Quaternary Science Reviews 274 (2021) 107260

journal homepage: www.elsevier.com/locate/quascirev

Contents lists available at ScienceDirect = QUATERNARY

SCIENCE REVIEWS

Quaternary Science Reviews

Volcanic climate forcing preceding the inception of the Younger N
Dryas: Implications for tracing the Laacher See eruption ot

P.M. Abbott * ", U. Niemeier °, C. Timmreck °, F. Riede €, J.R. McConnell ¢, M. Severi ¢,
H. Fischer ?, A. Svensson |, M. Toohey ¢, F. Reinig ", M. Sigl

2 Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
b The Atmosphere in the Earth System, Max Planck Institute for Meteorology, Hamburg, Germany

© Department of Archaeology and Heritage Studies, Aarhus University, Hajbjerg, Denmark

d Desert Research Institute, Nevada System of Higher Education, Reno, NV, USA

€ Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy

f Physics of Ice Climate and Earth, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

& Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Canada

" Department of Geography, Johannes Gutenberg University, Mainz, Germany

ARTICLE INFO

Article history:

Received 15 July 2021
Received in revised form
27 October 2021
Accepted 28 October 2021
Available online xxx

Handling Editor: Giovanni Zanchetta

Keywords:

Ice cores

Sulphate

Volcanic radiative forcing
Younger Dryas

Laacher See eruption

ABSTRACT

Climatic warming from the last glacial maximum to the current interglacial period was punctuated by a
~1300 years long cold period, commonly referred to as the Younger Dryas (YD). Several hypotheses have
been proposed for the mechanism triggering the abrupt inception of the YD, including freshwater
forcing, an extra-terrestrial impact, and aerosols from volcanic eruptions. Here, we use synchronised
sulphate and sulphur records from both Greenland and Antarctic ice cores to reconstruct volcanic forcing
between 13,200—12,800 a BPgjccos (years before 1950 CE on the Greenland Ice Core Chronology 2005;
GICCO05). This continuous reconstruction of stratospheric sulphur injections highlights a ~110-year cluster
of four major bipolar volcanic signals alongside several smaller events just prior to the YD inception. The
cumulative Northern Hemisphere aerosol burden and radiative forcing from this cluster exceeds the
most volcanically active periods during the Common Era, which experienced notable multidecadal scale
cooling commonly attributed to volcanic effects. The Laacher See eruption (LSE), recently redated to
13,006 + 9 cal a BP, falls within our time window of study and has been proposed as a trigger for the YD
but a direct volcanic imprint for the LSE in the Greenland ice cores has thus far proved elusive. Com-
parison of simulated sulphate deposition for mid- and high-sulphur LSE-type emission scenarios to the
ice-core estimated sulphate deposition and interhemispheric asymmetry ratios allows several signals
between 13,025 and 12,975 a BPgccos to be proposed as plausible candidates for the LSE. The magnitude
and persistence of volcanic forcing directly preceding the YD inception highlights the need to consider
stratospheric sulphur injections and their radiative forcing in future analyses and climate model ex-

periments used to explore the mechanisms that triggered this or similar abrupt cooling events.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

the timing of proxy responses and potential asynchronous re-
sponses, however, do not allow a chronozone to be defined for the

The last deglaciation was punctuated by the abrupt onset of a
~1300 years long millennial-scale cooling event, most commonly
referred to as the Younger Dryas (YD) in European sequences
(Mangerud, 2021) and Greenland Stadial (GS) 1 in the Greenland
ice-core chronostratigraphy (Rasmussen et al., 2014). Differences in
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event (Mangerud, 2021) and the YD and GS-1 may not necessarily
have been contemporaneous. This “event” left an imprint in many
global climate records, but most strongly in the northern mid- and
high-latitudes (Broecker et al., 2010; Cheng et al, 2020). The
mechanisms that contributed to the inception of the YD approxi-
mately 12,800 a BP and the environmental response are hotly
debated (e.g. Renssen et al., 2015), with three external mechanisms
most widely discussed in the literature: (1) freshwater forcing (e.g.
Berger, 1990; Broecker et al., 2010), (2) an extra-terrestrial impact
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(e.g. Firestone et al., 2007; Kennett et al., 2009; Petaev et al., 2013;
Sweatman, 2021) and (3) volcanic eruptions (e.g. Baldini et al,,
2018). All of these mechanisms may have triggered the strong
changes in Atlantic Meridional Overturning Circulation (AMOC;
McManus et al., 2004) encountered at that time of an, in general,
metastable AMOC state (Rahmstorf, 2002). The structure of the
climatic changes related to the YD has strong similarities to the
numerous millennial-scale climatic events characterising the last
glacial period (Mangerud et al., 2010; Rasmussen et al., 2014; Nye
and Condron, 2021). Therefore, improved understanding of the
mechanisms that triggered the YD inception may also contribute to
interpretation of similar large-scale climatic fluctuations in the past
and help assess the potential for such events in the future.

