Tiered Trust for Useful Embedded Systems Security

Hudson Ayers
hayers@stanford.edu
Stanford University

Pat Pannuto
ppannuto@ucsd.edu
UC San Diego

Amit Levy
aalevy@cs.princeton.edu
Princeton University

ABSTRACT

Traditional embedded systems rely on custom C code deployed in a
monolithic firmware image. In these systems, all code must be trusted
completely, as any code can directly modify memory or hardware reg-
isters. More recently, some embedded OSes have improved security
by separating userspace applications from the kernel, using strong
hardware isolation in the form of a memory protection unit (MPU).
Unfortunately, this design requires either a large trusted computing
base (TCB) containing all OS services, or moving many OS services
into userspace. The large TCB approach offers no protection against
seemingly-correct backdoored code, discouraging the use of kernel
code produced by others and complicating security audits. OS ser-
vices in userspace come at a cost to usability and efficiency. We posit
that a model enabling two tiers of trust for kernel code is better suited
to modern embedded software practices. In this paper, we present the
threat model of the Tock Operating System, which is based on this
idea. We compare this threat model to existing security approaches,
and show how it provides useful guarantees to different stakeholders.

CCS CONCEPTS

« Computer systems organization — Embedded systems.

KEYWORDS

embedded systems, operating systems, security, IoT

ACM Reference Format:

Hudson Ayers, Prabal Dutta, Philip Levis, Amit Levy, Pat Pannuto, Johnathan
Van Why, and Jean-Luc Watson. 2022. Tiered Trust for Useful Embedded
Systems Security. In 15th European Workshop on Systems Security (EUROSEC
"22), April 5-8, 2022, RENNES, France. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3517208.3523752

1 INTRODUCTION

Embedded system security is notoriously lacking compared to the
security of more traditional computer systems [13]. We believe this
is partially caused by typical embedded system design not provid-
ing proper security abstractions to the different stakeholders in
this space, often requiring non-experts to make security-affecting

This work is licensed under a Creative Commons Attribution International 4.0 License.

EUROSEC *22, April 5-8, 2022, RENNES, France
© 2022 Copyright held by the owner/author(s).
ACMISBN 978-1-4503-9255-6/22/04.
https://doi.org/10.1145/3517208.3523752

Prabal Dutta
prabal@berkeley.edu
UC Berkeley

15

Philip Levis
pal@cs.stanford.edu
Stanford University

Jean-Luc Watson
jlw@berkeley.edu
UC Berkeley

Johnathan Van Why

jrvanwhy@google.com
Google

decisions without the proper knowledge. We posit that embedded op-
erating systems (OSes) should provide a threat model that maintains
the goal of a minimal trusted computing base (TCB) without forcing
common OS functionality to be treated equivalently to application
code. In particular we believe that there should be two tiers of trust
within the kernel, to encourage code reuse between deployments
without compromising on security, usability, or efficiency.

We have previously argued the premise that embedded systems
are often treated more like software platforms than single purpose
devices [19]. Based on this premise, our discussion of security focuses
on three stakeholders: application developers, kernel developers,
and board integrators. We believe an OS threat model with three
tiers of trust can serve all of these stakeholders better than prior ap-
proaches. For application developers, this means providing isolation
from other applications and independence from (although with trust
of) the kernel. This enables the audit of stand-alone applications for
security without knowledge of other code on the system. For kernel
developers this means limiting the scope of the TCB, modularizing
non-core kernel functionality, and reducing the level of trust that
must be placed in non-core kernel functionality. This means that in
the common case kernel extensions will not affect the TCB, which
eases auditing burden. For board integrators—platform developers
who are responsible for bringing up new hardware—this means mak-
ing it apparent which kernel components have additional privileges
and what those privileges are. Often, these privileges may present
security/usability trade-offs, for example questions of how processes
may be started, stopped, or introspected. Asboard integration creates
the TCB, this must balance flexibility and auditability.

Here, we describe the threat model for Tock, an embedded OS for
low power microcontrollers, and how we think this threat model
represents a useful improvement over the status quo. This threat
model treats the majority of OS functionality (such as network stacks,
drivers, and hardware virtualisation layers) as more trusted than
application code but significantly less trusted than the TCB.

