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Abstract—Mode switch is the key strategy in mixed-criticality systems, enabling a dynamic balance between system performance and

safety. Mode switch in conventional MCS frameworks is always triggered by over-execution of a task, i.e., a task overrunning the less

pessimistic worst-case execution time. In cyber-physical systems, the data volume generated by I/O affects and even dominates task

execution time. Based on this observation, we propose a novel MCS framework, named Pythia-MCS, which predicts task execution

time according to I/O run-time behaviors. With the new feature of future-prediction, Pythia-MCS provides more timely, but still accurate,

mode switches. We specifically introduce the Pythia-MCS design methods, including different allocations of I/O monitoring and an

efficient energy management framework. We present a new theoretical model (quarter-clairvoyance), which guarantees the timing

predictability of the design, and a new schedulability analysis for Pythia-MCS, which demonstrates improved schedulability compared

to conventional MCS frameworks. In addition, Pythia-MCS is comprehensively evaluated using a number of metrics.

✦

1 INTRODUCTION

In modern safety-critical systems, it is increasingly impor-
tant to integrate components with different levels of critical-
ities (e.g., Automotive Safety and Integrity Levels (ASILs) in
ISO26262 [1]), onto a shared hardware platform driven by
the diverse functionalities required by modern safety-critical
systems (e.g., automated driving [1]) and the rapid evolution
of underlying platforms [2]. Such systems are called Mixed-
Criticality Systems (MCS)s [3].

A widely studied theoretical model for dual-criticality
MCSs assumes that the Worst-Case Execution Time (WCET)
of a task is estimated with different levels of confidence [3],
[4].1 The high-critical WCET (HI-WCET) is confident, but
extremely pessimistic (obtained by static timing analysis,
for example); whereas, the low-critical WCET (LO-WCET)
is much less pessimistic, but has relatively lower confi-
dence (obtained by measurement, for example). In general,
a high-critical task (HI-task) is developed and verified with
more rigorous procedures than a low-critical task (LO-task).
Therefore, a HI-task has both HI- and LO-WECTs; whereas,
a LO-task only has a LO-WCET [1], [3]. The correctness
criterion in this model specifies that if all tasks finish ex-
ecuting within their LO-WCETs, then they will all finish
executing by their deadlines. However, if any task does
not complete execution within its LO-WCET, then the HI-
tasks should complete execution by their deadlines [5]. To
satisfy this criterion, mode switch is often used [3], [6]. That
is, a system initializes from low-critical mode (LO-mode),
in which the scheduling policy assumes the execution time
of each task (LO-task or HI-task) does not exceed its LO-
WCET. If this assumption is violated, the system switches
into high-critical mode (HI-mode), in which the scheduling
policy assumes the execution time of HI-tasks may exceed
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1. Like much of the current research on mixed-criticality scheduling,

this paper restricts attention to two criticality levels (LO and HI).

their LO-WCETs, but will not exceed their HI-WCETs [7],
[8].

Many previous frameworks are based on this theoretical
model, e.g., Richard et al. [9], Gadepalli et al. [10], and
Kim et al. [11]. These frameworks, which trigger a mode
switch when they detect over-execution of a HI-task, are also
called “non-clairvoyant MCSs” [12], [13]. Different from non-
clairvoyant MCSs, Baruah et al. [12] and Agrawal et al. [13]
introduce clairvoyant and semi-clairvoyant MCS theoretical
models, which assume that whether a HI-task will overrun
its LO-WCET is known before or at release [14], [15]. As
shown in [12] and [13], both clairvoyant and semi-clairvoyant
MCSs outperform non-clairvoyant MCSs. However, it is
challenging to build a practical MCS framework with a de-
gree of clairvoyance, since most run-time situations must be
known beforehand, and for example, it is difficult to predict
an external environmental change before it happens [12].

Inputs/Outputs (I/Os) are important in MCSs, as the
volume of input data may significantly affect the execution
time of a task, determining the necessity of a mode switch.
Taking an autonomous vehicle as an example, a sensor/lidar
usually receives an additional volume of data in an urgent
situation, e.g., a greater number of objects to be identified
and tracked compared with driving on an empty road, with
no objects to be identified and tracked [1]. Therefore, a mode
switch may be triggered due to more computation time
being required by a task to process the additional received
data. Based on these observations, we propose a novel
MCS framework architecture (Pythia-MCS [16]) which can
acquire a certain level of clairvoyance. Based on the previous
work [16], we extend the design with the following key
features:

• continuously monitors and analyses I/O behaviors. The
system can trigger a mode switch when a large amount
of data is generated by an I/O.

• contains two optional allocations for I/O monitoring,
at interconnects or pins, providing a trade-off between
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Algorithm 1: Pseudo-Code an Ethernet Control Task

1 RawPacket[i] = ∅; Buf = ∅;
2 if (System.Status() == Correct) then
3 while (IO.Status (Ethernet.ID) == Busy)2 NOP;
4 PacketSize = I/O.Check (Ethernet.ID, Recv);
5 if (PacketSize > 0) then
6 for i = 0; i < PacketSzie; i++ do
7 I/O.Read (Ethernet.ID, Buf[i]);
8 end
9 for i = 0; i < PacketSzie; i++ do

10 RawPacket[i] = AUTOSAR.E2E.Decoding
(Buf, i× PacketLen)

11 end
12 else
13 NOP;
14 end
15 else
16 Err.Ctrl();
17 end
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Fig. 1. Ethernet Control Task Timing Chart

design compatibility and monitoring timeliness.
• integrates an energy management framework, which

mitigates the power consumption introduced by I/O-
driven mode switch.

Correspondingly, we also present

• Comprehensive experiments to evaluate Pythia-MCS in
terms of overhead, power consumption and scalability.

• A real-world case study to examine benefits and predic-
tion accuracy of Pythia-MCS over a conventional MCS.

The rest of this paper is organized as follows: Section 2
presents the concepts of I/O-driven MCS. Sections 3 and 4
give the system architecture and design methods of Pythia-
MCS, followed by schedulability analysis given in 5. Sec-
tion 6 evaluates Pythia-MCS, and Section 7 concludes.

2 PRELIMINARY: I/O-DRIVEN MCS

We first study relationships between I/Os and task execu-
tion time, then explain concepts of I/O-driven MCSs.

2.1 I/Os and Task Execution Time

Based on the usage of I/Os, a task can be decomposed into:

I/O-independent computation – pure software calculation
without I/O access. Computation time usually depends
on system micro-architectures, e.g., CPU architecture.

I/O-related computation – I/O accesses and I/O-bounded
calculation. Computation time is usually determined by
the data volume generated by the I/Os [17].

If a task involves I/O-related computation, we call it
an I/O-related task, otherwise it is an I/O-independent task.

2. The busy-waiting loop is monitored by a timeout monitoring to
bound the worst-case scenario.

Algorithm 1 uses pseudo-code to demonstrate an example
of an Ethernet control task (I/O-related task) from Renesas’
automotive use cases [18]. I/O-related computation is high-
lighted in blue, with the status check in line 3 and 4, the
Ethernet read in line 7 and E2E decoding in line 10. Figure 1
further illustrates the timing chart for this task. As shown,
the task releases at time point t0 with I/O-independent
computation and changes to I/O-related computation at
time point t1. Additionally, Figure 1 highlights the LO-
WCET and HI-WCET estimates for the task. In this example,
the executing times of I/O-independent computation (e.g.,
buffer initialization) are constant; whereas, the executing
times of the I/O-related computation (Ethernet read and
E2E decoding) vary with the volume of received Ethernet
packets. Clearly, in an I/O-intensive system, the data vol-
ume generated by I/Os affects, and even dominate, task
execution time.

Therefore, we can predict execution time of an I/O-
related HI-task at its I/O access point and determine neces-
sity of a mode switch before task overrun. We term this I/O-
driven mode switch. The MCS enabling I/O-driven mode
switch is termed an I/O-driven MCS.

2.2 I/O-driven Mode Switch

Achieving an I/O-driven mode switch based on a conven-
tional MCS model requires two more features for each I/O-
related HI-task, which must be acquired offline:

I/O access point (denoted C S
i ). I/O-related computation

always starts with processing I/O accesses (e.g., line 7
in Algorithm 1), which obtains the I/O data packets to
be processed in the following computation. The I/O
data received before/after C S

i will be processed in the
current/next task release.

Threshold I/O data volume (TH-I/O, denoted ΥL
i ). At C S

i ,
if the data volume accumulated by the task (denoted
υi) exceeds its TH-I/O (i.e., υi > ΥL

i ), we can predict
that the task will exceed its LO-WCET, and therefore a
mode switch is required.

