Brief Announcement: A Parallel (A, T')-Stepping Algorithm for the
Constrained Shortest Path Problem

Tayebeh Bahreini Nathan Fisher Daniel Grosu
Wayne State University Wayne State University Wayne State University
tayebeh.bahreini@wayne.edu fishern@wayne.edu dgrosu@wayne.edu

ABSTRACT

We design a parallel algorithm for the Constrained Shortest Path
(CSP) problem. The CSP problem is known to be NP-hard and there
exists a pseudo-polynomial time sequential algorithm that solves
it. To design the parallel algorithm, we extend the techniques used
in the design of the A-stepping algorithm for the single-source
shortest paths problem.

CCS CONCEPTS

« Theory of computation — Shared memory algorithms;
Shortest paths.

KEYWORDS
constrained shortest path; delta-stepping; parallel algorithm

1 INTRODUCTION

Given a directed graph G = (V, E), with non-negative cost c;;, and
non-negative weight w;j for all edges (i, j) € E, the Constrained
Shortest Path (CSP) problem is to find the shortest path (in terms
of cost) from a source node v1 to a destination node v, such that
the total weight of the path is less than a given positive integer W.
The CSP is an NP-hard problem, that is, it is not possible to find
an optimal solution in polynomial time, unless P = NP. Several
algorithms for solving the CSP problem are based on node labeling
techniques [1, 3]. In this paper, we design a parallel (A, T')-stepping
algorithm for solving the CSP problem. Several parallel A-stepping
and radius-stepping algorithms have been developed for the single-
source shortest paths problem [2]. However, none of these algo-
rithms have been extended to solve the CSP problem. To design the
parallel algorithm we extend the bucket-based approach used in the
design of the A-stepping algorithm for the single-source shortest
paths problem [4]. To the best of our knowledge, this is the first
parallel algorithm for the CSP problem.

2 SEQUENTIAL (A, T)-STEPPING ALGORITHM

We extend the idea of A-stepping algorithm [4] developed for the
single-source shortest paths problem to design an algorithm for CSP.
We define a 2-dimensional array of buckets in which one dimension
corresponds to the range of cost of labels and the other dimension
corresponds to the range of weight of labels. Each bucket contains a

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA °22, July 11-14, 2022, Philadelphia, PA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9146-7/22/07.

https://doi.org/10.1145/3490148.3538555

set of labels with cost and weight in a range of A and T', respectively.
That is, B[j][k],Vj € {1,....[%1}Vk € {1,...,[%1}, contains a
set of labels {ag = (Jrl?, cg, wf)}, where nf is the corresponding path
from source node v7 to node v; and ¢! and w! are the cost and the
weight of that path which are within intervals [(j — 1) - A, j - A)
and [(k — 1) - T,k - T'), respectively,

BLj1k] = {(zL, L wh | ((j-1)-A < ¢k < j-A, (k=1)T < w! < k-T}

Here, L is an upper bound for the cost of the optimal path which is
obtained by finding a feasible solution for the CSP problem.
Algorithm 1 shows the proposed sequential (A, I')-stepping algo-
rithm. The aim of the algorithm is to find all non-dominated labels
on every node. Then, among all the non-dominated labels on the
destination node, it picks the one that has the minimum cost. The
dominance relation is defined based on the weight and the cost on
each label. For a given node i, let us assume the algorithm finds two
v
i
Then, path Il'll, cannot be a part of the optimal solution, because we

labels (ﬂf, cf, wll) and (7{5’, cf,, wf’) such that wg < wf', and cf <c

could replace it with path nil which has a lower cost and a lower or
equal weight. Therefore, we can disregard this path. In this case, we
!

i/, wf') and denote

say that label (nf, cﬁ, wl!) dominates label (ll'g,, c
it by (rff, cf, wll) > (r[f/cg', wf,).

In Algorithm 1, buckets of labels are treated in increasing lex-
icographic order of their indices. Here the lexicographic order is
defined as (j, k) <! (j/,k’)iff j < j or (j = j and k < k'),
where (j, k) and (j’, k’) are the indices of two buckets. The labels
in each bucket are treated as in the case of the label correcting
approach. Let A; be the set of labels on node i. The algorithm sets
all A; except A; to the empty set. Set A; is the set of labels of the
source node v7 and is initially set to {(v1, 0,0)}. It also initializes
all the buckets with the empty set (except B[1][1]) (Lines 1-4). In
each iteration of the outer loop (Lines 5-15) the labels of the first
non-empty bucket that has the lexicographically smallest indices,
are treated. Once all buckets have been treated, the algorithm stops
and the solution is stored in (p, cost, weight), where p is the optimal
path and cost and weight are its corresponding cost and weight.

