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Abstract

Computational modeling of drug delivery is becoming an indispensable tool for advancing drug development pipeline,
particularly in nanomedicine where a rational design strategy is ultimately sought. While numerous in silico models have
been developed that can accurately describe nanoparticle interactions with the bioenvironment within prescribed length and
time scales, predictive design of these drug carriers, dosages and treatment schemes will require advanced models that can
simulate transport processes across multiple length and time scales from genomic to population levels. In order to address
this problem, multiscale modeling efforts that integrate existing discrete and continuum modeling strategies have recently
emerged. These multiscale approaches provide a promising direction for bottom-up in silico pipelines of drug design for
delivery. However, there are remaining challenges in terms of model parametrization and validation in the presence of vari-
ability, introduced by multiple levels of heterogeneities in disease state. Parametrization based on physiologically relevant
in vitro data from microphysiological systems as well as widespread adoption of uncertainty quantification and sensitivity

analysis will help address these challenges.
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INTRODUCTION

Computational modeling of drug delivery has significantly
advanced in recent years. In silico models using discrete or
continuum modeling approaches can accurately describe
drug’s interactions with the bioenvironment during individual
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stages of its in vivo journey. In the meantime, advanced nano-
medicine has resulted in numerous nanoparticle (NP) formu-
lations offering encapsulation of small molecule drugs and
biologics, as well as efficient transport and delivery of these
therapeutics to target sites. Use of NPs as drug carriers, imag-
ing agents, molecular probes, sensors and thermal therapy
agents show great potential for therapeutic and diagnostic
use with some of these nanomedicines having already found
clinical use in critical applications such as anticancer therapy
and mRNA vaccine delivery (1-4).

A significant amount of continued research on nanomedi-
cine focuses on physiochemical NP characteristics such as
particle size, shape, charge and functionalization and efforts
to tune these characteristics to realize the biological, trans-
port, optic, magnetic and thermal function desired (5, 6).
In the NP design process, there are various considerations
that can effectively be addressed by computational modeling
strategies. These include simulations of NP plasma pharma-
cokinetics and biodistribution (7), scenarios involving pas-
sive and active targeting strategies (8, 9), NP interactions
with physiological transport barriers (10) and outcomes of
therapeutic interventions involving normalization of patho-
physiological features of disease (11, 12).
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While progress has been made towards understanding
how multifaceted NP characteristics affect their trans-
port and delivery, predictive design of nanomedicine,
dosage and treatment schemes pose challenges for com-
putational models, as interactions of NPs with the bioen-
vironment need to be captured across multiple length
and time scales from genomic to population levels to
model the transport processes accurately. Integration of
existing modeling strategies in a multiscale modeling
setting can enable a bottom-up in silico computation
pipeline bridging the scales, and shows great promise
for building predictive in silico models of drug deliv-
ery and efficacy. However, it is still challenging to inte-
grate these multiscale efforts for broader length and time
scales. Another primary challenge remains incorpora-
tion of uncertainty arising from heterogeneities within
the disease, across different disease states and different
patients into the computational models. Systematic veri-
fication and validation of computational models based
on data from high-fidelity in vitro models such as micro-
physiological systems and development of models based
on anatomically accurate and patient-specific medical
imaging data will help address these challenges.

In this review, we summarize the recent progress in
computational modeling of drug transport with a focus of
nanomedicine, highlight examples of modeling efforts in
distinct scales and discuss challenges and opportunities
for the next level.
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Discrete and Continuum Modeling

Physical phenomena associated with the transport of drugs
across the human physiological systems take place at mul-
tiple length and time scales (Fig. 1). Processes such as drug
release from a nanocarrier or partitioning of the drug in the
cell plasma membrane typically involve transport over dis-
tances on the order of nanometers and times on the order of
microseconds or less. A discrete representation of the drug
and its surroundings as an ensemble of individual interact-
ing particles is often employed for investigating transport
at such a small scale. There are various discrete modeling
approaches, and the selection of a particular method depends
on the level of detail required for the problem of interest.
Among the methods with the finest detail, molecular dynam-
ics (MD) involve tracking individual atoms and molecules
by the coupled solution of Newton’s second law of motion
over a time span, starting from the initial coordinates and
velocities of the particles (13—15). The interaction forces
between the particles are modeled as gradients of intermo-
lecular potentials. MD techniques are powerful tools that
can provide rich information on the structure and motion of
individual drug particles and help determine fundamental
characteristics relevant to transport based on first principles.
Most recent advances in the field enable simulations of time
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Fig. 1 Computational modeling of drug transport phenomena across scales.
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spans on the order of milliseconds, sufficient to observe
fundamental biological processes such as protein folding,
drug binding and membrane transport. Particular applica-
tions include nanoparticle interaction with the cell membrane
(16), aspherical particle modeling (17) and pharmaceutical
particle formation (18). MD studies also have potential uses
in the discovery of novel binding sites and structure-based
drug design. Additionally, drug-resistant disease models may
clarify the mechanism of resistance and provide a power-
ful tool for modifying the drug (19). If electronic motions
play an essential role, quantum mechanics (QM) provides
a finer approach than MD simulations. On the other hand,
averaging electronic properties and assigning partial charges
to atoms reduces computational cost compared to QM-based
approximation (15). For NPs with a size of 20-200 nm within
mesoscopic-scale, atomistic detail is mostly not needed.
Therefore, in coarse-grained (CG) simulations a number of
atoms are grouped into interaction sites called 'beads'. After
coarse-graining the system, a similar method with MD is
followed in which a sampling algorithm is used to calculate
thermodynamic and structural properties (15).

Scaling-up of MD simulations to investigate transport
phenomena beyond nano/micro-scales is computationally
prohibitive (20) and degree of freedom reduction reduces
the computational cost. For instance, comparing MARTINI
models in the molecular and atomic scales the speed up is
proportional to n?, i.e. square of the degrees of freedom. It
is even greater for models treating solvent as a continuum
medium such as Brownian Dynamics (BD) (21). Mesoscale
models average out unimportant microscopic details while
keeping the essential ones, resulting in a computationally
efficient simulation. BD, Multi-Particle Collision Dynam-
ics (MPCD) and Dissipative Particle Dynamics (DPD) are
common discrete methods used to model mesoscopic phe-
nomena spanning molecular to microstructural processes
(14). In general, two classes of mesoscopic methods, namely
particle-based (DPD, MPCD) and lattice (LB) methods are
utilized (22).

When a small particle is suspended in a fluid, it is sub-
jected to the imbalanced random impacts of the fluid mol-
ecules that cause the nanoparticles to move on an erratic
path, known as the Brownian motion. A Gaussian white
noise stochastic process can model the random impacts of
the molecules (23). Particles suspended in a fluid system are
subjected to the impacts of the randomly fast-moving fluid
molecules. For sub-micron particles, such instantaneously
fluctuating momentum transfer from the solvent molecules
spurs the particle to yield irregular movements, known as the
Brownian motion. The dynamics of such Brownian particles
can be described via the (overdamped) Langevin equation
(LE) (24).

