
1

4�: A Computation, Communication, and Control
Co-Design Framework for CAVs

Liangkai Liu∗, Shaoshan Liu† and Weisong Shi∗

∗Wayne State University
†PerceptIn

Abstract—Connected and autonomous vehicles (CAVs) are
promising due to their potential safety and efficiency benefits
and have attracted massive investment and interest from govern-
ment agencies, industry, and academia. With more computing
and communication resources are available, both vehicles and
edge servers are equipped with a set of camera-based vision
sensors, also known as Visual IoT (V-IoT) techniques, for
sensing and perception. Tremendous efforts have been made
for achieving programmable communication, computation, and
control. However, they are conducted mainly in the silo mode,
limiting the responsiveness and efficiency of handling challenging
scenarios in the real world. To improve the end-to-end perfor-
mance, we envision that future CAVs require the co-design of
communication, computation, and control. This paper presents
our vision of the end-to-end design principle for CAVs, called
4�, which extends the V-IoT system by providing a unified
communication, computation, and control co-design framework.
With programmable communications, fine-grained heterogeneous
computation, and efficient vehicle controls in 4�, CAVs can
handle critical scenarios and achieve energy-efficient autonomous
driving. Finally, we present several challenges to achieving the
vision of the 4� framework.

I. INTRODUCTION

The recent proliferation of computing technologies, e.g.,

sensors, computer vision, machine learning, and hardware ac-

celeration, has promoted connected and autonomous vehicles

(CAVs) [1]. The global CAVs market is expected to grow to

$173.15 B by 2030, with shared mobility services contributing

to 65.31% [2]. In general, there are three main benefits of

CAVs. The first benefit is safety. According to the fatality anal-

ysis from the National Highway Traffic Safety Administration

(NHTSA), 94 percent of serious crashes are caused by human

error [3]. Compared with a human driver, the machine does not

fatigue, drunk, and speeding. The sensors are better at distance

detection, blind space detection, emergency obstacle avoid-

ance, etc. The second benefit is efficiency for many aspects:

less traffic congestion, less fuel consumption, less greenhouse

gas emission, less travel time, etc. The improvement is because

CAVs get more comprehensive traffic information, and it has

better planning and controls than human drivers. The third

benefit is that CAVs could support third-party applications,

including applications for public safety like AMBER Alert

and criminal face detection. All these applications leverage

the on-vehicle computation and communication resources.
CAV is one of the typical applications for V-IoT technolo-

gies [4] since it relies on the underlying visual sensors with

computation and communication devices to understand the

road and context environment. In the typical design of CAVs,

sensors usually include cameras, LiDAR, radar, GPS/GNSS,

etc., and computation platform includes accelerator for DNN

inference, with supporting vehicle communications like dedi-

cated short-range communications (DSRC) or cellular vehicle-

to-everything (C-V2X). Besides, a real-time operating system,

drivers, and complex algorithms for sensor data processing are

usually implemented. However, compared with other V-IoT

application scenarios like smart city, the real deployment of

CAVs becomes more challenging because it is safety-critical.

Gigabytes of raw sensor data are generated by the visual

sensors every second. How to process them in real-time with

limited computation and communication resources is the key

to achieving CAVs.

Lots of efforts have been made to build V-IoT systems

for CAVs. For visual sensor data collection, auto-grade vi-

sual sensors like cameras, LiDAR, and radar are developed,

and the sensing range increased from less than 100 meters

to over 300 meters. For visual data processing, since the

perception is mainly based on deep neural networks (DNN),

many accelerators have been introduced into the computation

platform, including the GPU-based NVIDIA DRIVE platform,

FPGA-based Zynq UltraScale+ platform, and ASIC-based

Mobileye EyeQ5 [5]. DNN compression techniques, including

parameter pruning and quantization and low-rank factorization,

are designed to reduce the computation demands to decrease

the DNN inference time. The development of DSRC and C-

V2X also promotes the development of autonomous driving.