2 BACKGROUND
2.1 Embedded development practices

Embedded applications are extremely heterogeneous, ranging from
large-scale sensor deployments [1] to personal hardware cryptocur-
rency wallets [6]. As a result, the embedded software ecosystem
contains large amounts of bespoke code targeted at different con-
strained design points. This is not necessarily a bad thing for ap-
plication developers: they have the freedom to choose components
that respect performance, real-time deadlines, or platform-specific
constraints. They might require, for example, a networking stack

https://doi.org/10.1145/3517208.3523752
https://doi.org/10.1145/3517208.3523752
https://creativecommons.org/licenses/by/4.0/

EUROSEC °22, April 5-8, 2022, RENNES, France

that supports TCP [8] or IPv6 [11], while others may need a protocol
designed specifically for constrained settings [2].

Embedded applications are increasingly the targets of security
analysis [22], where large amounts of third-party software presents
a burden to reviewers. To avoid this, system management is com-
monly delegated to a packaged set of functionality in the form of an
embedded OS, of which some portion operates as a TCB. The TCB
is assumed to be correct and performs security-critical functions, so
highly secure systems minimize the size and scope of their TCB [14]
to limit the potential attack surface.

2.2 Threat modeling

The specific security needs of an embedded application will vary
widely by use case, but in general, developing an embedded threat
model requires defining three items: a grounded set of attacks against
which the system must be resilient, a specification of each of the sys-
tem stakeholders (if more than one), and for each stakeholder, a set
of security guarantees that must be maintained under the expected
threats. We discuss each facet in more detail below.

The security of an embedded system depends on its threat envi-
ronment. A threat model enumerates the types of adversaries that
are expected to attack the system, and alternatively, which attacks
are deemed to be out of scope. For example, embedded systems may
consider attacks from network-based adversaries [3] or malicious
co-located applications [19], but assume that attackers will not have
physical device access [20] or the capability to selectively influence
MEMS sensor readings [21]. Some threat models may even choose
not to defend against attacks, assuming no substantial risk exists.

In this paper, we discuss additional potential attacks that may
arise as the result of co-locating the execution of multiple, mutually-
distrusting tasks. The idea of mutually-distrusting tasks is valid both
in the case of a multi-programmed platform with multiple users,
and in the case where there is potential for certain tasks to be com-
promised (e.g. network-based trojans). A malicious task, even while
barred by the system from directly observing another targeted task,
may instead observe various side-channels that leak information indi-
rectly about the target. For example, with no access to a task perform-
ing a critical cryptographic operation, an attacker with the ability to
measure its execution time might nonetheless be able to retrieve the
secret keys used [16]. Similarly, a task may use a shared hardware
bus for communication, and infer the communication behavior of
other tasks based on frequency and duration of its availability.

2.2.1 Stakeholders. The components of an embedded system are
split among one or more parties we denote as stakeholders. For the
same high-level threat model, each stakeholder may have different
security requirements and trust assumptions.

An embedded system will likely have at least two stakeholders:
a user, or application developer, who is using the OS’s interface
to interact with device resources and executes custom tasks for a
particular use case, and the OS kernel developers who implement
kernel functionality that application developers use. Application
developers benefit from reliable, secure kernel services. Kernel de-
velopers benefit when they can reuse code written by others, and
when they can rely on isolation from the behavior of unrelated parts
of the system. Often, the kernel may be entirely distrustful of the
application, while the user must completely trust the kernel.

16

Ayers, et al.

We discuss a third stakeholder, the board integrator, separately
from an application or an embedded OS kernel developer. Board inte-
grators configure and add platform-specific code to an embedded OS
so that it can use the board’s capabilities. Often, board integrators
are responsible for determining which portions of kernel code to
include/use for a given platform. For example, the board integra-
tors for the OpenTitan root-of-trust chip implement the platform
specific code to give the kernel access to hardware peripherals like
UART and cryptographic accelerators. Different board integrators
may make different security assumptions, and as such, other stake-
holders should, when possible, limit the scope of their own security
assumptions and make them clear to board integrators.

2.2.2 Security guarantees. A stakeholder’s defense against a set of
potential threats cannot be evaluated without a sense of what “se-
curity” actually means. To do so, system components can provide or
require specific security guarantees that must be maintained. System
security is then ensured when all security guarantees are met.

Security guarantees are often (but not always) expressed using the
“CIA triad”: systems may provide confidentiality (protection from
unauthorized access to private, or “secret” data), integrity (protection
from unauthorized data modification), availability (access to data
when required and protection from denial-of-service attacks), or any
combination thereof. For example, an embedded OS may provide a
memory safety guarantee to mutually-distrustful applications, using
a hardware Memory Protection Unit (MPU) to ensure that a user
cannot read or modify another user’s memory space or any of the
kernel’s memory. In this case, the OS is making confidentiality and
integrity guarantees to each user.