BD replaces the effect of solvent molecules on particles
with a random force, so that solvent molecules are regarded

as a continuum medium. Therefore, BD is used when the sol-
vent molecules do not deserve a special interest (25). Being
a relatively simpler and computationally cheaper method it
is popular, but it does not take momentum transport through
the fluid, i.e. hydrodynamic interactions into account. BD
method is used in different applications such as the transport
of suspended particles within an array of circular objects/
obstacles (26), intracellular calcium release (27) and biomol-
ecule association in solutes (28). In DPD, groups of atoms
or volumes of fluids are modeled as beads that move accord-
ing to the Newton’s 2" law or LE, although the functional
forms of forces are slightly different (22). In the most basic
form of DPD, there is a conservative, dissipative and random
force term between each bead corresponding to soft repul-
sion, frictional force(drag) and random interaction between
neighboring beads. Compared to LBM or MPCD, DPD is
more expensive numerically as it accounts for pairwise inter-
actions (22). DPD has been used in nanoparticle targeting
kinetics (29), determination of cellular uptake of different
NP shapes (30) and drug encapsulation efficiency of Pluro-
ronic micelles (31). An improved version of DPD, smoothed
dissipative particle dynamics (SDPD) has the advantage of
accounting for fluid compressibility, which might be promi-
nent in specific applications like the collective motion of col-
loids and flow within complex geometries (32). In MPCD,
the solvent molecules are modeled as an ideal gas. The
update of particle positions and momentum occurs in two
successive time intervals, namely streaming and collision
steps. In the most widely used MPCD algorithm, stochastic
rotation dynamics (SRD), the coordinates of the particles
are updated in the streaming step using Newton’s equation
of motion, neglecting solvent—solvent interaction. Then, the
system is divided into cells and the relative velocities of par-
ticles in the same cell with respect to the center-of-mass are
subjected to a random rotation (22, 33) in the collision time
step. Thanks to the rotation of velocities, the total momen-
tum and energy are conserved while fluid particles transfer
momentum. The method might result in misleading results
for small temperatures or small collision time steps such
that fluid particles remain in the same cell for more than one
collision time step (34). MPCD method has been applied
for uses such as semiflexible polymer chain dynamic simu-
lation (35) and single rigid spheres with natural buoyancy
confined in different geometries under pressure-driven flow
(36). Different physical phenomena happening in distinct
time-length scales might be represented with the same phys-
ics and coarse-graining scheme if the governing set of key
non-dimensional numbers is the same (34). It should be kept
in mind that while coarse-graining the molecular system,
the thermodynamics of the system must be preserved for a
good representation, i.e. the compressibility and solubility
of the components should be preserved. There are studies in
literature comparing application of MPCD and DPD (37),
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BD and MPCD (38). Interested reader can refer to reviews
and reference texts on the subject for detailed treatment of
each method (22, 39).

When investigating the transport phenomena at larger
length scales such as drug distribution within and across
different tissues, a continuum approach is often adopted
where the position and motion of the drug particles and the
surrounding medium are averaged in space and time and
the material is assumed to be distributed continuously in
the region of interest. Finite element method (FEM), finite
volume method (FVM) and finite difference method (FDM)
are numerical techniques that are used to solve differen-
tial equations. Such differential equations commonly arise
in continuum modeling transport processes and include
Navier—Stokes (NS) equations for fluid dynamics, Darcy’s
Law for fluid dynamics in porous media and species advec-
tion diffusion equation for drug transport (40). In FDM,
terms of the differential equation are directly estimated at
nodal points which yield a set of equations to be solved.
In FEM, problem domain is discretized into small regions
referred to as finite elements where governing equations
are modeled based on variational principles. FVM also
involves discretization of the problem domain into small
regions referred to as cells where conservation laws, typi-
cally governing fluid or heat transfer are applied over each
cell (41, 42). Another numerical method for modeling trans-
port problems in the continuum regime is the Lattice Boltz-
mann Method (LBM). In LBM, the distribution function is
discretized to solve Boltzmann equation, a molecular-scale
analogue of the NS equations, such that fluid particles are
restricted to move along a lattice vector. LBM method is
not a coarse-graining scheme of molecular dynamics; rather,
it is evolved from lattice gas cellular automata (22) from
which macroscale NS equations can be derived. Although
it has streaming and collision time steps similar to MPCD,
it cannot represent physics in such small scales. Treating
fluids with different length scales challenges lattice-based
methods (34).

Modeling of transport process at system-level such as
pharmacokinetics associated with drug absorption, distri-
bution, metabolism and excretion (ADME) are typically
done by compartmental models where mass transport and
biochemical processes across and within compartments
are modeled by coupled differential equations. Physiologi-
cally based pharmacokinetic (PBPK) models involve com-
partments representing individual organs and tissues that
are connected by blood or lymphatic circulation (43). The
process of mass transport between compartments might be
limited by two main factors; namely, blood perfusion and
transport across tissue-tissue interfaces, e.g. vascular wall or
cell plasma membrane that are repsented by flow-limited and
interface-limited models (44, 45). One of the key parameters
in these models is the tissue-to-plasma partition coefficient
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that is defined as the ratio of the NP or drug concentra-
tion within the tissue to the concentration in the vascular
compartment. The partition coefficient is a time dependent
parameter estimated individually for the specific NPs or
drugs and the environment. Being challenging to measure
in vivo, there are in silico approaches developed to predict
the partition coefficient (46). Some example applications of
these in silico approaches include age dependent organ, por-
tal and hepatic blood flow data adjustments using adult and
pediatric simulations for different compounds (47), evaluat-
ing the accuracy of different plasma clearance and steady
state volume distribution prediction methods (48), analysis
of NP distribution to different organs depending on particle
size (49), intracellular drug concentration optimization for
temperature sensitive liposomes under hyperthermic condi-
tions (50) and PEGylated gold nanoparticle internalization
modeling (51).

Having a physiologically mechanistic representation of
the actual organ level transport, pharmacokinetic models can
be used to extrapolate results of animal models to humans
or might be helpful in dose determination of specific groups
of the population like pediatrics and pregnant women (45).
PBPK modeling is indeed widely used in academia and
industry to predict dynamics of drug ADME characteristics.
In addition it is gaining recognition by regulatory circles as
a valid modeling tool for efficacy and toxicity assessment
(52). For instance, the effect of focused ultrasound-induced
blood—brain/blood-tumor barrier’s disruption on drug deliv-
ery was analyzed (53). Integrating the experimental outcome
with a PBPK model, it was pointed out that the disruption
alleviates the vascular barriers and enhances interstitial
transport. Simulation of population-level variations in phar-
macokinetic properties involves nonlinear mixed effects that
often utilize generic compartmental models that do not seek
physiological mimicry, yet provides sufficient explaining
power for parameters of interest (54). However, the popu-
larity of PBPK modeling in this area is also increasing (55).

