4C: A Computation, Communication, and Control
Co-Design Framework for CAVs

Liangkai Liu*, Shaoshan Liu" and Weisong Shi*
*Wayne State University
TPerceptIn

Abstract—Connected and autonomous vehicles (CAVs) are
promising due to their potential safety and efficiency benefits
and have attracted massive investment and interest from govern-
ment agencies, industry, and academia. With more computing
and communication resources are available, both vehicles and
edge servers are equipped with a set of camera-based vision
sensors, also known as Visual IoT (V-IoT) techniques, for
sensing and perception. Tremendous efforts have been made
for achieving programmable communication, computation, and
control. However, they are conducted mainly in the silo mode,
limiting the responsiveness and efficiency of handling challenging
scenarios in the real world. To improve the end-to-end perfor-
mance, we envision that future CAVs require the co-design of
communication, computation, and control. This paper presents
our vision of the end-to-end design principle for CAVs, called
4C, which extends the V-IoT system by providing a unified
communication, computation, and control co-design framework.
With programmable communications, fine-grained heterogeneous
computation, and efficient vehicle controls in 4C, CAVs can
handle critical scenarios and achieve energy-efficient autonomous
driving. Finally, we present several challenges to achieving the
vision of the 4C framework.

I. INTRODUCTION

The recent proliferation of computing technologies, e.g.,
sensors, computer vision, machine learning, and hardware ac-
celeration, has promoted connected and autonomous vehicles
(CAVs) [1]. The global CAVs market is expected to grow to
$173.15 B by 2030, with shared mobility services contributing
to 65.31% [2]. In general, there are three main benefits of
CAVs. The first benefit is safety. According to the fatality anal-
ysis from the National Highway Traffic Safety Administration
(NHTSA), 94 percent of serious crashes are caused by human
error [3]. Compared with a human driver, the machine does not
fatigue, drunk, and speeding. The sensors are better at distance
detection, blind space detection, emergency obstacle avoid-
ance, etc. The second benefit is efficiency for many aspects:
less traffic congestion, less fuel consumption, less greenhouse
gas emission, less travel time, etc. The improvement is because
CAVs get more comprehensive traffic information, and it has
better planning and controls than human drivers. The third
benefit is that CAVs could support third-party applications,
including applications for public safety like AMBER Alert
and criminal face detection. All these applications leverage
the on-vehicle computation and communication resources.

CAV is one of the typical applications for V-IoT technolo-
gies [4] since it relies on the underlying visual sensors with
computation and communication devices to understand the
road and context environment. In the typical design of CAVs,

sensors usually include cameras, LiDAR, radar, GPS/GNSS,
etc., and computation platform includes accelerator for DNN
inference, with supporting vehicle communications like dedi-
cated short-range communications (DSRC) or cellular vehicle-
to-everything (C-V2X). Besides, a real-time operating system,
drivers, and complex algorithms for sensor data processing are
usually implemented. However, compared with other V-IoT
application scenarios like smart city, the real deployment of
CAVs becomes more challenging because it is safety-critical.
Gigabytes of raw sensor data are generated by the visual
sensors every second. How to process them in real-time with
limited computation and communication resources is the key
to achieving CAVs.

