
Brief Announcement: A Parallel (Δ, Γ)-Stepping Algorithm for the
Constrained Shortest Path Problem

Tayebeh Bahreini
Wayne State University

tayebeh.bahreini@wayne.edu

Nathan Fisher
Wayne State University

fishern@wayne.edu

Daniel Grosu
Wayne State University

dgrosu@wayne.edu

ABSTRACT

We design a parallel algorithm for the Constrained Shortest Path

(CSP) problem. The CSP problem is known to be NP-hard and there

exists a pseudo-polynomial time sequential algorithm that solves

it. To design the parallel algorithm, we extend the techniques used

in the design of the Δ-stepping algorithm for the single-source

shortest paths problem.

CCS CONCEPTS

• Theory of computation → Shared memory algorithms;

Shortest paths.

KEYWORDS

constrained shortest path; delta-stepping; parallel algorithm

1 INTRODUCTION

Given a directed graph � = (+ , �), with non-negative cost 28 9 , and

non-negative weight l8 9 for all edges (8, 9) ∈ �, the Constrained

Shortest Path (CSP) problem is to find the shortest path (in terms

of cost) from a source node E1 to a destination node E= , such that

the total weight of the path is less than a given positive integer, .

The CSP is an NP-hard problem, that is, it is not possible to find

an optimal solution in polynomial time, unless % = #% . Several

algorithms for solving the CSP problem are based on node labeling

techniques [1, 3]. In this paper, we design a parallel (Δ, Γ)-stepping

algorithm for solving the CSP problem. Several parallel Δ-stepping

and radius-stepping algorithms have been developed for the single-

source shortest paths problem [2]. However, none of these algo-

rithms have been extended to solve the CSP problem. To design the

parallel algorithm we extend the bucket-based approach used in the

design of the Δ-stepping algorithm for the single-source shortest

paths problem [4]. To the best of our knowledge, this is the first

parallel algorithm for the CSP problem.

2 SEQUENTIAL (Δ, Γ)-STEPPING ALGORITHM

We extend the idea of Δ-stepping algorithm [4] developed for the

single-source shortest paths problem to design an algorithm forCSP.

We define a 2-dimensional array of buckets in which one dimension

corresponds to the range of cost of labels and the other dimension

corresponds to the range of weight of labels. Each bucket contains a

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9146-7/22/07.
https://doi.org/10.1145/3490148.3538555

set of labels with cost and weight in a range of Δ and Γ, respectively.

That is, � [9] [:], ∀9 ∈ {1, . . . , ⌈ !
Δ
⌉},∀: ∈ {1, . . . , ⌈,

Γ
⌉}, contains a

set of labels {0;8 = (c;8 , 2
;
8 ,F

;
8)}, where c

;
8 is the corresponding path

from source node E1 to node E8 and 2
;
8 andF

;
8 are the cost and the

weight of that path which are within intervals [(9 − 1) · Δ, 9 · Δ)

and [(: − 1) · Γ, : · Γ), respectively,

� [9] [:] = {(c;8 , 2
;
8 ,F

;
8) | ((9−1)·Δ ≤ 2;8 < 9 ·Δ , (:−1)·Γ ≤ F;

8 < : ·Γ}

Here, ! is an upper bound for the cost of the optimal path which is

obtained by finding a feasible solution for the CSP problem.

Algorithm 1 shows the proposed sequential (Δ, Γ)-stepping algo-

rithm. The aim of the algorithm is to find all non-dominated labels

on every node. Then, among all the non-dominated labels on the

destination node, it picks the one that has the minimum cost. The

dominance relation is defined based on the weight and the cost on

each label. For a given node 8 , let us assume the algorithm finds two

labels (c;8 , 2
;
8 ,F

;
8) and (c

; ′

8 , 2
; ′

8 ,F
; ′

8) such thatF;
8 ≤ F; ′

8 , and 2
;
8 < 2;

′

8 .

Then, path c;
′

8 cannot be a part of the optimal solution, because we

could replace it with path c;8 which has a lower cost and a lower or

equal weight. Therefore, we can disregard this path. In this case, we

say that label (c;8 , 2
;
8 ,F

;
8) dominates label (c;

′

8 , 2
; ′

8 ,F
; ′

8) and denote

it by (c;8 , 2
;
8 ,F

;
8) ⊲ (c

; ′

8 2
; ′

8 ,F
; ′

8).