Similar to the other tuples in the system (specifically
described in Section 5), the two introduced features can
be obtained using either static analysis or experimental mea-
surements. Here, we give a brief introduction to finding the
experimental measurements.
Finding experimental measurements for C S

i and ΥL
i . Firstly,

we removed the non-examined tasks and initialized the
system without any I/O data input. We then linearly in-
creased the volume of I/O data input and executed the
system 10, 000 times under each system configuration. In
each experiment, we recorded the I/O access time-point
and checked whether the examined task overran its LO-
WCET. Following the experiments, the probability of task
over-execution under different volumes of I/O data input
was plotted. The system designer was then able to select
an appropriate TH-I/O for the examined task based on
the experiment results. The results of the example above
measured on our experimental platform (Xilinx VC709 [19]
with the configurations introduced in Section 6) are shown
in Figure 2. We chose 20 MB as the TH-I/O for the exam-
ined task i.e., over-execution may occur when the I/O data
volume is greater than 20 MB.
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Fig. 2. Find TH-I/O for Ethernet Control Task

3 Pythia-MCS ARCHITECTURE

3.1 Context

In this paper, we assume: (i) The platform is an embedded
Network-on-Chip (NoC). Although Pythia-MCS is agnostic
to the types of bus, deployment of NoC can enhance the
predictability of on-chip transactions [20]. (ii) Pythia-MCS
is applicable to both single- and many-core architectures.
A fully-partitioned scheme is adopted in a multi-/many-core
Pythia-MCS. That is, tasks are statically assigned to a given
processor. Existing task allocation heuristic [2] (e.g., first-
fit) can be applied directly for partitioning. (iii) A task can
access one I/O at most, whereas an I/O can be accessed by
multiple tasks.

3.2 Design Concepts

We now present three design concepts for Pythia-MCS:
Design Concept 1: online I/O monitoring. Pythia-MCS
introduces a coprocessor, which monitors and analyzes run-
time data generated from I/Os. Pythia-MCS presents two
options for allocating I/O monitoring: at the system inter-
connects (i.e., NoC) or at the I/O pins. This allows the option
of design compatibility or timeliness of I/O monitoring.
Design Concept 2: adaptive mode switch. Pythia-MCS sup-
ports both I/O-driven and conventional mode switches. In
practice, tasks may only contain I/O-independent compu-
tations (i.e., be I/O-independent tasks); hence, Pythia-MCS
can execute all types of task.
Design Concept 3: efficient energy management. Pythia-
MCS contains an energy management framework which can
switch off the clocks/power of particular parts when they
are not being used. Energy management effectively miti-
gates power consumption generated by I/O-driven mode
switches.

In the context of conventional non-clairvoyant MCS the-
ory, a number of practical frameworks have been proposed,
e.g., [9], [10], [11]. To ensure compatibility with the state-
of-the-art, the proposed system architecture for Pythia-MCS
is derived from conventional MCS frameworks. Therefore,
Section 3.3 first reviews a conventional MCS architecture,
Section 3.4 then presents the system architecture.

3.3 Conventional MCS System Architecture

The generalized architecture of a conventional MCS (shown
in the upper part of Figure 3) is illustrated by consider-
ing conventional embedded/computer architectures with
an additional execution monitor, usually implemented at
the Operating System (OS) level to give more privileges
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Algorithm 2: Context and Mode Switch in Conventional MCS

1 ⊲ OS Kernel: Context Switch

2 Intrp.disable();
3 ExeMonitor.Timer.suspend (TaskSet.Current.ID);
4 ExeMonitor.Timer.activate (TaskSet.Next.ID);
5 Scheduler.run (TaskSet.Next.ID);
6 Intrp.enable();
7 ⊲ Interrupt Handler: Mode Switch

8 Function Timeout ISR(Timer.ID):
9 Lib mode switch (HI-Mode);

10 Intrp.clear(Timer.ID);
11 End Function

than user applications. Two essential functionalities must
be supported by the execution monitor: (i) monitoring task
execution time; and, (ii) triggering a mode switch when the
over-execution of a HI-task is detected. These two function-
alities are achieved using co-operation between a dedicated
timer in the hardware and an additional library in the
OS kernel (named lib mode switch). Note that the execution
monitor can be implemented using different methods. For
example, Kim et al. [11] integrate the execution monitor with
the OS kernel, while Li et al. [21] implements the execution
monitor as an independent hypervisor.
Run-time behaviors. At system initialization, the LO-
WCETs of the HI-tasks are preloaded to the memory. During
context switches, the OS kernel suspends the timer of the
currently executing task and then (re-)activates the timer
for the next executing task. If a HI-task runs over its LO-
WCET, an interrupt sent from the hardware timer will
trigger the execution of lib mode switch for the mode switch.
The pseudo-code demonstrating this procedure is shown in
Algorithm 2.

3.4 Pythia-MCS System Architecture

The Pythia-MCS has architecture changes in both the hard-
ware and software layers compared to conventional MCS
system architecture (shown in the lower part of Figure 5):
Hardware layer. As introduced in the design concepts,
the run-time monitoring and the mode switch triggering
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Algorithm 3: Context and Mode Switch in Pythia-MCS

1 ⊲ OS Kernel: Context Switch

2 Intrp.disable();
3 Coprocessor.sync (TaskSet.Next.ID);
4 Scheduler.run (TaskSet.Next.ID);
5 Intrp.enable();
6 ⊲ Interrupt Handler: Mode Switch

7 Function Pythia ISR():
8 Lib mode switch (HI-Mode);
9 Intrp.clear();

10 End Function

in the proposed architecture are managed by the Pythia-
coprocessor. Hence, in the hardware layer, we replace the
timer (monitoring task execution time in the conventional
MCS architecture) with the new coprocessor. We present the
design details of the coprocessor in Section 4.

Software Layer. Like the hardware timer, we also remove
the execution monitor (which manages the hardware timer
in the conventional MCS architecture) from the OS level.
In the Pythia-MCS, the interrupt sent from the Pythia-
coprocessor, triggering a mode switch, is directly routed to
the lib mode switch in the OS kernel. The removal of the
execution monitor effectively reduces the software overhead
and system complexity compared to conventional solutions.
We analyze the improvements in Section 6.1.

Run-time behaviors. At system initialization, I/O-related
HI-tasks’ TH-I/Os and I/O-independent HI-tasks’ LO-
WCETs are preloaded to the coprocessor. During context
switches, the OS kernel synchronizes the ID of the scheduled
task with the coprocessor (line 3 of Algorithm 3). If an I/O-
independent HI-task exceeds its LO-WCET or an I/O-related
HI-task exceeds its TH-I/O, the coprocessor generates an in-
terrupt to trigger mode switch by invoking lib mode switch.
The pseudo-code demonstrating this procedures is shown
in Algorithm 3.

Compatibility. Although the Pythia-MCS introduces a new
system architecture, the design minimizes modifications to
the software (shown in the comparison of Algorithms 2
and 3). Moreover, the design maintains the original OS-
application interfaces presented by the traditional MCS
(shown in Figure 3). Therefore, user applications designed
for a conventional MCS can be mapped to the Pythia-MCS
directly.

In the new system architecture, acquiring the function-
ality of clairvoyance relies on the coprocessor; we hence
present the coprocessor design details in the next section.

4 Pythia-COPROCESSOR

Figure 4 illustrates the typical use of the Pythia-coprocessor
in a NoC-based many-core architecture: the coprocessor
connects a router/arbiter and I/Os, which enables on-chip
communication and run-time I/O monitoring, respectively.
In Figure 5, we introduce the design of the coprocessor,
which comprises three main modules:

I/O Monitor Unit (IMU) – observes the run-time status of
the connected I/O, decomposes the I/O data packets,
and reports the volume to the Mode Switch Unit (MSU).
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Mode Switch Unit (MSU) – receives messages from the
IMU, and then checks whether mode switch is neces-
sary.

Energy Management Unit (EMU) – synchronizes with the
MSU, determining the current system status, and
switches off power/clocks of unused I/Os and related
parts.

A complete I/O access path usually involves different
system components, e.g., OS kernel, interconnects, I/O con-
trollers and I/O pins [22], which allows I/O monitoring
to be placed at any system level. As described in Design
Concept 1, I/O monitoring in Pythia-MCS can be allocated
either to the routers or the I/O pins. Placing the monitoring
at the I/O pins, i.e., the boundary of a system, achieves the
most timeliness, but involves a more complicated design.
This is because the method needs to decompose and analyze
the I/O packets for different serial communication proto-
cols. Conversely, allocating the monitoring at the routers,
only requires understanding of an on-chip communication
protocol. This brings compatibility to the design, but loses
some of the monitoring timeliness. To support these two
types of I/O monitoring, we propose two IMU variants:
IMU at Routers (IMU R) and IMU at Pins (IMU P).

4.1 I/O Monitor Unit at Routers (IMU R)

I/O data decomposition. Monitoring and decomposing I/O
data packets at the routers requires clear understanding of
the protocol specifications for on-chip communication. In
this paper, we explain the I/O data decomposition using the
example of AMBA AXI [23], since it is the most commonly
used protocol for on-chip communications in embedded
architectures [23] and is also used in our experimental
platform.