Through DSRC, the vehicle could read basic safety messages

(BSM) from other vehicles. Besides, traffic lights, stop signs,

etc., can also be shared with the vehicle from the traffic

infrastructure. The IEEE and 3GPP have also made efforts to

achieve high reliability, low latency, and high throughput vehi-

cle communications. The DSRC standard is evolving towards

802.11bd, while C-V2X is transitioning toward NR V2X. For

vehicle control, vehicle drive-by-wire technology makes up

the interface from the driving systems to the vehicle’s control.

Recent efforts in the edge cloud system and 6G networks

propose co-designing the computation, communication, and

caching for task offloading algorithms [6], [7]. However,

these approaches are still theoretical analyses and cannot

satisfy safety-critical CAVs applications. Therefore, current

developments in computation, communication, and control

are conducted either in silo mode or in theory, limiting the

responsiveness and efficiency of handling challenging real-

world scenarios.

Generally, with tremendous computation and communi-

2

cation resources equipped, V-IoT systems are deployed to

both the vehicle and the edge server [4]. The real challenge

for supporting CAVs applications is coordinating the V-IoT

resources to handle complex road environments, especially

critical scenarios like snowing roads, heavy rain/fog, work-

zone, etc. To improve the end-to-end performance for state-

of-the-art driving systems, we proposed our vision of the 4�

framework, which extends the V-IoT system by providing

communication, computation, and control co-design capability

for CAVs applications. 4C is built on several promising

technologies in communication virtualization, heterogeneous

computation, and vehicle control. Unlike previous works try-

ing to enable CAVs applications in silo mode, 4� is the first

programming framework that provides unified APIs for man-

aging the programmable computation, communication, and

control resources. It is supposed to be deployed both on the

vehicle and the edge server (V-IoT). 4� is composed of three

main components: programmable communications support,

fine-grained heterogeneous computation, and efficient vehicle

controls. Programmable communications make it possible to

upload the most appropriate tasks onto the edge server (V-

IoT) for computation. Fine-grained heterogeneous computa-

tion gives the programmer the ability to request heterogeneous

by demand, significantly improves the flexibility. Finally, ef-

ficient vehicle controls are designed to make the feedback of

the vehicle’s physical control system available to the driving

system. To illustrate the availability and importance of the 4�

framework, we discuss two case studies: autonomous driving

in critical scenarios, energy-efficient autonomous driving. Fi-

nally, we discuss the challenges in naming, predictability, and

security.

The rest of the paper is organized as follows. Section II

presents the background and motivations of this work. Sec-

tion III discusses the proposed 4� framework. Sections IV

presents two case studies of the 4� framework. Sections V

presents the challenges and discussion. Section VI concludes

the paper.

II. BACKGROUND AND MOTIVATION

A. Visual IoT

In the era of the internet of everything, billions of end

devices are connected to support applications like smart cities,

surveillance systems, unmanned aerial vehicles, autonomous

vehicles, etc. [4]. Visual IoT is an enabling technology which

model traffic at device-level to support various applications.

V-IoT is built on top of video processing technologies since

rich visual sensors are deployed for environment sensing and

perception [8]. However, the actual deployment of V-IoT

still faces several challenges. One of the biggest challenges

is the visual data collection and process. Take autonomous

vehicles as an example. Gigabytes of raw sensor data are

generated every second and need to be processed in real-

time while the vehicle is running. Therefore, the design of

the visual data compression algorithm should cope with real-

time requirements. Besides, the co-design of communication

and computation resources would increase the V-IoT system’s

resource utilization. Furthermore, edge computing technology

Sensing

Segmentation

Detection

Localization Global Planning

Local Planning

Drive-by-wire

location

objects/lanes

road/open space

navigation

trajectory

ORB-SLAM2

steering

throttle

brake

DeepLabv3 + MobileNetv2

YOLOv3 + LaneNet

images

Sensor

Fusion

Fig. 1. An overview of the end-to-end autonomous driving system.

enables smart infrastructures (edge servers) equipped with

sensors and computation and communication devices. More

sensing and perception tasks can be executed on the edge

server and share the perception results with the vehicle.

