance matrix for DES Y3 3 × 2pt analysis includes 
these systematic terms. 

Figure 4. False correction bias, w T 1D 
f. c . bias ( θ ), for MAGLIM (top panel) and 

REDMAGIC (bottom panel) relative to the w( θ ) error from the unaltered 
COSMOLIKE co variance diagonal elements. Ne gativ e values are indicative of 
o v ercorrection. Both samples show ne gligible lev els of o v ercorrection, weak 
dependence with the angular scale and at most ∼20 per cent of the statistical 
error. The values depicted here have been calculated with significance 
threshold T 1D = 2. Empty dots correspond to the angular scales not considered 
for each redshift bin of the samples. 
7.1 False correction test 
Since we consider a large number of SP maps in this analysis, 
chance correlations between the data and some of these maps 
could arise, even after reducing our number of SP maps. This is 
more important when using a strict significance threshold. These 
purely random correlations could cause o v ercorrections, therefore 
biasing the measured value of w( θ ) and the inferred cosmological 
parameters. To characterize this effect, we run ISD with T 1D = 2 on a 
set of 400 uncontaminated mocks and then we obtain their correlation 
functions, w T 1D 

dec , i . The false correction bias is defined as 
w T 1D 

f. c . bias ( θ ) = 1 
400 

 
 400 ∑ 

i= 1 w T 1D 
dec , i ( θ ) − 400 ∑ 

j= 1 w unc , j ( θ ) 
 
 , (18) 

where w unc , j are the correlation functions measured on the unaltered 
uncontaminated mocks. 

In general, the effect of removing the systematic effects is to 
diminish the amplitude of w( θ ). Thus, a ne gativ e value of this 
estimator indicates o v ercorrection. In Fig. 4 , we show the results 
of w T 1D 

f. c . bias ( θ ) /σ for T 1D = 2, where σ is the diagonal of the 
unmodified covariance matrix. We find a very marginal indication of 
o v ercorrection, al w ays well below the statistical error. We also note 
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Figure 5. Mean angular correlation function, w( θ ), from raw uncontami- 
nated lognormal mocks (black lines) and decontaminated uncontaminated 
mocks (blue lines) for MAGLIM (top panel) and REDMAGIC (bottom panel) 
at their lowest redshift bins. The shaded region corresponds to the scales 
excluded at this redshift. In this redshift bin there is ∼20 per cent of false 
correction with respect to the statistical error due to chance correlations 
between PC maps and mocks. The error bars correspond to the diagonal of 
the covariance matrix with systematic terms added. 
that this ratio has small angular dependence, as can be seen in Fig. 5 , 
which compares the mean true w( θ ) (black line) with the mean of 
the decontaminated correlation functions (blue line). Therefore, we 
do not consider any contribution from the false correction bias to 
the final covariance matrix. The small impact of this effect on the 
cosmological parameters is highlighted in Section 7.3. Nevertheless, 
we note that the error bars shown in Fig. 5 correspond to the diagonal 
of the covariance matrix that has been modified to account for 
systematic uncertainties, as it is explained in Section 8.4. 
7.2 Residual systematic test 
Here we demonstrate that ISD ef fecti v ely reco v ers the true corre- 
lation function from a contaminated sample. We can then verify if 
our approach (with T 1D = 2) meets the requirements for the Y3 
cosmology analysis or whether it is necessary to account for any bias 
due to uncorrected contamination. 

We define the residual systematic bias as 
w T 1D 

r. s . bias ( θ ) = 1 
400 

 
 400 ∑ 

i= 1 w T 1D 
dec , i ( θ ) − 400 ∑ 

j= 1 w unc , j ( θ ) 
 
 , (19) 

Figure 6. Residual systematic bias, w T 1D 
r. s . bias ( θ ), for MAGLIM (top panel) and 

REDMAGIC (bottom panel) relative to the w( θ ) error from the unaltered COS- 
MOLIKE covariance diagonal. The empty dots represent the scales excluded at 
each bin. Both samples show similar trends: The highest redshift bins present 
lower biases, while the lowest ones show important levels of undercorrection 
at the smallest scales. On the other hand, the largest scales are reco v ered 
nearly unbiased. Since the χ2 of the total residual bias in all bins is higher 
than 3, we add a systematic term to the covariance matrix to marginalize o v er 
this effect. 
where the w T 1D 

dec , i are the correlation functions measured on mocks 
that have had systematic contamination added and then have been 
decontaminated using ISD . 

Because we are interested in the level of residual systematics 
that are insufficiently captured by the weighting method, we use the 
alternative method ENET with all 107 maps in the standard basis 
to generate an aggressive level of contamination. We observe that 
both ISD -PC107 and ENET -STD107 significantly o v ercorrect at the 
lowest redshift bins of both galaxy samples (see Section 8), so when 
using the corresponding weights to contaminate the mocks we are 
introducing e xcessiv e contamination. Therefore, we e xpect some 
degree of undercorrection when later running ISD with a subset of 
PC maps such as with ISD -PC < 50. Furthermore, by using ENET 
to estimate the contamination instead of ISD , the contaminated 
mocks will include possible contamination modes to which ENET 
is sensitive but to which ISD may not be. 