The AMBA AXI protocol contains five communication
channels: write/read address channels, write data channel
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and write/read response channels. An on-chip transaction
always initializes from the write/read address channel,
which presents the necessary information of the transaction.
Hence, the IMU is only required to monitor these two
channels. For example, in the write address channel, a trans-
action initializes by setting the AWVALID and AWREADY
signals to 1. At the same time, the control signals AWID,
AWLEN and AWSIZE become valid for representing the
destination, length and size of the transaction.3 The data
volume of this transaction (denoted as υ∗) is calculated in
Equation 1.

υ∗
= AWLEN × AWSIZE, if AWVALID & AWREADY = 1 (1)

As shown in Figure 6, the example initializes three I/O
data packets, which are sent to tasks 1, 2 and 6 with volume
(5× 64÷ 8 =) 40, 32 and 16 bytes, respectively.
IMU R design. The design of the IMU R is shown in
Figure 7, which contains the main components of a run-time
sampler, an access interface and memory banks.

The memory banks store the volume of unprocessed data
for each task (i.e., υi). The memory address reserved for
υi is calculated as i × 0x04. During system execution, the
sampler decomposes each captured I/O packet using the
previously introduced method, returning its destination (i.e.,
task τd) and volume (i.e., υ∗). The sampler then adds υ∗ to
the volume of unprocessed data for τd (i.e., υd = υd + υ∗)
and stores the calculated result back in the corresponding
address in the memory (i.e., d× 0x04).

Additionally, the access interface introduces two control
registers and a data register, accessed by the MSU via an
internal bus. Write-only Register 0 determines the operated
address of the memory bank, Register 2 controls operations
(e.g., value clear), and Register 1 (read-only) reports the
unprocessed data volume of the selected memory address
given by Register 0. For example, to acquire the task τ4
unprocessed data volume, the MSU first sets Register 0 to
0x10, then reads data from Register 1.

4.2 I/O Monitor Unit at I/O Pins (IMU P)

I/O data decomposition. When transferring I/O data to a
system, transactions are always first sent to the I/O pins

3. The relationship between AWID and a task ID is defined by the
system designer. In this paper, we consider these two IDs are always
equal.
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via serial I/O communication protocols [17], e.g., SPI, I2C,
etc. Unlike the on-chip communication protocols unified
throughout the system, multiple serial I/O communication
protocols are often involved in the same system for different
application scenarios. For instance, LIN, CAN and FlexRay
are three commonly used serial communication protocols in
automotive systems, designed for different communication
speeds. In Pythia-MCS, different IMU Ps have been de-
signed and implemented to support commonly used serial
communication protocols. Here, we detail the I/O data
decomposition and design methods of IMU P using the
example of FlexRay [24], which is the most complicated
high-speed protocol of those we implemented.

In order to save the usage of I/O pins, serial I/O com-
munication usually involves fewer channels than on-chip
communication. This means that in serial I/O communica-
tion, most information is transferred using the same channel
and organized with a restricted frame format. Therefore, we
propose a 2-step method to decompose the I/O data:

Step 1 - Protocol decomposition: the 1 and 0 signals at the
I/O pins are converted to valid transaction messages
based on the corresponding serial communication pro-
tocol.

Step 2 - Frame format decomposition: the converted
transaction messages are analyzed to extract their
targets and volumes based on the corresponding frame
format.

The FlexRay communication protocol involves four es-
sential pins (single-bit) [24]: TX D, RX D, TX EN, and
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RX EN. Specifically, TX D (RX D) indicates the data sent
from a master (slave) to a slave (master), and the TX EN
(RX EN) determines the validness of the corresponding
data line (see the lower part of Figure 8). Therefore, to ac-
quire valid transaction messages in protocol decomposition,
IMU P must capture these 4 I/O pin values. Moreover, the
data transferred on the TX D or RX D always follows a
fixed format (see the upper part of Figure 8): the first 5 bits
initialize a transaction, followed by header frames, payload
frames and trailer frames. These frames respectively store
the necessary information, payload, and the transaction
CRC check. In the header frame, the 6th - 17th bits and the
18th - 25th bits indicate the transaction’s destination and
data volume (υ∗), respectively, which are desired in frame
format decomposition.

As shown in Figure 8, the example initializes an I/O data
packet, which is sent to task 5 with volume 7 bytes.
IMU P design. Figure 9 shows the design of IMU P. The
main components are a run-time sampler, an access inter-
face and memory banks. IMU P uses the same design of
access interface and memory banks as IMU R, ensuring
compatibility between the two types of IMU – the designs
abstract unified access interfaces and memory addresses for
the MSU.

The run-time sampler in IMU P contains three main
modules: a Clock Domain Cross (CDC) module, a decoder
and a memory control logic. Since the signals sent to the
I/O pins are generated off-chip, usually belonging to an
unknown frequency domain, a CDC module is required to
avoid occurrences of metastable states [17]. We implement
the CDC module as a two-level register chain, eliminating
99% of the metastable states [17]. The decoder decomposes
the transactions captured at the I/O pins using the in-
troduced 2-level method, returning its destination (i.e., τd)
and volume (υ∗). The decoder (shown in the upper part
of Figure 9) is based on a counter, a status checker, and
two buffers. At run-time, the counter records orders of
transmitted bits on TX D (RX D), and it increases when
both TX EN (RX EN) and CLK are equal to ‘1’. At the
same time, the status checker synchronizes with the counter

and determines current transaction status: ‘payload length’,
‘frame ID’, ‘others’, or ‘end’. When the payload length or
frame is transmitted, the decoder stores the value received
from TX D (RX D) in a data buffer. When the current
status is ‘end’, the status checker resets the counter, and
the decoder omits the ‘others’ status. At the same time, the
status checker also updates the acquired transaction status
to a status buffer. When both data and status are transmitted
to memory control logic, the memory control logic updates
the corresponding task’s data volume in the memory banks
after a simple calculation.

4.3 Mode Switch Unit (MSU)

As the brain of the Pythia-coprocessor, MSU takes charge of
triggering a mode switch. As introduced in Design Concept
2, a mode switch is triggered by: (i) any I/O-related HI-task
exceeding its TH-I/O at the I/O access point; or, (ii) any I/O-
independent HI-task exceeding its LO-WCET. To optimize
the design of the MSU, we set a virtual I/O access point and
a virtual TH-I/O for each I/O-independent HI-task, where
the virtual I/O access point was the LO-WCET and the
TH-I/O was −1. Therefore, when an I/O independent task
executes at its virtual I/O access point, the task will always
exceed the corresponding TH-I/O. This method unifies the
criteria for mode switch for both I/O-related and I/O-
independent tasks.

The MSU determines the necessity of a mode switch
using three executing phases:

Phase 1 - Offline preloading: before run-time, the (virtual)
I/O access point (C S

i ) and (virtual) TH-I/O (ΥL
i ) of each

HI-task (τi) are grouped and stored in the MSU.
Phase 2 - Online synchronization: during run-time, the

MSU continuously synchronizes with the OS kernel,
which updates the computation time (Ci) of the cur-
rently executing HI-task (τi), and the IMUs, which
update the currents HI-task’s unprocessed I/O data
volume (υi).

Phase 3 - Decision making: at C S
i of each τi, the MSU com-

pares the υi against ΥL
i . If υi > ΥL

i , the MSU triggers an
interrupt for mode switch. After comparison, the MSU
resets υi to 0, as the data will be now processed by τi.

To support these three executing phases, we introduce
two possible MSU design methods:
Hardware/software co-design (Figure 10(a)). The hard-
ware/software co-design propounds software executed on a
ready-built processor (e.g., MicroBlaze [25] or RISC-V [26]).
The preloaded (virtual) I/O access point and (virtual) TH-
I/O of each HI-task (Phase 1) are stored in a memory unit;
the run-time synchronization and comparison (Phases 2 and
3) is handled by the software executed on the processor.
Hardware-only design (Figure 10(b)). Compared to the
hardware/software co-design, the hardware-only method
retains the memory unit, but replaces the processor with
two decision-makers. Each decision-maker contains a syn-
chronizer and a comparator. Decision-maker I synchronizes
with the OS kernel and then compares the synchronized
result with the (virtual) I/O access point. Decision-maker II
synchronizes with the IMU and then compares the synchro-
nized result with the (virtual) TH-I/O. When both decision-
makers return 1, an interrupt for mode switch is generated.
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Fig. 10. Design of MSU (MC: Memory Controller)

Note that Decision-maker I returns 1 when Ci = C S
i .

Decision-maker II, returns 1 when υi > ΥL
i .

In both design methods, we introduce (i) a shadow reg-
ister to guarantee timing synchronization between the MSU
and the entire system; and, (ii) communication interfaces
to the EMU to report the current system mode (denoted
L). The current system mode is stored at the last memory
address.

4.4 Energy Management Unit (EMU)

Pythia-MCS brings extra hardware implementation, which
potentially increases overall power consumption. To im-
prove the energy efficiency of Pythia-MCS, we now propose
an energy management method with a corresponding EMU.
Power Domains We partition Pythia-MCS into two power
domains: always-on power domain (AON domain) and isolated
power domain (ISO domain). The clocks and power of AON
domain cannot be switched off during run-time. This do-
main contains the core system, MSU and EMU. Conversely,
the clocks and power of the ISO domain can be optionally
switched off by EMU. This domain includes all IMUs and
the connected I/Os. Figure 5 also shows this partitioning.

