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Predictive Multi-Microgrid Generation Maintenance:
Formulation and Impact on Operations & Resilience

Farnaz Fallahi∗, Murat Yildirim∗, Jeremy Lin†, Caisheng Wang‡

Abstract—Industrial sensor data provides significant insights
into the failure risks of microgrid generation assets. In traditional
applications, these sensor-driven risks are used to generate alerts
that initiate maintenance actions without considering their impact
on operational aspects. The focus of this paper is to propose
a framework that i) builds a seamless integration between
sensor data and operational & maintenance drivers, and ii)
demonstrates the value of this integration for improving mul-
tiple aspects of microgrid operations. The proposed framework
offers an integrated stochastic optimization model that jointly
optimizes operations and maintenance in a multi-microgrid
setting. Maintenance decisions identify optimal crew routing,
opportunistic maintenance, and repair schedules as a function
of dynamically evolving sensor-driven predictions on asset life.
Operational decisions identify commitment and generation from
a fleet of distributed energy resources, storage, load management,
as well as power transactions with the main grid and neighboring
microgrids. Operational uncertainty from renewable generation,
demand, and market prices are explicitly modeled through
scenarios in the optimization model. We use the structure of
the model to develop a decomposition-based solution algorithm
to ensure computational scalability. The proposed model provides
significant improvements in reliability and enhances a range
of operational outcomes, including costs, renewables, generation
availability, and resilience.

Index Terms—Condition-Based Maintenance, Microgrid Oper-
ations, Stochastic Programming, L-Shaped Decomposition

NOMENCLATURE

Sets:

Ω Set of scenarios with ω ∈ Ω.

T Set of weeks within the planning horizon with t ∈
T .

H Set of hours within a week with h ∈ H.

M Set of MGs with m ∈M.

G Set of DERs with i ∈ G.

Gr,Gnr Set of renewable/non-renewable DERs.

Go,Gf Set of operational/failed DERs.

J Set of DERs type (renewable/non-renewable) with

j ∈ J .

B Set of batteries with b ∈ B.

N(.) Set of neighbouring MGs with active connection.

Binary Decision Variables:

ν Preventive maintenance decision of operational

DERs.

z Corrective maintenance decision of failed DERs.

xcrew Maintenance crew visit decisions.

x Commitment indicator of non-renewable DERs.

βon, βoff Start up/shut down indicator of non-renewable

DERs.
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e+, e- Battery charging/discharging indicator.

gp, gs Purchasing/selling status of MGs from/to the grid.

up, us Purchasing/selling power status of MGs from/to

other neighbouring MGs.

Continuous Decision Variables:

π+, π– Charged/discharged power in Battery.

ygp, ygs Purchased/sold power from/to the grid by MGs.

yp, ys Purchased/sold power between MGs.

y Power output of DERs.

ψc, ψn Curtailed critical/non-critical load.

soc Battery state of charge.

Parameters:

T Number of weeks within the planning horizon.

H Number of hours within a week.

M Number of MGs.

G Number of DERs.

B Number of batteries.

Gr, Gnr Number of renewable/non-renewable DERs

within MMG.

Go, Gf Number of operational/failed DERs within

MMG.

Gr
m, G

nr
m Number of renewable/non-renewable DERs of

MG m.

Go
m, G

f
m Number of operational/failed DERs of MG m.

Dc, Dn Critical/non-critical load.

Y o, Y f Preventive/corrective maintenance duration.

λc, λn Per unit cost of curtailed critical/non-critical

load.

P soc, P soc Maximum/Minimum state of charge of a bat-

tery.

P ch, P dch Maximum charging/discharging rate of a bat-

tery.

η Batteries charging efficiency.

Ccrew Maintenance crew deployment cost.

C Dynamic maintenance cost of DER.

V No-load cost of non-renewable DERs .

Con, Coff Start up/shut-down cost of conventional DERs.

MU,MD Minimum up/down time of conventional DERs.

RU,RD Ramp-up/down rate of conventional DERs.

P nr, P nr Maximum/minimum production capacity of

conventional DERs.

F gp, F gs Maximum power a MG can purchases

from/sells to the grid.

F p, F s Maximum power a MG can purchases

from/sells to other neighbouring MGs.

Φ Available production capacity of renewable

DERs.

Γgp,Γgs Purchasing/selling electricity price from/to the

grid.
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I. INTRODUCTION

Aging infrastructure, operational uncertainty, and the in-

creasing requirements on reliability and resilience have un-

leashed a flood of interest in the concept of microgrids.

Through enabling a focused control of distributed energy re-

sources (DERs), microgrids effectively incorporate renewable

resources, conventional generators (CGs), energy storage de-

vices (SDs), and flexible local loads to serve the local network,

and contribute to the grid [1]. Management of DERs in a

microgrid, or a multi-microgrid (MMG) setting comes with its

own set of unique challenges. Microgrids are responsible for

the control of a heterogeneous fleet of DERs, the satisfaction

of various local requirements, and continuous interaction with

the grid and other microgrids; while being subjected to a high

level of uncertainty from demand, renewable generation, and

market prices. At the presence of high operational complexity,

microgrid maintenance management has an increasing impact

on microgrid operations. The critical impact of maintenance

decisions motivates the use of sensor-driven condition monitor-

ing approaches that provide additional visibility on generation

outage risks. These generation outage risks are often used to

trigger imminent maintenance actions on high-risk DERs with-

out considering operational outcomes. An alternative approach

based on proactive maintenance would identify early signs of

degradation to conduct integrated operations and maintenance

optimization ahead of time. To date, this integration proved

challenging to implement in a microgrid setting.

Efficient management of microgrid operations is a fun-

damental challenge that revolves around optimizing power

generation, energy trade, and storage management to supply

forecasted local load and enhance resilience & reliability.

Microgrid operation modeling literature is rich, covering re-

newable penetration [2], [3], operational uncertainties [4],

resilience [5], [6], and market interactions [7]. In an MMG

setting, the focus shifts to modeling the interactions between

microgrids either in collaborative [8], [9] or competitive

[10], [11] environments. Maintenance is often modeled by

introducing additional constraints over the operations models.

Typically, these constraints enforce periodic maintenance re-

quirements over DERs [12], [13]. A key focus in the literature

is to provide improvements to operations and maintenance by

primarily focusing on operational aspects. In the presence of

strong coupling between operations and maintenance, potential

improvements over maintenance can play an equally crucial

role in improving operational outcomes.

An important direction for improving maintenance policies

is to leverage sensor data. Sensor-driven policies offer signifi-

cant advantages over conventional models by providing better

predictions on asset failure risks. These risk predictions rely

on condition monitoring techniques that monitor indicators of

asset degradation from raw sensor inputs, such as vibration,

temperature, and performance [14], [15]. Condition monitoring

systems are actively used in wind turbines (WT), photovoltaics

(PV), and conventional generators [16]–[19]. For a compre-

hensive review of condition monitoring methods in power

generation, readers are referred to [20]. In traditional applica-

tions, condition monitoring systems alert the operators when

the failure risks of DERs reach a certain severity. Depending

on the subjective judgment of the maintenance personnel,

these alerts are often used to initiate immediate maintenance

actions. Such diagnostic-based policies rely solely on the

current state of DERs and do not provide advanced notice

for planning maintenance actions, which may pose significant

risks to operations.
Prognostic-based policies provide the capability to derive

dynamic predictions on remaining life distribution (RLD)

throughout the asset lifetime, generating advanced notice for

failure risks to enable a more proactive set of maintenance

policies. Majority of prognostic-based approaches focus on

single asset systems [17]. Markov chain models are used

to characterize degradation and derive optimal maintenance

decisions [16]. This literature is extended by more detailed

approaches that jointly consider maintenance and environmen-

tal factors [21]. While benefiting from prognostic predictions,

these approaches do not necessarily consider the interactions

across multiple generation assets and power system opera-

tions. Recently, [18], [19], [22] proposed joint operations and

maintenance scheduling models for transmission networks.

