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Abstract
Data movement is becoming the dominant contributor to the
time and energy costs of computation across a wide range
of application domains. However, time complexity is inade-
quate to analyze data movement. This work expands upon
Data Movement Distance, a recently proposed framework
for memory-aware algorithm analysis, by 1) demonstrating
that its assumptions conform with microarchitectural trends,
2) applying it to four variants of matrix multiplication, and
3) showing it to be capable of asymptotically differentiating
algorithms with the same time complexity but different mem-
ory behavior, as well as locality optimized vs. non-optimized
versions of the same algorithm. In doing so, we attempt
to bridge theory and practice by combining the operation
count analysis used by asymptotic time complexity with per-
operation data movement cost resulting from hierarchical
memory structure. Additionally, this paper derives the first
fully precise, fully analytical form of recursive matrix mul-
tiplication’s miss ratio curve on LRU caching systems. Our
results indicate that the Data Movement Distance framework
is a powerful tool going forward for engineers and algorithm
designers to understand the algorithmic implications of hi-
erarchical memory.

CCS Concepts: • Theory of computation→ Design and
analysis of algorithms.

Keywords: matrix multiplication, hierarchical memory, al-
gorithm analysis, data movement
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1 INTRODUCTION
In exascale computing, the cost of data movement exceeds
that of computation [6]: as such, data movement is a key
factor in not only system performance but also in the com-
puter science community’s growing responsibility to address
computing’s role in the climate crisis.

Optimizing a program or a system for locality is difficult,
as modern memory systems are large and complex. For porta-
bility, we should not program data movement directly, but
we should be aware of its cost. However, there does not yet
exist a single quantity that can characterize the effect of
locality optimization at the program or algorithm level.

Standard techniques for understanding algorithm-hierarchy
interactions, like miss ratio analysis, yield insight for algo-
rithm designers with a target set of machine parameters in
mind, but do not allow for general understanding of an al-
gorithm’s intrinsic data movement for an arbitrary target
machine.
The actual effect of cache usage depends on all compo-

nents of a program and also its running environment. As-
sumptions about a machine may be wrong, imprecise, or
soon obsolete. A program may run on a remote computer
in a public or commercial computing center with limited in-
formation about its memory system. Auto-tuning can select
the best parameters for a given system, but it is difficult to
tune if a system is shared.
In a recent position paper, Ding and Smith [7] defined

an abstract measure of memory cost called Data Movement
Distance (DMD). Memory complexity is measured by DMD
in the same way time complexity is by operation count. They
showed results for two types of data traversals with only
constant factor differences in DMD.
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This paper presents DMD analysis for different approaches
to matrix multiplication. It differs from past work in several
ways. First, unlike practical analysis, i.e. those based on miss
ratios, DMD analysis is asymptotic and machine agnostic.
Second, unlike I/O complexity, DMD analysis includes the
effect of a cache hierarchy. In addition, the derivation is rad-
ically different from past solutions. For example, efficient
algorithms often make use of temporaries that are dynami-
cally allocated. They share cache, but the cache sharing is
not analyzed by past complexity analysis. It is measured by
practical analysis in concrete terms, i.e. cache misses, not
asymptotic terms.
DMD measures data movement. Running time depends

also on latency tolerance techniques, especially prefetch-
ing, which is outside the scope of this paper. Latency toler-
ance techniques, however, do not reduce the amount of data
movement intrinsic to the algorithm. In addition, this paper
targets sequential computation and assumes a memory hi-
erarchy that is concentric, layered and managed using the
least-recently-used (LRU) cache replacement policy.

2 MAIN CONTRIBUTIONS
The focus of this work is exploring the algorithmic impli-
cations of hierarchical memory systems by fleshing out the
memory-aware algorithm analysis framework Data Move-
ment Distance (DMD) introduced in [7]. The main contribu-
tions are as follows:
• Derivation and empirical validation of the first fully
precise analytical form of recursive matrix multiplica-
tion’s miss ratio on LRU caching systems,
• Application of theDMD framework formemory-aware
algorithm analysis to four variants of matrix multipli-
cation,
• Exploration of the effects of locality optimizations on
the previous results,

In addition, we expand the motivation for and justification
of the DMD framework by demonstrating the following:
• microarchitectural trends in cache memory conform
with the framework’s assumptions,
• DMD is capable of asymptotically differentiating al-
gorithms with the same time complexity as a result
of their memory behavior, as well as asymptotically
differentiating between locality optimizations

Taken together, we believe that the results of our analyses
indicate that the DMD framework is a powerful tool going
forward for engineers and algorithm designers to understand
the algorithmic implications of hierarchical memory.

3 BACKGROUND AND MOTIVATION
3.1 Locality Concepts
The locality concept most central to this work is reuse dis-
tance (RD) [27]. Reuse distance, or LRU stack distance [14],

characterizes an individual memory access by counting the
number of distinct memory locations accessed by the pro-
gram between the most recent previous use of that memory
location and the current use.

For example, let letters denote distinct memory locations
in the following access trace:

𝑎𝑏𝑏𝑐𝑎

In this example, the reuse distance of the second access to
𝑏 is 1, as only 𝑏 occurs in the window from position 2 to
position 3, while the reuse distance of the second access to
𝑎 is 3, as 𝑎, 𝑏, 𝑐 all occur in the window from position 1 to
position 5.
Reuse distance and miss ratio for fully-associative LRU

cache are interconvertible, with their relation as follows:

𝑀𝑅(𝑐) = 𝑃 (𝑟𝑑 > 𝑐)

Accesses with reuse distance greater than 𝑐 are misses in
LRU caches of size 𝑐 or less. So, reuse distance distributions
and miss ratio curves are the same information.

3.2 Data Movement Distance
The most ubiquitous technique for algorithm cost analysis
is asymptotic time complexity, which measures operation
count as a function of input size. However, on machines with
hierarchical memory, execution cost will scale with input
size faster than time complexity would indicate, because as
data size increases, more program data must be stored in
large, slow hierarchy components: the cost of data move-
ment scales with input size as well. Data Movement Distance
(DMD) is a novel framework for memory-aware algorithm
analysis proposed by first Snyder and Ding [20] and then
Ding and Smith [7] in which operation count is combined
with per-access data movement cost by considering the al-
gorithm’s reuse distance distribution.

Because data movement cost varies across machines, the
DMD framework includes an abstracted version of a memory
hierarchy, termed the geometric stack, on which the behavior
of algorithms is considered. The geometric stack can be un-
derstood to be an infinite-level memory hierarchy in which
each level stores a single datum. The cost of accessing the
datum at level 𝑛 is

√
𝑛. DMD for a program is then defined

as follows:

Definition 1 (Data Movement Distance). For a program 𝑝

with data accesses 𝑎𝑖 , let the reuse distance of 𝑎𝑖 be 𝑑𝑖 . The
DMD for 𝑝 under caching algorithm 𝐴 is

𝐷𝑀𝐷 (𝑝) =
∑︁
𝑖

√︁
𝑑𝑖

In words, a program’s DMD is the sum of the square roots
of its memory accesses’ reuse distances. As such, we arrive
at our first theorem:
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Theorem 1 (DMD bounds). Let the time complexity of pro-
gram 𝑝 be 𝑂 (𝑓 (𝑛)) and let its space complexity be 𝑂 (𝑔(𝑛)).
Then

𝑓 (𝑛) ≤ 𝐷𝑀𝐷 (𝑝) ≤ 𝑓 (𝑛) ·
√︁
𝑔(𝑛)

where DMD(p) is asymptotic (big-O) DMD.

Proof. It suffices to note that this program will have 𝑓 (𝑛)
memory accesses, the minimum value a reuse distance can
take is 1, and the maximum value a reuse distance can take
is 𝑔(𝑛) (data size). Then, Definition 1 yields the above. □

Memory complexity is measured by DMD in the same
way time complexity is by operation count. As Theorem 1
shows, DMD is at least time complexity, because every oper-
ation accesses some data. In the following analysis of matrix
multiplication, DMD is asymptotically greater than time
complexity, and we specifies constant co-efficients. Indeed,
DMD is useful only when it is greater than time complex-
ity; otherwise constant-size memory is sufficient, and the
memory problem is trivial, i.e. compute bound.
An intuitive explanation for the

√
𝑛 cost function is that

it is the distance the data must travel if we represent the
infinite-level hierarchy as a series of concentric 2-D shapes
(such as circles) and let area represent capacity. In the follow-
ing section, we will discuss the microarchitectural trend that
this cost function reflects. In Ding and Smith’s formulation
for DMD, cache replacement policy is a parameter, however
in the derivations in this paper we will use LRU replacement.