Governing equations for the modeling formulations pre-
sented above are provided in Table I together with several
example applications. It is seen that discrete models are
powerful tools that can provide rich information on structure
and motion of individual drug particles and help determine
fundamental characteristics relevant to transport based on
first principles. However, scale-up of discrete methods to
investigate transport phenomena beyond nano/micro-scales
is currently computationally prohibitive. In cases where
length and time scales are sufficiently large, the continuum
approach vastly simplifies modeling while maintaining accu-
racy. However, a critical challenge in continuum modeling
is parametrization of the model involving determination of
the transport parameters specific for the drug and biological
environment considered. These transport parameters include
effective diffusivity, retardation and hydraulic conductivity
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that appear in continuum formulations of fluid and species
transport. Likewise, PBPK models require knowledge of
interface transport coefficients that themselves arise from
parameters defined in smaller scales, e.g. hydraulic conduc-
tivity and permeability that govern the convective and diffu-
sive drug transport across the interface as well as geometric
parameters such as interface area per unit volume of the
compartment. Therefore, transport parameters in continuum
models are coarse-grained representations of transport pro-
cesses and interactions that take place in smaller scales. In
the next section, we review examples of multiscale mod-
eling efforts that integrate discrete and continuum models to
address this challenge and build predictive in-silica models
of drug delivery.

Multiscale Modeling Approaches
Modeling of Vascular and Interstitial Pore-Scale Transport

As drug particles travel through the bloodstream, extrava-
sate and penetrate into a tissue, they are transported across
a crowded porous microstructure where significant interac-
tions between the drug, fluid and microstructure take place.
These interactions become particularly important for the
transport of larger particles such as nanoparticle formula-
tions and are affected by the drug particles' physiochemical
properties, including their size, shape, surface charge and
functionalization (5, 6).

While the number of atoms, therefore the degrees of free-
dom to be solved to resolve these pore-scale interactions are
too high for MD approach, the microscopic details such as
collisions of particles with the structure and other particles,
their hydrodynamic interactions with the fluid as well as the
Brownian fluctuations remain significant such that sole use
of continuum models is not adequate. Therefore, a hybrid
multiscale approach combining continuum modeling for
transport of fluid with discrete modeling for particle trajec-
tory is often utilized to investigate pore-scale transport in
vascular and interstitial space (14).

Several examples of earlier studies featuring hybrid mod-
eling approaches are illustrated in Fig. 2. There have been
several computational efforts to investigate bloodborne NP
transport under varying particle and flow conditions such
as hematocrit, vessel or NP size and flow velocity. Intra-
vascular NP transport, considering the effects of both NP
characteristics and complex cellular flow is modelled by Liu
and coworkers (56) (Fig. 2(a)). In order to cover the range
of length-scales between NP and RBC, a Lattice Boltzmann
(LB) based multiscale approach was used. The study illus-
trates that particle total radial diffusivity is the summation
of Brownian diffusivity and RBC-enhanced diffusivity. The
multiscale model provides radial diffusivity estimates for
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varying NP sizes and flow conditions marked by Peclet (Pe)
number. These results are particularly significant for blood-
borne transport of large NPs. The model recovers Brownian
diffusivity if Peclet number is small, e.g., diffusing particle
has a diameter less than 100 nm.

In a similar analysis, dispersion coefficient was investi-
gated using Immersed Finite Element Method (IFEM) (57).
IFEM features a Lagrangian solid mesh moving with a Eule-
rian fluid mesh. Therefore, both the meshing of the com-
putational domain and interpolation of the unknowns are
greatly simplified (58). In this manner, IFEM was employed
to explore the blood flow and particle dispersion charac-
teristics within the microvasculature (57). Considering
the wide variations of the key flow characterizing param-
eters, i.e., microvascular uncertainty, these simulations
were extrapolated using a Bayesian updating algorithm and
combined with experimental outcomes to acquire compu-
tational prediction. Expansion of the method by incorpora-
tion of electrokinetic and molecular interactions was also
introduced. This method, designated as IMEFEM (59), was
used to investigate effect of RBC aggregates on blood rheol-
ogy. Within this context, IMEFEM was utilized to simulate
RBC-particle interaction using pre-assigned molecular inter-
action potentials (60). MD or DPD could also be employed
for these interactions, enabling molecular scale accounting
of cell—cell, cell-particle and particle—particle interactions.
Using IMEFEM, it was shown that different hematocrit
percentages (0, 15, 30% RBCs) had distinct effects on NP
concentration at a cross-section of the blood vessel. At 30%
NPs concentrated on regions close to the vessel wall, and as
the NP size increased the concentration on this region got
even higher.

Park and colleagues (61) developed an image-guided
microstructural model of fluid and species transport in
fibrous biopolymer networks and applied their model
toward estimation of hydraulic conductivity and effective
diffusivity of fluorescent tracer molecules (hydrodynamic
radius of 5.1 nm) within pig skin collagen hydrogels where
microstructures with different branching characteristics
could be obtained by varying collagen monomer/oligomer
content during polymerization (Fig. 2(b)). The computa-
tional domain involved a representative unit cell where the
geometry was generated from segmentation of confocal
reflectance images of the collagen fiber network. Further
simulations were performed on artificial fiber networks
generated by a parameter-based reconstruction technique to
match branching point density and distances in the imag-
ing data. Their model is based on a semi-discrete approach
where the flow of physiological fluid is modeled as a con-
tinuum by NS equations while individual particle trajecto-
ries were simulated by BD. Hydrodynamic forces induced
by fluid flow on the particles were incorporated based on
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Fig.2 Hybrid discrete and continuum modeling of vascular and interstitial pore-scale transport phenomena. (a) A multiscale approach using LB
scheme for the fluid phase, a Spectrin-link method for RBCs and Langevin Dynamics (LD) to capture NP suspension. Reproduced from Ref (56)
with permission from Elsevier. (b) Workflow used in a parameter-based 3D microstructural collagen matrix reconstruction and transport prop-
erty estimation study. Reproduced from Ref (61) with permission from ASME. (c) Modelling of NP accumulation and penetration using MC
simulations. Reproduced from Ref (64) with permission from PNAS. (d) BD simulation of NPs at extracellular space contained with cells.
Reproduced from Ref (65) with permission from BMC.

the empirical Shiller-Nauman Correlation for Stokes drag ~ experimental data. The source of the discrepancy could be

(62). The model predictions were within the same order of  attributed to lack of slip flow, particle flexibility and discre-
magnitude, yet results were underestimated compared to  tization errors in the simulations (61). A similar approach
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involving volume-averaging theory and FEM were also used
to characterize hydraulic permeability of fibrous extracel-
lular matrix (ECM) (63). In another study, Sykes and col-
leagues (64) investigated whether cancer pathophysiology
influences tumor accumulation and nanoparticle penetration
using MC simulations (Fig. 2(c)). Their model involved step-
wise random walk of gold NP within collagen pores and
their elastic collision with collagen fibers in 2D and 3D
geometries. As illustrated with a bar graph, MC simulations
showed that AuNP- fiber collusion frequency decreased with
increasing AuNP and pore size. The study helped elicit the
particle size and pore size dependence of interstitial diffu-
sion of nanomedicine.

