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54Observatório Nacional, Rua General José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil
55Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India

56Faculty of Physics, Ludwig-Maximilians-Universität, Scheinerstr. 1, 81679 Munich, Germany
57Department of Astronomy, University of Michigan, Ann Arbor, Michigan 48109, USA

58Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo, Norway
59Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, 28049 Madrid, Spain

60Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, United Kingdom
61School of Mathematics and Physics, University of Queensland, Brisbane QLD 4072, Australia

62Center forAstrophysics|HarvardandSmithsonian, 60GardenStreet,Cambridge,Massachusetts 02138,USA
63Australian Astronomical Optics, Macquarie University, North Ryde NSW 2113, Australia

64Lowell Observatory, 1400 Mars Hill Road, Flagstaff, Arizona 86001, USA

C. SÁNCHEZ et al. PHYS. REV. D 105, 083529 (2022)

083529-2



65Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo,
CP 66318, São Paulo, São Paulo 05314-970, Brazil

66George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and
Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA

67Department of Astronomy, The Ohio State University, Columbus, Ohio 43210, USA
68Radcliffe Institute for Advanced Study, Harvard University, Cambridge, Massachusetts 02138

69Department of Astrophysical Sciences, PrincetonUniversity, PeytonHall, Princeton, New Jersey 08544,USA
70Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain

71School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
72Computer Science and Mathematics Division, Oak Ridge National Laboratory,

Oak Ridge, Tennessee 37831, USA

(Received 3 June 2021; accepted 7 March 2022; published 26 April 2022)

Using the first three years of data from the Dark Energy Survey (DES), we use ratios of small-scale
galaxy-galaxy lensing measurements around the same lens sample to constrain source redshift un-
certainties, intrinsic alignments and other systematics or nuisance parameters of our model. Instead of using
a simple geometric approach for the ratios as has been done in the past, we use the full modeling of the
galaxy-galaxy lensing measurements, including the corresponding integration over the power spectrum and
the contributions from intrinsic alignments and lens magnification. We perform extensive testing of the
small-scale shear-ratio (SR) modeling by studying the impact of different effects such as the inclusion of
baryonic physics, nonlinear biasing, halo occupation distribution descriptions and lens magnification,
among others, and using realistic N-body simulations of the DES data. We validate the robustness of our
constraints in the data by using two independent lens samples with different galaxy properties, and by
deriving constraints using the corresponding large-scale ratios for which the modeling is simpler. The
results applied to the DES Y3 data demonstrate how the ratios provide significant improvements in
constraining power for several nuisance parameters in our model, especially on source redshift calibration
and intrinsic alignments. For source redshifts, SR improves the constraints from the prior by up to 38% in
some redshift bins. Such improvements, and especially the constraints it provides on intrinsic alignments,
translate to tighter cosmological constraints when shear ratios are combined with cosmic shear and other
2pt functions. In particular, for the DES Y3 data, SR improves S8 constraints from cosmic shear by up to
31%, and for the full combination of probes (3 × 2pt) by up to 10%. The shear ratios presented in this work
are used as an additional likelihood for cosmic shear, 2 × 2pt and the full 3 × 2pt in the fiducial DES Y3
cosmological analysis.

DOI: 10.1103/PhysRevD.105.083529

I. INTRODUCTION

As photons from a distant light source travel through the
Universe, their paths are perturbed by the gravitational
influence of the large-scale structure. Weak gravitational
lensing concerns the small distortions in the images of
distant galaxies due to the influence of the intervening mass
along the line of sight (see e.g. Kilbinger et al. [1] for a
review). In particular, galaxy-galaxy lensing (or simply
galaxy-shear) refers to the correlation between foreground
(lens) galaxy positions and the tangential component of
lensing shear of background (source) galaxies at higher
redshifts, which is a measure of the projected, excess mass
distribution around the lens galaxies [2]. Extracting useful
cosmological or astrophysical information from galaxy-
galaxy lensing is complicated by a number of factors. First,

one needs to model the relationship between the galaxy
density field and the underlying matter field, i.e. galaxy
bias [3]. Second, at small angular separations between lens
and source, the signal-to-noise ratio (SNR) tends to be
large, but lensing-galaxy two-point functions become
increasingly sensitive to the small-scale matter power
spectrum, whose modeling is convoluted due to nonlinear-
ities and baryonic effects [4–6]. Also, galaxy bias may
become scale dependent at those scales (e.g. Cresswell and
Percival [7]). To sidestep these limitations, several studies
in the past have considered the usage of ratios between
galaxy-shear two-point functions sharing the same lens
sample, also called lensing ratios. This observable cancels
out the dependence on the galaxy-matter power spectrum
while keeping the sensitivity to the angular diameter
distances of both tracer and source galaxies.
Several applications of lensing ratios have been considered

in the literature. They were originally proposed in Jain and
Taylor [8] as a novel way to constrain cosmology from

*carles.sanchez.alonso@gmail.com
†jpratmarti@gmail.com

DARK ENERGY SURVEY YEAR 3 RESULTS: EXPLOITING … PHYS. REV. D 105, 083529 (2022)

083529-3

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.083529&domain=pdf&date_stamp=2022-04-26
https://doi.org/10.1103/PhysRevD.105.083529
https://doi.org/10.1103/PhysRevD.105.083529
https://doi.org/10.1103/PhysRevD.105.083529
https://doi.org/10.1103/PhysRevD.105.083529


geometrical information only, using ratios of galaxy-shear
cross-correlation functions sharing the same lens sample.
They envisioned dark energy properties could be constrained
using these ratios, in particular the parameter describing the
equation of state of dark energy, w. Taylor et al. [9] proposed
applying this technique behind clusters using ratios of
individual shear measurements, rather than correlation func-
tions. This revised method was applied to data in Kitching
et al. [10] using lensing measurements around three galaxy
clusters, obtaining weak constraints on w. Later, Taylor et al.
[11] used low-mass systems from the HST Cosmos Survey
and were able to detect cosmic acceleration. Other authors
developed variants of these initial methods, including Zhang
et al. [12], who proposed an approach for both galaxy-shear
and shear-shear correlations. Also, Bernstein and Jain [13]
explored an alternative formalism for implementing the
original idea of Jain and Taylor [8], and documented for
the first time that the dependence on cosmology was rather
weak. They showed that to achieve sensitivity on cosmo-
logical parameters, photometric redshifts had to be extremely
well characterized, together with the calibration of shear
biases, unless they were redshift independent. Kitching et al.
[14] also discussed systematics affecting shear ratio in detail,
also finding that photometric redshift uncertainties played a
prominent role.
Given this dominant dependency on photometric redshift

uncertainties, lensing ratios of galaxy-galaxy lensing mea-
surements have been established as a probe to test redshift
distributions and redshift-dependent multiplicative biases
[15]. Note that in combination with cosmic microwave
background (CMB) lensing, geometrical lensing ratios
can still constrain cosmological parameters (Das and
Spergel [16], Kitching et al. [17], Singh et al. [18],
Miyatake et al. [19], Prat and Baxter et al. [20]), but
otherwise they have been found to be dominated by redshift
uncertainties. Because of that, many studies have used shear
ratios to cross-check the redshift distributions of the source
sample computed with another method. This is what is
known as the “shear-ratio test,” where ratios of galaxy-
galaxy lensing measurements are used to test the redshift
distributions of different redshift bins for the corresponding
shape catalog. This has been done in several galaxy surveys
such as in the Sloan Digital Sky Survey, e.g. Mandelbaum
et al. [21], where both redshifts and multiplicative shear
biases were tested for the first time, in the Red-Sequence
Cluster Survey [22] and in the Kilo-Degree Survey [23–26].
In the Dark Energy Survey (DES) Y1 galaxy-galaxy

lensing analysis [27], geometrical lensing ratios were used
to place constraints on the redshift distributions of the
source samples and obtained competitive constraints on the
mean of the source redshift distributions. This was among
the first times the shear-ratio information was used to place
constraints instead of just as a diagnostic test. They were
also able to constrain multiplicative shear biases. In the
current study, we continue this line of work, but generalize

this approach in several ways. We develop a novel method
that uses lensing ratios as an extra probe to the combination
of galaxy-galaxy lensing, cosmic shear and galaxy cluster-
ing, usually referred to as 3 × 2pt. Specifically, we add the
shear-ratio likelihood, which uses small-scale independent
information, to the usual 3 × 2pt likelihood. This extra
likelihood places constraints on a number of astrophysical
parameters, not only those characterizing redshift uncer-
tainties but, importantly, also those characterizing intrinsic
alignments and multiplicative shear biases at the same time.
By helping to constrain these nuisance parameters, the
lensing ratios at small scales provide additional information
to obtain tighter cosmological constraints, while still being
insensitive to baryonic effects and nonlinear galaxy bias.
Using the first three years of observations from DES (Y3

data), we construct a set of ratios of tangential shear
measurements of different source redshift bins sharing the
same lens bin, for different lens redshift bins. These ratios
have the advantage that they can be modeled in the small,
nonlinear scale regime where we are not able to accurately
model the original two-point correlation functions and which
is usually discarded in cosmological analyses. This allows us
to exploit information from small scales which would have
otherwise been disregarded given our inability to model the
tangential shear at small scales due to uncertainties in the
galaxy bias model, the matter power spectrum, baryonic
effects, etc., which cancel out in the ratios. This cancellation
happens exactly only in the limit where the lens redshift
distribution is infinitely narrow which is when lensing ratios
can be perfectly modeled with geometry only. Instead, if the
lens redshift distribution has some finite width, as happens in
realistic scenarios as in this work, the cancellation is not exact
and the ratios retain some dependence on the lens properties
andmatter power spectrum, though still much smaller than in
the tangential shear signal itself. There are further effects
which introduce dependence of shear ratios on parameters
other than cosmological distances, such as magnification of
the lens galaxies, and the alignment of the source galaxy
orientations with the lens galaxy positions due to their
physical association, what is usually referred to as intrinsic
alignments (IAs).
There are several different approaches to account for

magnification and IA effects on shear ratios. One possible
approach is to mitigate these effects in the ratios, e.g.
recently Unruh et al. [28] proposed a mitigation strategy for
lens magnification effects in the shear-ratio test. Another
option is to include these effects in the model, e.g. Giblin
et al. [23] performed a shear-ratio test on the latest Kilo-
Degree Survey dataset and included nonlinear alignment
(NLA, Bridle and King [29], Hirata and Seljak [30])
intrinsic alignment terms in their originally geometrical
model. Importantly, they note that the shear ratio (SR) is
indeed very sensitive to the IA model, and they suggest the
combination of SR with other cosmological observables to
fully exploit the IA constraining power of SR.
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In this work we develop a SR analysis that takes full
advantage of the IA dependence of the probe and combine
it with other observables to fully exploit the gains in
cosmological constraining power. We can do that by
describing the ratios using the full tangential shear model,
as it is used in the DES Y3 3 × 2pt analysis but on smaller
scales. In this way, we do not only take into account the
width of the lens redshift distributions but also lens
magnification and intrinsic alignment effects. Moreover,
this original approach also has the advantage of not adding
extra computational cost: the 3 × 2pt analysis already
requires calculation of the full galaxy-galaxy lensing model
for all the scales and source/lens combinations that we use.
Thus, the approach we develop in this work can be

thought of extending the galaxy-galaxy lensing data vector
to smaller scales, where most of the signal-to-noise lies, but
by using the ratio transformation to retain the information
we can confidently model. The threshold scale where we
are not able to model DES Y3 tangential shear measure-
ments accurately enough given the current uncertainties has
been set at 6 Mpc=h [31] for the 3 × 2pt analysis. The
ratios we use in this work only use tangential shear
measurements below this threshold to provide independent
information. The small-scale limit of the ratios is set by the
regime of validation of our IA model in some cases, and
otherwise by the angular range that has been validated for
galaxy-galaxy lensing [32].
In this paper we explore the constraining power of lensing

ratios first by themselves and then in combinationwith other
probes such as galaxy clustering, galaxy-galaxy lensing and
cosmic shear.We use the samemodel setup as in theDESY3
3 × 2pt cosmological analysis [33], using the same nuisance
parameters including IAs, lens and source redshift param-
eters and multiplicative shear biases. We test this configu-
ration first using simulated data vectors and N-body
simulations to then apply it to DES Y3 data. We perform
a series of tests to validate our fiducial model against
different effects which are not included in it such as the
impact of baryons, nonlinear bias and halo-model contri-
butions, reduced shear and source magnification, among
others. In addition, we also test the robustness of the results
directly on the data by using two independent lens galaxy
samples, the so-called REDMAGIC sample [34] and a magni-
tude-limited sample, MAGLIM [35], which demonstrates that
the lensing ratios information is robust against nonlinear
small-scale information characterizing the galaxy-matter
connection. We also use lensing ratios constructed from
large-scale information to further validate the small-scale
ratios in the data. After thoroughly validating the SR
likelihood by itself, we proceed to combine it with other
2pt functions and study the improvements it provides in the
constraints, using first simulated data and thenDESY3 data.
We find the SR to provide significant improvements in
cosmological constraints, especially for the combination
with cosmic shear, due to the information the SRprovides on

IAs. The DES Y3 cosmic shear results are described in two
companion papers [36,37], the results from galaxy cluster-
ing and galaxy-galaxy lensing in Elvin-Poole et al. [38],
Pandey et al. [39], Porredon et al. [40] and the combination
of all probes in DES Collaboration [33].
The paper is organized as follows. Section II describes

the data sets used in this work. In Sec. III we detail the
modeling of the ratios and the scheme used to do parameter
inference using that model. The ratio measurement pro-
cedure is described in Sec. IV. The validation of the model
is presented in Sec. V. In Sec. VI we explore the
constraining power of the lensing ratios when combined
with other probes using simulated data. Finally, in Sec. VII,
we apply the methodology to DES Y3 data and present the
final results. We summarize and conclude in Sec. VIII.

II. DATA AND SIMULATIONS

DES is a photometric survey that covers about one
quarter of the southern sky (5000 sq. deg.), imaging
galaxies in five broadband filters (grizY) using the Dark
Energy Camera [41,42]. In this work we use data from the
first three years of observations (from August 2013 to
February 2016, hereafter just Y3), which reaches a limiting
magnitude (SNR ¼ 10) of ≈23 in the i band (with a mean
of four exposures out of the planned ten for the full survey),
and covers an area of approximately 4100 sq. deg. The data
is processed using the DESDM pipeline presented in
Morganson et al. [43]. For a detailed description of the
DES Y3 Gold data sample, see Sevilla-Noarbe et al. [44].
Next we describe the lens and source galaxy samples used
in this work. Their corresponding redshift distribution are
shown in Fig. 1.

A. Lens samples

In Table I we include a summary description for each of
the lens samples used in this work, with the number of
galaxies in each redshift bin, number density, linear galaxy
bias values and lens magnification parameters.

1. The REDMAGIC sample

One of the lens galaxy samples used in thiswork is a subset
of the DES Y3 Gold Catalog selected by REDMAGIC [50],
which is an algorithm designed to define a sample of
luminous red galaxies with high quality photometric redshift
estimates. It selects galaxies above some luminosity threshold
based on howwell they fit a red sequence template, calibrated
using the REDMAPPER cluster finder [51,52] and a subset of
galaxies with spectroscopically verified redshifts. The cutoff
in the goodness of fit to the red sequence is imposed as a
function of redshift and adjusted such that a constant
comoving number density of galaxies is maintained.
In DES Y3 REDMAGIC galaxies are used as a lens sample

in the clustering and galaxy-galaxy lensing parts of the
3 × 2pt cosmological analysis [32,34]. In this work we
utilize a subset of the samples used in those analyses, in
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particular the galaxies with redshifts z < 0.65, split into
three redshift bins (see Fig. 1). The redshift calibration of
this sample is performed using clustering cross-correla-
tions, and is described in detail in Cawthon et al. [45]. A
catalog of random points for REDMAGIC galaxies is gen-
erated uniformly over the footprint, and then weights are
assigned to REDMAGIC galaxies such that spurious corre-
lations with observational systematics are canceled. The
methodology used to assign weights is described in
Rodríguez-Monroy et al. [34].