The partitioning of power domains provides a possibility
to adjust energy consumption in Pythia-MCS. We now detail
the energy management framework and EMU design.
Energy Management Framework Figure 11 shows an
overview of the energy management framework: an EMU
connects the many-core system, MSU, IMUs, I/Os, and a
DC-DC converter (off-chip), respectively. At run-time, EMU
periodically synchronizes with the many-core system and
MSU, and then controls the clocks and power of the ISO
domain correspondingly. Power consumption of the system
is controlled via clock gating and power gating:
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Fig. 11. Energy Management Framework in Pythia-MCS

Clock gating: clock gate modules are inserted between ISO
domain and the clock sources. Hence, the EMU can turn
the clock of any specified IMU and I/O on/off.

Power gating: The EMU is connected to an off-chip DC-
DC converter, which drives the voltage of ISO domain.
Hence, the EMU can switch the power of the entire ISO
domain on/off.

The clock and power gating can effectively reduce the
static and dynamic power consumption of Pythia-MCS, re-
spectively.

Energy Management Methods and EMU Design. We now
introduce two energy management methods:

Passive control: The EMU receives energy control requests
from the core system (applications) and then manages
the clocks/power correspondingly.

Active control: The EMU checks the current system mode
and then automatically switches off the clocks/power of
the unused part(s) in the ISO domain.

Unlike passive control, which directly forwards energy
control requests, active control involves more complicated
execution procedures. Before system execution, the critical-
ity of each I/O is stored (denoted as lIO

i ) in the EMU. Here,
the ‘criticality of an I/O’ indicates the highest criticality of the
task which may access this I/O. During system execution,
the EMU continuously synchronizes with the MSU to ac-
quire the current system mode (L), which it then compares
against each lIO

i . If lIO
i < L, the EMU switches off the clock

of this I/O and the associated IMU. If L is higher than all
lIO
i , EMU turns off the power of the entire ISO domain.

To support energy management methods, we introduce
the EMU design in Figure 12. Its main components are a
power control IP, a decision-maker and a memory module.
The power control IP manages low-level control of clock
and power gating, which can be configured using an off-
the-shelf IP, e.g., an ARM power policy unit [27]. In passive
control, energy control requests are directly passed through
to the power control IP. In active control, the pre-loaded crit-
icality of each I/O is stored in memory banks; the run-time
synchronization and comparison are respectively handled
by a synchronizer and a comparator in the decision-maker.
Finally, a multiplexer is presented to switch the two energy
control methods.

Conflicts Handler. The two energy control methods could
cause a conflict when they manage the clocks/power at the
same time. As discussed above, passive control is generated
by applications during system execution, whereas active
control is determined before system execution. Therefore,
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passive control is more flexible, as it can react to practi-
cal run-time situations, e.g., malfunctions from underlying
hardware or the external environment. We hence deem that
passive control is more privileged than active control.

With this in mind, we propose a conflicts handler to
detect and manage conflicts: passive control can always
switch on/off the clocks/power of the parts managed by
active control. That means when both active and passive
controls try to manage the clocks/power simultaneously,
the conflicts handler will disable passive control as erro-
neous. Moreover, the system designer can also configure the
conflicts handler to decide the time effectiveness of a passive
control request, allowing the system to switch back to active
control automatically. For instance, a passive control request
can always be valid, or only be valid for a specific time
period.

We have described the system architecture and the de-
sign methods of the Pythia-MCS. In the next section, we
study the benefits for schedulability analysis that can be
obtained from enabling clairvoyance in the Pythia-MCS.

5 SCHEDULABILITY ANALYSIS

Although clairvoyance in general indicates the ability to
look into the future, in MC scheduling, a few different
degrees of clairvoyance are investigated in the recent lit-
erature [13]. An intermediate concept of semi-clairvoyance,
which lies between the two extremes of clairvoyance and
non-clairvoyance, has been introduced [13]. The terms are
briefly explained below:

Clairvoyance. Whether any job will overrun its LO-WCET is
known from the beginning, i.e., at time 0. That is, whether
this system run is in LO- or HI- mode would have been
known before the system started.

Semi-Clairvoyance. Whether a job will overrun its LO-
WCET becomes known right at the release of a job. The
system is notified of a mode switch from LO to HI at the
release of the first job that will overrun its LO-WCET.

Non-Clairvoyance. Whether a job will overrun its LO-
WCET remains unknown until an overrun is observed
during run-time. The system can only be notified of a
mode switch from LO to HI when a job misses its LO-
WCET, but has not completed.

𝑪𝒊𝐒 𝑪𝒊𝐋 − 𝑪𝒊𝐒 𝑪𝒊𝐇 − 𝑪𝒊𝐋𝑎𝑖,𝑗 𝑑𝑖,𝑗S 𝑑𝑖,𝑗V 𝑑𝑖,𝑗 time

early releasing is allowed

Fig. 13. An illustration for dividing an HI-job into sub-jobs in LO-mode.

In terms of the above terminology, our system archi-
tecture provides a certain degree of clairvoyance, as it
falls between the two extremes of clairvoyance and non-
clairvoyance. However, the limitations of the clairvoyance
our architecture provides does not exactly match the lim-
itations defined by semi-clairvoyance. In particular, our
architecture enables looking-into-the-future, but not when a
job releases; the job needs to execute for a certain amount
of time first (up to LO-WCET). Therefore, we position the
degree of clairvoyance our system architecture provides
between semi-clairvoyance and non-clairvoyance. We call
this degree of clairvoyance quarter-clairvoyance, specified
in more detail below.

5.1 System Model

We consider the scheduling of a set of n MC tasks τ =
{τ1, τ2, . . . , τn} on a single processor to which τ is assigned.
Each MC sporadic task τi releases a (potentially infinite)
sequence of jobs with a minimum separation of Ti time
units between any two consecutive jobs of τi, where Ti is the
period of τi. The jth job of task τi is denoted τi,j . It is released
at time ai,j and has an absolute deadline at di,j = ai,j +Di

where Di is the relative deadline of task τi. We focus on
implicit deadlines, i.e., Di = Ti for all i.

We consider a dual-criticality task system, where each
task in τ is a HI-task or a LO-task. That is, τHI ∪ τLO = τ
and τHI ∩ τLO = ∅ where τHI denotes the set of HI-tasks and
τLO denotes the set of LO-tasks. A HI-task τi has two WCET
estimates: one extremely pessimistic but safe one (e.g., by
static timing analysis and/or inflated by a safety-margin
factor) denoted CH

i , and a less pessimistic one (e.g., by
measurement) denoted CL

i , where it is clear that CH
i ≥ CL

i .
By contrast, the WCET of a LO-task τk has only one (less-
pessimistic) estimate denoted CL

k . Please note, a HI-task (LO-
task) job is also called a HI-job (LO-job, respectively) in the
paper.

Each HI-task τi has LO-utilizations (uL
i = CL

i /Ti) and HI-
utilizations (uH

i = CH
i /Ti), while LO-tasks τk have only a

LO-utilization (uL
k = CL

k/Tk). We also denote:

U L
HI =

∑

τi∈τHI

uL
i , U

H
HI =

∑

τi∈τHI

uH
i , and U L

LO =
∑

τi∈τLO

uL
i .

Schedulability criteria. The MC sporadic task system τ is
deemed MC-schedulable if and only if it is guaranteed that:

• all (HI- and LO-) jobs meet their deadlines if every job
τi,j completes within CL

i time units of execution; and,
• all HI-jobs meet their deadlines if every HI-job τi,j

completes within CH
i time units of execution.

Any HI-job τi,j having executed CH
i , or any LO-job having

executed CL
i , but not completing is terminated immediately,

or the system is considered erroneous.
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Quarter-clairvoyance. So far, the above task model matches
the traditional MC sporadic task model introduced in [6].
In light of the predicting coprocessor architecture presented
in this paper, we introduce one more parameter, C S

i (see
Section 2.2 for the measurement), for each HI-task τi to
model the certain clairvoyance our architecture brings.4

Specifically, it is not necessary to wait until observing
the behavior of a HI-job τi,j overrunning CL

i to switch
the system to HI-mode; once a HI-job τi,j has completed
C S

i ≤ CL
i time units execution, our proposed architecture

can predict5 whether τi,j is able to complete within CL
i time-

unit accumulative execution or may need up to CH
i time-

unit accumulative execution to finish. That is, the scheduler
may foresee a future HI-job overrun and make the mode switch
earlier to obtain better schedulability. In addition, please note
that in the special case where C S

i = CL
i for every HI-

task τi (e.g., an I/O-independent task), quarter-clairvoyance
MC scheduling reduces to traditional non-clairvoyance MC
scheduling.