In Algorithm 1, buckets of labels are treated in increasing lex-

icographic order of their indices. Here the lexicographic order is

defined as (9, :) <
lex (9 ′, : ′) iff 9 < 9 ′ or (9 = 9 ′ and : ≤ : ′),

where (9, :) and (9 ′, : ′) are the indices of two buckets. The labels

in each bucket are treated as in the case of the label correcting

approach. Let �8 be the set of labels on node 8 . The algorithm sets

all �8 except �1 to the empty set. Set �1 is the set of labels of the

source node E1 and is initially set to {(E1, 0, 0)}. It also initializes

all the buckets with the empty set (except � [1] [1]) (Lines 1-4). In

each iteration of the outer loop (Lines 5-15) the labels of the first

non-empty bucket that has the lexicographically smallest indices,

are treated. Once all buckets have been treated, the algorithm stops

and the solution is stored in (?, 2>BC,F486ℎC), where ? is the optimal

path and 2>BC andF486ℎC are its corresponding cost and weight.

We group the edges of the graph into the set of light edges �;86ℎC
and the set of heavy edges �ℎ40E~ . The light edges are the edges

with cost and weight less than Δ and Γ, respectively. The edges

that are not light are heavy edges. In each phase, i.e., each iteration

of the inner while loop, the algorithm removes all labels 0;8 from

the current bucket � [9] [:] and relaxes all light edges (8, 8 ′) out

of node 8 (Lines 12-13). The current bucket contains labels with

the cost and the weight within intervals [(9 − 1) · Δ, 9 · Δ) and

[(: − 1) · Γ, : · Γ), respectively. Thus, by relaxing the light edges,

some new labels with the cost and the weight within intervals

[(9 − 1) ·Δ, (9 + 1) ·Δ) and [(: − 1) · Γ, (: + 1) · Γ), respectively, may

be added to their corresponding buckets (i.e., � [9] [:], � [9] [: + 1],

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Tayebeh Bahreini, Nathan Fisher, and Daniel Grosu

Algorithm 1 Sequential (Δ, Γ)-stepping Algorithm

Input: � (+ , �) ,, , !, Δ,Γ

Output: ? , 2>BC , F486ℎC

1: �8 ← ∅ ∀8 ∈ +

2: �1 ← {(E1, 0, 0) }

3: � [9] [:] ← ∅ ∀9 ∈ {1, . . . , ⌈!
Δ
⌉ }, ∀: ∈ {1, . . . , ⌈,

Γ
⌉ }

4: � [1] [1] ← {(E1, 0, 0) }

5: while ∼isEmpty(�) do

6: (9, :) ← minlex {(9, :) |� [9] [:] ≠ ∅}

7: ' ← ∅

8: while � [9] [:] ≠ ∅ do

9: ' ← ' ∪ � [9] [:]

10: C<? ← � [9] [:]

11: � [9] [:] ← ∅

12: for each 0;8 ∈ C<? and (8, 8′) ∈ �;86ℎC do

13: Relax(0;8 , 8
′))

14: for each 0;8 ∈ ' and (8, 8′) ∈ �ℎ40E~ do

15: Relax((0;8 , 8
′))

16: if isEmpty (�=) then

17: (?, 2>BC, F486ℎC) ← (∅,∞,∞)

18: else

19: (?, 2>BC, F486ℎC) ← min-cost(�=)

� [9 + 1] [:], or � [9 + 1] [: + 1]). The labels that are added to the

current bucket will be deleted in the next phase. Once the current

bucket is finally empty, the algorithm relaxes the heavy edges and

sequentially searches for the next nonempty bucket. Once all labels

have been settled, it checks the destination node. If there is no label

on node =, it returns an empty path (i.e., the problem has no feasible

solution). Otherwise, it finds the label with the minimum cost on

node = and stores the solution to (?, 2>BC,F486ℎC) (Lines 16-19).

The RELAX procedure is given in Algorithm 2. The procedure

gets a relaxation request (0;8 , 8
′) as input, where 0;8 is a label on

node 8 , and 8 ′ is the end node of edge (8, 8 ′) ∈ �, and generates

a new label (c;8 |8
′, 2;8 + 288′,F

;
8 + l88′) by relaxing edge (8, 8 ′). The

algorithm adds the new label to its corresponding bucket and to

the list of labels on node 8 ′ if the weight of the label is less than, ,

the cost of the label is less than !, and the label is not dominated by

any label on node 8 ′ (Lines 1-4). Furthermore, if there is a label 0;
′

8′

in �8′ that is dominated by the new label, the algorithm removes

it from both �8′ and the corresponding bucket (Lines 5-7). The

algorithm is not processing labels with weight greater than , ,

because treating these labels only leads to a source-destination

path with the total weight greater than, , while the goal of CSP is

to find the shortest path with the total weight not greater than, .