In Fig. 6 , we show the results for this bias with respect to the 
diagonal of the unaltered analytical errors. While the highest redshift 
bins of both MAGLIM and REDMAGIC present moderate levels of 
o v ercorrection, the lowest redshift bins of the two samples show 
a trend to under-correct at the small angular scales, but still abo v e 
the scales we exclude. As already mentioned, we expect some level 
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Figure 7. Mean angular correlation function, w( θ ), from uncontaminated 
mocks (black line) and from decontaminated mocks (blue line) for MAGLIM 
(top panel) and REDMAGIC (bottom panel). The red line corresponds to the 
mean of the mocks with contamination added from ENET, and the shaded 
regions represent the scales not used for cosmological constraints. While ISD 
reco v ers a nearly unbiased clustering at the largest angular scales, there is an 
important bias at the smallest ones. For this reason, this effect is marginalized 
o v er by adding it a systematic contribution to the error budget. The error bars 
shown take into account this contribution. 
of undercorrection due to the aggressive contamination imprinted on 
the mocks. Even under this consideration, these bins cause the χ2 
of the joint fit to exceed our limit, so we incorporate this bias as a 
systematic contribution to our covariance matrix. This is co v ered in 
Section 8.4. In Fig. 7 , we depict the mean reco v ered clustering (blue 
lines) compared to the true clustering (black lines). We also show the 
mean contaminated correlation function (red lines). It can be seen 
that ISD performs a nearly unbiased decontamination at the largest 
angular scales. The error bars in this figure include the systematic 
terms added to the covariance (see Section 8.4 for a comparison of 
the error bars with and without the systematic contributions). 
7.3 Impact on parameter estimation 
Finally, as an additional evidence of robustness we check the impact 
of the decontamination procedure on the estimation of cosmological 
parameters. We use as data vectors (i) the mean correlation function 
o v er 400 uncontaminated mocks, (ii) the mean correlation function 
biased by our o v ercorrection estimate (Section 7.1), and (iii) the 
mean correlation function biased as by the residual systematic 
uncertainty estimate (Section 7.2). To test the influence of these 
analysis modifications on cosmology, we recalculate the constraints 

on the parameters "m and b i , marginalizing as before o v er redshift- 
bin centroid positions and widths of the redshift distributions. We use 
the same priors from Table 3 and the rest of the parameters are fixed 
to the values used to generate the mocks. The results that we obtain 
are shown in Fig. 8 . It can be seen that the reco v ered contours from 
the false correction bias case (run on uncontaminated mocks) are in 
good agreement with those from the reference case, demonstrating 
that biases from o v ercorrection in inferred cosmological parameters 
are negligible. The contours corresponding to the residual systematic 
bias (run on ENET contaminated mocks) show a small level of un- 
dercorrection that is translated to slightly higher galaxy bias values, 
though this mismatch is also within the statistical uncertainties given 
by our analytical covariance. This covariance includes a systematic 
uncertainty correction that is explained in Section 8.4. In Table 4 , we 
present the difference in the "m and b i mean posteriors in units of σ
from uncontaminated mock contours. We note that all differences are 
smaller than 0.5 σ . It must be taken into account that, since the rest of 
the cosmological parameters are fixed, the 1 σ contours are smaller 
than for any of the final DES cosmology analyses, making this test 
more stringent. We found that the mean w( θ ) of the lognormal mocks 
is slightly shifted to lower amplitudes from the theory prediction with 
the same input values. This causes some shifting of the contours as 
well, b ut we ha v e v erified that this does not affect our conclusions 
from the decontamination methodology. 
8  POST-UNBLI NDI NG  I NVESTI GATI ONS  O F  
T H E  I M PAC T  O F  OBSERVATI ONAL  
SYSTEMATICS  O N  w ( θ ) 
The DES 3 × 2pt analysis combines the correlation functions 
from galaxy clustering, w( θ ), galaxy–galaxy lensing (for short, gg- 
lensing), γ t ( θ ), and cosmic-shear, ξ±( θ ), in order to impro v e the 
individual constraining powers of each probe and to break degen- 
eracies in some cosmological parameters. In addition, since each 
of these 2pt functions is potentially affected by different systematic 
ef fects, it allo ws for consistency checks comparing dif ferent results. 
The consideration of two different lens galaxy samples for w( θ ) 
and γ t ( θ ) allows us to further assess the robustness of the whole 
cosmology analysis. The cosmology analysis is performed blindly, 
that is, we only look at the cosmology results once a set of pre- 
defined criteria are fulfilled, as is described in DES Collaboration 
et al. ( 2022 ). During the unblinding process of REDMAGIC we found 
that this sample passed all the consistency tests we had a priori 
decided were required for unblinding. Ho we ver, after unblinding, we 
identified a potential inconsistency between the amplitudes of galaxy 
clustering and gg-lensing: Either the former has an anomalously 
high amplitude or the latter has an anomalously low one. This 
inconsistency is explored in detail in Pandey et al. ( 2021 ). 

Observational systematics from surv e y properties tend to increase 
the amplitude of w( θ ) and so one possible explanation is that the 
clustering amplitude is anomalously high due to the decontamination 
procedure failing to fully capture all contamination in the data. Thus, 
the true underlying galaxy correlation function in the data would not 
be correctly reco v ered. This led us to perform a variety of additional 
tests as we describe below. It was during these tests when some of 
the methods described in Sections 4 and 5 were incorporated, such 
as the change in SP map basis (both expanding the number of SP 
maps and decorrelating them) and the robustness checks using ENET 
and the neural net. Ultimately, we found that the difference between 
galaxy clustering and lensing observables in REDMAGIC remained 
robust to different choices in the decontamination procedure. We 
also applied these additional tests to the MAGLIM sample before it 
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Figure 8. Constraints in the "m − b i parameter space at fixed σ 8 from the mean w( θ ) of uncontaminated mocks (black contours) and from decontaminated 
mocks according to the false correction bias (violet contours) and to the residual systematic bias (blue contours). MAGLIM is shown in the left-hand panel and 
REDMAGIC in the right-hand one. It can be seen how both the false correction bias and the residual systematic bias lead to small shifts from the reference mocks 
relative to the error given by the COSMOLIKE analytical covariance, which includes the systematic uncertainty contributions. We only show contours for the first 
redshift bins of the two galaxy samples in this figure, but we verify that the shifts at the other bins are smaller or smaller. Because σ 8 and other cosmological 
parameters are fixed in this test, the posterior is smaller than from any of the DES final cosmological analyses that use the w( θ ) data. 
Table 4. Relative difference in the "m and b i mean of the posteriors for the 
two tests on decontaminated mocks in units of σ . 
Parameter False correction bias Residual systematic bias 

