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Abstract

Lease caching is a new technique that provides greater con-
trol of the cache than what is allowed in conventional caches.
The simplest control is uniform lease (UL), which means that
all leases are identical in length. The UL cache is prescriptive
and based on allocation. In comparison, a conventional cache
is reactive and based on replacement. They represent two
fundamentally different approaches to cache management.

This paper shows two results. First, it proves that a pre-
vious model of the LRU cache called Higher-Order Theory
of Locality (HOTL) computes the miss ratio of the UL cache.
Second, it shows how UL and LRU behave the same and
differently through contrived examples and in the 30 bench-
marks of PolyBench.

CCS Concepts: « Computing methodologies — Model-
ing methodologies.
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1 Introduction

All modern machines use cache memory to reduce the la-
tency and energy cost of memory accesses. As the number
of cores increases, the typical size of cache memory has
increased to tens of megabytes in the last level cache and
tens of gigabytes of on-package near memory such as MC-
DRAM on Intel’s many-core processor Knights Landing. In
some cases, DRAM now can act as a cache for non-volatile
memory, i.e., Intel Optane, which functions as a secondary
storage [20]. Optimizations that reduce the amount of data
movement are valuable. Due to the limited capacity, cache
design requires a mechanism for cache replacement; when
a new item is cached and the cache is full, there must be
some way to select an item to remove. The choice of a cache
replacement policy can have a high impact on the total data
movement.

Recently, Li et al. [21] proposed a new caching paradigm
called a Lease Cache. In a lease cache, each cache block is
assigned a non-negative integer lease, which represents the
amount of logical time that it should reside in cache. If a
cache block is accessed before its lease is up, then its lease is
refreshed. Otherwise, the cache block is evicted at the end of
its lease. This concept is growing in relevance, e.g. Twitter’s
Time-To-Live Cache [35].

Unlike conventional cache designs, lease caching is pre-
scriptive. In a traditional cache, the decision of what to re-
place is deferred until the cache is full and a new piece of
data needs to be stored. However, in a lease cache, this re-
placement decision is replaced by a decision that is made
as soon as the data is first accessed. The resident time in
cache of a data block is prescribed by its lease. As a direct
consequence, the amount of resident data in a lease cache
changes dynamically.
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Lease caching requires a method for assigning leases to
memory accesses, i.e., OSL in [21] and CARL in [26]. Both
designs require the program knowledge beforehand, which
is usually a heavy-weight step. The simplest possible lease
assignment policy that address this problem is uniform lease
(UL) policy, where each access receives the same lease. We
call the cache managed by the UL policy the uniform lease
(UL) cache.

In this paper, we study the UL cache policy and compare
its performance with the conventional LRU cache. As we will
explain in Section 3.2.1, we found that an UL cache uses the
same recency information as a LRU cache. An UL cache has
variable size, while a LRU cache has fixed size. This difference
raises the question of how the two compare in performance.
The following lists the main contribution of this paper:

e Theory: We give the theoretical conditions under which
UL and LRU perform the same, and we prove their
equivalence. (Section 4).

o Performance: We compare the cache performance of
the UL cache and the LRU cache, first using contrived
examples (Section 3.2) and then the 30 benchmarks in
the PolyBench benchmark suite(Section 5).

We assume unrestricted dynamic occupancy in the UL
cache, which cannot be always valid in an actual system.
Still, the modeling of the ideal UL cache in this paper has
three uses in practice.

First, as we will prove in Section 4.1, the recent fast tech-
niques to predict the LRU cache performance in particular
HOTL (Section 2.3), are in fact a model of the UL cache. As a
result, whether HOTL predicts LRU accurately for a program
depends on whether UL and LRU perform the same for that
program. This paper represents a new method to analyze
HOTL accuracy, which is essential in efficiently predicting
the LRU cache performance (Section 4.4).

Second, the lease cache is prescriptive and fundamentally
different from conventional caches which are reactive. Pre-
scriptive caches are variable in size and based on allocation.
Reactive caches can be fixed sized since they are based on
eviction. As explained in Section 3.2.1, we consider the LRU
cache as the baseline policy for reactive caching, when no
program information is required. As the baseline policy, LRU
gives the lower bound of attainable performance. For pre-
scriptive caching, the corresponding baseline is the UL cache.
The relation between UL and LRU shows how these two
caching approaches, prescriptive and reactive, compare in
their worst attainable performance.

The last use concerns with how viable the lease cache is
in practice. While the paper does not aim to justify the lease
cache paradigm, such studies exist. Li et al. [21] showed that a
lease cache policy called Optimal Steadystate Lease (OSL) can
potentially obtain significant performance improvement over
conventional caching techniques in the case where program
information is available. Prechtl et al. [26] recently showed
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that, with program information, the lease cache outperforms
LRU in an actual (fixed-size) cache implemented on a FPGA
board. These recent studies have shown that the lease cache
is superior in performance and feasible to implement.

However, not all programs have predictable behavior. It is
imperative in practice that the lease cache have robust base-
line performance in situations where program information is
unavailable. The UL-LRU equivalence, if established, would
show that ideal lease caching is performance safe, that is,
when there is no program information to assign leases, the
UL policy still provides similar performance to LRU.