Lots of efforts have been made to build V-IoT systems
for CAVs. For visual sensor data collection, auto-grade vi-
sual sensors like cameras, LiDAR, and radar are developed,
and the sensing range increased from less than 100 meters
to over 300 meters. For visual data processing, since the
perception is mainly based on deep neural networks (DNN),
many accelerators have been introduced into the computation
platform, including the GPU-based NVIDIA DRIVE platform,
FPGA-based Zynq UltraScale+ platform, and ASIC-based
Mobileye EyeQS5 [5]. DNN compression techniques, including
parameter pruning and quantization and low-rank factorization,
are designed to reduce the computation demands to decrease
the DNN inference time. The development of DSRC and C-
V2X also promotes the development of autonomous driving.
Through DSRC, the vehicle could read basic safety messages
(BSM) from other vehicles. Besides, traffic lights, stop signs,
etc., can also be shared with the vehicle from the traffic
infrastructure. The IEEE and 3GPP have also made efforts to
achieve high reliability, low latency, and high throughput vehi-
cle communications. The DSRC standard is evolving towards
802.11bd, while C-V2X is transitioning toward NR V2X. For
vehicle control, vehicle drive-by-wire technology makes up
the interface from the driving systems to the vehicle’s control.
Recent efforts in the edge cloud system and 6G networks
propose co-designing the computation, communication, and
caching for task offloading algorithms [6], [7]. However,
these approaches are still theoretical analyses and cannot
satisfy safety-critical CAVs applications. Therefore, current
developments in computation, communication, and control
are conducted either in silo mode or in theory, limiting the
responsiveness and efficiency of handling challenging real-
world scenarios.

Generally, with tremendous computation and communi-

cation resources equipped, V-IoT systems are deployed to
both the vehicle and the edge server [4]. The real challenge
for supporting CAVs applications is coordinating the V-IoT
resources to handle complex road environments, especially
critical scenarios like snowing roads, heavy rain/fog, work-
zone, etc. To improve the end-to-end performance for state-
of-the-art driving systems, we proposed our vision of the 4C
framework, which extends the V-IoT system by providing
communication, computation, and control co-design capability
for CAVs applications. 4C is built on several promising
technologies in communication virtualization, heterogeneous
computation, and vehicle control. Unlike previous works try-
ing to enable CAVs applications in silo mode, 4C is the first
programming framework that provides unified APIs for man-
aging the programmable computation, communication, and
control resources. It is supposed to be deployed both on the
vehicle and the edge server (V-IoT). 4C is composed of three
main components: programmable communications support,
fine-grained heterogeneous computation, and efficient vehicle
controls. Programmable communications make it possible to
upload the most appropriate tasks onto the edge server (V-
IoT) for computation. Fine-grained heterogeneous computa-
tion gives the programmer the ability to request heterogeneous
by demand, significantly improves the flexibility. Finally, ef-
ficient vehicle controls are designed to make the feedback of
the vehicle’s physical control system available to the driving
system. To illustrate the availability and importance of the 4C
framework, we discuss two case studies: autonomous driving
in critical scenarios, energy-efficient autonomous driving. Fi-
nally, we discuss the challenges in naming, predictability, and
security.

The rest of the paper is organized as follows. Section II
presents the background and motivations of this work. Sec-
tion III discusses the proposed 4C framework. Sections IV
presents two case studies of the 4C framework. Sections V
presents the challenges and discussion. Section VI concludes
the paper.

II. BACKGROUND AND MOTIVATION
A. Visual IoT

In the era of the internet of everything, billions of end
devices are connected to support applications like smart cities,
surveillance systems, unmanned aerial vehicles, autonomous
vehicles, etc. [4]. Visual IoT is an enabling technology which
model traffic at device-level to support various applications.
V-IoT is built on top of video processing technologies since
rich visual sensors are deployed for environment sensing and
perception [8]. However, the actual deployment of V-IoT
still faces several challenges. One of the biggest challenges
is the visual data collection and process. Take autonomous
vehicles as an example. Gigabytes of raw sensor data are
generated every second and need to be processed in real-
time while the vehicle is running. Therefore, the design of
the visual data compression algorithm should cope with real-
time requirements. Besides, the co-design of communication
and computation resources would increase the V-IoT system’s
resource utilization. Furthermore, edge computing technology

Global Planning

!
A

Localization

2, location
S

ORB-SLAM2

navigation
images

Sensing

Local Planning

Detection objects/lanes

- ; fp——<
e ﬁ-

YOLOv3 + LaneNet

Segmentation

DeepLabv3 + MobileNetv2

Sensor
Fusion

trajectory

Drive-by-wire

Fig. 1. An overview of the end-to-end autonomous driving system.

road/open space

enables smart infrastructures (edge servers) equipped with
sensors and computation and communication devices. More
sensing and perception tasks can be executed on the edge
server and share the perception results with the vehicle.
Extending the current V-IoT system to support safety-critical
systems becomes essential.