2. The magnitude-limited sample

We use a second lens galaxy selection, which differs
from REDMAGIC in terms of number density and photo-
metric redshift accuracy: the MAGLIM sample. In this
sample, galaxies are selected with a magnitude cut that
evolves linearly with the photometric redshift estimate:
i < azphot þ b. The optimization of this selection, using the
directional neighborhood fitting photometric redshift esti-
mates, yields a ¼ 4.0 and b ¼ 18. This optimization was

performed taking into account the trade-off between
number density and photometric redshift accuracy, propa-
gating this to its impact in terms of cosmological con-
straints obtained from galaxy clustering and galaxy-galaxy
lensing in Porredon et al. [35]. Effectively, this selects
brighter galaxies at low redshift while including fainter
galaxies as redshift increases. Additionally, we apply a
lower cut to remove the most luminous objects, imposing
i > 17.5. The MAGLIM sample has a galaxy number density
of more than four times that of the REDMAGIC sample but
the redshift distributions are ∼30% wider on average. This
sample is split into six redshift bins, but in this paper we
only use the first three of them. The characteristics of these
three redshift bins are defined in Table I. The redshift
binning was chosen to minimize the overlap in the redshift
distributions, which is also calibrated using clustering
redshifts in Cawthon et al. [45]. Porredon et al. [35]
showed that changing the redshift binning does not impact
the cosmological constraints. See also Porredon et al. [40]
for more details on this sample.

B. Source sample

The DES Y3 source galaxy sample, described in Gatti
et al. [49], comprises a subset of the DES Y3 Gold sample.
It is based on METACALIBRATION [53,54], which is a
method developed to accurately measure weak lensing

FIG. 1. Top panel: redshift distributions of REDMAGIC lens
galaxies divided in five redshift bins. The first three redshift bins
are used for the shear ratio analysis in this work, while the two
highest-redshift ones (in gray) are not used. The nðzÞ s are
obtained by stacking individual pðzÞ distributions for each
galaxy, as computed by the REDMAGIC algorithm, and validated
using clustering cross-correlations in Cawthon et al. [45]. Middle
panel: same as above but for the MAGLIM lens galaxy sample. The
redshift distributions come from the directional neighborhood
fitting photometric redshift algorithm [40,46]. Bottom panel: the
same but for the weak lensing source galaxies, using the
METACALIBRATION sample. In this case the redshift distributions
come from the SOMPZ (self-organizing maps photometric red-
shifts) and WZ methods, described in Myles et al. [47] and Gatti
et al. [48].

TABLE I. Summary description for each of the samples used in
this work. Ngal is the number of galaxies in each redshift bin, ngal
is the effective number density in units of gal=arcmin2 (including
the weights for each sample), bi is the mean linear galaxy bias
from the 3 × 2pt combination, the αs are the magnification
parameters as measured in Elvin-Poole et al. [38] and σjϵ is
the weighted standard deviation of the ellipticity for a single
component as computed in Gatti et al. [49].

REDMAGIC lens sample

Redshift bin Ni
gal nigal bi αi

0.15 < z < 0.35 330243 0.022141 1.74% 0.12 1.31
0.35 < z < 0.50 571551 0.038319 1.82% 0.11 −0.52
0.50 < z < 0.65 872611 0.058504 1.92% 0.11 0.34

MAGLIM lens sample

Redshift bin Ni
gal nigal bi αi

0.20 < z < 0.40 2236473 0.1499 1.49% 0.10 1.21
0.40 < z < 0.55 1599500 0.1072 1.69% 0.11 1.15
0.55 < z < 0.70 1627413 0.1091 1.90% 0.12 1.88

METACALIBRATION source sample

Redshift bin Nj
gal njgal σjϵ αj

1 24940465 1.476 0.243 0.335
2 25280405 1.479 0.262 0.685
3 24891859 1.484 0.259 0.993
4 25091297 1.461 0.301 1.458
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shear using only the available imaging data, without need
for prior information about galaxy properties or calibration
from simulations. The method involves distorting the image
with a small known shear, and calculating the response of a
shear estimator to that applied shear. This technique can be
applied to any shear estimation code provided it fulfills
certain requirements. For this work, it has been applied to
the NGMIX shear pipeline Sheldon [55], which fits a
Gaussian model simultaneously in the riz bands to measure
the ellipticities of the galaxies. The details of this imple-
mentation can be found in Gatti et al. [49].
The redshift calibration of the source sample has been

performed using the self-organizing maps photometric
redshifts (SOMPZ, Myles et al. [47]) and the clustering
cross-correlation (WZ, Gatti et al. [48]) method. The
SOMPZ scheme uses information from the DES Deep
Fields [56] and connects it to the wide survey by using the
Balrog transfer function [57]. Using the that method, the
source sample is split into four redshift bins (Fig. 1), and
the scheme provides a set of source redshift distributions,
including the uncertainty from sample variance, flux
measurements, etc. The WZ method uses the cross-corre-
lations of the positions of the source sample with the
positions of the REDMAGIC galaxies, narrowly binned in
redshift. For its application, samples are drawn from the
posterior distribution of redshift distributions for all bins
conditioned on both the SOMPZ photometric data and the
WZ clustering data. In addition, validation of the shape
catalog uncertainties, and the connection to uncertainties in
the associated redshift distributions has been developed
in detail in MacCrann et al. [58] using realistic image
simulations. For this work we will employ the shear catalog
and use the results from these analyses as priors on source
multiplicative biases and redshift calibration.
In Table I we include the number of galaxies in each

redshift bin as well as the number density, shape noise and
source magnification parameters.

C. N-body simulations

In this work we use N-body simulations to recreate an
end-to-end analysis and validate our methodology. For this
we use the Buzzard simulations described in Sec. II C 1. We
also use the MICE2 simulations to validate our small-scale
halofit modeling with a halo occupation distribution (HOD)
model. We describe the MICE2 simulation in Sec. II C 2.

1. The Buzzard v2.0 N-body simulations

Buzzard v2.0 [59] is a suite of 18 simulated galaxy
catalogs built on N-body light cone simulations that
have been endowed with a number of DES Y3 specific
survey characteristics. Each pair of 2 Y3 simulations are
produced from a set of three independent N-body light
cones with mass resolutions of 3.3 × 1010; 1.6 × 1011;
5.9 × 1011h−1 M⊙, and simulated volumes of 1.05, 2.6

and 4.0ðh−3 Gpc3Þ. Galaxies are included in these simu-
lations using the ADDGALS model [60,61]. ADDGALS makes
use of the relationship, PðδRjMrÞ, between a local density
proxy, δR, and absolute magnitude Mr measured from a
high resolution subhalo abundance matching model in
order to populate galaxies into these light cone simulations.
This model reproduces the absolute-magnitude-dependent
clustering of the subhalo abundance matching model.
The CALCLENS algorithm is used to ray trace the

simulations, using a spherical-harmonic transform (SHT)
based Poisson solver [62]. A Nside ¼ 8192 HEALPIX grid
is used to perform the spherical-harmonic transforms.
CALCLENS computes the lensing distortion tensor at each
galaxy position and uses this quantity to deflect galaxy
angular positions, shear galaxy intrinsic ellipticities, includ-
ing effects of reduced shear, and magnify photometry and
shapes. Convergence tests have shown that resolution
effects are negligible in relevant lensing quantities on the
scales used for this analysis [63].
We apply a photometric error model based on DES Y3

data estimates in order to add realistic wide field photo-
metric noise to our simulations. A lens galaxy sample is
selected from our simulations by applying the REDMAGIC

galaxy selection with the configuration described in
Rodríguez-Monroy et al. [34]. A weak-lensing source
galaxy selection is performed by selecting on point-spread
function (PSF)-convolved sizes and i-band signal-to-noise
ratio in a manner that matches the measured nonto-
mographic source number density in the DES Y3
METACALIBRATION source catalog. SOMPZ redshift esti-
mation is used in the simulations in order to place galaxies
into four source redshift bins. The shape noise per red-
shift bin is also matched to that measured from the
METACALIBRATION catalog. Two-point functions are mea-
sured in the Buzzard v2.0 simulations with the same code
used for the Y3 data. METACALIBRATION responses and
inverse variance weights are set equal to 1 for all galaxies,
because our simulations do not include these values.
Weights for the simulated lens galaxy sample are assigned
using the same algorithm used in the DES Y3 data.

2. The MICE2 N-body simulation

We use DES-like mock galaxy catalogs from the
Marenostrum Institut Ciencies Espai (MICE) simulation
suite in this analysis. TheMICE grand challenge simulation
(MICE-GC) is an N-body simulation run in a cube with
side-length 3 Gpc=h with 40963 particles using the
GADGET-2 code [64] with mass resolution of
2.93 × 1010 M⊙=h. Halos are identified using a friends-
of-friends algorithm with linking length 0.2. For further
details about this simulation, see Fosalba et al. [65].
These halos are then populated with galaxies using a
hybrid subhalo abundance matching plus HOD approach,
as detailed in Carretero et al. [66]. These methods
are designed to match the joint distributions of luminosity,
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g − r color, and clustering amplitude observed in Sloan
Digital Sky Survey [67]. The construction of the halo and
galaxy catalogs is described in Crocce et al. [68]. MICE
assumes a flat ΛCDM cosmological model with h ¼ 0.7,
Ωm ¼ 0.25,Ωb ¼ 0.044 and σ8 ¼ 0.8, and it populates one
octant of the sky (5156 sq. degrees), which is comparable to
the sky area of DES Y3 data.
To validate our small-scale halofit modeling in Sec. V C,

testing it against an HOD model with parameters measured
from MICE2, we use a DES-like light cone catalog of
REDMAGIC galaxies matching the properties of DES Y3
data, including lens magnification.

III. MODELING OF THE RATIOS

In this section we describe how we model the ratios of
tangential shear measurements and why it is possible to
model them to significantly smaller scales than the tangen-
tial shear quantity.

A. The idea: Geometrical ratios

When we take ratios of tangential shear measurements
around the same lens sample, the dependence on the matter
power spectrum and galaxy bias cancels for the most part,
canceling exactly if the lens sample is infinitely narrow in
redshift. In this approximation the ratios can be modeled
independently of scale, and they depend only on the
geometry of the Universe. As we will see now, this fact
allows us to model ratios of tangential shear measurements
down to significantly smaller scales than what is typically
used for the tangential shear measurements themselves. For
instance, in the case of the DES Y3 3 × 2pt cosmological
analysis, scales below 6 Mpc=h are discarded for the
galaxy-galaxy lensing probe due to our inability to accu-
rately model the (non-linear) matter power spectrum, the
galaxy bias, baryonic effects, etc. In order to see why these
dependencies may cancel out in the ratios, it is useful to
first express the tangential shear γt in terms of the excess
surface mass density ΔΣ:

γt ¼
ΔΣ
Σcrit

; ð1Þ

where the lensing strength Σ−1
crit is a geometrical factor that,

for a single lens-source pair, depends on the angular
diameter distance to the lens Dl, the source Ds and the
relative distance between them Dls:

Σ−1
critðzl; zsÞ ¼

4πG
c2

DlsDl

Ds
; ð2Þ

with Σ−1
critðzl; zsÞ ¼ 0 for zs < zl, and where zl and zs are the

lens and source galaxy redshifts, respectively. For a single
lens-source pair, Eq. (1) is exact and can be used to see that
if one takes the ratio of two tangential shear measurements
sharing the same lens with two different sources, then ΔΣ

cancels since it is a property of the lens only (see
Bartelmann and Schneider [69] for a review), and we
are left with a ratio of geometrical factors:

γl;sit

γ
l;sj
t

¼
Σ−1
critðzl; zsiÞ

Σ−1
critðzl; zsjÞ

: ð3Þ

This means that ratios defined in this way will depend on
the redshift of the lens and source galaxies, as well as on
the cosmological parameters needed to compute each of
the angular diameter distances involved in Eq. (2), through
the distance-redshift relation.
So far we have only been considering a single lens-source

pair. For a tangential shear measurement involving a sample
of lens galaxies with redshift distribution nlðzÞ and a sample
of source galaxies with nsðzÞ, which may also overlap, we
can generalize Eq. (3) by defining an effective Σ−1

crit integrat-
ing over the corresponding redshift distributions. For a given
lens bin i and source bin j, it can be expressed as

Σ−1i;j
crit;eff ¼

Z
zmax
l

0
dzl

Z
zmax
s

0
dzsnilðzlÞn

j
sðzsÞΣ−1

critðzl; zsÞ: ð4Þ

Then the generalized version of Eq. (3) becomes

γl;sit

γ
l;sj
t

≃
Σ−1l;si
crit;eff

Σ−1l;sj
crit;eff

: ð5Þ

In this equation it becomes apparent that the main
dependency of the ratios is on the redshift distributions
of both the lens and the source samples. Equation (3) is
only exact if the lens sample is infinitely narrow in redshift
and a good approximation if the lens sample is narrow
enough. This approximation is what was used in the DES
Y1 shear-ratio analysis [27] to model the ratios. In this
work we will go one step further and we will not use the
narrow-lens bin approximation. Instead, we will use a full
modeling of the ratios adopting the tangential shear model
used in the DES Y3 3 × 2pt analysis, which includes
explicit modeling of other effects such as lens magnifica-
tion, intrinsic alignments and multiplicative shear biases,
which will also play a role in the ratios. Next we describe in
detail the full modeling of the ratios we use in this work.

B. The full model

Ratios of tangential shear measurements are the main
probe used in this work. In this section we will describe
how we model it for our fiducial case, including the
integrals of the power spectrum over the lens bins range,
where we do not use the narrow lens bin approximation,
and with contributions from lens magnification and
intrinsic alignments. The model of the ratio for the lens
redshift bin i between source redshift bins j and k can be
expressed as
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rðli;sj;skÞ ≡
!
γ
li;sj
t ðθÞ
γli;skt ðθÞ

"

θ

¼ hrðli;sj;skÞðθÞiθ; ð6Þ

where the averaging over the different angular bins is
performed as detailed in Sec. IV, in the same way as we do
it for the measurement. To model each tangential shear
quantity in the ratio, we use exactly the same model used
for the galaxy-galaxy lensing probe in the DES Y3 3 × 2pt
cosmological analysis, which we will summarize in this
section and for which further details can be found in Krause
et al. [70] and Prat et al. [32]. Also, in Fig. 2 we show the
full modeling of the ratios as a function of scale before
performing the angular averaging. We compare it with the
purely geometrical modeling described in the previous
section, and find that, even though the geometrical part
component continues to be the dominant component
needed to model the ratios, other contributions become
significant for some of the lens-source bins combinations
and thus the full modeling is needed.
The tangential shear two-point correlation function for

each angular bin can be expressed as a transformation of the

galaxy-matter angular cross-power spectrum CgmðlÞ,
which in this work we perform using the curved sky
projection:

γijt ðθÞ ¼ ð1þmjÞ
X

l

2lþ 1

4πlðlþ 1Þ
P2
lðθmin; θmaxÞCij

gm;totðlÞ;

ð7Þ

for a lens redshift bin i and a source redshift bin j, where
P2
lðθmin; θmaxÞ is the bin-averaged associated Legendre

polynomial within an angular bin ½θmin; θmax', defined in
Prat et al. [32]. mj are free parameters that account for a
multiplicative uncertainty on the shape measurements. The
total angular cross-power spectrum Cij

gm;tot in the equation
above includes terms from IAs, lens magnification and
cross terms between the two effects:

Cij
gm;tot ¼ Cij

gm þ Cij
gm;IA þ Cij

gm;lens mag þ Cij
gm;IA x lensmag: ð8Þ

The main angular cross-power spectrum can be written as
this projection of the 3D galaxy-matter power spectrum
Pgm, using Limber’s approximation [71,72] and assuming a
flat Universe cosmology:

Cij
gmðlÞ¼

3H2
0Ωm

2c2

Z
dχNi

lðχÞ
gjðχÞ
aðχÞχ

Pgm

#
lþ1=2

χ
;zðχÞ

$
;

ð9Þ

where

Ni
lðχÞ ¼

nilðz − ΔzilÞ
n̄il

dz
dχ

; ð10Þ

with Δzil accounting for the uncertainty on the mean
redshift of the lens redshift distributions. For the
MAGLIM sample we also marginalize over the width of
the lens redshift distributions, introducing the parameters
σizl , one for each lens redshift bin (see Cawthon et al. [45],
Porredon et al. [40] for additional details about the
introduction of the width parametrization). In the equations
above, k is the 3D wave number, l is the 2D multipole
moment, χ is the comoving distance to redshift z, a
is the scale factor, nil is the lens redshift distribution, n̄il
is the mean number density of the lens galaxies and gðχÞ is
the lensing efficiency kernel:

gðχÞ ¼
Z

χlim

χ
dχ0Nj

sðχ0Þ
χ0 − χ
χ0

; ð11Þ

with Nj
sðχ0Þ being analogously defined for the source

galaxies as in Eq. (10) for the lens galaxies, introducing
the source redshift uncertainty parameters Δzjs. χlim is the
limiting comoving distance of the source galaxy sample.

