IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. MARCH, 2022 1

Modeling of Critically Ill Patient Pathways to
Support Intensive Care Delivery

William Trevena!, Amos Lal?, Simon Zec2, Edin Cubro?, Xiang Zhongl, IEEE Member, Yue Dongz, and Ognjen
Gajic?

Abstract—The COVID-19 pandemic has exposed long standing
deficiencies in critical care knowledge and practice in hospitals
worldwide. New methods and strategies to facilitate timely and
accurate interventions are needed. A virtual counterpart (digital
twin) to critically ill patients would allow bedside providers to
visualize how the organ systems interact to cause a clinical
effect, offering them the opportunity to evaluate the effect of
a specific intervention on a virtual patient before exposing an
actual patient to potential harm. This work aims at developing
a digital simulation that models the clinical pathway of critically
ill patients. Using the mixed-methods approach with the support
of multiprofessional clinical experts, we first identify the causal
and associative relationships between organ systems, medical
conditions, clinical markers, and interventions. We record these
relationships as structured expert rules, depict them in a directed
acyclic graph (DAG) format, and store them in a graph database
(Neodj). These structured expert rules are subsequently utilized
to drive a simulation application that enables users to simulate
the state trajectory of critically ill patients over a given simulated
time period to test the impact of different interventions on patient
outcomes. This simulation model will be the engine driving a
future digital twin prototype, which will be used as an educational
tool for medical students, and as a bedside decision support tool
to enable clinicians to make faster and more informed treatment
decisions.

Index Terms—Critical care, Patient pathway, Digital simula-
tion, Graph model.

I. INTRODUCTION

IMELY and accurate treatment is essential to achieve
Tthe best outcomes for many life-threatening conditions.
In trauma patients, the opportunity to institute an early and
effective treatment is often called the “golden hour” [1], [2].
Similarly, aggressive correction of shock and organ dysfunc-
tion during the first day, or “silver day,” was found to decrease
patient length of stay and improve health outcomes [3]. Poor
outcomes in sepsis, pneumonia, and other common intensive
care syndromes were reported to be at least in part due to
delayed recognition and management (‘“failure to rescue”) [4].
To mitigate this situation, diagnostic and therapeutic fidelity in
the early hours of critical illness is paramount. Accurate data-
and expert-guided treatments and less erroneous ‘“treatment
trials” are needed [5]. A virtual counterpart (digital twin) to
the critically ill patients with decision support capabilities can
potentially address these needs.
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Digital twins, since their emergence, have been used to
address a variety of diverse challenges in healthcare [6], [7],
[8], [9]. A digital twin of patients (or virtual patients) is
expected to replicate or simulate what happens during the
interaction between a patient and the health care system.
Previous works have successfully utilized virtual patient sim-
ulations to train medical professionals of various specialties
for a variety of clinical settings [10], [11], [12]. Although
moderate effectiveness in practice was identified (as shown
in [10]), many commonly utilized virtual patient simulation
architectures only progress along a limited number of pre-
defined, handcrafted pathways. For example, linear text-based
scenarios (TBS) and looped, branch serious games (SG) have
been widely adopted [13].

In the case of linear TBS virtual patient simulations, the
patient progresses along a pre-defined linear pathway that is
always the same regardless of the decisions made or actions
taken by the student. Students have an extremely limited
ability to learn from their mistakes since the simulation
progresses the same way regardless of the actions taken
by the student. Alternatively, in the looped, branch SG, the
patient progresses along one or more handcrafted pre-defined
pathways or branches of a decision tree based on the decisions
made by the student. Although the simulation progresses
differently based on the actions taken by the student, instead of
having to select a treatment from a large number of options (or
choose to provide no treatment) as necessary in a real clinical
setting, in the looped, branch SG, students are only allowed
to select a treatment decision from a small pre-defined set of
options (i.e., multiple choice). Consequently, the student can
only learn from a limited number of potential scenarios and
their associated pre-defined clinical outcomes.

