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Abstract
Computational modeling of drug delivery is becoming an indispensable tool for advancing drug development pipeline, 
particularly in nanomedicine where a rational design strategy is ultimately sought. While numerous in silico models have 
been developed that can accurately describe nanoparticle interactions with the bioenvironment within prescribed length and 
time scales, predictive design of these drug carriers, dosages and treatment schemes will require advanced models that can 
simulate transport processes across multiple length and time scales from genomic to population levels. In order to address 
this problem, multiscale modeling efforts that integrate existing discrete and continuum modeling strategies have recently 
emerged. These multiscale approaches provide a promising direction for bottom-up in silico pipelines of drug design for 
delivery. However, there are remaining challenges in terms of model parametrization and validation in the presence of vari-
ability, introduced by multiple levels of heterogeneities in disease state. Parametrization based on physiologically relevant 
in vitro data from microphysiological systems as well as widespread adoption of uncertainty quantification and sensitivity 
analysis will help address these challenges.
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INTRODUCTION

Computational modeling of drug delivery has significantly 
advanced in recent years. In silico models using discrete or 
continuum modeling approaches can accurately describe 
drug’s interactions with the bioenvironment during individual 

stages of its in vivo journey. In the meantime, advanced nano-
medicine has resulted in numerous nanoparticle (NP) formu-
lations offering encapsulation of small molecule drugs and 
biologics, as well as efficient transport and delivery of these 
therapeutics to target sites. Use of NPs as drug carriers, imag-
ing agents, molecular probes, sensors and thermal therapy 
agents show great potential for therapeutic and diagnostic 
use with some of these nanomedicines having already found 
clinical use in critical applications such as anticancer therapy 
and mRNA vaccine delivery (1–4).

A significant amount of continued research on nanomedi-
cine focuses on physiochemical NP characteristics such as 
particle size, shape, charge and functionalization and efforts 
to tune these characteristics to realize the biological, trans-
port, optic, magnetic and thermal function desired (5, 6). 
In the NP design process, there are various considerations 
that can effectively be addressed by computational modeling 
strategies. These include simulations of NP plasma pharma-
cokinetics and biodistribution (7), scenarios involving pas-
sive and active targeting strategies (8, 9), NP interactions 
with physiological transport barriers (10) and outcomes of 
therapeutic interventions involving normalization of patho-
physiological features of disease (11, 12).
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While progress has been made towards understanding 
how multifaceted NP characteristics affect their trans-
port and delivery, predictive design of nanomedicine, 
dosage and treatment schemes pose challenges for com-
putational models, as interactions of NPs with the bioen-
vironment need to be captured across multiple length 
and time scales from genomic to population levels to 
model the transport processes accurately. Integration of 
existing modeling strategies in a multiscale modeling 
setting can enable a bottom-up in silico computation 
pipeline bridging the scales, and shows great promise 
for building predictive in silico models of drug deliv-
ery and efficacy. However, it is still challenging to inte-
grate these multiscale efforts for broader length and time 
scales. Another primary challenge remains incorpora-
tion of uncertainty arising from heterogeneities within 
the disease, across different disease states and different 
patients into the computational models. Systematic veri-
fication and validation of computational models based 
on data from high-fidelity in vitro models such as micro-
physiological systems and development of models based 
on anatomically accurate and patient-specific medical 
imaging data will help address these challenges.

In this review, we summarize the recent progress in 
computational modeling of drug transport with a focus of 
nanomedicine, highlight examples of modeling efforts in 
distinct scales and discuss challenges and opportunities 
for the next level.

COMPUTATIONAL MODELING OF DRUG 
TRANSPORT PHENOMENA ACROSS SCALES

Discrete and Continuum Modeling

Physical phenomena associated with the transport of drugs 
across the human physiological systems take place at mul-
tiple length and time scales (Fig. 1). Processes such as drug 
release from a nanocarrier or partitioning of the drug in the 
cell plasma membrane typically involve transport over dis-
tances on the order of nanometers and times on the order of 
microseconds or less. A discrete representation of the drug 
and its surroundings as an ensemble of individual interact-
ing particles is often employed for investigating transport 
at such a small scale. There are various discrete modeling 
approaches, and the selection of a particular method depends 
on the level of detail required for the problem of interest. 
Among the methods with the finest detail, molecular dynam-
ics (MD) involve tracking individual atoms and molecules 
by the coupled solution of Newton’s second law of motion 
over a time span, starting from the initial coordinates and 
velocities of the particles (13–15). The interaction forces 
between the particles are modeled as gradients of intermo-
lecular potentials. MD techniques are powerful tools that 
can provide rich information on the structure and motion of 
individual drug particles and help determine fundamental 
characteristics relevant to transport based on first principles. 
Most recent advances in the field enable simulations of time 

Fig. 1   Computational modeling of drug transport phenomena across scales.
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spans on the order of milliseconds, sufficient to observe 
fundamental biological processes such as protein folding, 
drug binding and membrane transport. Particular applica-
tions include nanoparticle interaction with the cell membrane 
(16), aspherical particle modeling (17) and pharmaceutical 
particle formation (18). MD studies also have potential uses 
in the discovery of novel binding sites and structure-based 
drug design. Additionally, drug-resistant disease models may 
clarify the mechanism of resistance and provide a power-
ful tool for modifying the drug (19). If electronic motions 
play an essential role, quantum mechanics (QM) provides 
a finer approach than MD simulations. On the other hand, 
averaging electronic properties and assigning partial charges 
to atoms reduces computational cost compared to QM-based 
approximation (15). For NPs with a size of 20-200 nm within 
mesoscopic-scale, atomistic detail is mostly not needed. 
Therefore, in coarse-grained (CG) simulations a number of 
atoms are grouped into interaction sites called 'beads'. After 
coarse-graining the system, a similar method with MD is 
followed in which a sampling algorithm is used to calculate 
thermodynamic and structural properties (15).

Scaling-up of MD simulations to investigate transport 
phenomena beyond nano/micro-scales is computationally 
prohibitive (20) and degree of freedom reduction reduces 
the computational cost. For instance, comparing MARTINI 
models in the molecular and atomic scales the speed up is 
proportional to n2, i.e. square of the degrees of freedom. It 
is even greater for models treating solvent as a continuum 
medium such as Brownian Dynamics (BD) (21). Mesoscale 
models average out unimportant microscopic details while 
keeping the essential ones, resulting in a computationally 
efficient simulation. BD, Multi-Particle Collision Dynam-
ics (MPCD) and Dissipative Particle Dynamics (DPD) are 
common discrete methods used to model mesoscopic phe-
nomena spanning molecular to microstructural processes 
(14). In general, two classes of mesoscopic methods, namely 
particle-based (DPD, MPCD) and lattice (LB) methods are 
utilized (22).

When a small particle is suspended in a fluid, it is sub-
jected to the imbalanced random impacts of the fluid mol-
ecules that cause the nanoparticles to move on an erratic 
path, known as the Brownian motion. A Gaussian white 
noise stochastic process can model the random impacts of 
the molecules (23). Particles suspended in a fluid system are 
subjected to the impacts of the randomly fast-moving fluid 
molecules. For sub-micron particles, such instantaneously 
fluctuating momentum transfer from the solvent molecules 
spurs the particle to yield irregular movements, known as the 
Brownian motion. The dynamics of such Brownian particles 
can be described via the (overdamped) Langevin equation 
(LE) (24).