An embedded OS serves to simplify security analysis by specify-
ing some black-box security guarantees on which applications can
rely. However, ensuring that the entire system (application, platform,
OS kernel) is secure requires an explicit understanding of each stake-
holder’s security needs and the presence of matching guarantees
from the other stakeholders. If the OS does not guarantee a particular
security property, or vaguely documents it, a time-consuming code
audit is often necessary.

3 RELATED WORK

3.1 Embedded OSes and their threat models

3.1.1 “Sensor Mote" OSes. TinyOS [18], Contiki [9], and Riot [7]
are all widely used embedded OSes, but focus on fairly benevolent
threat models. Asis the case with highly monitored or isolated sensor
deployments, there is only one stakeholder, responsible for all appli-
cationand OS code on the system. All code is implicitly trusted, and as
such, no formal threat modelis provided and security in general is not
addressed. The presence of concurrent programming constructs in
these OSes does not necessarily make a security guarantee: the Con-
tiki kernel, for example, manages event handling and interprocess
communication (IPC) but exposes direct hardware access to applica-
tions and provides no memory isolation. Similarly, some hardware
resources in TinyOS are virtualized to support simpler application
development [17], but also don’t give any explicit guarantee of isola-
tion, and Riot places many of its drivers in threads for fault isolation,
but a malicious driver could easily modify the kernel directly.

Tiered Trust for Useful Embedded Systems Security

3.1.2 Zephyr OS. In contrast, Zephyr OS has generated extensive
security documentation [23, 24]. Zephyr considers two types of
stakeholder: application developers whose threads may be mutually
distrustful of each other, and the OS kernel development team that
is assumed to be trusted. Zephyr’s threat model allows for malicious
application threads, but vulnerabilities in the kernel (e.g. compro-
mised I/O from malicious network data or denial-of-service attacks
from high-priority threads) are out of scope.

Zephyr supports hardware-based memory isolation using an
MPU, with allows it to guarantee the integrity and confidential-
ity of each thread’s memory space and kernel memory. Platform
resources can be assigned to specific threads and access validated
at the system call layer, guaranteeing that a device will only be used
by threads explicitly granted access.

Finally, an effort to develop a secure/certified branch of Zephyr
is still pending, but may require additional assumptions, namely,
that only trusted applications are running on the device and that
appropriate protections are implemented against storage and timing
side-channels [24]. These added assumptions may make verification
easier, but incur significant overhead [23] and make the applicable
threat model brittle. For example, a remote code execution vulner-
ability on a secure system that assumes trusted applications may
invalidate any verified security guarantees.

3.1.3 Arm MBED OS. MBED OS is a collection of system manage-
ment libraries, including an RTOS scheduler, that can be included
with an embedded application [5]. Like the mote OSes discussed
above, the application code and the OS kernel are controlled by the
same stakeholder and are not isolated from each other in any way.
However, using additional architectural security features in ARMv8-
M microprocessors [4], MBED introduces an additional stakeholder
that develops code to execute in a “secure world" isolated from both
the application and OS and accessible through special call gates. On
those microprocessors, MBED's threat model includes the possibility
of both malicious applications and a compromised OS, and considers
attacks across the hardware security boundary. Given these capa-
bilities, MBED can provide confidentiality and integrity for secrets
and code operating on the secure side by preventing unauthorized
code execution. It can also provide an availability guarantee, since
the architecture allows secure side code to preempt the application
or “non-secure"” OS at any time.

Finally, a TCB on the secure side can implement software isolation
between multiple secure execution contexts, effectively isolating
secure components, such as cryptographic APIs or precious machine
learning models, from each other if they are developed by individual
stakeholders. While the defense in depth provided by this mechanism
is excellent in the context of providing tiered security, it requires
significant integration with the underlying architecture and leaves
the non-secure operating system vulnerable to attack unless it builds
its own security guarantees or moves the bulk of its functionality
to the secure side.

4 TOCKTHREAT MODEL

This section describes the intended threat model of Tock — not a snap-
shot of the currently supported threat model. The small differences
between the intended and currently supported models are merely the

17

EUROSEC ’22, April 5-8, 2022, RENNES, France

result of unfinished development, as discussed in the Tock repository
(https://github.com/tock/tock/tree/master/doc/threat_model).

4.1 Tock OS Overview

Tock is an embedded OS for low-power constrained platforms with
support for multi-programming with mutually distrusting applica-
tions. Tock prioritizes isolation between applications, the kernel,
and partially untrusted kernel “capsules"”, such as device drivers. The
Tock kernel itself is entirely written in Rust [15], a language with
strong memory- and thread-safe guarantees, and as a result, capsules
are isolated from the core kernel using Rust’s type system with no
runtime cost. Tock also supports hardware memory isolation mech-
anisms that are used to isolate each application from each other and
the kernel. Tock supports ARM Cortex-M based and RISC-V based
microcontrollers.