To date, we are unaware of any non-linear or non-decision
tree based data-driven computational simulation models in
medical education that allow medical students to dynamically
make arbitrary treatment decisions without being restricted to
selecting treatment decisions from a limited number of options
that are supported by handcrafted pre-defined pathways. Such
data-driven computational virtual patient simulation models
are necessary to provide medical students with a more realistic
or near real-life experience of treating patients in critical care
where they will need to make rapid treatment decisions by
evaluating a large number of possible treatment options in
real time. Such models will be pivotal in transforming medical
education by increasing the knowledge, competency, and skill
level of medical students, and by helping them become more
mindful of the consequences of their actions to reduce the
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likelihood of them making dangerous treatment errors in real-
life practice [14]. Furthermore, the majority of current virtual
patient simulations are designed for static educational use,
whereas computational simulation models can potentially be
utilized in an additional capacity as bedside decision support
tools. These models have the potential to identify optimal treat-
ments in real time through simulation-based optimization, and
they could potentially be utilized within an ensemble approach
alongside previously introduced multivariate prescriptive pre-
diction models used to guide personalized precision treatment
planning (such as those discussed in [15]).

In this work, we propose a digital twin prototype of
critically ill patients simulating the actions and interactions
of major organ systems (cardiovascular, neurologic, renal,
respiratory, gastrointestinal, inflammatory, and hematology),
modeled as autonomous agents based on the causal and
associative relationships between organ systems, medical con-
ditions, clinical markets, and interventions. It should be noted
that the proposed digital twin is not designed to be used
explicitly for diagnosis; rather, it is designed to be used to
recreate and predict the future state of the patient of interest
based on both the current state of the patient and a set of
treatments or interventions that have been administered or
are under consideration. The state of the patient (in terms of
their clinical markers) and the execution of the expert rules
driving the simulation are primarily dependent on the time,
medication, and medication doses that are administered at each
time step of the simulation (among other factors).

Taking advantage of clinical expertise at the Mayo Clinic
and granular electronic health record (EHR) data, we have
developed and validated a simple computational simulation
model of sepsis patients [16]. To enable the modeling of
general critically ill patients to support both medical student
training and decision support at the bedside, this paper in-
troduces a novel directed acyclic graph (DAG)-driven virtual
patient simulation architecture powered by a fast and scalable
graph database (Neo4j). DAGs serve as flexible, efficient, and
interpretable graphical tools that provide a visually friendly
way to represent and understand key relationships (e.g., how
the organ systems interact to cause a clinical effect). Compared
to the “black-box” type of simulation, the DAG approach
enables users to view relationships in a graph format to assist
with their understanding. However, management of numerous
DAGs and using them to efficiently and effectively drive a
patient simulation is an imperative challenge. A graph database
is therefore adopted to store, query, and analyze the DAGs. By
storing the expert rules in a graph database, we strive to realize
three benefits: (1) the expert rules driving the simulation can
be updated by medical practitioners without the need to change
any application code; (2) we reduce the size of the application
and the amount of storage space consumed on the client; and,
(3) we speed up the application by offloading to the database
the determination of which rules are applicable at each time
step. These properties are critical to the success of future,
large-scale, and adaptive digital twin development.

In what follows, we provide detailed descriptions regarding
the expert rules (Section II), the data structure (Section III),
the simulation development and validation (Section IV), and
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Fig. 1. An example of a directed acyclic graph (DAG) depicting complex
pathophysiologic interactions in sepsis-associated multiple organ dysfunction
originally published in [16]. AKI = acute kidney injury, ARDS = acute
respiratory distress syndrome, CAM-ICU = confusion assessment method for
ICU, CO = cardiac output, CO, = serum carbon dioxide, DIC = disseminated
intravascular coagulation, DO, = arterial oxygen delivery, GCS = Glasgow
Coma Scale, Hb = serum hemoglobin, HR = heart rate, INR = international
normalized ratio, IVC = inferior vena cava, KPP = kidney perfusion pressure,
LV = left ventricle, MAP = mean arterial pressure, RR = respiratory rate,
RV = right ventricle, ScVO, = central venous oxygen saturation, SV = stroke
volume, SVR = systemic vascular resistance, T = temperature, VO, = oxygen
uptake, VTE = venous thromboembolism.
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the limitations and future directions (Section V).