BD replaces the effect of solvent molecules on particles 
with a random force, so that solvent molecules are regarded 

as a continuum medium. Therefore, BD is used when the sol-
vent molecules do not deserve a special interest (25). Being 
a relatively simpler and computationally cheaper method it 
is popular, but it does not take momentum transport through 
the fluid, i.e. hydrodynamic interactions into account. BD 
method is used in different applications such as the transport 
of suspended particles within an array of circular objects/
obstacles (26), intracellular calcium release (27) and biomol-
ecule association in solutes (28). In DPD, groups of atoms 
or volumes of fluids are modeled as beads that move accord-
ing to the Newton’s 2nd law or LE, although the functional 
forms of forces are slightly different (22). In the most basic 
form of DPD, there is a conservative, dissipative and random 
force term between each bead corresponding to soft repul-
sion, frictional force(drag) and random interaction between 
neighboring beads. Compared to LBM or MPCD, DPD is 
more expensive numerically as it accounts for pairwise inter-
actions (22). DPD has been used in nanoparticle targeting 
kinetics (29), determination of cellular uptake of different 
NP shapes (30) and drug encapsulation efficiency of Pluro-
ronic micelles (31). An improved version of DPD, smoothed 
dissipative particle dynamics (SDPD) has the advantage of 
accounting for fluid compressibility, which might be promi-
nent in specific applications like the collective motion of col-
loids and flow within complex geometries (32). In MPCD, 
the solvent molecules are modeled as an ideal gas. The 
update of particle positions and momentum occurs in two 
successive time intervals, namely streaming and collision 
steps. In the most widely used MPCD algorithm, stochastic 
rotation dynamics (SRD), the coordinates of the particles 
are updated in the streaming step using Newton’s equation 
of motion, neglecting solvent–solvent interaction. Then, the 
system is divided into cells and the relative velocities of par-
ticles in the same cell with respect to the center-of-mass are 
subjected to a random rotation (22, 33) in the collision time 
step. Thanks to the rotation of velocities, the total momen-
tum and energy are conserved while fluid particles transfer 
momentum. The method might result in misleading results 
for small temperatures or small collision time steps such 
that fluid particles remain in the same cell for more than one 
collision time step (34). MPCD method has been applied 
for uses such as semiflexible polymer chain dynamic simu-
lation (35) and single rigid spheres with natural buoyancy 
confined in different geometries under pressure-driven flow 
(36). Different physical phenomena happening in distinct 
time-length scales might be represented with the same phys-
ics and coarse-graining scheme if the governing set of key 
non-dimensional numbers is the same (34). It should be kept 
in mind that while coarse-graining the molecular system, 
the thermodynamics of the system must be preserved for a 
good representation, i.e. the compressibility and solubility 
of the components should be preserved. There are studies in 
literature comparing application of MPCD and DPD (37), 
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BD and MPCD (38). Interested reader can refer to reviews 
and reference texts on the subject for detailed treatment of 
each method (22, 39).

When investigating the transport phenomena at larger 
length scales such as drug distribution within and across 
different tissues, a continuum approach is often adopted 
where the position and motion of the drug particles and the 
surrounding medium are averaged in space and time and 
the material is assumed to be distributed continuously in 
the region of interest. Finite element method (FEM), finite 
volume method (FVM) and finite difference method (FDM) 
are numerical techniques that are used to solve differen-
tial equations. Such differential equations commonly arise 
in continuum modeling transport processes and include 
Navier–Stokes (NS) equations for fluid dynamics, Darcy’s 
Law for fluid dynamics in porous media and species advec-
tion diffusion equation for drug transport (40). In FDM, 
terms of the differential equation are directly estimated at 
nodal points which yield a set of equations to be solved. 
In FEM, problem domain is discretized into small regions 
referred to as finite elements where governing equations 
are modeled based on variational principles. FVM also 
involves discretization of the problem domain into small 
regions referred to as cells where conservation laws, typi-
cally governing fluid or heat transfer are applied over each 
cell (41, 42). Another numerical method for modeling trans-
port problems in the continuum regime is the Lattice Boltz-
mann Method (LBM). In LBM, the distribution function is 
discretized to solve Boltzmann equation, a molecular-scale 
analogue of the NS equations, such that fluid particles are 
restricted to move along a lattice vector. LBM method is 
not a coarse-graining scheme of molecular dynamics; rather, 
it is evolved from lattice gas cellular automata (22) from 
which macroscale NS equations can be derived. Although 
it has streaming and collision time steps similar to MPCD, 
it cannot represent physics in such small scales. Treating 
fluids with different length scales challenges lattice-based 
methods (34).

Modeling of transport process at system-level such as 
pharmacokinetics associated with drug absorption, distri-
bution, metabolism and excretion (ADME) are typically 
done by compartmental models where mass transport and 
biochemical processes across and within compartments 
are modeled by coupled differential equations. Physiologi-
cally based pharmacokinetic (PBPK) models involve com-
partments representing individual organs and tissues that 
are connected by blood or lymphatic circulation (43). The 
process of mass transport between compartments might be 
limited by two main factors; namely, blood perfusion and 
transport across tissue-tissue interfaces, e.g. vascular wall or 
cell plasma membrane that are repsented by flow-limited and 
interface-limited models (44, 45). One of the key parameters 
in these models is the tissue-to-plasma partition coefficient 

that is defined as the ratio of the NP or drug concentra-
tion within the tissue to the concentration in the vascular 
compartment. The partition coefficient is a time dependent 
parameter estimated individually for the specific NPs or 
drugs and the environment. Being challenging to measure 
in vivo, there are in silico approaches developed to predict 
the partition coefficient (46). Some example applications of 
these in silico approaches include age dependent organ, por-
tal and hepatic blood flow data adjustments using adult and 
pediatric simulations for different compounds (47), evaluat-
ing the accuracy of different plasma clearance and steady 
state volume distribution prediction methods (48), analysis 
of NP distribution to different organs depending on particle 
size (49), intracellular drug concentration optimization for 
temperature sensitive liposomes under hyperthermic condi-
tions (50) and PEGylated gold nanoparticle internalization 
modeling (51).

Having a physiologically mechanistic representation of 
the actual organ level transport, pharmacokinetic models can 
be used to extrapolate results of animal models to humans 
or might be helpful in dose determination of specific groups 
of the population like pediatrics and pregnant women (45). 
PBPK modeling is indeed widely used in academia and 
industry to predict dynamics of drug ADME characteristics. 
In addition it is gaining recognition by regulatory circles as 
a valid modeling tool for efficacy and toxicity assessment 
(52). For instance, the effect of focused ultrasound-induced 
blood–brain/blood-tumor barrier’s disruption on drug deliv-
ery was analyzed (53). Integrating the experimental outcome 
with a PBPK model, it was pointed out that the disruption 
alleviates the vascular barriers and enhances interstitial 
transport. Simulation of population-level variations in phar-
macokinetic properties involves nonlinear mixed effects that 
often utilize generic compartmental models that do not seek 
physiological mimicry, yet provides sufficient explaining 
power for parameters of interest (54). However, the popu-
larity of PBPK modeling in this area is also increasing (55).

Governing equations for the modeling formulations pre-
sented above are provided in Table I together with several 
example applications. It is seen that discrete models are 
powerful tools that can provide rich information on structure 
and motion of individual drug particles and help determine 
fundamental characteristics relevant to transport based on 
first principles. However, scale-up of discrete methods to 
investigate transport phenomena beyond nano/micro-scales 
is currently computationally prohibitive. In cases where 
length and time scales are sufficiently large, the continuum 
approach vastly simplifies modeling while maintaining accu-
racy. However, a critical challenge in continuum modeling 
is parametrization of the model involving determination of 
the transport parameters specific for the drug and biological 
environment considered. These transport parameters include 
effective diffusivity, retardation and hydraulic conductivity 



Pharmaceutical Research	

1 3

Ta
bl

e 
I  

G
ov

er
ni

ng
 E

qu
at

io
ns

 o
f P

hy
si

ca
l P

he
no

m
en

a 
In

vo
lv

in
g 

Tr
an

sp
or

t o
f D

ru
gs

 a
nd

 P
hy

si
ol

og
ic

al
 F

lu
id

s

Ph
ys

ic
al

 P
he

no
m

en
on

M
at

he
m

at
ic

al
 R

el
at

io
n

D
efi

ni
tio

ns
Ex

am
pl

e 
A

pp
lic

at
io

ns

D
is

cr
et

e 
pa

rti
cl

e 
dy

na
m

ic
s a

t a
to

m
ist

ic
 sc

al
e

N
ew

to
n’

s 2
. L

aw
 o

f M
ot

io
n

m
i

d
2
r⃗ i

d
t2

=
�⃗ F
i

m
i : 

m
as

s o
f t

he
 ith

 p
ar

tic
le

r⃗ i
 : p

os
iti

on
 o

f t
he

 ith
 p

ar
tic

le
�⃗ F
i : 

ex
te

rn
al

 fo
rc

e 
on

 ith
 p

ar
tic

le
 d

ue
 to

 in
te

rm
o-

le
cu

la
r p

ot
en

tia
ls

• 
A

sp
he

ric
al

 m
od

el
in

g 
of

 a
to

m
s a

nd
 c

oa
rs

e-
gr

ai
ne

d 
pa

rti
cl

es
 (M

D
) (

17
)

