Cache-Coherent CLAM (WIP)

Chen Ding

Benjamin Reber
University of Rochester
Rochester, New York, USA

Abstract

Traditional caches are automatic and cannot be controlled
directly by software. A recent design called CLAM manages
a cache using leases and lets a program specify these leases.
The lease cache is mostly controlled by software. This pa-
per extends CLAM to support multiple cores with private
caches. It presents the hardware extensions to support cache
coherence for data-race free (DRF) programs. CLAM can use
either inclusive or exclusive caching for shared data. Its per-
formance can be improved by two programming techniques:
cache draining and reference privatization.

CCS Concepts: + Software and its engineering — Retar-
getable compilers; « Computer systems organization
— Multicore architectures.

Keywords: programmable cache, programmable cache co-
herence, lease cache

ACM Reference Format:

Chen Ding, Benjamin Reber, and Dorin Patru. 2022. Cache-Coherent
CLAM (WIP). In Proceedings of the 23rd ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, and Tools for Em-
bedded Systems (LCTES ’22), June 14, 2022, San Diego, CA, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3519941.
3535073

1 Introduction

A memory hierarchy cannot be fully optimized unless soft-
ware and hardware can operate in concert. CLAM is a new
cache design that is programmable. This work extends CLAM
from a single cache to a set of caches and addresses the co-
herence problem among caches. It augments the design of
programmable cache with programmable cache coherence.

We call the new design CLAM coherence. It adds a bit in
each cache block to indicate share data and a new hardware
primitive called cache-wipe for a thread to clear all shared

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
LCTES °22, June 14, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-9266-2/22/06...$15.00
https://doi.org/10.1145/3519941.3535073

Dorin Patru
Rochester Institute of Technology
Rochester, New York, USA

data from its private cache. While conventional designs re-
quire inclusive caching for shared data, CLAM supports both
inclusive and exclusive caching of shared data. However,
CLAM coherence does not support all parallel programs but
data-race free (DRF) programs only.

CLAM coherence is programmable and enables software
and hardware to “cooperate” in two ways. The first is cache
draining, where a thread can be programmed to evict shared
data. In the best case, cache draining evicts all shared data
ahead of time, the cache-wipe becomes a no-op, and the
maintenance of cache coherence completely overlaps with
computation and does not impede scalability. The second is
reference privatization, which marks shared data as private
and maintains their coherence entirely in software. The first
technique hides the cost of cache-wipe but still evicts shared
data upon synchronization. The second technique removes
this requirement. Wang et al. [11] coined the term cooperative
caching. CLAM may be called cooperative cache coherence.

2 CLAM Prototype

Prechtl et al. [8] built a prototype lease cache called Com-
piler Lease of Accelerator Memory (CLAM). It has one RISC-V
processor and one data cache.

A reference-lease table is loaded before executing each
loop. At each access, the data block is given the lease (of its
reference). The data block stays in the cache until it is reused
or its lease expires, whichever comes first. If it is reused, its
lease is extended (by the lease of the new access). It uses
random eviction if the cache is full.

The lease cache is mostly controlled by software, but not
always. At each access, a program instructs the cache to store
a data block for the duration of the lease, but the hardware
may evict it early because of lack of space. On the other hand,
a program can always evict a data block by accessing it and
assigning a zero lease.

3 CLAM Coherence
3.1 Machine and Program Model

A processor has a set of cores and a two-level cache hierarchy,
shown in Figure 1. Each core has a first-level private cache,
and all cores share the second-level cache. We may refer to
each core or its cache as self and another one a peer. We will
later extend the design to more than two levels of cache.
Our design supports data-race-free (DRF) programs. A
program is DRF if in all its executions, if two threads access
the same memory location, and at least one of them is a


https://orcid.org/0000-0003-4968-6659
https://doi.org/10.1145/3519941.3535073
https://doi.org/10.1145/3519941.3535073
https://doi.org/10.1145/3519941.3535073

LCTES °22, June 14, 2022, San Diego, CA, USA

(@
// Lease for A[i]
// Shared A[i]

for (i=0; i<n; i++)
{
A[i] = ..;

Chen Ding, Benjamin Reber, and Dorin Patru

L1D Cache Block

[F [ LEasE [ Tag | SET_| DATA |

}

G L2 — Shared Cache

J

Figure 1. Overview of CLAM coherence. A program reference is annotated with the lease and reference type. An F (toFlush)

bit is added to every L1D cache block.

write, the two accesses must be ordered by a happen-before
relation [10, 3.4].