However, these models do not consider any operational and

market uncertainty that is vital to microgrid operations. It is

an open problem to investigate the impact of prognostic-based

maintenance policies on revenue, reliability, and resilience in

complex and highly stochastic operational environments.
In this paper, we propose a sensor-driven integrated frame-

work that incorporates i) real-time degradation models for

a heterogeneous fleet of DERs, with ii) stochastic opera-

tions and maintenance models for large scale MMG systems.

Sensor-driven degradation models continuously update the

RLD predictions to identify asset-specific optimal mainte-

nance decisions. The proposed sensor-driven integrated op-

erations and maintenance scheduling model (SD-IOM) uses

these predictions to derive fleet-optimal maintenance actions

that minimize the MMG system operations and maintenance

cost. Operational decisions in the SD-IOM determine unit

commitment, generation dispatch, power transactions across

microgrids and with the grid, storage scheduling as well as

the load management decisions. The joint modeling of detailed

operations with maintenance scheduling enables explicit char-

acterization for the impact of sensor-driven maintenance on a

range of operational outcomes, such as renewable integration,

storage management, MMG reliability and resilience, and

MMG contribution to the generation availability of the grid.

Unique aspects of our methodology can be listed as follows:

• We propose a sensor-driven framework that fuses degra-

dation analytics with a stochastic optimization model for

operations and maintenance in MMG systems. Unique

to our framework, is the integration of stochastic degra-

dation models for asset remaining life prediction, with

MMG operations and maintenance decisions, that include

decisions within microgrid such as storage, generation,

and load management; and decisions across microgrids

such as power transactions, and maintenance crew visits.

• We use sensor data to derive generation failure risks and

the associated dynamic maintenance cost functions; and

build uncertainty scenarios for a wide range of mainte-
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nance and operational outcomes: i.e. renewable genera-

tion, demand, market prices, and connectivity stages to in-

vestigate the relative importance of these factors in terms

of revenue, generation availability, grid contribution, and

resilience.

• We build a two-stage reformulation of the optimization

model that decomposes the problem across maintenance

periods and uncertainty scenarios. The proposed refor-

mulation drastically reduces scalability problems due to

the number of scenarios. We leverage on this structural

property to devise a solution methodology that iteratively

approaches the optimal solution through L-shaped and

integer cuts.

We develop a comprehensive microgrid operations and

maintenance platform that uses real-world vibration-based

degradation signals, PJM market prices, and operational data

from NREL and NOAA. We conduct extensive sets of exper-

iments to highlight the performance of our model in different

settings in terms of reliability, maintenance performance, and

operations. As a case in point, we show that the proposed

maintenance policy can be as useful as additional storage

capacity in terms of enhancing the resilience of microgrids.

The rest of the paper proceeds as follows. In section II,

we introduce our methodology that integrates a sensor-driven

degradation modeling approach for DERs, with a stochastic

mixed-integer optimization model for microgrid operations

and maintenance. Section III develops a reformulation and

a solution methodology to enhance computational scalability.

An extensive set of experiments are conducted in Section IV

to showcase the performance of the proposed model. Finally,

section V provides conclusions and closing remarks.

II. METHODOLOGY

In this section, we introduce a unified framework for sensor-

driven generation maintenance scheduling in multi-microgrid

systems. The framework is composed of two subsections:

sensor-driven degradation models that derive dynamic predic-

tions on RLD and maintenance costs associated with each

DER, and an adaptive optimization for opportunistic main-

tenance and operations scheduling.

A. Sensor-Driven Degradation Analytics

Generation asset performance and health deteriorate over

time due to aging and wear - a process called degradation.

Sensor readings can be utilized to discover implicit manifes-

tations of this deterioration over many different energy assets,

including WTs, PV panels, and CGs. Through measuring

parameters such as vibration, temperature, light, etc, one can

identify degradation signal of a DER, a quantity that describes

the real condition of the unit and is the basis to predict the

future trajectory of degradation [23]. Over the DER’s life, the

degradation severity increases until it exceeds a predetermined

failure threshold, which corresponds to the DER’s failure.

Although various DERs exhibit different degradation rates

and failure times, those of the same type typically have a

common degradation signal form. We use a continuous-time

continuous-state parametric stochastic function to model the

evolution of DERs degradation signals over time. Degradation

signal of DER i of type j at week t, Dj
m,i(t), is modeled as

follows:

Dj
m,i(t) = hji (κ

j , φjm,i, t) + ǫ(t) (1)

where hji (.) and ǫ(.) denote the general degradation function

and the error term, respectively. The parameters κj and φjm,i

are the deterministic and stochastic degradation parameters,

respectively. The deterministic parameter represents features

common to all DERs of the same type. In contrast, the stochas-

tic parameter characterizes individual variations of DERs’

degradation processes, e.g., degradation rates. The error term

is included to capture the inherent degradation uncertainties

due to signal manifestations and measurement errors. While

degradation in DERs may be subjected to time-varying loading

as a function of environmental conditions, in this paper we

assume that the loading levels remain constant.

It is assumed that the deterministic parameter κj is known

and constant while the stochastic parameter φjm,i follows some

distributional form across the population of DERs. An initial

estimation of the stochastic degradation parameter distribution,

denoted by π(φjm,i), can be obtained through the engineering

knowledge and historical data related to DERs. The real-time

sensor information collected from the DER enables us to

update the initial distribution of the stochastic parameter to its

posterior distribution counterpart π̃(φjm,i) using the Bayesian

updating procedure. We define the remaining life of DER i of

type j in mth microgrid at observation time to, Rto,j
m,i , as the

first time that the future trajectory of its degradation signal

crosses the failure threshold θjm,i. Given the updates on the

DER’s degradation parameter, the remaining life of the DER

at the observation time to can be evaluated as:

P
(
Rto,j

m,i = t
)
= P

(
t = min

[
s ≥ 0|Dj

m,i

(
s|π̃(φjm,i)

)
≥ θjm,i

])

(2)

For more details on this class of degradation models see [23].

Given the updates on the RLD of the DERs, we calculate

the expected cost of conducting maintenance t time units after

the observation time to as follows [18], [19], [22]:

Cto,j
m,i,t =

Cp,j
m,iP (R

to,j
m,i > t) + Cf,j

m,iP (R
to,j
m,i ≤ t)

∫ t

0
P (Rto,j

m,i > z)dz + to
(3)

Cp,j
m,i and Cf,j

m,i are preventive maintenance (PM) and cor-

rective maintenance (CM) costs, respectively. The function

models the trade-off between the risk of unexpected failures

and the cost of PM actions by incorporating the corresponding

probabilities. We note that dynamic maintenance costs adapt

to DERs’ health condition, since Rto,j
m,i is updated through the

sensor information.

B. Adaptive Predictive Operations and Maintenance of MMG

In this section we formulate a predictive operation and main-

tenance optimization model that fully adapts to sensor-driven

predictions on RLD and dynamic maintenance costs. The pro-

posed Sensor-Driven Integrated Operations and Maintenance

Scheduling Model is a stochastic mixed-integer program that

incorporates uncertainties from renewable generation, loads,

and market prices.

We study a general setting for an MMG system of multiple

interconnected microgrids that can exchange energy with each
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other, and with the grid. We assume each microgrid has several

WTs, PVs, CGs, batteries, as well as critical and non-critical

local loads. The goal is to maintain and operate microgrids in a

collaborative manner in order to minimize the total operational

and maintenance costs. We model a complex operational

problem that explicitly models the tradeoffs between satisfying

flexible local loads, charging battery systems, and trading elec-

tricity with other microgrids and the grid. For trade decisions,

we also consider power loss during transfer of electricity. We

assume that power loss is manifested as a fixed percentage of

the electricity flow. Under emergencies, the MMG may also

operate in the locally-connected mode, in which only MGs are

connected to each other, or islanded mode that isolates each

microgrid. For the mth microgrid, N(m) represents the set of

neighbouring microgrids with active connection.