Tock is not merely a research artifact. For example, Tock has been
deployed in city-scale sensing research [1]. Tock is currently in use in
an open-source security key released by Google [10], and in the open
source root-of-trust being developed by the OpenTitan project [12].

4.2 Trust and Isolation

Tock focuses on providing the mechanisms required to build secure
systems. The Tock threat model defines three levels of trust which
can be prescribed to different software components in the system. To
make these divisions useful, the threat model focuses on defining iso-
lation guarantees for software components at different trust levels.

There are 3 types of software components in Tock — userspace
applications, kernel capsules, and the core kernel (see Figure 1). Tock
apportions trust to these components as follows:

(1) Completely untrusted (by kernel, each other): Applications

(2) Trusted forliveness, software enforcement of memory
safety: Kernel capsules (networking stack, console, sensor
drivers, virtualization layers), chip specific code

(3) Completely trusted: Core kernel (board/architecture spe-
cific code, scheduler, configuration)

Based on these levels, Tock provides specific isolation guarantees:

(1) Application secrets may not be modified or accessed by other
applications, unless explicitly shared (e.g. via IPC).

(2) Capsules can only access application secrets when specifi-
cally allowed by the application, or when granted explicit
capabilities by the kernel.

(3) Kernel secrets may not be accessed by applications or by
kernel capsules these secrets are not directly shared with.

- This means, for example, that secrets held by a radio capsule
will not be readable by another capsule unless the radio di-
rectly exports them (such as to the SPI virtualization capsule
used to provide communication with the hardware radio).

- Kernel data cannot be modified by applications or capsules ex-
cept through APIs intentionally exposed by the owning code.

(4) Applications cannot cause the system to fault.

(5) Applications cannot perform denial-of-service attacks against
each other or against the kernel.

- With an exception for resources that cannot reasonably be
shared, explored in Section 4.4.

(6) Kernel componentsmust tolerate arbitrary applicationrestarts.

https://github.com/tock/tock/tree/master/doc/threat_model

EUROSEC °22, April 5-8, 2022, RENNES, France

N -
grant grant Userspace
~ ~ Applications
g »;8; <~ = i Completely Untrusted
@
§ - heap heap -
8 data data Process
a< stack stack Accessible
Memory
O O 1
G < :
I text I I text I & I I -2 i} Hardware-enforced isolation
\ -) \ -) :
: Syscall boundary
) 0 Compiler-enforced isolation
o H
- Q2 =
T o o] o]
— sl g g E | | Kernel capsules
23 © = Trust liveness
G
! ————————————————————————————————
Completely Trusted

Figure 1: Tock Architecture

These isolation guarantees are met through a combination of
memory safety and careful virtualization of shared resources. Some-
times, these virtualized interfaces are insufficient for certain use
cases, and capsules or applications require more direct access to
hardware. The method by which Tock safely allows such privileged
access is discussed in Section 5.

4.3 Memory Safety

The confidentiality and integrity guarantees described above are par-
tially the result of the memory safety guarantees that Tock provides,
enforced for applications by hardware such as an MPU. Kernel cap-
sules, which are more trusted than applications, are still prevented
from violating memory safety’s confidentiality and integrity guar-
antees (described in 2.2.2) by language sandboxing. The use of the
unsafe keyword is forbidden in capsule code as enforced by the lint
#![forbid(unsafe_code)]. Of course, this means that compiler
bugs, bugs in the Rust language, or bugs in libraries or the core kernel
could all allow an attacker to bypass this guarantee. Finally, the core
kernel is not bound by any of these restrictions, and manual auditing
of all uses of unsafe in the core kernel is required to ensure these
guarantees are met.

4.4 Virtualization

In addition to memory safety, the confidentiality and integrity de-
scribed above is achieved by strict rules for kernel capsules that
virtualize shared resources. These rules state that kernel capsules
with multiple clients should not share data between their clients
(except the IPC capsule), and that data from a client should not be
shared with a capsule the client is unaware of. Accordingly, when
application buffers are shared with capsules, capsules must only
share the buffer with lower-level components necessary for complet-
ing some associated functionality. For example, a capsule providing
virtualized access to a piece of hardware may pass the buffer to the
driver for that hardware. If a capsule copies application data into

18

Ayers, et al.