Throughout this paper we will use the asymptotic equiv-
alence notation ∼ (), which is identical to big-O notation
except it retains primary factor coefficients. DMD measures
the memory cost and is complexity without Big-O.

3.3 Why
√
𝑛?

At the core of the DMD framework is the notion that we
need a relationship between stack position, or reuse distance,
and cost. Ding and Smith [7] use

√
𝑛 with the argument that

it reflects physical memory layout. We expand on that here
by demonstrating that

√
𝑛 also reflects the cost of memory

access onmodern architectures. Figure 1 demonstrates access
latency as a function of distance from the processor for cache
sizes and latencies corresponding to the AMD Zen2 and
Intel Sunny Cove architectures (numbers from [5]) up to
≈ 2MB data size. As stack position increases, data is forced
into slower caches and its access latency increases. While
“distance from the processor" is not a perfect match with LRU
stack distance on optimized hardware and Figure 1 contains
no empirical measurements, it is clear that the general trend
in these architectures’ latencies is well captured by the

√
𝑥

family of functions.
This relationship has been observed in other contexts as

well: Yavitz et al. [26] show that access latency scales with
the square root of cache size, and Cassidy and Andreou
[4] demonstrate that energy cost behaves similarly. These

Figure 1. Access latencies of modern microarchitectures as
a function of stack position

results, and thus the square root concept, have been used in
the design of cutting edge memory systems and techniques,
such as Tsai et al.’s Jenga [23].

3.4 Why Measure Hierarchical Locality?
DMD is to measure hierarchical locality. A program has
hierarchical locality if it makes use of a cache hierarchy, where
there is has more than a single level of cache, and the cache
size and organization may vary from machine to machine.
Such cache hierarchies are the norm on today’s machines.

As a contrast, consider single-cache locality which means
programming to utilize a cache of a specific size. Single-cache
locality is unreliable for two reasons. The first is portability.
The actual cache usage depends on the choice of program-
ming languages, compilers, and target machines. The second
problem is environmental, e.g. interference from run-time
systems and from peer programs that share the same cache.
Single-cache locality is not a robust program property be-
cause of these two sources of uncertainty.

Hierarchical locality is portable and elastic. It is indepen-
dent of implementation, and it runs well in a shared envi-
ronment. Cache oblivious algorithms, e.g. recursive matrix
multiplication, were developed for hierarchical locality. Next,
we use DMD to analyze this effect.

4 RECURSIVE MATRIX MULTIPLICATION
MISS RATIO ANALYSIS

In this section we derive what is to our knowledge the first
fully precise analytical form of recursive matrix multiplica-
tion’s (RMM) miss ratio curve on LRU memory. Previously,
RMM’s asymptotic cache behavior has been derived [18], but
we derive the precise, numeric miss ratio for all cache sizes
and matrix sizes and validate our model’s accuracy against
instrumented executions.
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We will derive miss ratio by deriving the distribution of
reuse distances incurred by RMM. Reuse distance and miss
ratio have been shown to be interconvertible [27], meaning
they are the same information.

At a high level, our approach will be as follows:

1. decompose the recursive algorithm into its canonical
tree structure,

2. split memory accesses into accesses to temporaries
and accesses to input matrices,

3. derive symbolic representations of each type of mem-
ory access pattern at each level of the tree,

4. iterate over the entire tree to create the full reuse dis-
tribution.

The full derivation is too lengthy to include in this paper;
the interested reader may find a more detailed version at
github.com/wes-smith/Tech-Report-ICS-22/.Wewill present
the lemmas and theorems that constitute the majority of the
contribution of this section as well as the skeleton of the
full derivation, but will elide in-depth proofs of many of the
derived relationships. We demonstrate correctness by imple-
menting our model and showing its functional equivalence
to an instrumented version of RMM.

Function rmm(A,B):
n = A.rows
let C be a new nxn matrix
if n == 1:

C11 = A11 * B11
else:

C11 = rmm(A11, B11) + rmm(A12, B21)
C12 = rmm(A11, B12) + rmm(A12, B22)
C21 = rmm(A21, B11) + rmm(A22, B12)
C22 = rmm(A21, B12) + rmm(A22, B22)

return C

The above contains the pseudocode for standard recursive
matrix multiplication, and is the form for RMM that we
will analyze. Note that this is RMM at its most basic: we
don’t consider optimizations such as using a base case larger
than 1 × 1 or temporary reclamation and reuse. We will con-
sider such optimizations when analyzing the algorithm’s
data movement distance, but for our miss ratio/reuse dis-
tance derivation we analyze RMM in its simplest form. Here,
each call to multiply 𝑁 × 𝑁 matrices decomposes into eight
recursive calls, each multiplying 𝑁

2 ×
𝑁
2 matrices. After each

pair of recursive calls, there is an addition step.
Figure 2 contains the decomposition of a 4x4 multiplica-

tion. The blue node, marked L4, represents a 4x4 multipli-
cation, the orange nodes, marked L2, represent 2x2 multi-
plications, and the green nodes, marked L1, represent 1x1
multiplications. Execution is a depth-first, left-to-right tra-
versal of this tree. In the rest of this derivation, we will use
the notation 𝐿𝑁 to refer to a node in the tree that is multi-
plying 𝑁 × 𝑁 matrices.

L4 (4x4)

L2 (2x2)

L1 (1x1)

Figure 2. The tree structure of recursive matrix multiplica-
tion

4.1 Temporaries
We first analyze the behavior of RMM’s temporary usage:

Definition 2 (Temporary Count). Let 𝑇𝑁 represent the num-
ber of temporaries introduced in an 𝐿𝑁 call to recursive matrix
multiplication, i.e. multiplying NxN matrices. Then

𝑇𝑁 =

𝑙𝑜𝑔2 (𝑁 )∑︁
𝑖=0

8𝑙𝑜𝑔2 (𝑁 )−𝑖 · (2𝑖 )2 = 𝑁 2 · (2𝑁 − 1).

Having a uniform branching factor makes deriving the
node count at each level trivial:

Definition 3. In an 𝑁𝑥𝑁 recursive matrix multiplication,
the number of 𝐿𝑋 nodes is as follows:

#𝐿𝑋 = 8𝑙𝑜𝑔2 (𝑁 )−𝑙𝑜𝑔2 (𝑋 ) =
𝑁 3

𝑋 3

The next step is to exploit the tree’s symmetry to under-
stand how much repetition there is in the reuse distances of
temporaries:

Lemma 1 (Temporary Symmetry). Let 𝐹𝑇 (𝑖, 𝑗, 𝑁 , 𝑎) denote
the reuse distance of the (𝑖, 𝑗)-th element of the 𝑎-th temporary
matrix introduced at 𝐿𝑁 . Then

𝐹𝑇 (𝑖, 𝑗, 𝑁 , 𝑎) = 𝐹𝑇 (𝑖, 𝑗, 𝑁 , (𝑎 % 2))

Lemma 1 has a straightforward high-level interpretation:
at 𝐿𝑁 , there are only at most two 𝑁 × 𝑁 matrices’ worth of
temporaries with different reuse distances. These correspond
to the first and second elements in one of the additions in
the RMM pseudocode at the beginning of Section 4, with
each addition group introducing temporaries with identical
behavior.
We will denote these two temporary matrices 𝐷𝑇1,𝑁 and

𝐷𝑇2,𝑁 . We elide their derivations, but the approach involved
a mix of purely analytical analysis of RMM’s tree structure
and pattern extraction from empirical results from an instru-
mented version of RMM. Their forms are as follows, where
ellipses indicate the same value in all columns or values
decreasing by 1 per column:

Lemma 2 (First Temporary Matrix). Let 𝐷𝑇1,𝑁 denote the
matrix of reuse distances of temporaries introduced at level N
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in the first node of an addition group. Then

𝐷𝑇1,𝑁 =

𝑑1 ... 𝑑1 − ( 𝑛2 − 1) 𝑑2 − ( 𝑛2 )
2 + 𝑛

2 ... 𝑑2 − ( 𝑛2 )
2 + 1

𝑑1 ... 𝑑1 − ( 𝑛2 − 1) 𝑑2 − ( 𝑛2 )
2 + 𝑛 ... 𝑑2 − ( 𝑛2 )

2 + 𝑛
2 + 1

... ... ... ... ... ...