As drug particles penetrate into the tissue they also inter-
act with the cellular compartment. Islam and colleagues (65)
developed a hybrid multiscale model that combined con-
tinuum modeling of fluid flow based on Stokes equations
with time-adaptive BD to model microscale interactions of
particles with cell boundaries in terms of adhesion of par-
ticle to cell surface or reflection back into fluid (Fig. 2(d)).
The model was used to investigate the significance of the
particle size in intra-tissue dispersion and penetration. Con-
tinuation of this work included consideration of specific and
non-specific targeting efficiency and suggested that recep-
tor targeting may result in a marginal efficacy gain (66).
As these examples of hybrid modeling approaches indicate,
combination of continuum modeling and discrete modeling
allows study of drug particle—fluid-structure interactions
in dynamic vascular and interstitial flow environments and
provides a means to predict key transport properties such as
effective diffusivity and hydraulic conductivity that are used
in parametrization of continuum-level transport models.

Modeling of Tissue-, Organ- and System-Level Transport

As presented in the previous section, hybrid multiscale
modeling can help estimate effective transport properties
in porous microenvironment by simulating fluid and solute
transport in a pore-scale domain e.g., an interstitial unit cell
containing ECM fibers with certain density and directionality.
Theoretical frameworks such as asymptotic homogenization,
volume averaging and mixture theory provide alternative
means to estimate effective transport properties by
recognizing the length-scale separation between the porous
microstructure and relatively homogeneous tissue or organ-
level structures and developing averaged interpretations of
microscale equations that can later be used in homogenized
macroscale problems such as simulations over the tissue
and organ-scale (Fig. 3(a)) (67). As examples of multiscale
modeling, incorporating volume averaging theory and
asymptotic homogenization approach, volume-averaging
theory was employed to estimate permeability of fiber
networks (63). Human stratum corneum, skin’s outermost
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layer, was modeled to calculate effective diffusivity (68, 69).
Avascular tumor growth and chemotherapeutic interaction
was studied (70). Similarly, angiogenesis during tumor
growth was examined using a hybrid approach (71). The role
of vascular tortuosity on transport phenomena by bridging
micro—macro scales with differential problems and double
Darcy model was investigated (72). Capillary network
and Darcy’s law were used to investigate Vinblastine and
Doxorubicin metabolization within the tumor by Mascheroni
and Penta (73). These homogenization techniques have
inherent limitations particularly due to local cell-periodicity
assumption as mimicking complex-heterogenous ECM
or tumor microcapillary network is challenging using
periodicity. Indeed, deviations from cell-periodicity near
the macroscopic boundary introduce edge effects that
result in loss of solution accuracy (73). In addition, direct
interactions between the particles, fluid and microstructure
due to directional forces, e.g., electrostatic interactions and
magnetic stimulation, are challenging to incorporate using
spatial homogenization. On the other hand, volume averaging
theory and homogenization remain to be useful techniques
for estimation of transport properties to be used in macro-
scale continuum models without resorting to stochastic
approaches while still incorporating microstructure-level
geometric details.

One of the alternative approaches that incorporate
the effect of microstructural architecture on tissue and
organ-level transport was presented in the work of Kojic
and coworkers (74-77). A multiscale, MD-FE model was
used to investigate hierarchical diffusion phenomena for a
microstructural architecture. Using MD, interaction effects
between molecules and solid microstructure were taken into
consideration by using scaling functions. Scaling functions
represent the dependence of diffusivity with respect to the
bulk diffusivity that is applicable when far away from the
surface. Diffusion process taking place in two domains,
namely bulk diffusion and hindered diffusion, was calcu-
lated using FEM. Following that, a numerical homogeniza-
tion procedure was utilized in order to make microstruc-
tural and continuum level mass release curves identical so
that continuum level constitutive diffusion parameters like
diffusivity could be determined. The information exchange
between continuum FE of tissue, capillary wall and 1D FE
of capillaries was analyzed using a “fictitious” element that
contained nodes from both FEs at the same position in space
(Fig. 3(b)). These fictitious elements can be implemented
between different elements at lower scales as well, such
as between cell cytosol and organelles. The mathematical
modeling followed the FE formulation and transport prop-
erties for the element were determined from the element of
smaller scale and the membrane separating them, such as
the cell membrane or the capillary wall. Smeared model was
based on transformation of 1D transport equations governing
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Fig.3 Multiscale modeling approaches for tissue and organ-level transport. (a) Asymptotic homogenization technique utilized to couple periodic
microvascular transport properties and macroscale equations. Reproduced from Ref (73) with permission from Wiley. (b) Microstructural diffu-
sivity analysis extended to the equivalent continuum diffusion coefficient using numerical homogenization. Coupling of fluid and solid domains
accomplished by 1D fictitious elements. Reproduced from Ref (74, 77) with permission from Elsevier.

capillary flow in microscale into Darcy’s and diffusion ten-
sors in continuum scale. This smeared FEM formulation,
while spatially coarse-grained, can capture the dynamics of
tissue-level solute transport and has direct implications of
modeling drug pharmacokinetics (74-77).

PBPK and other compartment-based models that are typi-
cally used in evaluation of systemic transport of drugs can
provide detailed information on dynamics of ADME yet are

also highly coarse-grained and remain limited in describing
the spatial distribution of drug in sub-tissue level. Recent
multiscale approaches focus on introducing sub-tissue reso-
lution in compartmental models to improve the accuracy of
pharmacokinetic and pharmacodynamic modeling. Figure 4
illustrates an annular quasi-3D (Q3D) gastrointestinal tract
(GIT) model that is incorporated into a whole body PBPK
model and used to study dissolution, transport, adsorption,

@ Springer
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Quasi-3D Framework
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Fig.4 A multiscale PBPK modeling approach for spatially resolved transport of drugs across GI tract and system-level ADME characteristics.

Reproduced from Ref (78) with permission from Wiley.

distribution, metabolism and elimination (DTADME) of
orally administered drugs (78). In this study, the GIT was
spatially resolved by subdivision into individual Q3D vol-
umes that were modelled as a connection of 1D tubes. These
tubes had multiple annular layers which represented the
heterogeneous organization of enterocyte and lumen tissues
both radially and across the GIT. Therefore, spatiotemporal
concentration profile for ibuprofen in the lumen and entero-
cyte of GIT at different time steps could be obtained.

In another study, a multiscale PBPK model for the study
of cyto-/cardio-toxicity of doxorubicin was introduced (79).
The model consisted of a whole body PBPK model utilizing
8 tissue compartments as well as veinous and arterial blood
which connected the tissues. In addition, the study featured
a compartmental tissue sub-model where each tissue was
separated into vascular, interstitial, intracellular and nucleus
sub-compartments. The model successfully predicted con-
centration profiles in mice and results were adapted to rats
and humans using a cross-species allometric scaling. This
multiscale model enabled sub-tissue resolved pharmacoki-
netics of doxorubicin in heart and tumor tissue and helped
infer about cytotoxicity based on nucleus bound concentra-
tions of the drug.