5.2 Algorithm EDF-VDSD

For the traditional scheduling of implicit-deadline sporadic
tasks, EDF-VD [6] has been widely studied. Under EDF-VD,
each HI-job is assigned a virtual deadline, which is earlier
than its actual deadline. In LO-mode, both HI- and LO-tasks
are scheduled by EDF according to the virtual deadlines of
HI-jobs and actual deadlines of LO-jobs. On a mode switch
to HI-mode, LO-tasks are dropped and HI-jobs are then
scheduled by EDF according to their actual deadlines.

With quarter-clairvoyance MC tasks, we propose a
new scheduling algorithm, called EDF-VDSD,6 to improve
schedulability by leveraging the clairvoyance obtained from
the coprocessor.
Pre-runtime processing. Similar to EDF-VD, EDF-VDSD
also calculates a relative virtual deadline for each HI-task

τi using DV
i = x · Ti, where x =

UL
HI

1−UL
LO

. Furthermore, a

relative switching deadline, DS
i , for each HI-task is calculated

using

DS
i =

C S
i

CL
i

·DV
i =⇒

C S
i

DS
i

=
CL

i

DV
i

=
uL
i

x
(2)

That is, each HI-job τi,j has a virtual deadline at dV
i,j = ai,j+

DV
i and a switching deadline at dS

i,j = ai,j +DS
i .

Run-time scheduling. During run-time, a deadline-based
scheduling scheme is applied. In LO-mode, every LO-job is
scheduled using its actual deadline as the priority, and every
HI-job is considered as split into two sub-jobs. In particular,
for every HI-job τi,j , its first C S

i time units execution is con-
sidered as the first sub-job and scheduled by the switching
deadline dS

i,j as the priority; any execution beyond C S
i time

units up to CL
i is considered as the second sub-job with

a pseudo-release time at dS
i,j and a maximum execution of

CL
i − C S

i time units. The second sub-job is scheduled by the

4. The “S” in CS
i

stands for triggering mode switch.
5. We would also like to note that given the definition of CS

i
, the

specific time instant at which a prediction can be made also depends
on the specific scheduling algorithm that is applied. In contrast, in the
semi-clairvoyance model [13], such prediction is always made at a job’s
release regardless of which scheduling algorithm is applied.

6. EDF-VDSD stands for “earliest-deadline-first with virtual dead-
lines and switching deadlines.”

virtual deadline dV
i,j as the priority. Figure 13 illustrates sub-

job splitting. Please note that during run-time, the second
sub-job may be executed even before its pseudo-release, dS

i,j

without jeopardizing any schedulability result, because early
released sub-jobs have no impact on schedulability analysis
under preemptive EDF scheduling, as long as their dead-
lines (and therefore, priorities) are not altered [28], [29].

A mode switch from LO-mode to HI-mode may happen
at the moment when a HI-job τi,j has completed C S

i time
units of execution, i.e., at the time instant when its first sub-
job has completed. At that moment, it would be revealed
to the scheduler whether τi,j needs to execute for more
than CL

i time units to complete, and therefore the scheduler
decides whether a mode switch should be triggered. On a
mode switch to HI-mode during run-time, all LO-jobs are
immediately discarded, and all (pending and to-be-released)
HI-jobs are henceforth scheduled by EDF according to their
actual deadlines. That is, all switching and virtual deadlines
are disregarded and do not have an effect in HI-mode.

5.3 Schedulability Test

We now analyze schedulability under EDF-VDSD and pro-
pose a schedulability test running in polynomial time.

Lemma 1. Under EDF-VDSD, in LO-mode, all LO-jobs meet
their actual deadlines, all first sub-jobs of HI-jobs meet their
switching deadlines, and all second sub-jobs meet their virtual
deadlines, if

x ≥
U L

HI

1− U L
LO

. (3)

Proof Sketch. First, we consider a fluid schedule, where each
LO-task τi is continuously assigned an execution rate of uL

i

and each HI-task τk is continuously assigned an execution
rate of uL

k/x. It is clear that in this fluid schedule all LO-
jobs meet their actual deadlines, all first sub-jobs of HI-jobs
meet their switching deadlines, and all second sub-jobs meet
their virtual deadlines. By viewing these LO-jobs, first sub-
jobs, and second sub-jobs as just a set of “jobs” with each
“job” having its “deadline” at their corresponding actual,
switching, and virtual deadline in the three cases, all “jobs”
meet their “deadlines.” Furthermore, the total assigned rates
are

∑

τi∈τHI

uL
i

x
+

∑

τi∈τLO

uL
i =

U L
HI

x
+ U L

LO

{by (3)}

≤ 1.

Therefore, this fluid schedule is feasible.
On the other hand, under EDF-VDSD, the “job set”

of these LO-jobs, first sub-jobs, and second sub-jobs is
scheduled exactly, following EDF, where their “deadline”
is defined by their corresponding actual, switching, and
virtual deadlines, respectively. Due to the optimality of
EDF in preemptive uniprocessor scheduling, the existence
of a feasible fluid schedule implies that EDF-VDSD also
guarantees that all “deadlines” of the “jobs” are met. The
lemma is as follows:

Lemma 2. Given that x ≥
UL

HI

1−UL
LO

, under EDF-VDSD, in the

HI-mode, all HI-jobs meet their actual deadlines, if

∑

τi∈τHI

max











uH
i

1−
CS

i

CL
i

· x
,
uL
i −

CS
i

Ti

1− x











≤ 1. (4)
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Proof Sketch. Given that x ≥
UL

HI

1−UL
LO

, by Lemma 1, the

switching deadline is the latest time instant for each HI-job
to trigger a mode switch.

We consider the density (i.e., the ratio of the remaining
workload to the remaining time units until its deadline) of
each carry-over (i.e., released before t∗ but has not com-
pleted by t∗) HI-job at the mode switch time instant t∗.
Then, an arbitrary carry-over HI-job τi,j must be in one of
the following two cases: (i) t∗ ≤ dS

i,j and (ii) dS
i,j < t∗ ≤ dV

i,j .
Note that it cannot be the case that t∗ > dV

i,j , because in that
case, either the mode switch would have been triggered by
τi,j at dS

i,j earlier than t∗ (τi,j executes for more than CL
i ) or

τi,j would have been completed by dV
i,j < t∗ (τi,j executes

for at most CL
i ).

In case (i), the density of τi,j is at most

CH
i

di,j − t∗
≤

CH
i

di,j − dS
i,j

=
CH

i

Ti −DS
i

=
uH
i

1−
DS

i

Ti

=
uH
i

1−
CS

i

CL
i

· x
,

where the last equality is because of (2).

In case (ii), τi,j ’s total execution time is at most CL
i ;

otherwise, it would have triggered the mode switch earlier.
In addition, it must have executed C S

i time units by t∗ which
is after dS

i,j . Therefore, the density of τi,j is at most

CL
i − C S

i

di,j − t∗
≤

CL
i − C S

i

di,j − dV
i,j

=
CL

i − C S
i

Ti −DV
i

=
uL
i −

CS
i

Ti

1− x
.

Thus, in a fluid schedule in HI-mode, if each HI-task τi is
assigned a constant execution rate

fi = max











uH
i

1−
CS

i

CL
i

· x
,
uL
i −

CS
i

Ti

1− x











,

then all deadlines in HI-mode must be met. Please note that
all non-carry-over HI-jobs in HI-mode will also meet their
deadlines due to

uH
i ≤

uH
i

1−
CS

i

CL
i

· x
≤ fi.

That is, if
∑

τi∈τHI
fi ≤ 1, then the fluid schedule (starting

from t∗) is feasible. Due to the optimality of EDF in preemp-
tive uniprocessor scheduling, the existence of a feasible fluid
schedule implies that EDF scheduling (by actual deadlines)
the HI-tasks starting from t∗, which is exactly what EDF-
VDSD does, also guarantees that all deadlines (of HI-tasks)
are met in HI-mode. Thus, the lemma follows.

Theorem 1. The task system is MC-schedulable if

∑

τi∈τHI

max











uH
i

1−
CS

i

CL
i

·
UL

HI

1−UL
LO

,
uL
i −

CS
i

Ti

1−
UL

HI

1−UL
LO











≤ 1. (5)

Proof. Setting x =
UL

HI

1−UL
LO

and by the above two lemmas,

the theorem follows. It directly implies a sufficient schedu-
lability test running in O(n) time, where n is the number of
tasks.

5.4 Discussions

We next discuss the benefits EDF-VDSD brings from an
analytical perspective. Empirical studies and evaluation are
presented in Section 6.
Comparison with non-clairvoyance EDF-VD. It it clear
that the special case where ∀i ∈ τHI, C

S
i = CL

i reduces
quarter-clairvoyance to the conventional non-clairvoyance
MC scheduling model. By investigating this special case,
we find our schedulability test dominates the first EDF-VD
analysis in [30], which is also dominated by a later improved
EDF-VD analysis in [6].

Unfortunately, our schedulability test does not have a
strict dominance over the improved EDF-VD analysis in
[6]. Nonetheless, the quarter-clairvoyance MC scheduling
model and EDF-VDSD bring certain advantages over EDF-
VD, even with the improved analysis in [6]. The following
example is not deemed schedulable under EDF-VD, even
with the analysis in [6], while it is deemed schedulable
under EDF-VDSD by our analysis.