Testing different mechanisms for the YD inception, in isolation
or in combination, requires model simulations with boundary
conditions closely reflecting the environmental setting prevailing
at the time (Renssen et al., 2015). It has been shown that volcanic
eruptions can significantly impact the climate, with the sulphur
they emit converting into sulphate aerosols and causing short-term
local to global scale cooling (Robock, 2000; Timmreck, 2012). Im-
pacts may also be seen over longer decadal to centennial periods
due to positive feedback effects from sea-ice, glacier growth and
ocean—atmosphere heat exchanges (e.g. Church et al., 2005; Zhong
et al., 2011; Miller et al., 2012; Schleussner and Feulner, 2013) or
from potential impacts on AMOC. Coupling continuous analyses of
sulphate concentrations measured in polar ice cores to high-
precision chronologies for these archives permits the reconstruc-
tion of past stratospheric sulphur injections from volcanic erup-
tions that can be integrated in future model experiments (Sigl et al.,
2015; Toohey and Sigl, 2017). Here, we use synchronised records of
sulphate and sulphur from Greenland and Antarctic ice cores to
provide a well-dated reconstruction of spatio-temporal changes of
volcanic climate forcing for a critical time period during the Bglling-
Allergd/Greenland Interstadial (GI) 1a and prior to the YD inception
(13,200—12,800 a BP¢iccos)-

Our volcanic reconstruction also is relevant for tracing any evi-
dence of the Laacher See eruption (LSE) in the Greenland ice cores.
This eruption from the East Eifel Volcanic Field (Germany), with a
volcanic explosivity index (VEI; Newhall and Self, 1982) of 6, is one
of the largest known volcanic eruptions from Central Europe during
the Quaternary and has been proposed as a potential trigger for the
YD inception (Baldini et al., 2018). This proposition relied on the
widely accepted age for the eruption of ~12,880 + 40 a BP, based on
the position of the tephra in varved lake sequences (Brauer et al.,
1999), which placed the eruption just prior to the GI-1a/GS-1 cli-
matic transition, dated at 12,846 + 138 a BPgjccos in the Greenland
records (Rasmussen et al., 2014; Baldini et al., 2018). However,
Reinig et al. (2021) recently reported a new age for the LSE of
13,006 + 9 cal a BP, based on radiocarbon dating of subfossil trees
buried during the eruption. This redating places the eruption ~160
years prior to the climatic cooling in the Greenland records, which
is consistent with European lake sequences (e.g. Lake Mondsee and
Lake Ammersee; Fig. 1; Reinig et al., 2021). This would imply that
there was no direct causal link between the LSE and the YD
inception and cooling was synchronous over Greenland and Europe
(Fig. 1; Reinig et al., 2021).

A more direct synchronisation of European palaeoclimatic ar-
chives to the Greenland ice cores around the LSE would allow
further exploration of large-scale synchroneity of the climate
changes across the North Atlantic and the chronology of the
Greenland cores. The most robust method for tracing specific
eruptions in ice cores is the identification and geochemical char-
acterisation of volcanic tephra (see Abbott and Davies, 2012).
However, to date, no tephrochronological studies have identified
LSE deposits in any Greenland ice cores (Mortensen et al., 2005:
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Fig. 1. (a) Reconstruction of the volcanic stratospheric sulphur injection (VSSI) from
13,200 to 12,800 a BPgiccos. (b) Location map of the Greenland ice cores used in this
study, the Laacher See volcano and two alpine lakes recording the LSE and YD
inception. (c) 20-yr and annual resolution oxygen isotope (3'80) records from NGRIP
on the GICCO5 timescale (Steffensen et al., 2008; Rasmussen et al., 2014). Stratigraphic
position of the platinum anomaly in GISP2 from Petaev et al. (2013), who interpreted it
as evidence for an extra-terrestrial impact trigger for the YD. (d and e) Late Glacial
alpine 5'30 records from Lake Mondsee (Lauterbach et al., 2011) and Lake Ammersee
(von Grafenstein et al., 1999) that both clearly record environmental changes related to
the inception of the YD. The light orange bar denotes the time window focused on in
Fig. 2a and the dark orange bar the LSE search window. (a and c) are plotted on the
GICCO5 timescale with respect to 1950 CE. (d and e) are plotted on the 'C timescale cal
BP relative to 1950 CE. Panels (c—e) adapted from Reinig et al. (2021).