Similarly, the algorithm does not treat labels with cost greater than

!, because the paths of these labels cannot be a part of the optimal

solution as their cost is greater than the upper bound !. Next, we

discuss the properties of the sequential (Δ, Γ)-stepping algorithm.

Theorem 2.1. The sequential (Δ, Γ)-stepping algorithm finds the

optimal solution, if there exists a feasible solution for the problem.

Proof. We show that if the labels of a bucket � [9] [:] are settled,

their values are optimal and cannot be dominated by the labels

obtained by treating upcoming buckets. The proof is based on the

fact that the buckets are processed in increasing lexicographic order.

Since the cost and the weight of the edges are non-negative, the

labels of upcoming buckets cannot dominate the treated labels.

Algorithm 2 RELAX(0;8 , 8
′)

1: (2̄, l̄, c̄) ← (2;8 + 288′ , F
;
8 +l88′ , c

;
8 |8

′)

2: if l̄ ≤, and 2̄ ≤ ! and (c̄, 2̄, l̄) 6 ⊲0;
′

8′
∀;′ ∈ �8′ then

3: �8′ ← �8′ ∪ {(c̄, 2̄, l̄) }

4: � [⌈ 2̄
Δ
⌉] [l̄

Γ
⌉] ← � [⌈ 2̄

Δ
⌉] [⌈ l̄

Γ
⌉] ∪ {(c̄, 2̄, l̄) }

5: if ∃0;
′

8′
∈ �8′ | (c̄, 2̄, l̄) ⊲ 0

;′

8′
then

6: �8′ ← �8′ \ {0
;′

8′
}

7: � [⌈
2;
′

8′

Δ
⌉] [⌈

F;′

8′

Γ
⌉] ← � [⌈

2;
′

8′

Δ
⌉] [⌈

F;′

8′

Γ
⌉] \ {0;

′

8′
}

Suppose label 0;8 = (c;8 , 2
;
8 ,F

;
8) in � [9] [:] is dominated by treat-

ing label 0;
′

8′ = (c
; ′

8′ , 2
; ′

8′ ,F
; ′

8′) in � [9 ′] [: ′], where (9, :) <lex (9 ′, : ′),

through an edge (8 ′, 8). As a result of (9, :) <
lex (9 ′, : ′), there

are two possible cases: case I: 9 < 9 ′; case II: 9 = 9 ′, : < : ′.

Here, we provide the proof for case I, but a similar proof can

be obtained for case II. If (c;
′

8′ |8, 2
; ′

8′ + 28′8 ,F
; ′

8′ + l8′8) ⊲ 0;8 , then

2;
′

8′+28′8 ≤ 2;8 < Δ· 9 =⇒ 2;
′

8′ < Δ· 9 . On the other hand,Δ·(9 ′−1) ≤ 2;
′

8′

and since 9 < 9 ′, we have Δ · 9 ≤ 2;
′

8′ , which is a contradiction.

To analyze the time complexity, we define a (Δ, Γ)-path as a path

with cost at most Δ and weight at most Γ without edge repetitions.

We denote the set of pairs of nodes (8, 8 ′) that are connected through

a (Δ, Γ)-path by�ΔΓ and define =ΔΓ = |�ΔΓ |. Define�
+
ΔΓ

as the set

of triples (8, 8 ′, ℎ) such that (8, 8 ′) ∈ �ΔΓ and (8 ′, ℎ) is a light edge

and<ΔΓ = |�+
ΔΓ
|.

Lemma 2.2. The time complexity of the (Δ, Γ)-stepping algorithm

for relaxing the light edges is bounded by $ (, 2 ·<ΔΓ).

Proof. To determine the number of labels that are added to

a bucket; but are deleted in the next phases, we give a mapping

from the set of deleted labels into�ΔΓ . Consider a label 0
;
8 which is

dominated by a label in phase C . There must be a most recent phase

C ′ ≤ C when 0;8 was generated and was not dominated by any label.

Consider a settled label (obtained in any phase) on node 8 with its

associated path c = (E1, . . . , E8′, ..., E8). Let us assume that 0;
′

8′ is a

label on node 8 ′ that is the first unsettled label on c immediately

before phase C ′. Hence, 0;
′

8′ is settled in phase C ′ (due to the edge

relaxation of settled labels in the previous phase). Since both 0;8
and 0;

′

8′ are in the same bucket in phase C ′ and 0;
′

8′ has been settled,

(E ′8 , . . . , E8) is a (Δ, Γ)-path. Since 0
; ′

8′ becomes settled, the deletion

of 0;8 in phase C can be uniquely mapped to a label 0;
′

8′ where (8, 8
′) ∈

�ΔΓ . Since there are at most, labels on each node 8 and 8 ′, the

maximum number of deleted labels is $ (, · |�ΔΓ |) = $ (, · =ΔΓ).

