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A B S T R A C T 
We present cosmological constraints from the analysis of angular power spectra of cosmic shear maps based on data from the first 
three years of observations by the Dark Energy Surv e y (DES Y3). Our measurements are based on the pseudo- C ! method and 
complement the analysis of the two-point correlation functions in real space, as the two estimators are known to compress and 
select Gaussian information in different ways, due to scale cuts. They may also be differently affected by systematic effects and 
theoretical uncertainties, making this analysis an important cross-check. Using the same fiducial Lambda cold dark matter model 
as in the DES Y3 real-space analysis, we find S 8 ≡ σ8 √ 

#m / 0 . 3 = 0 . 793 + 0 . 038 
−0 . 025 , which further impro v es to S 8 = 0.784 ± 0.026 

when including shear ratios. This result is within expected statistical fluctuations from the real-space constraint, and in agreement 
with DES Y3 analyses of non-Gaussian statistics, but favours a slightly higher value of S 8 , which reduces the tension with the 
Planck 2018 constraints from 2.3 σ in the real space analysis to 1.5 σ here. We explore less conserv ati ve intrinsic alignments models 
than the one adopted in our fiducial analysis, finding no clear preference for a more complex model. We also include small scales, 
using an increased Fourier mode cut-off up to k max = 5 h Mpc −1 , which allows to constrain baryonic feedback while leaving 
cosmological constraints essentially unchanged. Finally, we present an approximate reconstruction of the linear matter power 
spectrum at present time, found to be about 20 per cent lower than predicted by Planck 2018, as reflected by the lo wer S 8 v alue. 
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1  I N T RO D U C T I O N  
Gravitational lensing by the large-scale structure coherently distorts 
the apparent shapes of distant galaxies. The measured effect, cosmic 
shear , is sensitive to both the geometry of the Universe and the 
growth of structure, making it, in principle, a powerful tool for 
probing the origin of the accelerated expansion of the Universe and, 
consequently, the nature of dark energy. After the first detections 
two decades ago (Bacon, Refregier & Ellis 2000 ; Kaiser , W ilson & 
Luppino 2000 ; Van Waerbeke et al. 2000 ; Wittman et al. 2000 ), 
methodological advances in measurement algorithms were permitted 
by newly collected data, e.g. from the Deep Lens Surv e y (DLS; 
Wittman et al. 2002 ; Jee et al. 2013 , 2016 ), the COSMOS surv e y 
(Scoville et al. 2007 ), the Canada–France–Hawaii Telescope Legacy 
Surv e y (CFHTLS; Semboloni et al. 2006 ) and Canada–France–
Hawaii Telescope Lensing Survey (CFHTLenS; Joudaki et al. 2017 ) 
and the Sloan Digital Sky Survey (SDSS; Huff et al. 2014 ). These 
were fostered by community challenges (see e.g. Heymans et al. 
2006 ; Massey et al. 2007 ; Bridle et al. 2009 ; Kitching et al. 
2012 ; Mandelbaum et al. 2014 ). Ongoing surv e ys, such as the 
Dark Energy Surv e y 1 (DES; Flaugher 2005 ), the ESO Kilo-De gree 
Surv e y 2 (KiDS; de Jong et al. 2013 ; Kuijken et al. 2015 ), and the 
Hyper Suprime-Cam Subaru Strategic Program 3 (HSC; Aihara et al. 
2018a , b ), have produced data sets capable of achieving cosmological 
constraints that are competitive with cosmic microwave background 
observations on the amplitude of structure, σ 8 , and the density of 
matter, #m , through the parameter combination S 8 ≡ σ8 √ 

#m / 0 . 3 
(Troxel et al. 2018 ; Hikage et al. 2019 ; Hamana et al. 2020 , 2022b ; 
Planck Collaboration VI 2020 ; Asgari et al. 2021 ; DES Collaboration 
2022 ). These surv e ys are paving the way for the ne xt generation of 
surv e ys, namely the Vera Rubin Observatory Le gac y Surv e y of Space 
and Time 4 (LSST; Ivezi ́c et al. 2019 ), the ESA satellite Euclid 5 
(Laureijs et al. 2012 ), and NASA’s Nancy Grace Roman Space 
Telescope 6 (Akeson et al. 2019 ), which will impro v e upon current 
observations in quality, area, depth, and spectral co v erage, in the hope 
of better determining the nature of dark energy. Ho we ver, the le vel 
of precision needed to fully exploit the cosmological information 
contained in these future observations pushes the community to 
dissect every component of the analysis framework, from data 
collection to inference of cosmological parameters. 

The two-point statistics of the cosmic shear field are most 
commonly used to extract cosmological information. While it is 
well known that the shear or convergence fields are, to some extent, 
non-Gaussian (Springel, Frenk & White 2006 ; Yang et al. 2011 ), 
i.e. that there is information in higher order statistics (e.g. in peaks, 
Dietrich & Hartlap 2010 ; Martinet et al. 2018 ; Jeffrey, Alsing & 
Lanusse 2021a ; Harnois-D ́eraps et al. 2021 ; Z ̈urcher et al. 2021 , 
or three-point functions, Takada & Jain 2003 ; Fu et al. 2014 ), the 
two-point functions remain the primary source of information, as 
they can be predicted by numerical integration of analytical models 
(Zuntz et al. 2015 ; Joudaki et al. 2017 ; Chisari et al. 2019 ; Krause 
et al. 2021 ) and efficiently measured (Jarvis 2015 ). The shear two- 
point function can be characterized by its two components, ξ+ ( θ ) 
1 https:// www.darkenergysurvey.org/ 
2 http:// kids.strw.leidenuniv.nl/ 
3 ht tps://hsc.mt k.nao.ac.jp/ssp/
4 ht tps://www.lsst .org/
5 https:// sci.esa.int/ web/ euclid 
6 https:// roman.gsfc.nasa.gov/ 

and ξ−( θ ), as a function of angular separation θ , or by its Fourier 
(or harmonic) counterpart, the shear angular power spectrum, C ! , as 
a function of multipole ! (with an approximate mapping ! ∼ π / θ ). 
Both have been measured on recent data from the DES (DES Year 1; 
Troxel et al. 2018 ; Camacho et al. 2021 ; Nicola et al. 2021 , and DES 
Year 3, Amon et al. 2022 ; Secco, Samuroff et al. 2022 ), KiDS (KiDS- 
450; Hildebrandt et al. 2017 ; K ̈ohlinger et al. 2017 , and KiDS-1000, 
Asgari et al. 2021 ; Loureiro et al. 2021 ), and HSC (Hikage et al. 
2019 ; Hamana et al. 2020 , 2022b ). 

While, in principle, the two statistics summarize the same informa- 
tion, practical considerations require discarding some of the measure- 
ments for cosmological analyses via scale cuts. As a consequence, the 
information retained by the two statistics differs in practice, which 
introduces some statistical variance in cosmological constraints, on 
top of potential differences due to differential systematic effects. 
Indeed, constraints reported for the analyses of cosmic shear with 
KiDS-450 data showed a difference between the real- and harmonic- 
space analyses of ( S 8 = 0.094 (Hildebrandt et al. 2017 ; K ̈ohlinger 
et al. 2017 ), and that of HSC Year 1 data a difference of (σ 8 = 
0.24 and ( S 8 = 0.045 (Hikage et al. 2019 ; Hamana et al. 2020 , 
2020a , b ), both corresponding to about 2 σ discrepancies (see also 
Fig. 11 , discussed below). More recently, the comparison between 
three different estimators presented for KiDS-1000 data, on the other 
hand, showed excellent agreement (Asgari et al. 2021 ), including a 
ne wly de veloped pseudo- C ! estimator in Loureiro et al. ( 2021 ). In 
a preparatory study (Doux et al. 2021 ), we quantified this effect for 
DES Y3 by means of simulations and showed (i) that the difference 
on the S 8 parameter is expected to fluctuate by about σ ( ( S 8 ) ∼ 0.02 
for typical scale cuts, and (ii) that the observed difference is the result 
of the interplay between scale cuts and systematic effects, and how 
these impact each statistic. 

In this work, we present measurements of (tomographic) cosmic 
shear power spectra measured from data based on the first three 
years of observations by the Dark Energy Surv e y (DES Y3), which 
we use to infer cosmological constraints on the ) CDM model. We 
then extend our analysis and vary scale cuts to derive constraints 
on intrinsic alignments and baryonic feedback at small scales, the 
two largest astrophysical sources of uncertainty on cosmic shear 
studies (Chisari et al. 2018 ; Mandelbaum 2018 ; Secco et al. 2022 ). 
Finally, we study the consistency of these constraints with those 
inferred from other DES Y3 weak lensing analyses, using two-point 
functions (Amon et al. 2022 ; Secco et al. 2022 ) and non-Gaussian 
statistics (Gatti et al. 2021b ; Z ̈urcher et al. 2022 ). 

The paper is organized as follows: Section 2 presents DES Y3 
data; Section 3 introduces the formalism rele v ant to the estimation 
of cosmic shear power spectra and the cosmological model, including 
systematic effects, intrinsic alignments and baryonic feedback; 
Section 4 highlights the different tests we performed to validate 
both the measurement and modelling pipelines, some of which rely 
on simulations (Gaussian, N -body, and hydrodynamical); Section 5 
details the three-step blinding procedure we adopted in this work; 
Section 6 presents our main results, i.e. cosmological constraints 
inferred from the analysis of DES Y3 cosmic shear power spectra, and 
compares them to other weak lensing studies; and finally Section 7 
summarizes our results. 
2  DARK  E N E R G Y  SURVEY  Y E A R  3  DATA  
The Dark Energy Surv e y The Dark Energy Surv e y Collaboration 
(DES, 2005 ) is a photometric imaging surv e y that co v ers around 
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Figure 1. Maps of the two shear components, γ 1 and γ 2 , and density, n g , of the full DES Y3 weak lensing catalogue. 
5000 square degrees of the Southern hemisphere in five optical and 
near-infrared bands ( grizY ). Its observations were carried out at the 
Cerro Tololo Inter-American Observatory (CTIO) in Chile, using the 
570-me gapix el DECam camera mounted on the Blanco telescope 
(Flaugher et al. 2015 ), during a six-year campaign (2013–2019). 
This work is based on data collected during the first three years 
(Y3) of observations, in particular the DES Y3 weak lensing shape 
catalogue presented in Gatti et al. ( 2021c ), which is a subsample of 
the Y3 Gold catalogue (Sevilla-Noarbe et al. 2021 ), and the inferred 
redshift distributions presented in Myles et al. ( 2021 ). 
2.1 Shape catalogue 
Galaxy shape calibration biases are usually parametrized in terms of 
multiplicati ve and additi ve components. The DES Y3 shape measure- 
ments are based on the METACALIBRATION algorithm, which allows 
to self-calibrate most shear multiplicative biases, including selection 
effects, by measuring the response of the shape measurement pipeline 
to an artificial shear (Huff & Mandelbaum 2017 ; Sheldon & Huff 
2017 ). The residual multiplicative biases, at the 2–3 per cent level, 
are dominated by shear-dependent detection and blending effects, 
and the correction was measured on a suite of realistic, DES-Y3-like 
image simulations presented in MacCrann et al. ( 2022 ). 

The shape catalogue was validated by a series of (null) tests 
presented in Gatti et al. ( 2021c ) and found to be robust to both 
multiplicati ve and additi ve biases. The fiducial DES Y3 catalogue 
used here comprises ellipticity measurements for 100204026 galax- 
ies, with inverse-variance weights based on signal-to-noise ratio and 
size. The ef fecti v e area of the sample is 4143 de g 2 (see Sevilla- 
Noarbe et al. 2021 , for details), corresponding to an ef fecti ve density 
of ̄n = 5 . 59 gal / arcmin 2 . Fig. 1 shows the two ellipticity components 
and the density of the entire sample. We will construct similar maps 
for each of the four tomographic bin (see next section) and use them 
to measure cosmic shear power spectra. 
2.2 Redshift distributions 
The DES Y3 shape catalogue was further divided into four to- 
mographic bins, based on photometric redshifts inferred with the 
SOMPZ algorithm (phenotypic redshifts with self-organizing maps, 
Buchs et al. 2019 ). The DES Y3 implementation is detailed in Myles 
et al. ( 2021 ) and is based on measurements in the riz bands. The 
g band was excluded in DES Y3 weak lensing analyses due to 
known issues in modelling the point spread function (Jarvis et al. 
2021 ) required by METACALIBRATION . This exclusion was shown to 
degrade estimated redshift distributions in when five tomographic 

Figure 2. Redshift distributions (top) and corresponding lensing efficiency 
functions (bottom) for the four tomographic bins. The upper panel shows the 
mean (solid lines), ±1 σ and ±2 σ (light bands) percentiles of the ensemble 
of redshift distributions (Myles et al. 2021 ; Gatti et al. 2022 ). 
bins were used (Buchs et al. 2019 ), moti v ating the use of four bins. 
The DES Y3 implementation of SOMPZ thus connects DES wide-field 
photometry to (i) deep-field observations (Hartley et al. 2022 ), using 
image injection with the Balrog software (Everett et al. 2022 ), and to 
(ii) external spectroscopic and high-quality photometric samples, to 
calibrate redshifts. This Bayesian framework allows to consistently 
sample the posterior distribution of the four redshift distributions, 
while propagating calibration and sample uncertainties. Given an 
ensemble of realizations, uncertainties can be marginalized-o v er 
during sampling by means of the HYPERRANK method (Cordero 
et al. 2022 ). The initial ensemble that was generated for DES Y3 
was subsequently filtered using constraints on redshifts from cross- 
correlations with spectroscopic samples, as detailed in Gatti et al. 
( 2022 ). The residual uncertainty on the mean redshift of each 
tomographic bin is of the order of σ 〈 z〉 ∼ 0.01. Redshift distributions 
are shown in the upper panel of Fig. 2 , where, for each bin, the 
ensemble mean is represented by a solid line, and the ensemble 
dispersion is represented by the light bands. The lensing efficiency 
functions corresponding to the mean distributions at the fiducial 
cosmology are shown in the lower panel. 
3  M E T H O D S  
In this work, we aim at extracting cosmological constraints from 
the measurements of the angular auto- and cross-power spectra of 
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the tomographic cosmic shear fields inferred from DES Y3 data. 
This section describes the estimation of angular spectra from data 
and the multi v ariate Gaussian likelihood model, including theoretical 
predictions for power spectra and their covariance matrix. 
3.1 Angular power spectrum measurements 
Cosmic shear is represented by a spin-2 field γ ≡ ( γ1 , γ2 ) on the 
sphere that describes, to linear order, the distortions of the ellipticities 
of background galaxies. A pixelized representation of the cosmic 
shear field can therefore be obtained by computing the weighted 
average of the observed ellipticities e ≡ ( e 1 , e 2 ) of galaxies within 
pixels on the sphere. For each pixel p at angular position θp , we thus 
compute 
ˆ γ ( θp ) = ∑ 

i∈ p w i e i ∑ 
i∈ p w i , (1) 

where the sums run o v er galaxies, inde x ed by i and with inverse- 
variance weight w i , that fall into pixel p . The two components 
of the shear field estimated from the full DES Y3 weak lensing 
sample are represented in the left and middle panel of Fig. 1 . For the 
cosmological analysis, we compute maps of the two components of 
the shear field for each tomographic bin using the HEALPY software 
(G ́orski et al. 2005 ; Zonca et al. 2019 ) with a resolution of N side = 
1024, following the same procedure. Note that, prior to equation ( 1 ), 
observed ellipticities were corrected for additive and multiplicative 
biases by subtracting the (weighted) mean ellipticity (as done in 
Gatti, Sheldon et al. 2021c ) and dividing by the METACALIBRATION 
response, both of which were computed for each bin. 

We now turn to the estimation of shear power spectra. For full-sky 
observations, the true shear field for redshift bin a , γ a ≡ ( γ a 

1 , γ a 
2 ) , 

can be decomposed on the basis of spherical harmonics as 
( γ a 

1 ± iγ a 
2 )( θ) = −∑ 

!m [ E a !m ± iB a !m ] ±2 Y !m ( θ ) , (2) 
where s Y ! m are the spin-weighted spherical harmonics (Hikage et al. 
2011 ). Here, we have used the decomposition of the field into E 
and B modes, i.e. its curl-free and divergence-free components. The 
shear power spectra are then defined by the covariance matrix of the 
spherical harmonic coefficients 
〈 E a !m E b∗

! ′ m ′ 〉 = C EE 
! ( γ a , γ b ) δ!! ′ δmm ′ , (3) 

〈 E a !m B b∗
! ′ m ′ 〉 = C EB 

! ( γ a , γ b ) δ!! ′ δmm ′ , (4) 
〈 B a !m B b∗

! ′ m ′ 〉 = C BB 
! ( γ a , γ b ) δ!! ′ δmm ′ , (5) 

which can be estimated by 
ˆ C EE 
! ( γ a , γ b ) = 1 

2 ! + 1 ∑ 
m E a !m E b∗

!m , (6) 
ˆ C EB 
! ( γ a , γ b ) = 1 

2 ! + 1 ∑ 
m E a !m B b∗

!m , (7) 
ˆ C BB 
! ( γ a , γ b ) = 1 

2 ! + 1 ∑ 
m B a !m B b∗

!m . (8) 
Gravitational lensing, to first order, does not create B modes, 

therefore the cosmological signal is contained within E -mode power 
spectra, and B -modes can be used to detect potential systematic 
effects in the data, such as contamination by the point spread function 
(PSF, see Section 4.2 and Appendix A ). Ho we ver, a number of effects 
may generate small B -modes power spectra (small in comparison 
to to E -mode spectra), including second-order lensing effects (e.g. 
Krause & Hirata 2010 ), clustering of source galaxies (Schneider, van 

Waerbeke & Mellier 2002 ), and intrinsic alignments, as is the case 
with the model used in our fiducial analysis (TATT, including tidal 
alignment and tidal torquing mechanisms, from Blazek et al. 2019 , 
see Section 3.2.3 ). Therefore, we preserve both components of the 
field and introduce the vector notation 
C ab 

! ≡

 
 C EE 

! ( γ a , γ b ) 
C EB 

! ( γ a , γ b ) 
C BB 

! ( γ a , γ b ) 
 
 (9) 

to denote the vectors made of the two components of the shear power 
spectra. 