We group the edges of the graph into the set of light edges Ej;gp,
and the set of heavy edges Epeqyy- The light edges are the edges
with cost and weight less than A and T, respectively. The edges
that are not light are heavy edges. In each phase, i.e., each iteration
of the inner while loop, the algorithm removes all labels ai from
the current bucket B[j][k] and relaxes all light edges (i,i") out
of node i (Lines 12-13). The current bucket contains labels with
the cost and the weight within intervals [(j — 1) - A, j - A) and
[(k—=1)-T,k-T), respectively. Thus, by relaxing the light edges,
some new labels with the cost and the weight within intervals
[G-1)-A,(j+1)-A)and [(k—1)-T, (k+1)-T), respectively, may
be added to their corresponding buckets (i.e., B[j][k], B[j][k + 1],

SPAA 22, July 11-14, 2022, Philadelphia, PA, USA

Tayebeh Bahreini, Nathan Fisher, and Daniel Grosu

Algorithm 1 Sequential (A, T')-stepping Algorithm

Input: G(V,E),W,L, AT
Output: p, cost, weight
1: Aj <0 VieV

20 Ar « {(01,0,0) }

3 Bljllk] <0 Vje{l... [%1hLvke{n....,[¥7]}
4: B[1][1] « {(21,0,0)}

5: while ~isEmpty(B) do

6: (J. k) — min'®{(j, k) |B[j][k] # 0}

7 R« 10

8 while B[j][k] # 0 do

9 R — RUBJj][k]

10: tmp «— B[j][k]

11: Bljl[k] < 0

12: for each aé € tmp and (i,i') € Ejjgn, do
13: RELAX(ag, i')

14: for each aﬁ € Rand (i,1') € Epeqoy do

15: RELAX((aé, i’))

16: if isEmpty (A,) then

17: (p, cost, weight) « (0, oo, c0)

18: else

19: (p, cost, weight) < min-cost(A;,)

B[j + 1][k], or B[j + 1] [k + 1]). The labels that are added to the
current bucket will be deleted in the next phase. Once the current
bucket is finally empty, the algorithm relaxes the heavy edges and
sequentially searches for the next nonempty bucket. Once all labels
have been settled, it checks the destination node. If there is no label
on node n, it returns an empty path (i.e., the problem has no feasible
solution). Otherwise, it finds the label with the minimum cost on
node n and stores the solution to (p, cost, weight) (Lines 16-19).
The RELAX procedure is given in Algorithm 2. The procedure
gets a relaxation request (ag, i’) as input, where aé is a label on
node i, and i’ is the end node of edge (i,i’) € E, and generates
a new label (ﬂl”i/, cf + cirs wf + w;jy) by relaxing edge (i,i’). The
algorithm adds the new label to its corresponding bucket and to
the list of labels on node i’ if the weight of the label is less than W,
the cost of the label is less than L, and the label is not dominated by
any label on node i’ (Lines 1-4). Furthermore, if there is a label af:
in Ay that is dominated by the new label, the algorithm removes
it from both A; and the corresponding bucket (Lines 5-7). The
algorithm is not processing labels with weight greater than W,
because treating these labels only leads to a source-destination
path with the total weight greater than W, while the goal of CSP is

to find the shortest path with the total weight not greater than W.

Similarly, the algorithm does not treat labels with cost greater than
L, because the paths of these labels cannot be a part of the optimal
solution as their cost is greater than the upper bound L. Next, we
discuss the properties of the sequential (A, T')-stepping algorithm.

THEOREM 2.1. The sequential (A, T)-stepping algorithm finds the
optimal solution, if there exists a feasible solution for the problem.

Proor. We show that if the labels of a bucket B[j] [k] are settled,
their values are optimal and cannot be dominated by the labels
obtained by treating upcoming buckets. The proof is based on the

fact that the buckets are processed in increasing lexicographic order.

Since the cost and the weight of the edges are non-negative, the
labels of upcoming buckets cannot dominate the treated labels.

- 1.
Algorithm 2 RELAX(a;, i")

1: (6,0, 7) « (cf+c,—ir, wf+wi,-r,7ril|i')

2: if @ <Wand¢ < Land (7,¢,0) ,{>aﬁi VI’ € Ay then
3: Ay — Ay U{(x,¢, @)}

4 BI[ENILN < BIIENIMLN V(76 o)}

if 3al, € Ay |(ﬁa@)>agﬁthen

6: A,r <—A \{a }

o

]

]\{a}

Suppose label a = (7‘[¢ wl) in B[j][k] is dominated by treat-
ing label ai, = (ni,, i ll,) in B[j'][k’], where (j, k) <1®* (j’, k"),
through an edge (i’,1). As a result of (j, k) <1® (j’,k’), there
are two possible cases: case I: j < j’;case I j = j',k < k'
Here, we provide the proof for case I, but a similar proof can
be obtalned for case II If (7[iyt v o ,,wl + wpi) > a then
cl +cjirj < c <Aj= c < A-j. Ontheotherhand A-(j' —1) < c
and since j < j/, we have A-j< ci,, which is a contradiction.