FIG. 2. Lensing ratios using the full model of the ratios we use
in this work as a function of scale evaluated at the best-fit values
of the 3 × 2pt analysis (see Sec. III B) compared with the purely
geometrical model used in previous shear-ratio analyses until this
date, which is scale independent (see Sec. III A). We can
appreciate the geometrical component still dominates the model-
ing of the ratios but small but significant deviations are found
when comparing with the full modeling. The unshaded regions
correspond to the “small scales”we use in this analysis, which are
adding extra information below the scales used in the 3 × 2pt
cosmological analysis for the galaxy-galaxy lensing probe. The
gray shaded regions are not used for the fiducial ratios
in this work.
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Also, we want to relate the galaxy-matter power spectrum
to the matter power spectrum for all the terms above. In our
fiducial model we assume that lens galaxies trace the mass
distribution following a simple linear biasing model
(δg ¼ bδm). The galaxy-matter power spectrum relates to
the matter power spectrum by a multiplicative galaxy bias
factor:

Pij
gm ¼ biPij

mm; ð12Þ

even though the galaxy bias mostly cancels in the lensing
ratios. We find the lensing ratios to have significant
dependence on the IA and lens magnification terms but
almost no sensitivity to the galaxy bias model. We compute
the nonlinear matter power spectrum Pmm using the
Takahashi et al. [73] version of halofit and the linear
power spectrum with CAMB.1 To compute the theoretical
modeling in this study, we use the COSMOSIS frame-
work [74].
Below we briefly describe the other terms included in

our fiducial model.
Lens magnification.—Lens magnification is the effect of

magnification applied to the lens galaxy sample by the
structure that is between the lens galaxies and the observer.
The lens magnification angular cross-power spectrum can
be written as

Cij
gm;lens mag ¼ 2ðαi − 1ÞCij

mmðlÞ; ð13Þ

where αi is a parameter that depends on the properties of
the lens sample and has been measured in Elvin-Poole et al.
[38] for the DES Y3 lens samples within the 3 × 2pt
analysis. The measured values can be seen in Table I.
Cij
mmðlÞ is the convergence power spectrum between the

lens and source distributions, as defined in Elvin-Poole
et al. [38].
Intrinsic alignments.—The orientation of the source

galaxies is correlated with the underlying large-scale
structure, and therefore with the lenses tracing this struc-
ture. This effect is only present in galaxy-galaxy lensing
measurements if the lens and source galaxies overlap in
redshift. To take it into account, we employ the TATT (tidal
alignment and tidal torquing) model [75] which is an
extension of the NLA model [30]. Then, the IA term is

Cij
IAðlÞ¼

Z
dχ

Ni
lðχÞN

j
sðχÞ

χ2
PgI

#
k¼lþ1=2

χ
;zðχÞ

$
; ð14Þ

where PgI ¼ bPGI, with b being the linear bias of the lens
galaxies. PGI is model dependent and in the TATT model is
given by

PGI ¼ a1ðzÞPmm þ a1δðzÞP0j0E þ a2ðzÞP0jE2; ð15Þ

where the full expressions for the power spectra of the
second and third term in the can be found in Blazek et al.
[see Eqs. (37)–(39) and their Appendix A [75] ]. The other
parameters are defined as

a1ðzÞ ¼ −A1C̄1

ρcritΩm

DðzÞ

#
1þ z
1þ z0

$
η1
; ð16Þ

a2ðzÞ ¼ 5A2C̄1

ρcritΩm

D2ðzÞ

#
1þ z
1þ z0

$
η2
; ð17Þ

a1δðzÞ ¼ bTAa1ðzÞ; ð18Þ

where C̄1 is a normalization constant, by convention fixed
at a value C̄1 ¼ 5 × 10−14 M⊙h−2 Mpc2, obtained from
SuperCOSMOS (see Brown et al. [76]). The denominator
z0 is a pivot redshift, which we fix to the value 0.62. Finally,
the dimensionless amplitudes ða1; a2Þ, the power law
indices ðη1; η2Þ and the bTA parameter (which accounts
for the fact that the shape field is preferentially sampled in
overdense regions) are the five free parameters of our
TATT model.
Lens magnification cross intrinsic alignments term.—

There is also the contribution from the correlation between
lens magnification and source intrinsic alignments, which
is included in our fiducial model:

Cij
mIðlÞ¼

Z
dχ

qilðχÞN
j
sðχÞ

χ2
PmI

#
k¼lþ1=2

χ
;zðχÞ

$
; ð19Þ

where PmI ¼ PGI.

1. Parameters of the model

Next we will describe the different dependencies of the
modeling of the ratios. In most cases, such dependencies
will be described by parameters in our model (listed
below), some of which will have Gaussian priors associated
with them.

(i) Cosmological parameters (6 or 7): 6 for ΛCDM,
which are Ωm, H0, Ωb, ns, As (or σ8

2) and Ωνh2. For
wCDM, there is an additional parameter, w, that
governs the equation of state of dark energy. Also, in
our model we are assuming three species of massive
neutrinos, following DES Collaboration [33], and a
flat geometry of the Universe (Ωk ¼ 0).

(ii) Source redshifts parameters: in order to characterize
the uncertainties, we allow for an independent shift

1https://camb.info/

2We sample our parameter space with As and convert to σ8 at
each step of the chain to get the posterior of σ8. We also use the
parameter S8, which is a quantity well constrained by weak
lensing data, defined here as S8 ¼ σ8ðΩm=0.3Þ0.5.
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Δzj in each of the measured source redshift dis-
tributions. Priors for these parameters have been
obtained in Gatti et al. [48], Myles et al. [47].
Additional validation with respect to marginalizing
over the shape of the source redshift distributions is
provided in Cordero et al. [77] using the HYPER-

RANK method.
(iii) Lens redshift parameters: we allow for independent

shifts in the mean redshift of the distributions, Δzi,
one per each i lens redshift bin, as defined in
Eq. (10). For the MAGLIM sample there are additional
parameters to marginalize over: the width of the
redshift distributions σzi . That is because the width
of the distributions is more uncertain in the MAGLIM

case. Priors for these parameters have been obtained
in Cawthon et al. [45].

(iv) Multiplicative shear bias parameters: we allow for a
multiplicative change on the shear calibration of the
source samples using mj, one per each j source
redshift bin. Priors for these parameters have been
obtained in MacCrann et al. [58].

(v) Lens magnification parameters: they describe the
sign and amplitude of the lens magnification effect.
We denote them by αi, one per each i lens redshift
bin. These parameters have been computed in Elvin-
Poole et al. [38] and are fixed in our analysis as well
as in the 3 × 2pt analysis.

(vi) (Linear) galaxy bias parameters: they model the
relation between the underlying dark matter density
field and the galaxy density field: bi, one per each i
lens redshift bin, since we assume linear galaxy bias
in this analysis.

(vii) IA parameters: our fiducial IA model is the TATT
model, which has five parameters: two amplitudes
governing the strength of the alignment for the tidal
and for the torque par, respectively, a1, a2, two
parameters modeling the dependence of each of the
amplitudes in redshift, α1, α2 and bTA, describing the
galaxy bias of the source sample.

2. Different run configurations

Now we have listed all the dependencies of the model
used to describe the ratios throughout this paper. Across the
paper, however, we will perform different tests using the
ratios, freeing different parameters in each case.We consider
three main different scenarios, and for each scenario we use
different measurements and allow different parameters to
vary. The testswill be described inmore detail as they appear
in the paper, but here we list these distinct scenarios and the
modeling choices adopted in each of them:
(1) Shear-ratio only: in this case, the datavector consists of

small-scale shear-ratio measurements only (see
Sec. IVA 2 for the definition of scales used). The
model has 19 free parameters for the REDMAGIC

sample: three lens redshift parameters, four source

redshift parameters, four multiplicative shear bias
parameters, three galaxy bias parameters and five
IA parameters. For the MAGLIM sample there are 22
free parameters, with the additional three lens redshift
parameters describing thewidth of the distributions. In
this case we fix the cosmological parameters since the
lensing ratios have been found to be insensitive to
cosmology (see Sec. V E for a test of this assumption).

(2) Large-scale (LS) SR only: in this case, the data
vector consists of large-scale shear-ratio measure-
ments only (see Sec. IVA 2 for the definition of
scales used). The model (and number of free
parameters) is the same one as for the small-scale
lensing ratios scenario. This setup is only used as
validation for the small-scale shear-ratio analysis.

(3) Shear-ratioþ 3 × 2pt (SRþ 3 × 2): in this case, the
data vector consists of small-scale shear-ratio mea-
surements and the usual 3 × 2pt data vector, that is,
galaxy clusteringwðθÞ, galaxy-galaxy lensing, γtðθÞ,
and cosmic shear, ξþðθÞ, ξ−ðθÞ measurements, each
one with the corresponding scale cuts applied to the
DES Y3 3 × 2pt cosmological analysis. In this case
we used exactly the same model as in the 3 × 2pt
cosmological analysis, freeing all the parameters
described above, that is, for the REDMAGIC SAMPLE

29 parameters in total for ΛCDM, 30 for wCDM, 31
for the MAGLIM sample for ΛCDM and 32 for
wCDM. The only difference between this scenario
and the 3 × 2pt one is the addition of the small-scale
lensing ratios measurements in the data vector.

C. Parameter inference methodology

In this work we want to use ratios of small-scale galaxy-
galaxy lensing measurements around the same lens bins to
constrain redshift uncertainties and other systematics or
nuisance parameters of our model, as described above.
Next we summarize the methodology we utilize to perform
such tasks using Bayesian statistics.
Let us denote the set of measured ratios as frg, and the

set of parameters in our model as fMg. We want to know
the probability of our model parameters given the ratios
data. In particular, we are interested in estimating the
posterior probability distribution function of each para-
meter in our model (fMg) given the ratios data frg,
pðfMgjfrgÞ. In order to get that posterior probability,
we will use Bayes theorem, which relates that posterior
distribution to the likelihood, pðfrgjfMgÞ, computed from
the model and the data, and the prior, pðfMgÞ, which
encapsulates a priori information we may have on the
parameters of our model, via the following relation:

pðfMgjfrgÞ ∝ pðfrgjfMgÞpðfMgÞ: ð20Þ

We will use a given set of priors on the model
parameters; some of them will be uniform priors in a
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certain interval, others will be Gaussian priors in the cases
where we have more information about the given param-
eters. For SR, we will assume a Gaussian likelihood, which
means that for a given set of parameters in the model
(fMg), we will compute the corresponding ratios for those
model parameters (frgM), and then estimate a χ2 value
between these and the data ratios (frg), using a fixed data
covariance (C), and then the logarithm of the SR likelihood
becomes

logLSR ¼ logpðfrgjM⃗Þ ¼ −
1

2
χ2 −

1

2
logDetC; ð21Þ

with χ2 ¼ ðfrg − frgMÞTC−1ðfrg − frgMÞ: ð22Þ

This method will provide constraints on the parameters
of our model given the measured ratios on the data and a
covariance for them. For the fiducial DES Y3 cosmological
analysis, this SR likelihood will be used in combination
with the likelihood for other 2pt functions such as cosmic
shear, galaxy clustering and galaxy-galaxy lensing.
Because SR is independent of the other 2pt measurements
(see Sec. IV B), the likelihoods can be simply combined:

logLTotal ¼ logLSR þ logL2pt: ð23Þ

The specific details of the parameters and the associated
priors used in each test will be described in detail later in the
paper, together with the description of the test itself. For
Monte Carlo Markov Chain (MCMC) chains, we use
POLYCHORD [78] as the fiducial sampler for this paper.
We use the following settings for this sampler: feed-
back=3, fast_fraction=0.1, live_
points=500, num_repeats=60, tolerance=0.1,
boost_posteriors=10.0 for the chains ran on data,
and live_points=250, num_repeats=30 for chains
on simulated data vectors, consistent with the DES
Collaboration [33] and following the guidelines from
Lemos, Weaverdyck et al. [79].

IV. MEASUREMENT AND COVARIANCE
OF THE RATIOS

In this section, we describe the measurement and
covariance of the ratios, including the choice of scales
we use, and we test the robustness of the estimation. The
measurement of the ratios is based on the tangential shear
measurements presented and validated in Prat et al. [32],
where several measurement tests are performed on the 2pt
measurements, such as testing for B modes, PSF leakage,
observing conditions, scale-dependent responses, among
others.

A. Methodology

1. Lens-source bin combinations

In this work we use three lens redshift bins, for both lens
galaxy samples, REDMAGIC and MAGLIM, and four source
redshift bins, as described in Sec. II and depicted in Fig. 1.
The DES Y3 3 × 2pt project uses five and six lens bins
(Fig. 1) for the two lens samples, respectively. In this work
we stick to the three lowest redshift lens bins both because
they carry the bulk of the total shear ratio SNR and because
the impact of lens magnification is much stronger for the
highest redshift lens bins, and we choose not to be
dominated by lens magnification even though we include
it in the modeling, given the uncertainty in the parameters
calibrating it. Regarding source redshift bins, we use the
four bins utilized in the DES Y3 3 × 2pt project.
From the redshift bins described above, we will construct

combinations with a given fixed lens bin and two source
bins, denoted by the label ðli; sj; skÞ, where sk corresponds
to the source bin which will sit in the denominator. Then,
for each lens bin we can construct three independent ratios,
to make a total set of nine independent ratios, frðli;sj;skÞg.
Note there is not a unique set of independent ratios one can
pick. In this work we choose to include the highest SNR
tangential shear measurement in the denominator
of all of the ratios since that choice will minimize any
potential noise bias. In our case the highest SNR tangential
shear measurement corresponds to the highest source bin,
i.e. the fourth one, and hence, for a given lens bin i we will
use the following three independent ratios frðli;s1;s4Þg;
frðli;s2;s4Þg; frðli;s3;s4Þg. See also Table II for a complete list
of the ratio combinations we use in this work.