The formalism introduced so far is valid for a full-sky observations. 
In practice, ho we ver, the cosmic shear field is only sampled within 
the surv e y footprint, at the positions of galaxies. This induces a 
complicated sky window function, or mask, that correlates different 
multipoles and biases the estimators defined in equations ( 6 ) and 
( 8 ). We therefore estimate angular power spectra with the so-called 
pseudo- C ! or MASTER formalism (Hivon et al. 2002 ) using the 
NAMASTER software (Alonso et al. 2019 ) to correct for the effect of 
the mask. We provide a summary of the method here and refer the 
reader to Hikage et al. ( 2011 ) for the development of the pseudo- C ! 
formalism for cosmic shear, to Alonso et al. ( 2019 ) for the NAMASTER 
implementation and to Nicola et al. ( 2021 ) and Camacho et al. ( 2021 ) 
for recent applications of the pseudo- C ! formalism with NAMASTER 
to DES Y1 and HSC cosmic shear data. 

Let W a ( θ ) be the mask for the shear field in bin a , which is zero 
outside the surv e y footprint, and let us define the masked shear field 
˜ γ a ( θ ) ≡ W a ( θ ) γ a ( θ ) . Then the cross-power spectrum of the masked 
fields, i.e.the pseudo-spectrum of the fields, has an expectation value 
given by 
〈 ̃  C ab 

! 〉 = ∑ 
! ′ M ab 

!! ′ C ab 
! , (10) 

where M ab 
!! ′ is the mode-coupling (or mixing) matrix of the masks, 

computed analytically from their spherical harmonic coefficients (see 
e.g. Alonso et al. 2019 for formulæ). This matrix describes how 
the mask correlates different multipoles, otherwise independent for 
full-sky observations, as well as leakages between E and B modes. 
While this equation may not be directly inverted due to the loss of 
information pertaining to masking, one can define an estimator for 
the binned power spectrum, defined as 
C ab 

L ≡
∑ 
! ∈ L ω ! L C ab 

! , (11) 
where ω ! L is a set of weights defined for multipoles ! in bandpower 
L and normalized such that ∑ 

! ∈ L ω ! L = 1 . We also define the 
mean multipole of each bin as L̄ ≡ ∑ 

! ∈ L ω ! L ! . The binned pseudo- 
spectrum ˜ C ab 

L is similarly defined from the unbinned pseudo-power 
spectrum ˜ C ab 

! . The estimator for the binned power spectrum is then 
given by 
ˆ C ab 

L = ∑ 
L ′ ( M ab ) −1 

LL ′ ̃  C ab 
L ′ , (12) 

where the binned coupling matrix is 
M ab 

LL ′ ≡ ∑ 
! ∈ L 

∑ 
! ′ ∈ L ′ ω ! L M ab 

!! ′ . (13) 
The successive operations of masking, binning, and decoupling 
described by equations ( 10 )–( 12 ) are generally not permutable, such 
that the expectation value of the estimator in equation ( 12 ) can differ 
from a naive binning of the theoretical prediction for C ab 

! , as in 
equation ( 11 ). Instead, the estimated shear power spectra must be 
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Figure 3. Bandpo wer windo w functions F ab 
L! from equation ( 15 ). Each curve 

corresponds to one of the 32 bandpowers L from ! min = 8 to ! max = 2 N side = 
2048, which are equally spaced on a square-root scale throughout this work. 
The naive binning function is shown by the filled histogram behind. 
compared to 
〈 ̂  C ab 

L 〉 = ∑ 
! F ab 

L! C ab 
L , (14) 

where the bandpower windows F ab 
L! are given by 

F ab 
L! = ∑ 

L ′ ( M ab ) −1 
LL ′ ∑ 

! ′ ∈ L ′ ω ! ′ L ′ M ab 
! ′ ! . (15) 

Throughout this work, we adopt an equal-weight binning scheme 
(i.e. ω ! = 1 if ! ∈ L , 0 otherwise) with 32 square-root-spaced bins 
defined between multipoles ! min = 8 and ! max = 2048 (shown by 
the colored bars in Fig. 3 ). This choice ensures a good balance of 
signal-to-noise ratio across bandpowers L while remaining flexible 
for scale cuts at both low and high multipoles, i.e. large and small 
scales (in comparison to linear and logarithmic bins that are too 
coarse for low and high multipoles, respectively). We use weighted 
galaxy count maps as masks (as done in Nicola et al. 2021 ), using 
the weights computed by the METACALIBRATION algorithm. This 
is a close approximation to inverse-variance masks since (i) the 
METACALIBRATION weights are themselv es inv erse-variance weights 
of ellipticity measurements and (ii) the pixel-wise dispersion of the 
estimated shear maps is about an order of magnitude higher than 
the expected dispersion of the shear signal (see also Singh 2021 ). 
The exact bandpower windows F ab 

L! for these binning and masking 
schemes are compared to the naive binning (i.e. top-hat) windows 
in Fig. 3 . In particular, we observe that the exact windows extend 
beyond the top-hat ones, with some negative terms, especially for 
small multipoles below ! ! 200. 

We compute tomographic cosmic shear power spectra with 
NAMASTER , given our binning and masking schemes, from the 
shear maps computed from equation ( 2 ). These include a shape- 
noise component due to the intrinsic ellipticities of galaxies, which 
contributes an additive noise bias to the estimated autopower spectra 
(whereas cross-spectra do not receive such contributions). For each 
tomographic bin, the noise power spectrum N a ! is flat for full-sky 
observations, and can be approximated by N a ! ≈ σ 2 

e,a / ̄n a , where σ 2 
e,a 

is the standard deviation of single-component (measured) ellipticity 
and n̄ a is the galaxy density in redshift bin a . We follow Nicola et al. 
( 2021 ) and estimate the binned noise pseudo-power spectrum, which 
is constant, by 
˜ N L = #pix 

〈 
∑ 
i∈ p w 2 i e 2 1 ,i + e 2 2 ,i 

2 
〉 

p , (16) 

where #pix is the pixel area in steradians (about 11.8 arcmin 2 for 
N side = 1024), and the expectation value is computed for all pixels, 
including those outside the surv e y footprint (where the value is 
zero). The binned noise power spectrum can then be computed with 
equation ( 12 ) and subtracted from the estimated spectra. We note 
that this analytical estimation coincides with the expectation value 
of the autopower spectra measured after applying random rotations 
to galaxies. Random rotations preserve the density of galaxies and 
the ellipticity distribution of the catalogue and therefore properties 
of shape-noise (including its potential spatial variations), while 
canceling any spatial correlation (that is, both in the E and B modes). 
We also applied this procedure and verified that the result agrees with 
the analytical estimation, which has the advantage of being noiseless 
and is therefore preferred for our measurements. We finally note 
that equation ( 16 ) assumes that noise is isotropic. Therefore, this 
agreement between the two methods allows us to exclude significant 
noise anisotropies. 

We do not apply any purification of E and B modes (Lewis, 
Challinor & Turok 2001 ; Smith 2006 ; Grain, Tristram & Stompor 
2009 ; Alonso et al. 2019 ) since the B -mode signal is largely 
subdominant and does not contain cosmological information, to first 
order. Moreo v er, this would require an apodization of the mask, 
that is speckled with empty pixels due to fluctuations in the density 
of source galaxies and small vetoed areas, and thus significantly 
decrease the ef fecti v e surv e y area. 

Finally, we correct for the effect of the pixelization of the shear 
fields into HEALPIX maps. As noted in Nicola et al. ( 2021 ), it depends 
on the density of galaxies, at fixed resolution: at low density, each 
pixel contains at most one galaxy and the map is sampling the shear 
field itself (but has many empty pixels), whereas at higher density, 
we are estimating the average of the shear field within each pixel. 
Here, for a resolution of N side = 1024, we find that pixels with at 
least one galaxy contain on average 17.2–17.5 galaxies for all four 
tomographic bins, meaning that we are indeed sampling the averaged 
shear field (although a small fraction of pixels, especially on the 
footprint edges, have only one galaxy). This is then corrected for 
by dividing the pseudo-spectra ˜ C ab 

! by the (squared) HEALPIX pixel 
window function F 2 ! , or equivalently, assigning weights w ! L = 1 /F 2 ! 
for ! ∈ L for measurements (except for theoretical predictions). We 
test the effect of the resolution parameter in Appendix C1 , and verify 
that it has negligible impact on cosmological constraints. In Section 4 , 
we validate these hypotheses and the measurement pipeline with 
Gaussian and N -body simulations. 

The estimated shear power spectra for DES Y3 data are shown 
in Fig. 4 , along with the best-fitting model for our fiducial ) CDM 
results. 
3.2 Modelling 
In this section, we describe the theoretical model for the observed 
shear power spectra, including systematic uncertainties. 
3.2.1 Theoretical background 
Gravitational lensing deflects photons from straight trajectories and 
the deflection angle can be written as the gradient (on the sphere) of 
the lensing potential ψ( θ). In the Born approximation, the lensing po- 
tential up to comoving distance χ is given by the projection of the 3D 
Newtonian gravitational potential / along the line of sight, such that 
ψ( θ, χ ) = 2 ∫ χ

0 d χ ′ χ − χ ′ 
χχ ′ /( χ ′ θ , χ ′ ) , (17) 
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Figure 4. Cosmic shear power spectra measured from DES Y3 data. Each panel in the lower left triangle corresponds to a redshift bin pair indicated in the upper 
left corner. The measured E -mode component of the binned, noise-bias corrected power spectra is shown in blue with error bars from an analytical covariance 
matrix (see Section 3.3 ). The grey shaded regions show scales that are not used in the fiducial analysis ( (χ2 = 1) where the effect of baryons is neglected, with 
extra points removed when combining with shear ratios shown in light grey (see Section 3.5.1 ). The corresponding best-fitting model within ) CDM, discussed 
in Section 6.1 , is represented by red solid lines. The grey dashed lines show the scale cuts corresponding to k max = 1, 3, and 5 h Mpc −1 (see also Section 3.5.2 ), 
and the corresponding best-fitting model using HMCODE and k max = 5 h Mpc −1 , discussed in Section 6.3 , is represented by red dashed lines. The upper right 
panel shows the measured non-tomographic shear power spectrum of DES Y3 data in blue, along with the theory expectation corresponding to the best fit of 
the tomographic analysis, in red. For readability, all measurements and errors bars are scaled by the mean multipole L̄ of each bandpower L , i.e. the data points 
show L̄ ̂  C EE 

L and are compared to theoretical predictions of ! C ! . 
where we assumed a flat Universe (Bartelmann 2010 ). The Jacobian 
of the deflection angle can further be decomposed into its trace and 
trace-less parts, defining the spin-0 convergence field, κ , and the 
spin-2 shear field, γ . Both fields can therefore be expressed in terms 
of second-order deri v ati ves of the lensing potential. In the spherical 
harmonics representation, we have 
κ = 1 

4 (ð ̄ð + ð̄ ð )ψ = 1 
2 ∇ 2 θ ψ, (18) 

γ = γ1 + iγ2 = 1 
2 ðð ψ, (19) 

where ð and ð̄ are the raising and lowering operators of the spin- 
weighted spherical harmonics, s Y ! m (see Castro, Heavens & Kitching 
2005 for details and, e.g., Chang et al. 2018 for an application to 
curv ed-sk y lensing mass maps). The Newtonian potential is related 
to the matter o v erdensity field δ via the Poisson equation 
∇ 2 / = 3 #m H 2 0 

2 ac 2 δ, (20) 
where #m is the matter density parameter, H 0 is the Hubble 
constant today, and a = 1/(1 + z) is the scale factor. Combining 

equations ( 17 ) and ( 18 ), we obtain 
κ( θ, χ ) = 3 #m H 2 0 

2 c 2 
∫ χ

0 d χ ′ 
a( χ ′ ) χ − χ ′ 

χχ ′ δ( χ ′ θ , χ ′ ) , (21) 
where we have added the radial component of the Laplacian of the 
potential, ∇ 2 χ/, that vanishes in the integration. 

For a sample of galaxies, the observable convergence and shear 
fields are integrated over comoving distance and weighted by their 
redshift distribution n a ( χ ), where a denotes the bin index. In the 
Limber approximation (Limber 1953 ; Kaiser 1992 , 1998 ; LoVerde & 
Afshordi 2008 ), the convergence cross-power spectrum for bins a and 
b is 
C κa κb 

! = ∫ d χ q a ( χ ) q b ( χ ) 
χ2 P NL ( k = ! + 1 / 2 

χ
, z( χ )) , (22) 

where the lensing efficiency is given by 
q a ( χ ) = 3 #m H 2 0 

2 c 2 χ

a( χ ) 
∫ χH 

χ

d χ ′ n a ( χ ′ ) χ − χ ′ 
χ ′ , (23) 

where χH is the distance to the horizon (ef fecti v ely, the como ving 
distance where the redshift distributions vanish). The lensing effi- 
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Figure 5. Residual shear power spectra with respect to the fiducial power spectra, C fid 
! . The orange ( HMCODE ) and brown ( EUCLID EMULATOR ) curves show 

residuals for alternative prescription of the non-linear power spectrum (see Section 3.2.2 ). The blue and red curves show the effect of baryons as predicted by 
four hydrodynamical simulations (Illustris, OWLS AGN, Horizon AGN, and MassiveBlack II). Higher order lensing effects computed with COSMOLIKE are also 
shown, in green, to be small. The error bars are shown by the grey step-wise lines which represent ±σ ( C ! )/ C ! on the same scale (only −σ ( C ! )/ C ! is visible). 
The gre y-shaded re gions show scales that are not used in the fiducial analysis where the effect of baryons is neglected. The grey dashed lines show the scale 
cuts corresponding to k max = 1, 3, and 5 h Mpc −1 (see Section 3.5.2 ). 
ciency functions for DES Y3 galaxies are shown in the lower panel 
of Fig. 2 . Given equations ( 18 ) and ( 19 ), the cosmic shear E -mode 
power spectrum is given by 
C ab 

! = T ! C κa κb 
! , (24) 

where the prefactor, T ! = ( ! + 2)( ! + 1) ! ( ! − 1)/( ! + 1/2) 4 , is often 
replaced by 1, an excellent approximation for ! ! 10 Kitching et al. 
(see 2017 ); Kilbinger et al. (see 2017 , for a complete discussion). We 
verified that these two approximations – Limber and prefactor T ! ∼
1 – are correct, given our binning scheme, with an error of at most 
0.2 per cent on the largest scales considered. 
3.2.2 Non-linear power spectrum 
Following the general methodology of the DES Y3 large-scale 
structure analysis set in Krause et al. ( 2021 ), for our fiducial model 
we compute the non-linear matter power spectrum P NL ( k , z) using the 
Boltzmann code CAMB (Lewis, Challinor & Lasenby 2000 ; Howlett 
et al. 2012 ) with the HALOFIT extension to non-linear scales (Smith 
et al. 2003 ), with updates to dark energy and massive neutrinos 
from Takahashi et al. ( 2012 ). HALOFIT is reported to be accurate 
at the 5 per cent level for k ≤ 1 h Mpc −1 , when compared to N - 
body simulations, and degrading for smaller scales. Ho we ver, Krause 

et al. ( 2021 ) showed that DES Y3 cosmic shear is insensitive to 
varying the prescription to model the small-scale power spectrum 
by substituting HALOFIT for HMCODE (with dark matter only), the 
EUCLID EMULATOR , or the MIRA-TITAN EMULATOR (Mead et al. 
2015 ; Lawrence et al. 2017 ; Euclid Collaboration 2019 ). We show 
a comparison of some of these prescriptions in Fig. 5 and we verify 
the robustness of our fiducial choice in in Section 4.4.1 . 
3.2.3 Intrinsic alignments 
Galaxies are extended objects and therefore subject to tidal forces. 
Their intrinsic shapes, or ellipticities, are consequently not fully 
random but rather tend to align with the tidal field of the gravi- 
tational potential and therefore each other (Hirata & Seljak 2004 ; 
Bridle & King 2007 ). As a consequence, the shear power spectrum 
estimated from galaxies receives additional contributions from the 
correlation of intrinsic shapes, C ab 

!, II , and the cross-correlations of 
intrinsic shapes with the cosmological shear field, C ab 

!, GI and C ab 
!, IG , 

such that the theoretical spectrum of the observed signal reads 
C ab 

! + C ab 
!, GI + C ab 

!, IG + C ab 
!, II . 