II. EXPERT RULES

Expert rules herein define the effects that variables have
on each other (e.g., how changing heart rate impacts blood
pressure), and various causes (interventions and interactions)
that lead to certain effects on organ systems reflected by
clinical markers. We use the term “clinical markers" to de-
scribe a patient’s vitals, physiological signs, and biomarkers
that can be objectively measured (e.g., heart rate) or observed
(e.g., imaging results). Organ systems and their corresponding
clinical markers are the same for all patients. However, for
different medical conditions, the importance of each clinical
marker might differ (e.g., the blood pressure clinical marker
would be more important for a patient with hypertension than
for a patient without any cardiovascular diseases). Therefore,
for a particular medical condition of interest, we prioritize
characterizing the most relevant clinical markers that are
directly impacted by the medical condition, or that are related
to the symptoms used to diagnose the condition to reduce
information overload. To systematically define the expert rules,
we employed a mixed-methods approach with the support of
multiprofessional clinical experts from the Mayo Clinic and
the Society of Critical Care Medicine Discovery Research
Network. The causal and association relationships were mainly
derived using clinical data and available literature supporting
the current standard of clinical practice including textbook
chapters, critical care board reviews, and original research
articles [16].

Because the number and complexity of the expert rules
is very high, simulating these rules has historically been
computationally prohibitive. To manage the expert rules in an
efficient and effective way to enable the real-time simulation of
patient pathways, we further depict the relationship of organ
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Patient's state represented by over 80 clinical markers that change in each time
step of the ICU timeline according to the rules
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Fig. 2. Overview of the expert rules and patient simulation.

systems, medical conditions, clinical markers, and interven-
tions in a DAG format with nodes and edges representing
variables and relationships. For example, Figure 1 demon-
strates a DAG depicting complex pathophysiologic interactions
in sepsis-associated multiorgan dysfunction. The yellow boxes
represent “Concepts," or medical conditions, the boxes with
red solid border represent “Actionable clinical points," and the
boxes with red interrupted border represent “Semi-actionable
clinical points." As evident in Figure 1, a low mean arterial
pressure (MAP) will lead to a low kidney perfusion pressure,
which will ultimately lead to acute kidney injury (AKI).

We further created the following classes of nodes, based on
a hierarchical order: (1) measurable/actionable clinical mark-
ers; (2) symptoms; (3) medical conditions; and (4) graduated
clinical interventions.

1) Measurable/actionable clinical markers. This class in-
cludes patients’ vitals, physiological signs, and biomark-
ers. These clinical markers are typically measurable
(objective). To ensure a manageable state space for
a patient simulation, clinical markers are color coded
as “white,” “yellow,” and “red.” White color indicates
a normal value of the clinical marker. Yellow color
indicates a disturbance in the clinical marker that needs
to be closely monitored, but no immediate action is
required. The color red characterizes a disturbance that
needs to be acted upon immediately in order to prevent
deterioration of the patient’s condition. Examples of this
class include respiratory (respiratory rate, oxygen satura-
tion, etc.), cardiovascular (MAP), heart rate, arrhythmia,
etc.), neurologic (e.g., Glasgow Coma Scale (GCS)),
fluid (pH, electrolytes, etc.), and immune homeostasis
(inflammatory biomarkers such as C-reactive protein |,
white blood cell count, etc.), among other organ system
clinical markers.

2) Symptoms. This class of nodes includes patients’ symp-
toms that are difficult to measure or quantify. Examples
include vomiting, diarrhea, and brain swelling.

3) Medical conditions. We define a medical condition as a
“concept” (denoted by the yellow boxes in a DAG, see
Figure 1) that represents a pattern of clinical markers.
These patterns of clinical markers are easily recognized
by expert medical practitioners from their extensive

clinical experience. Each concept can be affected by
various clinical scenarios in our model. Specifically,
each clinical scenario represents a situation where one or
more of a patient’s organ systems are initially compro-
mised in some way (e.g., a patient is having respiratory
problems). Each clinical scenario is defined in terms
of the initial abnormal clinical markers that a patient
afflicted by the clinical scenario will have upon starting
the simulation. These clinical markers will then change
as per our expert rules and form state trajectories that
will describe the patient’s condition. Examples include
severe pneumonia resulting in respiratory failure or
acute liver failure resulting in acute brain failure and
encephalopathy.

4) Graduated clinical interventions. Interventions are clas-
sified into three states: “Not_Given," “Low_Dose," and
“High_Dose." For instance, for a critically ill patient
with hypertension, we expect that administration of
vasopressors would improve the MAP from red (very
low) to yellow (low), or from yellow (low) to white
(normal) range. Examples of this class include nutrition,
medications (including antibiotics, vasoactive agents,
cardiac drugs, anesthetics, and sedatives), noninvasive
or mechanical ventilation, IV fluids, source control (en-
doscopic retrograde cholangiopancreatography, abscess
drainage, etc.), or blood product transfusion.