2 Background
2.1 The Reuse Interval

One crucial notion used throughout this paper is the reuse
interval (RI). Reuse Interval is defined as the change in logical
time between a datum’s use and its reuse. Suppose we have
a trace abccba. In this case, the reuse interval of the datum a
is 5. Given a trace, we may construct a distribution of all RIs.
We use the notation P(ri = y) to refer to the portion of all
reuses with RI y in the trace. In the example above, there are
three different reuse intervals; 1, 3 and 5, and each accounts
for 1/3 of all reuses. Reuse interval plays an important role
in modeling both lease cache and LRU cache, and we will
describe its usage in both cache models separately.

2.2 The Lease Cache

Recently, Li et al. [21] proposed a new type of cache called
a lease cache. In a lease cache, at each data access, a length
of time called a lease is assigned to the cache line. The lease
instructs the cache to store the data block for the duration
of the lease. A lease is measured by the number of accesses
rather than physical time, so a lease of 1000 means that the
data block is stored until 1000 accesses later. If an access is
a miss, a new data block is loaded into the cache and given
a lease. If the access is a hit, the lease of the data block is
renewed. In either case, a lease is given at every data access.

2.3 Higher Order Theory of Locality (HOTL)

Reuse interval is central to the higher-order theory of locality
(HOTL) [33], a model that hinges on the footprint function,
or fp(x), to model LRU cache performance. The concept of
the footprint is simple: the quantity fp(x) denotes the average
number of unique elements in a random length-x window
from the execution trace. Footprint is computed from a reuse
interval distribution (P(ri = y) ), data size (m), and trace
length (n) as follows:

n-1

fox)=m— > (y—x)P(ri=y)

y=x+1

(1)

Given an execution trace, HOTL first computes footprint
fp(x). Then, HOTL computes the approximate LRU miss ra-
tio as the portion of RIs greater than x, at the point where
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Figure 1. HOTL accuracy on a storage trace as reported
by Wires et al. [32] The dotted line is the miss ratio curve
predicted by HOTL and the blue line is the actual miss ratios
(computed from the reuse distance).

footprint equals cache size (c). Mathematically, for infinitely
long traces:!

mryori(c) = P(ri > x) (2)
fp(x)=c
HOTL is the fastest way to model the LRU cache. [19, Table
6] examines the time and space complexity of 7 different
cache miss ratio curve analysis techniques based on two
metrics, reuse interval (RI) and reuse distance (RD) [23]. With
proper implementation, reuse interval collection requires
O(N), much lower than that for reuse distance, O(N log M),
where N is the trace-length and M is the entire working set
size. The time cost comparison was also made in Xiang et al.
[33, Table 2]: among 29 benchmarks from SPEC2006, the
average slowdown is 153 times for reuse distance analysis,
23 times for HOTL, and 38 times for simulation for a single
cache configuration. Hu et al. [18, Figure 4] also reported
that the average overhead per 16 SPEC2006 program is 11
hours for reuse distance, and 1.6 hour for HOTL.

HOTL, however, as observed by [18, Figure 4] and [32, Fig-
ure 4], may over- or under-predict the miss ratio occasionally.
In Figure 1, we show one example, src1, a file access trace
recorded by one of MSR’s source code control servers [24].
Unfortunately, those studies did not characterize common
access patterns that cause this mis-prediction.

Reasoning out these errors of HOTL is necessary, as we
will emphasize in Section 4.4, since it had been widely adopted
to address many research problems. Such study could give
more insight to researchers who use HOTL.

Next, we will discuss how the lease is chosen for the uni-
form lease cache, using locality theory, and its relation with
the conventional LRU cache.

Yuan et al. [37] showed that Eq. 1 is mathematically equivalent to the
Denning recursion and discussed the boundary effects in finite-length traces
as well as the relation with other locality models.
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Figure 2. Two examples that demonstrate the relation be-
tween the RI and the length of time that lease is active. We
assign lease [ = 3 to each datum. The blue box encloses the
time interval where the lease of datum ¢ (RI=1) and a (RI=4)
is active.

3 The Uniform Lease (UL) Cache

This section derives the formula for UL cache performance
and shows its relation with the LRU cache using contrived
examples and with two other caching policies.

3.1 Cache Size and Miss Ratio

Recall from Section 1 that the size of the lease cache changes
dynamically. The cache size is given by the number of ac-
cesses whose lease is active. The length of time that an ac-
cess’s lease is active depends on the reuse interval of that
access and we demonstrate this relation in Figure 2: 1) An
access whose reuse interval y is less than or equal to the
lease I will have an active lease until y accesses later. At this
point, the cache block’s lease is renewed by a new access,
so we say the lease of the original access is no longer active,
even though the data is still present in cache; 2) An access
whose reuse interval is greater than [ has an active lease until
its lease expires. Thus the average cache size given lease [
can be computed by the sum of these two values over the
total RI distribution for the trace, shown in Eq. 3.

s(l)=l-P(ri>l)+2y-P(ri=y)

y<I

(3)

The above calculation ignores the effect of last resident
times at the end of program execution, and so this formula

2 . .
over counts at most % units?. The actual average size of the

lease cache is between s(I) — % and s(I), where n is the length
of the trace. The effect of over counting can be ignored if
n> |l

2The overcount comes from accesses who have no reuses at the end of
execution. In the worst-case scenario, the last [ accesses in the trace have
no reuses. In this case, the oldest cacheline will have a remaining lease of 1,
the next oldest of 2, then 3 and so on up to I. The overcount is the sum of
these remaining leases.