a buffer, that buffer must be wiped before it is shared with another
client. Virtualization capsules must be manually verified as provid-
ing these guarantees. Tock already provides vetted virtualization
capsules for many common resources, such that this requirement
does not significantly impact most uses of third-party code, which
would sit on top of these already verified virtualization capsules.
The availability guarantees that Tock provides also depend on
effective virtualization. Applications are prevented from starving
other applications or capsules of the CPU thanks to a preemptive
scheduler. For other limited hardware or software resources, cap-
sules provide virtualized access to both applications and other kernel
capsules. These virtualization capsules are expected to prevent star-
vation of resource requests when the semantics of the operation
allow it. This often manifests as requiring round-robin scheduling
of access to shared resources. When it is not possible to prevent
starvation — such as shared resources that may need to be locked
indefinitely for practical use — components have two options:

e Allow resource reservations on a first-come, first-served basis.
For resources distributed in this manner, it is recommended
that reservations are requested immediately after boot, such
that failures due to contention surface immediately.

e Block access to the API behind a kernel capability, and require
board integrators to distribute this capability to at most one
capsule ata time. This precludes use of the API by applications.

Notably, Tock components do not need to guarantee fairness — a
UART virtualization layer may allow capsules/apps using large
buffers to see higher throughput than those using small buffers.

While virtualization does impose some overhead — both code
size and performance - it is not required for components which are
not shared by multiple apps/capsules. In practice, this overhead has
not precluded Tock’s use in real systems like those mentioned in
section 4.1

One other feature supporting Tock’s availability guarantees is
the lack of dynamic allocation in the kernel - while the Tock threat
model does allow for the possibility that kernel capsules may fault the
kernel, it attempts to limit the likelihood of this happening unexpect-
edly by removing the possibility for RAM exhaustion causing a fault.
Stack overflows are still possible, however, as no bounds on recursion
or the size of parameters passed on the stack currently exist.

4.5 Isolation explicitly not provided

In the general case, no guarantees of side channel isolation are pro-
vided, and apps should not rely on them. In practice, many side
channels are simply too expensive to mitigate, but specific com-
ponents can still provide side-channel mitigation of their own. A
constant-time guarantee might be implemented for a cryptography
API, for instance. Outside of this, however, it is worth noting that
Tock does not hide application CPU usage from others, and does
not hide the size of application data regions — in both cases the
cost of mitigating these channels was deemed too high given the
low-sensitivity signals these channels represent.

4.6 External Trust

4.6.1 Third Party Dependencies. The Tock threat model currently
forbids the use of third party dependencies in the Tock kernel except
for the Rust libcore, a minimal, dependency free foundation of The

Tiered Trust for Useful Embedded Systems Security

Rust Standard Library, which hasn’t been audited by the Tock core
team. Third party dependencies may be added to Tock in the future,
but their code will likely be audited if this occurs. Applications may
use any dependencies, as application code is untrusted.

4.6.2 Application Loader. An application loader is a mechanism for
adding applications to a Tock system. This mechanism can be an ap-
plication loader running on a host system that uses programming in-
terfaces to manipulate applications in nonvolatile storage. It can also
be a capsule that acts as a kernel-assisted installer that receives an
application over USB or the network and writes it to flash, or a mono-
lithic image that bundles the kernel with apps. The application loader
must be trusted, as it must have the ability to read/write arbitrary
memory for any application. Therefore, the loader must be trusted
to not modify, erase, or exfiltrate application data. The loader does
not have to be trusted to not modify the kernel, as other mechanisms
may be used to protect the kernel. Tock relies on application headers
stored with applications to verify application integrity and to store
application metadata. These headers are treated as untrusted, and any
application loader must verify them before installing applications.

5 PRIVILEGED OPERATIONS

Maintaining isolation between kernel components and applications
means sensitive operations should be marked as privileged, such
that they can only be called within the TCB. Some examples include:

Direct memory access (raw pointer reads/writes)

Direct Bus access (SPI, 12C, etc.)

Indefinite use of limited resource (indefinite ADC sampling)
Start/stop processes or read process metadata

Modify hardware registers

Open network connections

Invoking kernel main loop

However, certain kernel components (such as those that virtual-
ize these interfaces) will inevitably require access to some of these
privileged operations, and maintaining a small trusted computing
base means these components should still be isolated from the core
kernel. In such cases, it is important that an OS provide safe, easily
auditable mechanisms for less trusted kernel components to perform
privileged operations. It should be clear to board integrators when
these mechanisms are used, and should be easy to audit the portions
of kernel components that perform privileged operations. In Tock,
privileged operations are exposed to less trusted kernel components
(capsules) in two ways:

(1) Privileged Object By hiding privileged functionality in non-
public methods on objects, references to which are only given
to kernel components allowed this functionality. These priv-
ileged objects are either not visible outside the core kernel
crate, or their construction relies on the unsafe keyword, and
thus cannot be instantiated outside the TCB (see Listing 2).