B. Autonomous Driving Systems

CAV is one of the typical applications for V-IoT technolo-
gies. However, unlike other application scenarios like smart
cities and surveillance systems, CAV is built with dynamic
wireless communications. It is a safety-critical scenario with
hard real-time requirements. These characteristics make it
challenging for the current V-IoT system to support CAVs
applications [1]. Figure 1 shows an overview of the end-to-end
autonomous driving system. Typically, multiple sensors are
integrated to enable the vehicle’s sensing and perception. To
simplify the autonomous driving pipeline, we discuss a design
which is purely relied on cameras for sensing the environment.
As shown in the figure, eight primary components can be
divided into three parts: sensing, perception, and decision [9].
Sensing is the process of sensors that captures information
from the environment. Perception represents the understanding
environment with algorithms applied to the sensing data,
including localization, detection, semantic segmentation, and
sensor fusion. The role of sensor fusion is to collaborate
with each component’s perception results and generate lo-
cations for objects, lanes, and open space for the planning
module. The decision is composed of global planning, local
planning, and vehicle control. Global planning generates the
routes between origin and destination, while local planning
generates the trajectory and controls on break, acceleration,
and steering. Finally, the control commands will be applied to
the drive-by-wire system and applied to the vehicle. In general,
the Robot Operating System [10] (ROS) is used to manage
these components and provide data communications between
different components.

C. Why Are Vehicle Communications Important?

Massive innovations in computer vision, machine learning,
and accelerators improve the end-to-end autonomous driv-
ing systems’ performance. However, accidents and fatalities

caused by early deployed autonomous vehicles arise from time
to time. There are still several challenges in the development
and deployment of the autonomous driving system.

The biggest challenge is safety, which means the sensing,
perception, decision, and control should be finished in real-
time. As a safety-critical system, real-time means the guaran-
tee to finish the driving tasks before the deadline. According
to [11], when the vehicle drives 40 km per hour in urban areas
and that autonomous functions should be effective every 1 m,
each real-time task’s execution should be less than 100ms.
However, limited by DNN algorithms’ performance and lack
of adequate field testing, the real traffic environment is too
complicated for the current driving systems to handle. The re-
liability of sensors makes this problem even more challenging.
The quality of images captured by cameras is affected by the
lighting conditions [9]. Although the point clouds from LiDAR
are precise and independent of illumination, there can be
noisy and sparse. Another challenge is the cost. The cost of a
level 4 autonomous driving vehicle can attain 300,000 dollars,
which the sensors and computing platform cost almost 200,000
dollars [1]. Besides, to ensure AV’s reliability and safety,
a backup of hardware devices may be necessary. The high
cost of the autonomous driving vehicle remains a significant
obstacle to its complete deployment in the real world.

Vehicle communication mechanisms, e.g., DSRC, C-V2X,
5G, address the above challenges from another perspective.
Unlike the general approaches, the vehicle communication-
based approaches obtain traffic information like traffic lights,
vehicle speed, pedestrians, etc., from the traffic infrastructure,
decreasing computation demands for the vehicle’s embedded
system. Besides, with raw data updated from the vehicle,
sensing and perception tasks are executed at the edge server
or the cloud. In this case, co-designing the computation and
communication resources for CAVs applications becomes a
fundamental problem. The main reason is that as a safety-
critical system, the driving system should be predictable.
However, when the vehicle is driving autonomously, both
the available computation and communication resources are
unpredictable.

D. Why Is Integration with Controls Important?

Typically, an essential interface for the computing system to
communicate with the real vehicle is the drive-by-wire system,
which provides interfaces for executing the driving commands.
The drive-by-wire system sets up interactions with lower
layers (vehicle system) to ensure the control commands from
the upper layer (computing system) are executed correctly
in real-time. However, the lack of backward interaction with
the computing system makes it impossible for the upper
layer to respond. Table I presents vehicle control delays for
acceleration, braking, and steering for selected commercialized
vehicles. Control delay is defined as the time interval between
the control message’s generation and execution. We can ob-
serve that the delay for any controls for all these five vehicles
is larger than 100ms, while the highest exceeds 480ms. The
control delay could significantly affect the vehicle’s safety.
Therefore, a fully autonomous driving system requires the co-
design of computing and control systems.