Each MG has two types of DERs: renewable and non-

renewable DERs. Set of renewable and conventional DERs

within the mth microgrid are represented by Gr
m, and Gnr

m ,

respectively. DERs are further partitioned into two subsets:

operational and failed. Operational and failed renewable DERs

are denoted as Gr,o
m , and Gr,f

m . Conventional DERs follow the

same notation. Operational DERs can be scheduled for PM

while failed ones can only go under CM actions. For this

purpose, we introduce binary variable νjm,i,t, which determines

the start time of PM for the operational DER i of type j
within mth microgrid. The dynamic maintenance cost, Cto,j

m,i,t

that was introduced in section II-A corresponds to the cost

associated with this decision. We note that the dynamic main-

tenance cost is computed from the remaining life prediction

of the operating DER and is updated based on the most recent

sensor observations. For failed DERs, binary variable zjm,i,t

represents the start time of CM action. A failed DER cannot

dispatch until fixed. Further, the maintenance crew visits are

modeled as binary decision variables xcrewm,t , which equals to

1 if maintenance crew visits the microgrid m at time t.

The objective is to leverage on the sensor observations to

minimize the operations and maintenance costs over MMG:

min

M∑

m=1

(
J∑

j=1

Gj,o
m∑

i=1

T∑

t=1

Cto,j
m,i,t · ν

j
m,i,t +

T∑

t=1

Ccrew
m · xcrewm,t

︸ ︷︷ ︸

Maintenance cost of operational DERs

+

Gnr,o
m∑

i=1

|Ω|
∑

ω=1

T∑

t=1

H∑

h=1

pω
(
Con

m,i · β
on,ω
m,i,t,h + Coff

m,i · β
off,ω
m,i,t,h

+Vm,i · x
ω
m,i,t,h +Bm,i · y

ω
m,i,t,h

)

︸ ︷︷ ︸

Expected production cost of non-renewable DERs

+

|Ω|
∑

ω=1

T∑

t=1

H∑

h=1

pω
(
Γgb,ω
t,h · ygb,ωm,t,h − Γgs,ω

t,h · ygs,ωm,t,h

)

︸ ︷︷ ︸

Expected cost of power transaction with the grid

+

|Ω|
∑

ω=1

T∑

t=1

H∑

h=1

pω
(
λcm · ψ

c,ω
m,t,h + λnm · ψ

n,ω
m,t,h

)

︸ ︷︷ ︸

Expected load curtailment cost

)

(4)

The objective function evaluates the expected maintenance

and operational costs of DERs. The first term corresponds

to the maintenance cost of DERs, including the dynamic

maintenance cost of DERs and the crew deployment costs.

The second, third and fourth terms represent the expected

operational cost of MMG, which consist of: i) production

costs of non-renewable DERs, ii) power transactions cost

of microgrids with the grid, and iii) load curtailment costs.

The expected hourly production costs of non-renewable DERs

include start-up, shut down, and generation costs. Microgrids

can sell their excess power to the grid or purchase power from

the grid. The associated cost of power transaction with the

grid is included in the third term based on the corresponding

market price in scenario ω. The MMG loads are prioritized

as critical and non-critical. Curtailing critical loads would be

penalized harsher than non-critical ones. Finally, the expected

hourly load curtailment costs are included in the last part. We

next introduce the model constraints.

1) Maintenance Coordination: To guarantee a certain level

of generation reliability, constraint (5) ensures that each DER i
of type j is maintained before a dynamic time limit ϕj

m,i. This

time limit is defined as the first time that the DER’s sensor-

updated reliability falls below a predefined control threshold

Λj
m,i., i.e. ϕj

m,i := min{t ∈ T : P (Rto,j
m,i > t) < Λj

m,i}.

ϕj
m,i∑

t=1

νjm,i,t = 1, ∀m ∈M, ∀j ∈ J , ∀i ∈ Go,j
m (5)

Constraints (6) and (7) ensure the coupling of DERs mainte-

nance decisions and maintenance crew visits. We assume that

PM and CM of DER i take Y o
i and Y f

i weeks, respectively. For

DER i which goes under PM at time t; νjm,i,t = 1, constraint

(6) guarantees the maintenance crew presence during the

maintenance time k ∈ {t, .., t+ Y o
i }. The same logic applies

for constraint (7). In addition, constraint (8) enforces that a

maintenance crew cannot visit multiple microgrid locations

simultaneously.
Y o

i −1
∑

k=0

νjm,i,t−k ≤ xcrewm,t , ∀m ∈M, ∀j ∈ J , ∀i ∈ Gj,o
m , ∀t ∈ T

(6)

Y f

i −1
∑

k=0

zjm,i,t−k ≤ xcrewm,t , ∀m ∈M, ∀j ∈ J , ∀i ∈ Gj,f
m , ∀t ∈ T

(7)
∑

m∈M

xcrewm,t ≤ 1, ∀t ∈ T (8)

2) Maintenance & Operations Coupling: The mainte-

nance decision variables zjm,i,t and νjm,i,t are coupled with

the dispatch decisions yj,ωm,i,t,h. Non-renewable DERs typically

have operational limitations such as maximum and minimum

generation levels, while the renewable DERs mainly work at

their maximum power point. This small operational difference

causes slight variation in modeling.

Renewable DERs: Constraint (9) ensures that i) operational

renewable DERs produce electricity within their available

capacity, namely Φω
m,i,t,h, which depends on the solar or wind

power availability at scenario ω, week t, and hour h; and ii)

units under maintenance can not produce electricity in any of

the hours within the maintenance periods.
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yωm,i,t,h ≤ Φω
m,i,t,h(1−

Y o
i −1
∑

k=0

νrm,i,t−k)

∀m ∈M, ∀i ∈ Gr,o
m , ∀t ∈ T , ∀h ∈ H, ∀ω ∈ Ω

(9)

Constraint (10) guarantees two factors. Firstly, a renewable

DER that started at a failed state cannot produce electricity

until it undergoes CM for Y f
i weeks, i.e. zrm,i,k = 1 for any

week k ∈ {1, .., t− Y f
i }. Secondly, a correctively maintained

DER can produce electricity up to its available capacity.

yωm,i,t,h ≤ Φω
m,i,t,h

t−Y f

i∑

k=1

zrm,i,k

∀m ∈M, ∀i ∈ Gr,f
m , ∀t ∈ T , ∀h ∈ H, ∀ω ∈ Ω

(10)

Non-renewable DERs: Constraint (11) couples the PM de-

cision variables νjm,i,t with the corresponding commitment

variable xωm,i,t,h for non-renewable DERs. This constraint

ensures that if a unit i is under maintenance during week t, it

cannot be committed within that period.

xωm,i,t,h ≤ 1−

Y o
i −1
∑

k=0

νnrm,i,t−k

∀m ∈M, ∀i ∈ Gnr,o
m , ∀t ∈ T , ∀h ∈ H, ∀ω ∈ Ω

(11)

Constraint (12) enforces that a failed unit should be scheduled

for a CM before it can generate electricity.

xωm,i,t,h ≤

t−Y f
i∑

k=1

znrm,i,k

∀m ∈M, ∀i ∈ Gnr,f
m , ∀t ∈ T , ∀h ∈ H, ∀ω ∈ Ω

(12)

3) Load Management: The critical and non-critical loads

of mth microgrid are represented by Dc,ω
m,t,h and Dn,ω

m,t,h,

respectively. Constraints (13) and (14) ensure that for each

type of load, curtailed load does not not exceed the total load.

