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Abstract

Consider (X;(¢)) solving a system of N stochastic differential equations interacting
through a random matrix J = (J;;) with independent (not necessarily identically dis-
tributed) random coefficients. We show that the trajectories of averaged observables of
(X (1)), initialized from some p independent of J, are universal, i.e., only depend on
the choice of the distribution J through its first and second moments (assuming e.g.,
sub-exponential tails). We take a general combinatorial approach to proving univer-
sality for dynamical systems with random coefficients, combining a stochastic Taylor
expansion with a moment matching-type argument. Concrete settings for which our
results imply universality include aging in the spherical SK spin glass, and Langevin
dynamics and gradient flows for symmetric and asymmetric Hopfield networks.
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1 Introduction

Markov processes with random coefficients arise in numerous contexts: e.g., dynamics
of spin glasses, optimization on random landscapes, and learning with neural networks.
In many cases, when the underlying randomness is Gaussian, they have been found to
give rise to a rich class of behaviors, including metastability, trapping, and aging. In
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this paper, we analyze a class of stochastic differential systems (SDS’s) in their high
dimensional limit, where the couplings are linear and encoded by a random matrix.
We show that trajectories of polynomial statistics of the SDS are universal: they have
the same high-dimensional behavior if one replaces the Gaussian interaction matrix
by a non-Gaussian one with the same mean and variance profiles.

Universality, can broadly be described as the phenomenon that for high dimensional
ensembles (X;);<y governed by a large number of independent random variables
(Z;)i<n,macrocopic statistics of the ensemble only depend on the laws of (Z;) through
their low moments. Of course, the most classical example of universality is the central
limit theorem (CLT), where (X;) = (Z;), and the statistic is the normalized sum.
Slightly more involved examples are invariance principles, where the limiting Brow-
nian motion only depends on the distribution of the random walk increments through
its first and second moments.

Lindeberg’s classical proof of the CLT iteratively replaces Z; with Zi (Gaussian
with the same mean and variance) and shows that the cumulative effect of these
replacements is microscopic. This approach has proven to be very robust, and has
been generalized e.g., to polynomials f(Z1, ..., Zy) in [29,34] and more generally,
smooth functions with bounded derivatives in [8,9]. A more combinatorial approach
is a moment matching argument to compare moments of statistics f (X, ..., Xn)
to moments of f (X1,...,Xy) and showing that the difference is dominated by the
differences in the first few moments of Z; and Zi.

With these approaches, universality has been proven in a wide range of ensembles
where the relationship between (X;) and (Z;) is more complicated. A fundamental
example is when (X;) are the eigenvalues of a random matrix with entries (Z;). There,
the empirical distribution of (X;) is well-known to have the same limit (e.g., the semi-
circle law for Wigner matrices [40]). In the last decade, remarkably, universality has
been found to extend to local statistics of the ensemble (X;) e.g., typical size of gaps
between eigenvalues, and k-point correlations. Universality in random matrix theory
has been a tremendous success and we cannot hope to do justice to the literature
therein; we instead refer to the seminal works [19,37] and the surveys [20,38].

Another class of ensembles for which universality has been shown is disordered
interacting particle systems from statistical physics, and in particular the family of
mean-field spin glass models. A canonical example of these are spin glasses where
N particles in states (X;), interact through a random symmetric coupling matrix (or
in the case of higher order interactions, tensor) composed of independent entries Z;.
More precisely, with these interactions, they are endowed with an energy landscape, or
Hamiltonian, thatis topologically complex, and (X;) are drawn from the corresponding
Gibbs distribution. The statistics of (X;) in such families of spin glasses have been
found to exhibit an extremely rich and varied phase diagram featuring phenomena like
breaking of ergodicity and replica symmetry [33]. Most of their analysis, including
the calculation of the free energy, and the proof of the celebrated Parisi formula for the
overlap distribution, were first carried out in the Gaussian setting [22,32,36]. Talagrand
later showed that these also held in the case of Bernoulli (Z;) in [35]; this universality
was extended to general (Z;) as an application of [9].

The dynamics (Markov processes exploring the Hamiltonian) for such spin glass
models are a prototype and motivating force for this paper. The general setting we
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consider here is that of a system of N linearly coupled SDE’s, where the couplings
are encoded in a random matrix J, and driven by N independent Brownian motions.
That is, X; = (X1(¢), ..., Xn(¢)) is the solution to the SDS

dX; = JTX,dt + hdt + £(X,;)dB, (L)
Xo ~ € Mi(R") 7 '
where J is a random matrix with independent entries (up to, possibly, a symmetry
constraint) and variance profile m = (m;;); ; scaled such that E[||J]2] = O(1), h
is a bounded drift vector, and X is an affine transform of X;. Note that for X (X;)
non-constant, we do not expect to have an explicit closed-form solution to (1.1).

In the N — oo limit, the diffusions of (1.1) encompass many interesting and
well-studied models of Markov processes with random coefficients, and give rise
to rich and varied behavior. This includes metastability, aging, and non-Markovian
limiting evolution equations, in e.g., randomly coupled (geometric) Brownian motions,
and Langevin dynamics and gradient flows for the spherical Sherrington—Kirkpatrick
(SK) spin glass and symmetric and asymmetric Hopfield nets [6,13,25-27]: concrete
applications are described in Sect. 1.4. In many such examples, the analysis is more
tractable when J is Gaussian and one can use tools like Gaussian integration by parts,
Girsanov, and the rotational invariance of the Gaussian ensemble.

In this paper, we develop a simple combinatorial framework for proving universality
for the solution trajectories of SDS’s of the form (1.1). Before describing our approach,
we explain a few difficulties one encounters when trying to prove universality for
solutions of randomly coupled dynamical systems, using some of the approaches
described above for other universality results. We begin by considering a Lindeberg
approach where we examine the effect that re-sampling one J;; has on an averaged
statistic F'(t) = F(X1(t),..., Xn(2)). The obstacle in employing such an approach
is that changing J;; to J; jon X (1), say, beyond affecting the drift

Z JijXi@) +hj,

1<i<N

of the j-th coordinate of the SDS, also induces a highly non-linear effect both on
Xj(t) and on X;(¢) for all i # j. The problem instead lends itself to comparing the
effect of J — J in a more averaged way.

An alternative approach would be to use the linear structure of the problem in a
strong way, relying on sharp universality results on the spectra of random matrices to
study the problem. This approach, while feasible if X (X;) is constant, requires one
to diagonalize the problem without loss of generality—i.e., it requires an assumption
of joint rotational invariance for the laws of (Xq, J, B). In [2], such an approach is
followed for analyzing the dynamics of the spherical SK model, and their results hold
assuming the law of J is invariant under the orthogonal group, and its spectrum satisfies
certain large deviation estimates satisfied by the GOE. However, this restriction would
not include the cases of e.g., the uniform measures on [—1, 11V and {£1 }N absent the
rotational symmetry, and could not include the case of non-constant X (X;).
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Very recently, [17] proved a universality result for the dynamics of the asymmetric
Langevin dynamics for the soft-spin SK model. There they used large deviations theory
to obtain exponential control on the empirical measure on sample paths—as obtained
in the Gaussian setting in [6,7]—together with sharp control via Girsanov’s theorem
on the Radon—Nikodym derivative between the Gaussian paths and those driven by
non-Gaussian J on short time scales, to show universality for the empirical measure
Ly = % > i 8x:()- While such an approach allows for a deterministic non-linearity
in the drift through a (double-well) confining potential, it cannot handle degenerate
diffusions, e.g. the gradient flow. Further, the need for control on the trajectories at
the exponential scale forces [17] to consider only asymmetric i.i.d. J (whereby the
Radon-Nikodym derivative is a product of functions of independent rows of J7).

We introduce a simple combinatorial approach to proving universality for SDS’s
of the form of (1.1), similar in flavor to the moment method. Namely, we avoid the
inherent difficulty of the problem, that the transformation J — J affects X ;j(t) through
both (J;j)i — (f,»j),- and (X;(1)); — ()~(,~ (t))i. We do so by Taylor expanding the
semigroup P; f = Ex,[f(X;)] in powers of the infinitesimal generator: each term
appearing in this expansion is a polynomial in (x;), (J;;) evaluated at Xy where,
crucially, the initial data is independent of J;;. One then finds that on order one
timescales, the predominant contribution to E[ P; f] is from polynomials whose degree
in (J;;);,; is at most two. We refer to Sect. 1.3 for more details.

This approach works quite generally, and is robust to symmetric and asymmet-
ric choices of J with non-homogenous means and variances, and general choices of
diffusion coefficients in (1.1), including X (X;) non-constant making the diffusion
non-linear, and ¥ = 0 corresponding to a deterministic dynamical system. Lastly, the
analysis works for arbitrary initialization independent of J. The assumption of linear
drift is, of course, important, and one would like to be able to drop it. We emphasize,
though, that this is primarily used in order to justify the absolute convergence of the
Taylor expansion of the semigroup, which one could hope to justify by other means
for higher order diffusions given that a strong solution exists; the remaining combina-
torial framework for moments of the generator may then generalize. We discuss this
in Remark 1.5.

We end this section by mentioning two recent results [1,10] showing universality
for a Lipschitz family of approximate message passing (AMP) algorithms—a discrete-
time state evolution that has found many applications to inference and optimization
in high dimensions. Some of the ideas there appear similar in spirit to our approach,
using a combinatorial approach to control moments of the final state of the AMP.
All the same, the general setting of (1.1) introduces many key differences e.g., the
diffusions of (1.1) are in general non-linear, not globally Lipschitz, and have a built-in
stochasticity.

1.1 Setup: diffusions with random linear interactions
Consider an N-dimensional stochastic differential system with a mixture of random

and deterministic linear interactions, along with possibly, some constant drifts. More
precisely, consider the SDS X, := (X; (t))lN: | driven by the following parameters.
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Suppose that for some matrix m = (m;;); ; we have random interactions given by
the random matrix

A= (Ajji<ij<n, where E[A;j1=0, E[Alzj] =mjj.

We assume that the entries A;; are either fully independent, or are independent up
to a symmetry constraint A;; = Aj;. Let P4 be the law of A. In order to scale the
interactions to have an order one cumulative effect, it will be convenient to work with
the rescaled interactions matrix J given by

J:=N"12A.