Cook, 2015). Candidate sulphate peaks also can be proposed based
on age and sulphur emission estimates (e.g. Zielinski et al., 1996)
and several peaks in the Greenland ice cores have previously been
suggested for the LSE (e.g. Brauer et al., 1999; Mortensen et al.,
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2005; Baldini et al., 2018; Svensson et al., 2020). Linking a sulphate
signal in ice to the LSE, however, is hindered by uncertainty
regarding the expected sulphate concentration strength, as esti-
mates of sulphur emitted during the eruption range between 3.5
and 150 Tg (Schminke et al., 1999; Textor et al., 2003). Moreover, the
prior propositions should be revisited due to the new LSE age. Here
we compare estimated sulphate deposition and interhemispheric
asymmetry ratios from our volcanic reconstruction, which spans
the new LSE age estimate, to simulated sulphate deposition for
mid- and high-sulphur emission scenarios for a Northern Hemi-
sphere (NH) mid-latitude LSE-type eruption to propose several
signals as plausible candidates for the eruption.

2. Methods

We used sulphate or sulphur measurements from four ice cores
— the Greenland Ice Sheet Project 2 (GISP2) and North Greenland
Ice Core Project (NGRIP) cores from Greenland and the EPICA
Dronning Maud Land (EDML) and West Antarctic Ice Sheet Divide
project (WD) cores from Antarctica — to reconstruct polar volcanic
sulphate deposition between 13,200—12,800 a BPgjccos (Table S1
and S2; Mayewski et al., 1997; Bigler et al.,, 2007, 2011; Severi
et al., 2007, 2015; McConnell et al., 2017). The time resolution of
the ice-core measurements range between multi-annual (~4 years)
for GISP2 to sub-annual for NGRIP and WD. Since sulphate depo-
sition onto the ice surface persists for 2—3 years following major
climate impacting eruptions, these events are detectable and their
sulphate loading quantifiable even at a 4-year resolution (e.g.,
Zielinski et al., 1997).

Common volcanic events were used to synchronise EDML and
WD on the annual-layer dated WD2014 chronology (Sigl et al.,
2016; Buizert et al., 2018) and GISP2 and NGRIP on the annual-
layer counted GICCO5 chronology (Rasmussen et al., 2006;
Seierstad et al., 2014). Using linear interpolation between common
chronological tie-points, GISP2 and EDML sulphate data were
remapped onto GICCO5 and WD2014 respectively. At ~13 ka BP, the
absolute age difference between WD2014 and GICCO5 is ~20—30
years, with WD2014 the “younger” chronology.

Annual mean sulphate concentrations were derived by inter-
polation for GISP2 and by averaging all values contained within a
year for NGRIP, WD and EDML; using the discrete GISP2 data
instead of annually resampled data would only marginally affect
the results. At the ice-core sites, sporadic volcanic sulphate depo-
sition is superimposed on background variability from other sour-
ces, such as mineral dust and marine biogenic emissions (Sigl et al.,
2013). Therefore, to distinguish volcanic sulphate from non-
volcanic sources we quantified the background signal and its
variability using established methods (Fischer et al., 1998; Gao
et al,, 2007; Sigl et al., 2014).