3.2 Programming Interface

All data references, i.e. loads and stores, in a program belong
to one and only one of the following three types:

e Single copy or volatile. Data accesses bypass private
caches and use only the shared cache.

e Non-shared or private. Data accessed by these refer-
ences are either thread local or read only.

e Shared or default. The last case is the default, where
the data accessed may be accessed by multiple threads
and are not read only.

Figure 1 shows an example loop where one reference is
marked shared and given a lease (Section 2). By default,
any data a thread accesses is shared. The shared data is the
target of the cache system to maintain their coherence and
consistency.

3.3 Hardware Support

The hardware support that is needed beyond a single-core
system is as follows:

e Private cache: it stores a local copy of shared data
when it is accessed by its core. Each cache block has a
toFLush (F)! bit, as shown in Figure 1. The bit is set if
a data block is accessed by a shared reference.

e Shared cache: reads and writes to shared cache are
totally ordered. It does not store special bits for coherence
control.

e cache-wipe instruction: This is a new hardware in-
struction. When a thread executes a cache-wipe, the
private cache clears all shared data by evicting all cache
blocks with a F bit.

A cache-wipe is a blocking operation and halts a thread
execution until it finishes. It may be invoked concurrently
by multiple threads, and multiple cache-wipes may overlap
in execution. Writebacks are serialized at the shared cache.

IThe term toFlush (F) is based on Ros and Jimborean [9] (see Section 4).

Exclusive Caching of Shared Data. A two-level cache
may be inclusive, where L1 content is a subset of L2 con-
tent; exclusive, where their contents have no overlap; or a
mix, where some data uses inclusive caching and others ex-
clusive caching. Inclusion is most beneficial when threads
share the working set that fits in L2 but not in L1. We may
call a shared working set actively shared data (which can
be measured precisely [6]). In other cases, inclusion causes
low space utilization in the shared cache. As the number of
cores increases, private caches must be small so the shared
cache has space for data not already stored in private caches.
Exclusive caching allows large private caches.

Of the three reference types (Section 3.2), only private
and shared data use two-level caching, and both can use
either inclusive or exclusive caching. Current hardware uses
directory-based protocols [7]. For shared data, the share
cache must store the directory information. In comparison,
CLAM uses only the share bit in private caches and no co-
herence meta-data in the shared cache.

3.4 Program Synchronization

Single-copy references (Section 3.2) are used to implement
synchronization. They by-pass private caches. Their updates
are visible immediately, and their accesses serialized, both
through the shared cache. When used to access a small
amount of data, bypassing is simple and low cost.

Synchronization is necessary for a parallel program to re-
move data races. Single-copy loads and stores have a global
ordering. Synchronization can use them to implement clas-
sical algorithms, including the 2-thread spin lock due to
Peterson, n-thread mutual exclusion due to Lamport, the
MCS queued lock, and barriers [10].

While a cache-wipe can be added to every volatile load or
store, it is sufficient to have just one wipe for each successful
synchronization. For example, if an atomic section is used,
two cache-wipes are added, one at the entry and the other
the exit, which ensure respectively the loading and writing
back the newest values of shared data.

3.5 Cache Coherence and Memory Consistency

For CLAM, cache coherence is trivial for volatile accesses,
which bypass private caches, and private accesses, which



Cache-Coherent CLAM (WIP)

are either read only or have an effect only within a thread.
We next consider only data accessed by shared references.
CLAM design guarantees cache coherence for programs with
no data races [10, Sec. 3.4.2]. As Scott [10, p. 46] explained,
in a DRF program, “any region of code that contains no
synchronization (and that does not interact with the ‘outside
world’ via I/O or syscalls) can be thought of as atomic: it
cannot-by construction-interact with other threads”

Cache coherence means that (1) changes to data will be
made visible to all threads and (2) changes to the same loca-
tion are seen in the same order [10, p. 12]. The first require-
ment is ensured by each thread calling cache-wipe which
a thread does whenever it performs synchronization. The
second is ensured for DRF programs, where accesses to the
same shared location must be ordered by synchronization.