• 
N

P-
pl

as
m

a 
m

em
br

an
e 

in
te

ra
ct

io
n 

(M
D

) (
16

)
• 

N
P 

ta
rg

et
in

g 
ki

ne
tic

s (
D

PD
) (

29
)

D
is

cr
et

e 
pa

rti
cl

e 
dy

na
m

ic
s i

n 
th

e 
pr

es
en

ce
 o

f 
tim

e-
sc

al
e 

se
pa

ra
tio

n
La

ng
ev

in
 E

qu
at

io
n

m
i

d
2
r⃗ i

d
t2

=
𝜉
d⃗
r i d
t
+

�⃗ F
B
,i

�⃗ F
B
,i
 : r

an
do

m
 B

ro
w

ni
an

 fo
rc

e 
ex

er
te

d 
on

 th
e 

ith
 

pa
rti

cl
e

� :
 fr

ic
tio

n 
co

effi
ci

en
t

• 
M

ob
ili

ty
 a

nd
 d

iff
us

iv
ity

 a
na

ly
si

s o
f c

ha
rg

ed
 

pa
rti

cl
es

 (B
D

) (
26

)
• 

In
cr

ea
si

ng
 sp

ee
d 

of
 b

ru
te

-fo
rc

e 
M

D
 w

hi
le

 
re

ta
in

in
g 

m
ea

ni
ng

fu
l d

et
ai

ls
 (m

ile
sto

ni
ng

) 
(M

D
) (

28
)

• 
Es

tim
at

io
n 

of
 e

ffe
ct

iv
e 

di
ffu

si
vi

ty
 w

ith
in

 
po

ro
us

 E
C

M
 (6

1,
 6

4)
C

on
tin

uu
m

 fl
ui

d 
dy

na
m

ic
s

N
av

ie
r-S

to
ke

s E
qu

at
io

ns
𝜌
(

𝜕
v 𝜕
t
+
(

�⃗v
⋅
∇
)

�⃗v)

=
−
∇
p
+
𝜇
∇

2
�⃗v 

 
�
 : d

en
si

ty
 o

f t
he

 fl
ui

d
�⃗v  :

 v
el

oc
ity

 fi
el

d 
of

 th
e 

flu
id

p
∶  p

re
ss

ur
e 

fie
ld

 o
f t

he
 fl

ui
d

�
∶ d

yn
am

ic
 v

is
co

si
ty

 o
f t

he
 fl

ui
d

• 
A

na
ly

si
s o

f N
P 

di
str

ib
ut

io
n 

w
ith

in
 m

ic
ro

-
ve

ss
el

s (
C

oa
rs

e-
gr

ai
ne

d 
M

D
 a

nd
 Im

m
er

se
d 

M
ol

ec
ul

ar
 E

le
ct

ro
ki

ne
tic

 F
in

ite
 E

le
m

en
t 

M
et

ho
d 

(I
M

EF
EM

))
 (6

0)
• 

Fl
ow

 o
f i

nt
er

sti
tia

l fl
ui

d 
w

ith
in

 3
D

 fi
be

r n
et

-
w

or
k 

(F
EM

) (
61

, 6
3)

C
on

tin
uu

m
 fl

ui
d 

dy
na

m
ic

s i
n 

po
ro

us
 m

ed
ia

D
ar

cy
’s

 L
aw

�⃗v
=
−
K
∇
p

K
 : h

yd
ra

ul
ic

 c
on

du
ct

iv
ity

• 
Es

tim
at

io
n 

of
 h

yd
ra

ul
ic

 c
on

du
ct

iv
ity

 o
f p

or
ou

s 
EC

M
 (F

EM
) (

61
, 6

3)
Sp

at
io

te
m

po
ra

l d
ist

rib
ut

io
n 

of
 sp

ec
ie

s i
n 

co
n-

tin
uu

m
A

dv
ec

tio
n–

D
iff

us
io

n 
Eq

ua
tio

n
𝜕
C 𝜕
t
=
−
�⃗v
⋅
f∇

C
+
∇
⋅

(

D
eff
∇
C
)

  
C

 : s
pe

ci
es

 c
on

ce
nt

ra
tio

n
D

eff
 : e

ffe
ct

iv
e 

di
ffu

si
vi

ty
f  :

 re
ta

rd
at

io
n 

co
effi

ci
en

t

• 
In

tra
-ti

ss
ue

 p
ar

tic
le

 d
ist

rib
ut

io
n 

an
d 

pe
ne

tra
tio

n 
(B

D
) (

65
)

• 
B

io
tra

ns
po

rt 
in

 a
rte

ria
l b

lo
od

 c
lo

ts
 (F

EM
) (

40
)

D
yn

am
ic

s o
f s

pe
ci

es
 tr

an
sp

or
t (

ac
cu

m
ul

at
io

n 
an

d 
cl

ea
ra

nc
e)

 in
 p

hy
si

ol
og

ic
al

 c
om

pa
rtm

en
ts

C
om

pa
rtm

en
ta

l M
as

s B
al

an
ce

 E
qu

at
io

ns
ṁ
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that appear in continuum formulations of fluid and species 
transport. Likewise, PBPK models require knowledge of 
interface transport coefficients that themselves arise from 
parameters defined in smaller scales, e.g. hydraulic conduc-
tivity and permeability that govern the convective and diffu-
sive drug transport across the interface as well as geometric 
parameters such as interface area per unit volume of the 
compartment. Therefore, transport parameters in continuum 
models are coarse-grained representations of transport pro-
cesses and interactions that take place in smaller scales. In 
the next section, we review examples of multiscale mod-
eling efforts that integrate discrete and continuum models to 
address this challenge and build predictive in-silica models 
of drug delivery.

Multiscale Modeling Approaches

Modeling of Vascular and Interstitial Pore‑Scale Transport

As drug particles travel through the bloodstream, extrava-
sate and penetrate into a tissue, they are transported across 
a crowded porous microstructure where significant interac-
tions between the drug, fluid and microstructure take place. 
These interactions become particularly important for the 
transport of larger particles such as nanoparticle formula-
tions and are affected by the drug particles' physiochemical 
properties, including their size, shape, surface charge and 
functionalization (5, 6).

While the number of atoms, therefore the degrees of free-
dom to be solved to resolve these pore-scale interactions are 
too high for MD approach, the microscopic details such as 
collisions of particles with the structure and other particles, 
their hydrodynamic interactions with the fluid as well as the 
Brownian fluctuations remain significant such that sole use 
of continuum models is not adequate. Therefore, a hybrid 
multiscale approach combining continuum modeling for 
transport of fluid with discrete modeling for particle trajec-
tory is often utilized to investigate pore-scale transport in 
vascular and interstitial space (14).

Several examples of earlier studies featuring hybrid mod-
eling approaches are illustrated in Fig. 2. There have been 
several computational efforts to investigate bloodborne NP 
transport under varying particle and flow conditions such 
as hematocrit, vessel or NP size and flow velocity. Intra-
vascular NP transport, considering the effects of both NP 
characteristics and complex cellular flow is modelled by Liu 
and coworkers (56) (Fig. 2(a)). In order to cover the range 
of length-scales between NP and RBC, a Lattice Boltzmann 
(LB) based multiscale approach was used. The study illus-
trates that particle total radial diffusivity is the summation 
of Brownian diffusivity and RBC-enhanced diffusivity. The 
multiscale model provides radial diffusivity estimates for 

varying NP sizes and flow conditions marked by Peclet (Pe) 
number. These results are particularly significant for blood-
borne transport of large NPs. The model recovers Brownian 
diffusivity if Peclet number is small, e.g., diffusing particle 
has a diameter less than 100 nm.