In this work, we follow the DES Y3 analysis of cosmic shear in 
real space (Krause et al. 2021 ; Amon et al. 2022 ; Secco et al. 2022 ) 
and use the so-called TATT framework (Blazek et al. 2019 ) as our 
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fiducial choice to model these extra terms stemming from intrinsic 
alignments (IA). This model unified tidal alignment (TA) with tidal 
torquing (TT) mechanisms, proposed by Catelan, Kamionkowski & 
Blandford ( 2001 ), Crittenden et al. ( 2001 ), and Mackey, White & 
Kamionkowski ( 2002 ), thanks to a perturbative expansion of the 
intrinsic galaxy shape field in the density and tidal fields, up to second 
order in the tidal field. We refer the reader to Secco et al. ( 2022 ) for 
full details of the implementation and a justification of this choice. 
The TA and TT contributions are each modulated by an amplitude 
(respectively, A TA and A TT ) and a redshift-dependence parameter 
(respectively, αTA and αTT ), with an additional linear bias b TA of 
sources contributing to the TA signal. The non-linear alignment 
model (NLA; Hirata & Seljak 2004 ; Bridle & King 2007 ), commonly 
used in cosmic shear analyses (Troxel et al. 2018 ; Hikage et al. 2019 ; 
Hamana et al. 2020 , 2022b ; Asgari et al. 2021 ) is contained in the 
TATT framework and corresponds to the case A TT = b TA = 0. 

The TATT model also predicts a small, but non-zero B -mode 
power spectrum, when b TA -= 0 or A TT -= 0. In the main parts of 
the analysis, the B -mode spectrum is not used for cosmological 
analysis. Instead, it is demonstrated in Section 4.2.1 that DES Y3 
data is consistent with no B modes, rejecting the hypothesis of 
a strong contamination of the signal by systematic effects that 
would source B modes, such as leakage from the PSF, measured 
in Section 4.2.2 and Appendix A . This test thereby also excludes a 
detectable contribution of the IA B -mode signal, with the unlikely 
caveat that systematic effects and IA may cancel each other. In 
addition, the PSF test allows us to predict the contamination of 
B -mode spectra, which is found to be subdominant, by an order 
of magnitude, to the TATT-predicted B -mode signal for A TT = 1, 
which is well within current E -mode constraints. Therefore, we will 
extend the cosmological analysis in Section 6.2 and include B -mode 
measurements to impro v e constraints on the TATT parameters. To 
do so, we employ the same pseudo- C ! formalism and extend the 
mode-coupling matrices in equations ( 10 ) and ( 14 ) to account for 
the B -mode component. Note that NAMASTER computes both E and 
B components of the mixing matrices as well as the cross-terms 
accounting for leakages between the two components. The fiducial 
analysis simply discards those terms, as B -to- E mode leakage is 
found to be negligible. Ho we ver, E -to- B mode leakage is found to 
significantly contribute to the B -mode signal, in comparison to the 
TATT-predicted B -mode signal (they are of comparable magnitude 
for A TT of order unity). Therefore, the extended analysis including B - 
mode measurements uses consistent modeling of multipole coupling 
and E / B -mode leakage. The covariance matrix for the B -mode 
measurement as well as the cross-covariance between E - and B - 
mode measurements are computed from a set of 10 000 Gaussian 
simulations based on DES Y3 data, as detailed in Section 4.1.1 . 
3.2.4 Effects of baryons 
Astrophysical, baryonic processes redistribute matter within dark 
matter haloes and modify the matter power spectrum at small scales 
(Chisari et al. 2018 ; Schneider et al. 2019 , 2020 ; Huang et al. 2021 ). 
Feedback mechanisms from active galactic nuclei and supernovae 
heat up their environment and suppress clustering in the range k 
∼ 1–10 h Mpc −1 , while cooling mechanisms enhance clustering on 
smaller scales. The complex physics involved in these mechanisms 
has been modelled in multiple hydrodynamical simulations (van 
Daalen et al. 2011 ; Dubois et al. 2014 ; Vogelsberger et al. 2014 ; 
Khandai et al. 2015 ). Ho we ver, the absolute and relative amplitudes 
of the v arious ef fects remain poorly understood and constitute a 

major source of uncertainty, at the level of tens of per cent, on the 
matter power spectrum at scales k ! 5 h Mpc −1 , and on the shear 
power spectrum at multipoles as low as ! ! 100, as shown on Fig. 5 
(see also Huang et al. 2019 ). 

Our fiducial analysis follows the DES Y3 analysis and discards 
scales that are strongly affected by baryonic effects, as detailed in 
Section 3.5.1 . In general, the impact of baryons on the shear power 
spectrum can be computed by rescaling the matter power spectrum 
P NL ( k, z) → P NL ( k , z) P hydro ( k , z) 

P DM ( k , z) , (25) 
where P hydro ( k , z) and P DM ( k , z) are the matter power spectra 
measured from hydrodynamical simulations, respectively, with and 
without the effects of baryons. In particular, we will use four 
simulations, selected to provide a diverse range of scenarios: Illustris 
(Vogelsberger et al. 2014 ), OWLS AGN (van Daalen et al. 2011 ), 
Horizon AGN (Dubois et al. 2014 ), and MassiveBlack II (Khandai 
et al. 2015 ). We will use this approach to e v aluate the impact of 
baryons, shown in Fig. 5 , and determine our fiducial set of scale cuts, 
in Section 3.5.1 . 

We will later extend our analysis to smaller scales, which requires 
to model and marginalize o v er baryonic effects. To do so, we will use 
HMCODE 7 (Mead et al. 2015 ), instead of HALOFIT , to simultaneously 
model the effects of non-linearities and baryonic feedback on the 
matter power spectrum. This adds one or two extra parameters, 
namely the minimum halo concentration A HM and the halo bloating 
parameter ηHM , which were shown to approximately follow the linear 
relation ηHM = 1.03–0.11 A HM for various simulations (see Mead et al. 
2015 ). Although Mead et al. ( 2021 ) recently presented an updated 
version of HMCODE with improved treatment of baryon-acoustic 
oscillation damping and massive neutrinos, we will only consider 
the 2015 version of the code, which was available at the onset of this 
work. We note that Tr ̈oster et al. ( 2021 ) found only a small impact of 
HMCODE versions on cosmological constraints derived from cosmic 
shear and Sun yaev–Zeldo vich effect cross-correlations. 
3.2.5 Shear and redshift uncertainties 
We include uncertainties on the shear calibration and redshift 
distributions following the DES Y3 real-space analysis (Krause et al. 
2021 ; Amon et al. 2022 ; Secco et al. 2022 ). 

In our fiducial model, uncertainties in redshift distributions are 
captured by allowing o v erall translations of the fiducial redshift 
distributions, shown in Fig. 2 , such that 
n a ( z) → n a ( z + (z a ) . (26) 
We parametrize the residual uncertainty in the shear calibration 
following a standard procedure which amounts to an o v erall rescaling 
of the shear signal in each redshift bin, such that 
C ab 

! → (1 + m a )(1 + m b ) C ab 
! . (27) 

The four shear biases, m a , are assumed to be redshift-independent 
within each bin. Both of these choices are approximations to the more 
sophisticated approaches developed over the course of the DES Y3 
analysis. 

For redshift uncertainties, the SOMPZ method provides a ensemble 
of redshift distributions encapsulating the full uncertainty (Myles 
et al. 2021 ), and not just that of the mean redshift. Ho we ver, 
it was shown in Cordero et al. ( 2022 ) and Amon et al. ( 2022 ) 
7 https:// github.com/alexander-mead/ HMcode 
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Table 1. Cosmological and nuisance parameters in the baseline ) CDM 
model. Uniform distributions in the range [ a , b ] are denoted U ( a, b) and 
Gaussian distributions with mean µ and standard deviation σ are denoted 
N ( µ, σ ). 
Parameter Symbol Prior 
Total matter density #m U (0 . 1 , 0 . 9) 
Baryon density #b U (0 . 03 , 0 . 07) 
Hubble parameter h U (0 . 55 , 0 . 91) 
Primordial spectrum amplitude A s × 10 9 U (0 . 5 , 5) 
Spectral index n s U (0 . 87 , 1 . 07) 
Physical neutrino density #νh 2 U (0 . 0006 , 0 . 00644) 
IA amplitude (TA) A TA U ( −5 , 5) 
IA redshift dependence (TA) αTA U ( −5 , 5) 
IA amplitude (TT) A TT U ( −5 , 5) 
IA redshift dependence (TT) αTT U ( −5 , 5) 
IA linear bias (TA) b TA U (0 , 2) 
Photo- z shift in bin 1 (z 1 N (0 , 0 . 018) 
Photo- z shift in bin 2 (z 2 N (0 , 0 . 015) 
Photo- z shift in bin 3 (z 3 N (0 , 0 . 011) 
Photo- z shift in bin 4 (z 4 N (0 , 0 . 017) 
Shear bias in bin 1 m 1 N ( −0 . 0063 , 0 . 0091) 
Shear bias in bin 2 m 2 N ( −0 . 0198 , 0 . 0078) 
Shear bias in bin 3 m 3 N ( −0 . 0241 , 0 . 0076) 
Shear bias in bin 4 m 4 N ( −0 . 0369 , 0 . 0076) 
that the simpler parametrization of equation ( 26 ) is sufficient for 
DES Y3, which we test in Appendix C1 . For shear calibration, 
a new approach was developed alongside the image simulations 
presented in MacCrann et al. ( 2022 ). In short, it was shown that the 
redshift distribution of a sample, n ( z), corresponds to the response 
of the shear estimated from this sample to a cosmological shear 
signal, as a function of the redshift of the signal. In the presence of 
galaxy blending, the response is modified, which may be captured 
by an ef fecti ve redshift distribution, n γ ( z), normalized to 1 + m . 
Realistic simulations, that used the same pipelines as DES Y3 data for 
co-addition, detection, and shear measurements, allowed to jointly 
estimate residual uncertainties in shear and redshift biases. These 
results were subsequently mapped on to the standard parametrization 
of equations ( 26 ) and ( 27 ), thus defining the priors o v er these 
parameters, as detailed in Table 1 . Extensive testing demonstrated 
that our fiducial approach is sufficiently accurate given the statistical 
uncertainties in DES Y3 (see Cordero et al. 2022 ; MacCrann et al. 
2022 ; Amon et al. 2022 , for details). 
3.2.6 Higher order shear 
Our modelling ignores higher order contributions to the shear signal 
due to the magnification and clustering of the galaxy sample as well 
as the fact we can only access the reduced shear, given by γ /(1 −
κ). These contributions are computed in Krause et al. ( 2021 ), Secco 
et al. ( 2022 ), and found to be below 5 per cent for the scales used in 
this analysis, as shown by the orange curves in Fig. 5 . We verified 
that they have a negligible impact on cosmological constraints for 
DES Y3. 
3.3 Likelihood and covariance 
We assume cosmic shear spectrum measurements follow a multi- 
variate Gaussian distribution with fixed covariance (see e.g. Hall & 
Taylor 2022 , for a justification). The theoretical predictions detailed 
in the previous section are convolved with the bandpower windows, 
following equations ( 14 ) and ( 15 ). 

The covariance of E -mode shear power spectra is computed 
analytically as follows. It is decomposed as a sum of Gaussian and 
non-Gaussian contributions from the shear field. The Gaussian con- 
tribution is computed with NAMASTER using the impro v ed narrow- 
kernel approximation (iNKA) estimator developed in Garc ́ıa-Garc ́ıa, 
Alonso & Bellini ( 2019 ) and optimized by Nicola et al. ( 2021 ). 
This estimator correctly accounts for mode-mixing pertaining to 
masking and binning, consistently with the pseudo- C ! framework 
presented in Section 3.1 . It requires the mode-coupled pseudo- C ! 
spectra, computed from the theoretical full-sky spectra convolved by 
the mixing matrix from equation ( 10 ), and including noise bias for 
autospectra, computed from the data with equation ( 16 ). These are 
then rescaled by the product of masks o v er all pix els Nicola et al. 
(for details, see 2021 ). 

The non-Gaussian contribution is the sum of two terms: the 
connected four-point covariance (cNG) arising from the shear field 
trispectrum, and the so-called supersample covariance (SSC), ac- 
counting for correlations of multipoles used in the analysis with 
supersurv e y modes. Both non-Gaussian terms are computed using 
the COSMOLIKE software (Eifler et al. 2014 ; Krause & Eifler 2017 ), 
with formulae derived in Takada & Jain ( 2009 ) and Schaan, Takada & 
Spergel ( 2014 ). These analytical expressions do not account for the 
e xact surv e y geometry and only apply a scaling by the fraction of 
observ ed sk y, f sky . Therefore, we interpolate these computations at all 
pairs of integer-valued multipoles and use the bandpower windows 
from equation ( 15 ) to obtain an approximation of the non-Gaussian 
covariance terms for the binned power spectrum estimator described 
in the previous section. The non-Gaussian terms (cNG + SSC) are 
subdominant with respect to the Gaussian contribution (see the upper 
left panel of Fig. 6 ) and this represents a good approximation to the 
e xtra co v ariance of dif ferent multipoles (i.e. of f-diagonal terms), 
which becomes non-negligible only on the smallest scales. 

Fig. 6 illustrates properties of the fiducial covariance matrix, 
computed as e xplained abo v e. First, as can be seen on the left- 
hand panel, the non-Gaussian terms are largely subdominant in 
the computation of the error bars. Then, the right-hand panel, 
showing the correlation matrix, reveals that multipole bins are largely 
uncorrelated in the Gaussian covariance, and only correlated at the 
10 per cent level at most due to the non-Gaussian contributions. 
Adjacent multipole bins are actually slightly anticorrelated due to 
mode coupling and decoupling, at the 6 per cent level for the lowest 
bins to below 1 per cent for the highest bins. 

The covariance matrix of B -mode shear power spectra and the 
cross-covariance between E - and B -mode power spectra are com- 
puted from Gaussian simulations, presented in Section 4.1.1 , as the 
original NKA estimator was found to be unreliable for these spectra 
in Garc ́ıa-Garc ́ıa et al. ( 2019 ). 
3.4 Parameters and priors 
For our fiducial analysis, we vary six parameters of the ) CDM 
model, namely the total matter density parameter #m , the 
baryon density parameter #b , the Hubble parameter h (where 
H 0 = 100 h km s −1 Mpc −1 ), the amplitude of primordial curvature 
power spectrum A s and the spectral index n s , and the neutrino physical 
density parameter #νh 2 . 

We also vary the five parameters of the intrinsic alignments model, 
TATT. When restricting to the NLA model, we fix A TT = αTT = b TA = 
0. Our validation tests are carried out assuming the TATT model, but 
using the NLA best-fitting values from Samuroff et al. ( 2019 ) based 
on DES Year 1 data, since this work found no strong preference for 
the more complex model. 
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Figure 6. Features and validation of the analytical covariance matrix used in this work, computed with NAMASTER and COSMOLIKE . Upper left : error bars given 
by the square-root of the diagonal of the Gaussian (dark blue) and non-Gaussian (light blue) contributions to the covariance matrix. Middle left : comparison of 
the error bars computed from Gaussian simulations (dark red) and DARKGRIDV1 simulations (light red) with the fiducial error bars. Lower left : residuals of the 
pseudo- C ! measurements from the Gaussian simulations with respect to the input (binned) spectra. In all left-hand panels, the horizontal axis corresponds to 
indices of the components stacked data vector. The corresponding redshift bin pairs are indicated at the top of the upper panel, with each block corresponding 
to multipoles in the range 8–2048. Right : correlation matrix, with only the Gaussian contribution in the lower triangle, and both Gaussian and non-Gaussian 
contributions in the upper triangle (note the normalization in the range −0.1 to + 0.1). 

In addition to the cosmological and astrophysical parameters 
described abo v e, our analysis includes two nuisance parameters per 
redshift bin to account for uncertainties in shape calibration ( m a ) and 
redshift distributions ( (z a ), as described in Section 3.2.5 . 

The full list of parameters for the baseline ) CDM model with 
their priors is shown in Table 1 . Throughout this paper we assume the 
Planck 2018 (Planck Collaboration VI 2020 ) best-fitting cosmology 
derived from TT, TE, EE + lowE + lensing + BAO data as our 
fiducial parameter values. 