ψc,ω
m,t,h ≤ Dc,ω

m,t,h, ∀m ∈M, ∀t ∈ T , ∀h ∈ H, ∀ω ∈ Ω (13)

ψn,ω
m,t,h ≤ Dn,ω

m,t,h, ∀m ∈M, ∀t ∈ T , ∀h ∈ H, ∀ω ∈ Ω (14)

4) Power Transactions: Each microgrid has a bidirectional

power flow with the grid and neighboring microgrids. Binary

variables gp,ωm,t,h and gs,ωm,t,h describe the power exchange status

of mth microgrid with the grid: i.e., buying and selling.

Constraint (15) determines the direction of flow between

the mth microgrid and the grid. We represent the microgrid

purchased power from the main grid and sold power to the

main grid with ygp,ωm,t,h, and ygs,ωm,t,h, respectively. Purchasing and

selling limits, F gp
m and F gs

m , are enforced through constraint

(16). MMG in locally connected mode can be modeled by

setting gp,ωm,t,h and gs,ωm,t,h to zero.

gp,ωm,t,h + gs,ωm,t,h ≤ 1 (15)

ygp,ωm,t,h ≤ gp,ωm,t,h · F
gp
m , ygs,ωm,t,h ≤ gs,ωm,t,h · F

gs
m (16)

∀m ∈M, ∀t ∈ T , ∀h ∈ H, ∀ω ∈ Ω

Likewise, up,ωm,l,t,h and us,ωm,l,t,h indicate the power transaction

status of mth microgrid with the neighbouring microgrids

l ∈ N(m). Purchased power from the neighbouring microgrid

l, and the power sold to microgrid l are represented by yp,ωm,l,t,h

and ys,ωm,l,t,h, respectively. Constraint (17) guarantees that mth

microgrid cannot simultaneously buy and sell power from its

neighbouring microgrid l. Constraints (18) enforce flow limits

on power transactions between microgrids. These constraints

guarantee that the purchased and sold power between two

neighboring microgrids do not exceed their corresponding

limitations F p
m,l and F s

m,l.

up,ωm,l,t,h + us,ωm,l,t,h ≤ 1, (17)

yp,ωm,l,t,h ≤ up,ωm,l,t,h · F
p
m,l, ys,ωm,l,t,h ≤ us,ωm,l,t,h · F

s
m,l, (18)

∀m ∈M, ∀l ∈ N(m), ∀t ∈ T , ∀h ∈ H, ∀ω ∈ Ω

We can model the islanded microgrids mode by limiting elec-

tricity flow across microgrids, gp,ωm,t,h = gs,ωm,t,h = up,ωm,l,t,h =
us,ωm,l,t,h = 0, ∀l ∈ N(m). We also enforce constraints ensuring

flow of electricity across microgrids and with the grid in

presence of power dissipation.

5) Storage Operation: In constraint (19), the state of

charge (SOC) of bth battery within mth microgrid, at week

t and hour h, is coupled with its previous SOC, the charged

and discharged power during that time, and the battery charg-

ing/discharging efficiency, ηm,b. The battery’s SOC cannot

exceed the maximum capacity and cannot reduce below

the manufacturer recommended value. The maximum and

minimum SOC is limited by (20). We denote the charging

and discharging status of battery by e+,ω
m,b,t,h and e-,ω

m,b,t,h,

respectively. Simultaneous charging and discharging is not

possible and is guaranteed through constraint (20). In addition,

batteries charging-discharging amount is limited to their rated

power capacity and is modeled through constraint (21).

socωm,b,t,h = socωm,b,t,h−1 + ηm,b · π
+,ω
m,b,t,h −

π–,ω
m,b,t,h

ηm,b
(19)

P soc
m,b ≤ socωm,b,t,h ≤ P soc

m,b, e+,ω
m,b,t,h + e-,ω

m,b,t,h ≤ 1 (20)

π+,ω
m,b,t,h ≤ e+,ω

m,b,t,h · P
ch
m,b, π–,ω

m,b,t,h ≤ e-,ω
m,b,t,h · P

dch
m,b (21)

∀m ∈M, ∀b ∈ Bm, ∀t ∈ T , ∀h ∈ H, ∀ω ∈ Ω

We also enforce that the battery SOC remains the same at

the first and last hour of each week t.

6) Power Balance: Constraint (22) models the power

balance of mth microgrid. The left-hand side denotes the

microgrid’s purchased power from the grid, purchased power

from neighboring microgrids, DERs generation, and batteries

discharged power, respectively. The right-hand side includes

sold power to the grid and other microgrids, the net non-critical

and critical loads, and charged power to batteries, respectively.

ygp,ωm,t,h +
∑

l∈N(m)

yp,ωm,l,t,h +
∑

j∈J

∑

i∈Gj
m

yωm,i,t,h +
∑

b∈Bm

π–,ω
m,b,t,h =

ygs,ωm,t,h +
∑

l∈N(m)

ys,ωm,l,t,h +Dn,ω
m,t,h − ψ

n,ω
m,t,h +Dc,ω

m,t,h − ψ
c,ω
m,t,h

+
∑

b∈Bm

π+,ω
m,b,t,h, ∀m ∈M, ∀t ∈ T , ∀h ∈ H, ∀ω ∈ Ω (22)

7) Non-Renewable DER Operation: For conventional gen-

erators, binary variable xωm,i,t,h represents the hourly commit-

ment decisions while βon,ω
m,i,t,h and βoff,ω

m,i,t,h indicate start-up

and shut-down decisions, respectively. Constraints (23) and
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(24) represent the logic relations between on and off status of

generators and turn on and turn off actions.

xωm,i,t,h−1 − x
ω
m,i,t,h + βon,ω

m,i,t,h ≥ 0 (23)

xωm,i,t,h − x
ω
m,i,t,h−1 + βoff,ω

m,i,t,h ≥ 0 (24)

∀m ∈M, ∀i ∈ Gnr
m , ∀t ∈ T , ∀h ∈ H, ∀ω ∈ Ω

Constraints (25) and (26) represent the minimum up and

minimum downtime of conventional DERs. If conventional

DER i is turned on at hour h, it must remain on at least

for the next MUm,i hours. The same logic is valid for the

minimum downtime constraint.

xωm,i,t,h−1 − x
ω
m,i,t,h ≤ xω

m,i,t,h′ ,

∀h
′

∈ [h+ 1,min{h+MUm,i − 1, H}], h ∈ [2, H], (25)

xωm,i,t,h − x
ω
m,i,t,h−1 ≤ 1− xω

m,i,t,h′ ,

∀h
′

∈ [h+ 1,min{h+MDm,i − 1, H}], h ∈ [2, H], (26)

∀m ∈M, ∀i ∈ Gnr
m , ∀t ∈ T , ∀ω ∈ Ω

The continuous variable yωm,i,t,h represents the generation

output of non-renewable DERs at each hour h within week

t under scenario ω. Generation output of committed non-

renewable DERs is limited to their maximum and minimum

production capacity through constraint (27). Constraint (28) is

the ramping constraint.