In CLAM cache, an eviction from a private cache to the
shared cache makes a write visible. We call the order of evic-
tions at the shared cache the eviction order and the program
order of accesses at a private cache the program order. For
a thread, its program order of writes may conflict with its
eviction order, e.g. the shared cache may see an early change
late, or more specifically, it sees a later change before it sees
an earlier change. This is an order conflict. In memory consis-
tency, sequential consistency means that concurrent accesses
are interleaved in program order, and the same (interleaving)
order is seen by all threads [7, Chap. 3]. If an order conflict
is observed by a peer thread, we have inconsistency.

In a DRF execution, write-write and read-write to the
same location accesses must be synchronized [10, 3.4]. CLAM
synchronization ensures a cache-wipe by the first thread,
which writes back all its changes, followed by a cache-wipe
at the second thread, which invalidates all its local copy.

In any thread, the eviction order between synchronization
cannot be observed by peer threads. When writes are visible
to a peer thread, they have all been evicted. To a peer thread,
it appears that the writer thread created all these changes
at once. Hence, an order conflict, if it happens, cannot be
observed by a peer thread. This hides any inconsistency
between the access order and the eviction order and therefore
guarantees memory consistency.

Block Granularity. A data block is shared if any part
is accessed by a shared reference. This design will tag all
shared data but may introduce “false sharing” where some
portion of a shared cache block may store private data. At a
cache-wipe, it may write back non-shared data unnecessarily
because of false sharing. The inefficiency may be addressed
at program level by padding.

Thread Migration. If a thread is moved from one core
to another, it needs to call cache-wipe to evict all share data
before the move.

3.6 Cooperative Cache Coherence

Coherence can be improved by programming in two ways:

LCTES ’22, June 14, 2022, San Diego, CA, USA

Cache Draining. In the worst case, a cache-wipe opera-
tion may incur a cost proportional to the size of the private
cache. It initiates bulk operations for the shared cache and
may cause contention when multiple caches sync at the
same time. Both are threats to parallel performance as well
as robustness, predictability, and quality of service.

In CLAM, a program can always evict a cache block by
accessing it and assigning it a zero lease. The cost of a cache-
wipe can be reduced by cache draining, where a program
systematically evicts shared data early and ahead of a cache-
wipe. In the best case, a cache-wipe is a no-op and can return
immediately.

Reference Privatization. If a program can identify shared
data whose value remains up to date, it can mark their refer-
ences as private, so they may stay in a private cache beyond a
synchronization point and across multiple synchronization-
free regions. We call this reference privatization. Scalar or
array privatization is a well-known compiler technique that
replicates data to improve parallelism [1]. Here privatiza-
tion is marked for references not data, and the purpose is
cache coherence, not parallelization. In reference privatiza-
tion, a compiler may be developed to automatically ensure
correctness.

Reference privatization opens the door for manual con-
trol. Bennett et al. [2] characterized common patterns of
data sharing. A programmer may write code to support spe-
cific patterns, for example, to mark only “boundary” data
as shared and to support migration by first using private
references and then shared references.

Example CLAM Programming. Programmable cache
works well for regular loop nests. Consider the scientific
kernel Alternate Direction Integration (ADI). It is an iter-
ative computation using mainly two arrays. Each step has
two sub-steps in each of which one array is read, and the
other modified. The role of the two arrays alternate in each
sub-step. In basic programming for CLAM, references to
both arrays are shared. Each sub-step is parallelized at the
outermost loop. A barrier is added after each sub-step.

For optimization, reference leases are assigned to drain
the cache before each barrier, i.e. cache draining. At the
data reference where a shared array element is last accessed,
zero-lease is assigned for that reference.

In addition in each loop, the read references can be marked
private, i.e. reference privatization. The values in that array
will be over written in the next sub-step, so evicting them
is unnecessary. Moreover, keeping them in cache saves the
cost of cache misses and re-loading them later for writing in
the following sub-step.