Extending the current V-IoT system to support safety-critical

systems becomes essential.

B. Autonomous Driving Systems

CAV is one of the typical applications for V-IoT technolo-

gies. However, unlike other application scenarios like smart

cities and surveillance systems, CAV is built with dynamic

wireless communications. It is a safety-critical scenario with

hard real-time requirements. These characteristics make it

challenging for the current V-IoT system to support CAVs

applications [1]. Figure 1 shows an overview of the end-to-end

autonomous driving system. Typically, multiple sensors are

integrated to enable the vehicle’s sensing and perception. To

simplify the autonomous driving pipeline, we discuss a design

which is purely relied on cameras for sensing the environment.

As shown in the figure, eight primary components can be

divided into three parts: sensing, perception, and decision [9].

Sensing is the process of sensors that captures information

from the environment. Perception represents the understanding

environment with algorithms applied to the sensing data,

including localization, detection, semantic segmentation, and

sensor fusion. The role of sensor fusion is to collaborate

with each component’s perception results and generate lo-

cations for objects, lanes, and open space for the planning

module. The decision is composed of global planning, local

planning, and vehicle control. Global planning generates the

routes between origin and destination, while local planning

generates the trajectory and controls on break, acceleration,

and steering. Finally, the control commands will be applied to

the drive-by-wire system and applied to the vehicle. In general,

the Robot Operating System [10] (ROS) is used to manage

these components and provide data communications between

different components.

C. Why Are Vehicle Communications Important?

Massive innovations in computer vision, machine learning,

and accelerators improve the end-to-end autonomous driv-

ing systems’ performance. However, accidents and fatalities

3

caused by early deployed autonomous vehicles arise from time

to time. There are still several challenges in the development

and deployment of the autonomous driving system.
The biggest challenge is safety, which means the sensing,

perception, decision, and control should be finished in real-

time. As a safety-critical system, real-time means the guaran-

tee to finish the driving tasks before the deadline. According

to [11], when the vehicle drives 40 km per hour in urban areas

and that autonomous functions should be effective every 1 m,

each real-time task’s execution should be less than 100ms.

However, limited by DNN algorithms’ performance and lack

of adequate field testing, the real traffic environment is too

complicated for the current driving systems to handle. The re-

liability of sensors makes this problem even more challenging.

The quality of images captured by cameras is affected by the

lighting conditions [9]. Although the point clouds from LiDAR

are precise and independent of illumination, there can be

noisy and sparse. Another challenge is the cost. The cost of a

level 4 autonomous driving vehicle can attain 300,000 dollars,

which the sensors and computing platform cost almost 200,000

dollars [1]. Besides, to ensure AV’s reliability and safety,

a backup of hardware devices may be necessary. The high

cost of the autonomous driving vehicle remains a significant

obstacle to its complete deployment in the real world.
Vehicle communication mechanisms, e.g., DSRC, C-V2X,

5G, address the above challenges from another perspective.

Unlike the general approaches, the vehicle communication-

based approaches obtain traffic information like traffic lights,

vehicle speed, pedestrians, etc., from the traffic infrastructure,

decreasing computation demands for the vehicle’s embedded

system. Besides, with raw data updated from the vehicle,

sensing and perception tasks are executed at the edge server

or the cloud. In this case, co-designing the computation and

communication resources for CAVs applications becomes a

fundamental problem. The main reason is that as a safety-

critical system, the driving system should be predictable.

However, when the vehicle is driving autonomously, both

the available computation and communication resources are

unpredictable.

D. Why Is Integration with Controls Important?

Typically, an essential interface for the computing system to

communicate with the real vehicle is the drive-by-wire system,

which provides interfaces for executing the driving commands.

The drive-by-wire system sets up interactions with lower

layers (vehicle system) to ensure the control commands from

the upper layer (computing system) are executed correctly

in real-time. However, the lack of backward interaction with

the computing system makes it impossible for the upper

layer to respond. Table I presents vehicle control delays for

acceleration, braking, and steering for selected commercialized

vehicles. Control delay is defined as the time interval between

the control message’s generation and execution. We can ob-

serve that the delay for any controls for all these five vehicles

is larger than 100ms, while the highest exceeds 480ms. The

control delay could significantly affect the vehicle’s safety.