ISMM °21, June 22, 2021, Virtual, Canada

The miss ratio of the UL cache mry(c) at the cache size c,
is the portion of RIs greater than the lease [, as shown below:

mryr(c) = P(ri > 1)

4)

s(h)=c

As an example, consider the infinite trace abc abe . .. with
the uniform lease [. All accesses in the trace have the reuse
interval 3, and so the RI distribution is:

=3
P(ri:y):{(l) 5#3

When 0 < | < 3, each access has an active lease until [
accesses later, and so the cache size s(I) = [. When [ > 4, each
access has an active lease until 3 accesses later, so s(I) = 3.
When [ < 3, we have mryr(s(l)) = mryr(l) = P(ri > I) = 1;
otherwise, mryp(s(l)) = mryr(3) = 0.

3.2 ULvs.LRU

3.2.1 Similarities and Differences. Both UL and LRU
caches use the same recency information: in implementation,
UL caches make use of the expiration time of each resident
data block. The expiration time is the last access time plus
the lease. In comparison, LRU caches make use of the last
access time. Therefore, we say that the two caches use the
same recency information.

UL and LRU differ in their eviction logic. The UL eviction
is prescriptive. It evicts a block whenever its lease expires.
LRU maintains a global ranking of all data and evicts the
least ranked block whenever space is needed. If there is no
new data in the cache, no data block is ever evicted. In the
LRU cache of size c, an access is a miss if its reuse distance
rd, i.e., LRU stack distance, is greater than the cache size:

®)

Comparing Eq. 4 and Eq. 5, we see that UL eviction de-
pends entirely on RI, while LRU eviction depends on the
number of distinct data items accessed in between. In this
sense, we may say that UL eviction is individual, while LRU
eviction is collective and communal.

Both UL and LRU can be used to cache any program with-
out program information. They use different parameters: the
uniform lease in UL (I in Eq. 4) the cache size in LRU (c in
Eq. 5). In practice, both parameters can be given a priori
without knowing anything about the workload being cached.
If we consider the LRU cache as the baseline policy for a
fixed-size cache, then the UL cache can be treated as the
baseline policy for a prescriptive lease cache.

mriru(c) = P(rd > ¢)

3.2.2 Three Contrived Examples. We use three contrived
examples to compare UL and LRU caches: one where UL and
LRU would perform the same, one where UL outperforms
LRU, and one where LRU outperforms UL. They are easy to
understand but still instructive since they are representative
of common patterns in program execution.
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Cyclic The UL and LRU caches behave the same for cyclic
accesses. In this pattern, the reuses recur regularly. They
have the same-length reuse windows and same-size working
sets (WS). With the uniform lease [, the cache stores all d
blocks accessed in the last [ accesses. The content of the LRU
cache of size d has the exact same content. As an example,
consider the infinite trace abc abc .... All have same RIs,
i.e., P(ri = 3) = 1. When the lease 0 < | < 3, the WS size of
each window is [. The WS in each lease window is the same
as the content of the LRU cache of the same size.

Phased If the same lease has a different WS size in differ-
ent phases, the UL cache size varies, which can achieve the
same miss ratio with LRU but with a smaller average cache
size. Consider abab xxxx abab xxxx ... and the comparison
between UL and LRU in Figure 3a.

L] s(l)y | mmyp || ¢ | mrigy
1 1 5/8 1 5/8
21 13/8 3/8 2 3/8

6 3 0 3 0

(a) Phased pattern, for example abab xxxx abab xxxx ....

L] s(l)y | myp || ¢ | mrgy
1 1 2/3 1 2/3
4 3 1/2 2 1/2
51 10/3 1/3 3 1/3

7 | 23/6 1/6 4 0

8 4 0

(b) Sawtooth pattern, for example abc xxx cba xxx ...

Figure 3. UL and LRU cache performance comparison. The
table lists the lease chosen by the UL cache for each cache
size, and their corresponding miss ratio under the UL and
the LRU policy.

Sawtooth The sawtooth pattern of reuse happens when the
last accessed is first reused (as opposed to cyclic when the
first accessed is first reused). The reuses are “nested”, where
the length of reuse intervals increases from inner reuses to
outer reuses. In the UL cache, a lease of a middling length
would capture inner reuses, but the same lease is used for
outer reuses and wastes cache space. The LRU cache, due
to the space constraint, evicts the data of these outer reuses
earlier than the UL cache and hence performs better. An
example is abc xxx cba xxx ... shown in Figure 3b.

3.3 UL vs. Working Set and Protecting Distance

UL has a direct relation with the working set (WS) defined
by Denning [9] in that the UL cache with uniform lease /
is equivalent to an ideal working-set cache with parameter
x = [, i.e., the content of the UL cache at each access is the
working set of the last length-I window. The UL cache may
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also be called an ideal WS cache. The size of the ideal WS
cache is the average WS size of all length-I windows. This
computes the same average as Eq. 6.