In addition, we will consider alternative models that require extra 
varied parameters: 

(i) When using HMCODE to model small scales, we vary either 
A HM only (using the relationship between A HM and ηHM suggested 
in Mead et al. 2015 ), or both A HM and ηHM parameters, applying 
uniform priors A HM ∼ U(0 , 10) and ηHM ∼ U(0 , 2). 

(ii) When constraining the wCDM model, we vary the dark energy 
equation-of-state w, with a uniform prior in the range [ −2, −1/3]. 

Finally, we will, in some cases, include independent (geometric) 
information from measurements of ratios of g alaxy–g alaxy lensing 
two-point functions at small scales, as presented in S ́anchez et al. 
( 2021 ). Given an independent lens sample Porredon et al. (here, 
MAGLIM , presented in 2021 ), the ratios of tangential shear signals 
for two redshift bins of the source sample around the same galaxies 
from a common redshift bin of the lens sample depend largely on 
distances to these samples. Shear ratios (SR) can therefore be used to 
constrain uncertainties in the redshift distributions. We only exploit 
small-scale measurements, corresponding to scales of approximately 
2–6 h −1 Mpc , or ! min ∼ 360–1200 for redshift bins 1–4, that are 
largely independent from the scales we use in this analysis (see 
Fig. 4 and Section 3.5 ). In these cases, we incorporate shear ratios 
at the likelihood level, using a Gaussian likelihood. The modelling 
of shear ratios necessitates extra parameters, namely the clustering 
biases and redshift distribution uncertainties for each of the three lens 
bins used here. Details about the shear-ratio likelihood and priors can 
be found in S ́anchez et al. ( 2021 ). 

3.5 Scale cuts 
3.5.1 Fiducial scale cuts ( (χ2 ) 
As stated in Section 3.2.4 , baryonic feedback is a major source of 
uncertainty on the matter power spectrum at small scales. Therefore, 
we follow the DES Y3 methodology presented in Krause et al. ( 2021 ), 
Secco et al. ( 2022 ), and remo v e multipole bins that are significantly 
affected by baryonic effects. 

To do so, we compare two synthetic, noiseless data vectors 
computed at the fiducial cosmology: one computed with the power 
spectrum from HALOFIT , and one where the power spectrum has 
been rescaled by the ratio of the power spectra measured in OWLS 
simulations (van Daalen et al. 2011 ) with dark matter only and with 
AGN feedback, as in equation ( 25 ). We then compute, using the 
fiducial covariance matrix, the χ2 distances between the two data 
vectors for each redshift bin pair and determine small-scale cuts 
by requiring that all χ2 distances be smaller than a threshold value 
(χ2 / N pair , where N pair = 10 is the number of redshift bin pairs. We 
then follow the iterative procedure laid out in Secco et al. ( 2022 ) and 
choose the threshold value (χ2 such that the bias due to baryons 
in the ( S 8 , #m ) plane is less than 0.3 σ . Specifically, we require that 
the maximum posterior point for the fiducial data vector lies within 
the 2D 0.3 σ confidence region of the marginal posterior for the 
contaminated data vector, as shown in Fig. 7 , using the same scale 
cuts being tested for both runs. We find (χ2 = 1 allows to reach 
that goal 8 and adopt the corresponding maximum multipoles as our 
fiducial scale cuts, as shown by the greyed area in Figs 4 and 5 . This 
leaves 119 data points out of the 320 in total. 

In comparison, the real-space analysis presented in Amon et al. 
( 2022 ) and Secco et al. ( 2022 ) uses scale cuts that account for 
the full analysis of DES Y3 lensing and clustering data (the so- 
called 3 × 2pt analysis), including shear ratios. In order to make our 
analysis comparable, when using shear ratios, we will use slightly 
8 Note that since power spectra for different redshift bin pairs are correlated, 
the requirement that each pair ab verifies (χ2 

ab < 0 . 1 yields a global (χ2 ≈
0.34. 
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Figure 7. Validation of the (χ2 < 1 scale cuts. We compare constraints 
from a noiseless data vector produced at the fiducial cosmology (dark blue) 
to those obtained from a contaminated data vector obtained by rescaling the 
matter power spectrum using equation ( 25 ) with the OWLS AGN simulation, 
both using the fiducial model. The nested, filled regions show the 0.3 σ , 1 σ , 
and 2 σ contours, corresponding to roughly 24, 68, and 95 per cent confidence 
regions. The mean of the fiducial posterior, which is represented by the blue 
plus sign, lies within the 0.3 σ contour of the contaminated posterior. 
more conserv ati ve cuts, with (χ2 = 0.5, similar to the real-space 
analysis, which results in similar biases in the ( S 8 , #m ) plane of about 
0.15 σ . This remo v es between one and two additional data points for 
each bin pair, leaving a total of 102 data points. Finally, we keep 
bandpowers L for which the mean multipole, L̄ , is below ! max . 

We note that these multipoles ! max are in the range 200–400 
(except for bin 1,1, which has larger error bars), corresponding to 
significantly larger angular scales than the cuts used in the HSC Y1 
(Hikage et al. 2019 ) and KiDS-450 (K ̈ohlinger et al. 2017 ) analyses, 
who used redshift-independent multipole cuts at ! max = 1900 and 
! max = 1300, respectively. Both analyses tested these choices and 
e xtensiv ely demonstrated the robustness of their final cosmological 
constraints. These varying approaches on scale cut choices, discussed 
in Doux et al. ( 2021 ), moti v ate us to consider alternative scale cuts 
in the next section. 
3.5.2 Alternative scale cuts ( k max ) 
We consider a second kind of multipole cuts derived from approxi- 
mate, small-scale cuts of 3D Fourier modes, which is moti v ated by 
theoretical considerations. Namely, assuming that the model for the 
matter power spectrum is valid up to a certain wavenumber k max , 
we aim at discarding multipoles ! receiving significant contributions 
from smaller scales (i.e.for k > k max ). To do so, we follow Doux et al. 
( 2021 ) and rewrite equation ( 22 ) as an integral over k -modes, using 
the change of variables k = ( ! + 1/2)/ χ ( z). We then define the scale 
k >α( ! ) at which the integral for C ! reaches a fraction α < 1 of its 
total value, such that 
∫ ln k >α ( ! ) 

−∞ d ln k d C ! d ln k = αC ! . (28) 

For a given choice of α and k max , we then obtain the small-scale 
multipoles cut by numerically solving for ! max such that k >α( ! max ) = 
k max . Here, we set α = 0.95, such that scales at wavenumbers k larger 
than k >α( ! ) contribute 5 per cent of the total signal. We will consider 
dif ferent v alues of k max in the range 1–5 h Mpc −1 . 

Note that, in general, the validity of the model depends on redshift, 
as non-linearities increase at lower redshift. However, we will use 
the same k max value for all ten redshift bin pairs, which in practice is 
limited by the low redshift bin. We show the cuts corresponding to 
k max = 1, 3, and 5 h Mpc −1 with dashed lines in Figs 4 and 5 . These 
cuts leave 71, 156, and 228 data points, respectively. The highest 
multipole used in this work is ! max ≈ 1600 for redshift bin 4, for 
k max = 5 h Mpc −1 . 
3.6 Sampling, parameter inference, and tensions 
Throughout this work, we assume a multi v ariate Gaussian likelihood 
(Hall & Taylor 2022 ), as detailed in Section 3.3 , to carry out a 
Bayesian analysis of our data. The theoretical calculations are per- 
formed with the COSMOSIS framework (Zuntz et al. 2015 ). We sample 
the posterior distributions using POLYCHORD (Handley, Hobson & 
Lasenby 2015 ), a sophisticated implementation of nested sampling, 
with 500 live points and a tolerance of 0.01 on the estimated evidence. 
We report parameter constraints through 1D marginal summary 
statistics computed and plotted with GETDIST (Lewis 2019 ), as 
Parameter = 1D mean + upper 34 per cent bound 

−lower 34 per cent bound (MAP value) , 
where the maximum a posterior (MAP) is reported in parenthesis. 

We will compute a number of metrics to characterize and interpret 
the inferred posterior distributions. For a number N param of varied 
parameters, the number of parameters ef fecti vely constrained by the 
data is given by 
N eff = N param − Tr (C −1 

4 C p ) , (29) 
where C 4 and C p are the covariance matrices of the prior and 
posterior, approximated as Gaussian distributions, and Tr is the 
trace operator (Raveri & Hu 2019 ). For a given posterior and its 
corresponding prior, we will also compute the Karhunen–Lo ̀eve (KL) 
decomposition that measures the impro v ement of the posterior with 
respect to the prior (Raveri & Hu 2019 ; Rav eri, Zachare gkas & 
Hu 2020 ). We can then project the observ ed impro v ement on to 
a set of modes that we restrict to power laws in the cosmological 
parameters. Finally, we will characterize the level of disagreement 
between posterior distributions using the posterior shift probability, 
as described in Raveri & Doux ( 2021 ). This metric is based on the 
parameter difference distribution obtained by differentiating samples 
from two independent posteriors, and computing the volume with 
the isocontour of a null difference. To do so, we will use the 
tensiometer 9 package (see previous references and Dacunha 
et al. 2022 ), which fully handles the non-Gaussian nature of the 
derived posteriors. 
4  VA LIDATION  
In this section, we present a number of tests of our analysis 
framework. In Section 4.1 , we introduce simulations that we use to 
verify that measured spectra are not significantly impacted by known 
systematic effects ( B modes and PSF leakage) in Section 4.2 , to 
validate the measurement pipeline and the covariance in Section 4.3 , 
9 https://tensiometer.readthedocs.io 
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and to test the accuracy of our theoretical model and its impact on 
cosmological parameter inferences in Section 4.4 . 
4.1 Simulations 
4.1.1 Gaussian simulations with DES Y3 data 
In the following sections, we use a large number of Gaussian sim- 
ulations to validate the cosmic shear power spectra measurements, 
obtain a covariance matrix for B -modes spectra and cross-spectra 
with the PSF ellipticities. To make them as close as possible to 
DES Y3 data, we use the actual positions and randomly rotated 
shapes of the galaxies in the DES Y3 catalogue. This ensures that 
the masks and the noise power spectra are identical to those of the 
real data measurements. 

The generation of a single simulation proceeds as follo ws. Gi ven 
predictions for the shear E -mode spectra at the fiducial model, C ab 

! , 
we generate a full-sky realization of the four correlated shear fields 
at a resolution of N side = 1024. To do so, we use the definition of 
the spectra, equation ( 3 ), as the covariance of the spherical harmonic 
coefficients of the fields to sample 4D vectors, ( E 1 !m , E 2 !m , E 3 !m , E 4 !m ), 
for 0 ≤ ! < 3 N side , −! ≤ m ≤ + ! , which are independent for different 
( ! , m ). We then use the alm2map function of HEALPY (Zonca et al. 
2019 ) in polarization mode, with T i !m = B i !m = 0, to generate the four 
correlated, true (but pixelated) shear maps. The next step consists 
in sampling these fields. As explained above, we use the DES Y3 
catalogue of (mean- and response-corrected) ellipticities, to which 
we apply random rotations, and the positions of the galaxies as 
input. The random rotations are obtained by multiplying the complex 
ellipticities, e = e 1 + ie 2 , by e 2 i θ , where θ is the random rotation 
angle. For a galaxy i in redshift bin a , the ellipticity in the mock 
catalogue is given by 
e ′ i = γ a 

i + e 2 iθ e i 
1 + e 2 iθγ a∗

i e i , (30) 
where γ a 

i is the value of the (complex) shear field corresponding 
to the a th redshift bin at the position of galaxy i . This procedure is 
justified by the fact that the variance of the shear fields is about 10 3 
times smaller than the variance due to intrinsic shapes, σ 2 

e ∼ 0 . 3 2 , 
such that the variance of the new ellipticities remains extremely close 
to that of the true ellipticities. 

We then perform power spectra measurements on these mock 
catalogues with the same pipeline that is used on data, except that 
these spectra need not be corrected for the pixel window function. The 
mean residuals with respect to the expected ( E mode) power spectra 
computed with equation ( 14 ) using mixing matrices are shown in the 
lower left panel of Fig. 6 for 10 000 simulations, showing agreement 
within 5 per cent of the error bars (the small difference reflects the 
accuracy of the pseudo- C ! estimator). We also find that the (small but 
non-zero) B -mode power spectra measured in these simulations are 
consistent, at the same level, with expectations from E -mode leakage 
computed using equation ( 14 ). 

Note that the real space analysis of DES Y3 lensing and clustering 
data (DES Collaboration 2022 ) relied on lognormal simulations using 
FLASK (Xavier, Abdalla & Joachimi 2016 ) to partially validate the 
covariance, as detailed in Friedrich et al. ( 2021 ). Ho we ver, those 
were mainly used to e v aluate the ef fect of the surv e y geometry, 
which is already accounted for by NAMASTER (Alonso et al. 2019 ), 
and need not be validated here. Therefore, we use simpler, Gaus- 
sian simulations to validate the measurement pipeline and obtain 
empirical covariance matrices (for B -mode and PSF tests). In order 
to validate the full covariance matrix, including the non-Gaussian 

contributions, we will rely on the DARKGRIDV1 suite of simulations 
(see Section 4.1.2 ), which rely on full N -body simulations and are 
tailored for lensing studies. 
4.1.2 DARKGRIDV1 suite of simulations 
The DES Y3 analysis of the convergence peaks and power spectrum 
presented in Z ̈urcher et al. ( 2022 ) relied on the DARKGRIDV1 suite 
of weak lensing simulations. They were obtained from fifty N -body, 
dark matter-only simulations produced using the PKDGRAV3 code 
(Potter, Stadel & Teyssier 2017 ). Each of these consists of 768 3 
particles in a 900 h −1 Mpc box, which is replicated 14 3 times to 
reach a redshift of 3. Snapshots are assembled to produce density 
shells and the corresponding (true) convergence maps for the four 
DES Y3 redshift bins. These simulations are then populated with 
DES Y3 galaxies, in a way similar to what is done for Gaussian 
simulations (see Section 4.1.1 ). This operation is repeated with 
a hundred noise realizations per simulation, thus producing 5000 
power spectra measurements. 

We will use these measurements to compute an empirical covari- 
ance matrix that includes non-Gaussian contributions, and that can 
be compared to our analytical co variance matrix, thus pro viding a 
useful cross-check. 
4.1.3 BUZZARD v2.0 simulations 
The BUZZARD v2.0 simulations are a suite of simulated galaxy 
catalogues built on N -body simulations and designed to match 
important properties of DES Y3 data. These simulations were used 
to validate the configuration space analysis of galaxy lensing and 
galaxy clustering within the DES Y3 analysis and we refer the reader 
to DeRose et al. ( 2022 ) for greater details. 

In brief, the light-cones were obtained by evolving particles initial- 
ized at redshift z = 50 with an optimized version of the GADGET N - 
body code (Springel 2005 ). The lensing fields (convergence, lensing, 
and magnification) were computed by ray tracing the simulations 
with the CALCLENS code (Becker 2013 ), o v er 160 lens planes in 
the redshift range 0 ≤ z ≤ 2.35, and with a resolution of N side = 
8192. The simulations were then populated with source galaxies so 
as to mimic the density, the ellipticity dispersion and photometric 
properties of the DES Y3 sample. The SOMPZ method was applied 
to these mock catalogues so as to divide them into four tomographic 
bins of approximately equal density, thus producing ensemble of 
redshift distributions that were validated against the known true 
redshift distributions (see Myles et al. 2021 , for details). 

We will use sixteen BUZZARD simulations to perform an end- 
to-end validation of our measurement and inference pipelines in 
Section 4.4.2 . It is worth noting that these simulations do not 
incorporate the effects of massive neutrinos on the matter power 
spectrum, nor those imparted to intrinsic alignments. When analysing 
these simulations, we will therefore fix the total mass of neutrinos to 
zero, and assume null fiducial values of the IA parameters (though 
they will be varied with the same flat priors). 
4.2 Validation of power spectrum measurements 
In this section, we study the potential contamination of the signal with 
two measurements. First, we verify that the B -mode component of the 
power spectra is consistent with the null hypothesis of no B mode, as 
any cosmological or astrophysical source of B mode is expected to be 
very small. Secondly, we estimate the contamination of the signal by 
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Figure 8. EB and BB cosmic shear power spectra measured with DES Y3 data for each pair of tomographic bins in the lower triangle, and the entire sample in 
the upper right panel (note that the EB and BE power spectra are different only for cross-redshift bin spectra). Error bars are computed from 10 000 Gaussian 
simulations using the DES Y3 catalog ellipticities and positions, as explained in Section 4.1.1 . We find a χ2 of 344.0 for 320 degrees of freedom for tomographic 
B -mode power spectra, corresponding to a probability-to-exceed of 0.17. We find a χ2 of 535.4 for 512 degrees of freedom for EB tomographic cross-power 
spectra (counting all 16 independent bin pairs), corresponding to a probability-to-exceed of 0.23. Individual χ2 are reported for each redshift bin pairs in the 
corresponding panels. In the non-tomographic case, we find, for the B -mode power spectrum, a χ2 of 40.0 for 32 degrees of freedom, corresponding to a 
probability-to-exceed of 0.16. 
the PSF, which, if incorrectly modelled, would leak into the estimated 
cosmic shear E -mode spectra, and therefore bias cosmology. 
4.2.1 B modes 
As mentioned in Section 3.1 , gravitational lensing does not produce 
B modes, to first order in the shear field and under the Born 
approximation, i.e. when the signal is integrated along the line of 
sight instead of following distorted photon trajectories. Second- 
and higher-order effects as well as source clustering and intrinsic 
alignments are expected to produce non-zero, but very small B 
modes. Ho we ver, the contamination of the ellipticities by various 
systematic effects, first and foremost by errors in the PSF model, are 
expected to produce much larger B modes in practice. Indeed, the 
PSF does not possess the same symmetries as cosmological lensing, 
and its E - and B -mode spectra are almost identical. Therefore, any 
leakage due to a mis-estimation of the PSF could induce B modes 
in galaxy ellipticities. As a consequence, measuring B modes in the 
estimated shear maps and verifying that they are consistent with a 
non-detection (or pure shape-noise) constitutes a non-sufficient but 
nevertheless useful test of systematic effects (Becker & Rozo 2016 ; 
Asgari et al. 2017 ; Asgari et al. 2019 ; Asgari & Heymans 2019 ). 