TABLE I
VEHICLE CONTROL DELAY FOR ACCELERATION, BRAKING, AND
STEERING FOR SELECTED COMMERCIALIZED VEHICLES

Lincoln Hongqi Hongqi NIO GAC Group
Delay (ms) — ‘nigz w7 EV ES8 Aion LX
Acceleration 280 200 484.2 120 236
Braking 230 362 191.7 120 266
Steering 136 128 124.8 108 120

There are several benefits of integrating vehicle controls
with the driving system; the first is safety. The difference
between the control and odometer output is road conditions
like pod holes and icy roads. Under these circumstances,
human drivers are supposed to decrease the speed to ensure
safety, which means putting more effort into the sensing
and perception stages. The second benefit is fuel efficiency.
If the vehicle’s control model is integrated with the path
planning model, it can generate a path with the lowest fuel
consumption with a safety guarantee. The third benefit is
convenience, which is more related to the passenger experience
for autonomous vehicles. Unlike human drivers, the machine-
based system could create bang-bang controls when control
switches abruptly from one extreme to the other, especially
for emergency braking and obstacle avoidance. However, with
V2X communications and vehicle control integrated with the
driving system, a wider range of environment perception is
achieved, and the vehicle controls could become smoother.

III. 4C FRAMEWORK FOR CAVS

In the actual deployment of CAVs, how to leverage the com-
putation, communication resources to generate and execute
adequate controls under a dynamic traffic environment is a fun-
damental challenge. We propose the 4C framework, which co-
designs the communication, computation, and controls to solve
this challenge. In this section, we first present the overview
of 4C. Then we show a detailed discussion of computation,
communication, and control, respectively. Finally, we discuss
the abstracted application programming interface (APIs) in 4C.

A. 4C Overview

The overview of 4C is shown in Figure 2. Generally, the
autonomous driving pipeline can be divided into five modules:
sensing, perception, fusion, planning, and decision, where each
module has several tasks running in parallel [1].As a safety-
critical system, the driving system requires high predictability
and flexibility. To support the autonomous driving pipeline,
4C has three main components, including programmable
communications, fine-grained heterogeneous computation, and
efficient vehicle controls. On top of these components, unified
APIs are abstracted. 4C could be deployed both on the
vehicle and the edge server [8]. The key innovation for 4C
is that it provides unified APIs to manage the programmable
computation, communication, and control resources.

B. Programmable Communications Support

As a complement to the vehicle’s embedded system, vehicle
communications enable the vehicle to access information and

Autonomous Driving Pipeline

Sensing H Perception H Fusion H Planning H Decision ‘

Control

Communication

Computation

Fig. 2. The overview of the 4C framework.

computation resources with a broader range. Typically, other
vehicle’s speed and control information is obtained through
communications. Some tasks are uploaded to the roadside
unit (RSU) or cloud for computation because they have more
powerful computing devices. All these capabilities require
programmable communications, which could provide flexi-
bility. Traditionally, cellular communications like 4G, LTE,
and vehicle communications like DSRC are deployed in a
“black-box’ fashion, where the communication hardware and
software are plug-and-play. This approach’s limitation is that
the devices and software cannot configure, contributing to
low flexibility and programmability [12]. Recently, many
efforts have been made in pushing the softwarization and
virtualization of network resources, including software-defined
radio (SDR), network function virtualization (NFV), network
slicing, etc.