In practice, the working-set policy is reactive. An execu-
tion is divided into periods. At the end of each period, the
data blocks accessed in the last period are kept while others
are evicted. In comparison, UL is prescriptive. Duong et al.
[14] developed the Protecting Distance-based Policy (PDP),
which “prevents replacing a cache line until a certain num-
ber of accesses to its cache set”. To choose the best protecting
distance, PDP included additional hardware to sample the
reuse interval (called reuse distance in the paper) and adap-
tively found the protecting distance that maximized the hit
ratio. Having a fixed size, PDP is partly reactive. In compari-
son, UL is variable sized and entirely prescriptive.

4 UL-HOTL Equivalence and Implications
4.1 UL-HOTL Equivalence

We first show that the UL cache size has a form similar to
the footprint definition in HOTL. The following lemma gives
a new formula to compute the UL cache size and shows that
it is equivalent to Eq. 3 in Section 3.1.

Lemma 4.1. The average size of the UL cache with lease | is

sy =1- > (1= y)P(ri=y). (6)

y<lI

Proof. We denote the portion of accesses with reuse interval
y as P(ri = y). Eq. 3 from Section 3.1 calculates s(I) directly.
Manipulating this formula gives us:

s(l):l~P(ri>l)+2y-P(ri:y)
y<l
=1-(1=-P(ri< D)+ > y-Pri=y)
y<l
=1-1-Pri<l)+ >y -P(ri=y)
y<l

=1-> 1-Pri=y)+ > y-Pri=y)

y<I y<l
=1->(l-y)-P(ri=y)

y<I

[m]

The two miss ratios, mrgorr and mryr, use the same equa-
tion except for the cache size calculation, where one uses the
lease function and the other the footprint. The two functions
have a strong resemblance, e.g. between (I — x)P(ri = x) in
Eq. 6 and (y — x)P(ri = y) in Eq. 1, but they clearly differ. In
particular, the footprint is bounded by the data size m, and m
is absent in the lease function s(I). To see the deeper relation,
we define a useful condition.
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Definition 4.2. (Maximal RI Sum) In a program execution
with n accesses to m data items, it has the maximal RI sum if

n—-1

D xP(ri=x)=m (7)
x=1

The name of the definition states that the condition means

that the sum of all RIs is the largest possible. This is proved
in the following lemma.

Lemma 4.3. (Maximal Expected RI) In any program execu-
tion, the maximal value of the expectation of all finite Rls is
bounded by the data size:

n-1
Z xP(ri=x)<m

x=1

(®)

where n, m are the trace length and the data size respectively.

Proof. Let the sum of all finite-length Rls be S. Let N(ri) =
P(ri) - n. The sum of Rl is equal to the total lifetime of all data.
For each data item i, its lifetime If; is the time from its first
access to its last, or the sum of all its Rls. Since each lifetime
is at most the length of the trace, i.e. If; < n, the total lifetime
of all data is at most the maximal lifetime times the data size.
Hence, we have

> Ifi<mn

all data i

n-1
S = ZxN(ri =x) =
x=1

The lemma is proved by dividing both sides of the inequal-
ity by n.

S n—1
= =>\xP(ri=x)<m
n x=1
o

In the proof, the two sums of Rls are different groupings of
the same Rls: the first by data, i.e. the lifetime sum, and the
second by the Rl value, i.e. the mean RL

Using the Maximal RI Sum condition, we can rewrite the
HOTL formula by replacing m with the expected RL. Yuan
et al. [38] used this condition to show a number of formu-
las for computing the working-set size. Similarly, we next
assume the condition and prove HOTL-UL equivalence.

Theorem 4.4. (UL-HOTL Equivalence) Assuming Maximal
RI Sum, the HOTL model computes the miss ratio of the UL
cache for all cache sizes, that is,

mrpori(c) = mryc(c) Ve > 0.

Proof. We show that the footprint and the lease cache size
are mathematically identical, that is, the footprint fp(x) is
the average size of the cache with uniform lease x.
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fplx) =m - Z(ri — x)P(ri) definition®
ri>x
=m+ Z(x — ri)P(ri)
ri>x
=m+ Z(x — ri)P(ri) — Z(x — ri)P(ri)
all ri ri<x
=m+x—m-— Z(x — ri)P(ri) Lemma 4.3
ri<x
= s5(x) Eq. 6
Since fp(x) = s(x) for all x > 0, mrgom(c) = P(ri >
) foe)=e = P(ri > x)|g(x)=c = mrur(c) for all ¢ > 0. O

Consider the infinite cyclic trace abc abc ... again with a
uniform lease I. We have computed the miss ratio of the UL
cache earlier. For comparison, let’s now compute the HOTL
miss ratio. Recall that the footprint fp(x) is the number of
distinct data items in a length-x window. For this example,
it is easy to see that fp(x) = x for 0 < x < 2 and fp(x) = 3 for
x > 3.* The footprint is exactly the same as the UL cache size,
i.e. fp(x) = s(x). The HOTL miss ratio is therefore identical
to the UL cache miss ratio: mrgorr(c) = 1 forc = 0,1, 2, and
mryorL(3) = 0.