Example 1. Consider a system with only two tasks τ1 and τ2,
where τ1 is a HI-task and τ2 is a LO-task. For the HI-task τ1,
T1 = 10, CH

1
= 8, CL

1
= 3, and C S

1
= 1; for the LO-task τ2,

T2 = 10, CL
2
= 5. That is, in this system, UH

HI = 0.8, U L
HI = 0.3,

U L
LO = 0.5, x = (0.3)/(1− 0.5) = 0.6, and C S

1
/CL

1
= 1/3.

Under non-clairvoyant EDF-VD,

U L
HI

1− U L
LO

=
0.3

1− 0.5
= 0.6 > 0.4 =

1− 0.8

0.5
=

1− UH
HI

U L
LO

,

which means that even the improved EDF-VD schedulability test
in [6] fails.

By contrast, under EDF-VDSD,

uH
1

1−
CS

1

CL
1

·
UL

HI

1−UL
LO

=
0.8

1− 1

3
× 0.6

= 1,

and
uL
1
− CS

1

T1

1−
UL

HI

1−UL
LO

=
0.3− 0.1

1− 0.6
= 0.5.

Thus, by Theorem 1, this system is schedulable by EDF-VDSD.

An integrated algorithm EDF-VDSD+. Because schedu-
lability can be determined offline by system parameters
that are known prior to run-time, we can integrate algo-
rithms EDF, EDF-VD, and EDF-VDSD to achieve even better
schedulability. The resulting integrated algorithm, called
EDF-VDSD+, is presented in Algorithm 4. Intuitively, by
exploring the respective schedulability tests, EDF-VDSD+
will select the simplest of the three algorithms which can
guarantee schedulability.

6 EXPERIMENTAL EVALUATION

In this section, we conduct extensive experiments and a real-
world case study to evaluate Pythia-MCS.
Experimental Platform. We built the Pythia-MCS on a Xilinx
VC709 evaluation board. Specifically, the Pythia-coprocessor
was implemented using BlueSpec System Verilog [31] and
connected to a 7 × 7 mesh type open-source NoC [20]. As
well as the Pythia-coprocessor, the NoC also contained 32
MicroBlaze processors [25], memory and I/O peripherals.
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Algorithm 4: Pseudo-Code for EDF-VDSD+

1 if U L
LO + UH

HI ≤ 1 then
2 Apply ordinary EDF from the beginning (i.e., no MC

and no mode switch at all), and declare SUCCESS;
3 else

4 if
U

L
HI

1−UL
LO

≤
1−U

H
HI

UL
LO

then

5 Apply EDF-VD, and declare SUCCESS;
6 else

7 if
∑

τi∈τHI

max











u
H
i

1−
C

S
i

CL
i

·
UL

HI
1−UL

LO

,
u

L
i
−

C
S
i

Ti

1−
UL

HI
1−UL

LO











≤ 1

then
8 Apply EDF-VDSD, and declare SUCCESS;
9 else

10 Declare FAILURE.
11 end
12 end
13 end

The software executing on the processors (OS kernels and
user applications) was compiled using a Xilinx MicroBlaze
GNU tool-chain [25]. We selected FreeRTOS (v.9.0.0) as the
OS kernel for all processors, with the modifications intro-
duced in Section 3.4. The IMU in Pythia-coprocessor was
implemented using the methods described in Section 4.1 to
support I/O monitoring at the routers (denoted as PY R)
and pins (denoted as PY P). The MSU in the coproces-
sor was implemented using the method described in Sec-
tion 4.3, with hardware/software co-design (denoted PY|hs)
and hardware-only design (denoted PY|hw). Following this
naming strategy, we denote the implementation of Pythia-
MCS as PY A|B, where A and B indicate the implemen-
tation methods of the IMU and MSU, respectively. For
instance, PY R|hw represents the system monitoring I/Os
at the routers, designed using the hardware-only method.
To enable comparison, we also built a conventional MCS
framework (reviewed in Section 3.3) on a similar hardware
architecture (denoted MC|conv) without Pythia-coprocessor.
The MC|conv system architecture is shown in the upper part
of Figure 3. All architectures ran at 100 MHz.

6.1 Software Overhead

In this section, we compare software overheads of the legacy
system,7 with MC|conv and all the variants of Pythia-MCS.
Experimental Setup. The software overhead was evaluated
using the run-time memory footprint [32], with specific con-
sideration of the OS kernel and execution monitor (memory
size tool: Xilinx MicroBlaze GNU tool-chain [25]). The legacy
OS kernel was fully-featured with essential I/O drivers [33].
Since PY R and PY P abstract a unified interface to software
level (described in Section 4), adopting different methods
of I/O monitoring does not affect the software overhead of
Pythia-MCS. In experimental results, we use PY X to denote
the Pythia-MCS configured as either PY R or PY P.
Obs.1. An additional software overhead was sustained by
the conventional MCS framework compared to the legacy
system. This is effectively reduced in Pythia-MCSs.

7. A naive system, which does not support any MCS features.

79.4

0.0

107.7

30.9

85.0

18.3

85.0

0.0
0

30

60

90

120

150

Kernel Monitor

M
e

m
o

ry
 F

o
o

tp
ri

n
t 

(K
B

) Lagacy MC|conv PY_X|hs PY_X|hw

Fig. 14. Run-time Software Overhead. The software overhead is evalu-
ated via memory footprint (unit: KB).

TABLE 1
Hardware Overhead (Implemented on FPGA)

LUTs Registers DSP RAM (KB) Power (mW)
MB-B 854 529 0 16 127
MB-F 4908 4385 6 128 258
CAN 711 604 0 0 5
SPI 632 427 0 0 4

PY R|hw 587 396 0 16 109
PY R|hs 973 583 0 16 133
PY P|hw 714 527 0 16 122
PY P|hs 1093 773 0 16 140

This observation is shown in Figure 14. In MC|conv, the
introduction of an execution monitor and the modifications
to OS kernel bring an additional 60 KB (75.9%) memory
footprint compared to the legacy system. By contrast, in
both PY X|hs and PY X|hw, run-time monitoring and mode
switch triggers rely on the coprocessor. Hence, the im-
plementation of the execution monitor was not required.
The removal of the execution monitor significantly reduced
the run-time memory footprint to 85 KB, which is slightly
higher than the memory footprint in the legacy system (7.6%
extra). Please note, PY X|hs requires an 18.3 KB memory
footprint for the software execution on the coprocessor,
which is not counted in the software overheads of the main
CPU(s).

6.2 Hardware Overhead

Pythia-MCS requires additional hardware implementation
for the coprocessor. Hence, in this section, we evaluate the
hardware overhead of the Pythia-coprocessor.
Experimental Setup. We first configured Pythia-coprocessor
to monitor two I/Os (FlexRay); and then evaluated the co-
processor and both basic and full-featured MicroBlaze pro-
cessors (MB-B and MB-F), as well as two mainstream I/O
controllers (SPI and CAN). All components were synthe-
sized and implemented by Vivado (v2019.2) [19] and com-
pared using Look Up Tables (LUTs), registers, DSPs, Block
RAMs (BRAMs) and average power consumption [34].
Obs.2. The design of Pythia-coprocessor was resource-
efficient compared to generic CPUs. Its hardware consump-
tion was slightly higher than evluated I/O controllers.

As shown in Table 1, when we implemented MSU using
the hardware-only method, the coprocessor in PY R|hw and
PY P|hw, required less hardware than either MB-F (12.0%
and 14.5% LUTs; 9.0% and 12.0% registers; 42.2% and
47.3% power consumption) or MB-B (68.7% and 83.6%
LUTs; 74.9% and 99.6% registers; 85.8% and 96.1% power
consumption). Due to the integration of a mature pro-
cessor, PY R|hs (PY P|hs) consumed more hardware than
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Fig. 15. Case study: success ratios of the HI-tasks in Conventional MCS and Pythia-MCS (The x-axis denotes the target utilization)

PY R|hw (PY P|hw). When compared to the CAN and SPI
controllers, all variants of Pythia-MCS had similar consump-
tion of both LUTs and registers, but additional memory
consumption. The memory consumed additional power for
refresh [17]; hence, the coprocessors consumed more than 20
times the power of the I/O controllers.
Obs.3. In Pythia-MCS, placing I/O monitoring at pins con-
sumed more hardware than placing it at routers.

This observation can be seen by comparing
PY R|hs (PY R|hw) and PY P|hs (PY P|hw) in Table 1.
This is because monitoring I/O data at the pins requires
a more complicated decomposition of protocol and frame
format (see Section 4.2). The IMUs in PY P hence involve
more control logic and state machines compared to PY P
(detailed in Section 4.2) to support these procedures.