Therefore, a fully autonomous driving system requires the co-

design of computing and control systems.

TABLE I
VEHICLE CONTROL DELAY FOR ACCELERATION, BRAKING, AND

STEERING FOR SELECTED COMMERCIALIZED VEHICLES

Delay (ms)
Lincoln

MKZ

Hongqi

H7

Hongqi

EV

NIO

ES8

GAC Group

Aion LX

Acceleration 280 200 484.2 120 236
Braking 230 362 191.7 120 266
Steering 136 128 124.8 108 120

There are several benefits of integrating vehicle controls

with the driving system; the first is safety. The difference

between the control and odometer output is road conditions

like pod holes and icy roads. Under these circumstances,

human drivers are supposed to decrease the speed to ensure

safety, which means putting more effort into the sensing

and perception stages. The second benefit is fuel efficiency.

If the vehicle’s control model is integrated with the path

planning model, it can generate a path with the lowest fuel

consumption with a safety guarantee. The third benefit is

convenience, which is more related to the passenger experience

for autonomous vehicles. Unlike human drivers, the machine-

based system could create bang-bang controls when control

switches abruptly from one extreme to the other, especially

for emergency braking and obstacle avoidance. However, with

V2X communications and vehicle control integrated with the

driving system, a wider range of environment perception is

achieved, and the vehicle controls could become smoother.

III. 4� FRAMEWORK FOR CAVS

In the actual deployment of CAVs, how to leverage the com-

putation, communication resources to generate and execute

adequate controls under a dynamic traffic environment is a fun-

damental challenge. We propose the 4� framework, which co-

designs the communication, computation, and controls to solve

this challenge. In this section, we first present the overview

of 4�. Then we show a detailed discussion of computation,

communication, and control, respectively. Finally, we discuss

the abstracted application programming interface (APIs) in 4C.

A. 4� Overview

The overview of 4� is shown in Figure 2. Generally, the

autonomous driving pipeline can be divided into five modules:

sensing, perception, fusion, planning, and decision, where each

module has several tasks running in parallel [1].As a safety-

critical system, the driving system requires high predictability

and flexibility. To support the autonomous driving pipeline,

4� has three main components, including programmable

communications, fine-grained heterogeneous computation, and

efficient vehicle controls. On top of these components, unified

APIs are abstracted. 4� could be deployed both on the

vehicle and the edge server [8]. The key innovation for 4C

is that it provides unified APIs to manage the programmable

computation, communication, and control resources.

B. Programmable Communications Support

As a complement to the vehicle’s embedded system, vehicle

communications enable the vehicle to access information and

4

Communication

OAI srsLTE

SDR

Network management /

slicing

Computation

Camera LiDAR Radar GNSS

OpenCL OneAPI

Control

CAN bus

Drive-by-Wire

ECM PCM BCM

Autonomous Driving Pipeline

Sensing Perception Fusion Planning Decision

CUDA

APIs

CPU GPU FPGA ASIC

Fig. 2. The overview of the 4� framework.

computation resources with a broader range. Typically, other

vehicle’s speed and control information is obtained through

communications. Some tasks are uploaded to the roadside

unit (RSU) or cloud for computation because they have more

powerful computing devices. All these capabilities require

programmable communications, which could provide flexi-

bility. Traditionally, cellular communications like 4G, LTE,

and vehicle communications like DSRC are deployed in a

“black-box” fashion, where the communication hardware and

software are plug-and-play. This approach’s limitation is that

the devices and software cannot configure, contributing to

low flexibility and programmability [12]. Recently, many

efforts have been made in pushing the softwarization and

virtualization of network resources, including software-defined

radio (SDR), network function virtualization (NFV), network

slicing, etc.