To analyze the time complexity, we define a (A, T')-path as a path
with cost at most A and weight at most I' without edge repetitions.
We denote the set of pairs of nodes (i, i’) that are connected through
a (A, T)-path by Car and define nar = |Car|. Define C Ar as the set
of triples (i,i’, h) such that (i,i") € Car and (i’, h) is a light edge
and mar = |Cp|.

LEMMA 2.2. The time complexity of the (A, T')-stepping algorithm
for relaxing the light edges is bounded by O(W? - mar).

Proor. To determine the number of labels that are added to
a bucket; but are deleted in the next phases, we give a mapping
from the set of deleted labels into Car. Consider a label af which is
dominated by a label in phase t. There must be a most recent phase
t’ < t when ag was generated and was not dominated by any label.
Consider a settled label (obtained in any phase) on node i with its
associated path = = (v1,...,0y,...,0;). Let us assume that agi is a
label on node i’ that is the first unsettled label on 7 immediately
before phase t’. Hence, ag is settled in phase ¢’ (due to the edge
relaxation of settled labels in the previous phase). Since both aﬁ
and aﬁi are in the same bucket in phase ¢’ and ag has been settled,
(],...,0;) is a (A, T)-path. Since agi becomes settled, the deletion
of aﬁ in phase ¢ can be uniquely mapped to a label aﬁi where (i,i’) €
Car. Since there are at most W labels on each node i and i’, the
maximum number of deleted labels is O(W - |Car|) = O(W - nar).
On the other hand, the number of relaxations of the dominated
labels is identified based on the number of light edges coming out
of dominated labels which is O(W - mar). In the RELAX procedure,
testing the dominance relationship on the labels takes O(W). Thus,
the time complexity of relaxing the light edges is O(W? - mar).

THEOREM 2.3. The time complexity of the sequential (A, T)-stepping
algorithm is O (W (n+m)+W2 .- mpr + A ™))

Proor. The complexity of the algorithm mainly includes O(n -
W) for the while loops, O(% . %) for scanning the nonempty
buckets, O(W? - mpr) for identifying light edges and generating
labels, and O(m - W) for relaxing heavy edges.

Brief Announcement: A Parallel (A, T)-Stepping Algorithm for the Constrained Shortest Path Problem

3 PARALLEL (A, T)-STEPPING ALGORITHM

Algorithm 3 shows the parallel (A, T')-stepping algorithm for CSP.
Here, we assume the CRCW PRAM model. The nodes with their cor-
responding labels are randomly assigned to the processors (Line 2).
Set Uy stores all labels assigned to processor g and ind; stores the in-
dex of the processor that is responsible for node i. Each processor q
has its own buckets B[j][k] N Uy Vj, k. The algorithm sequentially
treats the next nonempty bucket; but performs the operations for a
phase of the current bucket in parallel. In Line 4, it finds the first non-
empty bucket in parallel through a reduction operation. During the
treatment of bucket B[] k], each processor q treats its labels. To
process each relaxation request (af, i’) correctly, the requests must
be redistributed to the processor responsible for the target node i’
(which is ind(i’)). For this purpose, we define a buffer BUFF, for
each processor q. Each process stores its relaxation requests in the
buffer of the processor responsible for the target nodes by using the
randomized dart throwing technique [5] (Lines 11-12). Then, each
processor scans its buffer and sequentially performs the relaxations
(Lines 13-14). Once all light edges are relaxed, the algorithm relaxes
the heavy edges (Lines 15-18).

We now determine the time complexity of Algorithm 3. For each
pair of nodes (i,i’) € Car, we call a path efficient if (i) its cost and
its weight cannot be both improved by any other path from node i
to node i’; and (ii) among all paths with the same cost and the same
weight, it has the minimum length (minimum number of nodes).
Let Qar be the set of all (A, T')- paths that are efficient and Izr be
the number of nodes of the longest path (in terms of the number of
nodes) in Qar, i.e., Isr = max{|x| : 7 € Qar}.

LEMMA 3.1. The number of phases of the sequential (A, T')-stepping
algorithm is bounded by O(% . ¥ - IAr).