The communication module in the 4C framework is built on
SDR devices that have reconfiguration capability. On top of
that, open-source software includes OpenAirlnterface (OAI),
and srsLTE are implemented to provide full-stack cellular
network functions [12]. Both OAI and srsLTE include the
software stack for the core network (EPC), the base station
(eNodeB), and user equipment (UE). Typically, the EPC and
eNodeB are deployed on the traffic infrastructure or cloud,
while the UE is deployed on vehicles. This setting makes the
communication module provide 4G, LTE, 5G, and Cellular
Vehicle-to-Everything (C-V2X) links between vehicles and
the edge server. In the vehicle communications scenario,
coverage of cellular links is limited, and lots of handovers
will happen when the vehicle moves at high speed. Therefore,
network management and slicing are introduced to monitor
and allocate network resources at the core and base stations.
Besides, context information, including the vehicle’s control,
the vehicle’s path, the task’s priority, etc., is necessary for more
effective network resources management. Previously, vehicular
communications only share safety-related messages like the
Basic Safety Message (BSM) in DSRC. In contrast, the API
module in 4C provides reconfiguration capabilities of network
resources to design CAVs applications.

C. Fine-grained Heterogeneous Computation

Visual IoT sensors are one of the primary components of
the computation module, including cameras, LiDAR, Radar,
GNSS, etc., which generate Gigabytes of raw sensor data

every second. Processing such a huge amount of sensor
data in real-time brings massive challenges for the driving
systems of autonomous vehicles. Due to its good performance
and capability to process raw sensor data, DNN has been
widely utilized in the driving system. How to support DNN
models’ execution in real-time becomes the key in driving
systems design. Heterogeneous computation architecture is
promising for better performance with low cost and energy
budget [13]. However, the flexibility of current approaches to
access heterogeneous computation resources is still limited,
contributing to a considerable waste of computation resources.
Therefore, in 4C, we propose a fine-grained heterogeneous
computation module that enables the higher-level applications
to share lower-level hardware.

From Figure 2, we can find four types of computing archi-
tectures are chosen, including CPU, GPU, Field Programmable
Gate Array (FPGA), and Application Specific Integrated Cir-
cuit (ASIC) [13]. CPU is the most versatile architecture in
computing systems, and it supports generic computations,
especially good at logistic controls and sequential processing.
GPU is designed mainly for graphics processing. With many
cores, GPU shows strength in parallel processing like DNN
model training and inference. However, the power consump-
tion of GPU is a big concern. FPGA is an architecture based
on a matrix of configurable logic blocks (CLB) connected
by programmable interconnects. Therefore, FPGA shows the
best reconfiguration capability, and it’s much more energy-
efficient than GPU. However, the programmability is much
lower than the CPU and GPU. Unlike general-purpose archi-
tectures, ASIC is customized architecture for a specific logic
function. This design makes ASIC shows better performance
and energy efficiency than others, but the flexibility is limited.
A combination of these architectures is leveraged to handle
both general-purpose applications and customized functions.

Another challenge is how to access the heterogeneous hard-
ware in fine-grained. Many efforts have been made to split the
DNN model inference into several sub-tasks and execute them
on the most suitable hardware. For example, the image resizing
and compression can be executed on the CPU, while the matrix
addition and multiplication are on GPU. Besides, the DNN
model could also be split into several layers and execute on
a different architecture. 4C is designed to support both DNN
layers splitting and scheduling. To program on heterogeneous
architecture, 4C utilizes the hardware drivers in the operating
system (OS) with open-source libraries, including OpenCL,
CUDA, and OneAPI. On top of these libraries, 4C defines
configuration scripts that set the destination hardware with the
maximum accelerator resources to manage the splitting and
scheduling of DNN layers flexibly. Similar to communication
resources, APIs are defined for higher-level CAVs applications
to access fine-grained heterogeneous computation.