Fig. 8 shows measurements of the tomographic B -mode power 
spectra in blue for DES Y3 data. We use 10 000 Gaussian simulations 
presented in Section 4.1.1 to compute the covariance matrix (we 
hav e v erified conv ergence) and obtain a total χ2 , for the stacked 
data vector of B -mode spectra, of 344.0 for 320 degrees of freedom, 
corresponding to a probability-to-exceed of 0.17. This is consistent 
with the null hypothesis of no B modes. In addition, we show EB 
cross-spectra in Fig. 8 for completeness, finding a χ2 of 535.4 for 
512 degrees of freedom, and a probability-to-exceed of 0.23. We 
also show, for completeness, measurements of the non-tomographic 
B -mode power spectrum, already presented in Gatti et al. ( 2021c ). 
In this case, we find a χ2 of 40.0 for 32 degrees of freedom and 
a probability-to-exceed of 0.16. Note that Gatti et al. ( 2021c ) also 
included a test where the galaxy sample was split in three bins, as a 
function of the PSF size at the positions of the galaxies, and found 
agreement with the hypothesis of no B mode. 
4.2.2 Point spread function 
Jarvis et al. ( 2021 ) introduced the new software PIFF to model the 
point spread function (PSF) of DES Y3 data, using interpolation in 
sky coordinates with improved astrometric solutions. Although the 
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impact of the PSF on DES Y3 shapes and real-space shear two-point 
functions was already investigated in Gatti et al. ( 2021c ) and Amon 
et al. ( 2022 ), we investigate PSF contamination in harmonic space 
as the leakage of PSF residuals might differ from those in real space. 
We do so by measuring ρ-statistics (Rowe 2010 ) in harmonic space 
and estimate the potential level of contamination of the data vector. 

Our detailed results are presented in Appendix A . We conclude 
that we find no significant contamination and that the residual 
contamination has negligible impact on cosmological constraints. 
4.3 Validation of the co v ariance matrix 
We compare the fiducial covariance matrix to the covariances 
estimated from Gaussian simulations described in Section 4.1.1 as 
well as the DARKGRIDV1 simulations described in Section 4.1.2 . 

The middle left panel of Fig. 6 shows the ratios of the square- 
root of the diagonals of those covariance matrices. When compared 
to the covariance estimated from Gaussian simulations, we find 
excellent agreement, at the 5 per cent level across all scales and 
redshift bin pairs. Our fiducial, semi-analytical covariance predicts 
only slightly larger error bars, at the 2–3 per cent level. We also 
find very good agreement with the covariance matrix computed 
from DARKGRIDV1 simulations, with the fiducial covariance matrix 
showing smaller error bars, at the 15 per cent level, for the largest 
scales only. This small discrepancy may be attributed to the limited 
number of simulations (fewer large-scale modes to average over) 
and/or the replication scheme that is used to build density shells. 
For both sets of simulations, we also compared diagonals of the 
off-diagonal blocks (i.e. the terms cov ( C ab 

! , C cd ! ′ ) with ab -= cd but 
! = ! ′ ) and found good agreement, up to the uncertainty due to the 
finite number of simulations. Finally, we verified that replacing the 
analytical covariance matrix by the D ARKGRID V1 covariance matrix 
has negligible impact on cosmological constraints inferred from the 
fiducial data vector (shifts below 0.1 σ ), as shown in Appendix C1 . 
4.4 Validation of the robustness of the models 
In this section, we demonstrate the robustness of our modelling using 
synthetic data in Section 4.4.1 , and using BUZZARD simulations in 
Section 4.4.2 . 
4.4.1 Validation with synthetic data 
Our fiducial scale cuts, as explained in Section 3.5.1 , are constructed 
in such a way as to minimize the impact on cosmology from uncer- 
tainties in the small-scale matter power spectrum due to baryonic 
feedback, as shown in Fig. 7 . 

We further test the robustness of our fiducial model, based on 
HALOFIT , by testing other prescriptions for the non-linear matter 
power spectrum. To do so, we compare constraints, inferred with the 
same model, but for different synthetic data vectors computed (i) with 
HALOFIT , (ii) with HMCODE with dark matter only (i.e. using A HM = 
3.13), and (iii) with the EUCLID EMULATOR (Euclid Collaboration 
2019 ). These data vectors are compared in Fig. 5 and the constraints 
are shown in Fig. B1 , which shows that contours are shifted by less 
than 0.3 σ in the ( S 8 , #m ) plane. 

We also aim at constraining the effect of baryonic feedback using 
alternative scale cuts based on a k max cut-off in Fourier space, as 
explained in Section 3.5.2 . In order to validate the robustness of 
this alternative model, we follow a similar approach and consider 
predictions for the shear power spectra from four hydrodynamical 

simulations (Illustris, OWLS AGN, Horizon AGN, and Massive- 
Black II), as shown in Fig. 5 . We then build corresponding data 
vectors using HALOFIT and a rescaling of the matter power spectrum, 
as in equation ( 25 ). Next, we analyse those data vectors using (i) the 
true model considered here (i.e. HALOFIT and rescaling), and then (ii) 
HMCODE with one free parameter. We finally test whether the ( S 8 , 
#m ) best-fitting parameters for the true model are within the 0.3 σ
contours of the posterior assuming HMCODE . 

When varying only A HM , we do find that this test passes for 
k max = 1, 3, and 5 h Mpc −1 with biases of 0.22 σ at most (and 
typically 0.1 σ ), even though the inferred A HM parameter largely 
varies across simulations (we find posterior means of 2.2, 2.7, 3.4, and 
3.6 for Illustris, OWLS AGN, Horizon AGN, and MassiveBlack II, 
respectively). This means that biases introduced by HMCODE , if any, 
are not worse than potential projection effects found when using 
the true model, all of which are found to be below the level of 
0.3 σ . In addition, this also means that HMCODE allows us to properly 
marginalize cosmological constraints o v er uncertainties in baryonic 
feedback. 
4.4.2 Validation with Buzzard simulations 
In this section, we use Buzzard simulations (see Section 4.1.3 ) to 
validate our measurement and analysis pipelines together. Precisely, 
we verify that (i) we are able to recover the true cosmology used 
when generating Buzzard simulations and (ii) the model yields a 
reasonable fit to the measured shear spectra. 

We start by measuring cosmic shear power spectra and verify that 
the mean measurement (not shown) is consistent with the theoretical 
prediction from our fiducial model at the Buzzard cosmology, 
using the true Buzzard redshift distributions, and with a covariance 
recomputed with these inputs. 

We then run our inference pipeline on the mean data vector, 
first with the covariance corresponding to a single realization, and 
then with a covariance rescaled by a factor of 1/16, to reflect the 
uncertainty on the average of the measurements. The first case is 
testing whether we can reco v er the true cosmology on average, while 
the second is a stringent test of the accuracy of the model, given that 
error bars are divided by √ 

16 = 4 with respect to observations with 
the DES Y3 statistical power. For these tests, the priors on shear 
and redshift biases are centered at zero, with a standard deviation of 
0.005. 

The 68 and 95 per cent confidence contours are shown in Fig. 9 for 
both covariances, using the fiducial χ2 < 1 scale cuts. We only show 
the contours for the best constrained parameters ( #m , σ 8 , and S 8 ) but 
we verified that the true cosmology is reco v ered in the full parameter 
space. We find that it is perfectly reco v ered in the first case and 
within 1 σ contours in the second case, consistent with fluctuations 
on the mean Buzzard data vector. We find that the ef fecti ve number 
of constrained parameters is N eff ≈ 7.8 in the first case, whereas, in 
the second case, we find N eff ≈ 9.6 (recall we fix the neutrino mass 
to zero for tests on Buzzard, so N param = 18 here). In the second test, 
we find that χ2 = 139.4 at the best-fitting parameters (maximum a 
posteriori) for N = 119 data points, and N − N eff degrees of freedom, 
such that the best-fitting χ2 corresponds to a probability-to-exceed 
of 2.7 per cent. For k max cuts, we also reco v er the input cosmology 
within error bars and find χ2 /( N − N eff ) of 98.4/61.7, 191.6/146.1, and 
254.5/217.8, respectively, for k max of 1, 3, and 5 h Mpc −1 (although 
note we will not use this combination of model and scale cuts on 
data). Together, these tests suggest that the accuracy of our fiducial 
model exceeds that required by the statistical power of DES Y3 data. 
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Figure 9. Validation of the analysis framework with Buzzard simulations. 
We show the 1D and 2D marginal posterior distributions corresponding to 
the mean Buzzard data vector with the data covariance (black) and the same 
covariance rescaled by a factor 1/16 (blue). The posteriors obtained for each 
realization are shown in yellow to red. 

We then run our inference pipeline on each realization to visualize 
the scatter in the posteriors due to statistical fluctuations. This e x er- 
cise allows us to verify that the model does not feature catastrophic 
de generacies that hav e the potential to bias the marginal posterior 
distributions o v er cosmological parameters, in particular in the ( S 8 , 
#m ) plane. The contours are shown in Fig. 9 , along with the contours 
obtained from the mean Buzzard data vector. We also compute the 
χ2 at best fit for each realization and find that the distribution is 
perfectly consistent with a χ2 distribution with N − N eff degrees of 
freedom, where we find N eff ≈ 7.8(2) in these cases. 
5  B L I N D I N G  
We follow a blinding procedure, decided beforehand, that is meant 
to prevent confirmation and observer biases, as well as fine tuning 
of analysis choices based on cosmological information from the 
data itself. After performing sanity checks of our measurement and 
modelling pipelines that only drew from the data basic properties 
such as its footprint and noise properties, we proceeded to unblind 
our results in three successive stages as described below. It is worth 
noting, though, that as this work follows the real space analysis of 
Amon et al. ( 2022 ) and Secco et al. ( 2022 ), the blinding procedure 
is meant to validate the components of the analysis that are different, 
such as the cosmic shear power spectrum measurements, the scale 
cuts, and the covariance matrix. 

Stage 1. The shape catalogue was blinded by a random rescaling of 
the measured conformal shears of galaxies, as detailed in Gatti et al. 
( 2021c ). This step preserves the statistical properties of systematic 
tests while shifting the inferred cosmology. A number of null tests 
were presented in Gatti et al. ( 2021c ) to test for potential additive and 
multiplicative biases before deeming the catalogue as science-ready 

and unblinding it. In the Section 4.2 , we repeated two of these tests 
in harmonic space, namely the test of the presence of B modes and 
the test of the contamination by the PSF. 

Once all these tests had passed, we used the unblinded catalogue 
to measure the shape noise power spectrum and compute the 
Gaussian contribution to the covariance matrix. We then repeated the 
systematic and validation tests, in particular those based on Gaussian 
simulations where shape noise is inferred from the data. 

Stage 2. Using the updated covariance matrix, we proceeded to 
validate analysis choices with synthetic data. We first determined 
fiducial scale cuts based on the requirement that baryonic feedback 
effects do not bias cosmology at a level greater than 0.3 σ , as 
detailed in Section 3.5.1 . We then verified that baryonic effects as 
predicted from a range of hydrodynamical simulations do not bias 
cosmology for alternative scale cuts, provided that HMCODE (with a 
free baryonic amplitude parameter) is used instead of HALOFIT , as 
detailed in Section 4.4.1 . Finally, we verified that effects that are not 
accounted for in the model do not bias cosmology, e.g. PSF residual 
contamination in Appendix A , and higher order lensing effects and 
uncertainties in the matter power spectrum using the N -body Buzzard 
simulations in Section 4.4.2 . 

Stage 3. Before unblinding the data vector and cosmological 
constraints, we performed a last series of sanity checks. In particular, 
we verified that the model is a good fit to the data by asserting that the 
χ2 statistic at the best-fitting parameters corresponds to a probability- 
to-e xceed abo v e 1 per cent. We found that the best-fit χ2 is 129.3 for 
119 data points and N eff ≈ 5.6 constrained parameters, corresponding 
to a probability-to-exceed of 14.6 per cent. We also verified that the 
marginal posteriors of nuisance parameters were consistent with their 
priors. Finally, we performed two sets of internal consistency tests, in 
parameter space and in data space. For the tests in parameter space, 
we compared, with blinded axes, constraints for ( S 8 , #m ) from the 
fiducial data vector with constraints from subsets of the data vector, 
first removing one redshift bin at a time, and then removing large or 
small angular scales, as detailed in items a and b of Appendix C1 . 
The tests in data space, presented in Appendix C2 , are based on the 
posterior predictive distribution (PPD), and follow the methodology 
presented in Doux et al. ( 2020 ). The PPD goodness-of-fit test yields 
a calibrated probability-to-exceed of 11.6 per cent. These tests are 
detailed in Appendix C , along with other post-unblinding internal 
consistency tests. 

After this series of tests all passed, we plotted the data and 
compared it to the best-fitting model, as shown in Fig. 4 , and finally 
unblinded the cosmological constraints, presented in the next section. 
6  C O S M O L O G I C A L  C O N S T R A I N T S  
This section presents our main results. We use measurements of 
cosmic shear power spectra from DES Y3 data to constrain the 
) CDM model in Section 6.1 . We then e xplore alternativ e analysis 
choices to constrain intrinsic alignments in Section 6.2 and baryonic 
feedback in Section 6.3 . We compare our results to other weak 
lensing analyses of DES Y3 data in Section 6.4 , namely the comic 
shear two-point functions (Amon et al. 2022 ; Secco et al. 2022 ), 
convergence peaks and power spectra (Z ̈urcher et al. 2022 ) and 
convergence second- and third-order moments (Gatti et al. 2021b ), 
and to weak lensing analyses from the KiDS and HSC collaborations 
in Section 6.5 . Finally, as an illustrative exercise, we reconstruct the 
matter power spectrum from DES Y3 cosmic shear power spectra 
using the method of Tegmark & Zaldarriaga ( 2002 ) in Section 6.6 . A 
number of internal consistency tests are also presented in Appendix C 
and the full posterior distribution is shown in Appendix D . 
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Figure 10. Cosmological constraints on the amplitude of structure σ 8 , the 
total matter density #m and their combination S 8 ≡ σ8 √ 

#m / 0 . 3 . The inner 
(outer) contours show 68 per cent (95 per cent) confidence regions. Con- 
straints from DES Y3 cosmic shear power spectra with the two sets of fiducial 
scale cuts are shown in blue, with (solid) and without (dashed) shear ratios 
(S ́anchez et al. 2021 ). Constraints obtained from Planck 2018 measurements 
of cosmic microwave background temperature and polarization anisotropies 
are shown in yellow (Planck Collaboration VI 2020 ). 

Note that, for all the constraints that are presented in the following 
sections, we have recomputed the ef fecti ve number of constrained 
parameters and verified that the χ2 statistic at best fit corresponds to 
a probability-to-exceed above 1 per cent. 
6.1 Constraints on # CDM 
We present here our constraints on ) CDM assuming the fiducial 
model presented in Section 3.2 , that is, using HALOFIT for the matter 
power spectrum and TATT for intrinsic alignments. Constraints are 
shown in blue in Fig. 10 and compared to constraints from Planck 
2018 measurements of cosmic microwave background temperature 
and polarization anisotropies ( Planck 2018 TT + TE + EE + lowE, 
Planck Collaboration VI 2020 ), in yellow. The 1D marginal con- 
straints are also shown in Fig. 11 along with constraints for all 
variations of the analysis, and the full posterior is shown in Fig. D1 . 
Using only shear power spectra (i.e. no shear ratio information), we 
find 
#m = 0 . 260 + 0 . 035 

−0 . 057 (0 . 242) , [ C ! TATT] 
σ8 = 0 . 863 ± 0 . 096 (0 . 902) , [ C ! TATT] 
S 8 = 0 . 793 + 0 . 038 

−0 . 025 (0 . 810) , [ C ! TATT] , 
where we report the mean, the 68 per cent confidence intervals of 
the posterior, and the best-fitting parameter values, i.e. the mode 
of the posterior, in parenthesis. The corresponding theoretical shear 
power spectra are shown in Fig. 4 , showing good agreement with 
data, consistent with the χ2 at best fit of 129.3. The best constrained 
combination of parameters σ 8 ( #m /0.3) α , inferred from a principal 
component analysis, is given by 
σ8 ( #m / 0 . 3) 0 . 595 = 0 . 781 ± 0 . 032 (0 . 794) . [ C ! TATT] . 