Thinning-corrected accumulation rates were used to quantify
sulphate mass deposition fluxes at the four ice-core sites (Table S1).
Further, we stacked the time-integrated cumulative volcanic sul-
phate fluxes from the same events in both Greenland and
Antarctica to derive Greenland and Antarctica composite records,
using a flux of 0 kg km~2 in cases where sulphate was only detected
in one ice core. For Antarctica, we applied a spatial weighting, 80%
EDML and 20% WD, following Sigl et al. (2014), to account for the
relative size of the vast East Antarctica plateau and that the EDML
record is a better representation of the aerosol deposition regime
for that region. Eruptions were defined as either “bipolar events”, if
volcanic sulphate is co-registered within relative age errors in
Antarctica and Greenland, or “unipolar events” if volcanic sulphate
is only detected in one hemisphere. Plausible eruption latitudes
were attributed to unipolar events (48°N or 37°S, the mean location
of Holocene eruptions with VEI>4 in the Global Volcanism Project
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(2013) catalogue). Aerosol modelling (Marshall et al., 2019; Toohey
et al., 2019) and ice-core studies (Toohey et al., 2016a; McConnell
et al., 2020) have indicated the possibility of volcanic sulphate
deposition following mid-latitude eruptions in polar regions of the
opposing hemisphere. In contrast to previous work, we therefore
assigned “bipolar events” with a strong hemispheric asymmetry in
sulphate deposition (i.e. asymmetry ratio >0.75) to the NH (i.e.
48°N). All other “bipolar events” were attributed to the low-
latitudes (i.e. 5°N). Then, using the methodology of Toohey and
Sigl (2017), we estimated the ice-sheet wide fluxes of volcanic
sulphate to Greenland and Antarctica and the volcanic strato-
spheric sulphur injection (VSSI in Tg of sulphur) with transfer
functions accounting for the spatial distribution of sulphate depo-
sition over each hemisphere (Gao et al., 2007). The VSSI values, the
Easy Volcanic Aerosol (EVA) forcing generator (Toohey et al., 2016b;
Toohey and Sigl, 2017) and the radiative forcing scaling factor from
Hansen et al. (2005) were used to estimate the stratospheric
aerosol optical depth (SAOD) and radiative forcing globally and
between 30 and 90°N (Table S3). We compared our final estimates
of ice-sheet wide sulphate flux, asymmetry of the sulphate burden
and estimates of VSSI for eight events (labelled V1—-V8) with the
corresponding estimates derived for three historic explosive
eruptions, two located in the tropics (Tambora, 1815 CE, 8°S, VEI 7;
Krakatau 1883 CE, 6°S, VEI 6 both in Indonesia) and one in the NH
mid-latitudes (Okmok, Alaska, 43 BCE, 53°N, VEI 6; McConnell
et al., 2020, Table 1a). We note that eruptions with lesser sul-
phate deposition only slightly exceeding predefined detection
thresholds in the ice core records have large uncertainties that
remain difficult to quantify.

Global sulphate deposition values recently have been simulated
for a NH mid-latitude Laacher See-type eruption (Niemeier et al.,
2021). The simulations were performed with the middle atmo-
sphere version of the general circulation model MAECHAMS5
(Giorgetta et al., 2006). MAECHAMS5 was interactively coupled to
the prognostic modal aerosol microphysical model HAM (Stier
et al, 2005), which calculates the sulphate aerosol formation
including nucleation, accumulation, condensation and coagulation,
as well as its removal processes by wet and dry deposition. This
allows the model to simulate the evolution of a volcanic sulphate
cloud (Niemeier et al., 2009). Background aerosols are simulated
from sulphur sources relevant for stratospheric background con-
centration, i.e. dimethyl sulphide and carbonyl sulphide, but
anthropogenic sources and wildfires are not included. A back-
ground simulation over 20 years was performed and subtracted
from the simulations presented in Niemeier et al. (2021). Here we
consider simulated sulphur deposition values from two emission
scenarios (15 and 100 TgS) which represent medium and high
scenarios for the wide range of petrologically-derived LSE sulphur
yield estimates (3.5—150 TgS; Schminke et al., 1999; Textor et al.,
2003).

3. Results and discussion
3.1. Volcanic forcing prior to the YD inception

Between 13,200—12,800 a BPgiccos our combined volcanic
reconstruction comprises 30 volcanic eruptions with a VSSI in
excess of 1 TgS (Figs. 1a and S1; Table S2; Sigl et al., 2021); a volcanic
event detection frequency slightly less than or comparable to prior
reconstructions for the Common Era (Plummer et al., 2012; Sigl
et al,, 2015). Of these events, 22 are classified as bipolar, seven
are only present in the Greenland records, and one was solely
identified in the Antarctic records (Table S2). A distinct cluster of
events can be identified between 12,980—12,870 a BPgccos with
four major bipolar volcanic signals identified in this relatively short
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Table 1