Proor. First, we show that each bucket needs at most Izt phases
to become empty. Let us assume that label ag = (ﬁf,c%, wl{) €
B[j][k], where i # 1 and (7ril = (v1,..., Vhgs Opys -oos Uh,)|hr = i),
is a label settled at the end of the phases of the current bucket and
f is an efficient path. For more readability, we denote the corre-
sponding label of each node vp,, on the path ﬂli by ap,,. We assume
that labels aj, through aj, are the only labels settled by iterations
of B[j][k]. By definition, before the first label removal from bucket
B[j][k], the label ap, must have been settled in a previous bucket.
Hence, the edge (vp,,vp,) has been relaxed and the label aj, has
already reached its final value. Thus, vj,, will be settled in the first
phase for bucket B[j][k]. Similarly, it can be concluded inductively
that in phase u, vy, is settled. At each phase at least one of the
labels is settled, and the cost and the weight on the path between
op, to vy, isat most A and T'; thus, after at most Ior phases, all labels

T

are settled. Furthermore, the algorithm has to traverse f%] . |’¥'|
buckets. Thus, the total number of phases is O(% . % - IAr)-

THEOREM 3.2. The parallel (A, T)-stepping algorithm for an ar-
bitrary graph with maximum degree d, requires O(d - % . %lM -
log(n - W)) time and O(W - (n+ m+ W - mar)) work whp.

Proor. (sketch) The time complexity of the algorithm mainly
includes O(% . ¥ -log(n - W)) for finding a globally nonempty
bucket in each iteration and O(d - % . ¥ - Iar - log(n - W)) for

generating/assigning relaxation requests via the following.

SPAA 22, July 11-14, 2022, Philadelphia, PA, USA

Algorithm 3 Parallel (A, T')-Stepping Algorithm

Input: G(V,E),W,L,AT
Output: p, cost, weight
1: Execute lines 1 to 4 from Algorithm 1
2. ({Ug}, {ind;}) < RANDASSIGN(A;)
3: while ~isEmpty(B) do
4 (jsk) = min'®{(j, k) [B[j][k] # 0}
5 for each process g do in parallel
6: Rq — 0
7
8
9

while B[j][k] N Uy # 0 do
tmp « B[j][k] N Uy
Rg < RqUtmp

10: Bljllk] < B[jl[k] \ Uq
11: for each aﬁ € tmp and (i,1') € Ejjgn,; do
12: Trrow(al, ', ind (1))
13: for each (ag, i") € BUFFy do
14: RELAX(ag, i’)
15: for each aé € Ry and (i,i) € Epeqoy do
16: THRow(af, i',ind(i"))
17: for each (af, i") € BUFF, do
1 .
18: ReLAx(aj, 1)
19: if isEmpty(A,) then
20: (p, cost, weight) « (0, oo, c0)
21: else
22: (p, cost, weight) < min-cost(A,)
Chernoff bounds theorem. Given h subproblems Iy, ..., 1, of size

(0, d] distributed uniformly at random over p processors. Let H =
Zlh:l |/;|. The maximum expected load H received by any processors
is bounded by

. H d-H, p-H
H==+0 ,/—lo E " y+d-log(d-p-H
» (> g(d) g(d-p))

We denote the number of generating/assigning requests in phase t
by H;. According to Lemma 2.2, U;H; = O (W - (n+ m+ W - mar)).

Thus, by setting p = LW'("+M+W-mAr)

—————>~— the maximum load on
LW Isr-d-log(n-w)

each node over all phases is, H = O (% . % -Iar - d - log(n - W)),
In the future work, we will investigate the impacts of A and I’ on
the algorithm time complexity on random graphs and perform an
empirical analysis of our algorithm.

ACKNOWLEDGMENTS

This research was supported in part by the US National Science
Foundation under grant no. IIS-1724227.

REFERENCES

[1] Martin Desrochers and Frangois Soumis. 1988. A generalized permanent labelling
algorithm for the shortest path problem with time windows. INFOR: Information
Systems and Operational Research 26, 3 (1988), 191-212.

[2] Xiaojun Dong, Yan Gu, Yihan Sun, and Yunming Zhang. 2021. Efficient Stepping
Algorithms and Implementations for Parallel Shortest Paths. In Proceedings of the
33rd ACM Symposium on Parallelism in Algorithms and Architectures. 184-197.

[3] Irina Dumitrescu and Natashia Boland. 2001. Algorithms for the weight con-
strained shortest path problem. International Transactions in Operational Research
8, 1(2001), 15-29.

[4] Ulrich Meyer and Peter Sanders. 2003. A-stepping: a parallelizable shortest path
algorithm. Journal of Algorithms 49, 1 (2003), 114-152.

[5] Gary L. Miller and John H. Reif. 1989. Parallel Tree Contraction Part 1: Fundamen-
tals. Adv. Comput. Res. 5 (1989), 47-72.