We also compute the KL decomposition to quantify the impro v ement 
of the posterior with respect to the prior using tensiometer (see 
Section 3.6 ). We find that the KL mode that is best constrained by the 
data corresponds to α = 0.521, which is remarkably close to the S 8 
( α = 0.5) parameter theoretically inferred in Jain & Seljak ( 1997 ). A 
visualization of the KL decomposition is also given in Appendix D . 

We then include shear ratio information (S ́anchez et al. 2021 ) to 
further reduce the uncertainty on S 8 , as shown by the filled contours 
in Fig. 10 . We find this addition impro v es constraints on S 8 by about 
18 per cent and yields a more symmetric marginal posterior, with 

S 8 = 0 . 784 ± 0 . 026 (0 . 798) , [ C ! +SR TATT] 
σ8 ( #m / 0 . 3) 0 . 598 = 0 . 783 ± 0 . 021 (0 . 788) . [ C ! +SR TATT] . 
This additional data noticeably remo v es part of the lower tail in S 8 , 
which is due to a de generac y with IA parameters, as will be seen in 
Section 6.2 , and also impro v es constraints on redshift distributions 
uncertainties by 10–30 per cent. The volume of the 2D marginal 
( S 8 , #m ) posterior, as approximated from the sample covariance, is 
reduced by about 20 per cent when including shear ratios. 

In comparison to constraints from Planck 2018, we find a lower 
amplitude of structure S 8 . We estimate the tension with the parameter 
shift probability metric using the tensiometer package, which 
accounts for the non-Gaussianity of the posterior distributions 
(Raveri & Doux 2021 ), and find tensions of about 1.4 σ and 1.5 σ
with and without shear ratios, respectively. 

Finally, we note that DES Y3 shear data alone is not able to 
constrain the dark energy equation-of-state w. We find that the 
evidence ratio between wCDM and ) CDM is R w/ ) = 0.68(18), 
which is inconclusive, based on the Jeffreys scale. We thus find no 
evidence of a departure from ) CDM, consistent with Amon et al. 
( 2022 ) and Secco et al. ( 2022 ). 
6.2 Constraints on intrinsic alignments 
In this section, we focus on constraints on intrinsic alignments (IA) 
and explore the robustness of cosmological constraints with respect 
to the IA model. 

The fiducial model, TATT, accounts for the possibility of tidal 
torquing and has five free parameters in the DES Y3 implementation 
(see Table 1 ). Fig. 12 shows constraints on the amplitude parameters 
for the tidal alignment and tidal torquing components. As stated in 
Blazek et al. ( 2019 ), the II component of the TATT model, which 
is found to dominate o v er the GI and IG components (see fig. 16 of 
Secco et al. 2022 ), receives contributions that are proportional to A 2 TA , 
A 2 TT , and A TA A TT . There is therefore a partial sign de generac y be- 
tween those parameters, which can be observed in the corresponding 
panel of Fig. 12 . We then find that including shear ratios significantly 
reduces the marginal ( A TA , A TT ) posterior volume by a factor of about 
3, which in turn impro v es cosmological constraints, as reported in 
the previous section. In this case, we obtain 
A TA = −0 . 14 ± 0 . 43 ( −0 . 398) , [ C ! +SR TATT] 
A TT = 0 . 4 ± 1 . 1 (1 . 714) . [ C ! +SR TATT] . 
These constraints alone do not exclude zero, potentially due to the 
aforementioned sign de generac y. If we restrict the prior to A TA > 
0, we find A TA = 0 . 30 + 0 . 12 

−0 . 30 and A TT = −0 . 69 + 0 . 83 
−0 . 43 , with essentially 

unchanged cosmological constraints. We do not show constraints on 
the redshift tilt parameters αTA and αTT , which are unconstrained 
by the data (which might be due to amplitude parameters being 
consistent with zero). 
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Figure 11. Comparison of 1D marginal posterior distributions o v er the parameters S 8 ≡ σ 8 ( #m /0.3) 0.5 , σ 8 and #m , from DES Y3 data as well as other 
e xperiments, and consistenc y tests for this work (in blue). (a) Constraints obtained from the harmonic (this work) and real (Amon et al. 2022 ; Secco et al. 2022 ) 
space analyses of DES Y3 data are shown in blue and green (see also Fig. 14 ), both with and without shear ratio information (SR; S ́anchez et al. 2021 ). (b) 
Constraints from other weak lensing surv e ys, namely HSC Y1 (Hikage et al. 2019 ; Hamana et al. 2020 , 2022b ), KiDS-1000 (Asgari et al. 2021 ), and KiDS-450 
(Hildebrandt et al. 2017 ; K ̈ohlinger et al. 2017 ) are shown in grey, and constraints from cosmic microwave background observations from Planck 2018 are 
shown in yellow (Planck Collaboration VI 2020 ). (c) Constraints from four weak lensing analyses of DES Y3 data are compared, including the analysis of mass 
map moments (Gatti et al. 2021b ) and peaks (Z ̈urcher et al. 2022 ), and illustrating a high level of consistency (see also Fig. 15 ). (d) Consistency tests where 
redshift bins are remo v ed one at a time (first four) and where the data vector is split into its large- and small-scale data points (last two) (see also Appendix C ). 
(e) Various other consistency tests: removing autopower spectra, swapping the covariance matrix, and marginalizing o v er redshift distribution uncertainties with 
HYPERRANK and MULTIRANK (see also Appendix C ). (f) Modelling robustness test for intrinsic alignment (IA), including B -mode power spectra, or replacing 
TATT by NLA, or removing IA contributions altogether (see also Section 6.2 , Fig. 12 ). (g) Other robustness test, freeing the dark energy equation-of-state w or 
fixing the neutrino mass to 0.06 eV. (h) Baryonic feedback tests where the matter power spectrum is computed with HMCODE instead of HALOFIT , and fiducial 
scale cuts are replaced with k max = 1, 3, and 5 h Mpc −1 scale cuts (see also Section 6.3 and Fig. 13 ). 

We also report constraints on the NLA model in Fig. 12 , a subset 
of TATT where A TT = b TA = 0, which is not excluded by the data. We 
exclude shear ratio information here, so as to compare constraints 
obtained with shear power spectra alone (TATT constraints are shown 
by dashed lines in Fig. 12 ). Because of the complex degeneracy 
between S 8 and A TT , visible in Fig. 12 , fixing the tidal torquing 
component to zero results in cosmological constraints that are 
impro v ed by about 27 per cent on S 8 , and which are found to be 
consistent with the TATT case. Assuming the NLA model, we find 

S 8 = 0 . 810 ± 0 . 023 (0 . 834) , [ C ! NLA] 
A TA = 0 . 40 ± 0 . 51 (0 . 701) , [ C ! NLA] , 

i.e. a slightly larger value of S 8 , albeit within uncertainties of the 
fiducial model. Finally, we note that removing IA contributions 
altogether further impro v es the constraint on S 8 by about 16 per cent, 
yielding 
S 8 = 0 . 801 + 0 . 021 

−0 . 018 (0 . 836) , [ C ! no IA] , 
also consistent with the NLA and TATT cases. 

In terms of model selection, we find that going from no IA to 
NLA, and then from NLA to TATT impro v es fits by (χ2 = −0.3 
and (χ2 = −1.1, respectively, while introducing two and three more 
parameters. The evidence ratios are given by R NLA/TATT = 3.59(93), 
R noIA/TATT = 17.5(43), and R noIA/NLA = 4.88(11), marking a weak 
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Figure 12. Constraints on cosmological and intrinsic alignment (IA) param- 
eters from DES Y3 cosmic shear power spectra. The three colours refer to 
the assumed IA model: TATT in blue, NLA in orange, and no IA in red. The 
filled blue contours include information from shear ratios while the dashed 
ones do not. Shear ratios are not included for the NLA and no IA models. 
preference for NLA o v er TATT, but a substantial preference for no 
IA o v er TATT, according to the Jeffre ys scale. 

Cosmic shear analyses in harmonic space usually only exploit 
the E mode part of the po wer spectrum. Ho we ver, as detailed in 
Section 3.2.3 , tidal torquing generates a small B -mode signal, which 
may at least be constrained by our B -mode data. We validated 
our analysis pipeline by checking that (i) the E -to- B -mode leakage 
measured in our Gaussian simulations (see Section 4.1.1 ) is con- 
sistent with expectations from mixing matrices, (ii) we do reco v er 
correct IA parameters, with tighter constraints, for synthetic data 
vectors for different values of the IA parameters (including non- 
zero A TT ). We obtain constraints that are consistent for cosmological 
parameters inferred without B -mode data. Ho we v er, the y seem to 
strongly prefer non-zero A TT , and are not consistent across redshift 
bins. This preference is indeed entirely supported by bin pairs 3,3 an 
3,4, that have the highest χ2 with respect to no B mode, as shown in 
Fig. 8 . Including B -mode data and freeing TATT parameters, the χ2 
for those bins are reduced by 13.5 and 17.4, respectively, while all 
other bin pairs are unaffected ( χ2 changed by less than 1). Indeed, 
we find that removing bin 3 entirely makes the preference for non- 
zero A TT disappear, with very small impact on the cosmology. We 
obtain very similar results when including shear ratios. We conclude 
from this experiment that DES Y3 data is not able to constrain the 
contribution of tidal torquing to the TATT model efficiently, leading 
to the model picking up potential flukes in the B -mode data, which 
has been verified to be globally consistent with no B modes. Future 
data will place stronger constraints on B modes and its potential 
cosmological sources. 
6.3 Constraints on baryons 
We now turn our attention towards baryonic feedback. Our fiducial 
analysis discards scales where baryonic feedback is expected to 

Figure 13. Constraints on cosmological and baryonic feedback parameters 
from DES Y3 cosmic shear power spectra. In blue, we show constraints for 
the fiducial model, i.e. using HALOFIT . In orange to red, we show constraints 
using HMCODE with one free parameter, while varying the k max cut-off from 
1 to 5 h Mpc −1 (see Fig. 4 ). We also show, with dashed lines, the constraints 
for the fiducial HALOFIT model and the k max = 1 h Mpc −1 cut, which is even 
more conserv ati ve than our fiducial (χ2 = 1 cut. Note that all constraints 
shown here use TATT to model intrinsic alignments and none include shear 
ratio information. 
impact the shear po wer spectrum. Ho we v er, we hav e shown in 
Section 4.4.1 that HMCODE provides a model that is both accurate 
and flexible enough for our analysis, for scale cuts with k max in the 
range 1–5 h Mpc −1 . 

Fig. 13 shows constraints obtained assuming HMCODE with one 
free parameter, for varying scale cuts, as well as a comparison to 
the fiducial HALOFIT model. We find cosmological constraints to be 
robust to the choice of k max , with de viations belo w 0.5 σ . In particular, 
in Fig. 13 we show contours for both models for k max = 1 h Mpc −1 , 
which is more conserv ati ve than our fiducial (χ2 = 1 scale cut, and 
find very good agreement. We then find that extra data points included 
when raising k max from 1 to 5 h Mpc −1 (71–228) do constrain the 
HMCODE baryonic feedback parameter A HM , but have a relatively little 
impact on cosmological constraints, both in position and width. In 
other words, given our current error bars, cosmological information 
at small scales is partially lost by marginalizing o v er uncertainties in 
the baryonic feedback model. For the k max = 5 h Mpc −1 cut, we find 
χ2 = 235.2 ( p = 0.25) at best fit, and constraints given by 
#m = 0 . 297 + 0 . 043 

−0 . 071 (0 . 246) , [ C ! HMCODE TATT] 
S 8 = 0 . 769 + 0 . 037 

−0 . 026 (0 . 762) , [ C ! HMCODE TATT] 
A HM = 3 . 52 + 0 . 94 

−1 . 2 (1 . 620) . [ C ! HMCODE TATT] . 
This is in good agreement with cosmological constraints reported 
for the HALOFIT model in Section 6.1 , although this model does 
fa v our slightly lower S 8 and σ 8 values, and a higher #m value, which 
happens to be closer to the Planck value, as seen in Fig. 11 . As a 
consequence, the tension with Planck rises to 1.7 σ in this case. The 
corresponding best-fitting model is represented by dashed lines in 
Fig. 4 , where we observe that, on large scales, i.e. for multipoles 
below the fiducial scale cuts, both models agree very well. Ho we ver, 
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Figure 14. Comparison of cosmological constraints obtained from the 
analysis of cosmic shear two-point functions of DES Y3 data in real (in 
green, Amon et al. 2022 ; Secco et al. 2022 ) and harmonic space (in blue, this 
work). Solid contours indicate constraints that include shear ratio information 
S ́anchez et al. ( 2021 ). We find ( S 8 = 0.025, with shear ratios, consistent with 
the expected statistical scatter σ ( ( S 8 ) ∼ 0.02 predicted in Doux et al. ( 2021 ). 
on smaller scales, HMCODE yields shear power spectra 10–20 per cent 
lower, which, visually, seems to provide a better fit to data (again, 
those scales are excluded in the fiducial model). 

When using HMCODE with two free parameters, we find that the 
constraining power is entirely transferred to the second parame- 
ter, ηHM , with very little impact on cosmological constraints. For 
k max = 5 h Mpc −1 , we find ηHM = 0 . 86 + 0 . 29 

−0 . 35 while A HM is uncon- 
strained. 

The previous constraints are based on our fiducial IA model, TATT. 
Ho we ver, we sho wed in the pre vious section that the NLA model 
seems fa v oured by the data (using evidence ratios). If we use this 
model instead, as done in the KiDS-1000 analysis (Asgari et al. 
2021 ), we find S 8 = 0.790 ± 0.024 and A HM = 3 . 67 + 0 . 71 

−0 . 92 , although 
we note immediately that we have not validated our scale cuts against 
this specific model and that these results should be interpreted with 
caution. 

Our results do not allow exclusion of the dark matter only 
value of A HM = 3.13 in either direction. In comparison to the 
hydrodynamical simulations we used in Section 3.2.4 to validate the 
model, constraints from data are closer to Massive Black II, although 
the uncertainty from shear power spectra alone is too large to discrim- 
inate between baryonic feedback prescriptions. Fig. 13 suggests that 
a better understanding of the effect of baryons on the distribution 
of matter will be an important task in order to be able to capture 
cosmological information at small scales. For the foreseeable future, 
this will likely require cross-correlating shear data with other probes 
that are sensitive to baryons, e.g. Compton- y maps of the thermal 
Sun yaev–Zeldo vich (SZ) effect with CMB maps (see e.g. P ande y 
et al. 2021 ; Gatti et al. 2021a with DES Y3 data and Tr ̈oster et al. 
2021 with KiDS-1000 data) or the kinetic SZ effect (Amodeo et al. 
2021 ; Schaan et al. 2021 ). Another avenue is to exploit information 
from even smaller scales, e.g.using a principal component analysis 
to span a variety of scenarios from hydrodynamical simulations (see 

Figure 15. Comparison of cosmological constraints obtained from the 
analysis of DES Y3 lensing data using four different statistics: shear power 
spectra (this work, in blue), shear two-point functions (Amon et al. 2022 ; 
Secco et al. 2022 , in green), convergence second and third order moments 
(Gatti et al. 2021b , in orange), and convergence peaks and power spectra 
(Z ̈urcher et al. 2022 , in red). For the first two, we have matched the modeling to 
that adopted for the analysis of non-Gaussian convergence statistics, namely 
restricting the intrinsic alignment model to NLA and fixing the total mass 
of neutrinos (see main text for a discussion of possible caveats). These 
constraints are shown by solid contours, whereas constraints obtained with 
the fiducial model are shown by the dashed contours, for reference. None 
of the constraints shown here include shear ratio information. Although the 
comparison requires some care, this figure highlights the o v erall consistenc y 
of DES Y3 lensing data and existing analyses. 

Huang et al. 2019 for the methodology and Huang et al. 2021 for 
an application to DES Y1 data) or a baryonification model (see 
Schneider & Teyssier 2015 ; Schneider et al. 2019 , and Chen et al. 
2022 ). 