(a) Cumulative volcanic sulphate deposition in Greenland (Dg;) and Antarctica (Day) for major eruptions around the new radiocarbon date of the LSE (Reinig et al., 2021) in
comparison to the major eruptions of Okmok, Alaska and Tambora and Krakatau, both Indonesia. Ice-core ages are on the GICCO5 chronology (Rasmussen et al., 2006) (BP 1950)
and are based on previous volcanic synchronisation (Svensson et al., 2020; Buizert et al., 2018; Seierstad et al., 2014). Interhemispheric asymmetry ratio (Dg./(DgL + Dan)) of
atmospheric sulphate burden and estimated stratospheric sulphur infection calculated following Toohey and Sigl (2017). ®Based on age-transfer functions in Adolphi et al.
(2018). "The source and age of this eruption have been revised by McConnell et al. (2020). “Estimates based on data from the same four cores used in the current work
and processed with the same methodology. Estimates previously published in Toohey and Sigl (2017) and used data from a broader network of ice cores between 1 and 1900
CE. A complete list of all volcanic events is provided at https://doi.pangaea.de/10.1594/PANGAEA.930557. (b) Cumulative volcanic sulphate deposition in Greenland and
Antarctica for major eruptions around the new dendrochronological date of the LSE compared to simulated cumulative total sulphate deposition in nearby grid-points using 15
and 100 TgSO, emissions scenarios for the LSE.

(@)

Eruption GICCO5 age Within'Be age Greenland cum. volc. Antarctica cum. volc. Interhemispheric  Stratospheric sulphur injection =~ Reference
(a BP) constraints? S0% (kg km~2) [10] S03 (kg km~2) [10] asymmetry ratio (VSSI, TgS) [10]
\'4! 13023 yes 4 [+2] 2 [+1] 0.66 2 [+1] this study
V2 13013 yes 4[£3] 4[+1] 0.49 3[x1] this study
V3 12994 yes 9 [+3] 3 [+1] 0.74 4 [+1] this study
V4 12985 yes 6 [+3] 0 1.00 1[+1] this study
V5 12980 yes 227 [+64] 45 [£12] 0.83 91 [+25] this study
V6 12946 no 45 [+13] 34 [+9] 0.57 27 [+6] this study
\' 12914 no 26 [+7] 14 [+4] 0.65 13 [+3] this study
V8 12871 no 279 [+78] 63 [+16] 0.82 114 [+31] this study
Okmok  2002° nfa 127 [+36] 17 [+4] 0.88 48 [+16] this study®
Okmok 2002° n/a 100 [+28] 15 [+4] 0.87 39 [+16] Toohey and Sigl
(2017)4
Tambora 134 n/a 44 [+28] 52 [+13] 0.46 32 [+7] this study®
Tambora 134 n/a 38 [+28] 46 [+12] 0.46 28 [+5] Toohey and Sigl
(2017)4
Krakatau 67 n/a 17 [+5] 13 [+3] 0.57 10 [+2] this study®
Krakatau 67 n/a 18 [+5] 10 [+3] 0.63 9 [+2] Toohey and Sigl
(2017)4
(b)
Cumulative ice core SO4 deposition (kg km~2)
Model/Eruption GICCO5 age (a BP) GISP2 NGRIP WD EDML Greenland Antarctica Interhemispheric asymmetry ratio
LSE 100 Tg SO, model n/a 258 354 58 47 306 53 0.85
LSE 15 Tg SO, model n/a 35 40 7 4 38 6 0.87
V3 in ice cores 12994 16 [+3] 3 [+3] 4 [+1] 3[+1] 9 3 0.74
V5 in ice cores 12980 347 [+39] 107 [+13] 100 [+11] 31 [+4] 227 45 0.83

period (V5-8 on Fig. 2a). This cluster also was identified by
Svensson et al. (2020) in their volcanic synchronisation of
Greenland and Antarctica for the last glacial period and all were
postulated to be from low-latitude eruptions. The interhemispheric
asymmetry ratios reported here, however, show greater NH sul-
phate loading, for the first and last events (i.e. V5 and V8) compared
to the two central events (i.e. V6 and V7; Table 1a), thus suggesting
more northerly volcanic sources. The greater sulphate loading in
the Northern Hemisphere also is reflected in the reconstructed
SAOD between 30 and 90°N for these events and the global radi-
ative forcing is greatest for the V5 and V8 volcanic events (Fig. S2a;
Table S3). These inferences are consistent with the interhemi-
spheric asymmetry ratios for the three well-characterised explosive
eruptions of Okmok, Tambora and Krakatau (Table 1a). The sul-
phate emitted by the Okmok and Tambora eruptions had significant
impacts on global climate, lowering temperatures regionally by up
to 3 °C for several years following the events (Oppenheimer, 2003;
McConnell et al., 2020). Comparing VSSI values shows that, per
eruption, the atmospheric sulphate loading for the V5 and V8
events was more than double that for either the Okmok or Tambora
eruptions (Table 1a), suggesting that these events likely had an
impact on global temperatures.