4.2 Empirical UL-LRU Comparison

From UL-HOTL equivalence (Theorem 4.4), HOTL computes
the miss ratio of the UL cache. Hence, we may take HOTL
results in previous studies as the performance of the UL
cache. The following is a partial list of publications that use
HOTL to predict the LRU cache performance:

e Xiang et al. [33] tested all 2-program co-runs of the
first 20 programs of SPEC 2006 CPU benchmarks (by
the smallest benchmark id) and compared the model
prediction with the miss ratio measured by hardware
counters. Of the 190 pairs and 380 miss ratios, just
two miss ratios had significant errors when seen in
both logarithmic- and in linear-scale plots. These tests
validated on a real system but for a single cache size.
Ye et al. [36] tested a machine with hardware cache
partitioning support and (in Figure. 12) compared the
solo-run prediction accuracy for 20 cache sizes for (the
solo-run of) 28 SPEC 2006 CPU benchmarks.

e Wang et al. [30] tested 16 program traces and (in Fig-
ure 5) compared the model prediction with the fully-
associative LRU caches of all sizes between 256KB and
8MB.

3In this proof, we ignore infinite RIs and assume P(ri = o) = 0. This is
implied by the Maximal RI Sum condition. In practice, it means that the
data size is negligible compared to the trace length, i.e. n > m.

4An interested reader may use Eq. 1, with the RI distribution and m = 3,
and verify that it produces the same footprint.
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e Wires et al. [32] tested 14 disk I/O traces on storage
caches and (in Figure 4) compared the prediction with
the fully-associative LRU caches of sizes up to 1TB.

These studies show that HOTL is largely accurate in pre-
dicting the LRU miss ratio. This means that the UL cache and
the LRU cache have a similar performance in most cases.

Since the UL cache has a variable size, it can outperform
LRU. This is confirmed by the previous experimental results,
which show that when HOTL mis-predicts the LRU miss
ratio, especially in Wang et al. [30] and Wires et al. [32]
who evaluate on large ranges of cache sizes, HOTL makes
under-prediction more often than over-prediction. On aver-
age, HOTL miss ratio is lower than LRU. This means that
when the UL cache performs differently from the LRU cache,
its performance is usually better than that of LRU. While
this is expected, the past studies show that such difference
does not happen often. Furthermore, it can happen that the
UL cache performance is worse than that of LRU.

4.3 A Sufficient Condition of UL-LRU Equivalence

A sufficient condition of UL-LRU equivalence is that the
UL cache have a constant occupancy, so it is effectively a
fixed-size cache. We give an informal proof here. Both the
UL and the LRU cache evict the data block with the oldest
last access. In the UL cache, a data block is evicted when its
lease terminates. At each eviction, all other data blocks in the
cache must have a more recent last access time. Hence, the
LRU cache selects the same block for eviction. The content
of the UL cache is the same as the LRU cache of the same
size. Their miss ratio must be the same.

We call this condition Constant UL Cache Size. Section 3.2
shows three examples. The first example, cyclic accesses, has
a constant UL cache size (for any lease) and has identical
UL and LRU cache performance. The other two examples,
phased and sawtooth, do not have a constant UL cache size,
and UL and LRU differ in performance.

From the UL-HOTL equivalence (Theorem 4.4) and by
transitivity, UL-LRU equivalence implies HOTL-LRU equiv-
alence. The HOTL-LRU equivalence means that HOTL pre-
dicts LRU cache locality correctly, i.e. HOTL correctness.
Previously, Xiang et al. [33] gave a condition for HOTL cor-
rectness called the reuse window hypothesis: the distribution
of the working-set size in all windows is the same as it is in
all reuse windows.

Constant UL cache size is a new condition of HOTL cor-
rectness. Note that the condition depends on the UL-HOTL
equivalence, which assumes

4.4 Implications in LRU Caching

As mentioned in Section 2.3, HOTL is the fastest method
to predict LRU performance. In the past, experiments (men-
tioned in Section 4.2) have shown that HOTL is largely accu-
rate but can be occasionally wrong. When it is wrong, the
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predicted miss ratio may be higher or lower. This paper has
proved UL-HOTL equivalence. Therefore, HOTL prediction
error is the result of the difference between UL and LRU.
Understanding this difference is important: a model that can
quickly and accurately predict the LRU cache performance
can be widely adopted to address many problems. Here we
list three of them:

Cache partitioning. cache partition, which is supported
on commodity processors, has been studied to manage the
shared cache for co-run applications [15]. Stone et al. [28]
showed that optimal cache partitioning can be solved by a
greedy solution if programs have convex miss ratios, which
may be accomplished with cliff removal for the LRU cache [1]
and general cache types [29]. Without convex miss ratios,
Brock et al. [4] showed that optimal partitioning of the LRU
cache is solved by dynamic programming, and the solution
requires that HOTL prediction be correct, which is estab-
lished by UL-HOTL equivalence.

Memory management on non-volatile memory (NVM).

Yang et al. [34] and Gugnani et al. [17] both reported the
asymmetric read-write latency of the recently released Intel
Optane DIMM. Write locality [7], which shares the same
rationale with HOTL, predicts write-back ratio for the LRU
cache instead of miss ratio. Quantified write-backs can help
to guide data movements and memory allocations to reduce
writes to NVMs [13]. Combined with the quantified miss
ratio by HOTL, write-backs can trade-off with misses for a
hybrid system.