Capabilities By passing references to capabilities, 0-size
types required as input to otherwise globally-callable func-
tions or methods on widely shared object (such as the core Ker-
nel struct). Capabilities can only be created by using unsafe,
ensuring that any capabilities used are created by the core
kernel. An example can be seen in Listing 1. Notably, while the
capabilities are 0-size, references to these capabilities are still

@

19

EUROSEC ’22, April 5-8, 2022, RENNES, France

//! main.rs

pub struct PMCap;

unsafe impl ProcessManagementCapability for PMCap {3}
let console = ProcessConsole: :new(console_uart, PMCap);

//! kernel/src/scheduler.rs
// Fault all apps for debugging purposes
pub fn hardfault_all_apps<C: ProcessManagementCapability>
(&self, _c: &C) {
for p in self.processes.iter() {
p.map(|proc| proc.set_fault_state());

3

}

Listing 1: Capability Example. Most capsules should not be
able to stop/modify processes. Tock enforces only capsules
with the ProcessManagementCapability can do so. Board in-
tegrators may audit or exclude capsules with this capability.

//! main.rs

// Create a capsule to virtualize lone hardware alarm.

let mux_alarm = static_init!(
MuxAlarm<'static, rv32i::machine_timer::MachineTimer>,
MuxAlarm: :new(&arty_e21::timer: :MACHINETIMER)

);

Alarm::set_client(&arty_e21::timer: :MACHINETIMER, mux_alarm);

//! chips/arty_e21/src/timer.rs

// Exposes safe methods for modifying machine timer

// Code in chips/ is not visible to capsules

pub static mut MACHINETIMER: MachineTimer =
MachineTimer: :new(MTIME_BASE);

const MTIME_BASE: StaticRef<MTimerRegisters> = unsafe {
StaticRef::new(0x0200_0000 as *const MTimerRegisters)
}; // Direct memory access/casts require unsafe

Listing 2: Privileged Object Example. To prevent interrupt
stealing, Tock enforces that only a capsule given a reference
to the hardware timer object is able to control the timer.
Board integrators verify this reference is only given to a
single MuxAlarm capsule which virtualizes access to the
hardware timer for use by other capsules.

pointer-size and allocated on the stack during function calls.
The 0-size feature of capabilities ensures objects that store
these capabilities do not require extra space in flash or RAM.

We use the “privileged object” method for exposing safe inter-
faces to hardware objects (GPIO pins, buses, hardware timer, radio,
etc.). Typically this involves constructing a safe interface for read-
ing/writing hardware registers that control these peripherals. This
safe interface is implemented as methods on the privileged object,
thus access to the interface requires a reference to that object.

We use the “capabilities” method when it does not make sense
to represent the restricted functionality by limiting visibility to an
object. For example, if the method must be implemented on an oth-
erwise broadly shared object, like the Kernel object, restricting

EUROSEC °22, April 5-8, 2022, RENNES, France

visibility does not work, so we use capabilities as a 0-overhead mech-
anism for restricting access to certain methods. Alternatively, for
instances where a globally callable function is required (such as a
new() function used to create an object, capabilities can be used to
restrict access to this global function (example: IPC: :new()).

In both cases, the passing of ether a privileged object or a capabil-
ity to akernel component serves as a clear signal to aboard integrator
that this kernel component has elevated privileges. Further, in both
cases the core kernel is still responsible for determining exactly how
these privileges can be used, as privileged capsules are still limited
by whatever APIis exposed by the core kernel.

6 DISCUSSION

This section discusses pros and cons of Tock’s threat model from the
perspectives of security and usability. This analysis is based on the as-
sumption that security typically means confidentiality and integrity
of application data, combined with high availability of application
services. It is also based on the assumption that board integrators
will be the party ultimately responsible for determining the threat
model faced by a given application, but that board integrators may
not be intimately familiar with the kernel.

6.1 Advantages of the Tock Threat Model

6.1.1 Auditability. The Tock threat model simplifies the process of
security audits. The two tiers of trust in the kernel reduce the size
of the TCB to around 12k LoC out of the total 45k LoC in the kernel.
These tiers enable safe import of service and driver code without
imposing the overhead of process isolation. Additionally, Rust is
uniquely auditable among popular, well supported languages that do
not require garbage collection. Rust identifies potentially dangerous
code via the unsafe keyword, which enables more targeted audit-
ing. Rust’s combination of type and memory safety with aggressive
linting further helps minimize the potential for security issues from
mistakes in non-malicious code. Further, the Tock threat model al-
lows audits of applications independent of the underlying platform or
co-located applications. Then, memory safety between most kernel
components greatly reduces the need to verify additional kernel com-
ponents will steal secrets, which allows auditors to focus on capsules
that can perform privileged operations. Finally, Tock’s modular ker-
nel components (capsules) allow auditors to focus on auditing only
the specific components of the kernel that are used in a given setting.