P nr
m,i · x

ω
m,i,t,h ≤ yωm,i,t,h ≤ P nr

m,i · x
ω
m,i,t,h, (27)

−RDm,i ≤ yωm,i,t,h − y
ω
m,i,t,h−1 ≤ RUm,i, (28)

∀m ∈M, ∀i ∈ Gnr
m , ∀t ∈ T , ∀h ∈ H, ∀ω ∈ Ω

III. TWO-STAGE STOCHASTIC REFORMULATION

Joint operations and maintenance problems belong to a class

of computationally demanding problems due to their size and

model complexity. Integration of sensor information adds an

additional layer of difficulty to this challenge. This section

introduces a two-stage reformulation of SD-IOM to motivate

an iterative solution algorithm. To introduce our algorithm, we

first define the compact matrix formulation of the SD-IOM

model - deterministic equivalent model - as follows:

min a⊤z +
∑

ω∈Ω

pω
(
q⊤xω + b⊤ωyω

)
(29a)

s.t. Azp
∑

pω
(
Lxω +Gyω

)
≤ g (29b)

Hωz + ppω
(
pω

(
pExω +Dyωp ≤ e (29c)

Lxω +Gyωp ≤ ℓω (29d)

xω ∈ {0, 1}

(
3Gnr+2B+2M+

M∑

m=1

2N(m)
)
·T ·H·|Ω|

z ∈ {0, 1}M ·T+G·T ,yω ≥ 0, ∀ω ∈ Ω

where z represents the maintenance-related decision vari-

ables including the PM/CM maintenance and crew visit de-

cisions. xω and yω are binary and continuous operational

decision variables associated with the optimal power dispatch

of the MMG. In this form, constraint (29b) corresponds

to maintenance actions, such as maintenance crew capacity

constraints and PM/CM coordination. Constraint (29c) couples

maintenance decisions with DERs operational decisions so

that under maintenance or failed DERs cannot generate power.

Other operational constraints such as DERs production speci-

fications, power transaction of microgrids, etc are represented

by equation (29d).

The SD-IOM model (29) is naturally formulated as a two-

stage stochastic program with complete recourse, in which

maintenance decisions are determined in the first stage, and

operational decisions given the maintenance schedules reside

in the second-stage, as follows:

min
z

a⊤z +
∑

ω∈Ω

pωQω(z)p
∑

pω (30a)

s.t. Az ≤ g (30b)

z ∈ {0, 1}M ·T+G·T

Qω(z) denotes the second-stage operational scheduling prob-

lem given maintenance decision z under the realized scenario

ω. Without loss of generality, minimum up/down, and ramping

constraints of CGs are considered within the hours of the

same week. Consequently, once the maintenance decisions are

determined, the operational decisions for any scenario ω and

week t become independent. So, the second-stage operational

problem Qω(z) is equal to
∑

tQt,ω(zt), where ∀ω ∈ Ω and

∀t ∈ T , Qt,ω(zt) is as follows:

min q⊤
t xt,ω + b⊤t,ωyt,ω (31a)

s.t. Etxt,ω +Dtyt,ω ≤ et −Ht,ωzt (31b)

Ltxt,ω +Gtyt,ω ≤ ℓt,ω (31c)

xt,ω ∈ {0, 1}

(
3Gnr+2B+2M+

M∑

m=1

2N(m)
)
·H
,yt,ω ≥ 0

This reformulation approach enables us to accelerate the

computational performance in solving large scale problems.

Exploiting the sub-problems’ operational independency per-

week per-scenario allows us to solve smaller sub-problems

in comparison with the per-week decomposition. In general,

adding disaggregate cuts through multi-cut method can de-

crease the number of major iterations [24].

To leverage on these reformulations, we iteratively add L-

Shaped [25] and integer cuts. We add L-shaped optimality

cuts either: i) per week, or ii) per scenario and week. To

apply the method, we first need to relax the operational sub-

problems by relaxing the binary operational variables, i.e.

xt,ω ∈ [0, 1], ∀t ∈ T , ∀ω ∈ Ω. We represent the objective of

the relaxed operational sub-problems by R(.). The solution of

the relaxed SD-IOM provides a lower bound for the original

model (29). Hence, after the L-Shaped method convergence,

we add cost recovery cuts (integer cuts) to retrieve the exact

operational costs. Algorithms based on a combination of

Benders’ and integer cuts have been proposed for various

problem settings [22], [26], [27]. In the followings, we discuss

the algorithms procedure.

We provide a nested algorithm to solve the SD-IOM prob-

lem (outlined in Algorithms 1 and 2). At the outer level, we

solve the relaxed SD-IOM problem leveraging the per-week

or per-week per-scenario decomposition methods. In the inner

level, we solve the cost recovery algorithm. We define Convℓ
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and Convi as the outer and inner level convergence flags and

set them to false. The UBℓ and LBℓ represent the obtained up-

per and lower bounds. We set the first-stage objective function

to a⊤z+η+ θ. The free variable η approximates the relaxed

second-stage sub-problems Rt(zt), ∀t ∈ T through optimality

cut (33) or sub-problems Rt,ω(zt), ∀t ∈ T , ∀ω ∈ Ω through

(35) according to Lemma 1. The free variable θ recovers the

true cost of operations. The per-week algorithm sequentially

adds optimality cuts until the convergence criterion is satisfied

for the relaxed version of the subproblem (i.e. lower bound).

Upon convergence, the cost recovery algorithm (CRA) is

executed to incorporate the true cost of operational problems.

For each week t, we specify DERs’ availability based on the

obtained optimal maintenance schedule, i.e. zr. This schedule

enabes the evaluation of the exact operational cost Qt(z
r
t )

for each week t in the per week decomposition. We then

calculate the difference between the operational costs of the

exact, Qh, and relaxed, Rh, sub-problems. The exact and

relaxed values are checked to determine if they are close

enough and meet the convergence criterion. If the convergence

criterion is violated, cost recovery cut is added to the master

problem to recover the violated costs, and the algorithm is

rerun until the relaxed operational costs and exact operational

costs are within a specified convergence limit. We discuss the

L-Shaped per-week and cost recovery cut algorithms in detail

in Algorithms 1 and 2. The flowchart in figure 1 illustrates

an overall summary of these steps. The multi-cuts per-week

per-scenario algorithm follows a similar procedure with minor

modifications.

Lemma 1. Let π
1,r
t,ω and π

2,r
t,ω denote the dual multipliers

associated with the optimal solution of the sub-problem for

week t and scenario ω at iteration r. Then:

Constraints (33) represents the optimality cuts in the per

week decomposition method.

ηt ≥ αt − βtzt , ∀t ∈ T (33)

where αt and βt are defined as :

αt =
∑

ω∈Ω

(
(π1,r

t,ω)
⊤et + (π2,r

t,ω)
⊤ℓt,ω

)
, βt =

∑

ω∈Ω

(π1,r
t,ω)

⊤Ht,ω

(34)

Constraint (35) represents the optimality cuts in the per

week per scenario decomposition method.

ηω,t ≥ αt,ω − βt,ωzt , ∀ω ∈ Ω, ∀t ∈ T (35)

where αt,ω and βt,ω are defined as :

αt,ω = pω(π
1,r
t,ω)

⊤et + pω(π
2,r
t,ω)

⊤ℓt,ω , βt,ω = pω(π
1,r
t,ω)

⊤Ht,ω

(36)

Proof: See Appendix A.

IV. EXPERIMENTS

In this section, we present a comprehensive set of exper-

iments to highlight the operational and maintenance perfor-

mance of the proposed framework. In all of the experiments,

our test system is composed of two inter-connected microgrids

with bidirectional connections to the main grid. Microgrid

Algorithm 1 Per-week Algorithm

1: Initialize: Convi = false, h = 0.

UBℓ ←∞, LBℓ ← −∞,Convℓ = false, r = k = 0.

Define free variables ηt, ∀t ∈ T and θ.

Set η1t ← −∞, α1
t ← 0, β1

t ← 0, ∀t ∈ T .

Set ∆1 ← 0
2: while Convi = false do

3: h← h+ 1, Rh ← 0, and Sh ← ∅
4: while Convℓ = false do

5: r ← r + 1
6: Solve first-stage problem

min
z

a⊤z +
∑

t∈T

ηt + θ

s.t. Az ≤ g

ηt ≥ αk
t − βk

t zt , ∀t ∈ T

θ ≥ ∆hΦ(z, Sh)−∆h(|Sh| − 1)

z ∈ {0, 1}M ·T+G·T ,η ∈ R, θ ∈ R

7: LBℓ ← max{LBℓ,a⊤zr +
∑

t∈T η
r
t + θ}

8: for all t ∈ T do

9: Solve the relaxed sub-problem Rt(z
r
t ) to obtain

dual multipliers π
i,r
t,ω , i = 1, 2 and objective value

Rt(z
r
t ).