𝑑1 ... 𝑑1 − ( 𝑛2 − 1) 𝑑2 ... 𝑑2 − 𝑛
2 − 1

𝑑1 − 𝜙 (𝑛) ... 𝑑1−𝜙 (𝑛)−( 𝑛2 −1) 𝑑2−𝛿 (𝑛)−( 𝑛2 )
2+𝑛2 ... 𝑑2−𝛿 (𝑛)−( 𝑛2

2 )+1

𝑑1 − 𝜙 (𝑛) ... 𝑑1−𝜙 (𝑛)−( 𝑛2 −1) 𝑑2−𝛿 (𝑛)−( 𝑛2 )
2+𝑛 ... 𝑑2−𝛿 (𝑛)−( 𝑛2 )

2+𝑛2 +1

... ... ... ... ... ...

𝑑1 − 𝜙 (𝑛) ... 𝑑1−𝜙 (𝑛)−( 𝑛2 −1) 𝑑2 − 𝛿 (𝑛) ... 𝑑2 − 𝛿 (𝑛) − 𝑛
2 − 1


where

𝛿 (𝑁 ) =𝑁 3

𝜙 (𝑁 ) =𝑁 3−𝑁 2
2

𝑑1= ⌊2𝐷𝑁 −(2· (𝑇𝑁
2
−2( ( 𝑁2 )

2−1)) ⌋

𝑑2= ⌊2𝐷𝑁 −(4𝑇𝑁
2
+2( 𝑁2 )

2−2( 𝑁2 −1)−(2(
𝑁
2 )

2−𝑁
2 )) ⌋

Lemma 3 (Second Temporary Matrix). Let 𝐷𝑇2,𝑁 denote
the matrix containing the reuse distances of the temporaries
introduced at level N in the second node of an addition group.
Then

𝐷𝑇2,𝑁 =

𝑑3 ... 𝑑3 𝑑4 ... 𝑑4
𝑑3 + 𝑛 ... 𝑑3 + 𝑛 𝑑4 + 3𝑁

2 ... 𝑑4 + 3𝑁
2

... ... ... ... ... ...

𝑑3 + 𝑛 ( 𝑛2 − 1) ... 𝑑3 + 𝑛 ( 𝑛2 − 1) 𝑑4 + ( 𝑛2 − 1) (
3𝑁
2 ) ... 𝑑4 + ( 𝑛2 − 1) (

3𝑁
2 )

𝑑3 − 𝛾 (𝑁 ) ... 𝑑3 − 𝛾 (𝑁 ) 𝑑4 −𝜔 (𝑁 ) ... 𝑑4 −𝜔 (𝑁 )
𝑑3 − 𝛾 (𝑁 ) + 𝑛 ... 𝑑3 − 𝛾 (𝑁 ) + 𝑛 𝑑4 −𝜔 (𝑁 ) + 3𝑁

2 ... 𝑑4 −𝜔 (𝑁 ) + 3𝑁
2

... ... ... ... ... ...

𝑑3−𝛾 (𝑁 )+𝑛 ( 𝑛2 −1) ... 𝑑3−𝛾 (𝑁 )+𝑛 ( 𝑛2 −1) 𝑑4−𝜔 (𝑁 )+( 𝑛2 −1) (
3𝑁
2 ) ... 𝑑4−𝜔 (𝑁 )+( 𝑛2 −1) (

3𝑁
2 )


where

𝛾 (𝑁 )=𝑁 3−𝑁 2

𝜔 (𝑁 )=𝑁 3−𝑁 2
2

𝑑3= ⌊𝐷𝑁 −(2·𝑇𝑁
2
−(2( 𝑁2 )

2−1)) ⌋

𝑑4= ⌊𝐷𝑁 −(2( 𝑁2 )
2)−(4𝑇𝑁

2
−2( 𝑁2 )

2+2)−( ( 𝑁2 )
2−𝑁 )+( 𝑁2 +1) ⌋

The previous two lemmas contain a large amount of in-
formation and can be hard to parse: the takeaway should be
that we can symbolically characterize the reuse distances of
temporaries in terms of where in the tree they are created
and used. The interested reader can see github.com/wes-
smith/Tech-Report-ICS-22/ for more information on how
the above functions and relationships were derived, but the
exact specifics are not essential to understand the larger
picture.
Lemmas 2 and 3, which consider the reuse distances in-

curred by temporaries in individual nodes of our tree, will
be later combined with tree structure information to create
the complete picture of temporary reuse.

4.2 Matrices A and B
To understand the behavior of the data in matrices 𝐴 and 𝐵,
we must first define what it means for a reuse of one such

datum to be at 𝐿𝑁 given that all the accesses to 𝐴 and 𝐵

occur in leaves of the tree.

Definition 4 (Input data reuse levels). When referring to a
reuse of data in matrix 𝐴 or 𝐵, 𝐿𝑁 indicates the largest N for
which there exists a complete 𝐿𝑁 call between the data item’s
use and reuse.

To help visualize, Figure 3 contains the tree decomposition
of a 4x4 matrix multiplication (L4 call) with the nodes that
contain a reference to element 𝐴[1, 1] (1-indexed: the top-
left-most element of matrix 𝐴) highlighted. There are two
L1 reuses, between the two blue nodes and between the two
pink nodes, and one L2 reuse, between the second blue node
and the first pink node (as there exists a full L2 call between
those two). The dashed line boxes indicated addition groups.
Combining with tree structure, we can count occurrences of

L4

L2

L1

A[1,1]

Figure 3. Tree decomposition with A[1,1] accesses high-
lighted

𝐿𝑁 reuse for all 𝑁 :

Lemma 4. Let 𝑅𝐶 (𝑁,𝑀) denote the number of 𝐿𝑀 reuses of
any item in matrix A or B in an 𝐿𝑁 call (an NxN multiplica-
tion). Then

𝑅𝐶 (𝑁,𝑀) = 𝑁

2𝑀
With an understanding of the frequency of each type of

reuse of data from 𝐴 and 𝐵 we can turn our focus to comput-
ing the values of the reuse distances. Our high level angle
of attack for this will be to again decompose into tempo-
raries vs. input data: we will derive separately the number
of temporaries as well as the number of elements of 𝐴 and
𝐵 between two consecutive uses of an item from 𝐴 or 𝐵.
Formally:

Definition 5 (Reuse distance decomposition). Let 𝐹 (𝑖, 𝑗, 𝑁 )
represent the reuse distance of element 𝐴[𝑖, 𝑗] at an 𝐿𝑁 reuse.
Then

𝐹 (𝑖, 𝑗, 𝑁 ) = 𝑓𝑇 (𝑖, 𝑗, 𝑁 ) + 𝑓𝐴,𝐵 (𝑖, (( 𝑗 − 1) % 𝑁 ) + 1, 𝑁 ),

where 𝑓𝑇 (𝑖, 𝑗, 𝑁 ) is the number of unique temporaries within
the 𝐴[𝑖, 𝑗] 𝐿𝑁 reuse pair, and 𝑓𝐴,𝐵 (𝑖, 𝑗, 𝑁 ) is the number of
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unique elements of matrices 𝐴, 𝐵 within the same reuse pair.
Additionally,

𝐺 (𝑖, 𝑗, 𝑁 ) = 𝑔𝑇 (𝑖, (( 𝑗 − 1) % 𝑁 ) + 1, 𝑁 ) + 𝑔𝐴,𝐵 (𝑖, 𝑗, 𝑁 ),
for matrix B.

We will now derive the four summed terms in the Defini-
tion 5 (two in 𝐹 , two in 𝐺).