MAGLIM 
"m 0 .36 0 .08 
b 1 − 0 .09 0 .43 
b 2 − 0 .06 0 .40 
b 3 − 0 .25 0 .12 
b 4 0 .05 0 .16 
b 5 − 0 .15 − 0 .02 
b 6 − 0 .06 − 0 .04 

REDMAGIC 
"m 0 .39 0 .31 
b 1 − 0 .29 0 .50 
b 2 − 0 .33 0 .11 
b 3 − 0 .30 0 .27 
b 4 − 0 .32 − 0 .35 
b 5 − 0 .19 − 0 .21 
Notes . All values are below half a σ . Note that the posteriors in this test are 
much smaller than in any of the final DES cosmology analyses because all 
the other parameters are fixed. 
was unblinded. In contrast to our results with the REDMAGIC sample, 
once we unblinded the MAGLIM sample we found that its lensing and 
clustering signals were consistent with one another. For this reason, 
MAGLIM is the fiducial choice for our cosmological constraints (DES 
Collaboration et al. 2022 ). The fiducial MAGLIM cosmology results 
use only the first four redshift bins, as the two highest redshift bins 
gave inconsistent results, while adding little constraining power. 
Porredon et al. ( 2021a ) investigates these results in detail. 

8.1 ISD and ENET at the STD map basis 
Before unblinding, ISD weights were obtained from a selection of 
STD maps performed by setting a limit for the Pearson’s correlation 
coefficient between them. This selection gave 34 representative STD 
maps that were used to obtain weights with ISD ( ISD -STD34). More 
details on this selection can be found in appendix B of Carnero Rosell 
et al. ( 2021 ). To check whether the clustering-lensing inconsistency 
found in REDMAGIC was caused by an STD map not selected in the 
STD34 set, we ran ISD on the full list of STD maps, and verified that 
derived weights did not significantly impact the resulting clustering 
signal. In Fig. 9 , we show the correlation functions at the first bin of 
REDMAGIC obtained for these two configurations of ISD with STD 
maps. 

We also checked the subtle possibility of a combination of STD 
maps leading to a large systematic contribution despite no single map 
being individually significant. For this reason, we ran ENET -STD107 
on REDMAGIC , which simultaneously fits to all template maps, finding 
a significant decrease of ∼1 σ in the amplitude of the correlation 
function in the first three redshift bins. This moti v ated further 
investigation to determine whether there could be significant residual 
contamination in the form of low-significance linear combinations 
of STD maps that eluded the initial decontamination procedure. We 
found that decorrelating the STD maps via PCA before running the 
ISD method and using the 107 components resulted in much better 
agreement between ISD and ENET , which moti v ated the change to 
the PC basis that has been used for the results presented in this paper 
(see ISD -PC107 in Fig. 9 ). We also found that there are no significant 
changes when running ENET on the PC basis of maps (this method 
is less basis-dependent, since it performs a simultaneous fit to all 
maps). 

MNRAS 511, 2665–2687 (2022) 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/511/2/2665/6516441 by U
niversity of Pennsylvania user on 18 August 2022

art/stac104_f8.eps


2678 DES Collaboration 

Figure 9. Comparison of the clustering amplitude reco v ered from several 
methods and configurations for the first redshift bin of REDMAGIC . All methods 
agree within the statistical uncertainty given by the analytical covariance. The 
solid red line corresponds to the unweighted data and the dashed purple line 
corresponds to the ISD -PC107 configuration. The difference between this 
configuration and the rest of methods is consistent with the o v ercorrection 
observed on contaminated mocks (see Fig. 10 ). The solid and dashed black 
lines are the best-fitting cosmology from cosmic-shear and gg-lensing only 
and from the 3 × 2pt analysis, respectively. The grey shaded region represents 
the scales that are not used for cosmological analysis. None of the various 
configurations produce values of w( θ ) approaching the best-fitting prediction 
from cosmic-shear and gg-lensing. 
8.2 ISD and ENET in the PC map basis 
We e v aluated the impact of the ISD -PC107 weights on both un- 
contaminated and ENET contaminated mocks, similar to the tests 
from Sections 7.1 and 7.2. These tests revealed a significant level 
of o v ercorrection when using the full list of PC maps with ISD , 
especially when e v aluated on contaminated mocks, indicating that 
true LSS fluctuations were being remo v ed in the decontamination 
process. This effect can be seen in Fig. 10 . We observed a similar 
o v ercorrection effect on MAGLIM with these ISD settings. The 
o v ercorrection is most prominent in lower redshift bins where the 
intrinsic clustering signal is larger, losing significance at higher 
redshift for both samples. 

These results suggest that there is a higher likelihood of chance 
correlation in the PC107 basis than in the STD107 basis. We also 
found that PC107 weights obtained from the data showed significant 
correlations with DES κ maps (see Appendix D for details). We 
therefore conclude that using all 107 principal components results 
in removing not only actual systematic contamination from the data, 
but also cosmological signal, causing a lower w( θ ) amplitude. 