In another study, PBPK and genome-scale metabolic
network (GSMN) models were combined by utilizing
drug transport and reaction rates in the intracellular space
obtained from the PBPK model to constrain reaction rates
in the GSMN model, through which drug perturbation was

@ Springer

calculated (80). A multiscale PK/PD model capable of pre-
clinical to clinical translation to analyze effectiveness of
antibody drug conjugates (ADCs) was modeled (81). PK
and PD models in cellular and tissue levels were used to
obtain parameters that affect ADC distribution, and these
parameters were used in the multiscale, multicompartmental
PK/PD model to predict drug concentration in tumors.

A list of selected studies that feature multi-scale modeling
for drug transport are provided in Table II.

Software Tools for Multiscale Modeling

Multiscale modeling generally requires development and
interaction of several sub-models specifically developed
to simulate processes at separate length and time scales.
Progress in this field is currently limited by expertise and
resources of individual research groups or small teams of
collaborators in developing specific purpose-built models.
On the other hand, as outlined above, efforts of the compu-
tational research community have led to a large collection of
purpose-built models for diverse physical processes. Multi-
scale modeling of drug transport can be further advanced by
incorporation and reuse of existing models for new multi-
scale simulation scenarios. Meta-modeling tools enable
coupling of computational models associated with different
length and time scales. For example, MUSCLES3 (82) can be
used to iteratively couple individual sub-models by automat-
ing simulation and transfer of information between models
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TableII (continued)

Reference

Remarks

Model Scale!
ML MS TL SL

Application

@ Springer

+  GIT is modelled as a connection of Q3D volumes that are made of 1D tubes (78)

+

Study of DTADME of orally administered drugs

with annular layers. The model successfully predicts drug concentration at

personal and population levels

IML: molecular, MS: microstructural, TL: tissue-level, SL: system-level

over appropriate solution intervals based on separation of
time scales. PK-Sim is an open system pharmacology plat-
form for PBPK modeling that is capable of interfacing with
cellular scale models for PD thereby, enabling a mechanistic
multiscale methodology for systems pharmacology (83).

CHALLENGES AND OPPORTUNITIES

Significant advances have been recently made to accurately
compute transport of drugs and drug delivery systems. How-
ever, there are still several technical challenges to achieve
predictive design of drug and delivery systems computation-
ally. These challenges include multiple levels of structural
and functional heterogeneity in tissues and organs, capturing
the variability introduced by the heterogeneity in model par-
ametrization by reliable transport properties and emergence
of needs for integrating omics data into transport simulation.
These challenges also pose opportunities for next generation
computational models. In this section, these challenges and
opportunities are discussed.

Multiple Levels of Heterogeneity

Multiple levels of heterogeneity of tissues and organs esca-
late the difficulties for accurate computation. The delivery of
NPs to the tumor is limited by various physiological barriers
alleviating the penetration of the drug and reducing expo-
sure of the tissue to the drug. In order to reach the targeted
tissue, NPs first need to circulate for a prolonged duration
within the circulatory system, reach and interact with the
tumor vasculature, penetrate into the tumor interstitium and
get internalized by cancer cells (10). However, features of
abnormal tumor physiology such as immature and leaky vas-
culature, compressed lymphatics, elevated interstitial fluid
pressure, dense interstitial matrix and large solid stresses
together constitute barriers that hinder NP transport. Strat-
egies to overcome these barriers by normalization of the
tumor microenvironment are being investigated, however
are not applicable for the whole patient population (11, 12,
84). Therefore, understanding the interactions of NPs with
transport barriers at particular stages of delivery continues
to be important and heterogeneity of tumor and tumor micro-
environment illustrate complexity and challenge to compu-
tationally model drug transport. In the following section,
we outline features of tumor heterogeneity in some of the
prominent types of cancer.

Pancreatic Ductal Adenocarcinoma
Pancreatic ductal adenocarcinoma (PDAC) is one of the

most-deadly cancers with a dismal 10% five-year survival
rate and remains highly resistant to current therapeutics
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due to poor drug delivery to cancer cells. The treatment for
PDAC is further complicated because of the heterogene-
ous tumor microenvironment (TME) composed of cancer
cells, cancer-associated fibroblasts (CAFs), ECM, immune
cells and chaotic microvasculature. This heterogeneity exists
at multiple levels including molecular, cellular, tissue and
patient levels and also evolves through the course of cancer
progression. Thus, incorporating tumor heterogeneity into
computational models remains challenging but imperative
for next-generation modeling.

Molecular and Cellular Development PDAC results from
prolonged accumulation of oncogenic mutations that
drive various transformations in the TME through acinar-
to-ductal metaplasia (ADM) leading to various lesions of
pancreatic cancer. Most notable oncogenic mutations are
Kirsten rat sarcoma virus (KRAS), observed in more than
95% of patients, and tumor suppressor gene mutations
CDKN2A/pl16, SMAD4 and TP53, observed in 50-80%
(85-87). Depending on the accumulated genetic mutations,
PDAC may develop into different subtypes which are clas-
sified based on the expression of transcription factors and
stromal compositions. For instance, PDAC landscape may
vary among immune escape, rich and exhausted phenotypes
resulting from variations in genetic mutations (88, 89).
Spatial distribution of various stromal cells contributes
to significant heterogeneity in cancer phenotype. CAFs are
the most prominent stromal component of PDAC and signifi-
cantly contribute to tumor progression and chemoresistance
(90). CAFs have been categorized into multiple subtypes
based on their functions and locations (91). Inflammatory
CAFs are found to be distant to tumor cells, show lower
aSMA expression and induce immunosuppressive and
chemo-resistant environment. Myofibroblastic CAFs are
adjacent to tumor cells with high aSMA level and promote
stiff, hypoxic and avascular tissue microenvironment. Addi-
tionally, current therapy applies selective efficacy in tumors
which leads to formation of therapeutically resistant clones
and intratumoral heterogeneity. These inter- and intratumoral
heterogeneity not only leads to diverse cellular response to
therapeutic drugs and clinical outcomes but also results
in diverse TME that could significantly alter the transport
properties. Moreover, different subtypes of cells within the
primary tumor have varying abilities to initiate migration,
form colonies in the metastatic lesions and establish a unique
metastatic microenvironment, further complicating the mod-
eling of drug transport in primary and metastatic sites.

Extracellular Matrix PDAC has a characteristic desmoplastic
stroma primarily secreted by CAFs which consists of struc-
tural glycoproteins, adhesive glycoproteins and proteoglycans
(92, 93). The dense stroma is not only a physical obstacle to
many drug treatments, but its components are remodeled, and

dysregulation triggers biochemical and regulatory pathways
that can alter the course of the disease. ECM content is also
organ-specific and it is necessary to build distinctive models
depending on the tissue type due to varying protein concentra-
tions and the resulting differences in cell-matrix interactions
(94). Specifically in the case of pancreas, several proteins and
ECM proteins have been recognized to be overexpressed, such
as tissue factor, plasminogen, COL1A1,1A2 and 3Al, and
hyaluronic acid (HA) (92, 95-97). Likewise, several proteins,
like matrisome, are upregulated at different stages of pan-
creatic cancer. ECM proteins are also remodeled throughout
tumor progression by enzymes matrix metalloproteases, fibro-
blasts activation protein and lysyl oxidases which upregulation
have been correlated with dense stroma (98).