4.2.1 Matrix A. We again elide the full derivations of 𝑓𝑇
and 𝑓𝐴,𝐵 but point the interested reader to github.com/wes-
smith/Tech-Report-ICS-22/. The results are as follows:

Lemma 5 (Matrix A temporaries). Let 𝑓𝑇 (𝑖, 𝑗, 𝑁 ) be the num-
ber of unique temporaries within an𝐴[𝑖, 𝑗] 𝐿𝑁 reuse pair. Then

𝑓𝑇 (𝑖, 𝑗, 𝑁 ) = 𝑇𝑁 + 2𝑁 2 + 8𝑇𝑁
2
−

𝑙𝑜𝑔2 (𝑁 )−1∑︁
𝑖=0

2𝑇2𝑘

+
𝑙𝑜𝑔2 (𝑁 )+1∑︁

𝑘=0
(2𝑘 )2 · 𝐼 ((( 𝑗 − 1 % 2𝑁 ) % 2𝑘+1) + 1 > 2𝑘 )

+
𝑙𝑜𝑔2 (𝑁 )∑︁
𝑘=0
(2𝑘 )2 · 𝐼 (((𝑖 − 1 % 𝑁 ) % 2𝑘+1) + 1 > 2𝑘 )

For 𝑓𝐴,𝐵 , we isolate the following recursive relationship
(where the recursion is between parents and children in the
tree) as being essential:[

𝛿1
𝛿2

]
→


𝛿1 𝛿1 + 𝑁 2

𝑁 2 2 · 𝑁 2

2 · 𝑁 2 𝑁 2

𝛿2 + 𝑁 2 𝛿2


Here, each matrix entry is itself a 𝑁

2 × 𝑁 matrix. Lemma 6
reflects this recursion, with the eight terms corresponding
to the eight sections of the second matrix. The indicator
function calls isolate which section of the matrix (𝑖, 𝑗) fall in,
and the four recursive calls correspond to the four sections
that contain a 𝛿 term.

Lemma 6. Let 𝑓𝐴,𝐵 (𝑖, 𝑗, 𝑁 ) be the number of unique items in
matrices 𝐴 and 𝐵 within an 𝐴[𝑖, 𝑗] 𝐿𝑁 reuse pair.

𝑓𝐴,𝐵 (𝑖, 𝑗, 𝑁 ) = 4𝑁 2 + 𝑓 ′𝐴,𝐵 (𝑖, 𝑗, 𝑁 )

where

𝑓 ′
𝐴,𝐵
(𝑖, 𝑗,𝑁 )=4·𝑁 2+( 𝑁2 )

2 ·𝐼 ( 𝑁4 <𝑖≤ 𝑁
2 , 𝑗≤

𝑁
2 )+ 2( 𝑁2 )

2 ·𝐼 ( 𝑁4 <𝑖≤ 𝑁
2 ,

𝑁
2 < 𝑗≤𝑁 )

+ ( 𝑁2 )
2 ·𝐼 ( 𝑁2 <𝑖≤ 3𝑁

4 ,𝑁2 < 𝑗≤𝑁 )+ 2( 𝑁2 )
2 ·𝐼 ( 𝑁2 <𝑖≤ 3𝑁

4 , 𝑗≤ 𝑁
2 )

+ 𝐼 (𝑖> 3𝑁
4 , 𝑗≤ 𝑁

2 ) · ( (
𝑁
2 )

2+𝑓𝐴,𝐵 (𝑖−𝑁
2 , 𝑗,

𝑁
2 ))+ 𝐼 (𝑖> 3𝑁

4 , 𝑗> 𝑁
2 ) · (𝑓𝐴,𝐵 (𝑖−𝑁

2 , 𝑗−
𝑁
2 ,

𝑁
2 ))

+ 𝐼 (𝑖≤ 𝑁
4 , 𝑗>

𝑁
2 ) · ( (

𝑁
2 )

2+𝑓𝐴,𝐵 (𝑖, 𝑗−𝑁
2 ,

𝑁
2 ))

+ 𝐼 (𝑖≤ 𝑁
4 , 𝑗≤

𝑁
2 ) · (𝑓𝐴,𝐵 (𝑖, 𝑗,𝑁2 ))

and

𝑓 ′𝐴,𝐵 (𝑖, 𝑗, 2) =
[
0 1
2 1

]

4.2.2 Matrix B. The quantities of interest for matrix 𝐵

have very similar forms:

Lemma 7 (Matrix B temporaries). Let𝑔𝑇 (𝑖, 𝑗, 𝑁 ) be the num-
ber of unique temporaries within an 𝐵 [𝑖, 𝑗] 𝐿𝑁 reuse pair. Then

𝑔𝑇 (𝑖, 𝑗, 𝑁 ) = 4 ·𝑇𝑁 + 2𝑁 2 −
𝑙𝑜𝑔2 (𝑁 )−1∑︁

𝑘=0
4 ·𝑇2𝑘+

⌈𝑙𝑜𝑔2 (𝑁 ) ⌉∑︁
𝑘=0

4𝑘 · 𝐼 (((𝑖 − 1) % 2𝑘+1) + 1 > 2𝑘 )

+
⌈𝑙𝑜𝑔2 (𝑁 ) ⌉∑︁

𝑘=0
4𝑘 · 𝐼 ((( 𝑗 − 1) % 2𝑘+1) + 1 > 2𝑘 )

Again, we extract the key recursive relationship between
reuse distances in parents and children in the tree:

[
𝛿1 𝛿2

]
→

[
𝛿1 2𝑁 2 6𝑁 2 𝛿2 + (2𝑁 )2

𝛿1 + (2𝑁 )2 6𝑁 2 2𝑁 2 𝛿2

]
where each entry represents an 𝑁 × 𝑁

2 matrix. Lemma 8
again reflects this recursion:

Lemma 8. Let 𝑔𝐴,𝐵 (𝑖, 𝑗, 𝑁 ) be the number of unique items in
matrices 𝐴 and 𝐵 within an 𝐵 [𝑖, 𝑗] 𝐿𝑁 reuse pair. Then

𝑔𝐴,𝐵 (𝑖, 𝑗, 𝑁 ) = 6𝑁 2 + 𝑔′𝐴,𝐵 (𝑖, 𝑗, 𝑁 )

where

𝑔′
𝐴,𝐵
(𝑖, 𝑗,𝑁 )=𝑁 2

2 ·𝐼 (𝑖≤𝑁,𝑁2 < 𝑗≤𝑁 )+ ( 3𝑁 2
2 ) ·𝐼 (𝑖≤𝑁,𝑁< 𝑗≤ 3𝑁

2 )

+ ( 3𝑁 2
2 ) ·𝐼 (𝑁<𝑖≤2𝑁,𝑁2 < 𝑗≤𝑁 )+ ( 𝑁 2

2 ) ·𝐼 (𝑁<𝑖≤2𝑁,𝑁< 𝑗≤ 3𝑁
2 )

+ 𝐼 (𝑖≤𝑁,𝑗≤ 𝑁
2 ) ·𝑔

′
𝐴,𝐵
(𝑖, 𝑗,𝑁2 )+ 𝐼 (𝑁<𝑖≤2𝑁,𝑗≤ 𝑁

2 ) · (𝑁
2+𝑔′

𝐴,𝐵
(𝑖−𝑁,𝑗,𝑁2 ))

+ 𝐼 (𝑖≤𝑁, 3𝑁2 < 𝑗≤2𝑁 ) · (𝑁 2+𝑔′
𝐴,𝐵
(𝑖, 𝑗−𝑁,𝑁2 ))

+ 𝐼 (𝑁<𝑖≤2𝑁, 3𝑁2 < 𝑗≤2𝑁 ) ·𝑔′
𝐴,𝐵
(𝑖−𝑁,𝑗−𝑁,𝑁2 )

and

𝑔′𝐴,𝐵 (𝑖, 𝑗, 𝑁 ) =
[
1 1
2 0

]
4.3 Final Distribution
With Definitions 1-4 and Lemmas 1-8, we have an under-
standing of both the values of the reuse distances that corre-
spond to nodes in our tree decomposition and their frequen-
cies. We then arrive at the complete specification for a reuse
distance distribution (i.e. miss ratio curve):
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Theorem 2 (Reuse Distance Multiset). The multiset of all
reuse distances in an execution of 𝑁𝑥𝑁 recursive matrix mul-
tiplication can be expressed as follows:

𝑅𝐷𝑁 =
⋃

𝑙 ∈{1,2,4...𝑁 }

⋃
(𝑖, 𝑗,𝑘) ∈{1..𝐿}×{1..𝐿}×{1,2}

{𝐷𝑇𝑘,𝑙 (𝑖, 𝑗)...𝐷𝑇𝑘,𝑙 (𝑖, 𝑗)}︸                         ︷︷                         ︸
#𝐿𝑙
2

∪
⋃

𝑙 ∈{1,2,4...𝑁 }

⋃
(𝑖, 𝑗) ∈{1..𝐿}×{1..2𝐿}

{𝐹 (𝑖, 𝑗, 𝑙)...𝐹 (𝑖, 𝑗, 𝑙)}︸                   ︷︷                   ︸
𝑁
2𝑙 ·

𝑁 2
2𝑙2

∪
⋃

𝑙 ∈{1,2,4...𝑁 }

⋃
(𝑖, 𝑗) ∈{1..2𝐿}×{1..2𝐿}

{𝐺 (𝑖, 𝑗, 𝑙)...𝐺 (𝑖, 𝑗, 𝑙)}︸                    ︷︷                    ︸
𝑁
2𝑙 ·

𝑁 2
4𝑙2

where 𝐷𝑇𝑘,𝑙 (𝑖, 𝑗), 𝐹 (𝑖, 𝑗, 𝑁 ),𝐺 (𝑖, 𝑗, 𝑁 ) and #𝐿𝑙 are defined in
earlier lemmas and definitions.

Theorem 2 is a symbolic construction that represents
RMM’s reuse distance behavior for any input size as a multi-
set. When instantiated for a given execution, this data would
normally take the form of a histogram, but as we are spec-
ifying a distribution symbolically we require this multiset
construction. The elements of the set are reuse distance val-
ues, and their repetition denotes the multiplicity of that RD
value.

4.4 Algorithmic form
Algorithm 1 contains a specification for how to compute a
reuse distribution for RMM given the previous handful of
mathematical results and an input size:

Algorithm 1 Reuse Distance Computation
Require: 𝑅𝐷 : 𝑁 → 𝑁 {Dictionary. key:RD, value:count.}
1: compute_RMM_RDD(𝑁 ):
2: for 𝑙 ∈ {1, 2, 4...𝑁 } do
3: for (𝑖, 𝑗, 𝑘) ∈ {1..𝐿} × {1..𝐿} × {1, 2} do
4: /* Lemmas 1, 2, 3, Definition 3*/
5: 𝑅𝐷 [𝐷𝑇𝑘,𝑙 (𝑖, 𝑗)] ← 𝑅𝐷 [𝐷𝑇𝑘,𝑙 (𝑖, 𝑗)] + #𝐿𝑙

2
6: end for
7: for (𝑖, 𝑗) ∈ {1..𝐿} × {1..2𝐿} do
8: /* Lemmas 4, 5, 6, Definition 5 */
9: 𝑅𝐷 [𝐹 (𝑖, 𝑗, 𝑙)] ← 𝑅𝐷 [𝐹 (𝑖, 𝑗, 𝑙)] + 𝑁

2𝑙 ·
𝑁 2

2𝑙2
10: end for
11: for (𝑖, 𝑗) ∈ {1..2𝐿} × {1..2𝐿} do
12: /* Lemmas 4, 7, 8, Definition 5 */
13: 𝑅𝐷 [𝐺 (𝑖, 𝑗, 𝑙)] ← 𝑅𝐷 [𝐺 (𝑖, 𝑗, 𝑙)] + 𝑁

2𝑙 ·
𝑁 2

4𝑙2
14: end for
15: end for
16: return 𝑅𝐷{Dictionary stores distribution}

Algorithm 1 has runtime 𝑂 (𝑛2 · 𝑙𝑜𝑔(𝑛)) for matrix dimen-
sion 𝑛, while collecting this data by running the program and
performing trace analysis has runtime 𝑂 (𝑛3 · 𝑙𝑜𝑔(𝑛)) [16].
Any profiling involving running the program must be Ω(𝑛3),

demonstrating that our approach has guaranteed asymptotic
improvement.

4.5 Verification
We verified Theorem 2 by comparing its resultant RD dis-
tribution to an RD distribution formed by instrumenting
RMM and performing trace analysis. The two distributions
are verified to be identical up to size 256 × 256.

5 DATA MOVEMENT DISTANCE
ANALYSES

In the following section we will derive bounds on the data
movement distance (see Definition 1) incurred by several
forms of matrix multiplication: naive, tiled, and recursive and
Strassen’s both with and without temporary reuse. In doing
so, we demonstrate the following two valuable properties of
DMD:

1. DMD is capable of asymptotically differentiating algo-
rithms with the same time complexity as a result of
their memory behavior

2. DMD is capable of asymptotically differentiating be-
tween versions of the same algorithmwith andwithout
locality optimizations

We construct precise DMD values for naive MM, asymp-
totically tight upper and lower bounds (differing only in
coefficient) for tiled and recursive MM, and upper bounds
for Strassen’s algorithm and recursive MM with memory
management.

5.1 Naive Matrix Multiplication
For space, we elide the derivation of naive MM’s DMD. How-
ever, it is quite straightforward. We derive first is reuse dis-
tance distribution, which is very simple, then apply Defition
1 to sum the square roots of all its RDs. The result:

𝐷𝑀𝐷𝑀𝑀 = (𝑛3 ·
√
2𝑛) + (𝑛3 − 2𝑛2 + 𝑛) ·

√
𝑛2 + 2𝑛

+(
𝑛−1∑︁
𝑖=1

2𝑛 ·
√
𝑛2 + 𝑛 + 𝑖) + (𝑛 ·

√
𝑛2 + 𝑛)

Simplifying asymptotically:

𝐷𝑀𝐷𝑀𝑀 ∼ 𝑛4

5.2 Tiled Matrix Multiplication
Consider matrix multiplication with the computation re-
ordered by partitioning the input matrices into 𝐷𝑥𝐷 tiles as
follows, from [2]:
for(jj = 0; jj < N; jj = jj + D)

for(kk = 0; kk< N; kk = kk + D)
for(i = 0; i< N; i = i + 1)

for(j = jj; j < jj + D; j = j + 1)
for(k = kk; k < kk + D; k = k + 1)

C[i][j] = C[i][j] + A[i][k]*B[k][j]



ICS ’22, June 28–30, 2022, Virtual Event, USA Wesley Smith, Aidan Goldfarb, and Chen Ding

For space, we elide the full derivation of tiled MM’s DMD,
but the approach is similar to that for naive matrix multipli-
cation above. However, instead of deriving the precise reuse
distance distribution, we form upper and lower bounded
versions and use them to derive the corresponding DMD
bounds. The interested reader can see the full derivation at
github.com/wes-smith/Tech-Report-ICS-22/.

Theorem 3 (Tiled Matrix Multiplication DMD). Upper and
lower bounds on the data movement distance incurred by tiled
matrix multiplication operating on 𝑁𝑥𝑁 matrices with 𝐷𝑥𝐷

tiles are as follows:

𝑁 4

𝐷
+ 𝑁 3 · 𝐷 <∼ (𝐷𝑀𝐷𝑇𝑀𝑀 ) < 2

√
3
𝑁 4

𝐷
+
√
2𝑁 3 · 𝐷

Note that for 𝐷 = 1 and 𝐷 = 𝑁 , the bounds are (asymptot-
ically) the same as the DMD of naive matrix multiplication,
as tile sizes of 1 and 𝑁 result in the same computation order
as naive MM.