Clinically, any effect on the human body (or change in
patient states) is considered as either a primary action or a
secondary action. Primary actions are the causal and dominant
effects which cause a disturbance in clinical markers, and
which lead to the more significant consequences or adverse
changes in clinical markers. Secondary actions are usually
caused by primary actions or are correlated with causal vari-
ables. By definition, some clinical markers, such as heart rate,
blood pressure, and respiratory rate can either cause or be
affected by an expert rule. Low blood pressure, for example,
can be changed by other clinical markers (where a change in
blood pressure is the effect), but low blood pressure can in
other rules be a causal variable that will induce a change in
other clinical markers. In addition, an event causing one state
transition can trigger a sequence of other events or exert a
cascading effect. For example, when modeling a sepsis patient,
five homeostatic mechanisms are key to sepsis progression:
a) fluid volume & composition, b) acid-base homeostasis, c)
clotting and bleeding, d) Oxygen delivery and consumption,
and e) inflammation and immunosuppression. In this case (and
many others), the nodes in the graph database representing the
expert rules form a densely connected network with multiple
layers.

III. GRAPH DATABASE DEVELOPMENT

We currently have developed nearly 300 expert rules and 20
DAGs compartmentalized based on organ systems or medical
conditions, and we expect to continuously expand and refine
these expert rules. Given the high-dimensionality in terms of
the number of nodes and edges in the expert rule DAG and the
evolving nature of expert rule development (e.g., because of
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enhanced clinical knowledge, a new clinical discovery, or the
emergence of a new medical condition like the coronavirus
disease), we need an approach that allows us to quickly
query the rules, visualize the relationships (to help reconcile
conflicting rules and support human cognition), and also
to ensure satisfactory scalability and flexibility (e.g., adding
many new rules over time).

For these reasons, we decided to use a graph database to
store and represent the expert rules. A graph database stores
nodes (vertices) and relationships (edges) instead of tables,
or documents. We chose Neo4j as the graph database man-
agement system [17]. In Neo4j, information is organized as
nodes, relationships, and their properties. Nodes are the entities
in the graph. Nodes can be classified into distinct groups by
tagging all nodes in each group with a common “label" (e.g.,
“Intervention"). Furthermore, nodes can be assigned properties
(e.g., “Name"). Relationships provide directed connections or
edges between two node entities, and like nodes, relationships
can be easily classified into distinct groups by defining a
distinct relationship “type" for each specific group or class
of relationships (e.g., “Impacts"). Relationships always have
a direction, a type, a start node, and an end node. Like
nodes, relationships can also be assigned properties (e.g., “Im-
pact_Strength"). By using labeled nodes and different types of
relationships, it is possible to perform complex queries such as
starting at all nodes with a specific label (e.g., “Intervention"),
and then traversing all relationships of a specific type (e.g.,
“Impacts") to obtain all neighboring nodes of another distinct
type (e.g., “Clinical_Marker").

The challenge is to develop a formal way to code the
expert rules, e.g., what should be considered as nodes or
relationships, and, what properties should be defined for each,
as the nodes and relationships have various types (e.g., organ
system based, interventions, etc.), and could also involve time,
probability, and constraints. Below we describe the details
regarding how the expert rules are structured and managed
in the graph database. This demands a multidisciplinary effort
since we need to ensure the fidelity of the expert rules and
simultaneously allow them to be efficiently stored and queried.

First, independent expert rules are created by medical prac-
titioners as rows in a spreadsheet. The expert rules are then
exported as a CSV file, and by using Neo4j’s LOAD CSV
feature, we automatically create nodes and edges representing
the rules in the Neo4j graph database. A team of medical
practitioners define rules in a shared spreadsheet in the format
shown in Table I.

Each rule is first activated by a change in a single “trig-
gering” clinical marker or intervention, and each rule causes a
new incremental change in a single “impacted” clinical marker
when all conditions for the rule are satisfied. For example,
a decrease in MAP will cause an incremental increase in
heart rate as long as a patient is not being administered a
fentanyl drip. As shown in Table I, each row of the spreadsheet
represents a different independent rule. The triggering clinical
marker or intervention for each rule is stored in the “Cause”
column and the impacted clinical marker is stored in the
“Effected_Clinical_Marker” column.