6.4 Consistency with other DES Y3 weak lensing analyses 
In this section, we compare our results obtained from cosmic shear 
power spectra to other studies using DES Y3 lensing data, as detailed 
below. We first focus on the comparison with the real-space analysis 
of shear two-point functions presented in Amon et al. ( 2022 ) and 
Secco et al. ( 2022 ). The study presented here is its harmonic space 
counterpart, in the sense that we follow a very similar methodology 
and use the same fiducial model. We then extend the comparison to 
studies that incorporate non-Gaussian information from the DES Y3 
convergence (mass) map (Jeffrey et al. 2021b ), namely the analysis 
of peaks and power spectra from Z ̈urcher et al. ( 2022 ), and the 
analysis of second and third-order moments from Gatti et al. ( 2021b ). 
Figs 14 and 15 show cosmological constraints obtained from those 
studies, which are found to be in very good agreement, illustrating 
the internal consistency of DES Y3 shear analyses. See also Fig. 11 
for a comparisom of all 1D marginal constraints. 
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6.4.1 Real space two-point functions ξ±. 
Fig. 14 shows cosmological constraints obtained from two-point 
functions in real space (Amon et al. 2022 ; Secco et al. 2022 ) and in 
harmonic space (this work), both with and without including shear 
ratio information. We find that both studies yield very consistent 
cosmological constraints, with a preference for slightly higher S 8 
from shear power spectra. However, the difference between the 
means of the posteriors is ( S 8 = 0.031 when excluding shear ratios, 
which is fairly consistent with the expected statistical scatter σ ( ( S 8 ) 
∼ 0.02 predicted 10 in Doux et al. ( 2021 ). In this preparatory study, 
we had shown on simulations that cuts on angular scales, which 
are inevitable in practice, induce a partial loss of information that 
differs for shear power spectra and two-point correlation functions. 
As a consequence, the posterior distributions of the two analyses 
are not expected to perfectly o v erlap. Considering that the observed 
difference ( S 8 is found to be on par with the expected scatter σ ( ( S 8 ), 
we do not deem this difference to be significant. 

The de generac y directions are also found to be slightly different, 
with αC ! = 0 . 595 and αξ± = 0 . 552 for harmonic and real space 
analyses, respectively. When including shear ratios, the difference 
narro ws do wn to ( S 8 = 0.025 and the best constrained direction 
is almost identical, with αC ! = 0 . 598 and αξ± = 0 . 586. As a conse- 
quence of the higher value of S 8 found here, the tension with Planck 
is reduced from 2.3 σ in Amon et al. ( 2022 ) and Secco et al. ( 2022 ) 
to 1.5 σ in this work. 

For IA parameters, we find an overall excellent agreement (not 
shown). Although the real-space analysis shows a weak preference 
for ne gativ e A TA and positiv e A TT , we observ e the same de generac y 
between those parameters, with almost perfect o v erlap. The two 
parameters that describe redshift evolution are unconstrained in both 
cases, but the posteriors are also nearly identical. We also find that 
fixing the IA model to NLA results in a slightly higher value for S 8 . 
6.4.2 Non-Gaussian statistics from mass maps. 
Fig. 15 presents cosmological constraints from all four lensing 
analyses. Due to difficulties in modelling non-Gaussian statistics, 
both analyses of moments and peaks (Gatti et al. 2021b ; Z ̈urcher 
et al. 2022 ) include IA contributions using a model based on NLA, 
and both fix the total mass of neutrinos to the minimum value of 
0.06 eV. In order to make the comparison more meaningful, we 
therefore re-analyse shear two-point functions and power spectra 
with these two changes, which tends to fa v our slightly higher values 
of S 8 (either change individually also goes in this direction). We 
warn the reader that (i) despite matching important modeling choices, 
there remain differences in the analysis in terms of priors, modeling 
pipeline technology (e.g. Z ̈urcher et al. 2022 uses an emulator) and 
methodology, and (ii) the scale cuts used for two-point functions 
were not validated for this specific model, and should be interpreted 
with caution. Nevertheless, this figure illustrates the high level of 
consistency of these analyses – all of which followed a similar 
blinding procedure – and of DES Y3 lensing data. 
6.5 Comparison with other lensing sur v eys 
In the past two years, both the HSC and KiDS collaborations have 
presented cosmic shear analyses of their data in harmonic and real 
space. Fig. 16 compares constraints obtained from DES Y3 data to 
10 Note that this prediction depends strongly on the two sets of scale cuts and 
the surv e y configuration. 

Figure 16. Comparison of cosmological constraints from the analysis of 
cosmic shear in harmonic (filled contours) and real space (contour lines) for 
DES Y3 (this work in blue, Amon et al. 2022 ; Secco, Samuroff et al. 2022 in 
green), HSC Y1 (Hikage et al. 2019 ; Hamana et al. 2020 , 2022b , in yellow) 
and KiDS-1000 (Asgari et al. 2021 , in red). We note that these results rely on 
different analysis and modelling choices. 
those obtained from KiDS-1000 (Asgari et al. 2021 ) and HSC Y1 
(Hikage et al. 2019 ; Hamana et al. 2020 , 2022b ). Uni-dimensional 
marginal distributions are also shown in Fig. 11 . As shown in Doux 
et al. ( 2021 ) on simulations, statistical fluctuations are not expected to 
bias one estimator o v er the other and shift constraints in any specific 
direction, while unmodelled systematic effects might. We do not find 
any clear trend here. 

Both KiDS-1000 and HSC analyses use NLA to model intrinsic 
alignments with fixed neutrino masses. Ho we ver, we decide to 
present constraints that were obtained from the fiducial models 
assumed by each collaboration for simplicity. We also note that 
the KiDS-1000 analysis uses a ‘bandpowers’ estimator of shear 
power spectra that stems from an original measurement of two- 
point functions in real space with a thin spacing. A recent analysis 
(Loureiro et al. 2021 ) applying a pseudo- C ! estimator found very 
similar constraints on S 8 = 0 . 754 + 0 . 027 

−0 . 029 between the bandpowers and 
pseudo- C ! estimators, despite appreciable differences in the intrinsic 
alignment parameter, likely due to how the two estimator cut large- 
scale information. Ignoring potential correlations due to o v erlapping 
surv e y areas, we find our results to be in agreement at the 0.7 σ and 
0.4 σ levels with KiDS-1000 bandpowers and HSC Y1 C ! analyses. 
Finally, we find good agreement on the IA parameter A TA (not 
shown), although constraints remain broad for all three surv e ys. 
6.6 Reconstruction of the matter power spectrum 
In this section, we apply the method of Tegmark & Zaldarriaga 
( 2002 ) to approximately reconstruct the linear matter power spectrum 
at present time, P ( k ), from DES Y3 shear power spectra. We 
immediately note that this e x ercise is strongly model dependent, 
in that it requires to assume a full cosmological model to relate shear 
power spectra to the matter power spectrum. Moreo v er, it presents 
subtleties in relating physical scales between the linear and non-linear 
power spectra, as discussed in Tegmark & Zaldarriaga ( 2002 ), and we 
will employ a simplified approach presented in the next paragraph. 
Nevertheless, assuming the Planck 2018 cosmology (Planck Collab- 
oration VI 2020 ), we may compare the power spectrum reconstructed 
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from DES Y3 data to the expectation from Planck , which is rele v ant 
in the context of the σ 8 tension found in previous weak lensing 
surv e ys (Hikage et al. 2019 ; Hamana et al. 2020 , 2022b ; Asgari et al. 
2021 ; Amon et al. 2022 ; Secco et al. 2022 ), and that we also observe 
in Fig. 10 . 

To do so, we recast equation ( 22 ) as an inte gral o v er three- 
dimensional Fourier k modes, using the change of variable k = ( ! + 
1/2)/ χ ( z). We then define a window matrix, W , such that the expected 
value of our data vector, 〈 ̂  C L 〉 , may be expressed as a function of the 
linear matter power spectrum at z = 0, P ( k ), computed in log-spaced 
k -bins of width ( ln k , P , such that 
〈 ̂  C L 〉 ≈ W P . (31) 
This window matrix is given, for the element corresponding to k and 
C ab 

L , and ignoring intrinsic alignments, by 
W k,L,a,b ≈ k( ln k ( L + 1 / 2) q a ( χ ) q b ( χ ) P NL ( k, z( χ )) 

P fid ( k) (32) 
with χ = ( L + 1/2)/ k . Given the data covariance C , the reconstructed 
power spectrum has estimated value and covariance given by 
ˆ P = S W T  C −1 ̂  C L , (33) 
S = [ W T C −1 W + σ−2 I ] −1 , (34) 
where we have included a regularization term, σ , which enables 
inverting equation ( 31 ) at the price of accepting that certain k -modes 
may not be reco v ered from the data (the results have very low 
dependence on σ , if chosen large enough, in the range where the 
data is constraining). To ensure numerical stability, we use 20 bins 
in the range k ∼ 1 × 10 −3 –1 × 10 2 h Mpc −1 , and subsequently rebin 
the estimated power spectrum within 10 bins for better visualization 
as well as to suppress the anticorrelation of adjacent bins. The 
simplification here comes from equation ( 32 ), where the dependence 
on the linear matter power spectrum is made explicit by simply 
multiplying the numerator and denominator by P fid ( k ), the power 
spectrum at redshift zero for the fiducial Planck 2018 cosmology. 
Our e x ercise therefore amounts to a reconstruction of the integrand 
o v er ln k with respect to what is expected from Planck , rather than a 
reconstruction of the linear matter power spectrum itself. 

The result is shown in Fig. 17 . The lower panel shows the 
reconstructed, binned ratio of the power spectrum with respect 
to the prediction from Planck 2018 (in blue), compared to the 
results obtained from simulated DES Y3 data vectors generated by 
sampling the likelihood at the Planck 2018 cosmology (in grey). In 
the upper panel, we multiply these ratios by the fiducial linear power 
spectrum, shown in black. We find that the reconstructed spectrum is 
roughly 20 per cent lower than the prediction in the range k ∼ 0 . 03 –
1 h Mpc −1 that is constrained by DES Y3 data. In particular, the 
reconstruction is about 2 σ low around k ∼ 0 . 3 h Mpc −1 , which 
remains close to the linear regime. 
7  C O N C L U S I O N S  
In this work, we have used data from the first three years of 
observations by the Dark Energy Surv e y (DES Y3), including a 
catalogue of o v er a hundred million galaxy shape measurements 
(Gatti et al. 2021c ) split into four redshift bins (Myles et al. 
2021 ), to measure tomographic cosmic shear power spectra. Our 
measurements o v er the DES Y3 footprint of 4143 deg 2 are based on 
the pseudo- C ! method, with a consistent spherical sky approach 
using the NAMASTER software (Alonso et al. 2019 ). We gener- 
ally followed the DES Y3 methodology laid out in Amon et al. 

Figure 17. Matter power spectrum at redshift z = 0 reconstructed from 
DES Y3 shear power spectra, using a simplified version of the method of 
Tegmark & Zaldarriaga ( 2002 ). The fiducial linear matter power spectrum, 
computed at Planck 2018 cosmology (Planck Collaboration VI 2020 ), is 
shown by the solid, black line (the corresponding non-linear power spectrum 
is shown by the dashed, black line). The blue boxes, centred on ( k, ̂  P ) (see 
equation 33 ) and of height given by the square-root of the diagonal of the 
covariance matrix S (see equation 34 ), show the reconstructed power spectrum 
within log-spaced k bins. In the background, we show in grey the result of the 
reconstruction for 1000 simulated data v ectors dra wn from the likelihood at 
Planck cosmology; ho we v er, in this case, the height of the box es represents 
the standard deviation of the results, offering a simple check for the covariance 
matrix. The reconstructed power spectrum is about 20 per cent (or roughly 
2 σ ) lower than the fiducial one around k ∼ 0 . 3 h Mpc −1 . 
( 2022 ), Secco et al. ( 2022 ) and the modelling choices presented in 
Krause et al. ( 2021 ) to infer cosmological constraints, and found 
S 8 ≡ σ8 √ 

#m / 0 . 3 = 0 . 793 + 0 . 038 
−0 . 025 (0 . 810) using cosmic shear alone. 

We also included geometric information from small-scale galaxy–
galaxy lensing ratios (S ́anchez et al. 2021 ) to tighten the constraint 
to S 8 = 0.784 ± 0.026 (0.798). 

Following Amon et al. ( 2022 ) and Secco et al. ( 2022 ), we modeled 
intrinsic alignments with TATT (Blazek et al. 2019 ) that coherently 
includes tidal alignment (TA) and tidal torquing (TT) mechanisms. 
We found, as in Secco et al. ( 2022 ), that the data does not strongly 
fa v our this model o v er the simpler non-linear alignment (NLA) 
model, as the data does not seem to constrain the TT contribution 
ef ficiently (e ven when including B -modes in the analysis, which 
may be sourced by TT). In all cases, we find consistent cosmological 
constraints, although using NLA tightens constraints on S 8 by about 
25 per cent. 

We include smaller scales that had been discarded in the fiducial 
analysis, switching from HALOFIT to HMCODE to model the non- 
linear matter power spectrum, thus including the effect of baryonic 
feedback, known to be a major source of uncertainty for cosmic 
shear at small scales (Chisari et al. 2018 ; Huang et al. 2019 ). We 
derived a set of scale cuts that approximately map to a cut-off k max 
in Fourier modes. When raising k max from 1 to 5 h Mpc −1 , we 
found consistent cosmological constraints, while the extra statistical 
power appears to mainly constrain the baryonic feedback parameter, 
A HM = 3 . 52 + 0 . 94 

−1 . 2 (1 . 620) . This result does not rule out the dark 
matter-only case ( A HM = 3.13) nor the predictions from the hy- 
drodynamical simulations we considered in this work. Given current 
error bars and theoretical uncertainties, it therefore remains difficult 
to extract small-scale cosmological information that is present in our 
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cosmic shear data, thus highlighting the need to better understand the 
effect of baryonic processes on the clustering of matter, especially 
for future surv e ys (see e.g. Martinelli et al. 2021 ). 

This analysis complements other weak lensing analyses of DES Y3 
data, namely the analysis of cosmic shear two-point correlation 
functions presented in Amon et al. ( 2022 ) and Secco et al. ( 2022 ), 
convergence second- and third-order moments (Gatti et al. 2021b ), 
and convergence peaks and power spectra (Z ̈urcher et al. 2022 ), 
the latter two being based on maps from Jeffrey et al. ( 2021b ). 
With respect to the real-space two-point functions, we find very 
similar constraints, with a value of S 8 slightly higher by ( S 8 = 
0.025 when including shear ratios, perfectly consistent with statistical 
fluctuations of order σ ( ( S 8 ) ∼ 0.02 predicted in Doux et al. 
( 2021 ). The comparison of constraints from Gaussian and non- 
Gaussian statistics delivers an o v erall coherent picture, highlighting 
the cosmological information beyond two-point measurements and 
pointing towards the modeling impro v ements required for future 
analyses. This analysis thus provides an important consistency check 
of DES Y3 lensing data. It also demonstrates the feasibility of 
conducting a harmonic space analysis o v er a wide surv e y footprint, 
which could be combined with other estimators, such as the real- 
space correlation functions, into a joint analysis in the future. To 
do so, one would need to compute an accurate estimate of the 
cross-covariance of the different statistics considered, or to perform 
a simulation-based, likelihood-free analysis (see e.g.Jeffrey et al. 
2021a ). 

At last, we compared our results to those obtained by other weak 
lensing studies from the Hyper Suprime-Cam and Kilo-Degree Sur- 
v e y collaborations and found consistent constraints on cosmology. 
We also compared our results to constraints from observations of 
the cosmic microwave background. We found that the tension with 
Planck 2018 in S 8 , computed with the parameter shift probability 
(Ra veri et al. 2020 ; Ra veri & Doux 2021 ), is 1.5 σ in this work, 
whereas it is 2.3 σ in Amon et al. ( 2022 ) and Secco et al. ( 2022 ). 
This shift is reflected in the inferred linear matter power spectrum, 
in excess by about 20 per cent in the range k ∼ 3 × 10 −2 h Mpc −1 to 
1 h Mpc −1 for Planck with respect to DES Y3. Future observations, 
such as the complete data from the six-year program of the DES and 
data from the next generation of surv e ys including LSST, Euclid and 
Roman, as well as methodological impro v ements will be necessary 
to determine whether this apparent tension is the sign of an incorrect 
treatment of systematic effects, or of new physics. 
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APPEN D IX  A :  P O I N T  SPREAD  F U N C T I O N  
This section presents the results of our tests for potential contamina- 
tion of shear power spectra from the point spread function (PSF) and 
complements those presented in Jarvis et al. ( 2021 ) and Gatti et al. 
( 2021c ). 

We specifically focus on the additive biases due to PSF misestima- 
tion using ρ-statistics (Rowe 2010 ) following the same diagnostics as 
Gatti et al. ( 2021c ). We expect other contributions like the brighter- 
fatter effect, dependencies of the PSF model residuals on star and 
galaxy colours, and tangential shear around stars to be negligible, as 
discussed in section 5 of Gatti et al. ( 2021c ). 