In a similar analysis, dispersion coefficient was investi-
gated using Immersed Finite Element Method (IFEM) (57). 
IFEM features a Lagrangian solid mesh moving with a Eule-
rian fluid mesh. Therefore, both the meshing of the com-
putational domain and interpolation of the unknowns are 
greatly simplified (58). In this manner, IFEM was employed 
to explore the blood flow and particle dispersion charac-
teristics within the microvasculature (57). Considering 
the wide variations of the key flow characterizing param-
eters, i.e., microvascular uncertainty, these simulations 
were extrapolated using a Bayesian updating algorithm and 
combined with experimental outcomes to acquire compu-
tational prediction. Expansion of the method by incorpora-
tion of electrokinetic and molecular interactions was also 
introduced. This method, designated as IMEFEM (59), was 
used to investigate effect of RBC aggregates on blood rheol-
ogy. Within this context, IMEFEM was utilized to simulate 
RBC-particle interaction using pre-assigned molecular inter-
action potentials (60). MD or DPD could also be employed 
for these interactions, enabling molecular scale accounting 
of cell–cell, cell-particle and particle–particle interactions. 
Using IMEFEM, it was shown that different hematocrit 
percentages (0, 15, 30% RBCs) had distinct effects on NP 
concentration at a cross-section of the blood vessel. At 30% 
NPs concentrated on regions close to the vessel wall, and as 
the NP size increased the concentration on this region got 
even higher.

Park and colleagues (61) developed an image-guided 
microstructural model of fluid and species transport in 
fibrous biopolymer networks and applied their model 
toward estimation of hydraulic conductivity and effective 
diffusivity of fluorescent tracer molecules (hydrodynamic 
radius of 5.1 nm) within pig skin collagen hydrogels where 
microstructures with different branching characteristics 
could be obtained by varying collagen monomer/oligomer 
content during polymerization (Fig. 2(b)). The computa-
tional domain involved a representative unit cell where the 
geometry was generated from segmentation of confocal 
reflectance images of the collagen fiber network. Further 
simulations were performed on artificial fiber networks 
generated by a parameter-based reconstruction technique to 
match branching point density and distances in the imag-
ing data. Their model is based on a semi-discrete approach 
where the flow of physiological fluid is modeled as a con-
tinuum by NS equations while individual particle trajecto-
ries were simulated by BD. Hydrodynamic forces induced 
by fluid flow on the particles were incorporated based on 
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the empirical Shiller-Nauman Correlation for Stokes drag 
(62). The model predictions were within the same order of 
magnitude, yet results were underestimated compared to 

experimental data. The source of the discrepancy could be 
attributed to lack of slip flow, particle flexibility and discre-
tization errors in the simulations (61). A similar approach 

Fig. 2   Hybrid discrete and continuum modeling of vascular and interstitial pore-scale transport phenomena. (a) A multiscale approach using LB 
scheme for the fluid phase, a Spectrin-link method for RBCs and Langevin Dynamics (LD) to capture NP suspension. Reproduced from Ref (56) 
with permission from Elsevier. (b) Workflow used in a parameter-based 3D microstructural collagen matrix reconstruction and transport prop-
erty estimation study. Reproduced from Ref (61) with permission from ASME. (c) Modelling of NP accumulation and penetration using MC 
simulations. Reproduced from Ref  (64) with permission from PNAS. (d) BD simulation of NPs at extracellular space contained with cells. 
Reproduced from Ref (65) with permission from BMC.
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involving volume-averaging theory and FEM were also used 
to characterize hydraulic permeability of fibrous extracel-
lular matrix (ECM) (63). In another study, Sykes and col-
leagues (64) investigated whether cancer pathophysiology 
influences tumor accumulation and nanoparticle penetration 
using MC simulations (Fig. 2(c)). Their model involved step-
wise random walk of gold NP within collagen pores and 
their elastic collision with collagen fibers in 2D and 3D 
geometries. As illustrated with a bar graph, MC simulations 
showed that AuNP- fiber collusion frequency decreased with 
increasing AuNP and pore size. The study helped elicit the 
particle size and pore size dependence of interstitial diffu-
sion of nanomedicine.

As drug particles penetrate into the tissue they also inter-
act with the cellular compartment. Islam and colleagues (65) 
developed a hybrid multiscale model that combined con-
tinuum modeling of fluid flow based on Stokes equations 
with time-adaptive BD to model microscale interactions of 
particles with cell boundaries in terms of adhesion of par-
ticle to cell surface or reflection back into fluid (Fig. 2(d)). 
The model was used to investigate the significance of the 
particle size in intra-tissue dispersion and penetration. Con-
tinuation of this work included consideration of specific and 
non-specific targeting efficiency and suggested that recep-
tor targeting may result in a marginal efficacy gain (66). 
As these examples of hybrid modeling approaches indicate, 
combination of continuum modeling and discrete modeling 
allows study of drug particle–fluid-structure interactions 
in dynamic vascular and interstitial flow environments and 
provides a means to predict key transport properties such as 
effective diffusivity and hydraulic conductivity that are used 
in parametrization of continuum-level transport models.

Modeling of Tissue‑, Organ‑ and System‑Level Transport

As presented in the previous section, hybrid multiscale 
modeling can help estimate effective transport properties 
in porous microenvironment by simulating fluid and solute 
transport in a pore-scale domain e.g., an interstitial unit cell 
containing ECM fibers with certain density and directionality. 
Theoretical frameworks such as asymptotic homogenization, 
volume averaging and mixture theory provide alternative 
means to estimate effective transport properties by 
recognizing the length-scale separation between the porous 
microstructure and relatively homogeneous tissue or organ-
level structures and developing averaged interpretations of 
microscale equations that can later be used in homogenized 
macroscale problems such as simulations over the tissue 
and organ-scale (Fig. 3(a)) (67). As examples of multiscale 
modeling, incorporating volume averaging theory and 
asymptotic homogenization approach, volume-averaging 
theory was employed to estimate permeability of fiber 
networks (63). Human stratum corneum, skin’s outermost 

layer, was modeled to calculate effective diffusivity (68, 69). 
Avascular tumor growth and chemotherapeutic interaction 
was studied (70). Similarly, angiogenesis during tumor 
growth was examined using a hybrid approach (71). The role 
of vascular tortuosity on transport phenomena by bridging 
micro–macro scales with differential problems and double 
Darcy model was investigated (72). Capillary network 
and Darcy’s law were used to investigate Vinblastine and 
Doxorubicin metabolization within the tumor by Mascheroni 
and Penta (73). These homogenization techniques have 
inherent limitations particularly due to local cell-periodicity 
assumption as mimicking complex-heterogenous ECM 
or tumor microcapillary network is challenging using 
periodicity. Indeed, deviations from cell-periodicity near 
the macroscopic boundary introduce edge effects that 
result in loss of solution accuracy (73). In addition, direct 
interactions between the particles, fluid and microstructure 
due to directional forces, e.g., electrostatic interactions and 
magnetic stimulation, are challenging to incorporate using 
spatial homogenization. On the other hand, volume averaging 
theory and homogenization remain to be useful techniques 
for estimation of transport properties to be used in macro-
scale continuum models without resorting to stochastic 
approaches while still incorporating microstructure-level 
geometric details.