Since a single clinical marker can have a varying effect on

the human body depending on how it changes, we need to
clearly define the way that the triggering clinical marker must
change for each rule to be triggered. For each rule, this is
defined by the valid starting state(s) and ending state(s) of
the triggering clinical marker. The valid starting state(s) and
ending state(s) are stored in the “Previous_State_Of_Cause”
and “New_State_Of_Cause” columns, respectively. For inter-
ventions which trigger these rules, the valid starting state(s)
and ending state(s) indicate whether or not the intervention has
been given to the patient, and when applicable, the amount that
has been given. When an intervention has not been given to a
patient, the state of the intervention will be “Not_Given.”

For each rule, the incremental amount that the impacted
clinical marker should change is stored in the “Impact” col-
umn. Since our initial model is discrete (e.g., color coded),
the effect of each rule on the impacted clinical marker is
represented by one of the following integers: (-2,-1,1,2). Here,
based on the clinician inputs regarding vital specific normal
value ranges, negative integers represent a decrease in the
value or level of the impacted clinical marker, and positive
integers represent an increase in the value or level of the
impacted clinical marker. Here, -2 (resp. 2 ) represents a
decrease (resp. increase) of two levels while -1 (resp. 1)
represents a decrease (resp. increase) of only one level. For
example, if a rule had an impact value of -2 and the impacted
clinical marker was the patient’s GCS score, when this rule
is applied, the patient’s GCS score would decrease by two
levels, e.g., from yellow high to yellow low in a future state
based on the time lapse it needs to be effective. Then, the GCS
score will remain in that state unless another triggering event
happens.

For a rule to be activated, during the most recent update
of the simulation, the triggering clinical marker must have
moved from one of the valid starting states to one of the valid
ending states defined in the rule. Additionally, any relevant
conditions defined in the rule must be satisfied. We divide
the additional relevant conditions for each rule into three
categories: (1) simple conditions, (2) complex conditions, and
(3) timed conditions. We define simple conditions as one
or more independent conditions which all must be satisfied
for a rule to take effect. Simple conditions are stored in the
“Simple_Cond” column. For example, consider the following
rule:

o Cause: “Glucose”

o Previous_State_ Of Cause: “White”

o New_State_Of Cause: “Red_Low”

o Effected_Clinical_Marker:
“Glasgow_Coma_Scale (GCS)”

o Impact: -2

o Simple_Cond: {“Glucagon” : “Not_Given”}

Here, the triggering clinical marker is the patient’s glucose
level, and this rule is only valid for cases where the patient’s
glucose drops from “White” (a healthy level of glucose)
to “Red_Low” (a dangerously low level of glucose). The
impacted clinical marker in this rule is the patient’s GCS score,
and when this rule is applied, the patient’s score is dropped
two levels as indicated by the “Impact” value of -2. Here, we
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have a single simple condition which states that the patient
must not be receiving an injection of Glucagon.

We use the term “complex conditions” to describe con-
ditions which are satisfied if at least one of a possible set
of conditions is satisfied. For example, a single complex
condition could state that at least one of the following must
be true: (1) a patient’s MAP is not at an abnormally low level;
(2) the patient is being administered norepinephrine.

We use the term “timed conditions” to describe conditions
which must be true for a certain amount of time for a rule to be
applied. For example, consider a rule which causes an increase
in Creatinine and is triggered by a low urine output. Since a
patient must have a low urine output for an extended duration
before a patient’s Creatinine level is increased, such a rule
could have a timed condition which requires that a patient’s
urine output is abnormally low for at least 24 hours.

If all of the conditions for a rule are satisfied, we then
apply the rule with the probability listed in the “P" column.
We utilize this to maintain a level of stochasticity in the
simulation model. The probability herein characterizes the
chance that a certain change in the human body will occur
(e.g., a high probability could represent higher than 80%, a
moderate probability is between 30% and 80%, and a low
probability is below 30%). The current values are from expert
input based on domain knowledge and past observations.

Following the evaluation of all conditions and the prob-
ability, we then start a countdown timer based on the time
in the “Time_Until_Effect” column (in minutes). This column
describes how long the simulation should wait before applying
the rule once all conditions have been satisfied. For rules
that have timed conditions, the countdown of the time in the
“Time_Until_Effect” column only begins after all timed con-
ditions have been satisfied. For example, if a timed condition
required that urine output is low for more than 24 hours, once
the 24 hours period has passed, then the countdown for the
time in the “Time_Until_Effect” would begin. In addition, for
rules that do have timed conditions, we leave a value of zero
in the “Time_Until_Effect” column.