Efficient Prediction of LRU cache locality. UL-LRU equiv-

alence provides a new method to analyze and optimize LRU
cache performance. In particular, HOTL accuracy can be now
analyzed by how UL cache performs differently than LRU
cache. This paper includes two such analysis. The first uses
contrived examples in Section 3.2.2 to show what access pat-
terns cause HOTL to over- and under-predict and why. The
explanation is aided by a new way of analyzing HOTL, i.e.
not just as a formula but as a caching algorithm. The next
section shows the second analysis which examines UL-LRU
equivalence in a set of benchmark programs.

5 Evaluation

We measure experimentally how UL caching compares with
LRU caching in performance.

5.1 Experimental Setup

We run our experiments on an AWS cloud server with Intel(R)
Xeon(R) CPU E5-2676 v3 @ 2.40GHz and 1GB memory.

For the study, we use the PolyBenchC-4.2.1 benchmark
suite, which contains about 30 dense array kernels [22]. It
is representative of scientific computing applications in lin-
ear algebra, statistics, computational sciences, and tensor
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operations in deep learning. PolyBench programs are short
(usually around a hundred lines of code). They are not full-
size applications. Owing to their code size, all programs can
be clearly and completely understood, carefully examined,
and easily changed through manual effort. This makes Poly-
Bench an ideal benchmark suite for our purposes, which
involves thoroughly analyzing code-level patterns that cor-
respond to specific cache behaviors.

Figure 4 shows the data size and the trace length in a 2-D
plot. Two programs on the lower-left corner have less than
1000 blocks (64KB) and around 10 million accesses. The data
size is more than 640KB in other 28 tests. Among these, 20
programs have over 6MB data, and one of them, heat-3d, has
over 64MB. Eight programs have more than 2 billion accesses.
The number of references is shown in the lower graph in
Figure 4. The largest programs, adi and correlation, have
34 and 32 references respectively.

Figure 4 also shows the number of distinct RI values. Ma-
trix multiplication, gemm, has six. In general, the data reuse
is more complex with more distinct RI values. In this mea-
sure, PolyBench has non-trivial complexity in its data access:
there are over 1,000 distinct RI values in over a half of the
programs and 3/4 of these programs have over 10,000 distinct
RI values.

5.2 Lease Selection

In the UL lease cache model, all references are assigned the
same lease. The length of the lease is determined by the
cumulative RI histogram of all references, as mentioned in
Section 3.1. Given a RI distribution, we assign the largest
lease to all references such that the average cache use, de-
scribed in Eq. 6, is less than or equal to the target cache size,
C. This maximizes the number of cache hits during execution.
The whole process can be represented as Eq. 9.

UL = max(l € P(ri)|s(l) < C) 9)

Where P(ri) is the RI distribution, s(I) is the average cache
size given the lease [ (Eq. 6). In Table 1, we shows the uniform
leases value assigned for each benchmark when the target
cache has 256 cache blocks (16KB). In this experiment, the
RI histograms is collected by code instrumentation. More
efficient approaches can be applied, e.g. SPS [6].

5.3 Performance

Performance modeling is much faster for the UL cache than
for the LRU cache. By understanding how they perform
the same or differently, we may substitute the expensive
LRU cache models [23] with the efficient UL cache models
(Section 3.1). In our evaluation, on average, fully precise RI
collection for 30 benchmarks is around 12x faster than RD
collection with approximation using bins whose range of RI
values (of a single bin) is at most 4096.

While hardware caches are set associative, we consider
only full associativity here for two reasons. First, the miss
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Figure 4. Program characteristics of all 30 PolyBench benchmarks.

ratio is defined for all non-negative integer cache sizes, so it
provides the fullest comparison. In the shared cache, the ac-
tual cache occupancy of a program may be any non-negative
integer. Second, the effect of associativity depends on not
just the number of ways but also the mapping of data into
cache sets. Still, neither argument obviates the importance
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of set-associativity in practice, which should be studied but
is not done here.

5.4 Cases of Equivalence

Figure 5 shows the miss ratios of these two caches. The cache
size is shown in (base 10) logarithmic scale on the x-axis.
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Figure 5. Miss ratio curves of the UL cache vs. the fully-associative LRU cache for 30 benchmarks in PolyBenchC-4.2.1 across
all cache sizes. The x-axis is unit in cache block numbers. The LRU miss ratio has a bounded imprecision (it is between the
upper and lower bounds shaded in yellow).

Within each power of 10 are nine cache sizes evenly divid- visually, because of the logarithmic-scale plotting). For effi-
ing the interval (note that these points are not evenly spaced ciency, the LRU miss ratio is measured using approximate
reuse distance analysis by Zhong et al. [39]. It has a bounded
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Table 1. Uniform Lease Assignments for a cache with 256
cache blocks (16KB). The middle column shows the length
of the lease assigned to each reference and the right column
is the corresponding cache miss ratio.