10: Rh ← Rh +Rt(z
r
t )

11: end for

12: UBℓ ← min{UBℓ,a⊤zr +
∑

t∈T Rt(z
r
t )}

13: if UBℓ − LBℓ > ǫℓ|LBℓ| then

14: Generate optimality cuts:

15: for all t ∈ T do

16: Compute αt and βt based on constraint (34)

17: if ηrt < αt − βtz
r
t then

18: k ← k + 1
19: Set αk

t ← αt , βk
t ← βt

20: end if

21: end for

22: else

23: Convℓ = true

24: end if

25: end while

/* cost recovery algorithm */

26: Run CRA(Convi,Convℓ,Rh, Sh, zr, k)
27: end while

28: z∗ ← zr

Output: Optimal Maintenance Schedule {z∗}.

models are based on a modified IEEE 14-bus test system,

as in [28]. We use real-world degradation signals to emulate

the degradation processes of DERs. We subject machinery

to accelerated life tests from new state to failure, and their

degradation signals are collected continuously. The details of

this physical setup can be found in [23]. We consider weekly

maintenance decisions. The DERs maintenance downtime

ratio is set to 1:2, meaning that conducting PM takes half of
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Algorithm 2 Cost Recovery Algorithm (CRA)

Require: (Convi,Convℓ,Rh, Sh, zr, k)
1: Initialize: Qh ← 0, ∆h ← 0.

Define Sh = {i|zr
i = 1}

2: for t ∈ T do

3: Solve Qt(z
r)

4: Qh ← Qh +Qt(z
r)

5: δht ← Qt(z
r
t )−Rt(z

r
t )

6: end for

7: if Rh −Qh > |Qh|ǫc then

8: Convi = false , Convℓ = false

9: k ← k + 1
10: Sh ← Sh ∪ {i|zr

i = 1} , ∆h ←
∑

t∈T δ
h
t

11: Φ(z, Sh) :=
∑

i∈Sh

zi −
∑

i/∈Sh

zi

12: else

13: Convi = true

14: end if

Ensure: (Convi,Convℓ,Φ(z, Sh),∆h, k)

MMG Maintenance Scheduling Problem:

Obtain optimal solution 

Sub-problems Operational Cost Recovery:

Find for every sub-problem 

Cost convergence satisfied?

MMG Relaxed Operational Sub-problem:

Solve for every sub-problem 

L-shaped convergence satisfied?

O
p

ti
m

iz
a

ti
o

n
 P

h
a

se

Master Problem

Sub-problems

� No Form effective optimality cuts
� Yes

� No Form the cost recovery cut

� Yes

Optimal MMG�s Maintenance and Operations 

Schedule for the planning period

Fig. 1: Flowchart of the proposed algorithms for SD-IOM.

the time to handle a failure. Details on DERs specification and

scenario generation are provided in the supporting document.

We present three comparative case studies to evaluate the

effectiveness and performance of our method.

• Case study 1: In this case study, we compare the SD-

IOM model’s performance with a time-based (periodic)

maintenance model. Microgrids within the MMG are

fully connected and each has 2 MW storage capacity.

• Case study 2: We analyze the impact of different storage

capacities on the fully connected MMG’s operations and

maintenance schedules. More specifically, we consider a

case where microgrids can exchange power with the grid

as well as other neighboring microgrids and increase the

storage capacity from 0 MW (no-storage) to 4 MW.

• Case study 3: This case study evaluates the effectiveness

of SD-IOM in improving MMG resilience performance

in sudden uncertain disruptions. We consider two sce-

narios where the disruption leads to: 1) disconnection

of microgrids from the grid (locally-connected mode), 2)

disconnection of microgrids form each other and the grid

(islanded-mode).

A. Experimental Framework and Convergence Analysis

We develop an extensive experimental framework to eval-

uate the performance of SD-IOM. The framework is com-

posed of two main phases: the optimization phase and the

evaluation phase. In the optimization phase, we solve SD-

IOM to determine weekly maintenance and hourly operational

decisions for a one-year planning horizon. We note that SD-

IOM is capable of identifying the DERs’ critical condition

through dynamic maintenance costs. In the evaluation phase,

we assess the performance of SD-IOM against the actual DERs

degradation processes. We fix the optimized maintenance

schedules for the first eight weeks (freezing period). We then

simulate the sequence of events that happen following the

given maintenance schedules.

DERs may experience three outcomes during the planning

horizon: (i) Unexpected failure: The evaluation phase identifies

failed DERs by checking whether their corresponding degra-

dation signals reach the failure threshold before the scheduled

time of maintenance. These DERs experience outage due to

unexpected failure. (ii) Planned maintenance: For DERs that

have not failed during the planning horizon, we determine if

maintenance has been scheduled within the planning horizon.

If scheduled for maintenance, DERs experience an outage

due to planned maintenance. Upon completion of the outage,

DERs in categories (i) and (ii) get new degradation signals

to characterize the degradation of the replaced component.

(iii) Uninterrupted degradation: Remaining DERs continue

degrading without any outage. For these generators, the new

observations of the sensor data enable us to update the

posterior distribution of the degradation parameters, which, in

turn, enables the revision of the degradation signal. We note

that the degradation signal is updated for every DER in the

system either due to outage or new sensor observation. Finally,

the distribution of the remaining life is updated using equation

(2).

After updating the DERs availability based on the simu-

lation results, we solve the operational problem considering

updated DERs availability as well as revealed renewable

generations, loads, market prices, and microgrids’ operational

modes. This enables us to evaluate the operational perfor-

mance each week under real MMG conditions. We keep track

of reliability, cost, and resilience metrics for each week during

the evaluation phase. For example, the SD-IOM model may

schedule the DER’s maintenance earlier to decrease the failure

risks. We refer to the time difference between the maintenance

and the failure time as DER’s unused life.

After the evaluation phase, dynamic maintenance costs of

operational DERs are updated using the most recent sen-

sor readings and the planning horizon is shifted forward to
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plan the next yearly schedules. For maintained DERs, new

degradation signals from the database are chosen to represent

their degradation process after maintenance. The operating

environment in the next optimization phase is then based on

what happens during the evaluation phase. We continue this

procedure to cover a period of one and a half years. We repeat

this procedure by using DERs with different initial ages to

ensure a decent comparison. Any metrics presented here is

the average of these replicated experiments.

We compare the cost, reliability, and resilience metrics

of SD-IOM with the industry-standard periodic maintenance

model that enforces a fixed maintenance window based on the

age of the DERs. We impose two modifications in the peri-

odic maintenance model: i) setting dynamic maintenance cost

functions to zero, ii) enforcing maintenance when the DERs

age is between 48 and 52 weeks, which is the optimal window

for conducting maintenance given the reliability information.

TABLE I: Instance Specifications

Number of MGs within MMG

Stage Number of 2 MGs 3 MGs 4 MGs

First Binary Vars 400 650 1,200
Constraints 352 554 1,059

Second Binary Vars 2,721,600 4,233,600 5,745,600
Continuous Vars 3,024,500 4,687,900 6,351,000
Constraints 9,270,000 14,774,400 20,430,000

We implement the algorithms introduced in Section III to

solve SD-IOM and the periodic model. All experiments are

implemented on an Intel Core-i7 2.6 GHz computer using

GUROBI 9.0.1. The optimality gap is considered 10−3 times

the absolute value of the lower bound. We investigate the

algorithms’ convergence performance, both the multi-cut per

week and multi-cut per week and scenario versions, on three

instances with 2, 3, and 4 interconnected MGs. Table I

illustrates the size of these instances in terms of the number

of variables and constraints. Table II assesses the algorithm’s

computational efficiency through the running time in seconds,

the number of major iterations, and the number of cuts. We

note that the MIP solver cannot optimally solve any instances

within two hours time limit. The results show that the in-

troduced decomposition algorithms can significantly decrease

the running time in solving SD-IOM problem. Also, results

demonstrate the superiority of the multi-cut per week approach

in terms of running time and number of cuts. Table III presents

the maximum time incurred for cut generation per iteration in

the instances. The results illustrate that as the size of instances

increases, the per-week per-scenario increasingly outperforms

the per-week method in terms of cut generation time. So, the

per-week per-scenario decomposition method offers the use of

parallelization methods to further decrease the computational

effort specially in large scale instances.