In summary, in the graph database, the causal and asso-
ciation relationships are featured by the following properties
(1) probability (e.g., deterministic vs. probabilistic); (2) onset
time (i.e., time until effect); (3) direction and intensity (e.g.,
decrease or increase 1 or 2 levels); (4) condition (e.g., timed
condition); and (5) additional necessary constraints for a rule
to take effect. This database structure is carefully crafted,
which allows us to capture the majority of the common
rules using a systematic format, and enables us to customize
each expert rule based on the applicability of each property.
This modeling approach ensures the scalability and flexibility
of expert rule storage and efficient query by the simulation
application.

IV. PATIENT SIMULATION

The expert rules are utilized to drive an agent-based sim-
ulation application that enables users to simulate the state
trajectory of critically ill patients (e.g., urosepsis or pneumonia
patients) over a desired time period (see Figure 2). Both a web

and mobile (i0S) version of the simulation application are
under development. A proof of concept for the interface of
the web version is shown in Figure 3. The user will first load
a clinical scenario (e.g., a medical condition like pneumonia,
kidney failure, etc.). Then, the interface will present the
patient’s basic information recorded during the admission. The
application will allow users to simulate actions (e.g., clinical
interventions) and interactions of major organ systems and
their impacts on patient health states in the desired patient
timeline (e.g., first 24 hours after admission). We assume that
patients are always in one of a finite number of discrete health
states, and they move from one state to another according to
probabilities that depend on the current state of their overall
health and the health care system. A computational patient
simulation architecture was developed to integrate the expert
rules stored in the graph database with agent-based modeling
techniques. Below we briefly describe the major components
for agent-based simulation that distinguish our model and
allow it to perform more intuitively.

A. Modeling agent behaviors

Organ systems are considered as the autonomous agents.
Their states are represented by high priority clinical markers
identified as detailed in Section II. The transition of the states
(e.g., increased heart rate, decreased urine output, decreased
GCS, and dozens of others) will be triggered due to an
intervention (e.g., a medication that has been given), jointly
determined by the previous and current states of all associated
major organ systems, and the baseline health state (evaluated
based on variables like age, previous illnesses, alcohol use
disorder, and smoking) by executing the expert rules.

We consider a Bayesian network model with relevant
clinical markers as nodes in the network, and compute the
probability of being at a certain level (e.g., red high or yellow
low) of the “affected clinical marker" based on the status
of its parent nodes (causes). Most of the rules exhibit the
Markovian property, i.e., we mainly track the previous state
and the new state of the causes to determine the effect. For
those rules that do not possess the memoryless property, we
introduce complex conditions and timed conditions. Before
computing the state of the clinical marker, we will check all
the related conditions to ensure these conditions are satisfied.
Then, we further apply the chain rule of probability, or use ad
hoc conditional probability tables based on additional input
from experts. Finally, we sample the new state based on the
calculated probability distribution. The behavior of the whole
system of the human body then emerges according to these
state transitions.

The patient timeline for the simulation is divided into
carefully chosen steps, and all predictions are made for the
patient health state in the next step. As we aim to model
critically ill patients, after their ICU admission (7p), the patient
timeline is focusing on “golden hours” (every 15 minutes for
the first hour, hourly for the first 6 hours, 12-hour interval
for the first day and followed by 24 hour intervals thereafter)
until 1 week (7 days) after admission (see Figure 2). Also,
the timeline will be allowed to reset if there is a significant
clinical event that takes place anytime during the treatment.
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Previous New Effected Time

_State_ _State_ _Clinical _Until Simple Complex Timed
Cause Of_Cause | Of _Cause | _Marker | Impact P _Effect _Cond _Cond _Cond

{MAP : White,
MAP : Yellow_High,
MAP : Red_High,
{Glucose : Red_Low, NE : Given},
Given_ High_ Propofol : Not_Given, {Brain_Swell : NA,
Glucose | Not_Given Dose GCS 2 1.0 | 15min | Fentanyl : Not_Given} Mannitol : Given} NA
TABLE T

THE DATA STRUCTURE OF THE EXPERT RULES. GCS = GLASGOW COMA SCALE, MAP = MEAN ARTERIAL PRESSURE, NE = NOREPINEPHRINE.