The communication module in the 4� framework is built on

SDR devices that have reconfiguration capability. On top of

that, open-source software includes OpenAirInterface (OAI),

and srsLTE are implemented to provide full-stack cellular

network functions [12]. Both OAI and srsLTE include the

software stack for the core network (EPC), the base station

(eNodeB), and user equipment (UE). Typically, the EPC and

eNodeB are deployed on the traffic infrastructure or cloud,

while the UE is deployed on vehicles. This setting makes the

communication module provide 4G, LTE, 5G, and Cellular

Vehicle-to-Everything (C-V2X) links between vehicles and

the edge server. In the vehicle communications scenario,

coverage of cellular links is limited, and lots of handovers

will happen when the vehicle moves at high speed. Therefore,

network management and slicing are introduced to monitor

and allocate network resources at the core and base stations.

Besides, context information, including the vehicle’s control,

the vehicle’s path, the task’s priority, etc., is necessary for more

effective network resources management. Previously, vehicular

communications only share safety-related messages like the

Basic Safety Message (BSM) in DSRC. In contrast, the API

module in 4� provides reconfiguration capabilities of network

resources to design CAVs applications.

C. Fine-grained Heterogeneous Computation

Visual IoT sensors are one of the primary components of

the computation module, including cameras, LiDAR, Radar,

GNSS, etc., which generate Gigabytes of raw sensor data

every second. Processing such a huge amount of sensor

data in real-time brings massive challenges for the driving

systems of autonomous vehicles. Due to its good performance

and capability to process raw sensor data, DNN has been

widely utilized in the driving system. How to support DNN

models’ execution in real-time becomes the key in driving

systems design. Heterogeneous computation architecture is

promising for better performance with low cost and energy

budget [13]. However, the flexibility of current approaches to

access heterogeneous computation resources is still limited,

contributing to a considerable waste of computation resources.

Therefore, in 4�, we propose a fine-grained heterogeneous

computation module that enables the higher-level applications

to share lower-level hardware.

From Figure 2, we can find four types of computing archi-

tectures are chosen, including CPU, GPU, Field Programmable

Gate Array (FPGA), and Application Specific Integrated Cir-

cuit (ASIC) [13]. CPU is the most versatile architecture in

computing systems, and it supports generic computations,

especially good at logistic controls and sequential processing.

GPU is designed mainly for graphics processing. With many

cores, GPU shows strength in parallel processing like DNN

model training and inference. However, the power consump-

tion of GPU is a big concern. FPGA is an architecture based

on a matrix of configurable logic blocks (CLB) connected

by programmable interconnects. Therefore, FPGA shows the

best reconfiguration capability, and it’s much more energy-

efficient than GPU. However, the programmability is much

lower than the CPU and GPU. Unlike general-purpose archi-

tectures, ASIC is customized architecture for a specific logic

function. This design makes ASIC shows better performance

and energy efficiency than others, but the flexibility is limited.

A combination of these architectures is leveraged to handle

both general-purpose applications and customized functions.

Another challenge is how to access the heterogeneous hard-

ware in fine-grained. Many efforts have been made to split the

DNN model inference into several sub-tasks and execute them

on the most suitable hardware. For example, the image resizing

and compression can be executed on the CPU, while the matrix

addition and multiplication are on GPU. Besides, the DNN

model could also be split into several layers and execute on

a different architecture. 4� is designed to support both DNN

layers splitting and scheduling. To program on heterogeneous

architecture, 4� utilizes the hardware drivers in the operating

system (OS) with open-source libraries, including OpenCL,

CUDA, and OneAPI. On top of these libraries, 4� defines

configuration scripts that set the destination hardware with the

maximum accelerator resources to manage the splitting and

scheduling of DNN layers flexibly. Similar to communication

resources, APIs are defined for higher-level CAVs applications

to access fine-grained heterogeneous computation.