2. Small- and large-scale ratios: Choice of scales

When measuring the lensing ratios, we will be interested
in two sets of angular scales, which we label as “small-scale
ratios” and “large-scale ratios,” Large-scale ratios are
defined to use approximately the same angular scales as
the galaxy-galaxy lensing probe in the 3 × 2pt DES Y3
cosmological analysis, and for that we use scales above
8 h−1Mpc and until angular separations of 250 arcmins.
In fact, the minimum scale used in the 3 × 2pt analysis is
6 h−1Mpc, but due to their usage of analytical marginali-
zation of small-scale information (see Sec. IV.2 in Prat et al.
[32] and MacCrann et al. [80]) the scales between 6-8
h−1 Mpc do not add significant information. Regardless,
we use the large-scale ratios purely as validation for the
small-scale ratios, as detailed in Sec. VII.
Small-scale ratios are defined using angular measure-

ments below the minimum scale used in the cosmology
analysis, i.e. 6 h−1 Mpc. Small-scale ratios will be our
fiducial set of ratios, and next we focus on defining the
lower boundary of scales to be used for those ratios. If
ratios were purely geometrical, then they would be scale
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independent, and hence we could use all measured scales to
constrain them (the full measured set of scales for galaxy-
galaxy lensing in DES Y3 is described in Prat et al. [32]).
However, as we saw in the previous section, lensing ratios
are not purely geometrical but there are other physical
scale-dependent effects which need to be modeled

accurately, and hence we are restricted to angular scales
where the modeling is well characterized. In particular, in
some ratio configurations there is enough overlap between
lenses and sources to make the ratios sensitive to IAs, even
if this dependence is smaller than for the full tangential
shear measurement.
Figure 3 shows the impact of different IA models

(different parameter choices for TATT) on all the lensing
ratios considered. This figure can be compared to Fig. 2,
and it is unsurprising to find that the impact of IA is
smallest for the ratios that are closest to purely geometrical
ratios. There are two cases in which the ratios are
insensitive to IA (Fig. 3) and well modeled with geometry
only (Fig. 2), which correspond to the combinations
(l1, s3, s4) and (l2, s3, s4). These ratios involve lens-source
combinations with negligible overlap between lenses
and sources and are thus not affected by IAs. For
these geometrical ratio combinations, we predict scale-
independent ratios and hence we are able to accurately
model the measurements at all scales, down to the mini-
mum angular separation in which we measure the tangen-
tial shear, which is 2.5 arcmins [32].
For the remaining combinations we choose not to

include physical scales below 2 h−1Mpc, to avoid
approaching the 1-halo regime. This decision is driven
by the importance of shear ratio in constraining IA and the
corresponding requirement to restrict the analysis to the
range of validity of our fiducial IA model, the TATT model.
This model captures nonlinear IA effects, notably the tidal
torquing mechanism relevant for blue/spiral galaxies and
the impact of weighting by source galaxy density, which

TABLE II. Redshift bin combinations and scales used in this
work for the “small-scale” lensing ratios probe. ðli; sj; skÞ is a
label that specifies the lens and source bins considered in the
ratio, where sk is in the denominator. In general, we use scales
between 2–6 h−1 Mpc, except for the combinations which have
almost no overlap between lenses and sources, for which we use
all scales available (with a lower limit of 2.5 arcmins) since they
are dominated by geometry and almost not affected by IA and
magnification effects. Ndp is the number of data points remaining
after applying our scale cuts, which we show for both lens
samples: REDMAGIC (RM) and MAGLIM (ML) (the variations in
Ndp for both samples come from them having slightly different
mean redshifts).

ðli; sj; skÞ Scales Ndp RM Ndp ML

ðl1; s1; s4Þ 2–6 h−1 Mpc 4 5
ðl1; s2; s4Þ 2–6 h−1 Mpc 4 5
ðl1; s3; s4Þ 2.5 arcmin–6 h−1 Mpc 10 10
ðl2; s1; s4Þ 2–6 h−1 Mpc 4 5
ðl2; s2; s4Þ 2–6 h−1 Mpc 4 5
ðl2; s3; s4Þ 2.5 arcmin–6 h−1 Mpc 8 9
ðl3; s1; s4Þ 2–6 h−1 Mpc 4 5
ðl3; s2; s4Þ 2–6 h−1 Mpc 4 5
ðl3; s3; s4Þ 2–6 h−1 Mpc 4 5

FIG. 3. Impact of different IA models (different parameter choices for TATT) on all the lensing ratios considered in this work. We find
that for ratios whose modeling is close to a pure geometrical model (Fig. 2) the impact of IA is negligible. The different lines in the plot
have different IA parameters in the ranges: a1 ¼ ½0.5; 1'; a2 ¼ ½−2;−0.8'; α1 ¼ ½−2.5; 0'; α2 ¼ ½−4.;−1.2'; bTA ¼ ½0.6; 1.2'. The gray
bands show the size of the data uncertainties on the ratios, for reference.
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becomes important on scales where clustering is non-
negligible. The TATT model is thus significantly more
flexible than the frequently used NLA, which itself has
been shown to accurately describe alignments of red
galaxies down to a few Mpc (e.g. [81,82]). However, as
a perturbative description, the TATT model will not apply
on fully nonlinear scales and thus is not considered robust
within the 1-halo regime. While this choice of minimum
scale is supported by both theoretical expectations and past
observational results, we use our analysis when restricting
to large scales as an additional robustness check. As shown
in Fig. 13, the IA constraints from the large-scale shear
ratio information are fully consistent with the fiducial shear
ratio constraints, providing further support for our
assumption that the TATT model can describe IAs down
the minimum scale. In Table II we summarize the scale cuts
described in this section for each of the ratio combinations.
Finally, it is worth noting that the choice of physical scales
is the same for the two lens galaxy samples used in this
work, but the choice of angular scales varies due to their
slightly different redshift distributions.

3. Estimation of the ratio

Having defined the set of ratios of galaxy-galaxy lensing
measurements to be used, and the set of angular scales to
employ in each of them, now we will describe the
procedure to measure the lensing shear ratios. Let
γ
li;sj
t ðθÞ and γli;skt ðθÞ be two galaxy-galaxy lensing mea-
surements as a function of angular scale (θ) around the
same lens bin li but from two different source bins, sj and
sk, and we want to estimate the ratio of them. Since the
ratios are mostly geometrical they are predominantly scale
independent (Fig. 2). We have checked that using ratios as a
function of scale does not significantly improve our results
(although that may change for future analyses with larger
datasets). Therefore, for simplicity, we average over angu-
lar scales between our scale cuts in the following way:

rðli;sj;skÞ ≡
!
γ
li;sj
t ðθÞ
γli;skt ðθÞ

"

θ

¼ hrðli;sj;skÞðθÞiθ; ð24Þ

where the average over angular scales, h…iθ, includes the
corresponding correlations between measurements at dif-
ferent angular scales. We can denote the ratio measure-
ments as a function of scale as vectors, such as
rðli;sj;skÞðθÞ≡ rðli;sj;skÞ, and ðli; sj; skÞ is a label that spec-
ifies the lens and source bins considered in the ratio. In
order to account for all correlations, we will assume we
have a fiducial theoretical model for our lensing measure-
ments, γ̃li;sjt ðθÞ and γ̃li;skt ðθÞ and a joint covariance for the
two measurements as a function of scale, Cγ̃ , such that

ðCγ̃Þm;n ¼ Cov½γ̃li;sjt ðθmÞ; γ̃
li;sk
t ðθnÞ': ð25Þ

Now we want to estimate the average ratio of lensing
measurements. The ratio is a nonlinear transformation, as is
clear from Eq. (24). The covariance of the ratio as a
function of scale can be estimated as

Cr ¼ JCγ̃ JT; ð26Þ

where J is the Jacobian of the ratio transformation as a
function of scale from Eq. (24), rðli;sj;skÞ, and can be
computed exactly using the theoretical model for the
lensing measurements. Note that Cγ̃, Cr and J are all
computed for a given ratio ðli; sj; skÞ. Having the covari-
ance for the ratio as a function of scale, the estimate of the
mean ratio having minimum variance is given by

rðli;sj;skÞ ¼ σ2rðDTC−1
r rðli;sj;skÞÞ;

with σ2r ¼ ðDTC−1ðli;sj;skÞ
r DÞ−1: ð27Þ

Here D is a design matrix equal to a vector of ones,
½1;…; 1'T , of the same length as rðli;sj;skÞ (the number of
angular bins considered). Note that the estimator for the
ratio in Eq. (27) reduces to an inverse variance weighting of
the angular bins for a diagonal covariance, and to an
unweighted mean in the case of a diagonal covariance with
constant diagonal values.
For the fiducial simulated data in this work, we use the

redshift distributions of the REDMAGIC lens sample, although
the differences between the REDMAGIC andMAGLIM samples
are small in the first three lens bins (see Fig. 1). Figure 4
shows values of the fiducial estimated lensing shear ratios
for both our simulated data and the real unblinded data. For
the simulated case, we show the true values of the ratios, i.e.
those measured directly from the noiseless case, as well as
the estimated ratios when noise is included. For the data
cases, we show the fiducial set of data ratios used in this
work for both REDMAGIC andMAGLIM lens samples together
with the corresponding best fit model using the full 3 × 2
DES Y3 cosmological analyses. The data results will be
discussed in detail in Sec. VII. Next, we will describe the
covariance estimate of the ratios and we will assess the
performance of our estimator.

4. Covariance of the ratios

We have described above how we compute the ratio of a
given pair of galaxy-galaxy lensing measurements. Now,
we describe how we compute the covariance between
different ratios, from different pairs of lensing measure-
ments. First, we use the fiducial model and theory joint
covariance for all the galaxy-galaxy lensing measurements
produced and validated in Friedrich et al. [83], to produce
105 covariant realizations of the galaxy-galaxy lensing
measurements drawn from a mutivariate Gaussian centered
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at the fiducial model, and with the theoretical galaxy-
galaxy lensing covariance.
For each of these 105 realizations of galaxy-galaxy

lensing measurements, we measure the set of nine shear
ratios using the procedure described above. That yields 105

realizations of the set of nine ratios. We use that to compute
the 9 × 9 covariance of the ratios, which is shown in Fig. 16
in Appendix A. The number of realizations we use to
produce this covariance (105) is arbitrary, but we have
checked that the results do not vary when using a larger
number of realizations.

B. Independence between small and large scales

In this section we discuss why the SR likelihood is
independent of the 2pt likelihood. We also discuss the

independence of the large-scale ratios defined in
Sec. IVA 2 with respect to the small-scale ones. That
independence will allow us to use the large-scale ratio
information as validation of the information we get from
small scales.
The correlation of the SR likelihood with the ð3×Þ2pt

likelihood will come mostly from the galaxy-galaxy lens-
ing 2pt measurements. Since we do not leave any gap
between the minimum scale used for 2pt measurements
(6 h−1 Mpc) and the small-scale ratios, this can in principle
be worrying since the tangential shear is nonlocal, and
therefore it receives contributions from physical scales in
the galaxy-matter correlation function that are below the
scale at which it is measured [80,84,85]. However, for the
large scales 2pt galaxy-galaxy lensing used in the DES Y3
3 × 2pt analysis, we follow the approach of MacCrann
et al. [80] and marginalize analytically over the unknown
enclosed mass, which effectively removes any correlation
with scales smaller than the small-scale limit of 6 h−1Mpc,
ensuring that the information from the 3 × 2pt measure-
ments is independent from the small-scale ratios used in
this work, which use scales smaller than 6 h−1Mpc. We call
this procedure “point-mass marginalization.” This point-
mass marginalization scheme significantly increases the
uncertainties in galaxy-galaxy lensing measurements
around 6–8 h−1Mpc (see Fig. 8 and Sec. 4.2 in Prat et al.
[32]). Also, see MacCrann et al. [80] and Pandey et al. [39]
for a description of the point-mass marginalization imple-
mented in the 3 × 2pt analysis.
Regarding the large-scale shear ratios used in this work,

we will only use scales larger than 8 h−1Mpc, to ensure
independence from the small-scale ratios using scales
smaller than 6 h−1 Mpc (since for the SR-only chains we
do not apply the point-mass marginalization, given that the
ratios are not sensitive to first approximation to any enclosed
mass). In order to assess the independence of small and
large-scale ratios, we estimate the cross-covariance of the
small and large-scale ratios, using again 105 realizations of
the galaxy-galaxy lensing measurements and deriving
small- and large-scale ratios for each of them, using
the same procedure as in Sec. IVA 4. We ensure that the
corresponding Δχ2 due to including or ignoring the cross-
covariance is smaller than 0.25. The reasons for this
independence relate to the 2 h−1Mpc gap left between small
and large scales and to the importance of shape noise at these
scales, which helps decorrelating different angular bins.

C. Gaussianity of the SR likelihood

Because the shear ratios are a nonlinear transformation
of the galaxy-galaxy lensing measurements, it is important
to test the assumption of Gaussianity in the likelihood. We
have a number of realizations s of the lensing measure-
ments, drawn from the theory curves and the corresponding
covariance, and for each of them we have a set of nine

FIG. 4. Upper panel: true values of the ratios frg for our
fiducial theory model, together with the estimates of the simu-
lated ratios using the measurement procedure described in
Sec. IVA 3 and the uncertainties estimated using the procedure
described in Sec. IVA 4. Middle panel: measured set of shear
ratios and their uncertainties in the REDMAGIC data, together with
the best-fit model from the 3 × 2 DES Y3 cosmological analysis
of the REDMAGIC sample (χ2=ndf ¼ 11.3=9, p value of 0.26).
Lower panel: measured set of shear ratios and their uncertainties
in the MAGLIM data, together with the best-fit model from the
3 × 2 DES Y3 cosmological analysis of the MAGLIM sample
(χ2=ndf ¼ 18.8=9, p value of 0.03, above the threshold for
inconsistencies which we originally set at p value ¼ 0.01 for the
DES Y3 analysis).
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measured ratios, frgs, and we have a 9 × 9 covariance for
those ratios, which we can denote Cfrg. Importantly, we
also have the set of ratios for the noiseless fiducial model
used to generate the realizations, denoted by frg0. Figure 4
shows the noiseless (or true) ratios from the model, frg0,
together with the estimated mean and standard deviation of
the noisy ratios, frgs. Also, if the likelihood of observing a
given set of noisy ratios given a model, pðfrgsjfrg0Þ, is
Gaussian and given by the covariance Cfrg, then the
following quantity

χ2s ¼ ðfrgs − frg0ÞC−1
frgðfrgs − frg0ÞT ð28Þ

should be distributed like a chi squared distribution with a
number of degrees of freedom equal to the number of ratios
(nine in this case), so χ2s ∼ χ2ðx; ndf ¼ 9Þ. Figure 5 shows
the agreement between the distribution of χs compared to
the expected chi squared distribution for ratios at small and
large scales. This agreement demonstrates that our like-
lihood for the ratios is Gaussian, and in conjunction with
Fig. 4, it provides validation that our estimator does not
suffer from any significant form of noise bias.

V. VALIDATION OF THE MODEL

In this section we validate our model for the lensing
ratios by exploring the impact of several effects that are not
included in our fiducial model, which are relevant to
galaxy-galaxy lensing measurements at small scales (the
corresponding validation for other DES Y3 data vectors is
performed in Krause et al. [70]). The fiducial model is
described in Sec. III B. The effects we consider are in some
cases explored directly at the theory level (e.g. by changing
the input power spectrum) or using ratios measured in
realisticN-body simulations. In this way, all the tests in this
section are performed using noiseless simulated data
vectors except for the Buzzard case (in Sec. V H), which

includes noise. For testing purposes, we will analyze the
impact of such effects in the ratios, at both small and large
scales, but we will also assess their impact on the derived
constraints on our model parameters using the same priors
we use in the data, which are the most relevant metric. For
that, we will performMCMC runs as described in Sec. III C
for the various effects under consideration. The priors and
allowed ranges of all parameters in our model are described
in Table III and aim to mimic the configuration used for the
final runs in the data, described in Sec. VII. A summary of
the resulting constraints for each test is included in Figs. 6
and 7, while further details are included in each subsection.