One of the alternative approaches that incorporate 
the effect of microstructural architecture on tissue and 
organ-level transport was presented in the work of Kojic 
and coworkers (74–77). A multiscale, MD-FE model was 
used to investigate hierarchical diffusion phenomena for a 
microstructural architecture. Using MD, interaction effects 
between molecules and solid microstructure were taken into 
consideration by using scaling functions. Scaling functions 
represent the dependence of diffusivity with respect to the 
bulk diffusivity that is applicable when far away from the 
surface. Diffusion process taking place in two domains, 
namely bulk diffusion and hindered diffusion, was calcu-
lated using FEM. Following that, a numerical homogeniza-
tion procedure was utilized in order to make microstruc-
tural and continuum level mass release curves identical so 
that continuum level constitutive diffusion parameters like 
diffusivity could be determined. The information exchange 
between continuum FE of tissue, capillary wall and 1D FE 
of capillaries was analyzed using a “fictitious” element that 
contained nodes from both FEs at the same position in space 
(Fig. 3(b)). These fictitious elements can be implemented 
between different elements at lower scales as well, such 
as between cell cytosol and organelles. The mathematical 
modeling followed the FE formulation and transport prop-
erties for the element were determined from the element of 
smaller scale and the membrane separating them, such as 
the cell membrane or the capillary wall. Smeared model was 
based on transformation of 1D transport equations governing 
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capillary flow in microscale into Darcy’s and diffusion ten-
sors in continuum scale. This smeared FEM formulation, 
while spatially coarse-grained, can capture the dynamics of 
tissue-level solute transport and has direct implications of 
modeling drug pharmacokinetics (74–77).

PBPK and other compartment-based models that are typi-
cally used in evaluation of systemic transport of drugs can 
provide detailed information on dynamics of ADME yet are 

also highly coarse-grained and remain limited in describing 
the spatial distribution of drug in sub-tissue level. Recent 
multiscale approaches focus on introducing sub-tissue reso-
lution in compartmental models to improve the accuracy of 
pharmacokinetic and pharmacodynamic modeling. Figure 4 
illustrates an annular quasi-3D (Q3D) gastrointestinal tract 
(GIT) model that is incorporated into a whole body PBPK 
model and used to study dissolution, transport, adsorption, 

Fig. 3   Multiscale modeling approaches for tissue and organ-level transport. (a) Asymptotic homogenization technique utilized to couple periodic 
microvascular transport properties and macroscale equations. Reproduced from Ref (73) with permission from Wiley. (b) Microstructural diffu-
sivity analysis extended to the equivalent continuum diffusion coefficient using numerical homogenization. Coupling of fluid and solid domains 
accomplished by 1D fictitious elements. Reproduced from Ref  (74, 77) with permission from Elsevier.
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distribution, metabolism and elimination (DTADME) of 
orally administered drugs (78). In this study, the GIT was 
spatially resolved by subdivision into individual Q3D vol-
umes that were modelled as a connection of 1D tubes. These 
tubes had multiple annular layers which represented the 
heterogeneous organization of enterocyte and lumen tissues 
both radially and across the GIT. Therefore, spatiotemporal 
concentration profile for ibuprofen in the lumen and entero-
cyte of GIT at different time steps could be obtained.

In another study, a multiscale PBPK model for the study 
of cyto-/cardio-toxicity of doxorubicin was introduced (79). 
The model consisted of a whole body PBPK model utilizing 
8 tissue compartments as well as veinous and arterial blood 
which connected the tissues. In addition, the study featured 
a compartmental tissue sub-model where each tissue was 
separated into vascular, interstitial, intracellular and nucleus 
sub-compartments. The model successfully predicted con-
centration profiles in mice and results were adapted to rats 
and humans using a cross-species allometric scaling. This 
multiscale model enabled sub-tissue resolved pharmacoki-
netics of doxorubicin in heart and tumor tissue and helped 
infer about cytotoxicity based on nucleus bound concentra-
tions of the drug.

In another study, PBPK and genome-scale metabolic 
network (GSMN) models were combined by utilizing 
drug transport and reaction rates in the intracellular space 
obtained from the PBPK model to constrain reaction rates 
in the GSMN model, through which drug perturbation was 

calculated (80). A multiscale PK/PD model capable of pre-
clinical to clinical translation to analyze effectiveness of 
antibody drug conjugates (ADCs) was modeled (81). PK 
and PD models in cellular and tissue levels were used to 
obtain parameters that affect ADC distribution, and these 
parameters were used in the multiscale, multicompartmental 
PK/PD model to predict drug concentration in tumors.

A list of selected studies that feature multi-scale modeling 
for drug transport are provided in Table II.

Software Tools for Multiscale Modeling

Multiscale modeling generally requires development and 
interaction of several sub-models specifically developed 
to simulate processes at separate length and time scales. 
Progress in this field is currently limited by expertise and 
resources of individual research groups or small teams of 
collaborators in developing specific purpose-built models. 
On the other hand, as outlined above, efforts of the compu-
tational research community have led to a large collection of 
purpose-built models for diverse physical processes. Multi-
scale modeling of drug transport can be further advanced by 
incorporation and reuse of existing models for new multi-
scale simulation scenarios. Meta-modeling tools enable 
coupling of computational models associated with different 
length and time scales. For example, MUSCLE3 (82) can be 
used to iteratively couple individual sub-models by automat-
ing simulation and transfer of information between models 

Fig. 4   A multiscale PBPK modeling approach for spatially resolved transport of drugs across GI tract and system-level ADME characteristics. 
Reproduced from Ref (78) with permission from Wiley.
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over appropriate solution intervals based on separation of 
time scales. PK-Sim is an open system pharmacology plat-
form for PBPK modeling that is capable of interfacing with 
cellular scale models for PD thereby, enabling a mechanistic 
multiscale methodology for systems pharmacology (83).

CHALLENGES AND OPPORTUNITIES

Significant advances have been recently made to accurately 
compute transport of drugs and drug delivery systems. How-
ever, there are still several technical challenges to achieve 
predictive design of drug and delivery systems computation-
ally. These challenges include multiple levels of structural 
and functional heterogeneity in tissues and organs, capturing 
the variability introduced by the heterogeneity in model par-
ametrization by reliable transport properties and emergence 
of needs for integrating omics data into transport simulation. 
These challenges also pose opportunities for next generation 
computational models. In this section, these challenges and 
opportunities are discussed.

Multiple Levels of Heterogeneity

Multiple levels of heterogeneity of tissues and organs esca-
late the difficulties for accurate computation. The delivery of 
NPs to the tumor is limited by various physiological barriers 
alleviating the penetration of the drug and reducing expo-
sure of the tissue to the drug. In order to reach the targeted 
tissue, NPs first need to circulate for a prolonged duration 
within the circulatory system, reach and interact with the 
tumor vasculature, penetrate into the tumor interstitium and 
get internalized by cancer cells (10). However, features of 
abnormal tumor physiology such as immature and leaky vas-
culature, compressed lymphatics, elevated interstitial fluid 
pressure, dense interstitial matrix and large solid stresses 
together constitute barriers that hinder NP transport. Strat-
egies to overcome these barriers by normalization of the 
tumor microenvironment are being investigated, however 
are not applicable for the whole patient population (11, 12, 
84). Therefore, understanding the interactions of NPs with 
transport barriers at particular stages of delivery continues 
to be important and heterogeneity of tumor and tumor micro-
environment illustrate complexity and challenge to compu-
tationally model drug transport. In the following section, 
we outline features of tumor heterogeneity in some of the 
prominent types of cancer.

Pancreatic Ductal Adenocarcinoma

Pancreatic ductal adenocarcinoma (PDAC) is one of the 
most-deadly cancers with a dismal 10% five-year survival 
rate and remains highly resistant to current therapeutics Ta
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due to poor drug delivery to cancer cells. The treatment for 
PDAC is further complicated because of the heterogene-
ous tumor microenvironment (TME) composed of cancer 
cells, cancer-associated fibroblasts (CAFs), ECM, immune 
cells and chaotic microvasculature. This heterogeneity exists 
at multiple levels including molecular, cellular, tissue and 
patient levels and also evolves through the course of cancer 
progression. Thus, incorporating tumor heterogeneity into 
computational models remains challenging but imperative 
for next-generation modeling.