B. Graph database integration

The patient’s current state, previous states, and the inter-
ventions selected are recorded at each step of the simulation.
They are used as arguments when querying the database to
determine what expert rules should be applied to “predict” the
next states of the simulated patient. An interface between the
main simulation application and the graph database has been
developed. The “expert rule book" (i.e., the graph database)
will be queried at each time epoch to update the agent’s states.
The input includes the current states and the “delta" (i.e.,
the change in states between the current and previous time
epoch) of the measurable clinical markers, the interventions (if
applicable), and other case-specific information. The outputs
are the relevant probabilistic relationships that define the
interactions and the impact on all organ systems. Based on
calculations using the Bayesian network model, the states of
the patient will be updated, and the time advances to the next
time epoch.

To fully characterize the patient states, joint effects have
to be handled, and currently, we are considering different
approaches. Many medical conditions happen individually
(when they happen simultaneously, e.g., multi-organ failure,
they typically correspond to a broader medical condition,
e.g., sepsis). For these medical conditions, the DAG already
considers the possible interaction of the related organ systems
and biomarkers. For rules with complex conditions, it could be
possible that only one rule will be effective at one time, or one
rule will dominate the others. In rare situations, multiple rules
could simultaneously change the same clinical marker, even in
different directions. Assuming that all relevant conditions and
constraints are satisfied, in the event that multiple rules im-
pacting a single clinical marker are activated simultaneously,
we hypothesize that the impact that is applied is the sum of
their incremental changes. Note that by defining the impact
of each rule as an incremental change, the resolution of the
impact is actually low, and the states are changed in an ordinal
fashion (e.g., white/normal, yellow/disturbance or red/major
disturbance). In reality, the states could represent a range of
numerical values (e.g., heart rate between 60 and 100 beats
per minute is considered to be normal) and the joint effect
might not be simply linear. The current assumption is made
to make the model tractable while achieving an acceptable
level of fidelity. The team is working to further validate this
assumption by analyzing clinical data. Non-conforming and
special scenarios will be handled on a case-by-case basis.

Joint effects of multiple clinical markers might eventually
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Fig. 3. User interface of the patient simulation application.

lead a clinical marker to its highest value (typically red high)
or lowest value (typically red low). Once a clinical marker
reaches one of its extreme ranges, our simulation model will
maintain that range in case of any further advance in that (high
or low) direction. For example, the red high range for heart
rate is between 130 and 200 beats per minute. Once a heart
rate reaches this red high range, the model will keep a heart
rate in this range even if a change in another clinical marker
triggers a rule which attempts to further increase the heart
rate. The main program continuously checks the validity of
the simulation states to ensure their values will not go beyond
the maximum or minimum possible values.

C. Model verification and validation

Our hypothesis is that the digital twin patient model will
accurately represent the response to treatment of critical ill-
ness prospectively observed in real patients. The computer
simulation model will be verified through a structured process.
Each sub-module (cardiovascular, oxygenation and ventilation,
neurological, etc.) will be tested independently followed by
the entire simulation model. The inputs will be first set to
deterministic values to check whether the program functions
as the expert rules dictate. Output data will be descriptively
summarized using frequencies and percentages for categorical
data, and median and interquartile ranges for continuous
variables. After the completion of debugging during alpha
testing, we will proceed with the silent testing of the model
where model outputs will not be known to bedside clinicians.
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Fig. 4. Validation and refinement of the digital twin patient model through
continuous feedback combining quantitative and qualitative approaches.

In our preliminary work [16], we have successfully vali-
dated a digital twin model of sepsis patients in the first 24
hours of admission. We expect to extend the previous data
collection effort and prospectively validate the performance of
this model. Demographic data and clinical data points needed
for the study will be abstracted from the electronic medi-
cal records or directly from the previous database. Patients’
baseline data and clinical data points will be used to define
clinical markers’ states. Each organ system will be validated
individually followed by the validation of the entire virtual
patient simulation. Treatment response will be observed in
a sample of patients with sepsis and other critical illnesses
admitted to the ICU from the emergency department. The
response of the virtual patient will be measured against the real
patient response (gold standard). For example, for a critically
ill patient with hypotension, we expect that administration of
vasopressors would improve the mean arterial pressure (MAP)
from red (very low) to yellow (low) or from yellow (low)
to white (normal) range. If the changes in the virtual patient
are found to be concordant with the real patient, this will be
considered as a success. However, if the observed output in
digital twin varies from the real patient, it would fall under one
of the error types (coding error, expert rule error, EHR error,
unaccounted error secondary to a known medication, etc.).
Agreement statistics (Kappa Coefficient, Bland-Altman), area
under receiver operating curve, sensitivity, and specificity will
be used as appropriate to determine the accuracy and precision
of the computer simulation output compared to actual events
prospectively observed in real patients. We are working to
set up pilot runs to identify commonly occurring errors and
iteratively improve the model fidelity (see Figure 4).