On the other hand, the number of relaxations of the dominated

labels is identified based on the number of light edges coming out

of dominated labels which is$ (, ·<ΔΓ). In the RELAX procedure,

testing the dominance relationship on the labels takes$ (,). Thus,

the time complexity of relaxing the light edges is $ (, 2 ·<ΔΓ).

Theorem 2.3. The time complexity of the sequential (Δ, Γ)-stepping

algorithm is $
(

, · (= +<) +, 2 ·<ΔΓ +
!
Δ
· ,

Γ
)
)

.

Proof. The complexity of the algorithm mainly includes $ (= ·

,) for the while loops, $ (!
Δ
· ,

Γ
) for scanning the nonempty

buckets, $ (, 2 ·<ΔΓ) for identifying light edges and generating

labels, and $ (< ·,) for relaxing heavy edges.

Brief Announcement: A Parallel (Δ, Γ)-Stepping Algorithm for the Constrained Shortest Path Problem SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

3 PARALLEL (Δ, Γ)-STEPPING ALGORITHM

Algorithm 3 shows the parallel (Δ, Γ)-stepping algorithm for CSP.

Here, we assume the CRCWPRAMmodel. The nodes with their cor-

responding labels are randomly assigned to the processors (Line 2).

Set*@ stores all labels assigned to processor @ and 8=38 stores the in-

dex of the processor that is responsible for node 8 . Each processor @

has its own buckets � [9] [:] ∩*@ ∀9, : . The algorithm sequentially

treats the next nonempty bucket; but performs the operations for a

phase of the current bucket in parallel. In Line 4, it finds the first non-

empty bucket in parallel through a reduction operation. During the

treatment of bucket � [9] [:], each processor @ treats its labels. To

process each relaxation request (0;8 , 8
′) correctly, the requests must

be redistributed to the processor responsible for the target node 8 ′

(which is 8=3 (8 ′)). For this purpose, we define a buffer �* ��@ for

each processor @. Each process stores its relaxation requests in the

buffer of the processor responsible for the target nodes by using the

randomized dart throwing technique [5] (Lines 11-12). Then, each

processor scans its buffer and sequentially performs the relaxations

(Lines 13-14). Once all light edges are relaxed, the algorithm relaxes

the heavy edges (Lines 15-18).

We now determine the time complexity of Algorithm 3. For each

pair of nodes (8, 8 ′) ∈ �ΔΓ , we call a path efficient if (i) its cost and

its weight cannot be both improved by any other path from node 8

to node 8 ′; and (ii) among all paths with the same cost and the same

weight, it has the minimum length (minimum number of nodes).

Let &ΔΓ be the set of all (Δ, Γ)- paths that are efficient and ;ΔΓ be

the number of nodes of the longest path (in terms of the number of

nodes) in &ΔΓ , i.e., ;ΔΓ = max{|c | : c ∈ &ΔΓ}.

Lemma 3.1. The number of phases of the sequential (Δ, Γ)-stepping

algorithm is bounded by $ (!
Δ
· ,

Γ
· ;ΔΓ).

Proof. First, we show that each bucket needs at most ;ΔΓ phases

to become empty. Let us assume that label 0;8 = (c;8 , 2
;
8 ,F

;
8) ∈

� [9] [:], where 8 ≠ 1 and (c;8 = (E1, ..., Eℎ0
, Eℎ1

, ..., EℎA) |ℎA = 8),

is a label settled at the end of the phases of the current bucket and

c;8 is an efficient path. For more readability, we denote the corre-

sponding label of each node EℎD on the path c8
;
by 0ℎD . We assume

that labels 0ℎ1
through 0ℎA are the only labels settled by iterations

of � [9] [:]. By definition, before the first label removal from bucket

� [9] [:], the label 0ℎ0
must have been settled in a previous bucket.

Hence, the edge (Eℎ0
, Eℎ1

) has been relaxed and the label 0ℎ1
has

already reached its final value. Thus, Eℎ1
will be settled in the first

phase for bucket � [9] [:]. Similarly, it can be concluded inductively

that in phase D, EℎD is settled. At each phase at least one of the

labels is settled, and the cost and the weight on the path between

Eℎ1
to EℎA is at most Δ and Γ; thus, after at most ;ΔΓ phases, all labels

are settled. Furthermore, the algorithm has to traverse ⌈ !
Δ
⌉ · ⌈,

Γ
⌉

buckets. Thus, the total number of phases is $ (!
Δ
· ,

Γ
· ;ΔΓ).