We therefore applied a cut-off to the number of PC maps to be 
used. To select this cut-off, we required that the weight map resulting 
from running ISD with the set of the first n PC maps should not induce 
a significant o v ercorrection on contaminated mocks (as we observed 
with ISD -PC107 weights), while still removing the contamination 
that was applied using ENET -STD107. We found that n = 50 principal 
component maps meets this requirement. The impact of the ISD - 
PC < 50 weights on contaminated mocks and finally on the data can 
be seen in Figs 10 (blue line) and 9 , respectively. Then, we calculated 
ENET -PC < 50 weights as well, finding good agreement between the 
two methods with this configuration (see Fig. 9 ). Our adoption of 
this configuration was further supported by the desire to have a 
comparatively small number of maps to a v oid o v ercorrection, as 
with the 107 PC maps, while still preserving most of the variance 
present in the full set of 107 STD maps. We point the reader to 

Figure 10. Effect of considering different numbers of PC maps on the two- 
point angular correlation function: weights obtained from 107 PC maps 
cause o v ercorrection on w( θ ) (magenta line). This o v ercorrection ranges 
from ∼0.5 σ to 1 σ and is most prominent at large angular scales. This 
o v ercorrection can explain most of the difference in clustering between ISD - 
PC < 50 and ISD -PC107 observed in Fig. 9 . On the other hand, weights 
obtained from the first 50 PC maps yield a clustering amplitude (blue line) 
that is in good agreement with the mean w( θ ) from uncontaminated mocks 
(black line), especially at the largest scales. The difference between the 
amplitudes from uncontaminated and ISD -PC < 50 decontaminated mocks 
is included as a systematic contribution to the covariance (error bars in this 
figure already include that term). The red line corresponds to the ENET - 
STD107 contaminated mocks. 
Appendix D for more details on the selection of this cut-off. We found 
that the difference between w( θ ) functions given by ISD -PC < 50 and 
ENET -PC < 50 yields a χ2 for the joint fit to all redshift bins smaller 
than 3. Nevertheless, we found some map configurations for the two 
methods that yield χ2 > 3. Thus, in order to be conserv ati ve, we 
consider this difference as an additional systematic uncertainty to be 
marginalized o v er, similar to the difference between uncontaminated 
and decontaminated mocks from Section 7.2. 

For these reasons, we used ISD -PC < 50 as the fiducial correction 
method, as described in the previous sections of this paper. In Fig. 9 , 
we summarize the clustering amplitudes obtained from each of the 
methods and configurations described in the first redshift bin of 
REDMAGIC . None of the methods produce a w( θ ) consistent with 
the best-fitting prediction from cosmic-shear and gg-lensing (solid 
black line). For reference, the dashed grey line shows the best-fitting 
prediction from the combined 3 × 2pt analysis. 

The tests conducted to determine this cut-off were focused on the 
first redshift bin of REDMAGIC , but we verified that the impact of this 
choice on the rest of the bins is similar , although milder , since the 
o v ercorrection observ ed at higher bins is less significant. We also ran 
these tests on MAGLIM , obtaining similar conclusions for the same 
cut-off. 
8.3 Tests with neural net weights 
As noted in Section 8.3, we developed an independent, non-linear 
correction method using NNs. This was applied post-unblinding to 
test the robustness of the weights, in particular to the assumption of 
linearity between galaxy number density and the systematic maps. 
If there is excess clustering due to non-linear functions of the STD 
maps, then we expect it to be captured by the NN-weights. Because 
of the significant time required to run the method, we did not 
subject it to the full extent of validation tests on contaminated and 
uncontaminated mocks as we did for the ISD and ENET methods. 
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Ho we ver, as Fig. 9 shows, the changes to w( θ ) are small when using 
the NN-weights, suggesting that residual non-linear contamination 
from the existing set of STD maps is not driving a spuriously high 
estimate of w( θ ). 
8.4 Modifications to the co v ariance matrix 
In this analysis, we consider the systematic uncertainty in the 
correction method from two sources: from the choice of correction 
method, and the bias measured in contaminated mocks (as mentioned 
in Section 7.2). As noted in the previous section, the NN-weights 
method did not undergo the e xtensiv e validation process that the ISD 
and ENET weights did. For this reason, we focused on the systematic 
uncertainty associated to the differences between ISD -PC < 50 and 
ENET -PC < 50. 

The two systematics considered are each analytically marginalized 
o v er through an additional term in the w( θ ) covariance matrix 
following the methodology of Bridle et al. ( 2002 ) summarized here. 
If one takes an arbitrary data vector y that is biased by an additive 
systematic effect s , 
y ′ = y + A s , (20) 
where A is the amplitude of the systematic error. If the amplitude 
A has a Gaussian prior of zero-mean and width σ A (which can 
be determined by external constraints), the parameter A can be 
analytically marginalized o v er in the covariance matrix of y with 
Cov ( y ′ , y ′ ) = Cov ( y , y ) + σ 2 

A s s T . (21) 
In this analysis, we model the impact of the systematic uncertainty 
in the correction as 
w ′ ( θ ) = w( θ ) + A 1 )w method ( θ ) + A 2 w T 1D 

r. s . bias ( θ ) , (22) 
where )w method ( θ ) is the difference between the ISD and ENET 
methods, both using the PC < 50 basis of maps as shown in Fig. 11 ; 
w T 1D 

r. s . bias ( θ ) is the residual systematic bias measured on lognormal 
mocks in Section 7.2, and A 1 and A 2 are two arbitrary amplitudes 
that describe the size of the systematic error in the correction. 

We analytically marginalize o v er these terms assuming a unit 
Gaussian as the prior on the amplitudes A 1 and A 2 such that the 
measured systematic size is a 1 σ deviation from the prior centre, and 
the systematic can mo v e w( θ ) in either direction. The final additional 
covariance term is 
) Cov ( w ′ , w ′ ) = ) w method ) w method T + w T 1D 

r. s . bias w T 1D 
r. s . bias T . (23) 

The method difference term )w method ( θ ) is measured on real data 
and therefore contains the same noise as the w( θ ) data vector 
being used for cosmological inference. To a v oid adding this noise 
to the covariance term, we fit a flexible polynomial to the two 
w( θ ) measurements described in Appendix C. )w method ( θ ) is the 
difference between these two polynomial fits. 