5.3 Recursive Matrix Multiplication
𝐹 :

Firstly, note that as 𝑓𝑇 (𝑖, 𝑗, 𝑁 ) = Ω(𝑁 3) and 𝑓𝐴,𝐵 (𝑖, 𝑗, 𝑁 ) =
𝑂 (𝑁 2), 𝐹 (𝑖, 𝑗, 𝑁 ) ∼ 𝑓𝑇 (𝑖, 𝑗, 𝑁 ) (see Definition 5). Similarly,
𝐺 (𝑖, 𝑗, 𝑁 ) ∼ 𝑔𝑇 (𝑖, 𝑗, 𝑁 ). Noting this:

𝑓𝑇 (𝑖, 𝑗, 𝑁 ) ∼ 𝑇𝑁 + 8𝑇𝑁
2
−

𝑙𝑜𝑔2 (𝑁 )−1∑︁
𝑘=0

2 ·𝑇2𝑘

Taking a lower bound on the summation to derive an upper
bound on DMD:

𝐹 (𝑖, 𝑗, 𝑁 ) ∼ 3𝑁 3

Upper bounding the summation for a lower bound:

𝐹 (𝑖, 𝑗, 𝑁 ) ∼ 2𝑁 3

𝐺 has a similar analysis:

𝑔𝑇 (𝑖, 𝑗, 𝑁 ) ∼ 4 ·𝑇𝑁 −
𝑙𝑜𝑔2 (𝑁 )−1∑︁

𝑘=0
2 ·𝑇2𝑘

An upper bound here, bounding the summation again:

𝐺 (𝑖, 𝑗, 𝑁 ) ∼ 7 · 𝑁 3

The corresponding lower bound:

𝐺 (𝑖, 𝑗, 𝑁 ) ∼ 6 · 𝑁 3

5.4 Accesses to temporaries
We now turn our attention to accesses to temporaries. We
will consider the four quadrants of 𝐷𝑇1,𝑁 , 𝐷𝑇2,𝑁 separately.
First, we need the asymptotic behavior of𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝜙, 𝛿, 𝜔,𝛾 :

𝑑1 ∼
7𝑁 3

2
, 𝑑2 ∼ 3𝑁 3, 𝑑3 ∼

3𝑁 3

2
, 𝑑4 ∼ 𝑁 3

𝜙 (𝑁 ), 𝛾 (𝑁 ), 𝜔 (𝑁 ), 𝛿 (𝑁 ) ∼ 𝑁 3

The distribution of asymptotic reuse distances for 𝐷𝑇1 and
𝐷𝑇2 are then as follows, by partitioning each into four quad-
rants and combining the asymptotic costs of the above:

𝐷𝑇1,𝑁 :


1/4 7𝑁 3

2

1/4 5𝑁 3

2
1/4 3𝑁 3

1/4 2𝑁 3

𝐷𝑇2,𝑁 :


1/4 3𝑁 3

2

1/4 𝑁 3

2
1/4 𝑁 3

1/4 3𝑁 2

5.5 DMD calculation
With asymptotic reuse distance for each type of memory ac-
cess, we can now use the frequency information in Theorem
2 to calculate DMD.

5.5.1 Temporaries. 𝐷𝑇1 :

𝐷𝑀𝐷𝐷𝑇 1 =

𝑙𝑜𝑔2 (𝑁 )∑︁
𝑖=0

𝑁 3 ·
√︁
2(2𝑖 )3

4 · 2𝑖 +
𝑙𝑜𝑔2 (𝑁 )∑︁

𝑖=0

𝑁 3 ·
√︁
3(2𝑖 )3

4 · 2𝑖

+
𝑙𝑜𝑔2 (𝑁 )∑︁

𝑖=0

𝑁 3 ·
√︃

7(2𝑖 )3
2

4 · 2𝑖 +
𝑙𝑜𝑔2 (𝑁 )∑︁

𝑖=0

𝑁 3 ·
√︃

5(2𝑖 )3
2

4 · 2𝑖

𝐷𝑀𝐷𝐷𝑇 1 ∼
2 +
√
5 +
√
6 +
√
7 + 2
√
2 + 2
√
3 +
√
14 +
√
10

4
𝑁 3.5

𝐷𝑇2 :

𝐷𝑀𝐷𝐷𝑇 2 =

𝑙𝑜𝑔2 (𝑁 )∑︁
𝑖=0

𝑁 3 ·
√︁
(2𝑖 )3

4 · 2𝑖 +
𝑙𝑜𝑔2 (𝑁 )∑︁

𝑖=0

𝑁 3 ·
√︃
(2𝑖 )3
2

4 · 2𝑖

+
𝑙𝑜𝑔2 (𝑁 )∑︁

𝑖=0

𝑁 3 ·
√︃

3(2𝑖 )3
2

4 · 2𝑖 +
𝑙𝑜𝑔2 (𝑁 )∑︁

𝑖=0

𝑁 3 ·
√︁
3(2𝑖 )2

4 · 2𝑖

𝐷𝑀𝐷𝐷𝑇 2 ∼
3 + 2
√
2 +
√
3 +
√
6

4
𝑁 3.5

5.5.2 Accesses to A and B. First, we will consider the
upper bound on 𝐹 :

𝐷𝑀𝐷
𝑢𝑝

𝐹
=

𝑙𝑜𝑔2 (𝑁 )∑︁
𝑖=0

2𝑖∑︁
𝑗=1

2𝑖+1∑︁
𝑘=1

𝑁 ·
√︁
3(2𝑖 )3

2 · 2𝑖 =

𝑙𝑜𝑔2 (𝑁 )∑︁
𝑖=0

𝑁 · 2𝑖
√︁
3(2𝑖 )3

𝐷𝑀𝐷
𝑢𝑝

𝐹
∼ 4

√
6

4
√
2 − 1

𝑁 3.5

Next, the lower bound:

𝐷𝑀𝐷𝑙𝑜𝑤
𝐹 =

𝑙𝑜𝑔2 (𝑁 )∑︁
𝑖=0

2𝑖∑︁
𝑗=1

2𝑖+1∑︁
𝑘=1

𝑁 ·
√︁
2(2𝑖 )3

2 · 2𝑖 =

𝑙𝑜𝑔2 (𝑁 )∑︁
𝑖=0

𝑁 · 2𝑖
√︁
2(2𝑖 )3

𝐷𝑀𝐷𝑙𝑜𝑤
𝐹 ∼ 8

4
√
2 − 1

𝑁 3.5

Similarly for B:

𝐷𝑀𝐷
𝑢𝑝

𝐺
=

𝑙𝑜𝑔2 (𝑁 )∑︁
𝑖=0

2𝑖+1∑︁
𝑗=1

2𝑖∑︁
𝑘=1

𝑁 ·
√︁
7(2𝑖 )3

2 · 2𝑖 =

𝑙𝑜𝑔2 (𝑁 )∑︁
𝑖=0

𝑁 · 2𝑖
√︁
7(2𝑖 )3
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𝐷𝑀𝐷
𝑢𝑝

𝐺
∼ 4
√
14

4
√
2 − 1

𝑁 3.5

Next, the lower bound:

𝐷𝑀𝐷𝑙𝑜𝑤
𝐺 =

𝑙𝑜𝑔2 (𝑁 )∑︁
𝑖=0

2𝑖+1∑︁
𝑗=1

2𝑖∑︁
𝑘=1

𝑁 ·
√︁
6(2𝑖 )3

2 · 2𝑖 =

𝑙𝑜𝑔2 (𝑁 )∑︁
𝑖=0

𝑁 · 2𝑖
√︁
6(2𝑖 )3

𝐷𝑀𝐷𝑙𝑜𝑤
𝐺 ∼ 8

√
3

4
√
2 − 1

𝑁 3.5

5.5.3 Total DMD.

Theorem 4 (Recursive Matrix Multiplication Data Move-
ment Distance). Combining the previous, upper and lower
bounds on the data movement distance incurred by a standard
recursive matrix multiplication algorithm on 𝑁𝑥𝑁 matrices is
as follows:

12.82𝑁 3.5 <∼ (𝐷𝑅𝑀𝑀 (𝑁 )) < 13.46𝑁 3.5

5.5.4 Memory Management. The RMM pseudocode an-
alyzed earlier allocates memory on each call but contains no
calls to free(), resulting in poor locality. Practical implemen-
tations of RMM will use memory management strategies for
handling temporaries, so we will now adapt the previous
DMD analysis to take this into account.