We then denote the distribution induced by P4 on J by Pj.
We further consider additional deterministic interactions satisfying, for some con-
stant Cp, < 00,

A = (Ajj)i<i,j<N, Where . I(Aij)jllt < Cx and

Ca
sup |Ajj| < N for N :=max ||(A;j)illo
ij A J

(the || - ||o-norm of a vector is its number of non-zero entries). We also consider external
drift parameters

h=)i<i<n, where  sup |h;| < Cy foraconstant Cp < 00,
i<N

and diffusion coefficients X (X;) governed by the matrix
0 = (0ij)o<i<N,1<j<n Where sup |og;| < Cy and
I<j=N

Co
sup |ojj| < — for Ny :=max [|(5)illo-
1<i,j<N e J

The SDS (X;)s>0 = (X1(t), X2(t), ..., Xy (t))s>0 initialized from some random
Xy distributed according to a product measure w is driven by a standard Brownian
motion B; = (B (¢), ..., By(t)) as follows

N N N

dX;(t) =Y JijXi(dt + Y A X;()dt + hjdt + «/E(Za,-,x,- (t))dBj ),
i=1 i=1 i=0
Xi(0) ~ pi (1.2)
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where for ease of notation, we hereon set Xo(#) = 1 so that (09;);>1 capture the
constant diffusion coefficients. We denote the martingale part of X; by

N
M, = (Mj(l))ij s where de(l) = «/E(ZO'ini(t))dBj(l‘) . (1.3)
i=0

The process X; is well-defined for a.e. J and all # > 0 (as we have finite, possibly
N-dependent operator norms || J|l2, |All2 and [(0i;)i>1ll2, see e.g., [31, Theorem
5.2.1].
Notational comment There are three distinct sources of randomness above dictating
the law of the solution X; to (1.2): the law of the interaction matrix Py, the law of
the Brownian motions, denoted Pg, and the law of the initial data u—each of these
are product measures and we do not distinguish notationally between the law of the
individual entries of J, B or X and the ensembles.

In proving universality, we consider the difference between Py, Pj induced by

two different distributions P4 and P 4 Over mean-zero random matrices A, A with
independent entries (possibly up to symmetry), having matching variance profiles
m = m. For ease of notation, we will henceforth use

P=u@Py®Pg, and P=u@P;j®Ps,

and denote the corresponding expectations [E and E respectively.

1.2 Main results

We begin by describing the observables to which our universality results apply. The
building blocks of these observables are chosen among the family of vector valued
functions,

L=q,....1

N
X=X, X0 =S s
5= G, = (G1(X),....Gy(X,) where G](X)_,;JM' .

M; = (M1(1), ..., My (1))

We establish universality in the mean for weighted empirical averages of monomials
in functions from § evaluated at a finite collection of times. Specifically, fixing an
m-tensor a = (a;,,..;,) With entries bounded by C, and a p-tuple of times t =
(t1,...,1p), for every £ < m, fix p observables yen oyl ¢ § which are to
be evaluated at these p times. That is,

1 1
F) =~ Y i, FO® - F(t), where

Fi(e) (t) = yi(e)l)(t]) e yi(&]?) (tp) . (15)
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We also need to add a sub-exponential tail constraint on ¢ and P4 beyond the minimal
assumptions of zero-mean and matching variances of P4 and IPz; this is henceforth
referred to as Hypothesis 1.

Hypothesis 1 Assume that the law w is a product of u; of X;(0) having finite moments
of all order, which are bounded uniformly over i and N. That is, there exist C,,(r) > 1
such that for any r finite,

sup sup E[|X;(0)|"] < Cp(r). (1.6)
N i<N

Further assume P has uniformly bounded exponential tails, i.e., the following equiv-
alent properties hold:

sup sup E[ef1il] < 00, forsome ¢ >0, (1.7)
N i,j<N
sup sup E[|A;;]]< (€ —1DICY?,  Ve>1 andsome Cy<oo. (1.8)
N i,j<N

For ease of notation for dependencies on constants, we denote by C, :=
max{Cli/z, C}&/Q, Ca, Ch, Cg} (where Cj is the constant Cx with respect to distri-
bution PP i) and state our first result, on universality at the level of the mean (hence

also of moments), for observables (1.5).

Theorem 1 Let 1, PA, Py satisfy Hypothesis 1 and suppose that A, A, symmetric
or independent, are mean-zero of matching variance profile m = (m;;); ;. For any
T,m,p <ooanda € RN with lalloc < Ca, there exists C(T, m, p, Ca, Cy, Cp) <
oo, such that for every N and F as in (1.5) with e ey e

sup [E[F()] —E[F(®t)]| < CN~/2.
te[0,T17

In particular,

E[F(t)] — E[F(t)]] — 0as N — oo, uniformly int € [0, T17.

Theorem 1 follows from a more general result bounding the difference in expecta-
tions for each individual monomial Fl.(e) from (1.5) with QD ..., YEP) e §. As
a special case, see Proposition 2.1, we find that the moments of each spin X;(¢) are
universal. Specifically, for every fixed k,

sup max [E[X; ()" — E[X; ()] = o(N"/?). (1.9)
te[0,7]1=i=N

For a more restricted class of observables, with additional restrictions on the dis-

tributions p and P4 and P % We extend the above to almost sure and L9 convergence
for the observable trajectories. Precisely, we restrict the observables of (1.5) tom = 1
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and p = 2, leaving, the following quadratic observables

1 N
FO) = Fyya(XeXo) =+ 3 a0V, (1.10)
i=1

In order to extend Theorem 1 to a convergence for the trajectories of these observables,
we further need to assume that X is constant, so that M; is just a scaled Brownian
motion, and assume the following concentration property on u, Pa, Pz, which we
refer to as Hypothesis 2.

Hypothesis 2 A sequence of probability measures (IP(”))”Z 1 over Z, in metric spaces
(X, d) satisfies exponential concentration for Lipschitz functions if there exists some
C > 0 such that for any sequence of 1-Lipschitz functions f, : (X,,d) — R,]|-])
and all A > 0,

P (| fu(Zy) — ELfu(Z)]] > 1) < Cexp(=1/C). (1.11)

Assume that |1, Pa respectively satisfy exponential concentration for Lipschitz func-
tions on RN and RV (or RNWNHTD/2 if A is symmetric), equipped with their Euclidian
norms, for some C,,, Cp > 0.

Remark 1.1 Recall, from the theory of measure concentration, that Hypothesis 2 holds
for any distribution on R" which satisfy a Poincaré inequality with constant ¢ > 0
(independent of n), namely for all nice f one has that Var[ f(Z,)] < cE[|V f (Z)1*]
(see [21]). By the tensorization of the Poincaré inequality, if Z, = (Z1, ..., Z,), and
each of the laws of Z; satisfy this inequality, then the product also satisfies it with the
worst constant ¢. Having here product measures u, Pa, the marginal laws can come
from any distribution satisfying a Poincaré inequality in n = 1. These include (see
e.g., [39])

— Exponential, Gaussian, and log-concave measures of the form exp(—V (x)) for
V (x) strictly convex,

— Linear functionals of r.v.’s having a Poincaré inequality: e.g., the uniform measure
on[—1,1].

The next theorem shows that under Hypothesis 2, any F of the form (1.10) concentrates
around its mean.

Theorem 2 Suppose i, Pa satisfy Hypotheses 1-2 and the diffusion coefficients have
oij = 01ifi # 0. Then, for some C(T, Ca, Ci, C) > 0, any ||alloc < Ca, every F as
in (1.10) with Y, Y" € §, all » > 0 and N > No(T, Ca, C., Cp),

NCe—)m/ﬁ/C , A < C

e—(og)VN/C 5 o ¢ (1.12)

P( sup |F(® —E[F®) = 2) < py() = !
te[0,71?
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(One might observe that the exp(—Q(\/ﬁ )) concentration in (1.12) differs from
the more traditional exp(—<2 (N)) concentration in e.g. [2,3]; such differences, which
recur throughout the paper, are because our Hypothesis 2 allows for merely sub-
exponential, as opposed to Gaussian, tails.) Combining Theorems 1 and 2 we get the
following strong universality for such quadratic observables.

Corollary 3 Suppose ., Pa, Pg satisfy Hypotheses 1-2, where A, A, symmetric or
independent, are mean-zero and have matching variance profile m = (m;;); j. Let
F(-) and F(-) be as in (1.10), fora € RN such that ||a||s < Ca, with respect to the
corresponding solutions X;, X, for (1.2) with constant X, i.e., 0;j = 0 if i # 0. Then,
for every T < 0o we have that as N — oo,

Zy = sup |F(t)—F(t)| >0 almost surely, and in L% forq > 1.
te[0,T1?

Proof The observables of (1.10) correspond to the m = 1 and p = 2 case of (1.5),
so Theorem 1 applies here with some constant C; = C(T, m, p, Ca, Cy, C,). For
N > (A/C1)? we then get upon combining the triangle inequality with Theorems 1-2,
that

P(Zy >3%) =2py(M).

Since )y pn(A) < oo for any fixed 2 > 0, by Borel-Cantelli Zy S 0as N — oo
Similarly, upon using the triangle inequality for || - ||, we get from Theorems 1 and 2
that

R 1/q
(El1Zy19)" < N2 4 2t +/ a2 pyydn)
C

Further, N — py (-) decrease pointwise on [C, 00), while for any g > 1, the preceding
integral is finite for all N large enough. With {Z;fv} ~ uniformly integrable, it follows
that Zy — O alsoin LY. O

1.3 Proof strategy

As mentioned in the introduction, traditional approaches to proving universality run
into substantial difficulty when we apply them to diffusions with random coefficients.
The dependence on specific entries of the random matrix are quite bad, as the depen-
dence applies in the drift both through the J;;, and through its effect on X, whose
history evidently also depends on J;;: this effect can exponentially amplify small
differences; in fact, the exponential amplification is inherent to the problem at hand.
At a high level, our strategy for proving Theorem 1, and the main novelty of the
paper, is to leverage the independence of u from Py, Py by pulling back f(X;) and

f (X,) to properties of (time) derivatives of f(X;) evaluated at r = 0. At the level of
expectations, these derivatives can be seen as iterates of the infinitesimal generator
applied to the function F, which can then be controlled by combinatorial moment
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methods. The dominant contribution to the drift of F' comes from drift terms that are
polynomials of degree at most two in (J;;);;. Since the first two moments of P5 and
P4 match, these terms do not contribute to the difference in expectations above. We
emphasize that the approach does not need rely on an explicit solution to the SDE
of (1.2), nor does it use exponential control, or large deviations theory as in [17], or
refined estimates on the spectrum of A as in the setting of [2] where, crucially, the
process has a rotational symmetry.

Recall that the SDE defined in Eq. (1.2) has infinitesimal generator L that we split
as follows (see e.g., [31, Theorem 7.3.3]):

L= Z Jijxiaj+ Z Aijxi3j+ Z hj8j+ Z ( Z O'ijxi)28jaj.

I<i,j<N 1<i,j<N I<j=N I<j<N 0O=i=N

LJ La Ly La
(1.13)

By Ito’s formula, we have for every £, say, in C*(RY),

)

|ELf (X)1 — ELf XD1| =|ELP, £ Xo)] — E[P, £ (X0)]

where P; = P;(J) denotes the semi-group operator
P f(x) :=Ep[f(X;) | Xo=x] with formal expansion P; = et (1.14)

in terms of the generator L. In order to reduce the problem to a combinatorial question,
we wish to Taylor expand the semi-group operator P; f = el f. As long as f is
smooth and the Taylor expansion converges absolutely—shown in Sect. 2.2—this
formal expansion is valid and we can switch expectations over u, Py, P’; with the
sum, and compute expectations of powers of the generator L acting on f. Namely,
the difference in expectations is bounded by controlling (1) the size in N, and (2) the
growth in k of

IE[(L* £)(X0)] — E[(L* £)(Xo)]I . (1.15)

Expanding these terms as words in Ly, LA, Ly, LA, we observe that a non-zero dif-
ference between the two expectations in (1.15), can only come from the summands
(monomials in J, X, A, h, o) satisfying

— Every J;; that is present, must appear at least twice.
— At least one J;; must appear at least three times.