A. Fiducial simulated constraints

For the purpose of comparison and reference, in the
figures of this section we also include constraints from the
fiducial SR case, where ratios are constructed directly using
the input theory model. As we did in the previous section,
we use the redshift distributions of the REDMAGIC lens
sample for the fiducial simulated ratios, although the
differences between the REDMAGIC and MAGLIM samples
are small in the first three lens bins (see Fig. 1). We have
generated our fiducial simulated data vector using the best-
fit values of the 3 × 2ptþ SR results for the cosmological
parameters and the IA and galaxy bias parameters.3

In addition, the fiducial case allows us to determine what
parameters are being constrained using the information
coming from the ratios. Figure 6 shows the constraints on
the parameters corresponding to source redshifts, source
multiplicative shear biases and lens redshifts. Due to the
strong priors imposed on these parameters, no correlations
are observed between them and hence we show the
marginalized 1D posteriors. In the fiducial SR case, the
ratios improve the constraints on the parameters corre-
sponding to source redshifts, while shear calibration and
lens redshifts are not significantly constrained beyond the
priors imposed on those parameters (Table III). In detail, for
the four source redshift parameters in Fig. 6, the posteriors
using the ratios improve the prior constraints on Δzs by
12%, 25%, 19% and 8%, respectively, for each bin.
Furthermore, the ratios are able to place constraints on
some of the IA parameters of our model, for which we do
not place Gaussian priors. For IAs, out of the five
parameters in the model, the ratios are most effective at
constraining a degeneracy direction between IA parameters
a1 and a2, as in Fig. 7 (see Prat et al. [32] or Secco et al.
[37] for a full description of the IA model used or Sec. III B
in this paper for a summary of the most relevant equations).
These IA constraints from SR will become important for
constraining cosmological parameters when SR is com-
bined with other probes like cosmic shear (see Sec. VI).

FIG. 5. Distribution of χ2s from Eq. (28), for small and large-
scale ratios, compared to a chi squared distribution with a number
of degrees of freedom equal to the numbers of ratios in frgs.

3Specifically, we use the values of the first 3 × 2ptþ SR
REDMAGIC unblinded results and the halo-model covariance
evaluated at these values.
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1. LS ratios

One important test that will be used as a direct model
validation in the data is the comparison of model posteriors
using ratios from small and large scales. This comparison is
interesting because the model for galaxy-galaxy lensing is
more robust at large scales, and because small and large
scales are uncorrelated since they are dominated by shape
noise. Therefore, we can compare our fiducial model
constraints coming from small-scale ratios to the corre-
sponding constraints from large scales, and a mismatch
between these will point out a potential problem in the
modeling of small scales. In Figs. 6 and 7, we show the

model constraints from large-scale ratios, for reference. We
will also perform this test for the results on N-body
simulations in Sec. V H, and directly on the data in
Sec. VII A.

FIG. 6. Summary of the posteriors on the model parameters corresponding to source redshifts, shear calibration and lens redshifts for
different SR-only test runs described in Sec. V and combination runs from Sec. VI. All the above tests are performed using noiseless
simulated data vectors except for the Buzzard ones which include noise. The colored bands show the 1σ prior in each parameter, while
the black error bars show 1σ posteriors.

FIG. 7. This plot summarizes the posteriors on the two intrinsic
alignment model parameters that are constrained by the ratios, for
different SR only test runs described in Sec. V, using noiseless
simulated data vectors.

TABLE III. Allowed ranges and priors of the model parameters
for the chains run in Secs. Vand VI. Indices i in the labels refer to
the three lens redshift bins, and indices j refer to the four source
redshift bins, all defined in Sec. II.

Range Prior

Source redshifts Δzjs ½−0.1; 0.1' N ð0; ½0.018; 0.015; 0.011;
0.017'Þ

Shear calibration mj ½−0.1; 0.1' N ð0; ½0.0091; 0.0078;
0.0076; 0.0076'Þ

Lens redshifts Δzil ½−0.05; 0.05' N ð0; ½0.004; 0.003; 0.003'Þ
Galaxy bias bi [0.8, 3.0] Uniform
IA a1, a2, α1, α2 ½−5; 5' Uniform
IA bias TA [0, 2] Uniform
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B. Baryons and nonlinear galaxy bias

Hydrodynamical simulations suggest that baryonic
effects, specifically the ejection of gas due to feedback
energy from active galactic nuclei, have an impact on the
matter distribution at cosmologically relevant scales [86].
Such effects may lead to differences in the galaxy-galaxy
lensing observable at the small scales considered in this
work. In order to test this effect, we model it rescaling the
nonlinear matter power spectrum with the baryonic con-
tamination from the overwhelmingly large simulations
project (Schaye et al. [87], van Daalen et al. [88]) as a
function of redshift and scale. Specifically, to obtain the
baryonic contamination, we compare the power spectrum
from the dark-matter-only simulation with the power
spectrum from the overwhelmingly large simulations active
galactic nuclei simulation, following Krause et al. [70].
In addition, nonlinear galaxy bias effects would poten-

tially produce differences in the ratios that could be
unexplained by our fiducial model. We utilize a model
for nonlinear galaxy bias that has been calibrated using
N-body simulations and is described in Pandey et al. [89],
Pandey et al. [39]. In order to test the impact of these effects
on the ratios, we produce a set of simulated galaxy-galaxy
lensing data vectors including the effects of baryons and
nonlinear galaxy bias as described above, and produce the
corresponding set of shear ratios. Overall we use the same
procedure which is used in Krause et al. [70] to contami-
nate the fiducial data vector with these effects and propa-
gate this contamination to the ratios. Then, we derive
constraints on our model parameters using this new set of
ratios, and we show the results in Figs. 6 and 7. In those
figures we can see the small impact of these effects in our
constraints compared to the fiducial case, confirming that
baryonic effects and nonlinear galaxy bias do not signifi-
cantly bias our model constraints from the ratios.

C. Halo occupation distribution model

The HOD (Cooray and Sheth [90]) model provides a
principled way of describing the connection between
galaxies and their host dark matter halos, and it is capable
of describing small-scale galaxy-galaxy lensing measure-
ments at a higher accuracy than the halofit approach, which
is used in our fiducial model for the shear ratios (described
in Sec. III B). Next we test the differences between HOD
and halofit in the modeling of the ratios, and assess their
importance compared to the uncertainties we characterized
in Sec. IV. We aim at performing two tests to assess the
robustness of the fiducial halofit modeling by comparing it
to two HOD scenarios. One scenario showing the effect of
HOD modeling, with a fixed HOD for each lens redshift
bin, and another including HOD evolution within each lens
redshift bin. For these tests, we perform the comparisons to
a fiducial model without intrinsic alignments and lens
magnification, for simplicity and to isolate the effects of
HOD modeling compared to halofit.

For these tests we use the MICE N-body simulation
where a DES-like light cone catalog of REDMAGIC galaxies
with the spatial depth variations matching DES Y3 data is
generated (see Sec. II C 2). Using this catalog, we measure
the mean HOD of the galaxies in the five redshift bins
(Sec. II) as well as in higher resolution redshift bins with
δz ∼ 0.02. Note that these measurements are done using
true redshifts of the galaxies in order to pick up the true
redshift evolution. We use these two measurements to
predict the galaxy-galaxy lensing signal using a halo model
formalism as described in Appendix C.
The upper panel of Fig. 8 shows the difference between

the simulated ratios using the fiducial model and the
simulated ratios obtained using a mean HOD model for
each redshift bin, for both small and large scales. As
expected, the difference for large scales is negligible
(Δχ2 ¼ 0.02), since the fiducial halofit modeling is known
to provide an accurate description of galaxy-galaxy lensing
at large scales (> 8 Mpc=h). At small scales (between 2
and 6 Mpc=h), we see very small deviations of the HOD
simulated ratios compared to the fiducial ones (Δχ2 ¼ 0.22
for nine data points), which do not significantly alter the
constraints on the model parameters when using the HOD-
derived ratios. It is worth noting that this is not a trivial test
since the effect on the tangential shear itself is very
significant on these scales, as can be seen in Fig. 8 from
Prat et al. [32].

FIG. 8. Effects of HOD modeling and HOD evolution on the
shear ratios, for both small and large angular scales. The error
bars show the ratio uncertainties from the same covariance as
used in the data.
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The lower panel of Fig. 8 shows the difference of shear
ratios produced by using a mean HOD for each redshift bin
and an evolving HOD as obtained by high resolution
measurements in MICE. We find a residual Δχ2 of 0.04
at small scales (even smaller at large scales) and hence
consistent shear ratio estimates. Given the results shown in
Fig. 8, we conclude that nonlinearities introduced by HOD
evolution within a tomographic redshift bin will not bias
our shear ratio estimates.
It is important to note that the HOD tests described in this

section correspond to one of our two lens samples, the
REDMAGIC sample, and that we do not show the equivalent
test for the MAGLIM lens sample. However, having validated
this for one of the lens samples, we will test the consistency
between the SR constraints obtained with the two lens
samples in Sec. VII, and also Amon et al. [36] performs
the same validation test in the combination of SR with
cosmic shear.

D. Lens magnification

The theoretical modeling of the galaxy-galaxy lensing
signal and hence of the lensing ratios used in this work
includes the effects of lens magnification. In the fiducial
case, the lens magnification coefficients are fixed to the
ones estimated using the BALROG software [57] in Elvin-
Poole et al. [38]. Here, we test the effect of letting the
lens magnification coefficients be free for the SR analysis.
In particular, Figs. 6 and 7 test the effects of that choice
(labeled there as “Free mag”) on the parameters corre-
sponding to lens and source redshifts, shear calibration and
intrinsic alignments. No significant biases are observed and
the derived constraints are comparable to the constraints
using fixed lens magnification coefficients.

E. Cosmology dependence

The lensing ratios themselves have very little sensitivity
to cosmology. If they help with cosmological inference, it is
because they help constrain some of the nuisance param-
eters that limit the cosmological constraining power. Here
we will show their exact dependency, and that it is indeed
safe to fix cosmological parameters when running SR only
chains. Despite this weak dependency, the cosmological
parameters are set as free parameters when the SR like-
lihood is run together with the 2pt likelihood (when
combined with cosmic shear and the other 2pt functions).
Hence even the small sensitivity of the ratios to cosmology
is properly handled in the runs together with the 2pt
likelihoods.
In Fig. 9 we show how the lensing ratios change as a

function of Ωm. Our fiducial simulated data vector assumes
Ωm ≃ 0.35 and we show that varying that to Ωm ¼ 0.30 or
to Ωm ¼ 0.40 has very little impact on the ratios, compared
with their uncertainties, yielding Δχ2 ¼ 0.03, 0.01, respec-
tively, for nine data points. We have also tested the
dependency on the σ8 parameter and found the lensing

ratios change less than 0.5% when changing from σ8 ¼ 0.7
to σ8 ¼ 0.8.

F. Boost factors and IA

Boost factors are the measurement correction needed to
account for the impact of lens-source clustering on the
redshift distributions. When there is lens-source clustering,
lenses and sources tend to be closer in redshift than
represented by the mean survey redshift distributions that
are an input to our model. This effect is scale dependent,
being larger at small scales where the clustering is also
larger. See Eq. (4) of Prat et al. [32] for its definition,
related to the tangential shear estimator.
We include boost factors as part of our fiducial mea-

surements as detailed in Prat et al. [32] (see their Fig. 3 for a
plot showing the boost factors). However, since boost
factors are more sensitive to some effects which are not
included in our modeling, such as source magnification, it
is useful to test their impact on the ratios. In Fig. 9 we show
the difference in the ratios when including or not the boost
factor correction and find that it has a small impact on the
ratios compared with their uncertainty, with Δχ2 ¼ 0.16.
Checking the influence of the boost factors on the ratios

is also giving us an order-of-magnitude estimate of how
much the nonlinear source clustering is impacting the
signal, in particular in relation to intrinsic alignments.
The IA term receives contributions from both the alignment
of galaxies and the fact that sources cluster around lenses,
leading to an excess number of lens-source pairs. We
account for this term using the bTA parameter of the TATT
model but on the smallest scales, roughly below a fewMpc,
the TATT model will not sufficiently capture the nonlinear
clustering and IA [81]. The fact that boost factors do not
have a large impact on the ratios gives us an indication that

FIG. 9. Impact of different effects on the lensing ratios,
including cosmology dependence (see Sec. V E), boost factors
(see Sec. V F) and reduced shear þ source magnification (see
Sec. V G). All these tests use noiseless simulated data vectors,
and the error bars show the ratio uncertainties from the same
covariance as used in the data.
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our fiducial TATT model will suffice over the scales we use
to construct the ratios.

G. Higher-order lensing effects

In this section we test the impact of higher-order lensing
effects to our model of the ratios, such as using the reduced
shear approximation and not including source magnifica-
tion in our model. In order to do that, we will propagate to
the ratios the model developed and described in detail in
Krause et al. [70] to include the combination of reduced
shear and source magnification effects. This model is
computed with the COSMOLIKE library [31] using a tree-
level bispectrum that in turn is based on the nonlinear
power spectrum. For the source magnification coefficients,
we use the values computed in Elvin-Poole et al. [38].
In Prat et al. [32], the reduced shear contamination is
illustrated for the tangential shear part. Here, we pro-
pagate that model to the lensing ratios, showing the
small differences they produce on the ratios in Fig. 9, with
Δχ2 ¼ 0.09 for nine data points. The reduced shear con-
tamination only produces a Δχ2 ¼ 0.02 and therefore most
of the change is coming from the source magnification part.

H. Validation using N-body sims

In this section we have so far considered different
physical effects and tested their impact on the ratios at
the theory level, for instance changing the input power
spectrum used to generate the galaxy-galaxy lensing
estimates. Now, instead, we use the Buzzard realistic
N-body simulations, described in Sec. II C 1, to measure
the lensing signal and the ratios which we then analyze
using the fiducial model. These simulations are created to
mimic the real DES data and hence they implicitly contain
several physical effects that could potentially affect the
ratios (e.g. nonlinear galaxy bias or redshift evolution of
lens properties). For that reason, they constitute a stringent
test on the robustness of our model. In addition, the tests in
this part will be subject to noise in the measurement of the
lensing signal and the ratios, due to shot noise and shape
noise in the lensing sample, as opposed to the tests above
which were performed with noiseless theoretical ratios.
That measurement noise will also propagate into noisier
parameter posteriors.
In Fig. 6 we include the results of the tests using N-body

simulations, named SR Buzzard for the fiducial small-
scale ratios and SR Buzzard LS for the large-scale SR
test. The results are in line with the other tests in this
section, showing the robustness of the SR constraints
also on N-body simulations (considering the fact that the
Buzzard constraints include noise in the measurements, as
stated above). In addition, due to the fact that there are no
intrinsic alignments in Buzzard, and the fact that lens
magnification is not known precisely, we do not show IAs
or magnification constraints from the Buzzard run.

VI. COMBINATION WITH OTHER PROBES AND
EFFECT ON COSMOLOGICAL CONSTRAINTS

In the previous section we explored the constraining
power of the lensing ratios defined in this work and we
validated their usage by demonstrating their robustness
against several effects in their modeling. However, in the
DES Y3 cosmological analysis, lensing ratios will be used
in combination with other probes. For photometric galaxy
surveys, the main large-scale structure and weak lensing
observables at the two-point level are galaxy clustering
(galaxy-galaxy), galaxy-galaxy lensing (galaxy-shear) and
cosmic shear (shear-shear), which combined are referred to
as 3 × 2pt. In this section, we will explore the constraining
power of ratios when combined with such probes in DES,
with the galaxy-galaxy lensing probe using larger scales
compared to the lensing ratios.
When used by themselves, lensing ratios have no

significant constraining power on cosmological parameters,
however, when combined with other probes, they can help
constrain cosmology through the constraints they provide
on nuisance parameters such as source mean redshifts or
IAs. Next we will show simulated results on the impact of
the addition of SR to the three 2pt functions used in the
DES Y3 cosmological analysis. We will analyze the
improvement in the different nuisance parameters but also
directly on cosmological parameters.