3.7 Hardware Extensions

Detecting Write-write Races. A program may have er-
rors such as unintended data races. A form of shared-cache
“directory” may be added to detect write-write data races



LCTES °22, June 14, 2022, San Diego, CA, USA

by keeping a directory in the shared cache to detect writes
by more than one threads. Here, adding a directory is for
debugging.

Coherence Hierarchy. A general hierarchy is a tree, where
each leafis a private cache, and each non-leaf node is a shared
cache. The root of the tree is a cache shared by all. CLAM
coherence can be applied to ensure coherence at the last level.
At the root level, we treat each direct child of the root and
its sub-tree as one private cache. All shared data blocks are
tagged. Any cache-wipe would pause the operation of the
entire sub-tree. All reads and writes of data at the root are
totally ordered. A more scalable solution is nested coherence.
A program is written with nested parallelism with nesting
levels matching the cache hierarchy. Synchronization at a
given level uses cache-wipe at the corresponding level of the
hierarchy. Only the global synchronization incurs the full
cost of synchronizing at the root.

4 Related Work

Software support may be used to implement cache coherence
directly or reduce the cost of hardware cache coherence.

Software Cache Coherence. Treadmarks was widely used
for distributed shared memory [5]. A program allocates
shared data through a special interface, and the shared data
is managed by the Treadmarks run-time system. It uses ac-
quire and release for synchronization. The private cache in
CLAM corresponds to shared data in local memory, and its
local cache-wipe is both an acquire and release.

CLAM has a global data store, while Treadmarks dis-
tributes shared data. Treadmarks local memory is not man-
aged as a cache. In CLAM private caches, shared data blocks
are evicted regularly as part of cache management.

Software Support. A compiler can help by letting hard-
ware know which data is definitely private. Li et al. [4] de-
veloped compiler analysis to identify private data and in-
form hardware through custom memory allocation, which
is based on page-granularity classification at the time of a
TLB miss [3]. CLAM differs in programming, i.e. reference
rather than page based classification, and in cache design, i.e.
lease based eviction. These earlier studies target distributed
shared cache, which we do not consider in this paper.

Ros and Jimborean [9] developed compiler support of se-
quential consistency for data-race-free programs (SC for
DRF). A compiler marks extended data-race-free code re-
gions called xDRF, each delimited between special instruc-
tions sdrf (set SC-for-DRF coherence) and sdrf.flush. An
xDRF is run with a SC-for-DRF coherence protocol, in which
“every memory block sets a toFlush (F) bit”, is “not tracked by
the directory and remain(s) invisible to the (MOSEI) coher-
ence protocol” At the end of an xDRF, all modified F blocks
are written back by sdrf.flush. CLAM uses F bits to mark
data accessed by shared references. Its cache-wipe not just

Chen Ding, Benjamin Reber, and Dorin Patru

writes back modified data but also invalidates all F blocks,
which xDRF.flush does not.

Ros and Jimborean solved the SC-for-DRF problem for
xDRF, assuming baseline support of cache coherence for
the rest of the code. CLAM solves the problem for entire
DRF programs, not just for xXDRF regions and not using
a baseline protocol. SC-for-DRF protocol does not support
synchronization, whose operations are inherently “racy” and
must lie outside xDRFs. CLAM provides complete cache
coherence, including synchronization, which it handles with
single-copy or volatile references. xDRF programming is
based on regions, while CLAM is based on references.

Hardware Cache Coherence. Existing coherence-cache
designs are generic and do not make assumptions about the
eviction policies at private caches [7]. Hence, they can sup-
port the lease cache just as another cache policy. However, a
generic design must track concurrent accesses and maintain
access information for all cached data in the shared cache.
CLAM supports only DRF programs. It does not track con-
current accesses and can use exclusive caching. CLAM is
programmable for both caching and cache coherence. For
cache eviction, CLFLUSH and CLWB exist on x86 processors,
but they evict data from the entire cache hierarchy. In CLAM,
leases are used to evict data only from a private cache, and
the eviction is programmed at the last access, instead of using
a separate flush instruction.