The tissue-dependent and evolving ECM composition
greatly alters tissue mechanical and transport properties. In
this context, studies have shown rearrangement of collagen
fibers, increase in collagen density and tissue diffusivity
through matrix contraction by pancreatic stellate cells (PSCs)
and fibroblasts (99, 100). Collagen diffusivity especially
decreased in the vicinity of fibroblasts (101) and it is critical
to recognize that biomolecule diffusion and uptake may vary
due to differential matrix contraction contingent on the cell
type. Moreover, HA, one of the most overexpressed PDAC
ECM protein along with collagen, inhibited particle diffusion
less than collagen in vitro when prepared at physiologically
relevant concentrations as in vivo (102). On the other hand,
confinement of HA by collagen increased total tissue pressure
(sum of growth-induced solids stress and interstitial fluid pres-
sure), reduced active vasculature and impeded drug delivery
in PDAC (103). Histology images have shown this was true
only in specific regions where HA was localized within colla-
gen and total tissue pressure was further increased with dense
collagen content. This is due to the intrinsic nature of HA to
resist compression by retaining interstitial fluid and repulsion
of negatively charged monomers and of collagen to confine
tumor tissue (104, 105). These studies highlight that tumor tis-
sue diffusivity is ECM composition dependent and it is crucial
to consider the cellular and matrix spatial heterogeneity even
within the same tumor type.

Microvasculature A significant factor contributing to the highly
chemo-resistant nature of PDAC is the limited drug delivery to
the TME is abnormal tumor tissue vasculature. Hyperpermeable
vasculature increases the fluid transport into the extravascular
space thereby increasing the interstitial fluid pressure (IFP).
As summarized in Table III, hypovascular PDAC tissue has
microvessel density (MVD) of 20~50 vessels/mm? (106—108)
which is lower compared with other cancer types (109-112)
and is hierarchically disorganized, which distinguishes them
from normal vasculature system (113, 114). Tumor vasculatures
are formed from two recognized processes from the mother
vessels, known as angiogenesis and arterio-venogenesis, which

@ Springer
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Table lll Human / Murine PDAC Characteristics

Parameter Value

Microvessel density (MDV) 20—50 vessels/mm.?

Inter-microvessel distance 80—220 pm
Interstitial fluid pressure (IFP) 4—130 mmHg
Capillary fluid pressure 10—40 mmHg
Lymphatic pressure <5 mmHg

are stimulated by growth factors and cytokine, secreted by
tumor and stromal cells such as VEGF-A signaling driven by
transcription factor HIF-1 (115). In PDAC, PSCs play a critical
role in controlling the vessel density as collagen concentrations
can impose physical stress and hinder vascular formations.
Moreover, tumor cells secrete anti-angiogenic signals that
exacerbate the vascular damage. Consequently, large diameter
blood vessels are collapsed, lymphatic vessels are less
functional, and blood flow is decreased by 60% compared with
normal pancreas tissue (116). On the other hand, in the normal
pancreas adjacent to the tumor, angiogenesis is stimulated by
activated stellate cells, promoting diverse vascular formations
within the same pancreas (107). Drug transport in the tumor
interstitium can be achieved by diffusion and/or convection. The
transport from blood vessels to PDAC tissue is typically in the
order of 80-220 pum at velocity of 1 pm/s (117). At the given
interstitial velocity, elevated IFP and abnormal vasculature,
transport of small biomolecules in PDAC becomes largely
diffusion dominant. Ultimately, the multifarious nature of
PDAC molecular, cellular and ECM properties culminates in
the development of heterogeneous microvasculature density
that shapes diverse drug delivery patterns.

Recognizing that drug transport into PDAC TME is a sig-
nificant limitation to therapy, there has been several efforts
to enhance drug delivery by targeting the stromal compo-
nents. The most notable strategies include targeting CAFs
and HA, both of which showed promising results in mouse
models. However, inhibiting hedgehog signaling to inhibit
CAFs led to antagonistic effects which decreased patient
survival and clinical trial terminated in phase II (118, 119).
Moreover, clinical trials with HA degradation with enzyme
pegylated hyaluronidase (PEGPH20) halted in phase III due
to failure in increasing overall patient survival (120). These
studies demonstrated discrepancies between pre-clinical
and clinical models as well as heavily patient-dependent
drug responses resulting from heterogeneous PDAC TME.
Accurate modeling of the dynamic development and interac-
tions of the cancer cells and the stromal components poses
a significant knowledge gap in modeling transport in tumor
tissue.

@ Springer

Other Disease States

In addition to the pancreas, the microenvironment of dif-
ferent organs are highly heterogenous including the cellu-
lar, extracellular matrix and microvasculature components
which collectively lead to heterogeneous drug delivery and
distribution. Both experimental and computational models
should specifically be tailored to reflect the unique charac-
teristic of the particular organ and the disease. For instance,
the brain is composed of neurons, astrocytes, oligodendro-
cytes and glial cells. In addition, macrophages, known as
microglia, are the most abundant immune cell type. Recent
studies have revealed these are phenotypically distinct from
macrophages recruited from bone marrow under inflam-
matory conditions (121). The brain ECM is also vastly dif-
ferent from other organs and is predominantly composed
glycoproteins, proteoglycans and glycosaminoglycans such
as hyaluronic acid. Dense deposition of ECM may lead to
hypoxia and aggressive tumor in the brain (122). Similar
to PDAC, the brain vasculature is also highly disorganized
in diseased states leading to further complications such
as high interstitial pressure and edema. The distinct brain
ECM and vasculature play critical roles in maintaining the
blood-brain-barrier leading to significant heterogeneity in
drug delivery. Mathematical model to investigate the role
of abnormal vasculature on drug delivery to glioblastomas
revealed that flow rate, vessel permeability and tissue dif-
fusion coefficient have nonlinear interaction in producing
heterogeneous drug delivery in brain tissue (123). Compu-
tational model of brain capillary blood flow heterogeneity
demonstrated that perturbations to the capillary network,
including to segment diameters or to conductance values,
decrease average tissue oxygen levels which could have
critical consequences in neuronal function and thereby
worsen neurodegenerative diseases and acute ischemic
stroke (124). Furthermore, MRI techniques could enhance
current computational models by providing templates for
three-dimensional construction of the heterogeneous vas-
culature. Dynamic contrast enhanced-magnetic resonance
imaging (DCE-MRI) based computational models allowed
accurate modeling of drug delivery depending on the per-
meability and porosity of brain vasculature and tissue (125,
126). Similarly, dynamic contrast enhanced-computerized
tomography (DCE-CT) technique allowed measurement of
tumor interstitial pressure and modeling of intra-tumoral het-
erogeneity leading to computational prediction of liposome
nanoparticle distribution (127). Such techniques could pro-
vide significant benefits in predicting patient specific drug
delivery of different chemotherapeutic drugs. Additionally,
a study combining MRI of human brain and computational
model demonstrated that a significantly greater degree of
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uncertainty and error is generated by neglecting soft tis-
sue heterogeneity compared with vasculature heterogene-
ity (128). However, models representing brain tissue het-
erogeneity is lacking, rendering it a critical knowledge gap.
In addition to spatial considerations, mathematical models
to predict temporal heterogeneity in glioblastoma revealed
novel opportunities to target specific disease states that are
patient-specific (129). Temporal variation coming from dif-
ferent mRNA expression of clock genes that are expressed at
different levels depending on the circadian rhythm also leads
to daily oscillations in vascular permeability and resistance,
thrombus formation and flow conditions that play critical
roles in modulating vascular function (130-132). There-
fore, perturbations in the circadian rhythm could increase
vasculature and blood-brain-barrier vulnerability, increas-
ing the risk of stroke in the morning (133, 134). Modelling
such temporal heterogeneity in differential gene expression,
cellular activities and the blood-brain-barrier is critically
important to understand drug delivery in many brain dis-
eases. Moreover, future models could significantly improve
with enhanced understanding of broader patient population
brain heterogeneity through disease progression modelling
and clustering techniques using neuroimaging (135). Like-
wise, similar challenges of cellular, tissue and vascular het-
erogeneities exist for other organ diseases, such as the lung
and the skin, particularly for unique airway architecture of
the lung and multiple tissue layers of the skin (136—141).
Coupling of the spatial and temporal heterogeneity will pro-
vide next generation models to predict tissue specific drug
delivery in different organs and present novel therapeutic
opportunities.