This is because the means of Pa, 5 are zero, and the variances of IPs and P; match.
A careful analysis of this combinatorial problem for the monomials eventually yields
that the contributions from these monomials are, together, O (N ~1/2y in N, and o(k!)
in k: this computation is carried out in Sect. 2.3.

Remark 1.2 One may notice that in the case where X (X;) is constant so that M; is
just a Brownian motion, we are left with a linear SDS and one could use this linearity
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in a more central way, to explicitly solve expectations of monomials in (X;(#)); as
Gaussian integrals and time integrals over words in ¢* and (X;(¢));. If the system
X, is invariant under rotations, then we can work in the coordinates of J so that it
is diagonal and apply universality results for the spectrum of J. Absent rotational
symmetry, however, the natural step would be to Taylor expand e*J, at which point the
expansion and the resulting combinatorics will be similar, and perhaps less transparent,
than our generator based approach. Of course, for non-constant X (X;) asin Theorem 1,
the SDS is non-linear, and such an approach would not generalize.

In Sect. 3, we extend this bound on the difference in expectations of statistics f
to multi-time observables, then to statistics that contain the driving martingale terms
and finally establish the universality at the level of expectation for observables of the
form of (1.5), as stated in Theorem 1. In Sect. 4, we adapt the approach of [3] to
establish Theorem 2, namely, to show that the restricted class of observables of (1.10)
concentrate around their expectations, by localizing to a set of large probability where
F is O(N~!/2)-Lipschitz in the triplet (Xo, J, (M;);c[0.71) and using Hypothesis 2.

1.4 Applications

In this section, we discuss systems for which Theorem 1-Corollary 3 imply concrete
universality results. All the examples that follow will be in the context of X that is
constant, i.e., 0;; = 0if i # 0, where both Theorems 1-2 apply. Among the examples
with non-constant X, one which may be of interest is a system of geometric Brownian
motions interacting linearly through J.

We next describe two well-studied families of Markov processes/dynamical systems
to which our results apply: Langevin dynamics and gradient flows on various energy
landscapes (Hamiltonians) or loss functions.

Langevin dynamics

In the case where J and A are symmetric matrices, and oy are identically one, (1.2)
corresponds exactly to the Langevin dynamics for the Hamiltonian

Hx) =—B > i+ Ajxixj—B Y hix;. (1.16)

1<i,j<N I<i<N

The linearity of the diffusion here corresponds to having a quadratic Hamiltonian.
The Langevin dynamics is a reversible Markov process designed such that, when
non-degenerate, its invariant measure on RY is given by dm(x) o e #®dx. For
Hamiltonians coming from spin glass theory, the Langevin dynamics has been ana-
lyzed at length in the case of Gaussian disorder, and found to have a varied and rich
behavior; in §1.4.1, we explore this further in the context of a simple spin glass model,
called the spherical SK model.
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Gradient flows

The case where oy are identically zero—i.e., besides the randomness of J and, possi-
bly, the initial data, the dynamics is deterministic— also fits into the framework of the
paper. Here, given J and X, the law of the dynamics is taken to be the delta function
on the trajectory of the solution to the resulting system of ODE’s. This corresponds
to the gradient flow on H (X): in optimization and learning settings, e.g., the examples
of Sects. 1.4.2—1.4.3, gradient descent and its many variants, are favored methods.

We now turn to a few well-studied concrete problems to which our results are
applicable.

1.4.1 The (soft) spherical SK model

The dynamics of spin glasses are a canonical setting in which Markov processes with
random coefficients are studied in their thermodynamic (N — oo) limit. The short-
time (N — oo, then T — 00) behavior of Langevin dynamics, especially, in the
context of spin glasses have been extensively studied in both the physics and math
literature [2-7,11,12,15,18]. Perhaps the most well-known mean field spin glass is the
Sherrington—Kirkpatrick (SK) spin glass, where N spins taking values in {41, —1}
interact pairwise with one another, and their interaction strengths are moderated by
“coupling” parameters J;; = Jj; which are drawn i.i.d., say, Gaussian. We discuss
a simplification of this known as the spherical SK model, which has been found to
nevertheless exhibit some of the same phenomena.

Take an i.i.d. symmetric matrix J = (J;;);; with law Py. The spherical SK model
has Hamiltonian

Hx) = Y Jyxx; for xeSN'(V/N). (1.17)

I<i,j=N

To avoid differential geometry on the sphere, it is sometimes preferable to extend
the Hamiltonian to all x € RY (note that the Hamiltonian is homogeneous so that
dividing x by the Euclidean norm ||x||/ VN gives the same process on SV “1(J/N)).
Instead of adding a non-linear confining force as is done in, e.g., [2], we either add a
linear confining force Fg(x) = Kx, or have no confinement (K = 0) (the linearity
of the system ensures no finite time blowup). Consider now the Langevin dynamics at
inverse temperature 3 > 0 for the Hamiltonian of (1.17), corresponding to X; = Xt(ﬁ )
solving the SDS

dX, =—VHX)dt — Fx(|X,|>/N)X,dt + p~"/2dB, (1.18)
Xog ~pu ' |

We also consider the gradient flow where we take B = o0, so that the Brownian
motion term drops out: X; is then the (deterministic) dynamical system following the
(random) gradient vector field of H(x) + Fk (||x]|>/N). The following universality
for the above system is an immediate corollary of Theorem 3.

@ Springer



Diffusions interacting through a random matrix: universality. .. 1069

Corollary 1.3 Fix B € (0, co] and consider the SDS’s X; and X; given by (1.18) for
A and A having mean zero, matching variance profiles m;; = 1{i # j}. Suppose n
is independent of Pa, P; and these satisfy Hypotheses 1-2. Then for F as in (1.10)
with Y, Y € § and ||a|lcoc < Ca, for every T < o0,

sup ’F(XS, X;) — F(f(s, f(t)| — 0 almost surely, and in L1 forq > 1.
5,1€[0,T]

As shown in [14] and rigorously proved in [2], when J is Gaussian, the spherical SK
model, or the soft spherical SK Model with confining potential F satisfying F (x)/x —
o0 as x — 00, exhibits a sharp aging transition. Informally, aging is defined as
the notion that the older a system gets, the more it remembers its past; formally, it
corresponds to a transition in the behavior of the auto-correlation,

1
CnGs, D)= = 3 Xi@)Xi(0),
i<N

between a (FDT) regime where Cy(s,t) ~ ®(¢t — s) and an aging regime where
Cn(s,t) ~ O (%) for large s, . In [2], it was established that for J having rotationally
invariant law, e.g., a GOE matrix, Cy (s, t) solves a non-linear equation [2, Eq. (2.16)],
which exhibits exactly this type of transition at some B,g. Our results allow us to read
off universality for this limiting behavior, as formalized in the following corollary.

Corollary 1.4 Consider the Langevin dynamics for the soft spherical SK model, as
defined in (1.18) where Pa is a Wigner matrix satisfying Hypothesis 2, the confinement
is Fg(x) = Kx for some K > E[||J|l2—2], and the initialization | is e.g., standard
Gaussian, independent of Pa. Then, for every € (0, oo] and every T < 00, the limit
(Iimy— o0 Cn (s, 1))s tcl0,T] €Xists, and satisfies [2, Eq. (2.16)].

In the specific case of B = 00, the conclusions of [2, §3.2.2] apply, and the solution
exhibits aging: i.e., there is a y > 0 (specified therein) such that for every A > 1,

Cw (s, ~
lim lim N(s, As) ~(h—1)7 .
s—=>00 N—>oo /Cn (s, s)Cn(As, Ls)

Proof For the first statement, while [2, Theorem 2.6] is stated for confinement F
growing super-linearly, following the proof one sees that it is only used to localize the
process, for which it suffices for K to exceed ||J||2—2 (which for Wigner matrices is
a.s. less than 2 + € for any € > 0). The first part of the corollary therefore follows
from Corollary 1.3 together with the result of [2, Theorem 2.6] showing that for A
standard normal, Cy (s, t) satisfies [2, (2.16)].

For concreteness, the analysis of the limiting equation [2, (2.16)] and the derivation
of the aging transition is carried out in [2] only for a specific choice of quadratic F.
One could in principle perform the same analyses with other choices of F including
F = Fg that is linear, corresponding to the case we consider, and understand the
limiting behavior of Cn (s, ) as N — oothens, t — oo as § varies. We do not pursue
this, and instead notice that in the specific case of § = 0o, the homogeneity allows us
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to disregard the choice of the confining potential and obtain universality for the zero-
temperature aging behavior. To see this, since H (x) is a homogeneous polynomial, if
B = oo, we see that dX; is a constant multiple (for a constant depending only on || X;||)
of d(X;/|1X¢||). Therefore, at B = o0, the projection of the dynamics (1.18) onto the
sphere SV ~1(v/N) matches the projection of the Langevin SDS of [2], regardless of
the choice of confining potential used therein. We apply Corollary 1.3 first to deduce
that limg_, oo limy o0 Cn (s, 5) =: Cx is the same for Gaussian and non-Gaussian
P. Then applying it to C (s, As), we find that the N — oo limit of the normalized
auto-correlation is the same for Gaussian and non-Gaussian P, and it is further
independent of the choice of confining potential: as such for any Py, it has the same
N — oo limit as in [2]. O

Remark 1.5 It would be of interest to consider similar Langevin dynamics for the
spherical or soft spherical p-spin glass models for p > 2. Permitting higher
order interactions gives rise to a wealth of more complicated models and differ-
ent behavior. At the level of the off-equilibrium Langevin dynamics, these lead
to the famous Cugliandolo—Kurchan/Crisanti-Horner—Sommers limit of coupled
integro-differential equations for Cy (s, t) and an integrated response xny(s,t) =
% Zi X;(s)B;(t) [3,11,12,15,16,18,23], as well as the evolution of other observ-
ables e.g., the Hamiltonian and its square gradient [5]. Our combinatorial framework
suggests that the differences in expectations (over p-tensors J and D) of averaged
observables are microscopic, as long as there is a non-linear confining potential to
prevent finite-time blowup. The complication is in the fact that the two non-linearities
(from the interactions, and the confining potential) cancel out, but these cancellations
are not easily seen in the Taylor series obtained by expanding in powers of the genera-
tor; thus we are not able to show that this series is absolutely summable and exchange
the infinite sum with its expectation.

1.4.2 Symmetric and asymmetric Hopfield networks

Let us also mention a different context in which diffusions of the form of (1.1) appear.
Hopfield networks were introduced by [26] and have become one of the simplest and
most fundamental examples of neural networks. In this model, a set of N neurons
(X;); are either active {+1} or inactive {—1} depending on whether the neuron X ;’s
input }_ J; X, for some weights J = (J;;);, ;, exceeds a deterministic threshold 4;.
This model was introduced in the symmetric setting, but has since been analyzed
extensively both in symmetric and asymmetric setups [13,25,41].