A. SR impact on cosmic shear

Cosmic shear, or simply 1 × 2pt, measures the correlated
distortion in the shapes of distant galaxies due to gravita-
tional lensing by the large-scale structure in the Universe.
It is sensitive to both the growth rate and the expansion
history of the Universe, and independent of galaxy bias.
Here we explore the constraining power of DES Y3 cosmic
shear in combination with SR using simulated data. For
that, we run MCMC chains where we explore cosmological
parameters and the nuisance parameters corresponding
to source galaxies, such as intrinsic alignments, source
redshift calibration and multiplicative shear biases. Also,
when using SR in combination with 1 × 2pt, we sample
over lens redshift calibration and galaxy bias parameters for
the three redshift bins included when building the ratios,
even if the posteriors on the galaxy bias are unconstrained.
We make this choice to be fully consistent with the tests we
have performed in the previous section but the results are
consistent if we fix the galaxy bias parameters. For the lens
redshift calibration parameters, we use the same priors
detailed in the previous section.
The effect of adding SR to 1 × 2pt is shown in Fig. 10 for

cosmological and IA parameters and in Fig. 6 for the other
nuisance parameters. For source redshift parameters, SR
improves the constraints of all four source bins by 9%,
13%, 14% and 2%, respectively. Most importantly, SR
significantly helps improve the constraints on cosmology,
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by about 25% on S8 and 3% on Ωm (see Table IV). From
Fig. 10, it is apparent the improvement in cosmology comes
mostly from a major improvement in constraining the
amplitudes of the IA modeling. The effect on the other
IA parameters is shown in Appendix B.

B. SR impact on galaxy clustering
and galaxy-galaxy lensing

The combination of galaxy clustering and galaxy-galaxy
lensing, also named 2 × 2pt, is a powerful observable as it
breaks the degeneracies between cosmological parameters
and galaxy bias. When using SR in combination with
2 × 2pt, there is no need to sample over additional

parameters, and we use the same priors detailed in the
previous section.
When we add SR to the DES Y3 2 × 2pt combination

there is a modest improvement in constraining power for
cosmological parameters, by about 4% on S8 and 3% on
Ωm (see Table IV). The reason this improvement is smaller
than for the cosmic shear case is due to the fact that the 2pt
galaxy-galaxy lensing measurements are already providing
IA information in this case. This makes the change in the
IA parameters when we add SR smaller, as shown in
Appendix B. In Fig. 6 we show the impact of adding SR for
the other nuisance parameters. For source redshift param-
eters, SR improves the constraints of the first three source
bins by 9%, 14% and 4%, respectively. There is also a
modest improvement on the other nuisance parameters as
shown in Fig. 6.

C. SR impact on 3 × 2pt

A powerful and robust way to extract cosmological
information from imaging galaxy surveys involves the full
combination of the three two-point functions, in what is
now the standard in the field, and referred to as a 3 × 2pt
analysis. This combination helps constraining systematic
effects that influence each probe differently. When using
SR in combination with 3 × 2pt, there is no need to sample
over additional parameters, and we use the same priors
detailed in the previous section.
The effect of adding SR to the DES Y3 3 × 2pt analysis

is similar as for the 2 × 2pt case. For cosmological
parameters, there is an improvement in constraining power
of about 3% on S8 and 5% on Ωm (see Table IV). In Fig. 6
we show the impact for the other nuisance parameters. For
example, for source redshift parameters, SR improves the
constraints of the second source bin by more than 15%. The
effect on the IA parameters is shown in Appendix B.

VII. RESULTS WITH THE DES Y3 DATA

In this section we will present and validate the con-
straints on model parameters derived from SR in the DES
Y3 data sample. We compute SR for our two different lens
samples, and for small and large scales. For a given set of
ratios, frg, we use the following expression for computing
the signal-to-noise ratio:

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfrgÞC−1

frgðfrgÞ
T − ndf

q
; ð29Þ

where ndf is the number of degrees of freedom, which
equals the number of ratios (nine in our case), and C is the
covariance described in Sec. IVA 4. Using the data ratios
frgs (presented in Fig. 4), we estimate, for the fiducial
small-scale ratios, a combined SNR ∼ 84 for the MAGLIM

sample (SNR ∼ 60 for the REDMAGIC sample), and for
large-scale ratios we estimate SNR ∼ 42 for the MAGLIM

sample (SNR ∼ 38 for the REDMAGIC sample).

FIG. 10. Simulated likelihood analysis showing the constraints
on cosmological parameters S8 and Ωm and intrinsic alignments
parameters aIA1 and aIA2 from cosmic shear only (1 × 2pt) and
cosmic shear and lensing ratios (1 × 2ptþ SR).

TABLE IV. Impact of SR on cosmological constraints using
simulated DES Y3 data. The table shows parameter differences
with respect to the truth values for the simulated data, which are
Ωm ¼ 0.350 and S8 ¼ 0.768.

ΔΩm ΔS8
1 × 2pt −0.057þ0.077

−0.038 −0.005þ0.026
−0.030

1 × 2ptþ SR −0.050þ0.078
−0.034 0.002þ0.024

−0.018

2 × 2pt 0.008þ0.028
−0.046 −0.019þ0.044

−0.027

2 × 2ptþ SR −0.002þ0.035
−0.037 −0.006þ0.031

−0.037

3 × 2pt −0.006þ0.038
−0.021 0.003þ0.013

−0.022

3 × 2ptþ SR 0.011þ0.018
−0.038 −0.006þ0.021

−0.013
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We will broadly split the section in two parts: first, we
will describe the model parameter constraints from SR
alone, specifically by looking at their impact on source
redshift and IA parameters, and study their robustness by
using two different lens samples (REDMAGIC and MAGLIM)
and large-scale ratios for validation. Then, wewill study the
impact of SR in improving model parameter constraints
when combined with other probes such as cosmic shear,
galaxy clustering and galaxy-galaxy lensing in the DES Y3
data sample. It is worth pointing out that SR will also be
used for correlations between DES data and CMB lensing,
although these will not be discussed here (see Chang et al.
[91], Omori et al. [92] for the usage of SR in combination
with CMB lensing). For the results in this section, unless
we specifically note that we free some of these priors, we
use the DES Y3 priors on the parameters of our model,
summarized in Table V.

A. DES Y3 SR-only constraints

Now we will present and discuss the model parameter
constraints from SR in DES Y3. Because we will show and
compare the constraints from various SR configurations,
including ratios from two independent lens samples, we
will also assess the robustness of these results. As we
demonstrated in Sec. V, SR provides constraints on model
parameters corresponding to source redshifts and intrinsic
alignments, so we will focus on those for this part.
Figure 11 presents the SR constraints on the source

redshift parameters of our model using a number of SR
configurations. The left panel shows the SR constraints
coming from the independent REDMAGIC and MAGLIM

galaxy samples, using flat, uninformative priors on the
source redshift parameters and the priors described in
Table V for the rest of the parameters. In that panel, for
comparison, we also include the source redshift prior used

TABLE V. Allowed ranges and priors of the model parameters for the DES Y3 data chains run in Sec. VII. Indices i in the labels refer
to the three lens redshift bins, and indices j refer to the four source redshift bins, all defined in Sec. III B.

Range Data priors

Source redshifts Δzjs ½−0.1; 0.1' N ð0; ½0.018; 0.015; 0.011; 0.017'Þ
Shear calibration mj ½−0.1; 0.1' N ð½−0.0063;−0.0198;−0.0241;−0.0369'; ½0.0091; 0.0078; 0.0076; 0.0076'Þ
Lens redshifts REDMAGIC Δzil ½−0.05; 0.05' N ð½0.006; 0.001; 0.004'; ½0.004; 0.003; 0.003'Þ
Lens redshifts MAGLIM Δzil ½−0.05; 0.05' N ð½−0.009;−0.035;−0.005'; ½0.007; 0.011; 0.006'Þ
Lens redshifts MAGLIM σizl [0.1, 1.9] N ð½0.975; 1.306; 0.87'; ½0.062; 0.093; 0.054'Þ
Galaxy bias bi [0.8, 3.0] Uniform
IA a1, a2, α1, α2 ½−5; 5' Uniform
IA bias TA [0, 2] Uniform

FIG. 11. Mean source redshift constraints from a SR-only chain, with a flat uninformative prior, in comparison with the results from
the combination of the alternative calibration methods of SOMPZþWZ, and the final combined results of SOMPZþWZþ SR on data
using the REDMAGIC sample.
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in the DES Y3 analysis, which comes from a combination
of photometric information (SOMPZ) and clustering red-
shifts (WZ), and which is presented in detail in Myles et al.
[47] and Gatti et al. [48] and shown here in Table V. At this
point we can compute the tension between SR redshift
constraints and the redshift prior, for the four source
redshift bins combined, and we obtain a 0.97σ tension
(p value > 0.33) for the REDMAGIC SR, and 2.08σ (p value
> 0.04) for the MAGLIM (numbers computed following
Lemos et al. [93]). Since these values are above our
threshold for consistency (p value > 0.01), the SR con-
straints are in agreement with the prior and we can proceed
to use the redshift prior for the SR likelihoods (see Myles
et al. [47] for a review of the complete DES Y3 weak
lensing source calibration, and Amon et al. [36] for SR
consistency checks in combination with cosmic shear).
Regarding the mild tension between SR and the redshift
prior for the MAGLIM sample, we refer to DES
Collaboration [33] for results demonstrating the consis-
tency of the cosmological constraints with and without SR.
The right panel in Fig. 11 shows the REDMAGIC and

MAGLIM SR constraints when using the DES Y3 redshift
prior, so we can visualize the improvement that SR brings
to the prior redshift constraints. Specifically, for REDMAGIC

SR, the constraints on the four source redshift Δz param-
eters are improved by 11%, 28%, 25% and 14% with
respect to the prior, and for MAGLIM, by 14%, 38%, 25%
and 17%, respectively, for the four redshift parameters (the
percentage numbers quote the reduction in the width of
parameter posteriors compared to the prior). Note that
within the DES Y3 3 × 2pt setup, we do not use the SR
information in this way, i.e. by using the redshift prior that
comes from the combination of SOMPZþWZþ SR, but
instead we add the shear-ratio likelihood to the 3 × 2pt
likelihood as written in Eq. (23). In this way, the SR
information is not only constraining redshifts but also the
rest of the parameters of the model, especially the param-
eters modeling IAs.
The agreement between the SR constraints coming from

our two independent lens samples, REDMAGIC and MAGLIM,
demonstrates the robustness of SR source redshift con-
straints and provides excellent validation for the methods
used in this work. In addition, in Fig. 12 we show the large-
scale SR constraints for both lens samples, compared to
the small scale, fiducial SR constraints. As discussed in
Secs. IV and V, large-scale SR provides independent
validation of the small-scale SR constraints. Because of
the larger angular scales used in their calculation, they are
less sensitive to effects such as nonlinear galaxy bias or the
impact of baryons (although we have demonstrated that
small-scale ratios are also not significantly impacted by
these in Sec. V B). At this point we can again compute the
tension between fiducial and large-scale SR, and we obtain
a 0.1σ tension for the REDMAGIC case, and 0.3σ for MAGLIM

(numbers computed following Lemos et al. [93]). This

agreement between the fiducial small-scale SR and the
large-scale versions, again for two independent lens galaxy
samples, provides additional evidence of the robustness of
the results in this work.
In addition to the source redshift parameters, the other

parameters that are significantly constrained by SR are the
amplitudes of the IA model, aIA1 and aIA2 (see Sec. III B for a
description). Importantly, such constraints have a strong
impact in tightening cosmological constraints when com-
bined with other probes, such as cosmic shear (see Fig. 10
and Amon et al. [36]). Figure 13 shows the IA amplitude
constraints from REDMAGIC and MAGLIM SR, both using
small-scale (fiducial) and using LS SR as validation. The
agreement between these constraints demonstrates the
robustness of the IA SR constraints, which play an
important role when combined with cosmic shear and
other 2pt functions.

B. Impact of SR on 1;2;3 × 2pt in the DES Y3
cosmological analysis

The SR methods described in this work are part of the
fiducial DES Y3 cosmological analysis, and hence the SR
measurements are used as an additional likelihood to the
other 2pt functions. In this part we will describe the impact
of adding the SR likelihood in constraining our cosmo-
logical model when combined with other probes such as
cosmic shear, galaxy clustering and galaxy-galaxy lensing.
We will do so by comparing the cosmological constraints
with and without SR and then describing the gains in
constraining power in them when SR is used. Please note

FIG. 12. Mean source redshift constraints from different SR
configurations, using the DES Y3 redshift prior (SOMPZþWZ),
comparing the fiducial small-scale constraints from those of the
LS SR, for the two independent lens galaxy samples, REDMAGIC

and MAGLIM.

DARK ENERGY SURVEY YEAR 3 RESULTS: EXPLOITING … PHYS. REV. D 105, 083529 (2022)

083529-23



that we will focus on the gains of the combination with SR,
and we will not present or discuss the cosmological results
or their implications. For such presentation and discussion,
please see the cosmic shear results in two companion
papers Amon et al. [36], Secco, Samuroff et al. [37], the
results from galaxy clustering and galaxy-galaxy lensing in
Elvin-Poole, MacCrann et al. [38], Pandey et al. [39],

Porredon et al. [40] and the combination of all probes in
DES Collaboration [33].
Figure 14 shows the impact of SR in constraining

cosmological parameters Ωm and S8 when combined with
cosmic shear data (1 × 2pt) in the DES Y3 data, for both
the SR case with REDMAGIC and MAGLIM lens samples. The
contours in the plot have all been placed at the origin of the
ΔΩm-ΔS8 plane, so that the plot shows only the impact of
SR in the size of contours but does not include information
on the central values. The gain in constraining power from
the addition of the SR likelihood in the data is in line with
our findings on noiseless simulated data (Sec. VI and
Fig. 10), pointing to the robustness of the simulated
analysis in reproducing the DES Y3 data. As in the
simulated case, SR is especially important in constraining
cosmology from cosmic shear, where it improves the
constraints on S8 by 31% for REDMAGIC SR and 25%
for MAGLIM SR. As explored in Fig. 10, the improvement
comes especially from the ability of SR to place constraints
on IAs, which then breaks important degeneracies with
cosmology in cosmic shear. Given this role of SR as a key
component of cosmic shear in constraining IAs and
cosmology, it is worth exploring the role played by SR
in cosmic shear for different models of IA. In this paper we
have assumed the fiducial IA model (TATT) for all tests.
For a study showing how SR impacts the cosmic shear
constraints using different IA models, see the DES Y3
cosmic shear companion papers Amon et al. [36] and Secco
et al. [37]. In summary, we find that SR improves IA
constraints from cosmic shear for all IA models. When

FIG. 13. Data constraints on the two intrinsic alignment
amplitude model parameters from different DES Y3 SR data
configurations, comparing the fiducial small-scale constraints
from those from the LS SR, for the two independent lens galaxy
samples, REDMAGIC and MAGLIM.