TABLE II: Decomposition Algorithms Computational Performance

2 MGs

Per-W Per-W Per-S

Running time (s) 1121 1109
# Iterations 6 6
# Cuts 94 795

3 MGs

Per-W Per-W Per-S

Running time (s) 1845 2638
# Iterations 4 4
# Cuts 68 616

4 MGs

Per-W Per-W Per-S

Running time (s) 3007 5257
# Iterations 5 5
# Cuts 104 881

TABLE III: Max Cut Generation Time-Decomposition Algorithms(s)

2 MGs

Iter1 Iter2 Iter3 Iter4 Iter5 Iter6

Per-W 3.72 1.12 0.92 1 0.91 1.1
Per-W Per-S 1 0.52 0.5 0.4 0.56 0.45

3 MGs

Iter1 Iter2 Iter3 Iter4 Iter5

Per-W 7.22 2.28 1.53 0.75 - -
Per-W Per-S 2.43 1.15 0.97 1 - -

4 MGs

Iter1 Iter2 Iter3 Iter4 Iter5

Per-W 14.37 5.72 2.23 2.18 3.38 -
Per-W Per-S 6.58 1.21 1.84 1.1 2.87 -

B. Experimental Results and Discussions

In this section, we present the result of our experiments

to demonstrate the effectiveness of our approach. All metrics

presented in the tables refer to the entire MMG.

TABLE IV: Reliability and cost metrics of MMG

Metrics Periodic SD-IOM

Exported Power 9.23% 9.82%
Imported Power 57.65% 56.41%
Exchanged Power 12.81% 11.85%
Curtailed NCL 0.03% 0.00%
Curtailed CL 0.00% 0.00%
Curtailed WTs Power 7.98% 1.4%
Curtailed PVs Power 7.65% 1.76%

# Preventive 22.5 23
# Corrective 12 1.75
# Total Outages 34.5 24.75
# Crew Visits 21 17
Unused Life (wks) 58.15 16.51

Maintenance Cost $223,950 $97,900
Operational Cost $4.352 M $4.245 M

Total Cost $4.572 M $4.339 M

1) Case Study 1: The first case compares the performance

of SD-IOM with the benchmark (periodic) model. Table IV

provides the associated reliability and cost metrics. We note

that SD-IOM provides significant benefits in terms of costs and

reliability. SD-IOM total cost is 5.09% better than the periodic

model, which is a result of significant savings in maintenance

and operational costs (56.28% and 2.45%, respectively). Both

methods schedule almost the same number of PMs. However,

SD-IOM benefits from the sensor-driven predictive model

to learn more about the ongoing degradation of DERs and

perform maintenance when needed. Consequently, SD-IOM

reduces the number of failure instances by 85.41% compared

to the periodic model. Therefore, more generation capacity
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is available at any time, which leads to a reduction in the

operational cost of the SD-IOM model. Comparing the DERs

unused life, we see that SD-IOM provides noticeable improve-

ments, i.e., unused life in SD-IOM is 28.39% of the periodic

model. In comparison to the periodic model, a fewer number

of DERs outages (due to maintenances) in SD-IOM decreases

the need for frequent crew visits by 19%. Reduction in the

number of failure instances, as well as unused life of DERs

in SD-IOM, results in significant operational advantages.

More available renewable DERs in SD-IOM, i.e., WTs, and

PVs, means lower renewable curtailment. Specifically, periodic

model curtails 7.98%, and 7.65% of wind and solar power,

respectively, due to outages while SD-IOM curtailments are

only 1.4% and 1.76%. In terms of MMG power interaction,

in SD-IOM microgrids, in total, utilize 11.85% of transmission

lines capacities to exchange power with each other while in

the periodic model, this amount increases by 0.96%. Lower

imported power from the main grid, by 1.24%, and higher

exported power to the main grid along with lower exchanged

power within the MMG show higher autonomy of individual

microgrids and MMG in general. Higher available capacities

provide more support from the MMG for the main grid and

lower the microgrids’ dependency on each other and the grid

alike.

2) Case Study 2: In this section, we analyze the SD-

IOM and periodic model performance under different storage

capacities. We alter the storage capacity from 0 MW (no

storage) to 4 MW to study the impact of maintenance policies

on the reliability & cost metrics. Table V shows that both

models are capable of reducing the operational, maintenance,

and total costs as the storage capacity increases. However, even

with 4 MW storage capacity, the periodic model’s operational,

maintenance, and total costs cannot compete with the SD-IOM

in the no storage case. In response to higher storage capacity,

SD-IOM tries to provide more power generation available.

Consequently, the model reduces DERs outages by decreasing

the number of PMs. This leads to slightly higher failure

instances but lowers the unused life of DERs by 3.87% to

raise power generation at hand. Likewise, the periodic model

reacts to higher storage capacity by reducing the number of

outages. However, without access to DERs health condition, it

cannot deviate too much from the recommended maintenance

windows. As a result, failure instances remain the same, while

the decline in unused DERs life is only 0.06%. Moreover,

the frequency of maintenance crew visits decreases with the

reduction in the number of outages. By reducing the unused

life of DERs, the renewable curtailment decreases in the

periodic model. Nevertheless, the SD-IOM model performance

is still superior to the periodic model, by curtailing at most

1.4% of renewable generation. Both models take advantage

of higher storage capacity to perform energy arbitrage, power

balancing, and ancillary services. In the SD-IOM model, as

the storage capacity increases, the imported power from the

main grid and the exported power to the main grid increases

by 1.78% and 52.52%. With the presumed MMG setting, both

models are capable of satisfying the critical loads under normal

operational mode. We highlight that the periodic model with 2

MW storage manages to obtain what the SD-IOM model with

Fig. 2: MMG resilience performance in the (top) locally-connected
and (bottom) islanded Mode -2MW storage capacity

no storage achieves in terms of load curtailment.

3) Case Study 3: This final case study analyzes the value

of sensor-driven maintenance on enhancing operational re-

silience. The resilience performance of MMG is studied under

two different scenarios: i) locally-connected mode ii) islanded

mode. In the first scenario, we consider a case that a sudden

uncertain disruption leads to MMG disconnection from the

main grid, i.e., the transferred power from the main grid to

microgrids is zero. In the second scenario, each microgrid

has no power transactions with other entities. We assume

that microgrids’ components do not expose to disruption.

Many metrics have been proposed in the literature to assess

resilience. Here we define resilience as the ability of MMG

to maintain its performance quality during the disruption.

Let us define q∗(t) as the as-planned operational factor of

MMG and q̃∗(t) as the operational factor during the recovery

period. Then the resilience of MMG at time t is equal to

Ψ(t) = q∗(t)/q̃∗(t). The resilience ranges from 0% up to

100% , where 100% means no degradation in the quality of

operational factor. We consider MMG’s capability in satis-

fying critical and non-critical loads as well as maintaining

the operational profitability as three important operational

factors of MMG. We evaluate the expected degradation in

the performance quality of MMG by the expected resilience

loss (ERL). The ERL measure is modified from the traditional

resilience loss [29]. This measure compares the operational

performance of disrupted MMG to the as-planned operational

performance. The ERL measure is defined as follows:

ERL =

T∑

t=1
pt

t+td∑

t0=t

[
1−Ψ(t0)

]

td
=

T∑

t=1
pt

t+td∑

t0=t

[
1− q∗(t0)

q̃∗(t0)

]

td
(37)

where t0 is the disruption start time, td is the disruption du-

ration and pt is the probability of disruptive event at period t.
ERL metric indicates the expected decline in the performance

quality of MMG due to disruptions over a period T . Lower

values of ERL indicate higher resilience performance.