D. Efficient Vehicle Controls

Vehicle control is the last step of the autonomous driving

pipeline, which applies decisions on the wheels. The drive-

by-wire system is the bond that provides the interface to send

control messages to the electronic control unit (ECU) via the

5

controller area network (CAN) bus [14]. Like the I/O bus in

computers, the CAN bus supports communications between

different ECU and the drive-by-wire system. Typically, the

vehicle is equipped with up to 80 ECUs, including engine con-

trol module (ECM), powertrain control module (PCM), Brake

Control Module (BCM), etc. Each of them is an embedded

system to ensure the real-time response to the commands read

from the CAN bus. Take throttle control as an example; the

drive-by-wire system sends a throttle command to the ECM

via CAN bus, then the message will be sent to the motors

to turn. Meanwhile, the throttle position sensor will monitor

the throttle and send feedback to the ECM. The ECM will

adjust the motor control to decrease the difference to achieve

the desired throttle control.

Unlike traditional design, in the control module of the 4�

framework, the drive-by-wire system is leveraged to bridge

the driving system to ECUs like ECM, PCM, and BCM.

Besides, the drive-by-wire system also reads feedback from the

ECUs. The feedback of controls from the ECUs, the real-time

diagnostics, and other information from the vehicle’s sensor

will be grouped and shared with the autonomous driving

applications. The feedback of controls to the driving system

sets up the stringent connection between the application and

the actual vehicle, making it possible to have more customized

optimizations.

E. APIs for Co-Design

From the design of the 4� framework, all the commu-

nication, computation, and control resources and messages

are abstracted as unified APIs for the autonomous driving

pipeline. This abstraction aims to enable each application

to access communication and computation resources in fine-

grained and customized for the specific vehicle. In summary,

we can find that the APIs can be divided into two categories:

management APIs and data APIs. The management APIs

include managing communications bandwidth, computation

resources, controls to the vehicle through the drive-by-wire

system, etc. In contrast, data APIs are defined to enable each

application to access runtime and context information from the

lower level communication, computation, and vehicle control

devices.

We could co-design communication, computation, and con-

trol for specific applications through APIs, like energy-efficient

autonomous driving, autonomous driving in critical scenarios,

etc.

IV. CASE STUDY

From the design of the 4� framework, all the communi-

cation, computation, and control resources and messages are

abstracted as unified APIs for the autonomous driving pipeline.

The 4� framework can support various CAVs applications.

This section presents two case studies of the 4� framework:

autonomous driving in critical scenarios and energy-efficient

autonomous driving.

3G/4G/5G/C-V2X

Control

Engine Fuel Model

Sensing Perception Fusion Planning Decision

Computation

Communication

Fig. 3. A typical design of energy efficient autonomous driving based on 4�.

A. Autonomous Driving in Critical Scenarios

Critical scenarios have always been a big challenge for

the design and deployment of fully autonomous driving ve-

hicles. Critical scenarios refer to the traffic environments

that are extremely hard for the current driving system to

understand. Currently, the field-testing of autonomous driving

vehicles mostly happens in places with good weather and

light conditions like Arizona and Florida. However, accidents

and fatalities happen because the real traffic environment is

much more complicated than the testing scenarios [1]. Besides,

DNN-based approaches are widely used in perception and

planning tasks. It’s tough to explain how DNN learns the

pattern and knowledge as a “black-box” approach, contributing

to many perception failure in the real traffic environment.

Other critical scenarios are currently less studied, like snowing

roads, heavy rain/fog, work-zone, etc. Current driving systems

of autonomous vehicles are not expected to handle these

scenarios.

With the 4� co-design framework, some critical scenarios

are addressed. The vehicle can access traffic information from

other vehicles and infrastructures with the communication

module, eliminating some perception failures. For critical

scenarios like snowing roads, heavy rain/fog, and work-zone,

the control module’s feedback to the driving system could

make the vehicle decelerate or emergency stop. Besides, with

communications like 5G and C-V2X, real-time high-definition

(HD) maps are shared with the vehicle. Furthermore, teleop-

eration could be launched to take over the vehicle’s control

for safety.