6.1.2 Isolation and Usability. Tock’s approach to trust and isolation
also improves usability for all stakeholders. Isolation of capsules
allows kernel developers to extend the kernel at much lower risk
to integrity and confidentiality, speeding development. Isolation of
applications makes adding new applications to a given deployment
straightforward, as it removes concerns that additional applications
will break the existing deployment. The use of language-based iso-
lation within the kernel removes the overhead of reconfiguring
hardware isolation and the risk of misconfiguration breaking mem-
ory safety. The low impact methods used to enable privileged actions
within the kernel make it easy for board integrators to understand
the impact of including certain kernel components without forcing
integrators to choose between performance and security. Type-based
zero-size capabilities move almost all memory/CPU overhead of se-
curity checks to compile-time, valuable on low resource devices

20

Ayers, et al.

(unforgeable capabilities like those used in SeL4 rely on MMU/rings
for protection, and thus impose a runtime cost). Finally, separating
applications from the kernel means that updating or replacing appli-
cations cannot render systems inaccessible and unrecoverable. This
encourages frequent updates and reduces the binary sizes that must
be delivered to replace functionality.

6.1.3 Availability and Fault Tolerance. Application isolation also al-
lows for much simpler failure isolation, improving availability, a core
component of security. Additionally, errors in kernel capsules should
only effect applications that rely on those capsules. For example, if the
onboard ADC fails, leading to an error in the ADC capsule, a separate
application not using the ADC should continue functioning correctly.

6.2 Disadvantages of the Tock Threat Model

6.2.1 Reliance on Rust. While Rust is responsible for many of the
strengths of the Tock threat model, this does come with a couple
downsides. It means that all kernel extensions must be written in
Rust, which precludes the use of many well tested libraries targeted at
C-based systems. Additionally, the inability to use unsafe in capsule
code is inconvenient at times, precluding certain optimizations based
onraw pointer manipulation or requiring trial-and-error approaches
to hit compiler optimization paths.

6.2.2 Downsides of high modularity. While the modularity of Tock
has significant benefits for auditability and usability, it also makes
cross capsule optimizations difficult (such as optimizing the interac-
tion between a clock controller and a bus controller when the clock
controller may not always be used). This degree of modularity also
leads to long board initialization code, much of which is repeated
across platforms. The high degree of isolation between applications
can also be inconvenient when applications are intended to be used
more as individual threads of a single application, as single-core
context switching is expensive with MPU reconfiguration.

7 CONCLUSION

Achieving security requires providing useful security abstractions
to developers. However, different components of embedded systems
need different security abstractions. In particular, useful abstractions
require more than two levels of trust, and require reliable isolation
guarantees. We present the threat model for Tock, and show how
multiple levels of trust enable useful, modular embedded security.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 1931750 “Secure Smart Machining”
This work was also supported in part by the CONIX Research Center,
one of six centers in JUMP, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA, and by the National Science
Foundation under grant CNS-1824277.

REFERENCES

[1] Joshua Adkins, Branden Ghena, Neal Jackson, Pat Pannuto, Samuel Rohrer,
Bradford Campbell, and Prabal Dutta. 2018. The signpost platform for city-scale
sensing. In 2018 17th ACM/IEEE International Conference on Information Processing
in Sensor Networks (IPSN). IEEE, 188-199.

Roger Alexander, Anders Brandt, JP Vasseur, Jonathan Hui, Kris Pister, Pascal
Thubert, Philip Levis, Rene Struik, Richard Kelsey, and Tim Winter. 2012. RPL:
IPv6 Routing Protocol for Low-Power and Lossy Networks. RFC 6550.

5

Tiered Trust for Useful Embedded Systems Security

(3]

[10
[11
[12]
[13]

[14

[15]

[17]

[18

[19]

[20]

[
=

[22]

[23

[24]

Manos Antonakakis, Tim April, Michael Bailey, Matthew Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, and et al. 2017. Understanding the Mirai Botnet. In Proceedings of the 26th
USENIX Conference on Security Symposium (Vancouver, BC, Canada) (SEC’17).
Arm Holdings. Accessed: 2020-02-24. Platform Security Architecture.
www.arm.com/why-arm/architecture/platform-security-architecture.