The mock bias term w T 1D 
r. s . bias ( θ ) is averaged over 400 mocks so is 

a smooth function of θ and does not require any additional fitting. 
The impact of the additional covariance terms is shown in the error 
bars of Fig. 11 . The systematic contribution to each tomographic 
bin is treated as independent so the covariance between bins is not 
modified. 
8.5 Tests with B ALR OG 
BALROG (Suchyta et al. 2016 ; Everett et al. 2022 ) is a software 
package that beds f ak e objects in real images in order to accurately 
characterize measurement effects. 

BALROG simulated galaxies are created using real objects from the 
DES deep fields (Hartley et al. 2021 ), which can be considered as 
approximations to noiseless astrophysical sources due to the depth 
of the images they come from with respect to the wide field imaging. 
These objects have been measured using the same instrument and 
filters as the Y3 data set. This collection is sampled and injected into 
the individual single epoch images, which are then processed and 
coadded again with the same Y3 DES Data Management pipeline. 
Therefore their detectability is subject to the same conditions as 
the real galaxies from the Y3 wide field surv e y, as the y inherit the 
background and noise properties of the real images. 

BALROG is a useful tool to make independent consistency tests 
of the decontamination methods: while the galaxy samples trace 
the actual large-scale structure, the BALROG samples are formed by 
galaxies that are artificially injected on a uniform grid, that is, they 
are non-LSS distributed. What both real and BALROG samples have in 
common is the impact of systematics. Therefore, any correlation be- 
tween the two after applying the weights would mean the presence of 
a common systematic. For this reason, we used the cross-correlation 
of REDMAGIC and MAGLIM with their associated BALROG samples to 
test for the presence of an extraneous signal that would indicate 
a pending, unknown systematic that is not being corrected by the 
applied weights. These results are presented in Fig. 12 . The cross- 
correlations are calculated in ∼1000 deg 2 (available area of the 
BALROG samples). We find that the cross-correlation with the weights 
applied is consistent with zero signal within the statistical errors. 
These errors are computed with jackknife re-sampling using 100 
patches for MAGLIM and 50 for REDMAGIC . Ho we ver, the signal 
itself is small but non-zero, growing in magnitude towards larger 
scales. We note that, due to its lower number density, the points for 
REDMAGIC are noisier than those for MAGLIM . The reduced χ2 for 
a constant cross-correlation of 0 are 0.46, 0.96, 1.25, 3.60, 1.18 for 
REDMAGIC and 1.13, 0.71, 0.78, 0.94, 0.65, 0.69 for MAGLIM . The 
relative strength of the cross-correlation signal with respect to the 
auto-correlation signal can be seen in the bottom rows of each panel. 
In general, it is at or below 5 per cent for the five lowest angular bins 
at all redshift bins, and it is lower than 10 per cent for scales smaller 
than ∼30 arcmin. This relati ve strength gi ves us an indication of the 
size of a systematic effect that could be still unaccounted for. Even 
if the REDMAGIC results are noisy, those for MAGLIM do not show a 
clear indication of uncorrected effects from imaging systematics. 
8.6 Summary of findings 
We performed a series of tests post-unblinding to determine if the 
observ ed inconsistenc y between the galaxy clustering and gg-lensing 
signals in REDMAGIC is due to residual systematic contamination of 
the galaxy clustering signal. In particular , we in vestigated whether 
expanding the set of SP maps, adjusting the contamination model, 
or changing a variety of methodological choices for the decontami- 
nation procedure resulted in a significantly different inferred galaxy 
clustering signal. We largely performed these tests at the level of 
w( θ ), without further looking at the impact of these decisions on 
cosmological parameters. The following list is a summary of the 
obtained results: 

(i) Expanding the list of 34 to all 107 STD maps has negligible 
impact on the resulting amplitude of w( θ ) using the fiducial ISD 
decontamination procedure. We thus conclude that the discrepancy 
is not due to residual contamination from one of the previously- 
discarded STD maps. 
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Figure 11. Method difference term )w method ( θ ) in real data for MAGLIM (top row) and REDMAGIC (bottom row). The methods compared are ISD -PC < 50 and 
ENET -PC < 50 (red line). The light blue error bands correspond to the diagonal of the covariance with the additional systematic terms included, while the yellow 
ones correspond to the original analytical covariance. 

Figure 12. Cross-correlation between REDMAGIC (top panel) and MAGLIM (bottom panel) samples selected in data and produced with BALROG . The cross- 
correlations are shown in the top row of each panel, before weighting (red line) and after weighting (purple line) by SP maps effects, compared to the data w( θ ) 
(blue points). The error bars have been obtained by jackknife re-sampling. The bottom row of each panel shows the relative difference (in per cent) between 
the cross-correlation signal and the auto-correlation one. A non-zero cross-correlation between the data samples and BALROG samples (which are injected and 
non-LSS distributed), would imply a pending, unknown systematic in the images, which would not have been corrected for. We see that the cross-correlation is 
zero within statistical errors. In general, all differences are compatible with zero and well below the statistical errors showing no clear evidence of uncorrected 
effects from imaging systematics, though we note that the points for REDMAGIC are noisier due to its lower number density. 

(ii) We performed a principle component analysis of the 107 STD 
maps and used the principle components as an orthonormal basis 
for the decontamination procedure, i.e. ran ISD -PC107. We found 
good agreement with ENET -STD107 (and ENET -PC107), resulting 
in a reduction of the w( θ ) amplitude. This was most pronounced in 
the first redshift bin of REDMAGIC , with a decrease in w( θ ) of ∼1 σ . 

(iii) We observed a significant overcorrection of w( θ ) when 
computing ISD -PC107 weights from contaminated mocks. For this 
reason, we applied a cut-off to the number of PC maps, limiting 

it to the 50 PC maps with the highest S/N. We found that the 
resultant ISD -PC < 50 weights produce little o v ercorrection and we 
add a systematic contribution to our error budget corresponding to 
the difference between ISD -PC < 50 and ENET -PC < 50. We also 
add a systematic contribution for the undercorrection observed on 
contaminated mocks using only the first 50 PC maps assuming the 
true contamination corresponds to the estimate of ENET -STD107. 