Benchmark Uniform Lease Miss Ratio
2mm 905 0.280
3mm 904 0.280
adi 1651 0.151
atax 5945 0.031
bicg 7919 0.031
cholesky 6054 0.031
correlation 514 0.495
covariance 513 0.496
deriche 1043 0.243
doitgen 6054 0.031
durbin 6538 0.002
fdtd-2d 3246 0.077
floyd-warshall 6080 0.041
gemm 905 0.280
gemver 2157 0.117
gesummv 8137 0.000
gramschmidt 509 0.500
heat-3d 4211 0.044
jacobi-1d 4065 0.000
jacobi-2d 3092 0.081
lu 943 0.247
ludemp 474 0.493
mvt 1598 0.158
nussinov 943 0.247
seidel-2d 6949 0.036
symm 719 0.349
syr2k 718 0.349
Syrk 7126 0.031
trisolv 4093 0.000
trmm 512 0.492

imprecision, and the actual miss ratio is in the area between
the two bounds.> Furthermore, the miss ratios are for capac-
ity misses. The cold-start misses are the same for the UL and
the LRU caches for every cache size and are not included in
the plot. The graphs in Figure 5 show the miss ratio up to
25% and omit the results for smaller cache sizes.

The UL and LRU caches have the same miss ratios across
all cache sizes for the majority of the benchmarks. Due to
the approximation, we consider it is equivalent if the UL
cache miss ratio does not deviate outside the bounds of the
LRU miss ratio at the same cache size. The two caches are
equivalent if their miss ratios are equivalent for all cache
sizes.

5The bounds are powers of two for cache sizes up to 8192 cache blocks
(512KB). For larger caches, the imprecision is at most 4096 blocks (256KB).
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The reason for the equivalence is that the data access
follows the cyclic pattern described in Section 3.2, but in
large scales with more complex structures, e.g. nesting. An
example is 2mm. The program has two matrix multiplications.
Each is a triple nested loop with three cyclic patterns. About
47% reuses happen within each innermost loop iteration, 25%
between two consecutive iterations of the innermost loop,
and 31% between two consecutive iterations of the outermost
loop. Next, we focus on the minority programs where the
two caches are not always equivalent.

5.5 UL Outperforming LRU

There are 4 out of 30 programs where the UL cache out-
performs the LRU cache: adi, deriche, gemvar, mvt. In all
cases, the miss ratio is equivalent except for one region of
difference. The difference has the same pattern we may call
a moving cliff. A cliff is when the miss ratio drops from a
higher plateau to a lower plain. A moving cliff is that UL and
LRU have the same cliff, but the UL cliff happens at a smaller
cache size than the LRU cliff.

The reason is phased behavior. Upon inspection of the
code, we see a specific form of phase that causes the moving
cliff. We first describe it in generic terms and then based on
individual programs. Consider a program traversing a n X n
matrix in two loop nests: the first in rows and the second
in columns. The miss ratio “cliff” happens when the spatial
reuse is fully realized in the column traversal.

There are two effects causing the UL cliff to happen before
the LRU cliff. First, for the same lease [ = n, row traversal
loop has a smaller UL cache size than a column traversal
loop. The UL cache stores one matrix row for the row traver-
sal loop and eight matrix columns for the column traversal
loop. The two UL cache sizes are n/8 and n cache blocks
respectively, considering each 64-byte cache block stores 8
double-precision matrix elements.

Second, the overall UL cache size is the average of the two
UL cache sizes, whereas the LRU cache size is the maximum
of the two. The average cache size is smaller than the maxi-
mum for the two loops. The RD for LRU cache is n/8 for row
traversal loop, and n for column traversal loop. Since LRU is
fixed size, the overall size is n.

We see the moving cliff pattern in 4 programs where UL
outperforms LRU, adi, deriche, gemver, and mvt. They all
have the specific phased pattern described above in the code.
deriche is the clearest example of a UL cliff happening sig-
nificantly before the corresponding LRU cliff. Its plot shows
that the UL miss ratio drops from 0.243 to 0.153 when the
cache is 50KB (800 cache blocks) and it finally reach 0.064 at
the 1000-block cache, while the same LRU drop does not hap-
pen until the cache size reaches 128KB (2048 cache blocks).
An examination of the program source code clarifies this;
deriche is composed of six depth-2 loop nests, all traversing
a square matrix. Four of these loops traverse the matrix in
row-major order (reflecting memory order), while two use
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column-major order. The drop in the LRU cache miss ratio
at cache size 128KB reflects the point at which the cache is
now large enough to capture these cross-column reuses (RI
= RD = 2048). The reason UL drops earlier is due to some
of the other four nests: when a loop nest contains multiple
references to the same data, the UL cache can achieve the
same number of hits as an LRU cache while maintaining a
much smaller cache. LRU, when increasing cache size, in-
creases cache size for the whole execution; as such, UL does
not waste resources in trying to capture long reuse in the
same way as LRU, leading to an earlier drop in miss rate.
The same happens to mvt, gemver and adi. The first two
benchmarks do matrix-vector multiplications twice, one us-
ing the original matrix and the other using its transposed
form. adi divides its task into two stencil computations.
One does column traversal, the other traverses in row. As
described before, the difference in cache size requirement
between row and column traversal makes the UL cache
achieves the same miss ratio prior to the LRU cache.

5.6 LRU Outperforming UL

We do not observe any significant difference when the LRU
cache outperforms the UL cache. It happens in a few pro-
grams at very small cache sizes. For example, at cache size
two in seidel-2d, the LRU miss ratio is 32%, lower than the
UL miss ratio of 47%. The program performs 9-point sten-
cil computation. In the innermost loop, it has 10 accesses,
which has a sawtooth pattern in part of the sequence. These
differences are negligible for caching, since they happen at
too small cache sizes to matter. Moreover, with an optimiz-
ing compiler, such nearby reuses are captured by register
allocation rather than caching [5, 8].