6.3 Automotive Case Study

We now use an automotive case study to examine the bene-
fits of Pythia-MCS over a conventional MCS framework.
Systems Configuration. To analyze the benefits brought
by Pythia-MCS with different I/O monitoring methods,
MC|conv, PY R|hs and PY P|hs were examined. We config-
ured PY X|hs as PY X|hs-40/70/100, enabling 40/70/100%
of I/O-related tasks using I/O-driven mode switch. In other
words, PY X|hs-z indicated the system was z% of Pythia-
MCS.
Task sets. We introduced two sets of I/O-related tasks: 8

• 20 automotive safety tasks, selected from Renesas auto-
motive use case database [18], e.g., CRC, RSA32, etc..

• 20 automotive function tasks , selected from EEMBC
benchmark [35], e.g., fast Fourier transform.

• synthetic workloads (in the LO-task category), selected
from EEMBC benchmark, which could be added into
system to control overall system utilization.

The HI-tasks had been certified as ASIL-D tasks [1],
with analyzed WCETs (CHI

i ). Additionally, we employed
a hybrid-measurement approach [36] to obtain measured
WCETs for all tasks (CLO

i ). The raw data for processing
by the tasks was randomly generated off-chip and sent
to the evaluated systems via two Ethernet controllers (10
Gbps) at run-time. The HI-tasks experimental measurements
(C S

i and ΥL
i ) were obtained using the method described

in Section 2. The MC|conv also contained a simulated HI-
task for the execution monitor (described in Section 3.2),

8. In order to demonstrate wide applicability, and the value of a
true mixed-criticality system, we randomly selected tasks from both real
automotive software and open-source benchmarks, in an attempt to
capture a wide range of tasks.
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Fig. 16. Case study: Average NoS of LO-tasks (normalized by MC|conv ).

which was not required by PY X|hs. Each task had a defined
period, with overall system utilization in both LO- and HI-
mode approximately 50%. Following Section 5, we adopted
implicit deadlines for all tasks.

Notably, in practice, execution time of a task is affected
by diverse factors (e.g., cache miss rate); hence, adding
synthetic workloads to a system only gives the system a
target utilization, which may be different from the actual
system utilization.
Experimental Setup. We introduced three groups of experi-
mental setups, which activate 8/16/32 processors to execute
the experimental task sets and synthetic workloads. In each
experimental group, we executed the examined systems
500 times under varying target utilization from 50% to
100% (at intervals of 5% increases). Each execution lasted
100 seconds, which guaranteed all tasks could execute at
least 250 times. For fair comparison, we also ensured the
data input to the examined systems was identical in each
execution.
Experimental metrics. We used two metrics to evaluate the
examined systems under each target utilisation, success ratio
and number of services (NoS). The success ratio recorded the
percentage of an examined trail executed without deadline
miss of any HI-task, and the NoS measured the number
of LO-tasks executions. Figure 15 and 6.3 demonstrate the
experiment results.
Obs.4. Introducing I/O-driven mode switch is beneficial.

This observation is supported by the results in Fig-
ures 15(a), 15(b), and 15(c). As shown, with the same
configuration, the Pythia-MCSs always outperform the con-
ventional MCS. Moreover, we also obverse that a full Pythia-
MCS (PY X|hs-100) consistently outperformed the partial
Pythia-MCSs (PY X|hs-70 and PY X|hs-40). This means that
having a higher percentage of the system involving I/O-
driven mode switch introduces more benefits.
Obs.5. Increasing the number of processors significantly re-
duced the success ratio of the conventional MCS framework.
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Such issues were effectively eliminated by Pythia-MCS.
This observation is shown in the comparison between

Figures 15(a) and 15(c). In a 8-core MC|conv, a significant
drop in the success ratio occurred at 65% of target utiliza-
tion, whereas this drop moved to 50% of target utilization
in a 32-core MC|conv. This observation mainly results from
the additional on-chip interfaces and resource contention
generated by the introduced processors and tasks.

In the Pythia-MCS, run-time monitoring is placed in
hardware level; hence, the Pythia-coprocessor can detect
abnormal behaviors due to large amounts of data generation
promptly, and trigger a mode switch. In a 32-core system
(Figure 15(c)), when target utilization approaches 100%,
PY X|hs-100 maintains a success ratio which is still higher
than 95%. This observation demonstrates the benefits and
applicability of introducing the Pythia-MCS in multi-many-
core architectures.
Obs.6. In Pythia-MCS, placing I/O monitoring at pins
brought more benefits than placing monitoring at routers.

As shown in Figure 15, for the Pythia-MCSs with the
same settings, PY P|hs always outperformed PY R|hs. This
is because monitoring I/O data at the pins ensures the most
timely mode switches, increasing the overall success ratios.
Obs.7. Introducing the I/O-driven mode switch in Pythia-
MCS decreased the LO-tasks’ NoS. The decrement is caused
by the miss-predictions of the mode switches.

This observation is given by Fig. 6.3. Compared to the
conventional MCS (MC|conv), the PY X|hs-40 decreased the
LO-tasks’ NoS by 7%. Such decrement was further magni-
fied in PY X|hs-70 and PY X|hs-100. In the worst case, i.e., in
PY P|hs-100, the decrement of the LO-tasks’ NoS reached up
to 14.7%. This decrement is caused by the miss-prediction of
the mode switches, where the Pythia-MCS triggers a mode
switch when it is not necessary (i.e., false-positive). In the
following section, we specifically evaluate the accuracy of
the prediction in Pythia-MCS.

6.4 Accuracy of Prediction

Although Section 6.3 demonstrates the benefits brought by
I/O-driven mode switch in Pythia-MCS, we acknowledge
that accuracy of the prediction mechanism finally determines
feasibility of the proposed design. We now examine the
accuracy of the prediction mechanism considering two sce-
narios:

Scenario I: false negative. The Pythia-MCS misses a re-
quired mode switch. This scenario causes safety haz-
ards, since the LO-tasks cannot be terminated in time.

Scenario II: false positive The Pythia-MCS triggers a mode
switch when it is not necessary. This scenario leads to
system performance loss, since LO-tasks are terminated
unexpectedly.

Experimental Setup. We adopted the same experimen-
tal setup and methods introduced in Section 6.3 with
MC|conv and PY X|hs (PY X|hs-100) being executed. Pre-
diction accuracy was calculated using two measures. Firstly,
for all executing cases where MC|conv triggers mode switch,
accuracy of switch prediction calculates the percentage of
executing cases where PY X|hs also triggers the switch.
Secondly, for all executing cases where PY X|hs triggers
mode switch, accuracy of overrun prediction calculates the

Fig. 17. Prediction Accuracy of Pythia-MCS

percentage of executing cases where MC|conv also triggers
the switch. From the results (Figure 17), we observe:
Obs.8. The prediction mechanism does not introduce addi-
tional safety concerns in Pythia-MCS, as the system never
missed a required mode switch.

As shown in Figure 17, the accuracy of switch prediction
was constant at 100% without experimental variance. This
means that in all cases where MC|conv triggered a mode
switch, PY X|hs also triggered the mode switch. Therefore,
Pythia-MCS successfully avoids Scenario I. This observation
benefited from the conservative selection of TH-I/O for each
HI-task introduced in Section 2.2.
Obs.9. The prediction mechanism leads to a certain level
of system performance loss, as the Pythia-MCS may pes-
simistically trigger a mode switch when it is not required.

As shown in Figure 17, in a 8-core PY X|hs, the accuracy
of overrun prediction averaged around 90%, which means
the Pythia-MCS has about 10% probability of triggering an
unrequired mode switch. Therefore, Pythia-MCS does not
completely avoid Scenario II.

Fortunately, with an increasing number of processors,
this weakness can be effectively alleviated. As shown,
PY X|hs raises the accuracy of overrun prediction to around
93% for the 16-core system,and 95% for the 32-core. An
explanation for this observation may be that although the
Pythia-MCS cannot provide 100% accuracy of overrun pre-
diction for every single task, the increasing number of tasks
from the introduced processors raises the likelihood that
more than one task triggers a mode switch simultaneously
(and at least one actually overruns CL

i execution), which
effectively mitigates the prediction gap from the perspective
of the entire system. With the observation, we conjecture
that the accuracy of overrun prediction in Pythia-MCS
would approximate to 100% with more processors.

6.5 Scalability

We now examine the scalability of Pythia-MCS using a
varying number of processors and I/Os.
Experimental Setup. As seen in Section 6.2, placing I/O
monitoring at the pins usually consumes more resources
than monitoring at the routers under the same settings.
Hence Pythia-MCS was configured as PY P|hs and PY P|hw.
We adopted the same method described in Section 6.2 to
synthesize and implement PY P|hs, PY P|hw and conven-
tional MCS, firstly with a scaling number of basic MicroB-
laze processors and then with a scaling number of I/Os
(Ethernet). In the experiments, we introduced two scaling
factors: ηcore to control number of processors (2ηcore ) and
ηio to control number of I/Os (2ηio ).
Scalability of area consumption. We compared the area
consumption of the evaluated systems with varying ηcore
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Fig. 18. Area, Power, and the Maximum Frequency v.s. Scaling Factor ηcore (CoP: Pythia-coprocessor, the x-axis denotes ηcore)
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Fig. 19. Area, Power, and the Maximum Frequency v.s. Scaling Factor ηio (CoP: Pythia-coprocessor, the x-axis denotes ηio).

and ηio. The evaluated results were normalized by using the
overall area of the experimental platform (Xilinx VC709).
Obs.10. The area consumption of both the conventional
MCS and Pythia-MCS is linearly scaled by ηcore and ηio.