5 Summary

This paper presents the design of CLAM for programmable
cache coherence. A program is annotated where each ref-
erence is of one of the three types: single-copy, private, or
shared. The hardware maintains a share bit for data in pri-
vate caches and adds a cache-wipe instruction. The software
implements synchronization and cache coherence optimiza-
tion. For DRF programs, the design ensures coherence and
sequential consistency. The design supports both inclusive
and exclusive caching of shared data and enables program
optimization including cache draining, which hides the cost
of cache wipes, and reference privatization, which maintains
data coherence in software rather than hardware.

Acknowledgments

A LCTES reviewer informed us important related work. We
thank also other reviewers and our colleagues at University
of Rochester and Rochester Institute of Technology espe-
cially John Criswell, Michael Scott, Sandhya Dwarkadas,
Sreepathi Pai, Alex Kneipp, and Divya Ojha for their help
for us to present our work accurately and clearly. This work
was supported in part by the National Science Foundation
(Contract No. CCF-2217395, CCF-2114319, CNS-1909099).



Cache-Coherent CLAM (WIP)

References
[1] Randy Allen and Ken Kennedy. 2001. Optimizing Compilers for Mod-

ern Architectures: A Dependence-based Approach. Morgan Kaufmann
Publishers.

[2] JohnK. Bennett, John B. Carter, and Willy Zwaenepoel. 1990. Adaptive

Software Cache Management for Distributed Shared Memory Archi-
tectures.. In Proceedings of the International Symposium on Computer
Architecture. 125-134.

Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia
Ailamaki. 2009. Reactive NUCA: Near-Optimal Block Placement and
Replication in Distributed Caches. In Proceedings of the International
Symposium on Computer Architecture.

Yong Li, Rami Melhem, and Alex K. Jones. 2012. Practically Private:
Enabling High Performance CMPs through Compiler-Assisted Data
Classification. In Proceedings of the International Conference on Parallel
Architecture and Compilation Techniques.

Honghui Lu, Alan L. Cox, Sandhya Dwarkadas, Ramakrishnan Raja-
mony, and Willy Zwaenepoel. 1997. Compiler and Software Distributed
Shared Memory Support for Irregular Applications. In Proceedings of
the ACM SIGPLAN Symposium on Principles and Practice of Parallel

[6

—

[7

—

8

—

[9

—

[10]

[11]

LCTES ’22, June 14, 2022, San Diego, CA, USA

Programming. 48-56.

Hao Luo, Pengcheng Li, and Chen Ding. 2017. Thread Data Sharing in
Cache: Theory and Measurement. In Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. 103-115.
http://dl.acm.org/citation.cfm?id=3018759

Vijay Nagarajan, Daniel ]J. Sorin, Mark D. Hill, and David A. Wood.
2020. A Primer on Memory Consistency and Cache Coherence, Second
Edition. Morgan & Claypool Publishers.

Tan Prechtl, Ben Reber, Chen Ding, Dorin Patru, and Dong Chen. 2020.
CLAM: Compiler Lease of Cache Memory. In Proceedings of the Inter-
national Symposium on Memory Systems (MEMSYS).

Alberto Ros and Alexandra Jimborean. 2015. A Dual-Consistency
Cache Coherence Protocol. In Proceedings of the International Parallel
and Distributed Processing Symposium. 1119-1128.

Michael L. Scott. 2013. Shared-Memory Synchronization. Morgan &
Claypool Publishers.

Z.Wang, K. S. McKinley, A. LRosenberg, and C. C. Weems. 2002. Using
the compiler to improve cache replacement decisions. In Proceedings
of the International Conference on Parallel Architecture and Compilation
Techniques. Charlottesville, Virginia.


http://dl.acm.org/citation.cfm?id=3018759

	Abstract
	1 Introduction
	2 CLAM Prototype
	3 CLAM Coherence
	3.1 Machine and Program Model
	3.2 Programming Interface
	3.3 Hardware Support
	3.4 Program Synchronization
	3.5 Cache Coherence and Memory Consistency
	3.6 Cooperative Cache Coherence
	3.7 Hardware Extensions

	4 Related Work
	5 Summary
	Acknowledgments
	References