One typically initializes the neurons at some pre-determined state independent
of J, e.g., all inactive/active, or uniformly at random, and tracks their time-evolution,
whereby each neuron activates/de-activates at some rate, depending on the relationship
between its input and threshold. Though there are many ways this is implemented, one
is to soften the problem to continuous state space, either to the sphere, or to full-space
and add in stochasticity by running some Langevin dynamics. This is the approach
pursued in [13] as well as e.g., [41]. Then, with a linear confining force, our results
imply universality for both for the symmetric and asymmetric Langevin dynamics (and

@ Springer



Diffusions interacting through a random matrix: universality. .. 1071

gradient flow) of general Hopfield networks: this includes universality for observables
capturing the energy/loss in the network, its square gradient, and its “memory”.

1.4.3 Rayleigh quotient minimization for random matrices

We conclude with a related optimization problem in high dimensions: that of opti-
mizing the Rayleigh quotient of a random matrix J with a certain mean and variance
profile. Maximizing the Rayleigh quotient is an efficient way to find the top eigen-
vector and eigenvalue of the random matrix via local iteration, e.g., either gradient
descent or Langevin dynamics at low temperatures (large $). To place this in the
framework of (1.2), take H (x) = (x, Jx) and either no confining force or Fy, = K for
some K > ||J|l2—2 in (1.18). In the situation where the matrix ensemble is rotation-
ally invariant, e.g., the GOE, the limiting trajectories of, say, H (X;) for the gradient
flow/Langevin dynamics can be explicitly solved (by diagonalization). Corollary 3
implies these limiting trajectories will be universal, and thus, match the limiting tra-
jectories obtained when J is not Gaussian. In [1,10], similar universality results were
described for an AMP approach to finding the top eigenvalue/eigenvector of J.

2 Universality of expectations of monomial observables

In this section, we prove that two solutions X and X of (1.2) driven by J and J are such
that expectations of observables of the form (1.10) are universal, as long as A and A
have the same variance profiles. As discussed in Sect. 1.3, we reduce differences in
expectations to combinatorial calculations by expanding the Markov transition semi-
group of the process X; in terms of its generator, an approach for proving universality
in randomly driven dynamical systems which is the key contribution of this paper.

For the entirety of this paper, we will take two distributions P4 and P; on A
and A that are mean zero and have the same, uniformly bounded, variance profiles
m = m. Recall that s and P; are either fully independent or symmetric ensembles.
For conciseness, we present our results in the case of fully independent (in particular,
not symmetric). The case where they are symmetric is handled mutatis mutandis and
only induces a few constant factors in certain estimates (see Remark 2.8 for more on
these minimal modifications).

2.1 Main result on difference in expectations

The observables in Theorem 1 are composed of polynomials in J and X, as well as M.
We first establish the universality of expectations for general monomials in J and X
via a combinatorial moment matching type of argument. In Sect. 3 such universality is
reduced for monomials that additionally involve the martingale, to that of monomials

only in J and X.

More precisely, the statistics we consider throughout this section are of the following
form. Fix any s (not necessarily distinct) pairse = («1, . . ., o5) where each oy = iy ji,
and r-tuple (not necessarily distinct) y = (y1, ..., y) where each y; € {1,..., N}.
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Then consider observables fy ,(x) of the form

fay®) =] [ e [ [0 - @2.1)

For an s-tuple of pairs e, let

— I, count the number of distinct pairs in «, i.e., Iy = [{ay, ..., a}l,
— Iy, 1 count the number of (o ); which appear exactly once in &, and
-1, + .1 equal /e 1 plus the indicator that no pair appears more than twice in a.

Our bound on the distance between the expectations of fy , (X;) and fq ) (X,) depends
on o, y and the laws u, Ps, Py only through C.,Cyu, s, rand I;:l. More precisely,
we derive here the following.

Proposition 2.1 There exists C = C(r,s, T, C,, C, (r)) such that for every T, r, s >
0, every s-tuple of pairs & and every r-tuple y, if Pa, Pz and  satisfy Hypothesis 1,
then

~ ~ _ +
sup |l fa.y X01 — El fu,y X1 < CN~EHa)/Z
tel0,7T]

Observe that in the case s = 0, the right-hand side is CN—1/2,

Remark 2.2 The above theorem shows that having more distinct J’s in the observable,
decreases the difference in expectations by more than N~/ as would be expected
from the typical size of J;;. This should be expected due to CLT-type cancellations:
one way to motivate this scaling is by recalling averaged statistics which have J in
them, in the context of the spherical SK model, e.g., the most relevant being

H 1
(X) Z Ajjxix;  and

1<lj<N
IVH(X)I2 2 2
R -S Y atwo=5 ¥ (X =)
1<1<N I<i<N 1<j<N

(Notice that these statistics are not rescaled by the number of order-one sized mono-
mials; but they remain on the O(1) scale due to additional cancellations from (J;;)).
This gain in the scaling has to be visible at the level of the difference in expectations
under P and PP in order to hope for universality for such statistics.

Recall from Sect. 1.3 that our high level strategy is to reduce the expectations
of statistics of the solution X; of the SDS to combinatorial calculations in terms of
mixed moments of J and Xy. This is possible by writing Eg[f(X;)] as P, f(Xp)
and then Taylor expanding P, = e'" where L is the generator for the process X, as
defined in (1.13). In order for this expansion to be valid, and therefore our approach
to be permissible, we need the Taylor expansion for ¢’ to converge absolutely, for
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each fixed N. In the next sub-section, we show that indeed with w, P, P i satisfying
Hypothesis 1, for each fixed N, the infinite series corresponding to P; f converges
absolutely, so we can follow this plan.
Before proceeding further, we make the following notational remark.

Notational comment on set and sequence differences For sets {by,...,b,} C
{ay,...,a,}, we let {ay,...,a,} \ {b1,..., by} denote the set difference as usual.
Frequently we deal with tuples, or sequences in which the order does not matter. For
two such tuples (ay, ..., a,) and (by, ..., by,) (where of course there may be rep-
etitions in each sequence), we denote by (aj, ..., an) \ (b1, ..., by) the difference
wherein for each b; appearing in {ay, . .., a,} we only remove one of its appearances—
say the first one—from (ay, ..., a,). We also define (ai, ..., a,) U (by,...,by) to
be the concatenation given by (ay, ..., ay, by, ..., by).

2.2 Switching the expectation and the infinite series

The goal of this sub-section is to prove the following absolute convergence result.

Proposition 2.3 Suppose Pa and p satisfy Hypothesis 1. Then, there exists finite N, =
No(r, T, C,) such that for every N > N,, every T < o0, every s-tuple of pairs o, and
every r-tuple of indices y, we have

Tk
ZF]EHL"fu,y(XO)H <.

k>0

As a consequence of Proposition 2.3 and Fubini—Tonelli, we may use the following
expansion.

Corollary 2.4 Suppose Pa, Px, w satisfy Hypothesis 1. Setting L and L for their
generators, we have that

~ ~ k ~ ~
Bl fay (X001 = Bl fay K01 = 3 7 (BIL fay (X1 = BIZ fay (K01

k>0

forevery N > N,(r, T, C,), every t < 00, and every s-tuple of pairs o and r-tuple
of indices y.

Proceeding hereafter to prove Proposition 2.3, we fix r, s, @ and p, and set f =
Ja,y. Aiming for upper bounds on E[|L* f (Xo)|] which are summable against T /k!,
we first utilize (1.13) to expand L¥ as a sum over the 4 words W in the letters
{Ly, LA, Lp, LA} and thereby get the bound

E[IL* f (Xo)|] <4* sup E[IWfXo)], 2.2)
WelLy,La,Ln, Lo}k

where for every x € RN, w f (x) should be understood as (W - - - Wo Wy f)(x). For
every word W € {Ly, L, Ly, LA}", let ky = kyj(W) denote the number of Lj’s that
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appear in W, and similarly define k4, kn, and ka, so that ky + kp + kn + ka = k and
the following structural decomposition of W f holds.

Claim For any word W € {Ly, L, Ly, LA}" with kj, kA, kn, ka occurrences of the
corresponding symbols, Wf can be expressed as a sum of (not necessarily distinct)
monomials of the form

knh 2k r

ky
$ppo08(X) = l_[ Ja, ]_[ Jp, ]_[ Ag 1_[ hy; 1_[ oz, ]_[xa . Q3

B. B', ¢ denote the collection of pairs (B¢)e<ky» (By)e<ky» (£0)e<2k,» While &', & denote
the sequences (g“é )e<kn» (§¢)e<r and hereupon we adopt the convention xo = 1, allow-
ing for &, =0 as well as §y € (0j);.

In view of Hypothesis 1 on Py we have that for every N, £ > 0, and index pair «,

Ca (E+1) /2
]EHJ |e+l <£'( A)
N
Thus, if I 11 distinct index pairs appear at multiplicities (¢ +1)¢<;,

«up inthe sequence
a LI B of length ky + s, then by the independence of (Jy)y,

aLIﬂ

Ca (ks t)/2
=) e

Consequently, with X¢ independent of J we have in view of the assumed bounds on
(Aij)i,j (0ij)i,j and (h;);, that for any term of the form (2.3) with /¢ entries such that
ge ¢ 0))),

HH%HM

s aLIﬂ
2 l6p.500.0.6 0[] <(52) " )/z(ffi) (C" Jn suptE[1x; @)1 [ et
o =1
o Ck Iyuip
<Cu(nC; SRRy | 1"[ nel, 2.4)

using in the last inequality also (1.6) from Hypothesis 1 on u, and the definition of
C..

Our next result is a first step in controlling the number of monomial terms that can
appear in the expansion of each word W € {Ly, L, Ly, LA}~

Lemma 2.5 Foreveryky, ka, kn, ka andevery B, B, &', ¢, &, ifwelet¢p = Pp.pcck
be as in (2.3), then Ly¢, Lyd, La¢ and La¢d can each be expressed as a sum of at
mostr, rN, rNx and r]\/(,2 many such monomials, respectively, each of the same form
(with possibly different B, B/, ', ¢, &) as (2.3), with the respective ky, ka, kn or ka
increased by one.
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Proof Fixing ky, kp , kn, ka which sum up to k, we proceed by separately considering
the effect each of Ly, Lyp, Lo and L A¢ has on the monomial ¢. First,

kn 2k

ky
(Ln)(x) = HJQZ]"[JM]"[A,SZ]‘[% ]‘[%Zh a) (]‘[x&), 25)

=1

with non-zero contribution only from j € &, yielding at most r non-zero terms. To each
of these corresponds a monomial of the form of (2.3), for kp +> knt1, &'+ &' L ()
and & — (§\ (j)) LI (0). Next,

kn 2k r

ky
(Lyp)(x) = ]_[ Ja, ]_[ Js, ]_[ Ag, ]_[ e, ]‘[ oz, Z it (). @0

=1 i,j=1 =1

with non-zero contribution only when j € §&. Withi < N the total number of resulting
non-zero monomials is now at most N, each having the stated form with ky — kj+1,
Br— BLU(ij)and & — (§\ (j)) U (i). Likewise, we have that

kn 2k r

(Lad)(x) = ]_[ Jo ]_[ Jg, ]_[ Ag T e l_[o;/ Z oy ([Tee). @7

=1 (=1 =1 =1 =1 i,j=1 (=1

with non-zero contributions only for j € &. Enumerating over i < N, gives now at
most rA/s non-zero monomials, of the stated form, with ky +> kp +1, 8’ — B'LI(ij)
and & — (& \ (j)) L (¢). Finally,

kn 2k

ky N
(Lag)(x) = H Jo, 1—[ I8, 1_[ Ag H he; H o Z
=1 = =1 j

— j=1

( Z 01j0r jXiXir) 99 ( 11 xg) : 2.8)

i,i’=0 =1

is non-zero only for the summands in which j € &. Enumerating over 0 < i,i’ < N
(recalling the convention that xg = 1), gives at most r./\/a2 non-zero monomials, of the
stated form, with ka + ka +1,¢ +— ¢ (i) (i’j)and & — (E\ (j, j)) LG, i").

|

Fixing N, k, an s-tuple of pairs «, an r-tuple of indices y and W €
{Ly, LA, Ly, LA}, upon inductively applying Lemma 2.5, we are able to express
W f as the sum of at most

Pk KAk AR 2.9)

many non-zero monomials of the form of (2.3). Recall that for a monomial ¢, we use
I for the number of {y ¢ (0j);, I, for the number of distinct pairs in e, Iy11g for the
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number of distinct pairs in & LI B, and introduce I, = Iy11g — Iy, which counts the
number of distinct pairs in {8} \ {«}. A careful examination of the proof of Lemma 2.5,
yields the following significant refinement upon the crude bound of (2.9).