The overall volcanic forcing for the 110-year cluster between
12,980—12,870 a BPgiccos is significant when compared to three
well-known volcanically active periods during the Common Era;
1783—1890 CE, 1171-1286 CE and 536—641 CE (Fig. S2b; Table S4).

These periods are similar in length and associated with notable cool
periods, e.g. the Little Ice Age and Late Antique Little Ice Age,
commonly attributed to volcanic effects on atmosphere, sea-ice and
ocean heat content (Sigl et al, 2015; Biintgen et al, 2020).
Comparing the volcanic reconstruction for these three intervals
from Sigl et al. (2015) and Toohey and Sigl (2017) to the time period
encompassing V5 to V8 shows that the cumulative VSSI was be-
tween ~1.6 and 2.4 fold greater and global SAOD and radiative
forcing was 1.3—1.4 times greater prior to the YD inception
(Table S4). The volcanic forcing prior to the YD was also relatively
more extreme in the NH, with cumulative NH sulphate loading and
NH SAOD both about 1.8—2 times greater than during the Common
Era periods (Table S4), and driven by the proposed source of the V5
and V8 events in this hemisphere.

Overall, this analysis shows there could have been a volcanic
influence on the inception of the YD, due to this distinct cluster of
events and the V8 eruption is the most likely event to have had a
singular influence, as previously suggested by Baldini et al. (2018),
as it occurred 25 years prior to the YD inception. However, it is
unlikely to be the sole mechanism as both the GI-1a/GS-1 transi-
tion, ~100 years in the Greenland record (Steffensen et al., 2008),
and the entire YD cooling, ~1300 years, are too long to be explained
exclusively by volcanic forcing. The volcanism could, however, have
triggered longer term positive feedbacks in the climate system
(such as changes in the AMOC) leading to prolonged cooling, as
previously suggested for the YD and other periods of cooling, such
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Fig. 2. (a) (i): Cumulative (i.e. event integrated) sulphate deposition in Greenland (D¢ ; from GISP2 (Mayewski et al., 1997) and NGRIP (Bigler et al., 2011)) and Antarctica (Dan; from
WD (Cole-Dai et al., 2021) and EDML (Severi et al.,, 2007)) between 13,050 and 12,850 a BP (GICCO5 chronology) and interhemispheric asymmetry ratio (Dg/(Dgr + Dan); (ii)
reconstructed stratospheric sulphur injection from volcanic eruptions. All ice cores are synchronised (Svensson et al.,, 2020; Buizert et al., 2018; Seierstad et al., 2014) on the GICC05
chronology (Rasmussen et al., 2006) and only eruptions > 1TgS are shown. Orange bars denote the LSE search windows based on age and estimated sulphur injection. (b)
Continuous sulphate, conductivity and dust records from the NGRIP ice core between 13,000 and 12,970 a BPgccos (Ruth et al., 2003; Mortensen et al., 2005; Bigler et al., 2011). Grey
bar denotes time range of tephra sample taken by Mortensen et al. (2005). Adapted from Reinig et al. (2021).

as those during the last glacial period (e.g. Zielinski et al., 1997;
Robock et al., 2009; Baldini et al., 2015, 2018). In line, independent
marine sediment Pa/Th data show that the YD occurred during a
sustained reduction of the Atlantic Meridional Overturning

Circulation (AMOC; McManus et al., 2004). The volcanic forcing
may have acted as a trigger for the subsequent cooling during a
period when the AMOC was more sensitive to external disturbance
than during the Common Era; a hypothesis that could be tested
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Fig. 3. Simulated sulphate deposition for (a) mid (15 Tg) and (b) high (100 Tg) sulphur emission scenarios for a NH mid-latitude Laacher See-type eruption. Circles represent the
location of the ice cores in this study and the magnitude of simulated sulphate deposition at those locations: (1) NGRIP (2) GISP2 (3) WD (4) EDML. The green squares show the
location of the LSE eruptive centre. Note the difference in colour scales between the panels.

with dedicated model experiments.