Uncertainty Quantification and Sensitivity Analysis

Accurate knowledge of model parameters is essential for
predictive modeling of drug distribution and efficacy in
the organism-level. Hierarchical determination of transport
parameters used in macro-scale models based on micro-scale
models is a promising approach especially since the expand-
ing landscape of drug design introduces additional factors to
consider that affect the delivery performance. In the mean-
time, various sources of variation in disease conditions such
as tumor heterogeneity, patient age and demographics result
in significant uncertainty in model parameters including
transport properties. Predicting pharmacokinetic param-
eters like of neonates, infants and pregnant women can be
a particularly challenging task due to limitations of scaling
approaches to translate parameters between these interest
groups and groups for which data is available (142).
Uncertainty quantification and sensitivity analysis come
forward as methodology rapidly gaining importance to

tackle this challenge. Incorporation of sensitivity analysis
when reporting PBPK model predictions is becoming a com-
mon practice where variability in endpoints such as area
under curve based on model parameters can be studied (79).
A meta-analysis of nanoparticle delivery to tumor revealed
that delivery efficiency significantly depended on external
sources of heterogeneity such as tumor site and tumor model
studies as well as drug design characteristics such as NP
hydrodynamic radius, shape, surface charge and material
(organic/inorganic) (143). PBPK modeling coupled with
sensitivity analysis helped identify low distribution and
permeability coefficients to be the most significant factors
affecting the delivery efficiency. In addition, in vitro to in
vivo extrapolation (IVIVE) to estimate parameters in PBPK
models based on in vitro and in silico predictions itself is
subject to significant uncertainty. When sensitivity analysis
is incorporated into an IVIVE procedure where Rodgers and
Rowland model (144) was used to estimate tissue to unbound
plasma partition coefficient, it was demonstrated that parti-
tion coefficient and fraction unbound in plasma were the
most influential parameters affecting the outcome of IVIVE
procedure and the process was generally sensitive to tissue
composition (145). A promising direction in this context is
the simplification of PBPK model parametrization problem
by reduction of model dimensionality, focusing only on the
most influential parameters.

Uncertainty quantification has also been applied to trans-
port models in context other than PBPK modeling. Effect of
arterial input functions (AIF) and vascular and tissue trans-
port parameters on interstitial fluid and tracer transport using
sensitivity analysis was studied in heterogenous tumor tissue
and vasculature by utilizing DCE-MRI data (146). For all
cases considered in the analysis IFP was elevated within the
tumor and decreased toward tumor boundary, with tumor
vessel permeability having the most critical impact on IFP
values. Interstitial fluid velocity values were largest near
tumor boundaries in all cases and high tumor vessel per-
meability and low ratio of tumor hydraulic conductivity to
normal tissue hydraulic conductivity caused greatest devia-
tions from baseline results. Tracer transport was not affected
as much with changing transport parameters and sensitivity
analysis showed good agreement between the patterns of
simulated and experimental tracer concentrations.

Since UQ and SA mainly involve interrogation of model
responses only under changing inputs, these analyses can be
applied without the knowledge of implementation specifics
of the model, i.e., the model being treated as a blackbox.
Therefore, there have been a proliferation of software tools
such as DAKOTA (147), UQLab (148), UQ-PyL (149),
COSSAN (150) and PUQ (151) as frameworks that pro-
vide a general interface to run specific model simulation
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software or code and perform uncertainty quantification,
sensitivity analysis and model parametrization/calibration
under uncertainty.

Coupling of PBPK Modeling and Microphysiological
Systems

Despite increasing integration of uncertainty quantification
using in silico approaches, determination of reliable trans-
port properties for successful predictions of clinical out-
comes by in silico models still requires a significant amount
of human physiological data that current model system fails
to provide. The lack of data is a significant limitation in
PBPK models for pediatric applications as well as those
for adults (152). Systematic experimental validation of
multiscale models may benefit from novel in-vitro models
such as microphysiological systems based on microfluid-
ics (153-157). These include recently emerging interstitial
permeability and skin permeability models used to study
adsorption, liver models for metabolism, kidney models for
elimination/excretion and multiorgan models that provide
PK/PD parameters of drugs with higher physiological rele-
vance compared to single organ-on-chips (OoCs) (158, 159).
These multi-organ-on-chips (MOoC) simulating aspects of
drug ADME on coupled microfluidic compartments offer a
promising avenue for IVIVE by providing physiologically
relevant in-vitro experimental data (160—165). For instance,
a recent series of work by Ingber group involved recapitula-
tion of nicotine and cisplatin plasma pharmacokinetics in
vivo based on flow and concentration data from fluidically
coupled microfluidic devices coupled with a PBPK model
for IVIVE (160-162). Despite the promising first results,
a primary challenge remains for IVIVE with these MOoC
platforms that mirror the discussions on parameter scaling
for PBPK models. A consensus on a generalized and sys-
tematic approach for scaling individual organs and organs
relative to each other is currently yet to be reached (166).
Some approaches common in literature are direct scaling,
allometric scaling, multifunctional scaling and scaling based
on organ mass and residence times (167). Direct scaling
directly scales down all organs and their relevant parameters
by a factor. While straightforward, this method is not suc-
cessful at reenacting organ-organ interactions since scaling
of individual organs should be different (167). Allometric
scaling relates physiological parameters with body mass,
usually using an exponential relationship that relies on the
assumption that the transport networks within an organism
is space-filling and optimized by natural selection, while
with organ-on-a-chip devices, the formation of cells and
transport networks may not be subject to such optimiza-
tion (166). Another important point is that cells often show
increased metabolism rates on chips compared to their in
vivo counterparts due to being given excessive nutrients.