Molecular and Cellular Development  PDAC results from 
prolonged accumulation of oncogenic mutations that 
drive various transformations in the TME through acinar-
to-ductal metaplasia (ADM) leading to various lesions of 
pancreatic cancer. Most notable oncogenic mutations are 
Kirsten rat sarcoma virus (KRAS), observed in more than 
95% of patients, and tumor suppressor gene mutations 
CDKN2A/p16, SMAD4 and TP53, observed in 50–80% 
(85–87). Depending on the accumulated genetic mutations, 
PDAC may develop into different subtypes which are clas-
sified based on the expression of transcription factors and 
stromal compositions. For instance, PDAC landscape may 
vary among immune escape, rich and exhausted phenotypes 
resulting from variations in genetic mutations (88, 89).

Spatial distribution of various stromal cells contributes 
to significant heterogeneity in cancer phenotype. CAFs are 
the most prominent stromal component of PDAC and signifi-
cantly contribute to tumor progression and chemoresistance 
(90). CAFs have been categorized into multiple subtypes 
based on their functions and locations (91). Inflammatory 
CAFs are found to be distant to tumor cells, show lower 
αSMA expression and induce immunosuppressive and 
chemo-resistant environment. Myofibroblastic CAFs are 
adjacent to tumor cells with high αSMA level and promote 
stiff, hypoxic and avascular tissue microenvironment. Addi-
tionally, current therapy applies selective efficacy in tumors 
which leads to formation of therapeutically resistant clones 
and intratumoral heterogeneity. These inter- and intratumoral 
heterogeneity not only leads to diverse cellular response to 
therapeutic drugs and clinical outcomes but also results 
in diverse TME that could significantly alter the transport 
properties. Moreover, different subtypes of cells within the 
primary tumor have varying abilities to initiate migration, 
form colonies in the metastatic lesions and establish a unique 
metastatic microenvironment, further complicating the mod-
eling of drug transport in primary and metastatic sites.

Extracellular Matrix  PDAC has a characteristic desmoplastic 
stroma primarily secreted by CAFs which consists of struc-
tural glycoproteins, adhesive glycoproteins and proteoglycans 
(92, 93). The dense stroma is not only a physical obstacle to 
many drug treatments, but its components are remodeled, and 

dysregulation triggers biochemical and regulatory pathways 
that can alter the course of the disease. ECM content is also 
organ-specific and it is necessary to build distinctive models 
depending on the tissue type due to varying protein concentra-
tions and the resulting differences in cell–matrix interactions 
(94). Specifically in the case of pancreas, several proteins and 
ECM proteins have been recognized to be overexpressed, such 
as tissue factor, plasminogen, COL1A1,1A2 and 3A1, and 
hyaluronic acid (HA) (92, 95–97). Likewise, several proteins, 
like matrisome, are upregulated at different stages of pan-
creatic cancer. ECM proteins are also remodeled throughout 
tumor progression by enzymes matrix metalloproteases, fibro-
blasts activation protein and lysyl oxidases which upregulation 
have been correlated with dense stroma (98).

The tissue-dependent and evolving ECM composition 
greatly alters tissue mechanical and transport properties. In 
this context, studies have shown rearrangement of collagen 
fibers, increase in collagen density and tissue diffusivity 
through matrix contraction by pancreatic stellate cells (PSCs) 
and fibroblasts (99, 100). Collagen diffusivity especially 
decreased in the vicinity of fibroblasts (101) and it is critical 
to recognize that biomolecule diffusion and uptake may vary 
due to differential matrix contraction contingent on the cell 
type. Moreover, HA, one of the most overexpressed PDAC 
ECM protein along with collagen, inhibited particle diffusion 
less than collagen in vitro when prepared at physiologically 
relevant concentrations as in vivo (102). On the other hand, 
confinement of HA by collagen increased total tissue pressure 
(sum of growth-induced solids stress and interstitial fluid pres-
sure), reduced active vasculature and impeded drug delivery 
in PDAC (103). Histology images have shown this was true 
only in specific regions where HA was localized within colla-
gen and total tissue pressure was further increased with dense 
collagen content. This is due to the intrinsic nature of HA to 
resist compression by retaining interstitial fluid and repulsion 
of negatively charged monomers and of collagen to confine 
tumor tissue (104, 105). These studies highlight that tumor tis-
sue diffusivity is ECM composition dependent and it is crucial 
to consider the cellular and matrix spatial heterogeneity even 
within the same tumor type.

Microvasculature  A significant factor contributing to the highly 
chemo-resistant nature of PDAC is the limited drug delivery to 
the TME is abnormal tumor tissue vasculature. Hyperpermeable 
vasculature increases the fluid transport into the extravascular 
space thereby increasing the interstitial fluid pressure (IFP). 
As summarized in Table III, hypovascular PDAC tissue has 
microvessel density (MVD) of 20 ~ 50 vessels/mm2 (106–108) 
which is lower compared with other cancer types (109–112) 
and is hierarchically disorganized, which distinguishes them 
from normal vasculature system (113, 114). Tumor vasculatures 
are formed from two recognized processes from the mother 
vessels, known as angiogenesis and arterio-venogenesis, which 
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are stimulated by growth factors and cytokine, secreted by 
tumor and stromal cells such as VEGF-A signaling driven by 
transcription factor HIF-1 (115). In PDAC, PSCs play a critical 
role in controlling the vessel density as collagen concentrations 
can impose physical stress and hinder vascular formations. 
Moreover, tumor cells secrete anti-angiogenic signals that 
exacerbate the vascular damage. Consequently, large diameter 
blood vessels are collapsed, lymphatic vessels are less 
functional, and blood flow is decreased by 60% compared with 
normal pancreas tissue (116). On the other hand, in the normal 
pancreas adjacent to the tumor, angiogenesis is stimulated by 
activated stellate cells, promoting diverse vascular formations 
within the same pancreas (107). Drug transport in the tumor 
interstitium can be achieved by diffusion and/or convection. The 
transport from blood vessels to PDAC tissue is typically in the 
order of 80–220 μm at velocity of 1 μm/s (117). At the given 
interstitial velocity, elevated IFP and abnormal vasculature, 
transport of small biomolecules in PDAC becomes largely 
diffusion dominant. Ultimately, the multifarious nature of 
PDAC molecular, cellular and ECM properties culminates in 
the development of heterogeneous microvasculature density 
that shapes diverse drug delivery patterns.

Recognizing that drug transport into PDAC TME is a sig-
nificant limitation to therapy, there has been several efforts 
to enhance drug delivery by targeting the stromal compo-
nents. The most notable strategies include targeting CAFs 
and HA, both of which showed promising results in mouse 
models. However, inhibiting hedgehog signaling to inhibit 
CAFs led to antagonistic effects which decreased patient 
survival and clinical trial terminated in phase II (118, 119). 
Moreover, clinical trials with HA degradation with enzyme 
pegylated hyaluronidase (PEGPH20) halted in phase III due 
to failure in increasing overall patient survival (120). These 
studies demonstrated discrepancies between pre-clinical 
and clinical models as well as heavily patient-dependent 
drug responses resulting from heterogeneous PDAC TME. 
Accurate modeling of the dynamic development and interac-
tions of the cancer cells and the stromal components poses 
a significant knowledge gap in modeling transport in tumor 
tissue.