This observation is supported by Figures 18(a) and 19(a).
As shown, when the system scaled with ηcore, the area con-
sumption of PY P|hs and PY P|hw was consistently similar
to MC|conv. For instance, in a 64-core system (ηcore = 6),
both PY P|hs and PY P|hw introduced less than 0.3% addi-
tional area consumption with respect to the MC|conv. When
the system scaled with ηio (Figure 19(a)), both PY P|hs and
PY P|hw suffered from slight increment on area consump-
tion with respect to MC|conv, since the Pythia-coprocessor
required to integrate additional IMUs for I/O monitoring.
For example, in a 64-I/O system (ηio = 6), PY P|hw and
PY P|hs brought an additional 2% and 3% area consumption
compared to MC|conv, respectively. This observation also
illustrates the area-efficiency of the proposed design.
Obs.11. When the system scales with ηio, PY P|hs has better
area consumption scalability than PY P|hw.

This observation is given by Figure 19(a). This is because
that PY P|hs always adopted a fixed MSU design (based on
a mature processor), whereas PY P|hw required additional
hardware implementation when ηio increased. Please see
Section 4 for the design details of the MSU.
Scalability of power. We now compare the power consump-
tion of the evaluated systems, calculated as the sum of static
and dynamic power, by varying ηcore and ηio.
Obs.12. ηcore and ηio linearly scale the power consumption
of both conventional MCS and Pythia-MCS.

The power consumption of a system is usually deter-
mined by four factors [37]: voltage, clock frequency, toggle
rate and design area. Because the same voltage, clock fre-
quency and simulated toggle rate were assigned to the eval-
uated systems, the design area dominated the overall power
consumption. As expected, in Figures 18(b) and 19(b), we
observed linearly increased power consumption in the eval-
uated systems when either ηcore or ηio increased.
Scalability of maximum frequency. We examine the max-
imum frequency of the Pythia-coprocessor (in PY P|hs and

(a) 32-I/O PY P|hs (b) 32-I/O PY P|hw

(c) 64-I/O PY P|hs (d) 64-I/O PY P|hw

Fig. 20. Power distribution in Pythia-MCS (CoP: Pythia-coprocessor)

PY P|hw) and MC|conv using varying ηcore and ηio.
Obs.13. Introducing I/O-driven mode switch in conventional
MCS does not affect the system’s maximum performance.

As shown in Figure 18(c) and 19(c), when the system
scaled with ηcore or ηio, the maximum frequency of the
coprocessor was always greater than the MC|conv. This
indicates that the coprocessor did not become a critical path
and could not reduce maximum system performance.

6.6 Power Distribution

Although the design of Pythia-MCS keeps energy-efficiency
in mind, the introduction of a coprocessor still increases
its power consumption compared to conventional MCS,
especially when the number of I/Os increases (Obs. 11.).
In this section, we report the power distribution in Pythia-
MCS with different numbers of I/Os. We then examine its
energy-efficiency with different workloads.
Experimental Setup. We first configured PY P|hs and
PY P|hw to support 16 cores and 32/64 I/Os. We then
use the same method described in Section 6.2 to synthe-
size and implement the system. Lastly, we decompose and
analyze the relative power consumption of the system. The
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(a) 32-I/O PY P|hw (b) 64-I/O PY P|hw

Fig. 21. Energy-efficiency of PY P|hw with different numbers of I/Os
(normalized by MC|conv ). x-axis: target I/O utilization.

experimental results show the power distribution in Pythia-
MCS and determine the percentage of switchable power
consumption.
Obs.14. In 32-I/O Pythia-MCS, more than 45% of the power
consumption can be switched off by power management;
this percentage increases to about 58% in a 64-I/O system.

This observation is given by Figures 20. In 32-I/O
PY P|hs and PY P|hw, 45.1% and 46.0% of power consump-
tion is generated by I/Os and their associated modules.
With the proposed energy management (detailed in Sec-
tion 4.4), we can switch the clocks/power of these portions
off. This means the proposed energy management can max-
imally save more than 46% of power consumption in Pythia-
MCS. When it comes to 64-I/O PY P|hs and PY P|hw, this
percentage increases to 57.7% and 58.5%, which demon-
strates the effectiveness of energy management.

6.7 Energy-Efficiency: Synthetic I/O Workloads

Experimental Setup. We used PY P|hw synthesized and
implemented in Section 6.6, and deployed the processors as
I/O requesters, generating synthetic I/O workloads without
processing. At the same time, we introduced a utilization
checker to indicate the utilization of each I/O. During exper-
iments, the requesters continuously checked the utilization
of each I/O: if an I/O did not reach a target utilization,
the requesters continuously generated synthetic workloads
for this I/O. The I/O then operated the workloads and ac-
knowledged the requesters; if all I/Os were executed under
the target utilization, the requesters paused. We recorded the
clock frequency of each I/O and its associated modules (i.e.,
ISO domain), and calculated their dynamic energy consump-
tion using the energy model presented in [17]. We executed
the experiments for 100 times.
Obs.15. Implementing EMU in Pythia-MCS effectively re-
duced the overall dynamic energy consumption.

As shown in Fig. 21, in 32-I/O PY P|hw (i.e., Fig. 21(a)),
introducing the EMU saved about 40% energy consumption.
This improvement increased to about 50% in a 64-I/O
PY P|hw (i.e., Fig. 21(b)). However, in both experimental
groups, we also reported that such benefits were slightly
reduced with the increase of I/O utilization. This is because
the EMU could not gate the clocks when the I/Os were busy.

6.8 Energy-Efficiency: Case Study

Experimental Setup. We now examine the energy-efficiency
of Pythia-MCS using real-world use cases. We first config-
ured MC|conv, PY P|hs, and PY P|hw with 8/16/32 proces-
sors and 2 I/Os (Ethernet controllers). We then executed
the case study described in Sec. 6.3 with different target

processors utilization [50%, 100%], and recorded the clock
frequency of each I/O and its associated modules. With
the recorded clock frequencies, we calculated the dynamic
energy consumption of the ISO domain using the energy
model presented in [17]. We executed the experiments 100
times. In Fig. 6.8, we report the average energy consump-
tion of PY P|hs and PY P|hw. The experimental results are
normalized by MC|conv.
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Fig. 22. Energy efficiency of PY P|hs and PY P|hw, examined using
use case. x-axis: target processor utilization.)

Obs.16. Deploying EMU in Pythia-MCS effectively reduced
the ISO domain’s dynamic energy consumption while run-
ning the use cases. The improvement was reduced when the
number of processors or the volume of workloads increased.

This observation is given by Fig. 6.8. With 8-core config-
urations, the ISO domain in PY P|hw and PY P|hs only con-
sumed about 20% dynamic energy compared to MC|conv.
This benefited from deploying the EMU in Pythia-MCS,
gating the source clocks when the I/Os were idle. The
improvement was reduced when the number of processors
or the volume of workloads increased, since they led the
I/Os to be operated for the longer time duration, and
the EMU had fewer opportunities to gate their clocks. As
observed in Fig. 6.8, with 32-core configurations, the ISO
domain in PY P|hw and PY P|hs consumed nearly 100%
dynamic energy compared to MC|conv, since the I/Os were
always busy. This observation aligns with experimental
results using synthetic workloads, i.e., Obs. 15.
Obs.17. With the same experimental setting, PY X|hs con-
sumed slightly more energy than the PY X|hw.

This observation is shown in the comparison between
PY X|hs and PY X|hs (in Fig. 6.8). Under the same experi-
mental setting, PY X|hs usually consumed 3% - 7% extra en-
ergy than PY X|hw. This is because the IMUs are designed
differently in PY X|hs and PY X|hs, where PY X|hs deploys
a mature processor in the IMU, and the processor consumes
slightly more energy during execution.

7 CONCLUSION

In this paper, we proposed a novel MCS framework (named
Pythia-MCS), which simultaneously supports run-time I/O
monitoring and I/O-driven mode switch. With these new
features, Pythia-MCS achieves future-prediction, being able
to foresee the over-execution of a task and triggering a
timely mode switch. Moreover, we proposed two possible
methods of allocating I/O monitoring, i.e., at routers or pins,
which provides a trade-off between design compatibility
and monitoring timeliness. We also proposed an energy
management framework to mitigate the power consump-
tion caused by the new features. Correspondingly, we pre-
sented a new theoretical model (quarter-clairvoyance) and
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schedulability analysis to provide a timing guarantee for
Pythia-MCS and to demonstrate improved schedulability
compared to conventional MCS frameworks. As shown in
the evaluation, Pythia-MCS outperformed the state-of-the-
art MCS frameworks with varying hardware architectures.
In addition, Pythia-MCS is resource- and energy-efficient.
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