The estimated shear γ est is decomposed as 
γ est = γ + δe PSF + δe noise , (A1) 
where γ represents the true shear, δe noise denotes noise, and δe PSF 
characterizes additive biases from PSF modelling errors. DES Y3 
uses a sample of reserved stars that were not used to obtain the PSF 
model, and for which we can compare the modelled PSF ellipticity 
e model to the measured ellipticity e ∗ (and similarly for PSF sizes, with 
T model and T ∗). The PSF bias term can be further modelled as 
δe PSF = α p + βq + ηw , (A2) 
where p ≡ e model , q ≡ e * − e model , and w ≡ e * ( T ∗ − T model ) /T ∗. Un- 
der the assumption that the true shear signal γ does not correlate with 
modelling errors, the cross power spectra of galaxy shear and the PSF 
parameters p , q , and w read 
C ! ( γ est , p ) = αC ! ( p , p ) + βC ! ( q , p ) + ηC ! ( w , p ) , (A3) 
C ! ( γ est , q ) = αC ! ( p , q ) + βC ! ( q , q ) + ηC ! ( w , q ) , (A4) 
C ! ( γ est , w ) = αC ! ( p , w ) + βC ! ( q , w ) + ηC ! ( w , w ) . (A5) 

We first measured the cross power spectra of the shear and the 
PSF parameters p , q , and w . We then repeated these measurements 
using 18 000 Gaussian simulations, as described in Section 4.1.1 , to 
obtain their covariance matrix. To calculate the cross power spectra 
between the PSF parameters [right-hand side of equations ( A3 )–
( A5 )], we split the catalog into two halves that we cross-correlate, 
which ef fecti vely cancels out the shot noise. We then find the best- 
fitting scalar parameters α, β, η o v er all scales and three cross-spectra 
types for each tomographic redshift bin using Markov chain Monte 
Carlo (MCMC) samples generated with the public software package 
EMCEE (F oreman-Macke y et al. 2013 ). This approach is adapted from 
the measurements performed in the real space analysis (Amon et al. 
2022 ) using the same tomographic split, and the non-tomographic 
measurement from Jarvis et al. ( 2021 ). 

We present the best fit α, β, η values in Table A1 . While α is 
consistent with the expected value of 0 and with real space results 
from Amon et al. ( 2022 ), β and η values are different. We associate 
the difference to the fact that the real space analysis uses much 
smaller scales, down to the sub-arcminute range, while our harmonic 
space analysis only captures features larger than a few arcminutes. 
The total goodness of fit on the stacked data vector of the shear and 
PSF cross-spectra χ2 for 93 degrees of freedom varies between 99.5 
and 117.3 across redshift bins. As in the real space analysis, the 
Table A1. Values of the parameters α, β, and η for each redshift bin, 
estimated from fits to the cross-power spectra of galaxy and PSF shapes, 
according to equations ( A3 ), ( A4 ), and ( A5 ) as well as the goodness of fit, 
χ2 , for 96 − 3 degrees of freedom. 

Bin 1 Bin 2 Bin 3 Bin 4 
α 0 . 003 + 0 . 007 

−0 . 007 0 . 014 + 0 . 008 
−0 . 008 0 . 008 + 0 . 010 

−0 . 010 0 . 012 + 0 . 011 
−0 . 011 

β 0 . 02 + 0 . 36 
−0 . 36 −0 . 07 + 0 . 38 

−0 . 38 0 . 16 + 0 . 39 
−0 . 38 −0 . 74 + 0 . 46 

−0 . 47 
η −5 . 4 + 4 . 3 −4 . 4 0 . 4 + 4 . 8 −4 . 8 1 . 6 + 5 . 1 −5 . 0 −5 . 4 + 5 . 9 −5 . 8 
χ2 99.5 116.3 113.4 117.3 
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Figure A1. Cross-power spectra between galaxy shapes in the four redshift bins (from left to right) with PSF parameters p , q , and w (from top to bottom). 
The measurements are shown in blue, with error bars computed from 18 000 Gaussian simulations using the DES Y3 catalogue ellipticities and positions, as 
explained in Section 4.1.1 . The model from equations ( A3 ) to ( A5 ) at best fit is shown by the red line, while the band shows the uncertainty. We find χ2 statistics 
with respect to the best fit between 29.3 and 45.8 (29.3–47.3 for the null hypothesis) for 32 degrees of freedom, shown in the lower left corner for each panel, 
corresponding to a minimum probability-to-exceed of 0.04. 

Figure A2. Impact of PSF contamination of the measured shear spectra on 
cosmological constraints. Fixing the values of the PSF model parameters 
( α, β, and η) at the best-fitting values inferred from power spectra (blue 
contours) or two-point functions (red), and at the expected values (orange), 
we contaminate a noiseless data vector using the model in equation ( A2 ) and 
compare cosmological constraints to those obtained from the noiseless data 
vector (black). 

χ2 values are rather large for all but the lowest redshift bin, with the 
probability-to-exceed being 0.045. Subsequently in Fig. A1 , we show 
the best-fitting model to the cross power spectra for each redshift bin 
and report the χ2 values for each shear and PSF parameter cross- 
spectrum separately. 

Finally, we propagate the PSF bias in equation ( A1 ) to compute 
the expected contamination of the shear power spectra using the 
model of equation ( A2 ), in order to test its impact on cosmology. 
We do so using the best-fitting values for the α, β, and η parameters 
from our analysis in harmonic space, the best fit from the real space 
analysis in Amon et al. ( 2022 ) and the expected values α = η = 0 
and β = 1, consistent with non-tomographic results from Jarvis et al. 
( 2021 ). Fig. A2 shows that the impact on cosmological constraints 
is negligible. 
APPENDI X  B:  VA LIDATION  O N  SYNTHETIC  
DATA  
This section illustrates the validation of the modelling pipeline on 
synthetic data, as described in Section 4.4.1 . Fig. B1 shows the 
impact of the choice for the non-linear matter power spectrum, 
whereas Fig. B2 validates the use of HMCODE to probe the small- 
scale portion of our measurements, based on its robustness to various 
baryonic feedback prescriptions from four different hydrodynamical 
simulations. 
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Figure B1. Test of the impact of the non-linear matter power spectrum on 
cosmological constraints. We analyse three synthetic data vectors with the 
fiducial model using HALOFIT and fiducial scale cuts. Constraints obtained 
from the fiducial data vector are shown in blue, with the mean of the posterior 
shown by the blue cross. These constraints are compared to those obtained 
from data vectors computed with HMCODE (red, A HM = 3.13) and the EUCLID 
EMULATOR (orange). The innermost 0.3 σ contours (underlined in dashed 
lines) encompass the mean of the fiducial posterior. 

Figure B2. Validation of the baryonic feedback modelling with HMCODE . 
The four coloured posteriors are obtained from shear power spectra that 
include the effect of baryons as predicted by four hydrodynamical simulations 
(see Fig. 5 ). Solid (dashed) lines were obtained using the scale cuts at k max = 
3 h Mpc −1 ( k max = 5 h Mpc −1 ). Despite preferring very dif ferent v alues of 
A HM (the dark matter-only case corresponds to A HM = 3.13), the cosmology is 
reco v ered in all cases. For comparison, the black contours show the posterior 
obtained from the fiducial data vector analysed with HALOFIT with the scale 
cuts at k max = 3 h Mpc −1 . 

APPENDI X  C :  I NTERNAL  CONSI STENCY  
This section presents a number of tests in parameter (Appendix C1 ) 
and data space (Appendix C2 ) for the fiducial run, i.e. using our 
fiducial ) CDM model and scale cuts, and excluding shear ratio 
information. 
C1 Robustness of cosmological constraints 
We first perform a series of tests, listed below, to assert the robustness 
of cosmological constraints presented in Section 6.1 . Fig. 11 presents 
uni-dimensional marginal distributions for these tests in sections (d) 
and (e). We also show the 2D marginal distributions in the ( S 8 , #m ) 
plane in Fig. C1 , in the following order: 

(i) Redshift test. Many parts of the cosmological model (including 
intrinsic alignments) are redshift dependent by construction, whereas 
systematic effects may differentially impact the four redshift bins. 
To test the robustness of the cosmological constraints to such effects, 
we therefore perform the analysis of cosmic shear power spectra 
removing one bin at a time (e.g. when removing bin 2, we remo v e 
the bin pairs 2,1, 2,2, 3,2 and 4,2 from the data vector), and show 
contours in Fig. C1 , panel (a). While contours widen, as expected, 
and some degeneracies with A TA appear to create some tails in the 
posteriors, we find an o v erall e xcellent agreement, with no visible 
trend. 

(ii) Larg e ver sussmall scales. As discussed throughout the paper, 
the non-linear scales play a crucial role in this analysis, as they 
contain a significant amount of cosmological information, but are 
also the most difficult to model. Using our fiducial set of scale cuts, 
we split the data vector between large and small scales as follows: for 
each redshift bin pair, we find the multipole ! thr , within the scale cuts 
! min ≤ ! ≤ ! max , that results in approximately equal signal-to-noise 
ratio S/N on both sides, i.e. S /N ! min ≤! ≤! thr ≈ S /N ! thr ≤! ≤! max . This 
procedure leaves us with 58 and 61 data points for large and small 
scales, respectively. We find that constraints using either only large 
scales or only small scales are very similar in width and in very good 
agreement with each other. The broadening of the posteriors seems 
related to partial degeneracies with intrinsic alignment parameters, 
in particular A TT . Nev ertheless, the y are in very good agreement with 
the constraints from the full analysis. 

(iii) Autopower spectra. The pseudo- C ! estimator we use here 
requires the subtraction of the noise power spectrum, which is 
estimated analytically from the shape catalogue here, following 
Nicola et al. ( 2021 ). In order to e v aluate the potential impact of 
a misestimation, we analyse our data without autopower spectra, 
i.e. removing bin pairs 1,1, 2,2, 3,3, and 4,4 from the data vector (no 
auto), and then using only those pairs (auto only). We find constraints 
Table C1. Internal consistency tests using the posterior predictive distribu- 
tion method from Doux et al. ( 2020 ). See Appendix C2 for details. 
Test Calibrated p -value 
Goodness of fit 0.116 
Bin 1 versus no bin 1 0.998 
Bin 2 versus no bin 2 0.020 
Bin 3 versus no bin 3 0.080 
Bin 4 versus no bin 4 0.876 
Small versus large scales 0.395 
Large versus small scales 0.212 
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Figure C1. Robustness tests of cosmological constraints, comparing variations in analysis choices to the fiducial constraints in blue. We first repeat the analysis 
removing part of the data vector, according to (a) redshift bins, (b) scales, and (c) auto-power spectra. We then modify certain parts of the analysis, namely (d) 
the covariance matrix, (e) the methodology to marginalize over uncertainties in the redshift distributions, and (f) the measurement resolution. See Appendix C1 
for details. 

Figure C2. Goodness of fit test for the fiducial run using the posterior predictive distribution (PPD) methodology of Doux et al. ( 2020 ). The data are shown by 
the blue circles, which are filled for data points within fiducial scale cuts. The grey line shows the mean of the PPD realizations, whereas the grey bands show 
the 1 σ and 2 σ percentiles of the PPD. The calibrated p -value for each panel is shown in the upper right corner. 
that are wider but consistent with the full analysis, with no clear 
indication for an issue with noise spectrum subtraction. 

(iv) Covariance. As described in Section 3.3 , our covariance 
matrix is a hybrid matrix that uses NAMASTER to e v aluate the 
Gaussian contribution with the effects of the mask and binning 
properly accounted for, and COSMOLIKE to e v aluate the non-Gaussian 
contribution, at the fiducial Planck 2018 cosmology. We have also 
used DARKGRIDV1 simulations (Z ̈urcher et al. 2022 ) to obtain an 
empirical estimate of the covariance matrix, for comparison and 
validation of our analytical (and therefore noiseless) estimate. We 
test the impact of this choice by using the empirical covariance in 

our cosmological analysis, and find that our constraints are almost 
insensitive to this choice, showing the excellent agreement of the two 
covariance matrices. 

(v) HYPERRANK . Throughout this work, we have employed the 
fiducial approach o v er marginalizing o v er redshift distribution biases, 
(z a ’s, in order to account for uncertainty in the redshift distributions. 
Ho we ver, the DES Y3 redshift pipeline produced samples of the red- 
shift distributions that can be properly marginalized o v er using either 
the MULTIRANK or HYPERRANK methods, by sampling, respectively, 
realizations themselves, or a set of hyperparameters used to rank and 
select realizations (for details, see Cordero et al. 2022 ). We do so 
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Figure C3. Internal consistency of the four redshift bins (removing one at a time) with the PPD in grey and data in blue. See Fig. C2 for details. 
here and find cosmological constraints in excellent agreement with 
the fiducial analysis, with roughly 15 per cent smaller uncertainty on 
S 8 for both techniques. 

(vi) Resolution. As detailed in Section 3.1 , the pseudo- C ! esti- 
mator is based on pixelized HEALPIX maps of the shear catalogue. 
Ho we ver, as discussed in Nicola et al. ( 2021 ), the effects of the 
pixelization of the shear field depend both on the density of galaxies 
and the chosen resolution. We used a resolution parameter of N side = 
1024, which allows us to probe multipoles up to ! ∼ 2000, while 
yielding a relatively complete mask, without too many empty pixels 
in the surv e y area, and with a mean number of galaxies per pixel 
of around 17.2–17.5 for all four bins. This means that we are in 
the regime where the shear maps are that of the averaged shear 
field (as opposed to the sampled shear field) and that we may use 
standard HEALPIX window functions to correct for the smoothing 
that has taken place. In order to verify the impact on cosmological 

constraints, we repeat the measurements, including noise power 
spectrum and Gaussian covariance estimation, at N side = 512. We 
do observ e e xpected differences in the shear power spectra – almost 
negligible at large scales and growing up to about the size of the error 
bars at ! ∼ 1024, with no clear trend – but find negligible impact on 
cosmology. 
C2 Internal consistency of data with posterior predicti v e 
distributions 
We apply the methodology developed of Doux et al. ( 2020 ) based 
on the posterior predictive distribution (PPD) to test the internal 
consistency of our data. In a nutshell, the method uses a parameter 
posterior sample and compares simulated realizations of the data 
v ector dra wn from the likelihood at these parameter values to the 
observed data vector. The test is subsequently calibrated using 
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simulated data vectors, to correct for posterior volume effects, as 
detailed in Doux et al. ( 2020 ). 

We first perform a goodness-of-fit test, where the posterior 
sample comes from the fiducial run, and simulated realizations are 
independent of the observed data, and find a calibrated p -value of 
11.6 per cent. The PPD samples are shown in grey in Fig. C2 along 
with the observed data in blue. 

We then perform consistency tests of the type A versus B , i.e.where 
we divide the data in two disjoint parts A and B , use B to obtain a 
posterior sample, and generate from those samples realizations of 
A to be compared to the real data, in a way that accounts for the 
correlation between A and B . Specifically, we split the data according 
to redshift bins and scales, using the same splits as in item a and item 
b of the previous section. We illustrate the redshift consistency test in 
Fig. C3 and summarize the results in Table C1 , finding no indication 
of inconsistency. 
APPENDIX  D :  FULL  POSTERIOR  
DISTR IBU TION  
Fig. D1 shows the prior and posterior distributions for the fiducial 
constraints presented in Section 6.1 (without shear ratios). We also 
perform a KL decomposition (Raveri & Hu 2019 ; Raveri et al. 2020 ; 
Dacunha et al. 2022 ; Raveri & Doux 2021 ) in order to determine 
the directions, in parameter space, that are best constrained by the 
data, as quantified by the impro v ement between the prior and the 

posterior. We use the tensiometer 11 package and work in the 
space of log #m , log σ 8 , log h , log #b , log n s , log #νh 2 in order to 
express the KL modes as power laws in the original parameters. We 
find that the three first KL modes are the following (the impro v ements 
are in parentheses): 
(

#m 
0 . 255 

)0 . 521 ( σ8 
0 . 857 

)
= 1 . 000 ± 0 . 116 , ( 978 . 7% ) 

(D1) 
(

#m 
0 . 255 

)( σ8 
0 . 857 

)−1 . 219 ( n s 
1 . 003 

)2 . 651 
= 1 . 000 ± 0 . 868 , ( 202 . 5% ) 

(D2) 
(

#m 
0 . 255 

)−0 . 149 (
h 

0 . 774 
)( n s 

1 . 003 
)1 . 681 

= 1 . 000 ± 0 . 426 . ( 77 . 3% ) 
(D3) 

The first mode nearly matches the S 8 parameter, while subsequent 
modes, with much weaker impro v ements, include the Hubble con- 
stant h and the tilt of the primordial power spectrum n s . 

11 https://tensiometer.readthedocs.io 
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Figure D1. Posterior (in blue) and prior (in grey) distributions for the fiducial ) CDM constraints from DES Y3 shear power spectra (without shear ratios) 
presented in Section 6.1 , showing cosmological and intrinsic alignment parameters (note that the ranges are adjusted to the posterior for readability). Although 
we sample o v er A s with a flat prior, we apply the KL decomposition (Raveri & Hu 2019 ; Raveri et al. 2020 ; Raveri & Doux 2021 ) in the space of log #m , log σ 8 , 
log h , log #b , log n s , and log #νh 2 . The best constrained directions in this parameter space, corresponding to the first three modes of the KL decomposition, are 
represented in yellow, orange, and red. 
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