Proposition 2.6 Fix N, r,s, k > 0, an s-tuple of pairs a, an r-tuple of indices y, and
aword W € {Ly, LA, Ly, LA}]‘. Then, of the monomials in such expansion of W f, at
most

k 2k
( ! ) ( A) KNI NN 2.10)
I*,nl,...,nlauﬂ I,

have I elements of & with §¢ ¢ (0));, and the Iyug = lo + 1, distinct pairs in o 11 B
appear in multiplicities {n¢ + Ly¢>1,}}¢<1,,5 Within the sequence B of length ky. (N.b.
we ordered the (ng) with multiplicities in 8 of the distinct pairs of o appearing first,
and the multiplicities in B of the remaining I, distinct pairs next.)

Proof The first improvement in (2.10) over (2.9) is from observing that the growth
factor Ny applies only in those I; of the 2k applications of L within W which
have led to an element ¢¢ ¢ (0)); (see (2.8)), and that there are at most ( ) ways to
choose which I elements of ¢ are not from the 0-th row of 0.

Similarly, the growth factor N in counting the number of monomials after applying
Ly is only relevant during the I, applications of Ly within W in which a new pair
(i) is selected (see (2.6)). The left-most term in (2.10) counts the number of ways
to select the locations of these I, new elements within the kj long sequence f, and
thereafter to partition the remaining kj — I, consistently with having the prescribed
ng > 0 repeats for each of the Io118 distinct pairs in question. Putting all this together
yields the stated bound (2.10) on the number of relevant monomials in the expansion
of Wf. O

Proof of Proposition 2.3. Combining Proposition 2.6 with the bound (2.4) we deduce
that for any word W of length k and any & whose I, distinct terms appear in multi-
plicities (c¢)e<,

4rCOk 3
E[Wf X0l < Cu(r)C; ky! 15/(:J+3/2 Z

Z 1—[ (ng+co— D! ’ 2.11)

n '
(e)e<typp =1 e

where the inner sum is over all partitions of ky — I, into I114 indistinguishable integers
ne > 0.Since Y, ce = s and n¢ + ¢¢ < ky + s for all £, the right-most product is at
most (ky + s). Further, the number of (n¢), considered here is at most the number
of integer partitions of kj, which grows slower than ¢ (c.f. the Hardy-Ramanujan
asymptotic partition formula [24]). Thus, we find that for C(r, s, C,,, C,) finite and
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any word W of length k,

ky

4 NG NL
(4reC X k1 (kg + 5)° <£> B ECRT)

E[|Wf (X
W[ Xo)ll = NCRAR WA

Ns/2

Since k! > kj!(k — ky)!, the bounds (2.12) and (2.2) will yield the stated abso-
lute convergence of the infinite series. Specifically, fixing T < oo and setting
8 =1/(16TreC,), we have that

0k o k
T k C 47) k—k
D GBI X <o >0 D 0 @reC) M kgl (hy + 57
k=0 k=0 ky<k
(4reC*)kJ kzj N
VN L=0 L
c sk X Ly KRVIA
sy 2 o U+ YN Y S
k'=k—ky=0 ky=0 1,=0
(2.13)
which is finite for any fixed N > 82, thereby concluding the proof. O
2.3 Controlling the differences of the k'th order Taylor coefficients
By Corollary 2.4, we have that
sup [ELF(X0)1 — BLF (X))
1€[0,T]
k
t ~
= sup Y° S[EILF £ (Xo)) — EILY f (X))
1el0.71 ;= ©*
1)t =
=Y sup [EIWS(Xo)] — EIWS (Xo)]|
k>0 : WE{LJ,LA,Lh,LA}k
(G .
= sup > [Eexol-BlexXol|.  214)

= K WelLy,La.Ln,La¥ pe(Wf)x)

where the last sum is over ¢ appearing in the monomial decomposition of W f (x) per
Claim 2.2. To bound the differences of expectations on the RHS of (2.14), we next
control the type of monomials ¢ of the form (2.3) in the expansion of W f, for which
we may possibly have E[¢ (Xo)] # ]E[qb Xo)]l.

Lemma 2.7 Foranyk,s > 0, everys-tuple of pairsa, andevery W € {Ly, L, Ly, LA}k,
the monomials ¢ in the expansion of Wf in Claim rm 2.2 may have E[¢(Xp)] #
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El¢ (Xo)] only if
ky+s>3 and ky=>2I, —|—1 , (2.15)

where as before, I, = Iq118 — 1o denotes the number of distinct elements in {B} \ {et}.

Proof By the independence of J,j and u, if E[¢(Xo)] # INE[d) (Xp)] for some ¢ =
¢5,5’,§,€’,E as in (2.3), then

[]_[ Jo, ]_[ Joe | # ]E[ﬂ Joi ]_[ Jo].

which for independent, zero-mean (J;;);; of matching variances %m = % m, requires
that simultaneously:
No pair o, appears exactly once in the concatenation e LI 8. (2.16)
Some «, appears more than twice in the concatenation & L1 8. (2.17)

The condition (2.16) implies that each of the I, distinct elements in {8} \ {e} must
appear at least twice in {8}, to which end we need at least 2, applications of Lj to select
those elements. In addition, some other I, 1 of the ky applications of Ly must align
exactly with the pairs (o;;) appearing only once in e, so necessarily ky > 21, + Iy 1.
Further, the condition (2.17) requires ky + s > 3 and when no pair appears more than
twice in «, an extra application of Ly beyond the preceding 21, + I,1 is needed for
producing the third appearance of some «., as stated in (2.15). O

We are now able to prove that the expectations of monomials of the form fg , (X;)
are universal.

Proof of Proposition 2.1. Fixing «, y, in view of Lemma 2.7, it suffices when bound-
ing the RHS of (2.14), to consider only words W and monomials ¢ for which (2.15)
holds. By restricting attention only to monomials for which (2.15), holds, we find as
in (2.11), that for any o whose I, distinct terms appear in multiplicities (c¢)¢<y,, and
every word W of length k such that kj + 5 > 3,

s, @4reok N
[BIWS Xl = EWf Xo)l| < 26.00C ki s 30

{Loky=2L+1 )

Z H(W—FCK_I)"

ng!
()e<typg =1

where as in (2.11), the inner sum runs over all partitions of ky — I, into /4114 indistin-
guishable integers ny > 0. Reasoning as we did leading up to (2.12), we find that

41’6(:,,)"]

[ELWS (Xo)] ~ BIWS (Xo)I| =~ (4reCo kgt ty +° ( —~

@ Springer



Diffusions interacting through a random matrix: universality. .. 1079

3 Nt (2.18)

L!
{Lecky=2141] )

Plugging (2.18) into (2.14), as in the derivation of (2.13), we getfor 6 = 1/(16TreC,)
and N > p := (2/8)?,

sup [ELf(X)] — BLF (R0
tel0,T]

2C -~ 1 5 o—ky nrlo—k

- - - L - * /2

Ns/2 Z K Z I Z (ky +s)' 6N J
k>0 L=0 """ ky>o1,417,

1
A=+ )/2 pr sHy—k
CN 1 § N § (ky + ) 275, (2.19)
L>0 "% ky>0

IA

where C = 2Ce™1/? plﬂtl/ 2. This completes the proof, as both series on the RHS of
(2.19) are finite and independent of N. O

Remark 2.8 In the case of symmetric random matrices A, A (where only the upper
triangular and diagonal elements are independent), we identify index pairs 8 = ij
and /§ = ji as being the same. We do so whenever considering Iy, /.1, 1;,1’ Iqu1g,
I, and the multiplicities (1¢)¢, as well as in the restrictions (2.16)—(2.17) imposed on
the multiplicities within & LI 8. Once this is done, the only difference in our proof is
to replace in (2.10) the weight rk by @rk.

3 The extension to multi-time polynomial observables

In this section, we extend the results of Sect. 2 to more general observables, namely
those that contain coefficients that depend on the driving martingale, and those that
depend on the trajectory through multiple times, rather than just one. We then use
those extensions to prove Theorem 1. To this end, fix any /, any (@D, ... aD)each
consisting of s; pairs, any (1, ..., @) each consisting of r; indices, and also fix
m indices § = (&1,...,&,). Fix I times 0 < f; < --- < f; < T and m times
O<wu;<---<u, <T.For fam’y(,-) as in (2.1), consider observables of the form,

l m

8a), ()t w) = (1_[ fau),y(z‘)(X;,-))(l_[ M, (ui)) . 3.1
i=1 i=1

Let7 = ) ; ri+m and & denote the concatenation eV 11 - - LT ® oflengths := )", s;.

Proposition 3.1. There ex;’st finite C(r,s,m,l,T,C,, C,(r)) such that for every
[, m, every (a(l))iil, (y(’))ifl, £ everyt € [0,T], u € [0, T and g(t,u) =
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g(a(i))’(y(i))’s(t, u) asin (31),

[E[g(t, w)] — Elg(t, w)]| < CN~CHa/?

We proceed to prove Proposition 3.1, which we thereafter combine with a short
combinatorial estimate bounding the number of terms with specific values of 1 1 to
establish Theorem 1.

3.1 Proof of Proposition 3.1

We start with the case of m = 0 to which we will reduce the case of m > 0.
Lemma 3.2 Proposition 3.1 holds when m = 0.

Proof Fixing I, (a¥);<; and (y)i<;, we set here [ (x) = fy0 0 (%) and

l I
g xO) =[]0 = HJQE,-) e d o x}(/l()[) x;’(f) : (3.2)
i=1 i=1 e
and for any /-tuple of times t = (¢, ..., ;) € [0, TV, evaluate (3.2) on the argument
Xy, .0, Xy de, let
8(t) = &), (i) = 8Ky, ..., Xy).