One way to introduce temporary freeing would be to call
free() twice after each addition group, once the addition
result has been stored in a𝐶 submatrix. Doing so creates the
following upper bound on the total number of temporaries
needed:

#𝑇 (𝑁 ) = 𝑁 2 +
𝑙𝑜𝑔2 (𝑁 )−1∑︁

𝑖=0
2 ∗ (2𝑖 )2 = 2

3
(𝑁 2 − 1)

#𝑇 (𝑁 ) < 2𝑁 2

With this, a bound on the total data size of the execution
(including input data) is 𝑁 2+𝑁 2+2𝑁 2 = 4𝑁 2. We previously
derived reuse distances as functions of tree position: we can
now reuse our analysis of the DMD of RMM without tempo-
rary reuse, but instead of using said functions, we will use
the minimum of those functions and 4𝑁 2 (as reuse distance
is always upper bounded by data size). For temporary matrix
𝐷𝑇1:

𝐷𝑀𝐷
𝑢𝑝

𝐷𝑇 1 =

𝑙𝑜𝑔2 (𝑁 )∑︁
𝑖=0

𝑁 3 ·
√︁
𝑚𝑖𝑛(2(2𝑖 )3, 4𝑁 2)

4 · 2𝑖 +
𝑙𝑜𝑔2 (𝑁 )∑︁

𝑖=0

𝑁 3 ·
√︁
𝑚𝑖𝑛(3(2𝑖 )3, 4𝑁 2)

4 · 2𝑖

+
𝑙𝑜𝑔2 (𝑁 )∑︁

𝑖=0

𝑁 3 ·
√︃
𝑚𝑖𝑛( 7(2𝑖 )32 , 4𝑁 2)
4 · 2𝑖 +

𝑙𝑜𝑔2 (𝑁 )∑︁
𝑖=0

𝑁 3 ·
√︃
𝑚𝑖𝑛( 5(2𝑖 )32 , 4𝑁 2)
4 · 2𝑖

Solving for the points where the parameters to min() are
equal, we partition each summation into two by splitting

values of induction variable i:

𝐷𝑀𝐷
𝑢𝑝

𝐷𝑇 1 =
∑ ⌊ 𝑙𝑜𝑔2 (2𝑁 2 )

3 ⌋
𝑖=0

𝑁 3 ·
√
2(2𝑖 )3

4·2𝑖 +∑𝑙𝑜𝑔2 (𝑁 )
𝑖= ⌊ 𝑙𝑜𝑔2 (2𝑁

2 )
3 ⌋+1

𝑁 4

2(2𝑖 )

+∑ ⌊ 𝑙𝑜𝑔2 ( 43𝑁 2 )
3 ⌋

𝑖=0
𝑁 3 ·
√
3(2𝑖 )3

4·2𝑖 +∑𝑙𝑜𝑔2 (𝑁 )

⌊ 𝑙𝑜𝑔2 (
4
3𝑁

2 )
3 ⌋+1

𝑁 4

2(2𝑖 )

+∑ ⌊ 𝑙𝑜𝑔2 ( 87𝑁 2 )
3 ⌋

𝑖=0
𝑁 3 ·
√

7
2 (2𝑖 )3

4·2𝑖 +∑𝑙𝑜𝑔2 (𝑁 )

⌊ 𝑙𝑜𝑔2 (
8
7𝑁

2 )
3 ⌋+1

𝑁 4

2(2𝑖 )

+∑ ⌊ 𝑙𝑜𝑔2 ( 85𝑁 2 )
3 ⌋

𝑖=0
𝑁 3 ·
√

5
2 (2𝑖 )3

4·2𝑖 +∑𝑙𝑜𝑔2 (𝑁 )

⌊ 𝑙𝑜𝑔2 (
8
5𝑁

2 )
3 ⌋+1

𝑁 4

2(2𝑖 )

Evaluating:

𝐷𝐺𝐶𝐷𝑇 1 ∼ (
1

2 · 2 1
3
+ 1

2 · 43
1
3
+ 1

2 · 87
1
3
+ 1

2 · 85
1
3

+ (2 +
√
2)

4
(2 1

6 ·
√
2 + 4

3

1
6
·
√
3 + 8

7

1
6
·
√︂

7
2
+ 8
5

1
6
·
√︂

5
2
))𝑁 10

3

The same analysis for 𝐷𝑇2 results in the following:

𝐷𝑀𝐷
𝑢𝑝

𝐷𝑇 2 ∼ (
1

2 · 4 1
3
+ 1
2 · 8 1

3
+ 1

2 · 83
1
3

+ (2 +
√
2)

4
(2 1

3 + 8 1
6 ·

√︂
1
2
+ 8
3

1
6
·
√︂

3
2
))𝑁 10

3

We analyze 𝐹 and 𝐺 in the same way, but find that they are
asymptotically insignificant in comparison to 𝐷𝑇1 and 𝐷𝑇2.
So, we arrive at our DMD bound for RMM with memory
management:

Theorem 5 (RMM Data Movement Distance With Tempo-
rary Reuse: Upper Bound). Combining the previous, an upper
bound on the data movement distance incurred by a recursive
matrix multiplication algorithm on 𝑁𝑥𝑁 matrices employing
temporary reuse is as follows:

∼ (𝐷𝐺𝐶𝑢𝑝

𝑅𝑀𝑀
) < 11.85𝑁

10
3

5.6 Strassen’s Algorithm
Strassen’s algorithm formatrixmultiplication, which reduces
time complexity from𝑂 (𝑁 3) to around𝑂 (𝑁 2.8) at the cost of
worse locality and additional 𝑂 (𝑁 2) cost, is our final target
for analysis. Figure 4 [25] gives pseudocode for Strassen’s,
which is similar to standard RMM. The core idea is that each
call to Strassen’s decomposes into 7 recursive calls instead
of 8 but contains additional matrix arithmetic. As before,
we will analyze Strassen’s both with and without locality
optimizations for temporary reuse. Note in the pseudocode
that, at each level of recursion, 17 temporary matrices are in-
troduced:𝑀1...𝑀7 store the results of recursive computation,
and there are ten matrix additions or subtractions that are
then passed into recursive calls. As each of these matrices is
𝑁
2 ×

𝑁
2 , the total number of temporaries needed for this call

is 17𝑁 2

4 . Summing over all nodes in the tree decomposition:
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Algorithm MM RMM Strassen

Naive Tiled Naive Temporary Reuse Naive Temporary Reuse

Time Comp. 𝑂 (𝑁 3) 𝑂 (𝑁 3) 𝑂 (𝑁 3) 𝑂 (𝑁 3) 𝑂 (𝑁 2.8) 𝑂 (𝑁 2.8)

DMD 𝑁 4 √
2𝑁 3𝐷 + 2

√
3𝑁 4

𝐷
13.46𝑁 3.5 11.85𝑁 3.33 6.51𝑁 3.4 15.36𝑁 3.23

Table 1. Summary of DMD complexity compared to time complexity

Figure 4. Strassen’s algorithm pseudocode

Lemma9 (Strassen’s AlgorithmTemporary Usage). Let𝑇𝑆𝑁
be the total number of temporaries required by an 𝑁 × 𝑁

execution of Strassen’s algorithm where all temporaries are
unique. Then

𝑇𝑆𝑁 =

𝑙𝑜𝑔2 (𝑁 )∑︁
𝑖=1

17
4
· (2𝑖 )2 · 7𝑙𝑜𝑔2 (𝑁 )−𝑖 = 17

3
(𝑁 𝑙𝑜𝑔2 (7) − 𝑁 2)

We can now asymptotically upper bound the reuse dis-
tances of each access from each quadrant of 𝐴, 𝐵 as well as
the temporary matrices𝑀 in terms of 𝑇𝑆𝑁 by counting the
calls to an 𝑁

2 ×
𝑁
2 matrix multiplication between them. For

example, in Figure 4 we see that there exist three calls be-
tween the first and second uses of𝐴1,1, upper bounding each
reuse distance from an access in 𝐴1,1 by 3 · 𝑇𝑆 𝑁

2
. Without

enumerating all of these distances, we see there are a total of
31 such intervals, with a total distance of 96 ·𝑇𝑆 2

2
. As before,

we can sum over all nodes to compute DMD:

𝐷𝑀𝐷𝑆𝑡𝑟𝑎𝑠𝑠𝑒𝑛 ≤
𝑙𝑜𝑔2 (𝑁 )∑︁

𝑖=1

√︁
78 ·𝑇𝑆2𝑖−1 ·

(2𝑖 )2
4
· 7𝑙𝑜𝑔2 (𝑁 )−𝑖

Evaluating and asymptotically simplifying:

∼ (𝐷𝑀𝐷𝑆𝑡𝑟𝑎𝑠𝑠𝑒𝑛) ≤
4
√
34(𝑁 2

√
𝑁 𝑙𝑜𝑔2 (7) − 𝑁 𝑙𝑜𝑔2 (7) )
4
√
7 − 7

Theorem 6 (Strassen’s Algorithm DMD: Upper Bound).
An upper bound on the data movement distance incurred by
Strassen’s algorithm operating on 𝑁𝑥𝑁 matrices without tem-
porary reuse is as follows:

∼ (𝐷𝑀𝐷
𝑢𝑝

𝑆𝑡𝑟𝑎𝑠𝑠𝑒𝑛
) < 6.51𝑁 (2+

𝑙𝑜𝑔2 (7)
2 )

∼ (𝐷𝑀𝐷
𝑢𝑝

𝑆𝑡𝑟𝑎𝑠𝑠𝑒𝑛
) <≈ 6.51𝑁 3.4

5.6.1 Memory Management. We will adapt the previous
analysis in the same way that we did when exploring the
effect of adding temporary reuse to RMM. First, we note that
Huss-Lederman et al. [11] discuss a memory management
technique for Strassen’s that requires only 𝑁 2 temporaries.
This brings total data size for an execution to 3𝑁 2. We will
again use this data size as an upper bound on the value of
an individual reuse distance.
The largest of the intervals in the pseudocode is 7 ·𝑇𝑆 𝑁

2
,

so we replace each of them with this so there is only one
intersection point to consider. That shifts the sum from 96 ·
𝑇𝑆 𝑁

2
to 31 · 7 ·𝑇𝑆 𝑁

2
= 217 ·𝑇𝑆 𝑁

2
. We must multiply our 3𝑁 2

upper bound by 31 as well, yielding 93𝑁 2.

𝐷𝑀𝐷
𝑢𝑝

𝑆𝑡𝑟𝑎𝑠𝑠𝑒𝑛′ =

𝑙𝑜𝑔2 (𝑁 )∑︁
𝑖=1

√︁
𝑚𝑖𝑛(217 ·𝑇𝑆2𝑖−1 , 93𝑁 2) · (2

𝑖 )2
4
· 7𝑙𝑜𝑔2 (𝑁 )−𝑖

Again we solve for an approximate equivalence point for the
two functions that preserves the upper bound:

𝑖 ≈ 𝑙𝑜𝑔2 (0.797𝑁
2

𝑙𝑜𝑔2 (7) ) )

Partitioning the previous summation:

𝐷𝑀𝐷
𝑢𝑝

𝑆𝑡𝑟𝑎𝑠𝑠𝑒𝑛′ =

⌊𝑙𝑜𝑔2 (0.797𝑁
2

𝑙𝑜𝑔2 (7) ) ) ⌋∑︁
𝑖=1

√︁
217 ·𝑇𝑆2𝑖−1 ·

(2𝑖 )2
4
· 7𝑙𝑜𝑔2 (𝑁 )−𝑖

+
𝑙𝑜𝑔2 (𝑁 )∑︁

𝑖= ⌈𝑙𝑜𝑔2 (0.797𝑁
2

𝑙𝑜𝑔2 (7) ) ) ⌉

√
93𝑁 2 · (2

𝑖 )2
4
· 7𝑙𝑜𝑔2 (𝑁 )−𝑖

Simplifying (while preserving the upper bound), removing
asymptotically insignificant terms, and evaluating:

Theorem 7 (Strassen’s Algorithm With Temporary Reuse
DMD: Upper Bound). An upper bound on the data movement
distance incurred by Strassen’s algorithm operating on 𝑁𝑥𝑁

matrices with temporary reuse is as follows:

∼ (𝐷𝑀𝐷
𝑢𝑝

𝑆𝑡𝑟𝑎𝑠𝑠𝑒𝑛′) < 15.36𝑁 3.23
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5.7 Summary
Table 1 contains asymptotic simplifications of the results of
the previous DMD analyses, with a mix of precise results
and upper bounds. We make the following observations:

• DMD is able to distinguish both between different al-
gorithms with the same time complexity and between
locality optimized vs. non-optimized versions of the
same algorithm,
• The DMD reduction (≈ 𝑁

1
6 ) from adding temporary

reuse is the same for RMM and Strassen even though
they have different time and space complexities with-
out temporary reuse,
• The gap between Strassen and RMM DMD is smaller
than the gap between their time complexities, demon-
strating that DMD has captured some of the factors
that make Strassen not practical.

6 RELATEDWORK
Hong and Kung [9] pioneered the study of I/O complex-
ity, measuring memory complexity by the amount of data
transfer and deriving this complexity symbolically as a func-
tion of the memory size and the problem size. The same
complexity measures were used in the study of cache oblivi-
ous algorithms [8] and communication-avoiding algorithms.
Olivry et al. [15] introduce a compiler technique to statically
derive I/O complexity bounds. Olivry et al. use asymptotic
complexity (∼), much as we do, to consider constant-factor
performance differences, while the rest do not. I/O complex-
ity suffers from an issue inherited from miss ratio curves: it
is not ordinal across cache sizes. Ordinality means that data
can be usefully ordered; integers are ordinal, while functions
are typically not. Miss ratio as a function of cache size can
be numerically compared by an algorithm designer when a
target cache size is known, but it cannot be used to evaluate
the general effectiveness of an optimization across cache
sizes. DMD, on the other hand, is an ordinal metric that is
agnostic to cache size.
Memory hierarchies in practice may vary in many ways,

which make a unified cost model difficult. Valiant [24] de-
fined a bridging model, Multi-BSP, for a multi-core memory
hierarchy with a set of parameters including the number of
levels and the memory size and three other factors at each
level. A simpler model was the uniform memory hierarchy
(UMH) by Alpern et al. [1] who used a single scaling factor
for the capacity and the access cost across all levels. Both are
models of memory, where caching is not considered beyond
the point that the memory may be so implemented.

Matrix multiplication is well researched. Much effort has
been put into the analysis and optimization of the Strassen
algorithm and its cache utilization [11, 17, 19, 22] as well
as its parallel behavior [3, 21]. Lincoln et al. [13] explore
performance in a dynamically sized caching environment.

Recently, researchers have argued that, with proper imple-
mentation considerations and under the correct conditions,
the Strassen algorithm can outperform more conventionally
practical variants of MM [10].
Kung and Leiserson [12] showed that matrix multiplica-

tion for 𝑁 × 𝑁 matrices on systolic arrays takes 𝑁 steps
with 𝑁 2 processors computing in parallel. At each step, data
moves only between adjacent processors. Taking the wire
length between neighboring processors as unit distance and
ignoring the data movement outside the systolic array, the
DMD is 𝑁 3. Systolic arrays achieve the lowest possible as-
ymptotic data movement, matching time complexity. How-
ever, the algorithm requires 𝑁 2 processors. We leave the
DMD of parallel algorithms as the subject of future study.

7 CONCLUSION
We have explored the interactions between six variants of
matrix multiplication and hierarchical memory through the
lens of Data Movement Distance. We have demonstrated that
DMD’s assumptions conform with microarchitectural trends
and that it is capable of exposing algorithmic properties that
traditional analyses cannot. Time complexity, while an im-
portant theoretic metric by which to analyze algorithms,
is at odds with a computing environment in which mem-
ory systems are increasingly large and complex. We argue
that data movement complexity analysis through DMD has
great potential to help engineers and algorithm designers
to understand the algorithmic implications of hierarchical
memory.
The results presented in this paper leave open several

interesting avenues for future work. One is applying our
analysis to more algorithms. Interesting targets are widely
used algorithms with nontrivial memory behavior, such as
convolution and Fourier transforms. Another is exploring the
performance to data movement complexity relationship with
empirical results. Lastly, extending this work to consider the
effect of parallelism on interactions between algorithms and
memory hierarchies would improve its applicability.
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