(iv) We implemented a non-linear decontamination procedure 
using an NN, which also used different choices for the mask and 
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base set of STD maps. This resulted in differences in w( θ ) that 
were much smaller than the observed discrepancy between galaxy 
clustering and gg-lensing. 

(v) We cross-correlated both REDMAGIC and MAGLIM with their 
corresponding BALROG samples and we found no clear evidence of 
uncorrected contamination of known systematic templates common 
to both types of samples. 

We note that the ISD -STD34 weights passed an e xtensiv e battery 
of validation tests, described in Section 7. However, after our findings 
and comparisons between ENET and ISD, we decided to use the ISD - 
PC < 50 weights in the fiducial analysis. 

Given these findings, we conclude that the anomalous high 
clustering amplitude of REDMAGIC sample is unlikely to be due to 
uncorrected contamination coming from any of our known templates 
nor from a linear combination of them. Because the clustering 
remains high when using higher order STD maps with ENET (after 
accounting for false correction bias) as well as using the neural net, 
we are unable to identify non-linear contamination from our SP maps 
as the cause (see Appendix E for additional tests). We performed a 
number of further exploratory tests such as more aggressive masking, 
including based on the leverage statistic (cf. Weaverdyck & Huterer 
2021 ) and found w( θ ) to be robust to these choices. Applying our 
fiducial decontamination procedure to MAGLIM does not show the 
same discrepancy between probes as does REDMAGIC . 
9  C O N C L U S I O N S  
We measure the angular two-point correlation of DES Y3 lens galax- 
ies, and study the impact of systematic errors on these measurements. 
We use two lens samples: MAGLIM , a magnitude-limited sample 
with enhanced number density and reliable photometric redshifts 
(Porredon et al. 2021b ), and REDMAGIC , a sample of luminous red 
galaxies (LRGs) selected by the algorithm described in Rozo et al. 
( 2016 ), which also provides high-quality photometric redshifts. We 
extend the methodology employed in DES Y1 (Elvin-Poole et al. 
2018 ), both for correcting the data and to ensure its robustness. A 
more thorough set of SP maps is used and we employ them directly 
and through the application of principal components analysis to the 
map set. Additionally, a new weight estimation method is used in 
parallel ( ENET ; Weaverdyck & Huterer 2021 ) and a cross-check of 
linearity assumptions is made with an NN framework based on recent 
literature (Rezaie et al. 2020 ). These steps help us to a v oid possible 
blind spots in our validation methodology. 

Our findings are as follows: 
(i) The updated DES Y1 methodology, dubbed ISD , is able to suc- 

cessfully remo v e systematic contamination, as sho wn by v alidation 
tests on lognormal mocks (Figs 5 and 7 ) and data. 

(ii) The ENET method is a viable alternative correction method to 
ISD . We e v aluate se veral configurations and demonstrate that both 
methods are in agreement within statistical precision. To be sure that 
any residual difference is taken into account, we include a systematic 
uncertainty in the covariance matrix as the difference between the 
two results. This uncertainty is included in the final covariance that 
is used for cosmological constraints, after checking that it does not 
bias our results. 

(iii) The decontamination procedure does not produce a significant 
bias in w( θ ) or in the "m − b i parameter space. 

(iv) We find that surv e y properties hav e a significant impact on 
the reco v ered galaxy clustering signal, particularly at high redshifts, 
as compared to REDMAGIC Y1 results (Elvin-Poole et al. 2018 ). This 
contamination is corrected by applying the ISD method together 

with a principal component analysis of our surv e y sroperty maps. 
The same methodology is applied to both samples. 

(v) We find an inconsistent clustering amplitude for the REDMAGIC 
sample when combined with other 2pt lensing probes. We study 
it from the point of view of the impact of SP maps, considering 
different methods, such as ISD and ENET , and different numbers, 
types and bases of SP maps. We find agreement between the weighted 
correlation functions yielded by each method within our errors. We 
also investigate weights from an NN weighting scheme. All our tests 
confirm that our systematics corrections are robust and the template 
maps used in this analysis do not explain the REDMAGIC internal 
inconsistency. 

The results presented in this work have been optimized to be used 
for their combination with g alaxy–g alaxy lensing (Elvin-Poole et al. 
2021 ; P ande y et al. 2021 ; Prat et al. 2021 ; Porredon et al. 2021a ) and 
cosmic-shear (Amon et al. 2022 ; Secco et al. 2022 ) measurements 
to obtain the 3 × 2pt cosmological results from the DES Year 3 data 
(DES Collaboration et al. 2022 ), and constitutes one of the basic 
pillars for this measurement. 

This work highlights the importance of adequate validation and 
cross-checking of this highly rele v ant step in the estimation of galaxy 
clustering, and builds upon several developments within the DES 
project and in the literature. For Y6, given the rapid developments 
in the field, we plan to approach the problem from the beginning 
with a variety of methodologies in mind, possibly considering 
multiregression approaches or assessing the feasibility of using a 
wider BALROG sample, making it part of the pipeline from the start 
now that the algorithm is fully developed. This will be coupled with 
possibly a multitiered unblinding approach with additional steps to 
be able to make decisions on investigating unusual results in internal 
consistency tests at different stages of the process. Additional work 
in parallel on the Y3 samples and SP maps will shed some light 
on possible details that the Y6 methodology will have to address, 
such as understanding the o v ercorrection produced by some maps or 
issues with the galaxy samples. 
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DATA  AVAILABILITY  
The main product of this work is the maps of correcting weights 
applied to the galaxy clustering measurements of the DES Y3 lens 
galaxy samples. These weights are part of the data vectors that will 
be made available as part of the DES Y3 coordinated release at https: 
// des.ncsa.illinois.edu/ releases following publication of the DES Y3 
Cosmology Results papers ( https://www.darkenergysurvey.org/des 
- year- 3- cosmology- results- papers/). The COSMOSIS software (Zuntz 
et al. 2015 ) is available at https:// bitbucket.org/ joezuntz/cosmosis/ 
wiki/Home and the TREECORR package (Jarvis et al. 2004 ) can be 
found at ht tps://rmjarvis.git hub.io/TreeCor r . 
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APPEN D IX  A :  L O G N O R M A L  M O C K S  
The mocks used for the systematic analysis are 2D lognormal fields 
generated at a gi ven po wer spectrum. We start by using CAMB (Lewis, 
Challinor & Lasenby 2000 ; Howlett et al. 2012 ) to obtain a matter 
power spectrum and project into a galaxy clustering angular power 
spectrum, C gg 