To evaluate the average resilience performance of MMG,

we assume that the disruption can happen at the beginning of

any week, and the damage would be restored by the end of
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TABLE V: Average MMG reliability and cost metrics under different storage capacity
Storage
Capacity

Method #Preventive #Correctives #Total
Outages

#Crew Unused
Life (wks)

Maintenance
Cost

Operations
Cost

Total
Cost

0 MW
Periodic 22.5 12 34.75 21 58.16 $223,950 $4.447 M $4.666 M

SD-IOM 23.5 1.5 25 17.75 16.52 $100,550 $4.303 M $4.400 M

2 MW
Periodic 22.5 12 34.5 21 58.15 $223,950 $4.352 M $4.572 M

SD-IOM 23 1.75 24.75 17 16.51 $97,900 $4.245 M $4.399 M

4 MW
Periodic 22.5 12 34.5 20.75 58.12 $223,900 $4.318 M $4.538 M

SD-IOM 22.75 1.75 24.5 17 15.88 $95,900 $4.222 M $4.314 M

Storage
Capacity

Method Curtailed
WTs Power

Curtailed
PVs Power

Imported
Power

Exported
Power

Exchanged
Power

Curtailed
NCL

Curtailed
CL

Curtailed
L Cost

0 MW
Periodic 9.53% 7.77% 59.06% 5.38% 13.65% 0.12% 0.00% $42,787.5
SD-IOM 1.40% 1.77% 55.93% 7.52% 11.52% 0.04% 0.00% $14,025

2 MW
Periodic 7.98% 7.65% 58.97% 7.9% 14.16% 0.03% 0.00% $9,742.5
SD-IOM 1.40% 1.76% 56.57% 9.89% 12.25% 0.00% 0.00% $450.00

4 MW
Periodic 7.89% 7.65% 59.14% 9.64% 13.84% 0.00% 0.00% $536.25
SD-IOM 1.40% 1.77% 56.93% 11.47% 11.49% 0.00% 0.00% $0.00

TABLE VI: Expected resilience loss of MMG during disruption

Storage Capacity 2 MW 0 MW

MMG Locally-connected MGs Islanded MMG Locally-connected MGs Islanded

Periodic SD-IOM Periodic (SD-IOM) Periodic (SD-IOM) Periodic SD-IOM

Critical Loads 0.13% 0.01% 0.68% 0.22% 0.18% 0.04% 0.89% 0.42%
Non-Critical Loads 6.33% 1.89% 13.78% 7.10% 8.38% 3.53% 13.93% 7.69%
Operational Costs 29.12% 15.63% 54.41% 32.25% 38.15% 22.19% 58.29% 37.66%

the week. Table VI shows the ERL in the operational cost as

well as satisfying critical and non-critical loads. We compare

the ERLs under two different settings in which microgrids

within MMG has no storage and 2 MW storage capacity. The

result shows the proposed framework capability in achieving

the lowest expected resilience loss in all cases. In particular,

our model provides much lower ERL in terms of satisfying

loads (both critical and non-critical). In the locally-connected

mode, we observe that the ERLs of SD-IOM in satisfying

critical and non-critical loads are 77.7% and 57.9% lower

than the corresponding values in the benchmark model. Corre-

spondingly, the SD-IOM’s ERL in operational cost is 41.83%
lower than the benchmark model in the locally-connected

mode. Both models experience higher ERLs in the microgrids

sudden islanded mode, but SD-IOM still outperforms the

periodic model. Introducing more storage capacity decreases

the ERLs in both models. However, in both locally-connected

and islanded mode, the ERLs of the periodic model with 2

MW storage are still higher than the corresponding ERLs of

the SD-IOM model with no storage. In total, in the presence of

sensor information, microgrids within the MMG have a higher

capability to support each other and work independently, if

necessary.

Figure 2 provides the resilience performance of models

in terms of operational costs under locally-connected and

islanded mode. Operational resilience during disruption is

defined as the operational cost in the normal mode divided by

the operational cost in the emergency mode. Note that the SD-

IOM model, in general, has better resilience performance in

both locally-connected and islanded mode. A sudden islanded

mode leads to a sharp decline in the performance of the

periodic model, while SD-IOM model, in some periods, is

still capable of maintaining resilience around one.

V. CONCLUSION

In this paper, we propose an integrated sensor-driven

framework to improve MMG operations and maintenance.

We address unique challenges associated with modeling and

computation for deploying condition-based maintenance in an

MMG setting. The proposed approach provides significant

benefits in terms of asset reliability and operational metrics,

such as cost, renewable penetration, and resilience.
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APPENDIX A

PROOF OF LEMMA 1

The objective of this section is to prove the validity of the

optimality cuts in per week, and per-week per-scenario variants

of SD-IOM. We denote zr as an optimal solution of the first

stage problem at iteration r. This solution is used as a fixed

parameter in the sub-problems. We present the cut generation

procedure for the two variants of SD-IOM as follows:

• Per Week Optimality Cuts:

We solve the weekly decomposed relaxed sub-problem

for each week t ∈ T :

Rt(z
r
t ) = min

xt,yt

∑

ω∈Ω

pω(q
⊤
t xt,ω + b⊤t,ωyt,ω)

s.t. Etxt,ω +Dtyt,ω ≤ et −Ht,ωz
r
t , ∀ω ∈ Ω

Ltxt,ω +Gtyt,ω ≤ ℓt,ω , ∀ω ∈ Ω

xt,ω ∈ [0, 1]

(
3Gnr+2B+2M+

M∑

m=1

2N(m)
)
·H·|Ω|

yt,ω ≥ 0, ∀ω ∈ Ω

We represent the dual multipliers associated with the

optimal solution of the sub-problem at iteration r with

π
i,r
t,ω , i = 1, 2. We define:

αt =
∑

ω∈Ω

(
(π1,r

t,ω)
⊤et + (π2,r

t,ω)
⊤ℓt,ω

)
, ∀t ∈ T

βt =
∑

ω∈Ω

(π1,r
t,ω)

⊤Ht,ω , ∀t ∈ T

Per week optimality cuts can be generated as follows:

ηt ≥ αt − βtzt , ∀t ∈ T

where ηt is a free variable.

• Per Week & Scenario Optimality Cuts:

In this method, we decompose the relaxed sub-problem

per week and per scenario and then solve the following

sub-problem:

Rt,ω(z
r
t ) = min

xt,yt

q⊤
t xt,ω + b⊤t,ωyt,ω

s.t. Etxt,ω +Dtyt,ω ≤ et −Ht,ωz
r
t

Ltxt,ω +Gtyt,ω ≤ ℓt,ω

xt,ω ∈ [0, 1]

(
3Gnr+2B+2M+

M∑

m=1

2N(m)
)
·H
,yt,ω ≥ 0

Let π
i,r
t,ω and π

2,r
t,ω denote the dual multipliers associated

with the first and second constraints, respectively. We

define:

αt,ω = pω(π
1,r
t,ω)

⊤et + pω(π
2,r
t,ω)

⊤ℓt,ω , ∀t ∈ T , ∀ω ∈ Ω

βt,ω = pω(π
1,r
t,ω)

⊤Ht,ω , ∀t ∈ T , ∀ω ∈ Ω

Per week optimality cuts can be generated as follows:

ηt,ω ≥ αt,ω − βt,ωzt , ∀ω ∈ Ω, ∀t ∈ T

We note that there is no need to add feasibility cuts since

sub-problems are always feasible for any solution zt from the

master problem (i.e. complete recourse).