6 Related Work

LRU Cache Locality Modeling. The HOTL technique
has been used extensively to predict the LRU cache perfor-
mance. The past results of Wang et al. [30, Figure 5] include
16 SPEC 2006 program traces and compare the HOTL predic-
tion with LRU for all sizes between 256KB and 8MB. Wires
et al. [32, Figure 4] makes the same comparison for 14 disk
I/O traces on storage caches for cache sizes up to 1TB. The
comparison is between the higher-order theory of locality
(HOTL) and the reuse distance. Both HOTL and UL use the
RI distribution. Yuan et al. [37] show that the formulas based
on the footprint are mathematically equivalent for long exe-
cution traces. The previous work used HOTL as a model of
LRU. In this paper, we show the comparison as one between
two methods of caching, i.e., between UL and LRU.

Wang et al. [30] and Wires et al. [32] compare the two
policies for tens of test traces and on many cache sizes. The
tests are traces from large-size programs or long-running
file servers. While the data enumerate the differences, the
papers do not give a precise explanation because of the scale
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and complexity of the traces. In this paper, we use small-
size programs and are able to analyze, verify, and explain by
examining program code. The prior work shows aggregate
differences at the trace level, here we show differences at the
source level.

Drudi [12] recognizes that because it uses the average
working-set size, HOTL will have trouble if a trace has
distinct phases with drastically different working-set sizes.
Drudi shows an example trace where HOTL under-predicts
the miss ratio by 50% but notes that the example is “highly
artificial and cannot be interpreted as a realistic model for
system behaviour” In this paper, this difference is viewed
as how UL and LRU caches behave differently for phased
behavior in both an artificial example (Section 3.2.2) and the
occurrences in PolyBench.

Past studies show that HOTL may over predict, e.g. the
result by Wires et al. [32] reproduced in Figure 1, but do not
explain how over prediction may happen and why it seems
rare. This paper shows that these are cases when the variable-
size UL cache performs worse than LRU. It happens for the
saw-tooth access pattern (Section 3.2.2). The evaluation on
PolyBench shows that it happens infrequently and only for
small cache sizes (Section 5.6).

Lease Cache. The UL cache behaves identically to the
ideal working-set cache (see Section 3.3). In the working-
set cache, the data accessed in the last time window are
cached [9, 10]. A reader may see Denning [11] for a recent
survey of the working-set theory. Like the LRU cache, the
working-set cache is based on recency. The theoretical con-
nections between these two have been documented, most
recently by Yuan et al. [37]. The comparison between UL
and LRU in this paper is also the comparison between ideal
working-set policy and LRU. We have given a precise expla-
nation of when and how the ideal working-set policy and
LRU are the same or different in non-trivial programs.

Lease cache provides greater control of the cache than
what is allowed in conventional caches. An intermediate
solution is collaborative caching, where software provides
cache hints to influence the replacement decisions in hard-
ware. It has been developed using “evict-me” bits [31] and
cache placement hints [2, 3]. The lease cache differs in two
ways. First, it targets variable-size cache. Second, leases mean
direct control, while cache hints are just suggestions.

In the best case with the complete data access trace, Gu
et al. [16] proved that collaborative caching can obtain the
performance of optimal cache. Li et al. [21] compared this
optimal performance with the optimal lease cache. In the
worst case, collaborative caching has no program informa-
tion, gives no cache hint and behaves as a conventional cache.
In the lease cache, the corresponding baseline is the uniform
lease. Therefore, the results of this paper can be used as a
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comparison of the baseline performance of the collabora-
tive LRU cache with the baseline lease cache (and the ideal
working-set policy).

Finally, we note that the lease cache can be efficiently
designed and has been recently implemented on an FPGA
for both the uniform lease policy [25] and an optimal lease
policy [26].

Time-To-Live (TTL) Caches [35] play a significant role in
Twitter’s caching ecosystem. These TTL caches are not iden-
tical to lease caches: they are fixed sized and maintain an
eviction strategy alongside the leasing mechanism, in con-
trast to variable-sized lease caches with no eviction mecha-
nism in the conventional sense. Twitter’s TTL caches also
do not reset leases on cache hits. Traditionally, TTL caches
have existed only in high-level domains, but lease caching is
bringing the concept behind TTL to hardware caching. The
differences between traditional TTL caches and the concepts
behind lease caches are also mentioned in [27].

7 Summary

In this paper, we have studied and evaluated the UL cache.
Like LRU and the working-set policy, UL is based on the
recency of data access. Unlike them, however, UL is pre-
scriptive and variable sized. We present the first comparison
between UL and LRU for PolyBench. It is also the first time
that such comparison is done with a complete explanation
of program-level causes.

The equivalence between UL and LRU is important in
both theory and practice. In theory, we understand how
the variable-size cache performs the same, better than, or
worse than the fixed-size cache, i.e., the three basic patterns:
cyclic, phased, and sawtooth, and the patterns in real code.
In practice, we compute the miss ratio of LRU efficiently by
using the UL cache miss ratio. Finally, variable-size caching
is more efficient for shared cache since an application may
be given additional space temporarily. In future work, we
plan to quantify this benefit of prescriptive caching.
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