i ( l), following the theory modelling described in Krause 
et al. ( 2021 ). To produce this power spectrum, we assume our 
fiducial cosmology and fix the galaxy bias for each redshift bin 
to the values from the blind bias analysis (Table 1 ). Then, we use 
this power spectrum to generate a Gaussian random field of δg for 
each mock realization on a HEALPIX map (G ́orski et al. 2005 ) using 
the HEALPY package (Zonca et al. 2019 ). We then apply a lognormal 
transformation to the field following the methodology of Xavier et al. 
( 2016 ). This uses a skewness parameter that was derived in Friedrich 
et al. ( 2021 ). We then transform the lognormal δg field to a galaxy 
number counts field, N gal , using the observed number count, N̄ o , from 
the galaxy sample we want to reproduce and the relation: 
N gal = N̄ o × (1 + δg ) . (A1) 
We apply the angular mask to the full-sky realizations. In this way, 
the covariance matrices built from these mocks incorporate the same 
mask effects as the real data. In order to add shot noise, we finally 
Poisson sample the N gal field. 

Figure A1. 1D relations for 400 MAGLIM ENET contaminated lognormal 
mocks (shaded black lines) compared with the data (red line). The top panel 
shows the 1D relations with the pca 0 map at the fourth redshift bin of this 
sample, whereas the bottom panel shows the 1D relations with skybrite in the 
r band. The contamination observed on the data is well reproduced by these 
mocks. The error bars are obtained from the uncontaminated mocks used to 
calculate the 1D significance. 

As we mention in Section 7, we also create a set of lognormal 
mocks contaminated by surv e y properties systematics, so we can 
look for biases introduced by ISD and check their impact on the 
measurements. We imprint contamination on the lognormal mocks 
by multiplying the galaxy number counts field by the inverse of the 
weight map derived from the data, which is 
N p gal , mock → N p gal , mock × 1 

w p . (A2) 
This step is applied before Poisson sampling the galaxy field. We 
produce a set of 400 contaminated lognormal mocks following 
this procedure using weights derived from ENET -STD107, as is 
mentioned in Section 7. We check that the 1D relations of these 
mocks reproduce in shape and amplitude those observed on the data. 
An example of this can be seen in Fig. A1 . 
APPENDI X  B:  I NTERNAL  CONSI STENCY  
TESTS:  ESTI MATOR  BI AS  TEST  
In addition to the tests described in Section 7, we perform an internal 
consistency test that seeks to confirm no bias in w( θ ) is introduced 
by ISD under idealized circumstances. For this test, we contaminate 
and correct for the same list of SP maps, demonstrating the Landy–
Szalay estimator can reco v er a negligibly biased signal. Since the 
focus of this test is the w( θ ) estimator itself when applied to weighted 

Figure B1. Estimator bias for MAGLIM (top panel) and REDMAGIC (bottom 
panel). The ne gativ e values are due to small level of o v ercorrection. Empty 
dots correspond to the scales excluded for each redshift bin. As can be seen, 
we find no evidence of bias in w( θ ) introduced by the ISD methodology and 
the Landy–Szalay estimator under idealized circumstances at any angular 
scale nor any redshift bin of both galaxy samples. 
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data, independent of the origin of these weights, we conduct it using 
weights from a preliminary run of ISD on the standard SP maps, 
with the same threshold that we use to obtain the weights from 
the data, T 1D = 2. To get the magnitude of this potential bias, we 
defined 
w est. bias ( θ ) = 1 

N 
 
 N ∑ 

i= n w dec , i − N ∑ 
j= 1 w unc , j 

 
 ( θ ) , (B1) 

where w unc , i are the correlation functions from uncontaminated 
mocks, and w dec , i are those from decontaminated mocks and 
N = 1000 mock realizations. Fig. B1 showcases the values of 
w est. bias ( θ ). As it can be seen, we see no indication of estimator 
bias for both lens samples at every redshift bin. This demon- 
strates that the combination of our weighting methodology with 
the Landy–Szalay estimator for w( θ ) does not induce any bias 
on our measurements when the list of contaminating SP maps is 
known. 
APPENDIX  C :  P O LY N O M I A L  FITS  F O R  
" w method ( θ ) 
The additional covariance term described in Section 8.4 depends on 
the difference between w( θ ) measured with two different systematics 
correction methods, )w method ( θ ). As )w method ( θ ) is measured on real 
data, it contains the same noise as the w( θ ) data vector being used for 
cosmological inference. To a v oid adding this noise to the covariance 
term, we fit a flexible polynomial to the two w( θ ) measurements in 
the form 
w polyfit ( θ ) = + 3 ∑ 

i=−3 B i θ i , (C1) 
where B i are the coefficients to be fitted. The best-fitting polynomials 
are shown in Fig. C1 . We find this polynomial to be a good fit to 
the data, and the difference between measured correlation functions 
matches the difference in fitted polynomials well. 