Other Disease States

In addition to the pancreas, the microenvironment of dif-
ferent organs are highly heterogenous including the cellu-
lar, extracellular matrix and microvasculature components 
which collectively lead to heterogeneous drug delivery and 
distribution. Both experimental and computational models 
should specifically be tailored to reflect the unique charac-
teristic of the particular organ and the disease. For instance, 
the brain is composed of neurons, astrocytes, oligodendro-
cytes and glial cells. In addition, macrophages, known as 
microglia, are the most abundant immune cell type. Recent 
studies have revealed these are phenotypically distinct from 
macrophages recruited from bone marrow under inflam-
matory conditions (121). The brain ECM is also vastly dif-
ferent from other organs and is predominantly composed 
glycoproteins, proteoglycans and glycosaminoglycans such 
as hyaluronic acid. Dense deposition of ECM may lead to 
hypoxia and aggressive tumor in the brain (122). Similar 
to PDAC, the brain vasculature is also highly disorganized 
in diseased states leading to further complications such 
as high interstitial pressure and edema. The distinct brain 
ECM and vasculature play critical roles in maintaining the 
blood–brain-barrier leading to significant heterogeneity in 
drug delivery. Mathematical model to investigate the role 
of abnormal vasculature on drug delivery to glioblastomas 
revealed that flow rate, vessel permeability and tissue dif-
fusion coefficient have nonlinear interaction in producing 
heterogeneous drug delivery in brain tissue (123). Compu-
tational model of brain capillary blood flow heterogeneity 
demonstrated that perturbations to the capillary network, 
including to segment diameters or to conductance values, 
decrease average tissue oxygen levels which could have 
critical consequences in neuronal function and thereby 
worsen neurodegenerative diseases and acute ischemic 
stroke (124). Furthermore, MRI techniques could enhance 
current computational models by providing templates for 
three-dimensional construction of the heterogeneous vas-
culature. Dynamic contrast enhanced-magnetic resonance 
imaging (DCE-MRI) based computational models allowed 
accurate modeling of drug delivery depending on the per-
meability and porosity of brain vasculature and tissue (125, 
126). Similarly, dynamic contrast enhanced-computerized 
tomography (DCE-CT) technique allowed measurement of 
tumor interstitial pressure and modeling of intra-tumoral het-
erogeneity leading to computational prediction of liposome 
nanoparticle distribution (127). Such techniques could pro-
vide significant benefits in predicting patient specific drug 
delivery of different chemotherapeutic drugs. Additionally, 
a study combining MRI of human brain and computational 
model demonstrated that a significantly greater degree of 

Table III   Human / Murine PDAC Characteristics

Parameter Value

Microvessel density (MDV) 20—50 vessels/mm.2

Inter-microvessel distance 80—220 μm
Interstitial fluid pressure (IFP) 4—130 mmHg
Capillary fluid pressure 10—40 mmHg
Lymphatic pressure  < 5 mmHg
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uncertainty and error is generated by neglecting soft tis-
sue heterogeneity compared with vasculature heterogene-
ity (128). However, models representing brain tissue het-
erogeneity is lacking, rendering it a critical knowledge gap. 
In addition to spatial considerations, mathematical models 
to predict temporal heterogeneity in glioblastoma revealed 
novel opportunities to target specific disease states that are 
patient-specific (129). Temporal variation coming from dif-
ferent mRNA expression of clock genes that are expressed at 
different levels depending on the circadian rhythm also leads 
to daily oscillations in vascular permeability and resistance, 
thrombus formation and flow conditions that play critical 
roles in modulating vascular function (130–132). There-
fore, perturbations in the circadian rhythm could increase 
vasculature and blood–brain-barrier vulnerability, increas-
ing the risk of stroke in the morning (133, 134). Modelling 
such temporal heterogeneity in differential gene expression, 
cellular activities and the blood–brain-barrier is critically 
important to understand drug delivery in many brain dis-
eases. Moreover, future models could significantly improve 
with enhanced understanding of broader patient population 
brain heterogeneity through disease progression modelling 
and clustering techniques using neuroimaging (135). Like-
wise, similar challenges of cellular, tissue and vascular het-
erogeneities exist for other organ diseases, such as the lung 
and the skin, particularly for unique airway architecture of 
the lung and multiple tissue layers of the skin (136–141). 
Coupling of the spatial and temporal heterogeneity will pro-
vide next generation models to predict tissue specific drug 
delivery in different organs and present novel therapeutic 
opportunities.

Uncertainty Quantification and Sensitivity Analysis

Accurate knowledge of model parameters is essential for 
predictive modeling of drug distribution and efficacy in 
the organism-level. Hierarchical determination of transport 
parameters used in macro-scale models based on micro-scale 
models is a promising approach especially since the expand-
ing landscape of drug design introduces additional factors to 
consider that affect the delivery performance. In the mean-
time, various sources of variation in disease conditions such 
as tumor heterogeneity, patient age and demographics result 
in significant uncertainty in model parameters including 
transport properties. Predicting pharmacokinetic param-
eters like of neonates, infants and pregnant women can be 
a particularly challenging task due to limitations of scaling 
approaches to translate parameters between these interest 
groups and groups for which data is available (142).

Uncertainty quantification and sensitivity analysis come 
forward as methodology rapidly gaining importance to 

tackle this challenge. Incorporation of sensitivity analysis 
when reporting PBPK model predictions is becoming a com-
mon practice where variability in endpoints such as area 
under curve based on model parameters can be studied (79). 
A meta-analysis of nanoparticle delivery to tumor revealed 
that delivery efficiency significantly depended on external 
sources of heterogeneity such as tumor site and tumor model 
studies as well as drug design characteristics such as NP 
hydrodynamic radius, shape, surface charge and material 
(organic/inorganic) (143). PBPK modeling coupled with 
sensitivity analysis helped identify low distribution and 
permeability coefficients to be the most significant factors 
affecting the delivery efficiency. In addition, in vitro to in 
vivo extrapolation (IVIVE) to estimate parameters in PBPK 
models based on in vitro and in silico predictions itself is 
subject to significant uncertainty. When sensitivity analysis 
is incorporated into an IVIVE procedure where Rodgers and 
Rowland model (144) was used to estimate tissue to unbound 
plasma partition coefficient, it was demonstrated that parti-
tion coefficient and fraction unbound in plasma were the 
most influential parameters affecting the outcome of IVIVE 
procedure and the process was generally sensitive to tissue 
composition (145). A promising direction in this context is 
the simplification of PBPK model parametrization problem 
by reduction of model dimensionality, focusing only on the 
most influential parameters.

Uncertainty quantification has also been applied to trans-
port models in context other than PBPK modeling. Effect of 
arterial input functions (AIF) and vascular and tissue trans-
port parameters on interstitial fluid and tracer transport using 
sensitivity analysis was studied in heterogenous tumor tissue 
and vasculature by utilizing DCE-MRI data (146). For all 
cases considered in the analysis IFP was elevated within the 
tumor and decreased toward tumor boundary, with tumor 
vessel permeability having the most critical impact on IFP 
values. Interstitial fluid velocity values were largest near 
tumor boundaries in all cases and high tumor vessel per-
meability and low ratio of tumor hydraulic conductivity to 
normal tissue hydraulic conductivity caused greatest devia-
tions from baseline results. Tracer transport was not affected 
as much with changing transport parameters and sensitivity 
analysis showed good agreement between the patterns of 
simulated and experimental tracer concentrations.

Since UQ and SA mainly involve interrogation of model 
responses only under changing inputs, these analyses can be 
applied without the knowledge of implementation specifics 
of the model, i.e., the model being treated as a blackbox. 
Therefore, there have been a proliferation of software tools 
such as DAKOTA (147), UQLab (148), UQ-PyL (149), 
COSSAN (150) and PUQ (151) as frameworks that pro-
vide a general interface to run specific model simulation 
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software or code and perform uncertainty quantification, 
sensitivity analysis and model parametrization/calibration 
under uncertainty.