D. Efficient Vehicle Controls

Vehicle control is the last step of the autonomous driving
pipeline, which applies decisions on the wheels. The drive-
by-wire system is the bond that provides the interface to send
control messages to the electronic control unit (ECU) via the

controller area network (CAN) bus [14]. Like the I/O bus in
computers, the CAN bus supports communications between
different ECU and the drive-by-wire system. Typically, the
vehicle is equipped with up to 80 ECUs, including engine con-
trol module (ECM), powertrain control module (PCM), Brake
Control Module (BCM), etc. Each of them is an embedded
system to ensure the real-time response to the commands read
from the CAN bus. Take throttle control as an example; the
drive-by-wire system sends a throttle command to the ECM
via CAN bus, then the message will be sent to the motors
to turn. Meanwhile, the throttle position sensor will monitor
the throttle and send feedback to the ECM. The ECM will
adjust the motor control to decrease the difference to achieve
the desired throttle control.

Unlike traditional design, in the control module of the 4C
framework, the drive-by-wire system is leveraged to bridge
the driving system to ECUs like ECM, PCM, and BCM.
Besides, the drive-by-wire system also reads feedback from the
ECUs. The feedback of controls from the ECUs, the real-time
diagnostics, and other information from the vehicle’s sensor
will be grouped and shared with the autonomous driving
applications. The feedback of controls to the driving system
sets up the stringent connection between the application and
the actual vehicle, making it possible to have more customized
optimizations.

E. APIs for Co-Design

From the design of the 4C framework, all the commu-
nication, computation, and control resources and messages
are abstracted as unified APIs for the autonomous driving
pipeline. This abstraction aims to enable each application
to access communication and computation resources in fine-
grained and customized for the specific vehicle. In summary,
we can find that the APIs can be divided into two categories:
management APIs and data APIs. The management APIs
include managing communications bandwidth, computation
resources, controls to the vehicle through the drive-by-wire
system, etc. In contrast, data APIs are defined to enable each
application to access runtime and context information from the
lower level communication, computation, and vehicle control
devices.

We could co-design communication, computation, and con-
trol for specific applications through APIs, like energy-efficient
autonomous driving, autonomous driving in critical scenarios,
etc.

IV. CASE STUDY

From the design of the 4C framework, all the communi-
cation, computation, and control resources and messages are
abstracted as unified APIs for the autonomous driving pipeline.
The 4C framework can support various CAVs applications.
This section presents two case studies of the 4C framework:
autonomous driving in critical scenarios and energy-efficient
autonomous driving.

---I Communication I Engine Fuel Model
3G/4G/5G/C-V2X
’ Sensing }o—»

\ { \ {
—vl Computation |<— |

| (

| Decision

Perception ‘ | Fusion ‘ | Planning ‘

Control

Fig. 3. A typical design of energy efficient autonomous driving based on 4C.

A. Autonomous Driving in Critical Scenarios

Critical scenarios have always been a big challenge for
the design and deployment of fully autonomous driving ve-
hicles. Critical scenarios refer to the traffic environments
that are extremely hard for the current driving system to
understand. Currently, the field-testing of autonomous driving
vehicles mostly happens in places with good weather and
light conditions like Arizona and Florida. However, accidents
and fatalities happen because the real traffic environment is
much more complicated than the testing scenarios [1]. Besides,
DNN-based approaches are widely used in perception and
planning tasks. It’s tough to explain how DNN learns the
pattern and knowledge as a “black-box” approach, contributing
to many perception failure in the real traffic environment.
Other critical scenarios are currently less studied, like snowing
roads, heavy rain/fog, work-zone, etc. Current driving systems
of autonomous vehicles are not expected to handle these
scenarios.

With the 4C co-design framework, some critical scenarios
are addressed. The vehicle can access traffic information from
other vehicles and infrastructures with the communication
module, eliminating some perception failures. For critical
scenarios like snowing roads, heavy rain/fog, and work-zone,
the control module’s feedback to the driving system could
make the vehicle decelerate or emergency stop. Besides, with
communications like 5G and C-V2X, real-time high-definition
(HD) maps are shared with the vehicle. Furthermore, teleop-
eration could be launched to take over the vehicle’s control
for safety.