V. DISCUSSIONS AND FUTURE WORK

Computational simulation models have been found to be
highly effective in healthcare applications such as drug de-
velopment [18] and sample size determination for optimal
treatment prediction models [19]. Furthermore, sophisticated
multiscale models integrating human physiology, disease biol-
ogy, and molecular pathways have been developed and applied
to multiple medical problems including the treatment of sepsis
[20], [21] and diabetes mellitus [22]. These models are well

suited to assist in the development of new pharmacological
approaches and medical devices, but their applicability as
decision support tools in a clinical context (e.g., critical care
delivery) have been limited [22].

Critical illness offers a number of advantages for model
developers, such as the availability of large quantities of
quantitative data. This has resulted in an increasing effort to
develop data-driven clinical decision support tools [23], [24],
[25]. However, the performance of these models are limited
by the amount of available data, and clinicians are weary
of these “black-box” models without clearly understanding
the underlying rules that guide the model outputs. As such,
these purely data-driven models might underperform in the live
clinical setting and struggle to reach the brink of clinical utility
at the bedside. Without explicit consideration of known causal
pathways (based on biological and physiological understand-
ing informed by experts), the model output can lead to results
at best counterintuitive or uninterpretable, at worst inaccurate
and detrimental. More importantly, even accurate prognostic
information (classifying patients who will require renal re-
placement therapy or die during critical illness) is of limited
value to the bedside clinician [26]. Predictive information —
predicting the risk vs. benefit of a particular treatment — is
of greater clinical value. For example, will my patient benefit
from a red cell transfusion, or continuous versus intermittent
renal replacement? Models with poor interpretability are un-
likely to deliver transformative change to clinical medicine and
predictive enrichment requires innovation [27].

A. Path forward: causal AI models and digital twins

A fundamental difference between “black-box" prediction
models and human intelligence is the human ability to recog-
nize and reduce uncertainty through inquiry and observation of
response to treatment. To overcome the shortcomings of purely
data-driven models, an alternative approach, “causal AI" is
emerging. Causal Al models represent a class of statistical
learning models that are developed using relevant and timely
patient data, strongly informed by expert rules that define a
causal structure or other clinically informed structure to the
data. These models will be developed with a deep understand-
ing of the underlying causal pathways, therefore providing
greater physiological homology and eventually translating into
better performance. For instance, we can consider the use
of graph neural networks, neural networks based on graph
architectures, to predict patient outcomes and to identify
optimal treatments [28]. We are striving to develop a digital
twin prototype, which can be characterized as a special type
of computer simulation that implements a causal Al model,
combining current data from the patient/subject with its model
algorithm explicitly designed based on the causal principles.

B. Digital twins: challenges and opportunities

The availability of high-resolution quantitative patient data
and a relatively short trajectory of critical illness to a stable
outcome makes the ICU an ideal environment for development
and testing of EHR data augmented digital twin patient mod-
els. In our current practice, the expert rules are entirely based
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on expert knowledge. In the future, we expect to build causal
Bayesian network [29] and dynamic Bayesian network [30]
using EHR data with structure informed, in part, by expert rule
DAGs. Currently, raw EHR data are not optimized for human
or computer decision making. To attain this target, it is of
vital importance that the most “meaningful data” is separated
effectively from the noise in the EHR. In addition, the causal
Al digital twin will need to be validated prospectively using
near-real time EHR data feeds, simulating application in an
environment that may pose unique challenges and insights
not captured retrospectively. The temporal relationship of
interventions and outcomes (e.g., the time and pace of disease
progression and associated effects) will need to be studied with
a higher degree of accuracy and reliability. These models will
require the development of computationally efficient statistical
learning approaches using mainly observational data, which
is still a cutting-edge research area [31]. Furthermore, a
systems engineering framework for prospective refinement of
the digital twin model will serve as the corner stone for future
implementation. We envision causal Al digital twins that will
simultaneously deliver predictive and prognostic information

as a critical leap forward in support of more efficient medical
education and less error-prone bedside decision making.
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