We express the expectation Eg with respect to the Brownian motion of g(t), in terms
of the (diffusion) semi-group operator as

Eslg®)] = (P fVPory fP - Py FO)(Xo)

Expanding each semi-group operator in terms of powers of the generator L, the above
is precisely

Z tl Lk [f(l) 3 (2 — fl) Lkz[f(z) > ) _kfll!l)k' Lk’f(”]](Xo)

ki >0 kp>0 k>0

1
Z (1_[ l, l) )[Lklf(l)Lle(Z) o Lsz(l)](XO) .

ki,....k; >0

Taking the difference in expectations between [E and E, upon justifying swapping the
expectation with the infinite sum (as done in Sect. 2.2), and using the fact that

k k
7% < ( )1": 1, (3.3)
(kl,...,kl) klz ki,.... k

soenky >0
S ki=k
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for every ki, ka, ..., k; such that k1 + - - - + k; = k, we obtain that

[Elg®)] - Elg®]] <Y Z >

k>0 ki, .. : Wi,...W;
ki Wie{Ly,La,Ln,Lai

!E[(Wlf“) Wi f DY X)) = E[(Wr fD - Wi f D)X«

The following structural property for words appearing in the above will allow us to
reduce the analysis of multi-time observables to the combinatorial analysis of one-
time observables fzj; = FOF@ . O forg = aD - Ha® and p :=
yO L. I y®, which we have already completed. O

Claim Fix ky, ..., kl 2.0 spch_that Zi ki = k and words W; € {Ly, LA, Ly, LA}ki,
i=1,...,1, with kj, kj\, ky . k!y, of each appearing, respectively. Then, the function

Wi fOWaf@ Wi f Oy x)
consists of a sum of (not necessarily distinct) monomials of the form

S/ Zk‘l] ZklA Zkil 2ZkA Zri

1
P (x) = ]_[Jai(l) ...HJ%(,) [T [T 26 117 T1 oo I]xe-
i=1 i=1 =1 =1 =1 =1

=1

Moreover, each monomial ¢ (x) appearing in this expansion, must also appear in such
monomial expansion of Wfg 5 for W = Wy --- W, € {Ly, Ly, Ly, LA}]‘.

Proof The structure of the monomials is evident. Every such monomial in
Wi f Ow, f @...w f O mustalso appear in the monomial expansionof [W; - - - W;] f&
because a subset of the terms in the latter are obtained by applying the letters in W
to f (l), then the letters in W;_; to f (l_l)(Wl f (l)), and so on. Finally, observe that
Wi --- W, is always a word in {LJ,LA,Lh,LA}k. O

With Claim 3.1 in hand, we further get that

4klka
Elg®)]—Elgmll <> Y sup >
k>0]§:k i WIG{L‘;VIL';"L“; Lot BEWLSD-Wi fO)x)

|E[¢ (X0)] — E[¢ (Xo)]|

-y Z (4lT) wp

k=0 ki . ' oWellyLaLnLalt Pe(Wfa7) ()

Zk
|E[¢><Xo>] — E[¢ (Xo)]|
(k + 1) (41T)k
<y — sup

k=0 WelLy.La.Ln Lol ge(W fa )00
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|E[¢ (X0)1 — E[¢ (Xo)]|, (3.4)

where the sums are over the monomials ¢ in the decomposition of Wy £ ... w; f®
and that of Wfz 5 per Claim 3.1. Note that each summand on the RHS of (3.4) is
at most some (k + 1)'1¥ times the corresponding summand of (2.14) for the choice
f = fa y for which we have deduced the bound of (2.18). Utilizing the latter and the
elementary bound k + 1 < (kj + 1)(k 4+ 1 — kj), by proceeding as in the derivation of
(2.19), we find that for C = C(r, 5, C,(¥), C,) finite, § = 1/(161 Tr e C,) positive
and N > (2/8)2,

sup [ELg©] - Blg(®)]] = —= Z‘S_k/(k#l)’ :

gWOI-Elg®]] < —5 D — —

te[0, 77 N*/ k=0 ke 1,0 L
Z (kJ +§)§+l 871(.] Nl**k.]/2

ky=2L 413 |

< éN—(EH‘;I)/z

for some finite C = C(l, 7, 5, T, Cy, C, (7). O
We now add in the driving martingale observables (i.e., m > 0) and conclude the
proof of Proposition 3.1.

Proof of Proposition 3.1. We reduce the situation m > 0 to the combinatorial calcu-
lations of Lemma 3.2 by utilizing the following expansion from Ito’s lemma:

Mg, (1) = X, (u) — /0 (L xg)(Xo)d .

When expanding (3.1) in this manner, the terms containing only products of X, (u;)
can be absorbed into y, in which case their difference in expectations has already been
handled in Lemma 3.2, so by linearity it suffices for us to focus on handling terms of
the form

1 m u;
h (), ()¢ (t, 1) = (l_[ Ja @ (Xti))(l_[fo (Lxs,-)(Xr,-)dTi)
i=1 i=1

ul Unm __
:/ / h(t, t)drty - --dty, ,
0 0

where T = (71, ..., Tp) € [0, T]" and where, setting f(i)(x) = faa)’y(i) (x),
l ' m
h(t,7) = [ [ FOX) [ [(Lre) Xz

i=1 i=1
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Thus, fixing [, m, (@), (), & and letting h(t, u) = h gy, ()¢ (t, u) we obtain
after swapping the expectation and integrals that

h(t u) f f h(t 1:) drty---dt, ,
which thereby yields the following bound on the relevant difference in expectations

[E[A(t, w]-E[a(t, w)]| < T™ sup
7€l0,T]"

E[At. 1)] - E[At, 1:)” .

Proceeding hereafter WLOG to bound the difference in expectations for ﬁ(t, T), we
suppose for ease of exposition that 0 < ; = 79 < 71 < --- < T, (the situation where
the two groups intertwine is similarly analyzed with the obvious modifications). As
done in the proof of Lemma 3.2, first expressing [Eg in terms of the semi-group operator
and then expanding that in powers of the generator L we find that

Eg[A(t. 7)]
= P[P OP [ P [ SO P [ Py L, 1]] [ OK0)
I o
:Z Z H(tz—fz 1k H(Ti—fi—l)zl 1Lk1
] -
k>0 (k;)>0,(¢;))>1 i=1 i=1
S ki+Y ti=k+m

[f(l) o Lkz [f(l)Lel [x&'l . Lemxém]]:l(X()) .

At this point, proceeding as in the derivation of (3.4), up to the transformations
kisk+m=£k, Ie>l+m=1, and (f . D)y (xg,.. . xe,).

we first use (3.3) to get the bound
[E[At, )] - E[Act, ]|
4k (i)
S

k20 k)z0.epz1 T Wi W W Wy,
S ki+Y b=k WielLy,La,Ln,La}ti
W/e{Ly,Lx,Ln,La}i

> |[Elg (X0)] — El¢ Xo)1],

deW1 fD W), xg,,) (%)

with the sum running over monomial decomposition of (W £ ... w; fOw/ /| Xe
W, xg ) (x). Then, utilizing again Claim 3.1, as well as the bound k! > k'/(k)m we
arrive at
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’E[ﬁ(t, )] - E[ht, r)](

m (k) (4IT) 3
<Z( ) —()(. ) sup > [ElpXo)] - Elp(Xo)]|.
k>m i ’ WE{LLLA,Lh»LA}’E¢€(Wf&,;7)(X)

(3.5)

where as before @ = ¥ LI --- O a¥) is of length § = 3, s;, while ¥ of length
¥ = ) r; +m has now the additional elements (xg );<n. Up to this update of 7 and
the immaterial weight factor (IE / (l_ T))™ of its summands, the expression on the RHS
of (3.5) is the same as that in (3.4). We thus conclude as in the proof of Lemma 3.2
that for some C(I, m,7,s, T, C,, C,(r)) all t € [0, T]l andu € [0, T']™,

[E[a(t, w)] — B[h(t, w)]| < CN~CHen2 |

3.2 Proof of Theorem 1.

Fix T, m, p, Ca, a € RY" such that ||a||o < Ca, and t € [0, T]?. For every £ < m,
fix observables Y& .. Y&P) ¢ T and let F(t) be as in (1.5) with those choices.
By linearity of expectations and the uniform bound on ||a||~, it suffices to show that

uniformly over iy, ..., iy,

sup |E[ ] yi(f’l)(tl) o yi(f’p)(tp) E[]] yi(f’l)(tl) o y’.(f*”)(;P)]‘
te[0, 717 L<m L<m
<CN~!/2 (3.6)

We denote by s the number of ) terms appearing in the preceding product which is
a coordinate of G;. In case 5 = 0, the bound (3.6) follows from considering Propo-
sition 3.1 at s = 0, in which case I + = 1. Otherwise, we expand every term in
that product which is a coordinate of G, to obtain a sum of monomials of the form
of (3.1). Each of these monomials has a sequence « of length s, and as a result of such
expansion there are at most 5° N@ monomials with precisely Iz distinct pairs in the
sequence a. Note that for any a,

S+13, =2 +1.

Indeed, each pair which appears once in &, is counted both in 5§ and in /g i, all other
pairs are counted at least twice in §, and for any @ of maximal multiplicity two, we
have added one to Consequently, the bound of Proposition 3.1 on the difference
in expectation for each of these 5 N’@ many monomials is at most CN~/&~1/2 for
some constant C(T', m, p, C,, C,). From this, the bound (3.6) immediately follows

upon enumerating over the at most § many choices for /. O
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4 Concentration for quadratic observables: Proof of Theorem 2

Assuming henceforth that M is a scaled Brownian motion (i.e., that o;; are identically
zero for i # 0), our goal is to prove Theorem 2 about the uniform over t € [0, T]?
concentration property of the quadratic observable of (1.10),

1 /
F(O) = Fy y.a(X, Xp) = = ) aidit)Y(n),

(for uniformly bounded non-random a = (g;); and ), )’ in the collection § =
{1;, X;, Gy, My} of (1.4)). To this end, we introduce in Sect. 4.1 high probability
localizing sets Ly g on which various norms of X; (and our observables F'(t)), are
uniformly bounded. Sect. 4.2 shows that on Ly g, such F(t) are O (N -1/ 2)-Lipschitz
in a mixed £2-norm. Combining these facts we prove Theorem 2 in Sect. 4.3.

4.1 Localizing the process

Denote the 2-to-2 matrix norm by

WWlaon = sup [0xl =137 ma = sup (Y Gi0?)"7,

xilx]=1 xlxl=1 " /=y

and for each constant R consider the following localization subset of &y := RV x
RY* x C([0, T1, RY),

Lnri={(Xo, M) € Ex < IXol? + NIJIL, + sup M2 < RN}, 4.1)
te[0,T

T
We begin by bounding the probability that (Xo, J, M) ¢ Ly g.

Lemma 4.1 There exists C = C(T, Cy, Ca, Cs) > 0and Ro(T, C, Ca, Cg) < 00,
such that for every R > Ry if u, Pa satisfy Hypotheses 1-2, then

IP( fV!R) <exp(—vRN/C).