B. Energy-Efficient Autonomous Driving

With massive tasks running on the driving systems, energy
consumption has been a big concern. Generally, the driving
system’s total power consumption exceeds 1,000 watts, and
this value would be doubled if considering a duplicated system
as a backup. Another major part of energy consumption is
fuel/electricity consumption, mainly affected by the engine
model and controls. Based on a report of the operating
cost per mile for heavy-duty trucks, the fuel cost accounted
for 39 percent, which is the most significant contributor to
operational costs [15]. Reducing energy consumption improves
the vehicle’s mileage range and solving heat dissipation issues
brings by overheating.

A practical energy-efficient autonomous driving system
requires the co-design of communication, computation, and
control. Figure 3 shows a typical design based on the 4C
framework. Using the recorded control data, including the

350
= 1300 =
2 / \\\\ é
> /' N\os0 8
'§ N /) 2
@ Iy Our Model =

' o7 H <C
= \ 1 ——-vT-cpRm | 200
40k ‘ \ _=h ‘ ‘ | Atitude -
0 100 200 300 400 500 600 700
Time [sec]
=) —
= 100001 Fyel saving: 5.97% B) i
il S
= —
£ P A
>3 =
2 5000 = .
o ——VT-CPFM
3 = —— Our Model
[T 0 L L L L L L
0 100 200 300 400 500 600 700
Time [sec]

Fig. 4. Preliminary results of energy efficient autonomous driving by co-
designing vehicle planning (computation) with vehicle controls.

throttle, brake, and torque, as the input while the corresponding
fuel consumption as the label, an engine fuel model could
be trained, predicting the instant and total fuel consumption
for input controls. This engine fuel model could be used in
path planning and the autonomous driving pipeline’s decision
to get a trajectory with the lowest fuel consumption. To
show the availability of the 4C framework in energy-efficient
controlling, we trained a fuel rate prediction model based
on recorded control data of throttle, brake, torque, etc., from
the vehicle’s Engine Management System (EMS). The model
is trained using AutoML, which achieves a coefficient of
determination (R?) to 0.97. Next, we apply this fuel rate
prediction model to the vehicle control module to generate
the most energy-efficient control commands. We evaluate the
system through a road test which is around 14 kilometers
and costs 700 seconds. The comparisons of AutoML (Our
Model) and state-of-the-art energy-efficient control algorithm
VT-CPFM are shown in Figure 4. The top subfigure shows
the altitude of the road test and the optimal speed from the
control module. With the optimal speed, the AutoML model
and VT-CPFM model’s total consumption is 10570 grams and
11240 grams, respectively, 5.97% of total fuel saving on this
road.

In addition to energy-efficient controls, the communication
module enables the vehicle to access a longer range of traffic
information. The maximum range of most autonomous vehicle
sensors is less than 200 meters, but the range of C-V2X com-
munications goes to 1000 meters. Increasing the sensing range
also helps the planning module to get a more energy-efficient
route. Furthermore, with fine-grained access to heterogeneous
computing architectures, energy-efficient scheduling becomes
practical, and the power consumption of the driving system is
also decreased.

V. CHALLENGES AND DISCUSSION

This section presents several challenges and open problems
to realize the vision of 4C, including naming, predictability,
and security.

Naming Since 4C is supposed to be deployed both on
vehicles and the edge server, a naming scheme becomes an
essential part to support programming, addressing, and data
communication between vehicles and traffic infrastructures.
Unlike cellular communications, vehicle communications are
ad hoc, and the duration of communication links are usually
short because vehicles are driving, and the V2X communi-
cation range is limited. A traditional naming scheme like
DNS cannot support this dynamic mobile scenario. In the
4C framework, virtualized and programmable communications
allow the management of V2X communications in link-level,
which brings higher flexibility. However, mapping these V2X
links uniquely with vehicles with low complexity is still an
open question for CAVs.

Predictability An autonomous driving vehicle relies on
the driving system to understand the road environment and
get safe controls in real-time, requiring the whole system’s
predictability. The achieve the system level predictability,
each stage within the autonomous driving pipeline should
be predictable, which brings a massive challenge for 4C’s
communication and computation modules. In 4C, with V2X
communications and computations abstracted in fine-grain
granularity, the behavior of tasks with link-level commu-
nications becomes more predictable. However, sophisticated
designs are still needed to leverage abstracted resources to
guarantee a real-time response.