FIG. 14. Differences in the DES Y3 data constraints on cosmological parameters S8 and Ωm with the addition of SR to the cosmic
shear measurement (1 × 2pt). The left panel shows the case with SR using REDMAGIC lenses, while the right panel shows the results with
SR using the MAGLIM lens sample. All the contours in the plot have been placed at the origin of the ΔΩm-ΔS8 plane, so that the plot
shows only the impact of SR in the size of contours but does not include information on the central values of parameters or shifts
between them. The impact of SR is significantly relevant for cosmic shear, with improvements in constraining S8 of 31% for REDMAGIC

SR and 25% for MAGLIM SR.
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using TATT (which is a five-parameter IA model) or NLA
with redshift evolution (which is a three-parameter IA
model), SR significantly helps constraining S8 due to the
breaking of degeneracies with IA. For the simplest NLA
model without redshift evolution (which is a one-parameter
IA model), SR significantly tightens the IA constraints
from cosmic shear, but the impact on S8 is reduced due to
the milder degeneracies between IA and S8 for that case.
In the combination with the other 2pt functions in the

data, galaxy clustering and galaxy-galaxy lensing, the
improvement coming from SR is less pronounced, as
expected from our simulated analysis, but nonetheless
for the full combination of probes (3 × 2pt) the addition
of SR results in the DES Y3 data constraints on S8 being
tighter by 10% for the REDMAGIC case and 5% for MAGLIM

(see also the DES Collaboration [33]). The SR improve-
ment on the 3 × 2pt cases is slightly higher than what we
found in the simulated case (Sec. VI), which may be due to
the fact that the covariance used in the data is different from
the simulated case, as it was recomputed at the best-fit
cosmology after the 3 × 2pt unblinding (see DES
Collaboration [33] for more details).
Besides the impact of SR in cosmological constraints, it

is important to stress that SR does significantly impact
parameter posteriors on source redshifts and intrinsic
alignments in all cases, even in the cases where the
improvements in cosmology are mild or negligible. In
particular, for the full combination of probes (3 × 2pt), the
cases with SR present tighter posteriors on the second and
third source redshift parameters (the ones SR constraints
best) by around 14%, for both REDMAGIC and MAGLIM. In
addition, SR does have an impact on the posteriors on IAs
for the full combination of probes, as can be seen in Fig. 15.
In that plot, one can see how the addition of SR pulls the IA
constraints closer to the no IA case (marked in the plot as
a cross of dashed lines) for both lens samples. This is
consistent with Fig. 13, where the SR data is shown to be
consistent with the case of no IAs, although in a degeneracy
direction between IA parameters a1 and a2, and it dem-
onstrates the impact of SR in the IA constraints even for
the cases where such impact does not translate to a strong
impact on cosmological constraints. For a discussion of
IAs in the context of the 3 × 2pt analysis, see the DES
Collaboration [33].

VIII. SUMMARY AND CONCLUSIONS

The Dark Energy Survey Y3 3 × 2pt cosmological
analysis, much like other cosmological analyses of photo-
metric galaxy surveys, relies on the combination of three
measured 2pt correlation functions, namely galaxy cluster-
ing, galaxy-galaxy lensing and cosmic shear. The usage of
these measurements to constrain cosmological models,
however, is limited to large angular scales because of
the uncertainties coming from modeling baryonic effects
and galaxy bias. Consequently, a significant amount of

information at smaller angular scales typically remains
unused in these analyses.
In this work we have developed a method to use small-

scale ratios of galaxy-galaxy lensing measurements to place
constraints on parameters of our model, particularly those
corresponding to source redshift calibration and intrinsic
alignments. These ratios of galaxy-galaxy lensing mea-
surements, evaluated around the same lens bins, are also
known as lensing or shear ratios. The SRs have often been
used in the past assuming they were a purely geometrical
probe. In this work, instead, we use the full modeling of the
galaxy-galaxy lensing measurements involved, including

FIG. 15. DES Y3 data constraints on the two intrinsic align-
ment amplitude model parameters from the full combination of
probes (3 × 2pt) with and without the addition of SR, for the
REDMAGIC and MAGLIM lens samples. The crossing of the dashed
black lines shows the no IA case.
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the corresponding integration over the power spectrum and
the contributions from intrinsic alignments and lens weak
lensing magnification. Taking ratios of small-scale galaxy-
galaxy lensing measurements sharing the same lens bins
reduces their sensitivity to nonlinearities in galaxy bias or
baryonic effects, but retains crucial and independent
information about redshift calibration and effects on
intrinsic alignments, which we fully exploit with this
approach.
We perform extensive testing of the small-scale shear

ratio modeling by characterizing the impact of different
effects, such as the inclusion of baryonic physics in the
power spectrum, nonlinear galaxy biasing, the effect of
HOD modeling description and lens magnification. We test
the shear ratio constraints on realistic N-body simulations
of the DES data. We find that shear ratios as defined in this
work are not significantly affected by any of those effects.
We also use simulated data to study the constraining power
of SR given the DES Y3 modeling choices and priors, and
find it to be most sensitive to the calibration of source
redshift distributions and to the amplitude of IAs in our
model. In particular, the sensitivity to IA makes SR very
important when combined with other probes such as
cosmic shear, and SR can significantly improve the con-
straints on cosmological parameters by breaking their
degeneracies with IA.
The shear ratios presented in this work are utilized as an

additional contribution to the likelihood for cosmic shear
and the full 3 × 2pt in the fiducial DES Y3 cosmological
analysis. The SR constraints have an important effect
in improving the constraining power in the analysis.
Assuming four source galaxy redshift bins, SR improves
the constraints on the mean redshift parameters of those
bins by up to more than 30%. For the cosmic shear analysis,
presented in detail in two companion papers Amon et al.
[36] and Secco et al. [37], we find that SR improves the
constraints on the amplitude of matter fluctuations S8 by up
to 31%, due to the tightening of redshift posteriors but
especially due to breaking degeneracies with IAs. For the
full combination of probes in DES Y3 data, the so-called
3 × 2pt analysis [33], SR improves the constraints on S8 by
up to 10%. Even for the cases where the improvements in
cosmology are mild, SR brings significant and independent
information to the characterization of IAs and source
redshifts. In addition, when adding CMB lensing informa-
tion to the DES Y3 analysis, Chang et al. [91] and Omori
et al. [92] find significant improvements with the addition
of SR to the cross-correlation between shear and CMB
lensing convergence maps, again due to constraints on
intrinsic alignments.
One of the main advantages of SR is its weak sensitivity

to modeling uncertainties at small scales, compared to
the pure galaxy-galaxy lensing measurements. For that
reason, for any choice of angular scales performed for

galaxy-galaxy lensing, there will always be smaller angular
scales that will be available for SR. These scales can be
used to extract independent information. In addition, SR is
more sensitive to the mean redshift rather than the width or
shape of the full redshift distribution, complementing other
methods (such as clustering cross-correlations) that are
more sensitive to other moments of these distributions.
Even more importantly, SR provides redshift calibration
even when the redshift distributions do not overlap with
spectroscopic samples used for clustering cross-correla-
tions, providing valuable independent information.
For these reasons, we conclude that SR can become

a standard addition to cosmological analyses from imag-
ing surveys using cosmic shear and (3 × 2)-like data.
Furthermore, if redshift and intrinsic alignment modeling
does not improve as quickly as the increased quality and
quantity of data, then SR may become even more important
for cosmological inference than it has been in DES Y3.
This scenario seems likely given that source redshift priors
did not improve significantly between Y1 and Y3, and the
model of intrinsic alignments moved from 3 to 5 para-
meters from Y1 to Y3, thus becoming more complicated.
Therefore, it seems plausible that SR will become an
important tool to characterize these two uncertainties in
our model, and hence become even more relevant at
improving the cosmological constraints in future analyses.

ACKNOWLEDGMENTS

C. S. is supported by Grant No. AST-1615555 from the
U.S. National Science Foundation, and Grant No. DE-
SC0007901 from the U.S. Department of Energy (DOE).
J. P. is supported by DOE Grant No. DE-SC0021429.
Funding for the DES Projects has been provided by the
U.S. Department of Energy, the U.S. National Science
Foundation, the Ministry of Science and Education of
Spain, the Science and Technology Facilities Council of the
United Kingdom, the Higher Education Funding Council
for England, the National Center for Supercomputing
Applications at the University of Illinois at Urbana-
Champaign, the Kavli Institute of Cosmological Physics
at the University of Chicago, the Center for Cosmology and
Astro-Particle Physics at the Ohio State University, the
Mitchell Institute for Fundamental Physics and Astronomy
at Texas A&M University, Financiadora de Estudos e
Projetos, Fundação Carlos Chagas Filho de Amparo à
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APPENDIX A: SHEAR RATIO COVARIANCE

Figure 16 shows the covariance of the measured ratios,
for the REDMAGIC and MAGLIM ratios, following the
procedure described in Sec. IVA 4.

APPENDIX B: CONSTRAINTS ON
FULL IA MODEL

Throughout the paper we have extensively discussed the
SR constraints on two IA parameters of our model, a1 and
a2, because they are the two parameters SR constrains best.
In Fig. 17, for completeness, we show the impact of SR in
constraining all five parameters of the IA model (described
in Sec. III) when combined with other 2pt functions. We
can recognize the strong impact of SR for cosmic shear
(1 × 2pt), especially in the a1-a2 plane, but for the other
parameters we can see that the impact of SR is not very
significant.

APPENDIX C: HOD MODEL OF
GALAXY-GALAXY LENSING

In this appendix we describe the prediction for galaxy-
galaxy lensing using a halo model framework. As described
in Sec. V C, we measure the mean HOD of all the galaxies
in each tomograhic bin as well as in a fine binning of δz ∼
0.02 to capture the effects of evolution of HOD within the
redshift bin. For each tomographic sub-bin, we measure
both the number of central galaxies (Ncen) and number of
satellite galaxies (Nsat) that we use in the modeling below.
In order to estimate the galaxy-galaxy lensing signal from
these measurements, we first predict the 1-halo and 2-halo
angular power spectrum between the galaxy position and
the convergence fields which can be written as follows. The
1-halo contribution is given by

Cij
gκ;1hðlÞ ¼

Z
zmax

zmin

dz
dV

dzdΩ

Z
Mmax

Mmin

dM
dn
dM

ūigðl;M; zÞūjκðl;M; zÞ; ðC1Þ

where dV is the cosmological volume element, dn=dM is
the halo mass function, and ūig and ūjκ are the multipole-
space profiles of observables galaxy and convergence fields
for tomgraphic bins i and j, respectively. We use the Crocce
et al. [94] fitting function for the halo mass function,
dn=dM throughout.

FIG. 16. Correlation matrix for the lensing ratios, on the left
panel using the REDMAGIC lens sample and on the right panel
using the MAGLIM sample.
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The two-halo term is given by

Cij
gκ;2hðlÞ ¼

Z
zmax

zmin

dz
dV

dzdΩ
bigðl; zÞb

j
κðl; zÞ

× Plinððlþ 1=2Þ=χ; zÞ; ðC2Þ

where big and b
j
κ are effective linear bias parameters describ-

ing the clustering of galaxy and convergence field, respec-
tively, Plinðk; zÞ is the linear matter power spectrum and χ is
the comoving distance corresponding to the redshift z.
The multipole space profile of the dark matter distribu-

tion is given by

ūjκðl;M; zÞ ¼ Wj
κðzÞ
χ2

umðk;MÞ; ðC3Þ

where k ¼ ðlþ 1=2Þ=χ, and Wj
κðzÞ is the lensing effi-

ciency of source galaxies corresponding to redshift bin j as
defined in Eq. (11). Here we approximate umðk;MÞ with a
Navarro-Frenk-White profile and use the concentration
relation from Bullock et al. [95] to predict it.
The multipole space profile of the galaxy distribution

is related to ūjκðl;M; zÞ and is given by

ūigðl;M; zÞ ¼
Wi

gðzÞ
χ2

1

hngðzÞi
ðNcenðM; zÞ

þ NsatðM; zÞusatðk;MÞÞ; ðC4Þ

where Wi
g ¼ ðdnig=dzÞðdz=dχÞ with ðdnig=dzÞ the normal-

ized redshift distribution of the galaxies corresponding to
redshift bin i, Ncen and Nsat are the central and satellite
galaxy numbers. We assume that the spatial distribution of

FIG. 17. Constraints on the five parameters of the IA model described in Sec. III given the combination of SR and the other 2pt
functions, using simulated DES Y3 data.
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satellite galaxies, usat, can be approximated by the same
Navarro-Frenk-White profile as matter, usat ¼ um.
For the 2-halo term, the effective linear bias of the dark

matter halos can be written as

bκ;jðl; zÞ ¼ Wj
κðzÞ
χ2

Z
dM

dn
dM

blinðM; zÞumðk;MvirÞ: ðC5Þ

We approximate the linear bias of halos blin with the
Bhattacharya et al. [96] fitting function.
The mean number of galaxies, hngðzÞi, entering into

Eq. (C4), is then given by

hngðzÞi ¼
Z

Mmax

Mmin

dM
dn
dM

ðMÞðNcenðM; zÞ þ NsatðM; zÞÞ;

ðC6Þ

where Mmin and Mmax correspond to the boundaries of a
particular mass bin. Similarly, the effective large-scale bias
of the galaxies is given by

bigðl; zÞ ¼
Wi

gðzÞ
χ2

1

hngðzÞi

Z
Mmax

Mmin

dM
dn
dM

ðNcenðM; zÞ

þ NsatðM; zÞÞusatðk;M; zÞÞblinðM; zÞ: ðC7Þ

Finally, the galaxy-galaxy lensing signal in real space is
given by

γijt ðθÞ ¼
Z

dll
2π

J2ðlθÞðCij
gκ;1hðlÞ þ Cij

gκ;2hðlÞÞ; ðC8Þ

where J2 is the second order Bessel function of the
first kind.
We use this framework to predict the galaxy-galaxy

lensing signal and hence the corresponding shear ratios
between different redshift bins. To that end, we use the
measured Ncen and Nsat from the DES galaxy mock
catalogs as described in Crocce et al. [68], MacCrann et al.
[80]. In Fig. 8, we show the impact of small-scale physics
parameters parametrized by this HOD framework on the
inferred shear ratios. We compare the case of assuming a
constant HOD within a redshift bin in top panel and
including the evolution of the Ncen and Nsat parameters
within each redshift bins in bottom panel. We find a small
impact of the small-scale physics, particularly on the large-
scale shear ratios as quantified in the Δχ2 mentioned in the
legend of the plot.
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[5] J. Harnois-Déraps, L. van Waerbeke, M. Viola, and C.
Heymans, Mon. Not. R. Astron. Soc. 450, 1212 (2015).

[6] E. Semboloni, H. Hoekstra, and J. Schaye, Mon. Not. R.
Astron. Soc. 434, 148 (2013).

[7] J. G. Cresswell and W. J. Percival, Mon. Not. R. Astron.
Soc. 392, 682 (2009).

[8] B. Jain and A. Taylor, Phys. Rev. Lett. 91, 141302 (2003).
[9] A. N. Taylor, T. D. Kitching, D. J. Bacon, and A. F.

Heavens, Mon. Not. R. Astron. Soc. 374, 1377 (2007).
[10] T. D. Kitching, A. F. Heavens, A. N. Taylor, M. L. Brown,

K. Meisenheimer, C. Wolf, M. E. Gray, and D. J. Bacon,
Mon. Not. R. Astron. Soc. 376, 771 (2007).

[11] J. E. Taylor et al., Astrophys. J. 749, 127 (2012).
[12] J. Zhang, L. Hui, and A. Stebbins, Astrophys. J. 635, 806

(2005).
[13] G. Bernstein and B. Jain, Astrophys. J. 600, 17 (2004).

[14] T. D. Kitching, A. N. Taylor, and A. F. Heavens, Mon. Not.
R. Astron. Soc. 389, 173 (2008).

[15] P. Schneider, Astron. Astrophys. 592, L6 (2016).
[16] S. Das and D. N. Spergel, Phys. Rev. D 79, 043509 (2009).
[17] T. D. Kitching et al., arXiv:1512.03627.
[18] S. Singh, R. Mandelbaum, and J. R. Brownstein, Mon. Not.

R. Astron. Soc. 464, 2120 (2017).
[19] H. Miyatake, M. S. Madhavacheril, N. Sehgal, A. Slosar,

D. N. Spergel, B. Sherwin, and A. van Engelen, Phys. Rev.
Lett. 118, 161301 (2017).

[20] J. Prat et al., Mon. Not. R. Astron. Soc. 487, 1363 (2019).
[21] R. Mandelbaum, C. M. Hirata, U. Seljak, J. Guzik, N.