Figure C1. Polynomial fits to w( θ ) data used in estimating the systematic 
terms in the w( θ ) covariance in Section 8.4. The first and third panels show 
the fit residuals to the fiducial w( θ ) measurements for each sample. The 
second and fourth panels show the difference between the polynomial fits of 
the two correction methods considered in these terms, ISD and ENET , both 
with the first 50 principle component template maps. The bold points are the 
data included by the scale cuts and included in the fit and χ2 calculations. 
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APPEN D IX  D :  PRINCIPAL  C O M P O N E N T  MAPS  
CUT-OF F  
In Section 8, we describe a set of systematics weights using only 
the first 50 principle component maps labelled ISD -PC < 50, which 
are used as the fiducial weights in the cosmology analysis. In this 
Appendix, we provide some further justification for this choice. 

In order to test for the correlation of real large-scale structure with 
the weight maps, we cross-correlate the convergence, κ , maps from 
Jeffrey et al. ( 2021 ) with the weight maps obtained using different 
methods, ISD -STD34, ISD -PC107, and ISD -PC < 50. We correlate 
with the convergence map for the third tomographic source bin due 
to the large o v erlap between its lensing kernel and the lens sample. In 
the absence of systematics in the κ maps, we do not expect there to 
be correlations between the SP or weight maps and the convergence 
maps. We show these correlations in Fig. D2 for the five REDMAGIC 
tomographic bins (the error bars are estimated using jackknife 
methodology using 150 patches). We find that while ISD run on 
only the 34 representative STD maps does not correlate with the 
convergence maps, we obtain a large correlation with the weight maps 

Figure D1. Clustering amplitude at the first redshift bin of REDMAGIC 
for several PC cut-offs, ISD -PC < n . The solid red line corresponds to the 
unweighted data and the dashed magenta one to the weights obtained from 
ISD -PC107, which lead to o v ercorrection. It can be seen how around n = 50 
the w( θ ) amplitudes converge. 

using all the PC maps, pointing to potential leakage of cosmological 
structure in these weights, either from chance correlation or real 
large-scale structure leaking into the high PC maps. These cross- 
correlations are calculated with the weight maps at N side = 4096 
and κ at N side = 1024, so small-scale noise correlations are ruled 
out (moreo v er, the cross-correlations hav e been e v aluated at coarser 
resolutions, finding similar results). 

To mitigate any correlation with real large-scale structure, we 
restrict the weight estimation to use only the first n PC maps. First 
of all, to ensure that all dominant features of the SP maps are taken 
into account, we look at the amount of variance captured up to each 
component. This is shown on Fig. D3 . Based on this, we use n = 50 as 
a starting point. PC maps up to this component explain ∼98 per cent 
of the total variance and we consider that it represents a balance 
between including too many maps, resulting in o v ercorrection, and 
discarding too many of them, so we risk not accounting for enough 
contaminants. Then, we obtain the ISD -PC < 50 weights and we 
observe that these weights cause no significant o v ercorrection on con- 
taminated mocks, as explained in Section 8. After this, we verify that 
the ISD -PC < 50 weights show negligible levels of cross-correlation 
with κ , similar to those from ISD -STD34. Moreo v er, the reco v ered 
correlation function from these weights is in excellent agreement 
with that from ISD -STD34 weights, as it is shown on Fig. 9 . 

In order to make the rejection of PC maps that could be causing 
the o v ercorrection as specific as possible, we cross-correlate κ

directly with the maps that contribute to the o v ercorrecting ISD - 
PC107 weights (according to the multiplicative way of ISD to 
make weights). Ho we v er, we do not identify an y individual map 
or family of maps clearly causing the excess correlation. In general, 
the PC maps that have the highest κ correlation are the highest 
principal components (which have the smallest contribution to the 
total variance of the STD maps). Given this, we decide to test 
removing all PC maps above a given component. We test multiple cut- 
offs with PC < n , evaluating their clustering amplitudes, as it is shown 
in Fig. D1 . We find that the clustering amplitudes yielded by the ISD - 
PC < n weights with n between 20 and 60 converge to similar values, 
while for higher n , it jumps abruptly to lower amplitudes. This result, 
together with the large amount of variance contained up to PC < 50 
and the impossibility of flagging a specific set of PC maps among 
the highest components as the culprit ones of the o v ercorrection, 
moti v ates the choice of n = 50 as our final cut-off. 
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Figure D2. Cross-correlation of weight maps from different configurations of ISD with the convergence field, κ . The error bars are calculated using jackknife 
with 150 patches. It can be seen how the ISD -PC107 weights cross-correlate significantly with κ , while the weights from the other two configurations do not. 
This suggests that the high PC template maps may correlate with LSS. An off-set has been added to the x -axis points for better visualization. 

Figure D3. Variance of each PC map (blue line) and per cent of accumulated variance (orange line). For the principal component map, 49 the accumulated 
variance is ∼98 per cent , so the remaining maps are compatible with noise. 
APPENDIX  E:  N O N - L I N E A R  C O N TA M I NAT I O N  
WITH  ISD 
In order to look for non-linear contamination still present on the data 
after applying weights, we e v aluate the distribution of χ2 

null v alues 
from the 1D relations of the ISD -PC < 50 weighted data. This kind 
of contamination could be undetected when using a linear model, 

as ISD does, and would result on high χ2 
null values. In Fig. E1 , we 

sho w the v alues obtained for REDMAGIC . The distributions obtained 
for each redshift bin are not significantly different from a χ2 with 
10 degrees of freedom (number of 1D bins used). We obtain similar 
results for the MAGLIM sample. Therefore, we find no clear evidence 
of the presence of non-linear contamination in our weighted data that 
could have been unaccounted for. 

Figure E1. χ2 
null distributions (blue histograms) for the ISD -PC < 50 weighted REDMAGIC sample compared with a χ2 with 10 degrees of freedom (black lines). 

Given the good agreement between both distributions, we find no clear evidence of deviations from linearity in the 1D relations of the weighted data. We find 
similar results for MAGLIM sample. 
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