Coupling of PBPK Modeling and Microphysiological 
Systems

Despite increasing integration of uncertainty quantification 
using in silico approaches, determination of reliable trans-
port properties for successful predictions of clinical out-
comes by in silico models still requires a significant amount 
of human physiological data that current model system fails 
to provide. The lack of data is a significant limitation in 
PBPK models for pediatric applications as well as those 
for adults (152). Systematic experimental validation of 
multiscale models may benefit from novel in-vitro models 
such as microphysiological systems based on microfluid-
ics (153–157). These include recently emerging interstitial 
permeability and skin permeability models used to study 
adsorption, liver models for metabolism, kidney models for 
elimination/excretion and multiorgan models that provide 
PK/PD parameters of drugs with higher physiological rele-
vance compared to single organ-on-chips (OoCs) (158, 159). 
These multi-organ-on-chips (MOoC) simulating aspects of 
drug ADME on coupled microfluidic compartments offer a 
promising avenue for IVIVE by providing physiologically 
relevant in-vitro experimental data (160–165). For instance, 
a recent series of work by Ingber group involved recapitula-
tion of nicotine and cisplatin plasma pharmacokinetics in 
vivo based on flow and concentration data from fluidically 
coupled microfluidic devices coupled with a PBPK model 
for IVIVE (160–162). Despite the promising first results, 
a primary challenge remains for IVIVE with these MOoC 
platforms that mirror the discussions on parameter scaling 
for PBPK models. A consensus on a generalized and sys-
tematic approach for scaling individual organs and organs 
relative to each other is currently yet to be reached (166). 
Some approaches common in literature are direct scaling, 
allometric scaling, multifunctional scaling and scaling based 
on organ mass and residence times (167). Direct scaling 
directly scales down all organs and their relevant parameters 
by a factor. While straightforward, this method is not suc-
cessful at reenacting organ-organ interactions since scaling 
of individual organs should be different (167). Allometric 
scaling relates physiological parameters with body mass, 
usually using an exponential relationship that relies on the 
assumption that the transport networks within an organism 
is space-filling and optimized by natural selection, while 
with organ-on-a-chip devices, the formation of cells and 
transport networks may not be subject to such optimiza-
tion (166). Another important point is that cells often show 
increased metabolism rates on chips compared to their in 
vivo counterparts due to being given excessive nutrients. 

This point can be complemented by using allometric scaling 
but limiting the nutrients given to the cells to obtain realistic 
metabolism rates (166). Allometric-based scaling methods 
can be used for extrapolation across age groups, such as 
developing a PBPK model using adult data and scaling the 
model for pediatrics (168, 169). Scaling based on organ 
mass and residence times suggests a linear relation between 
organ mass and physiological parameters, and fluid flow is 
determined by the in vivo residence times of organs. With 
this method, flow rates are important in that they should not 
cause shear deformations to the cells and the compartments 
should have similar efficiency to the actual organs they are 
mimicking. Multifunctional scaling aims to replicate a lin-
early scaled-down version of the functional parameters of 
real organs such as the amount of blood pumped by the heart 
with organ-on-a-chip devices (170). This method is advan-
tageous in that parameter measurement and experimental 
determination of the proper organ-on-a-chip size is easy, 
but the scaling approach may be an oversimplification. Two 
multi-MPS devices (gut-liver and gut-liver-kidney) were 
constructed using multifunctional, direct and allometric 
scaling approaches and their efficacy were compared by 
looking at normalized concentration profiles with respect to 
time (171). When compared to in vivo data, multifunctional 
scaling showed about a twofold deviation in drug exposure 
whereas direct and allometric scaling showed 50-to-300-fold 
lower exposure times on average.

Image‑Based Modeling

Image-based modeling approaches can be used to obtain 
patient specific transport properties in the diseased regions 
as well as to identify heterogeneous structures such as the 
tumor vasculature which can be implemented to computa-
tional models for more accurate representation of the dis-
ease. A multiscale model to estimate drug delivery to solid 
tumor was constructed using 2D image of a dissected and 
cleared tumor, which was converted into a computational 
field where the tumor was simplified as a circler or ellip-
tical region while retaining the heterogenous microvascu-
lature, giving a more realistic representation of the region 
(172). In another work, MR images were utilized to obtain 
a realistic 3D brain tumor model through which drug deliv-
ery to brain tumor using a multiscale mathematical model 
was studied (173). With this model, combination therapy 
of bevacizumab, an anti-angiogenetic drug, and a total of 6 
cytotoxic drugs was investigated. Results showed that inclu-
sion of bevacizumab enhanced the delivery of all cytotoxic 
drugs albeit at different levels, with doxorubicin seeing the 
most benefit. A 3D voxelated image of tumor tissue was 
constructed using DCE-CT, which was utilized to obtain 
hemodynamic parameters used as inputs in a mathematical 
model to estimate intra-tumor oxygen concentrations (174). 



Pharmaceutical Research	

1 3

These parameters were checked against values obtained 
through intravital microscopy and photometric techniques 
and results were close for voxel sizes under 200 µm. Another 
voxelated numerical model predicted distribution of contrast 
agent and drugs in brain tumors (126). Data obtained from 
measurement of the concentration of a contrast agent in a 
spinal cord injury using DCE-MRI were employed for curve 
fitting in a multi-compartmental PK model which would 
track the distribution of the contrast agent (175). DCE-MRI 
was utilized to obtain permeability and porosity values, and 
patient specific AIF was utilized to obtain perfusion kinetic 
parameters. Using these, heterogenous vasculature of the 
tumor and selective leakage of drugs due to the heterogene-
ity were investigated. Results showed that although drug 
concentration was higher in high permeability areas at first, 
accumulation was greater in high porosity areas later on.

Emerging Areas

Tumor heterogeneity remains to be an outstanding challenge 
for treatment of cancer that will ultimately be addressed by 
advanced personalized medicine. In previous sections, we 
also identified tumor heterogeneity and associated uncer-
tainty in tumor microenvironmental parameters as one of 
the primary challenges for development and validation of 
predictive computational models of drug transport. Joint use 
of emerging technologies in multi-scale modeling, micro-
physiological systems and image-based modeling offer great 
potential to address these challenges as illustrated in Fig. 5. 
We introduced microphysiological systems as newly emerg-
ing in vitro experimental disease models that can incorporate 
features of the tumor microenvironment including heteroge-
neity in controlled manner. The transparent operation and 
ease of read out from microphysiological systems render 

them suitable benchmark platforms for in vitro validation 
of computational models while maintaining physiological 
relevance. In the meantime, further development and para-
metrization of computational models such as PBPK models 
can facilitate in vitro to in vivo extrapolation of microphysi-
ological system predictions. In addition, image-based mod-
els can provide valuable information in terms of either in 
vivo structure and function data or transport characteristics 
that can be used towards model building of both microphysi-
ological systems and computational models. Finally, compu-
tational multi-scale models are uniquely positioned among 
the three technologies to provide mechanistic insight into 
transport processes observed in vivo and in vitro based on 
first principles. We anticipate that joint use of these three 
technologies will be pivotal in advancing precision medicine 
by providing patient-specific evaluation of treatments and 
treatment planning.

Another emerging trend is the support of UQ/SA efforts 
by artificial intelligence and machine learning (AIML). Cur-
rent discovery and development of drugs rely on hands-on 
traditional in vivo and in vitro experiments which makes 
the procedure time consuming and unpredictable. With the 
enhanced computing power and stronger algorithms devel-
oped in the last decade, not only multiscale models but also 
predictive algorithms based on artificial intelligence are 
promoted and a new discipline combining these two, com-
putational pharmaceutics has emerged (176). Using machine 
learning (ML), large volumes of data can be analyzed sys-
tematically to find correlations or quantify agreement of 
correlations (177). ML can also be used in carrying charac-
teristics across the scales, i.e., in the process of information 
homogenization (178).

There is a growing body of literature adopting data-driven 
ML approaches for applications such as investigating iron 
oxide NP cytotoxicity (179), achieving predictive analysis 
of silver NP protein corona formation (180) and NP prop-
erty prediction (43). Development of a breast cancer therapy 
response predictor using a multi-omics model in which the 
tumor therapy response characteristics were obtained using 
data integration and ML (181) and development of a ML 
model to predict 3D printing formulation and drug dissolu-
tion properties of FDM printed objects like tablets, films and 
devices (182) are some other examples. The growing interest 
and merits of ML-based approaches is also recognized in 
regulatory circles. In 2019, FDA published an action plan 
on medical ML algorithms that sets a path for the official 
approval of such studies. While ML is a powerful tool, cau-
tion should be practiced as uninformed and brute-force use 
of ML might result in unphysical predictions and ill-posed 
problems (177). It is anticipated that the greatest benefit will 
come from the combination of ML and multiscale modeling 
for an intelligent walk-through drug design landscape for 

Fig. 5   Potential for joint use of emerging technologies in multi-scale 
modeling, microphysiological systems and image-based modeling
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delivery as well as to address challenges in model parametri-
zation and uncertainty quantification.
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