@ Springer

This point can be complemented by using allometric scaling
but limiting the nutrients given to the cells to obtain realistic
metabolism rates (166). Allometric-based scaling methods
can be used for extrapolation across age groups, such as
developing a PBPK model using adult data and scaling the
model for pediatrics (168, 169). Scaling based on organ
mass and residence times suggests a linear relation between
organ mass and physiological parameters, and fluid flow is
determined by the in vivo residence times of organs. With
this method, flow rates are important in that they should not
cause shear deformations to the cells and the compartments
should have similar efficiency to the actual organs they are
mimicking. Multifunctional scaling aims to replicate a lin-
early scaled-down version of the functional parameters of
real organs such as the amount of blood pumped by the heart
with organ-on-a-chip devices (170). This method is advan-
tageous in that parameter measurement and experimental
determination of the proper organ-on-a-chip size is easy,
but the scaling approach may be an oversimplification. Two
multi-MPS devices (gut-liver and gut-liver-kidney) were
constructed using multifunctional, direct and allometric
scaling approaches and their efficacy were compared by
looking at normalized concentration profiles with respect to
time (171). When compared to in vivo data, multifunctional
scaling showed about a twofold deviation in drug exposure
whereas direct and allometric scaling showed 50-to-300-fold
lower exposure times on average.

Image-Based Modeling

Image-based modeling approaches can be used to obtain
patient specific transport properties in the diseased regions
as well as to identify heterogeneous structures such as the
tumor vasculature which can be implemented to computa-
tional models for more accurate representation of the dis-
ease. A multiscale model to estimate drug delivery to solid
tumor was constructed using 2D image of a dissected and
cleared tumor, which was converted into a computational
field where the tumor was simplified as a circler or ellip-
tical region while retaining the heterogenous microvascu-
lature, giving a more realistic representation of the region
(172). In another work, MR images were utilized to obtain
a realistic 3D brain tumor model through which drug deliv-
ery to brain tumor using a multiscale mathematical model
was studied (173). With this model, combination therapy
of bevacizumab, an anti-angiogenetic drug, and a total of 6
cytotoxic drugs was investigated. Results showed that inclu-
sion of bevacizumab enhanced the delivery of all cytotoxic
drugs albeit at different levels, with doxorubicin seeing the
most benefit. A 3D voxelated image of tumor tissue was
constructed using DCE-CT, which was utilized to obtain
hemodynamic parameters used as inputs in a mathematical
model to estimate intra-tumor oxygen concentrations (174).
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These parameters were checked against values obtained
through intravital microscopy and photometric techniques
and results were close for voxel sizes under 200 um. Another
voxelated numerical model predicted distribution of contrast
agent and drugs in brain tumors (126). Data obtained from
measurement of the concentration of a contrast agent in a
spinal cord injury using DCE-MRI were employed for curve
fitting in a multi-compartmental PK model which would
track the distribution of the contrast agent (175). DCE-MRI
was utilized to obtain permeability and porosity values, and
patient specific AIF was utilized to obtain perfusion kinetic
parameters. Using these, heterogenous vasculature of the
tumor and selective leakage of drugs due to the heterogene-
ity were investigated. Results showed that although drug
concentration was higher in high permeability areas at first,
accumulation was greater in high porosity areas later on.

Emerging Areas

Tumor heterogeneity remains to be an outstanding challenge
for treatment of cancer that will ultimately be addressed by
advanced personalized medicine. In previous sections, we
also identified tumor heterogeneity and associated uncer-
tainty in tumor microenvironmental parameters as one of
the primary challenges for development and validation of
predictive computational models of drug transport. Joint use
of emerging technologies in multi-scale modeling, micro-
physiological systems and image-based modeling offer great
potential to address these challenges as illustrated in Fig. 5.
We introduced microphysiological systems as newly emerg-
ing in vitro experimental disease models that can incorporate
features of the tumor microenvironment including heteroge-
neity in controlled manner. The transparent operation and
ease of read out from microphysiological systems render

In Silico
Multiscale
Modeling

T 2.
2,
%,
\ Y
\

/" Invitro

Image-based | microphysiological
modeling ' systems (MPS)

In vivo structure and function data for in vitro model building

Fig.5 Potential for joint use of emerging technologies in multi-scale
modeling, microphysiological systems and image-based modeling

them suitable benchmark platforms for in vitro validation
of computational models while maintaining physiological
relevance. In the meantime, further development and para-
metrization of computational models such as PBPK models
can facilitate in vitro to in vivo extrapolation of microphysi-
ological system predictions. In addition, image-based mod-
els can provide valuable information in terms of either in
vivo structure and function data or transport characteristics
that can be used towards model building of both microphysi-
ological systems and computational models. Finally, compu-
tational multi-scale models are uniquely positioned among
the three technologies to provide mechanistic insight into
transport processes observed in vivo and in vitro based on
first principles. We anticipate that joint use of these three
technologies will be pivotal in advancing precision medicine
by providing patient-specific evaluation of treatments and
treatment planning.

Another emerging trend is the support of UQ/SA efforts
by artificial intelligence and machine learning (AIML). Cur-
rent discovery and development of drugs rely on hands-on
traditional in vivo and in vitro experiments which makes
the procedure time consuming and unpredictable. With the
enhanced computing power and stronger algorithms devel-
oped in the last decade, not only multiscale models but also
predictive algorithms based on artificial intelligence are
promoted and a new discipline combining these two, com-
putational pharmaceutics has emerged (176). Using machine
learning (ML), large volumes of data can be analyzed sys-
tematically to find correlations or quantify agreement of
correlations (177). ML can also be used in carrying charac-
teristics across the scales, i.e., in the process of information
homogenization (178).

There is a growing body of literature adopting data-driven
ML approaches for applications such as investigating iron
oxide NP cytotoxicity (179), achieving predictive analysis
of silver NP protein corona formation (180) and NP prop-
erty prediction (43). Development of a breast cancer therapy
response predictor using a multi-omics model in which the
tumor therapy response characteristics were obtained using
data integration and ML (181) and development of a ML
model to predict 3D printing formulation and drug dissolu-
tion properties of FDM printed objects like tablets, films and
devices (182) are some other examples. The growing interest
and merits of ML-based approaches is also recognized in
regulatory circles. In 2019, FDA published an action plan
on medical ML algorithms that sets a path for the official
approval of such studies. While ML is a powerful tool, cau-
tion should be practiced as uninformed and brute-force use
of ML might result in unphysical predictions and ill-posed
problems (177). It is anticipated that the greatest benefit will
come from the combination of ML and multiscale modeling
for an intelligent walk-through drug design landscape for
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delivery as well as to address challenges in model parametri-
zation and uncertainty quantification.
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