B. Energy-Efficient Autonomous Driving

With massive tasks running on the driving systems, energy

consumption has been a big concern. Generally, the driving

system’s total power consumption exceeds 1,000 watts, and

this value would be doubled if considering a duplicated system

as a backup. Another major part of energy consumption is

fuel/electricity consumption, mainly affected by the engine

model and controls. Based on a report of the operating

cost per mile for heavy-duty trucks, the fuel cost accounted

for 39 percent, which is the most significant contributor to

operational costs [15]. Reducing energy consumption improves

the vehicle’s mileage range and solving heat dissipation issues

brings by overheating.

A practical energy-efficient autonomous driving system

requires the co-design of communication, computation, and

control. Figure 3 shows a typical design based on the 4�

framework. Using the recorded control data, including the

6

0 100 200 300 400 500 600 700

Time [sec]

40

60

80

100

V
e
o
c
it
y
 [
k
p
h
]

150

200

250

300

350

A
lt
it
u
d
e
 [
m

]

Our Model

VT-CPFM

Altitude

0 100 200 300 400 500 600 700

Time [sec]

0

5000

10000

F
u
e
l
C

o
n
s
u
m

p
ti
o
n
 [
g
]

Fuel saving: 5.97%

VT-CPFM

Our Model

Fig. 4. Preliminary results of energy efficient autonomous driving by co-
designing vehicle planning (computation) with vehicle controls.

throttle, brake, and torque, as the input while the corresponding

fuel consumption as the label, an engine fuel model could

be trained, predicting the instant and total fuel consumption

for input controls. This engine fuel model could be used in

path planning and the autonomous driving pipeline’s decision

to get a trajectory with the lowest fuel consumption. To

show the availability of the 4� framework in energy-efficient

controlling, we trained a fuel rate prediction model based

on recorded control data of throttle, brake, torque, etc., from

the vehicle’s Engine Management System (EMS). The model

is trained using AutoML, which achieves a coefficient of

determination ('2) to 0.97. Next, we apply this fuel rate

prediction model to the vehicle control module to generate

the most energy-efficient control commands. We evaluate the

system through a road test which is around 14 kilometers

and costs 700 seconds. The comparisons of AutoML (Our

Model) and state-of-the-art energy-efficient control algorithm

VT-CPFM are shown in Figure 4. The top subfigure shows

the altitude of the road test and the optimal speed from the

control module. With the optimal speed, the AutoML model

and VT-CPFM model’s total consumption is 10570 grams and

11240 grams, respectively, 5.97% of total fuel saving on this

road.

In addition to energy-efficient controls, the communication

module enables the vehicle to access a longer range of traffic

information. The maximum range of most autonomous vehicle

sensors is less than 200 meters, but the range of C-V2X com-

munications goes to 1000 meters. Increasing the sensing range

also helps the planning module to get a more energy-efficient

route. Furthermore, with fine-grained access to heterogeneous

computing architectures, energy-efficient scheduling becomes

practical, and the power consumption of the driving system is

also decreased.

V. CHALLENGES AND DISCUSSION

This section presents several challenges and open problems

to realize the vision of 4�, including naming, predictability,

and security.

Naming Since 4� is supposed to be deployed both on

vehicles and the edge server, a naming scheme becomes an

essential part to support programming, addressing, and data

communication between vehicles and traffic infrastructures.

Unlike cellular communications, vehicle communications are

ad hoc, and the duration of communication links are usually

short because vehicles are driving, and the V2X communi-

cation range is limited. A traditional naming scheme like

DNS cannot support this dynamic mobile scenario. In the

4� framework, virtualized and programmable communications

allow the management of V2X communications in link-level,

which brings higher flexibility. However, mapping these V2X

links uniquely with vehicles with low complexity is still an

open question for CAVs.
Predictability An autonomous driving vehicle relies on

the driving system to understand the road environment and

get safe controls in real-time, requiring the whole system’s

predictability. The achieve the system level predictability,

each stage within the autonomous driving pipeline should

be predictable, which brings a massive challenge for 4�’s

communication and computation modules. In 4C, with V2X

communications and computations abstracted in fine-grain

granularity, the behavior of tasks with link-level commu-

nications becomes more predictable. However, sophisticated

designs are still needed to leverage abstracted resources to

guarantee a real-time response.
Security As a complicated distributed system that combines

computation, communication, and control, security is one of

the biggest challenges for the actual deployment of CAVs

applications. Currently, vehicle communication, like DSRC,

is not encrypted. Attacks could happen to any hardware

and software of the 4� framework. However, with all the

APIs for lower-layer resources are abstracted for higher-layer

applications, plenty of mature techniques in building secure

computing systems could be applied to the vehicle system.