Proof We bound L, . by the union of the events where each of the three norms is

greater than /RN /3. First, since M, is a Brownian motion (scaled by (0o;);), by
Doob’s maximal inequality for the sub-martingale exp(§||M; %), we have for some
C(Cy) >0any R > TRo(Cy) and all N,

PB( sup M, > ,/RN/3) < exp(—RN/(CT)). 4.2)

1€[0,T]

Next, since u satisfies Hypotheses 1-2, the independent X; (0) have uniform (in i and
N), second moments and exponential tails. Hence, applying [30, Theorem 3] for the
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centered sum of i.i.d. variables that stochastically dominate X 1.2(0), we have for some
C(Cpu) > 0,any R > Ro(C,) and all N,

i(IXoll? > RN/3) < exp(—vRN/C).

It thus remains only to show that when Py satisfies Hypothesis 2, we have for some
C(Cp) > 0any R > Ryp(Cp) and all N,

Pa(llAll2»2 > VRN/3) < exp(=VRN/C). (4.3)

To this end, recall [28, Theorem 2] that there exists a universal constant C such that
for any matrix A with independent, zero-mean entries of second moments m;; and
fourth moments b;;,

EA[||A||2—>2]SC(En;}\)/((Zmij)1/2+rjnfa]z]((2mij>l/2+( 3 bij)l/4>.

J<N i<N 1<i,j<N

For P5 satisfying Hypothesis 1, b;; and m;; are bounded uniformly in i, j and N
(see (1.8)). Hence, in the case where A is composed of independent entries, for some
C(Cy) finite and all N,

EallAl2-2] < CVN. 4.4

Likewise, representing a symmetric A as A = AT + A~, with AT the upper triangle
(including the diagonal) part of A and A~ its lower triangle part, [28, Theorem 2]
holds for the matrices A~ and AT of zero-mean, independent entries (with uniformly
bounded forth moments). Thus, (4.4) holds also in this case up to a factor of 2. Thanks
to (4.4), if VR > 4C then

Pa(IAll2—2 > vVRN/3) < Pa(| |All2—2 — EalllAll2—2]1] > VRN /4) .

Recall that ||A||2— 2, which is the largest singular value of A, is 1-Lipschitz in its entries
(endowed with the Euclidean norm, on AT when A assumed symmetric). Indeed, this
follows by combining the triangle inequality |||Al2—2—[IB|l2—2| < [|[A—B|l2—7 with
the domination of the operator norm by the Frobenius norm, |A—B||2—2 < |[A—B| F.
Hypothesis 2 for P4 thus yields the bound (4.3). O

We further have on the sets Ly g the following localization for both (X;):c[0.7]
and (Gy);e[0,1]-

Proposition 4.2 There exists Ro(T, C,) and Co(C,) such that if R > Ry, and
Xo,J. M) € Ly g, then

! JRT CovVRT
sup {IX/[]} < e . —= sup {IG[l} =€ . 4.5)
N t€]0,7] ' VN te[0,1] '
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In addition, for every a such that ||a|| oo < Ca (uniformly over N ) and every), )’ € g,
if F(t) is as in (1.10), we have for all k > 1,

. 1 k .
limsupE[(—= sup [X;]])"] <oo, lim supIE[(— sup ||G,||) ] <00,
N—00 N tef0,1] N—oo VN te]0,1]

(4.6)

limsupE[ sup |F(t)|k] < 00. “@.7
N—oo  te[0,T]?

Proof Setting ey (1) = \/Lﬁ [IX;]l, we get upon expanding (1.2), that
2 l
(en () = Z X ()]
j<N
t t t
(|Xj(0)|+|Mj(t)|+/o IhjldS-F/O IG.,'(XS)Ids+/0 IA,/(Xs)IdS)
=h+h+hL+0L+1s.

From the definition of the 2-to-2 norm, evidently

IGsl = [ Gi(X)? < FlamalXsll. D0 AjXD)? < Aol X, [(4.8)
J=N j<N

Hence, by Cauchy—Schwarz,

1
I <en(®)—=IXoll, D <en()—

1
VN VN
1 t t
L = en)—= [ 16, 1ds < en 1312 /O en(s)ds .

M|, I3=<en(t)CnT,

t
Is <eN(t>—/ (Z I, X0R) "ds < evnen [ enords,

where in the last inequality we rely on our assumption that ||A]j»1 < Cj and
IA]loo—>00 < Ca,todeduce that [|A[2—2 < Cx.Combining these bounds on (/;); <5,
and dividing out by ey (t), we see that

1 t
en(®) = — | IXoll + ML + CaT + (2 + cn [ entds.

By Gronwall’s inequality, using the localization to Ly g, it then follows that for any
1€[0,T],

en(t) = (VR + CoT)exp (WR + Cp)t),
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yielding the LHS of (4.5) as soon as R > Ry(T, C,) > 1. From the LHS of (4.8) we
know that |G, | < +/R ||X;| throughout £ N.R. hence after suitably increasing Cp and
Ry, the RHS of (4.5) holds as well.

To deduce the uniformly bounded moment estimate of (4.6) for X, recall first from
the LHS of (4.5) that

Z]fv,x := (sup eN(t)) < ¢CoVRTk _ :f(R), VYR=Ry, Xo,J,M) e Lyr.

t<T

Combining the latter bound with that of Lemma 4.1, we arrive at

E[Z} x] =/0 I (RP(ZY x > f(R)dR

= f(Ro) + / S (RP(LY R)dR < f(Ro) + / F'(RyeVENICqR
Ry Ro
4.9)

The RHS decreases in N and as f/(R) = (CoTk)/(2v/R) f (R), itis finite for v N /C >
CoTk, yielding the LHS of (4.6). The RHS of (4.6) follows by applying the same

reasoning to Z (N 172 sup; 0,77 G ||) while utilizing the RHS of (4.5).
Turning to (4 7) note that for any k > 1 and F (t) of (1.10) with ||aloc < C,, by
Cauchy—Schwarz,

1
IFOF < Cy \JZ¥ )/ Z2f 3y where  Z3y o= (—N sup {1V

te[0,T]

Thus, yet another application of Cauchy—Schwarz results with

E[ sup [Ft)] <Ck\/E[Z \/E[zNy, <CkmaxIE[Z 1.
te[0,71?

If Y is 1, this latter expectation is simply 1. If ) is M, using the tail bound of (4.2) in
combination with (4.9) (now for f(R) = (R/3)%), the latter expectation is uniformly
bounded in N. Lastly if ) is from {X, G}, the expectation above is uniformly bounded
in N by (4.6). Combining these yields the desired (4.7). O

4.2 A Lipschitz estimate on quadratic observables

Our next proposition shows that on Ly g all F(t) of the form (1.10) are O(N /2y
Lipschitz in the (Xp, J, M) endowed with the following mixed 2-norm on &y,

IXo, I M)l == IXolI>+ N >~ J5+ sup IM,>  (4.10)
1<i,j<N t€[0,T]

(which is taken from [3, Hypothesis 1.1]).
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Proposition 4.3 Fixing a such that ||a|lcc < Ca and ),) € 3, denote by
F(t; (Xo, J, M)) the observable in (1.10) evaluated on the trajectory X; constructed
out of the triplet (Xo, J, M). There exist Ro(T, Ca, C,) and C(T, Cy, C,) such that

orany R > Ry all N and Xo, J,M), (X, Y, M) in Ly r
y ,

sup | F(t; (Xo, J, M) — F(t; (X5, J', M)
te[0, 712

CeC«/E
=
VN

(X0, J, M) — (X5, J's M) [l -

The key to Proposition 4.3 is to show that X; is O(1)-Lipschitz on Ly g endowed
with || - ||mix. Specifically, denoting by X, (Xo, J, M) the solution to (1.2), constructed
from the triplet (Xo, J, M) and X} (X0, J, M) the solution constructed from the triplet
(X{, J', M), our next lemma establishes a uniform over £y g Lipschitz bound on
X, — X}

Lemma 4.4 There exist Ro(T,C,),C(T,C,) such that for all R > Ro and
Xo, J.M), (X{,, V. M) € Ly &,

MIX *

sup | X;(Xo, J, M) — X[ (Xp. J, M) | < eCﬁH Xo, I, M) — (Xp, J'. M) |
tel0,T]

Proof Following the strategy of proof of [3, Lemma 2.6], we let

1

en(r) == ﬁ||xt(X07J’ M) - X;(Xg, J, M),

and expanding over j < N, we have by the definition of the solution X; for the SDS
(1.2)—(1.3), that

1
en()? = = 31X = X))
J<N

t
(1%,0) = X[ @1 + M) = M} )] +f0 |A(Xs) — Aj(X))lds

t t
+/0 IGj(X‘Y)—Gj(X;)|ds+/O |Gj(X§)—G’]»(X;)|ds)

=h+Dhb+L+11+ 15,

where G’(-) is defined as G(-) but constructed using J’ instead of J. By Cauchy—
Schwarz,

1 1
L <en@t)—=IXo—Xyll, and D < eN(t)—NIIMz - M.

VN VN
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3 e t)—— A . X — X i Ky e t e Ky ds .
N v N 0 j<N ’ ’ ' N 0 N

Turning to the terms involving G(-) or G'(-), observe first that

IGX) — GXDIl = IJl2—2IX = X[I1,  and
IGX:) — G' Xl < 1T = T lo—2lIXel - (4.11)

Using the localization to £y g, we thus find that

s < eN(t)%N /0 IG(X,) — GXDlds < en ()Tl fo en(s)ds
< eNmﬁ/teN(s),
1 T I
Is < eN(t)\/—N/O IGX)) — G'(X{)llds < en (@) |J — ll2-2 ﬁfo X 1ds
< en(®) |1J = J a2 TeOVERT,
where in the last inequality we further assumed R > Ry (T, C,), utilizing the LHS of

(4.5). Further increasing R such that TeCO“/EoT > 1, upon combining the bounds on
(I;)i<s, and dividing out by ey (¢), we see that

eCO\/ET \/_ ,
en(@) < ——— | 1Xo = X4 + /N = Vllo—2 + sup [M; — M
w0 = = X0 = Xpll VNI =l o sup M — M
t
+[CA+«/§]/ en(s)ds.
0

Recall that ||J ||%_>2 < Zi i Jl.zl., so by Gronwall’s inequality, there exist C(T', C,),
such that '

eCVR
en(t) < i (X0, J. M) — Xg, J', M) [lvx
for any R > Ry, every N and all ¢ € [0, T'], as claimed. O

Proof of Proposition 4.3. Fix Yy e §,asuchthat [|alcc < Caandt = (£1,1p) €
[0, T1?. Equipped with Lemma 4.4 and (4.11) it remains to establish a Lipschitz control
on differences of F(t; (Xg,J, M)) in terms of differences of ||G;||, || X;|| and ||M;||
corresponding to any pair of triplets (Xo, J, M) and (X{,, J', M) in Ly g. To this end,
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we start with the following bound on differences of F'(t; -):

Ca ,
[F(t (Xo, J, M) = F(t; (X5, 3, M)| < —= DIV = VX[ VE X))
i<N

Ca / /
+ N Z |y,'l(X;,)|’yi2(th) - y?(th)| :

i<N

Since the two terms on the RHS can be bounded symmetrically, WLOG we focus on
the first one, which by Cauchy—Schwarz, is at most

1 1
Ca — VX)) - VX] —IYXl}, @12
yegs’?goﬂ{mll Xp) = W( t)”}yess,:lep[o,r]{«/ﬁn Xoll} (4.12)

where as before, X] is constructed out of the triplet (X{,, J', M'). Now recall from
(Xo,J,M) € Ly, g and Proposition 4.2, that the right-most term in (4.12) is at most
exp(CO\/ET) for all R > Ry, in which case by the preceding

sup |F(t; (Xo,J, M) — F(t; (X(, 3. M)
te[0,T1?
2C,eC0VRT

<—F— s YX) =YX - 4.13)
N yeg’?goﬂ 1V (X 0.9]| (

Recall Lemma 4.4 and (4.11), to deduce that for some C(T', C,) > 0, every R > Ry,
and all (Xo, J, M), we have (X, J',M') € Ly r,

sup  [IVX) — YXD | < VReEVE||(Xo, J.M) — (X}, I M) |arx -
VeF,t€[0,T]

Putting these all together, we deduce that there exists some other Ry(7', C,) and
C(T, Cy,, C,), such that for all R > Ry(T, C,),

sup |F(t: (Xo, J, M) — F(t; (X;, J. M)|
(Xo.J.M).(Xp.J . M)eLy r
te[0,77?
CeCﬁ / ! !
S \/ﬁ ||(X07J7M)_(X7JaM)”MIX‘ O

We conclude this subsection by combining the respective exponential concentra-
tions of Lipschitz functions due to , Po and Pg.