Security As a complicated distributed system that combines
computation, communication, and control, security is one of
the biggest challenges for the actual deployment of CAVs
applications. Currently, vehicle communication, like DSRC,
is not encrypted. Attacks could happen to any hardware
and software of the 4C framework. However, with all the
APIs for lower-layer resources are abstracted for higher-layer
applications, plenty of mature techniques in building secure
computing systems could be applied to the vehicle system.

VI. CONCLUSION

CAVs have attracted massive attention from both the aca-
demic and automotive communities. The driving system plays
a crucial role in understanding the traffic environment and
making decisions for CAVs. However, the limited system-
level reliability and the missing integration with vehicle
communications and controls narrow the testing of CAVs
to constraint scenarios. This paper presents our vision of a
future driving system for CAVs, called 4C, which provides
a unified communication, computation, and control co-design
framework. With two case studies, we present the usability of
the 4C framework. Finally, we discuss the challenges in the
4C framework.

REFERENCES

[1] L. Liu, S. Lu, R. Zhong, B. Wu, Y. Yao, Q. Zhang, and W. Shi, “Com-
puting systems for autonomous driving: State-of-the-art and challenges,”
arXiv preprint arXiv:2009.14349, 2020.

[2] (2018) Global Autonomous Driving Market Outlook, 2018.
[Online]. Available: https://www.prnewswire.com/news-releases/global-
autonomous-driving-market-outlook-2018-300624588.html

[3] (2020) National Highway Traffic Safety Administration. Automated Ve-
hicles for Safety. [Online]. Available: https://www.nhtsa.gov/technology-
innovation/automatedvehicles#topic-benefits

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

W. Ji, J. Xu, H. Qiao, M. Zhou, and B. Liang, “Visual IoT: Enabling
internet of things visualization in smart cities,” IEEE Network, vol. 33,
no. 2, pp. 102-110, 2019.

S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey
of deep learning techniques for autonomous driving,” Journal of Field
Robotics, vol. 37, no. 3, pp. 362-386, 2020.

S. Barbarossa, S. Sardellitti, E. Ceci, and M. Merluzzi, “The edge
cloud: A holistic view of communication, computation, and caching,” in
Cooperative and Graph Signal Processing. Elsevier, 2018, pp. 419-
444.

E. C. Strinati and S. Barbarossa, “6g networks: Beyond shannon towards
semantic and goal-oriented communications,” Computer Networks, vol.
190, p. 107930, 2021.

W. Ji, B. Liang, Y. Wang, R. Qiu, and Z. Yang, “Crowd V-IoE: visual
internet of everything architecture in Al-driven fog computing,” IEEE
Wireless Communications, vol. 27, no. 2, pp. 51-57, 2020.

S. Liu, L. Li, J. Tang, S. Wu, and J.-L. Gaudiot, “Creating autonomous
vehicle systems,” Synthesis Lectures on Computer Science, vol. 6, no. 1,
pp. i-186, 2017.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and
T. Hamada, “An open approach to autonomous vehicles,” IEEE Micro,
vol. 35, no. 6, pp. 60-68, 2015.

L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Open,
programmable, and virtualized 5g networks: State-of-the-art and the road
ahead,” arXiv preprint arXiv:2005.10027, 2020.

S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang,
and J. Mars, “The architectural implications of autonomous driving:
Constraints and acceleration,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 2018, pp. 751-766.

R. Isermann, R. Schwarz, and S. Stolzl, “Fault-tolerant drive-by-wire
systems,” [EEE Control Systems Magazine, vol. 22, no. 5, pp. 64-81,
2002.

(2020) The Real Cost of Trucking - Per Mile Op-
erating Cost of a Commercial Truck. [Online]. Available:
https://www.thetruckersreport.com/infographics/cost-of-trucking/