Theorem 3.2. The parallel (Δ, Γ)-stepping algorithm for an ar-

bitrary graph with maximum degree 3 , requires $ (3 · !
Δ
· ,

Γ
;ΔΓ ·

log(= ·,)) time and $ (, · (= +< +, ·<ΔΓ)) work whp.

Proof. (sketch) The time complexity of the algorithm mainly

includes $ (!
Δ
· ,

Γ
· log(= ·,)) for finding a globally nonempty

bucket in each iteration and $ (3 · !
Δ
· ,

Γ
· ;ΔΓ · log(= ·,)) for

generating/assigning relaxation requests via the following.

Algorithm 3 Parallel (Δ, Γ)-Stepping Algorithm

Input: � (+ , �) ,, , !, Δ,Γ

Output: ? , 2>BC , F486ℎC

1: Execute lines 1 to 4 from Algorithm 1

2: ({*@ }, {8=38 }) ←RandAssign(�8)

3: while ∼isEmpty(�) do

4: (9, :) ← minlex {(9, :) |� [9] [:] ≠ ∅}

5: for each process @ do in parallel

6: '@ ← ∅

7: while � [9] [:] ∩*@ ≠ ∅ do

8: C<? ← � [9] [:] ∩*@

9: '@ ← '@ ∪ C<?

10: � [9] [:] ← � [9] [:] *@

11: for each 0;8 ∈ C<? and (8, 8′) ∈ �;86ℎC do

12: Throw(0;8 , 8
′, 8=3 (8′))

13: for each (0;8 , 8
′) ∈ �*��@ do

14: Relax(0;8 , 8
′)

15: for each 0;8 ∈ '@ and (8, 8′) ∈ �ℎ40E~ do

16: Throw(0;8 , 8
′, 8=3 (8′))

17: for each (0;8 , 8
′) ∈ �*��@ do

18: Relax(0;8 , 8
′)

19: if isEmpty(�=) then

20: (?, 2>BC, F486ℎC) ← (∅,∞,∞)

21: else

22: (?, 2>BC, F486ℎC) ← min-cost(�=)

Chernoff bounds theorem. Given ℎ subproblems ;1, . . . , ;ℎ of size

(0, 3] distributed uniformly at random over ? processors. Let � =
∑ℎ
8=1 |;8 |. Themaximum expected load �̄ received by any processors

is bounded by

�̄ =
�

?
+$

(
√

3 · �

?
log(

? · �

3
) + 3 · log(3 · ? · �)

)

We denote the number of generating/assigning requests in phase C

by�C . According to Lemma 2.2,∪C�C = $ (, · (= +< +, ·<ΔΓ)).

Thus, by setting ? =
, · (=+<+, ·<ΔΓ)

!
Δ
·,
Γ
·;ΔΓ ·3 ·log(= ·,)

, the maximum load on

each node over all phases is, �̄ = $
(

!
Δ
· ,

Γ
· ;ΔΓ · 3 · log(= ·,)

)

.

In the future work, we will investigate the impacts of Δ and Γ on

the algorithm time complexity on random graphs and perform an

empirical analysis of our algorithm.

ACKNOWLEDGMENTS

This research was supported in part by the US National Science

Foundation under grant no. IIS-1724227.

REFERENCES
[1] Martin Desrochers and François Soumis. 1988. A generalized permanent labelling

algorithm for the shortest path problem with time windows. INFOR: Information
Systems and Operational Research 26, 3 (1988), 191–212.

[2] Xiaojun Dong, Yan Gu, Yihan Sun, and Yunming Zhang. 2021. Efficient Stepping
Algorithms and Implementations for Parallel Shortest Paths. In Proceedings of the
33rd ACM Symposium on Parallelism in Algorithms and Architectures. 184–197.

[3] Irina Dumitrescu and Natashia Boland. 2001. Algorithms for the weight con-
strained shortest path problem. International Transactions in Operational Research
8, 1 (2001), 15–29.

[4] Ulrich Meyer and Peter Sanders. 2003. Δ-stepping: a parallelizable shortest path
algorithm. Journal of Algorithms 49, 1 (2003), 114–152.

[5] Gary L. Miller and John H. Reif. 1989. Parallel Tree Contraction Part 1: Fundamen-
tals. Adv. Comput. Res. 5 (1989), 47–72.