3.2. Tracing the Laacher See eruption

The distinct cluster of bipolar volcanic events identified within
our reconstruction occurred around the prior and recently pro-
posed ages for the LSE. Based on the prior age for the LSE
(~12,880 + 40 a BP) and their assumption that ~83 Mt SO, was
emitted, Baldini et al. (2018) suggested that the V8 event represents
sulphate deposition from the LSE. However, the new age does not
support this proposition. Using the new LSE age and uncertainties
in the Greenland ice-core chronology during GI-1a of —12/+21
years, based on comparison to U/Th dating from Adolphi et al.

(2018), we propose that the search window for the LSE in the
Greenland cores can be revised to between 13,025 and 12,975 a
BPgiccos (Figs. 2a and S3). Five of the volcanic events in our
reconstruction occurred during this period, V1—V5, and could be
candidates for the LSE (Fig. 2a). The VSSI of the V1, V2 and V4 events
are less than the estimated sulphur emissions for the LSE, therefore,
it is unlikely that these signals represent deposition from that
event. The VSSI for both V3 and V5 fall within the range of sulphur
dioxide emission estimates for the LSE (Fig. 2a). Comparing the
spatial distribution of sulphate deposition, the VSSI and inter-
hemispheric asymmetry ratios for these events to the simulated
LSE-type eruption scenarios shows that V5 has strong similarities
to the high-sulphur emission scenario while the V3 event is
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comparable to the mid-emission scenario (Table 1b; Fig. 3).
Therefore, based on the age and emission parameters, both are
plausible candidates for the volcanic imprint of the LSE.

The V5 event was proposed as a potential candidate for the LSE
by Brauer et al. (1999). This was challenged by Mortensen et al.
(2005) because they isolated tephra shards from the NGRIP ice
core associated with the V5 sulphate peak similar in composition to
the products of the Hekla volcano in Iceland (Fig. 2b). Closer in-
spection of the high temporal resolution sulphate concentrations
from NGRIP, however, reveals two peaks in sulphate concentrations
which could indicate that the V5 sulphate concentration signal
represents sulphate deposition from two volcanic eruptions closely
spaced in time (Fig. 2b). The older sulphate peak has a coeval peak
in insoluble particle concentrations, which may be indicative of
tephra presence (e.g. McConnell et al., 2020; Abbott et al., 2021),
while a particle peak is not associated with the younger, and larger,
sulphate peak (Fig. 2b). As the prior tephra sampling resolution
covered both sulphate peaks, the stratigraphic relationship be-
tween the sulphate and tephra deposition is unclear but could be
resolved with more detailed tephra investigations. Therefore, the
tephra evidence of Mortensen et al. (2005) does not definitively
rule out V5 as a plausible candidate for the LSE. Focussed tephra
investigations using higher resolution and higher volume sampling
may yet uncover LSE deposits in the Greenland ice cores. However,
it is acknowledged that such investigations may never be successful
as to date no tephra from continental European volcanic sources
has been identified definitively in these records (Abbott and Davies,
2012; Cook, 2015; Plunkett et al., 2020, 2021).

4. Conclusions

Our 400-year volcanic reconstruction just prior to the inception
of the YD identified 30 volcanic eruptions, including a distinct
cluster of four major bipolar events between 12,980 and 12,870 a
BPgiccos. The overall volcanic forcing from this cluster was greater
than during well-known volcanically active periods of the Common
Era associated with distinct climatic cooling. This reconstruction
can now be used in model investigations of the potential causes of
the YD inception. Moreover, our results suggest that the magnitude
and persistence of volcanic forcing directly preceding large scale
climatic cooling need to be considered when exploring the mech-
anisms triggering abrupt cooling events during times of metastable
AMOC conditions. Using a new age for the LSE we conclude that
two volcanic eruptions, dated 12,994 + 140 and 12,980 + 140 a
BPgccos respectively, may be plausible candidates for an imprint of
this eruption in the Greenland ice cores, however no unambiguous
evidence for a LSE imprint in Greenland exists to date. This could be
explored further through focused tephra investigations, improved
constraints on sulphur dioxide emissions from proximal LSE de-
posits, and sulphur isotope analysis on the Greenland ice to
constrain atmospheric transport pathways for the sulphate (e.g.
Burke et al., 2019).
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