Padmanabhan, C. Blake, M. R. Blanton, R. Lupton, and J.
Brinkmann, Mon. Not. R. Astron. Soc. 361, 1287 (2005).

[22] H. Hoekstra, B. C. Hsieh, H. K. C. Yee, H. Lin, and M. D.
Gladders, Astrophys. J. 635, 73 (2005).

[23] B. Giblin et al., Astron. Astrophys. 645, A105 (2021).
[24] C. Heymans et al., Mon. Not. R. Astron. Soc. 427, 146

(2012).
[25] H. Hildebrandt et al., Mon. Not. R. Astron. Soc. 465, 1454

(2017).
[26] H. Hildebrandt et al., Astron. Astrophys. 633, A69 (2020).
[27] J. Prat et al., Phys. Rev. D 98, 042005 (2018).

DARK ENERGY SURVEY YEAR 3 RESULTS: EXPLOITING … PHYS. REV. D 105, 083529 (2022)

083529-29

https://doi.org/10.1051/0004-6361/200811247
https://doi.org/10.1086/164143
https://doi.org/10.1086/173015
https://doi.org/10.1093/mnras/stu482
https://doi.org/10.1093/mnras/stu482
https://doi.org/10.1093/mnras/stv646
https://doi.org/10.1093/mnras/stt1013
https://doi.org/10.1093/mnras/stt1013
https://doi.org/10.1111/j.1365-2966.2008.14082.x
https://doi.org/10.1111/j.1365-2966.2008.14082.x
https://doi.org/10.1103/PhysRevLett.91.141302
https://doi.org/10.1111/j.1365-2966.2006.11257.x
https://doi.org/10.1111/j.1365-2966.2007.11473.x
https://doi.org/10.1088/0004-637X/749/2/127
https://doi.org/10.1086/497676
https://doi.org/10.1086/497676
https://doi.org/10.1086/379768
https://doi.org/10.1111/j.1365-2966.2008.13419.x
https://doi.org/10.1111/j.1365-2966.2008.13419.x
https://doi.org/10.1051/0004-6361/201628506
https://doi.org/10.1103/PhysRevD.79.043509
https://arXiv.org/abs/1512.03627
https://doi.org/10.1093/mnras/stw2482
https://doi.org/10.1093/mnras/stw2482
https://doi.org/10.1103/PhysRevLett.118.161301
https://doi.org/10.1103/PhysRevLett.118.161301
https://doi.org/10.1093/mnras/stz1309
https://doi.org/10.1111/j.1365-2966.2005.09282.x
https://doi.org/10.1086/496913
https://doi.org/10.1051/0004-6361/202038850
https://doi.org/10.1111/j.1365-2966.2012.21952.x
https://doi.org/10.1111/j.1365-2966.2012.21952.x
https://doi.org/10.1093/mnras/stw2805
https://doi.org/10.1093/mnras/stw2805
https://doi.org/10.1051/0004-6361/201834878
https://doi.org/10.1103/PhysRevD.98.042005


[28] S. Unruh, P. Schneider, and S. Hilbert, Astron. Astrophys.
623, A94 (2019).

[29] S. Bridle and L. King, New J. Phys. 9, 444 (2007).
[30] C. M. Hirata and U. Seljak, Phys. Rev. D 70, 063526 (2004).
[31] E. Krause and T. Eifler, Mon. Not. R. Astron. Soc. 470,

2100 (2017).
[32] J. Prat et al., preceding paper, Phys. Rev. D 105, 083528

(2022).
[33] DES Collaboration, Phys. Rev. D 105, 023520 (2022).
[34] M. Rodríguez-Monroy et al., Mon. Not. R. Astron. Soc. (to

be published).
[35] A. Porredon et al., Phys. Rev. D 103, 043503 (2021).
[36] A. Amon et al., Phys. Rev. D 105, 023514 (2022).
[37] L. F. Secco, S. Samuroff et al., Phys. Rev. D 105, 023515

(2022).
[38] J. Elvin-Poole and N. MacCrann et al., Mon. Not. R. Astron.

Soc. (to be published).
[39] S. Pandey et al., arXiv:2105.13545.
[40] A. Porredon et al., arXiv:2105.13546.
[41] DES Collaboration, Mon. Not. R. Astron. Soc. 460, 1270

(2016).
[42] B. Flaugher et al., Astron. J. 150, 150 (2015).
[43] E. Morganson et al., Publ. Astron. Soc. Pac. 130, 074501

(2018).
[44] I. Sevilla-Noarbe et al., Astrophys. J. Suppl. Ser. 254, 24

(2021).
[45] R.Cawthon et al.,Mon.Not.R.Astron. Soc. (to be published).
[46] J. De Vicente, E. Sánchez, and I. Sevilla-Noarbe, Mon. Not.

R. Astron. Soc. 459, 3078 (2016).
[47] J. Myles et al., Mon. Not. R. Astron. Soc. 505, 4249 (2021).
[48] M. Gatti, G. Giannini et al., Mon. Not. R. Astron. Soc. 510,

1223 (2022).
[49] M. Gatti, E. Sheldon et al., Mon. Not. Roy. Astron. Soc.

504, 4312 (2021).
[50] E. Rozo et al., Mon. Not. R. Astron. Soc. 461, 1431 (2016).
[51] E. S. Rykoff et al., Astrophys. J. 785, 104 (2014).
[52] E. S. Rykoff et al., Astrophys. J. Suppl. Ser. 224, 1 (2016).
[53] E. Huff and R. Mandelbaum, arXiv:1702.02600.
[54] E. S. Sheldon and E. M. Huff, Astrophys. J. 841, 24 (2017).
[55] E. S. Sheldon, Mon. Not. R. Astron. Soc.: Lett. 444, L25

(2014).
[56] W. G. Hartley, A. Choi et al., Mon. Not. R. Astron. Soc.

509, 3547 (2022).
[57] S. Everett et al., Astrophys. J. Suppl. Ser. 258, 15 (2022).
[58] N. MacCrann et al., Mon. Not. R. Astron. Soc. 509, 3371

(2022).
[59] J. DeRose et al., Mon. Not. R. Astron. Soc. (to be

published).
[60] J. DeRose, M. R. Becker, and R. H. Wechsler, arXiv:2105.

12104.
[61] R. H. Wechsler et al., arXiv:2105.12105.
[62] M. R. Becker, Ph.D. thesis, The University of Chicago,

2013.
[63] J. DeRose et al., arXiv:1901.02401.
[64] V. Springel, Mon. Not. R. Astron. Soc. 364, 1105 (2005).
[65] P. Fosalba, M. Crocce, E. Gaztañaga, and F. J. Castander,

Mon. Not. R. Astron. Soc. 448, 2987 (2015).

[66] J. Carretero, F. J. Castander, E. Gaztañaga, M. Crocce, and
P. Fosalba, Mon. Not. R. Astron. Soc. 447, 646 (2015).

[67] I. Zehavi et al., Astrophys. J. 630, 1 (2005).
[68] M. Crocce, F. J. Castander, E. Gaztañaga, P. Fosalba, and

J. Carretero, Mon. Not. R. Astron. Soc. 453, 1513 (2015).
[69] M. Bartelmann and P. Schneider, Phys. Rep. 340, 291

(2001).
[70] E. Krause et al., Phys. Rev. D (to be published).
[71] D. N. Limber, Astrophys. J. 117, 134 (1953).
[72] M. LoVerde and N. Afshordi, Phys. Rev. D 78, 123506

(2008).
[73] R. Takahashi, M. Sato, T. Nishimichi, A. Taruya, and M.

Oguri, Astrophys. J. 761, 152 (2012).
[74] J. Zuntz et al., Astron. Comput. 12, 45 (2015).
[75] J. A. Blazek, N. MacCrann, M. A. Troxel, and X. Fang,

Phys. Rev. D 100, 103506 (2019).
[76] M. L. Brown, A. N. Taylor, N. C. Hambly, and S. Dye, Mon.

Not. R. Astron. Soc. 333, 501 (2002).
[77] J. P. Cordero, I. Harrison et al., Mon. Not. R. Astron. Soc.

511, 2170 (2022).
[78] W. J. Handley, M. P. Hobson, and A. N. Lasenby, Mon. Not.

R. Astron. Soc. 450, L61 (2015).
[79] P. Lemos, N. Weaverdyck et al., arXiv:2202.08233.
[80] N. MacCrann, J. Blazek, B. Jain, and E. Krause, Mon. Not.

R. Astron. Soc. 491, 5498 (2020).
[81] J. Blazek, Z. Vlah, and U. Seljak, J. Cosmol. Astropart.

Phys. 08 (2015) 015.
[82] S. Singh, R. Mandelbaum, and S. More, Mon. Not. R.

Astron. Soc. 450, 2195 (2015).
[83] O. Friedrich et al., Mon. Not. R. Astron. Soc. (to be

published).
[84] T. Baldauf, R. E. Smith, U. Seljak, and R. Mandelbaum,

Phys. Rev. D 81, 063531 (2010).
[85] Y. Park, E. Rozo, and E. Krause, Phys. Rev. Lett. 126,

021301 (2021).
[86] A. J. Mead, J. A. Peacock, C. Heymans, S. Joudaki, and

A. F. Heavens, Mon. Not. R. Astron. Soc. 454, 1958
(2015).

[87] J. Schaye, C. D. Vecchia, C. M. Booth, R. P. C. Wiersma, T.
Theuns, M. R. Haas, S. Bertone, A. R. Duffy, I. G.
McCarthy, and F. van de Voort, Mon. Not. R. Astron.
Soc. 402, 1536 (2010).

[88] M. P. van Daalen, J. Schaye, C. M. Booth, and C. D.
Vecchia, Mon. Not. R. Astron. Soc. 415, 3649 (2011).

[89] S. Pandey et al., Phys. Rev. D 102, 123522 (2020).
[90] A. Cooray and R. Sheth, Phys. Rep. 372, 1 (2002).
[91] C. Chang et al., arXiv:2203.12440.
[92] Y. Omori et al., arXiv:2203.12439.
[93] P. Lemos et al., Mon. Not. R. Astron. Soc. 505, 6179

(2021).
[94] M. Crocce, P. Fosalba, F. J. Castander, and E. Gaztañaga,

Mon. Not. R. Astron. Soc. 403, 1353 (2010).
[95] J. S. Bullock, T. S. Kolatt, Y. Sigad, R. S. Somerville, A. V.

Kravtsov, A. A. Klypin, J. R. Primack, and A. Dekel, Mon.
Not. R. Astron. Soc. 321, 559 (2001).

[96] S. Bhattacharya, K. Heitmann, M. White, Z. Lukić, C.
Wagner, and S. Habib, Astrophys. J. 732, 122 (2011).

C. SÁNCHEZ et al. PHYS. REV. D 105, 083529 (2022)

083529-30

https://doi.org/10.1051/0004-6361/201834151
https://doi.org/10.1051/0004-6361/201834151
https://doi.org/10.1088/1367-2630/9/12/444
https://doi.org/10.1103/PhysRevD.70.063526
https://doi.org/10.1093/mnras/stx1261
https://doi.org/10.1093/mnras/stx1261
https://doi.org/10.1103/PhysRevD.105.083528
https://doi.org/10.1103/PhysRevD.105.083528
https://doi.org/10.1103/PhysRevD.105.023520
https://doi.org/10.1103/PhysRevD.103.043503
https://doi.org/10.1103/PhysRevD.105.023514
https://doi.org/10.1103/PhysRevD.105.023515
https://doi.org/10.1103/PhysRevD.105.023515
https://arXiv.org/abs/2105.13545
https://arXiv.org/abs/2105.13546
https://doi.org/10.1093/mnras/stw641
https://doi.org/10.1093/mnras/stw641
https://doi.org/10.1088/0004-6256/150/5/150
https://doi.org/10.1088/1538-3873/aab4ef
https://doi.org/10.1088/1538-3873/aab4ef
https://doi.org/10.3847/1538-4365/abeb66
https://doi.org/10.3847/1538-4365/abeb66
https://doi.org/10.1093/mnras/stw857
https://doi.org/10.1093/mnras/stw857
https://doi.org/10.1093/mnras/stab1515
https://doi.org/10.1093/mnras/stab3311
https://doi.org/10.1093/mnras/stab3311
https://doi.org/10.1093/mnras/stab918
https://doi.org/10.1093/mnras/stab918
https://doi.org/10.1093/mnras/stw1281
https://doi.org/10.1088/0004-637X/785/2/104
https://doi.org/10.3847/0067-0049/224/1/1
https://arXiv.org/abs/1702.02600
https://doi.org/10.3847/1538-4357/aa704b
https://doi.org/10.1093/mnrasl/slu104
https://doi.org/10.1093/mnrasl/slu104
https://doi.org/10.1093/mnras/stab3055
https://doi.org/10.1093/mnras/stab3055
https://doi.org/10.3847/1538-4365/ac26c1
https://doi.org/10.1093/mnras/stab2870
https://doi.org/10.1093/mnras/stab2870
https://arXiv.org/abs/2105.12104
https://arXiv.org/abs/2105.12104
https://arXiv.org/abs/2105.12105
https://arXiv.org/abs/1901.02401
https://doi.org/10.1111/j.1365-2966.2005.09655.x
https://doi.org/10.1093/mnras/stv138
https://doi.org/10.1093/mnras/stu2402
https://doi.org/10.1086/431891
https://doi.org/10.1093/mnras/stv1708
https://doi.org/10.1016/S0370-1573(00)00082-X
https://doi.org/10.1016/S0370-1573(00)00082-X
https://doi.org/10.1086/145672
https://doi.org/10.1103/PhysRevD.78.123506
https://doi.org/10.1103/PhysRevD.78.123506
https://doi.org/10.1088/0004-637X/761/2/152
https://doi.org/10.1016/j.ascom.2015.05.005
https://doi.org/10.1103/PhysRevD.100.103506
https://doi.org/10.1046/j.1365-8711.2002.05354.x
https://doi.org/10.1046/j.1365-8711.2002.05354.x
https://doi.org/10.1093/mnras/stac147
https://doi.org/10.1093/mnras/stac147
https://doi.org/10.1093/mnrasl/slv047
https://doi.org/10.1093/mnrasl/slv047
https://arXiv.org/abs/2202.08233
https://doi.org/10.1093/mnras/stz2761
https://doi.org/10.1093/mnras/stz2761
https://doi.org/10.1088/1475-7516/2015/08/015
https://doi.org/10.1088/1475-7516/2015/08/015
https://doi.org/10.1093/mnras/stv778
https://doi.org/10.1093/mnras/stv778
https://doi.org/10.1103/PhysRevD.81.063531
https://doi.org/10.1103/PhysRevLett.126.021301
https://doi.org/10.1103/PhysRevLett.126.021301
https://doi.org/10.1093/mnras/stv2036
https://doi.org/10.1093/mnras/stv2036
https://doi.org/10.1111/j.1365-2966.2009.16029.x
https://doi.org/10.1111/j.1365-2966.2009.16029.x
https://doi.org/10.1111/j.1365-2966.2011.18981.x
https://doi.org/10.1103/PhysRevD.102.123522
https://doi.org/10.1016/S0370-1573(02)00276-4
https://arXiv.org/abs/2203.12440
https://arXiv.org/abs/2203.12439
https://doi.org/10.1093/mnras/stab1670
https://doi.org/10.1093/mnras/stab1670
https://doi.org/10.1111/j.1365-2966.2009.16194.x
https://doi.org/10.1046/j.1365-8711.2001.04068.x
https://doi.org/10.1046/j.1365-8711.2001.04068.x
https://doi.org/10.1088/0004-637X/732/2/122