VI. CONCLUSION

CAVs have attracted massive attention from both the aca-

demic and automotive communities. The driving system plays

a crucial role in understanding the traffic environment and

making decisions for CAVs. However, the limited system-

level reliability and the missing integration with vehicle

communications and controls narrow the testing of CAVs

to constraint scenarios. This paper presents our vision of a

future driving system for CAVs, called 4�, which provides

a unified communication, computation, and control co-design

framework. With two case studies, we present the usability of

the 4� framework. Finally, we discuss the challenges in the

4� framework.

REFERENCES

[1] L. Liu, S. Lu, R. Zhong, B. Wu, Y. Yao, Q. Zhang, and W. Shi, “Com-
puting systems for autonomous driving: State-of-the-art and challenges,”
arXiv preprint arXiv:2009.14349, 2020.

[2] (2018) Global Autonomous Driving Market Outlook, 2018.
[Online]. Available: https://www.prnewswire.com/news-releases/global-
autonomous-driving-market-outlook-2018-300624588.html

[3] (2020) National Highway Traffic Safety Administration. Automated Ve-
hicles for Safety. [Online]. Available: https://www.nhtsa.gov/technology-
innovation/automatedvehicles#topic-benefits

7

[4] W. Ji, J. Xu, H. Qiao, M. Zhou, and B. Liang, “Visual IoT: Enabling
internet of things visualization in smart cities,” IEEE Network, vol. 33,
no. 2, pp. 102–110, 2019.

[5] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey
of deep learning techniques for autonomous driving,” Journal of Field

Robotics, vol. 37, no. 3, pp. 362–386, 2020.
[6] S. Barbarossa, S. Sardellitti, E. Ceci, and M. Merluzzi, “The edge

cloud: A holistic view of communication, computation, and caching,” in
Cooperative and Graph Signal Processing. Elsevier, 2018, pp. 419–
444.

[7] E. C. Strinati and S. Barbarossa, “6g networks: Beyond shannon towards
semantic and goal-oriented communications,” Computer Networks, vol.
190, p. 107930, 2021.

[8] W. Ji, B. Liang, Y. Wang, R. Qiu, and Z. Yang, “Crowd V-IoE: visual
internet of everything architecture in AI-driven fog computing,” IEEE

Wireless Communications, vol. 27, no. 2, pp. 51–57, 2020.
[9] S. Liu, L. Li, J. Tang, S. Wu, and J.-L. Gaudiot, “Creating autonomous

vehicle systems,” Synthesis Lectures on Computer Science, vol. 6, no. 1,
pp. i–186, 2017.

[10] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[11] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and
T. Hamada, “An open approach to autonomous vehicles,” IEEE Micro,
vol. 35, no. 6, pp. 60–68, 2015.

[12] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Open,
programmable, and virtualized 5g networks: State-of-the-art and the road
ahead,” arXiv preprint arXiv:2005.10027, 2020.

[13] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang,
and J. Mars, “The architectural implications of autonomous driving:
Constraints and acceleration,” in Proceedings of the Twenty-Third

International Conference on Architectural Support for Programming

Languages and Operating Systems. ACM, 2018, pp. 751–766.
[14] R. Isermann, R. Schwarz, and S. Stolzl, “Fault-tolerant drive-by-wire

systems,” IEEE Control Systems Magazine, vol. 22, no. 5, pp. 64–81,
2002.

[15] (2020) The Real Cost of Trucking – Per Mile Op-
erating Cost of a Commercial Truck. [Online]. Available:
https://www.thetruckersreport.com/infographics/cost-of-trucking/