Arm Limited. Accessed: 2020-02-24. Mbed. https://os.mbed.com/.

Anish Athalye, Adam Belay, M Frans Kaashoek, Robert Morris, and Nickolai
Zeldovich. 2019. Notary: a device for secure transaction approval. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles. 97-113.

Emmanuel Baccelli, Oliver Hahm, Mesut Gunes, Matthias Wahlisch, and Thomas C
Schmidt. 2013. RIOT OS: Towards an OS for the Internet of Things. In 2013 IEEE
conference on computer communications workshops. 79-80.

Adam Dunkels. 2001. Design and Implementation of the IwIP TCP/IP Stack.
Technical Report. Swedish Institute of Computer Science.

Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. 2004. Contiki-a lightweight
and flexible operating system for tiny networked sensors. In 29th annual IEEE
international conference on local computer networks. IEEE, 455-462.

Google. Accessed: 2020-03-02. OpenSK. github.com/google/OpenSK.

Google. Accessed: 2020-03-02. OpenThread. https://openthread.io/.

Google. Accessed: 2020-03-02. Tock-on-Titan. github.com/google/tock-on-titan.
M. M. Hossain, M. Fotouhi, and R. Hasan. 2015. Towards an Analysis of Security
Issues, Challenges, and Open Problems in the Internet of Things. In 2015 IEEE
World Congress on Services. 21-28. https://doi.org/10.1109/SERVICES.2015.12
Galen Hunt, George Letey, and Ed Nightingale. 2017. The seven properties of highly
secure devices. Technical Report MSR-TR-2017-16. Microsoft Research.

Steve Klabnik and Carol Nichols. 2018. The Rust Programming Language.

Paul C Kocher. 1996. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Annual International Cryptology Conference. 104-113.
Philip Levis. 2012. Experiences from a Decade of TinyOS Development. In
Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation (Hollywood, CA, USA) (OSDI'12).

Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin Whitehouse,
Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer, et al. 2005. TinyOS:
An operating system for sensor networks. In Ambient intelligence. 115-148.
Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pannuto,
Prabal Dutta, and Philip Levis. 2017. Multiprogramming a 64kB Computer
Safely and Efficiently. In Proceedings of the 26th Symposium on Operating Systems
Principles (Shanghai, China) (SOSP ’17). 234-251.

Charlie Miller and Chris Valasek. 2013. Adventures in automotive networks and
control units. Def Con 21 (2013), 260-264.

Timothy Trippel, Ofir Weisse, Wenyuan Xu, Peter Honeyman, and Kevin Fu.
2017. WALNUT: Waging doubt on the integrity of MEMS accelerometers with
acoustic injection attacks. In 2017 IEEE European Symposium on Security and
Privacy (EuroS&P). IEEE, 3-18.

Jacob Wurm, Khoa Hoang, Orlando Arias, Ahmad-Reza Sadeghi, and Yier Jin.
2016. Security analysis on consumer and industrial IoT devices. In 2016 21st Asia
and South Pacific Design Automation Conference (ASP-DAC). IEEE, 519-524.
Zephyr Project. Accessed: 2020-02-24. Security Best Practices. https:
//github.com/zephyrproject-rtos/zephyr/wiki/Security-Best-Practices.

Zephyr Project. Accessed: 2020-02-24. Zephyr Security Overview.
https://docs.zephyrproject.org/latest/security/security-overview.html.

21

EUROSEC ’22, April 5-8, 2022, RENNES, France

https://www.arm.com/why-arm/architecture/platform-security-architecture
https://os.mbed.com/
https://github.com/google/OpenSK
https://openthread.io/
https://github.com/google/tock-on-titan
https://doi.org/10.1109/SERVICES.2015.12
https://github.com/zephyrproject-rtos/zephyr/wiki/Security-Best-Practices
https://github.com/zephyrproject-rtos/zephyr/wiki/Security-Best-Practices
https://docs.zephyrproject.org/latest/security/security-overview.html

	Abstract
	1 Introduction
	2 Background
	2.1 Embedded development practices
	2.2 Threat modeling

	3 Related Work
	3.1 Embedded OSes and their threat models

	4 Tock Threat Model
	4.1 Tock OS Overview
	4.2 Trust and Isolation
	4.3 Memory Safety
	4.4 Virtualization
	4.5 Isolation explicitly not provided
	4.6 External Trust

	5 Privileged Operations
	6 Discussion
	6.1 Advantages of the Tock Threat Model
	6.2 Disadvantages of the Tock Threat Model

	7 Conclusion
	References