Lemma 4.5 Suppose that |1, Pa satisfy Hypothesis 2. Then P = 1 @ IPp ® Py satisfies
exponential concentration of Lipschitz functions with respect to (Ey, || - |lmx)-
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Proof Fix any function f that is 1-Lipschitz on (Ey, || - |lmx)- Let us expand

fXo,J,M) — E[f(Xo0,J, M)] = (f(Xo,J, M) — Eg[ f (X0, J, M)])
+ (Eg[ f X0, J. M)] — Ey B[ f X0, J, M)])
+ (Ey Bl f (X0, J, M)] — E[ f (X0, J, M),

where the subscripts of the expectations indicate which random variables the expec-
tation is taken over. Call the above three differences Iv, /3 and Ix, say. For every
Xo, J fixed, f(Xo,J, M) is 1-Lipschitz in M € C([0, T], RY) endowed with the
norm sup; .7 || - ||. As such, from the exponential concentration of Lipschitz functions

satisfied by Pg with respect to C ([0, T], R™) endowed with sup,<7 || - Il (see e.g., the
discussion around [3, Hypothesis 1.1]), there exists C = C(Cy) > 0 such that for
every r > 0,

sup IPB(|IM| > r/3) < Ce /€,
Xo.J

Similarly, we have that for every fixed Xo, Ep[f(Xo, J, M)] is 1-Lipschitz in J
endowed with its rescaled Frobenius norm Zi’ j («/N Jij )2, and finally, Ey [ f (Xo, J, M)]

is 1-Lipschitz in Xo endowed with its ¢£> norm. Altogether, expanding

P(| f (X0, J, M) — E[f (X0, J, M)]| > r)
<E[Pg(IIml| > r/3 | Xo. D] + E[Py(115] > r/3 | Xo)] + (1%, > r/3)

we see that the exponential concentrations for 1-Lipschitz functions of u, P5 and Pp
lift to exponential concentration of P for functions that are 1-Lipschitz in the triplet
(Xo, J, M) on (En, || - Ivx)- O

4.3 Proof of Theorem 2

We first prove a concentration estimate for F at a fixed pair of times t € [0, T]z,
before extending this to the full trajectory (F(t))¢c(o 72 by bounding the modulus of
continuity of F.

Proposition 4.6 Suppose i, Pa satisfy Hypotheses 1-2. There exist C(T, Cy, Cy, Cy)
large, such that for any F as in (1.10) with ||allec < Ca, Y, Y € §, all t € [0, T1?,
L >0and N > No(T, Ca, Cs, Cp),

Ce—)»\/ﬁ/c _}_)"—le—\/ﬁ/C , A<C
ef(log’\)*/ﬁ/c, A>C
(4.14)

P(IF(t) —E[F®)]] > 1) < gnv() ==

Proof In proving [3, Lemma 2.5] it is shown, using a Lipschitz extension, that if P
satisfies exponential concentration for Lipschitz functions as in (1.11) and V is an
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A-Lipschitz function on a set £ on which | V| is uniformly bounded by K, then for
some universal constant C > 0 and every A > 0,

PV —E[V]| = 1) < Ce A0 L P(£) + %(\/]E[Vz] + K)V/P(L£) .(4.15)

Recall from Lemma 4.5 that P = u ® P ® Pp satisfies exponential concentration

for Lipschitz functions in (Ey, || - lmx) and Proposition 4.3 that V = F(t; -) is %

Lipschitz on £ = Ly g for D(R) = Cleclﬁ, for some C (T, Cy, C,) for every
R > Ro(T, Cy, C,), all N, and every F, t as in Theorem 2.
Further, increasing R as needed for Lemma 4.1 and Proposition 4.2, yields

sup |F(t; Xo,J,M))| < K(R)  where
Xo,J.M)eLy r

K(R) := Cy max(R, ¢2CoVRT)

as well as guaranteeing that C22 = supNyt{E[F(t)z]} is finite and that P(LYy 5) <

exp(—+/ RN /C3) for some C3(T, C,,, Ca, Cg). Plugging all this into (4.15) gives us
a family of upper bounds for R > Ry,

2
gy (i R) = CeN/@D(RIC) 4 =VRN/C3 | X(CZ + K(R))e VEN/CCy)

For R = Ry we can embed the constant factor 2D (Ry) into C and further adjust C3 to
bound the pre-exponent 2(C; + K (Ry)) within the factor exp(—+/RoN /(2C3)) multi-
plying it, resulting with g,y (X; Ro) as in the top line on the RHS of (4.14). For a better tail
decay, consider R;, = (nlog)> > Ro, withn = 1/(2Cy) so D(R)) = C1e€1m1ogr <
CiA/log for all A > 4. In addition, once VN/(2C3) = 4CoT we can again embed
the pre-exponent 2(C» 4+ K (Ry))/A within the factor exp(—+/R; N /(2C3)) multiply-
ing it . Thus, upon adjusting the various constants we end up with gy (1; R;) as in the
bottom line on the RHS of (4.14). 0O

Setting hereafter R for the larger of Ry and R; values from the preceding proof
of Proposition 4.6, recall that the event Lf, , was already ruled out as part of the
derivation of (4.14). Thus, proceeding to prove Theorem 2, we fix ¢ = N —k Lk >1,
and apply Proposition 4.6 at the My = [T N*]? grid points t;; = (ie, je) within
[0, T]2, to deduce by the union bound that

P(LS, )+ B(sup | F(ti ) — EIF ()] > &, £a.k) < My gn ().
l’]

It is easy to check that 2M gy (1) is further bounded by py (31) of (1.12) once we
suitably enlarge the constant C on the RHS of (1.12) relative to that of (4.14). In
addition, since the right-most term in (4.15) exceeds one whenever E[|V |1 5, R] =
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E[|F(t)|lg ] > /2, if that inequality holds for any t € [0, T1?, then gy (1) and in
turn py (3A) of (1.12) would exceed one. Thus, we may assume WLOG that

sup {E[|F(t+s)—F(t)|1£c 1} <2 sup ]E[|F(t)|1£c ]Sk(4.16)
t,s:it+s€[0,7]? te[0,7]2

We can then expand

P( sup |F(H)—E[F®)]] > 3%
te[0,T)?

= P(Ly ) +P(sup |F(ti) — ELF (4.1l > A, Ly )
L]

T My supIP’( sup |F(tij+5) — F(t;. )| > A, LN,R)
i, se0,£]?

+ 1{ S BIIF(€+5) = FOl1, ] > x}.

Restricting to A > I/W (as otherwise py(3X) > 1), and using py(3Ar) >
My exp(—(k2 A A)Nk/C’) (as k > 1) with the above, the stated bound of Theo-
rem 2, follows from the following short-time estimates.

Lemma 4.7 There exists C'(Cy), such that for every e < 1, A > C’e, and F as in
Theorem 2,

sup IP’( sup [F(t+s) — F(t)] > A, cN,R) <2~ FN/C) 417y
te[0,T—¢]? se[0,6]2

In particular, for any N > No(T, Ca, Cy,, C,) and X > N2 = /@) |~ q,

sup E[|F(t+s) — F(t)|lgy ] <. (4.18)
te[0,7—¢]2,s€[0,¢]?

Proof Similarly to the computation leading to (4.13), we find that for any t4-s € [0, 7]
and F as in Theorem 2, evaluated on the solution X;(Xq, J, M) that corresponds to
some (Xo,J, M) € Ly r

Co~/RT

a"T max max {0 +s57) = V)|l

When Y = 1 this difference is zero, whereas in case ) = X and s; < ¢, assuming
WLOG that Rg, C, > 1, we have on Ly g, by (4.5) and the RHS of (4.8), that

|[F(t+s) — F(H)| <

ti+s;
IXe45, — Xl < My, — My, || + f [IGull + CallXull + v/ NCn 1du
14
< My 45, — My | + 36/ NCLeOVERT (4.19)
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Further, similarly to the LHS of (4.11), on Ly g,
I1Gs+s; — G ll < 1122 Xerts; — Xl < VRI X5 — Xl

so up to extra factor /R the bound (4.19) applies for ) = G, and considering all
cases we get for s € [0, ]2,

2Can/ReCoVRT
VN
6£C,C v/ RZCOVET (4.20)

F(t+s)— FO)] < max My, — M, |
=1,

For some C’ > 0, when R = Ry and A > C’s, the right most term in (4.20) can not
exceed A /2. The same applies for R = R;, = (nlog )? provided n < 1/(3CoT). By
the same reasoning, for such n and some C4(T, Ca, Ro) > 0, the factor multiplying
My, +5, —M,, || in (4.20), is in both cases at most (WAV 1)/(2C4«/N). Recall from (4.2)
and the stationarity of Brownian increments, that there exists C (Cy ) such that for every
L> 82L0(Ca), every N,

sup ]P’B< sup {[Mysy — My[|} > Lﬁ) < 3CO 400
t€l0,T—¢] s€l0,¢e]

Combining (4.20) and (4.21), we thus get that for some C’(Cy), for every A > C’s,
and every N, t = (11, 1p),

IP’( sup |F(t+s)— F(t)] > A, EN,R)

se[0,e]?

<2max P( sup My 15 — My || > Cat A VOV
=12 \ge[0,e]

< 2o~ W2AR/(Ce) ,

as claimed in (4.17). Next, by Cauchy-Schwarz, (4.7) and (4.17), there exists
C(T, Cy, Cy, C,) such that for every N > No(T, Cq, C,, C,), every A > 2C'e,
every t, s and all F,

E[|F(t+s)— F®)1lzy ] < ’% F2P(IF(t+s) — F(t)| > % Lyr)"?

sup {VE[F ()]}
]

te[0,7)?

< %_,_ Ce=(PAN/(Ce)

Our assumption that A > £!'/@b for some k > 1 guarantees that the right most term
is at most A /2 (as soon as N > Ny), thereby establishing (4.18). O
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