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Abstract

Consider (X i (t)) solving a system of N stochastic differential equations interacting

through a random matrix J = (Ji j ) with independent (not necessarily identically dis-

tributed) random coefficients. We show that the trajectories of averaged observables of

(X i (t)), initialized from some μ independent of J, are universal, i.e., only depend on

the choice of the distribution J through its first and second moments (assuming e.g.,

sub-exponential tails). We take a general combinatorial approach to proving univer-

sality for dynamical systems with random coefficients, combining a stochastic Taylor

expansion with a moment matching-type argument. Concrete settings for which our

results imply universality include aging in the spherical SK spin glass, and Langevin

dynamics and gradient flows for symmetric and asymmetric Hopfield networks.

Keywords Stochastic differential equations · Universality · Markov semi-group ·
Random matrices, Disordered systems · Langevin dynamics · Gradient flows

Mathematics Subject Classification 60J60 · 60B20 · 60J35 · 60K35 · 82C44

1 Introduction

Markov processes with random coefficients arise in numerous contexts: e.g., dynamics

of spin glasses, optimization on random landscapes, and learning with neural networks.

In many cases, when the underlying randomness is Gaussian, they have been found to

give rise to a rich class of behaviors, including metastability, trapping, and aging. In
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this paper, we analyze a class of stochastic differential systems (SDS’s) in their high

dimensional limit, where the couplings are linear and encoded by a random matrix.

We show that trajectories of polynomial statistics of the SDS are universal: they have

the same high-dimensional behavior if one replaces the Gaussian interaction matrix

by a non-Gaussian one with the same mean and variance profiles.

Universality, can broadly be described as the phenomenon that for high dimensional

ensembles (X i )i≤N governed by a large number of independent random variables

(Zi )i≤N , macrocopic statistics of the ensemble only depend on the laws of (Zi ) through

their low moments. Of course, the most classical example of universality is the central

limit theorem (CLT), where (X i ) = (Zi ), and the statistic is the normalized sum.

Slightly more involved examples are invariance principles, where the limiting Brow-

nian motion only depends on the distribution of the random walk increments through

its first and second moments.

Lindeberg’s classical proof of the CLT iteratively replaces Zi with Z̃i (Gaussian

with the same mean and variance) and shows that the cumulative effect of these

replacements is microscopic. This approach has proven to be very robust, and has

been generalized e.g., to polynomials f (Z1, . . . , Z N ) in [29,34] and more generally,

smooth functions with bounded derivatives in [8,9]. A more combinatorial approach

is a moment matching argument to compare moments of statistics f (X1, . . . , X N )

to moments of f (X̃1, . . . , X̃ N ) and showing that the difference is dominated by the

differences in the first few moments of Zi and Z̃i .

With these approaches, universality has been proven in a wide range of ensembles

where the relationship between (X i ) and (Zi ) is more complicated. A fundamental

example is when (X i ) are the eigenvalues of a random matrix with entries (Zi ). There,

the empirical distribution of (X i ) is well-known to have the same limit (e.g., the semi-

circle law for Wigner matrices [40]). In the last decade, remarkably, universality has

been found to extend to local statistics of the ensemble (X i ) e.g., typical size of gaps

between eigenvalues, and k-point correlations. Universality in random matrix theory

has been a tremendous success and we cannot hope to do justice to the literature

therein; we instead refer to the seminal works [19,37] and the surveys [20,38].

Another class of ensembles for which universality has been shown is disordered

interacting particle systems from statistical physics, and in particular the family of

mean-field spin glass models. A canonical example of these are spin glasses where

N particles in states (X i ), interact through a random symmetric coupling matrix (or

in the case of higher order interactions, tensor) composed of independent entries Zi .

More precisely, with these interactions, they are endowed with an energy landscape, or

Hamiltonian, that is topologically complex, and (X i ) are drawn from the corresponding

Gibbs distribution. The statistics of (X i ) in such families of spin glasses have been

found to exhibit an extremely rich and varied phase diagram featuring phenomena like

breaking of ergodicity and replica symmetry [33]. Most of their analysis, including

the calculation of the free energy, and the proof of the celebrated Parisi formula for the

overlap distribution, were first carried out in the Gaussian setting [22,32,36]. Talagrand

later showed that these also held in the case of Bernoulli (Zi ) in [35]; this universality

was extended to general (Zi ) as an application of [9].

The dynamics (Markov processes exploring the Hamiltonian) for such spin glass

models are a prototype and motivating force for this paper. The general setting we
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consider here is that of a system of N linearly coupled SDE’s, where the couplings

are encoded in a random matrix J, and driven by N independent Brownian motions.

That is, Xt = (X1(t), . . . , X N (t)) is the solution to the SDS

{
dXt = JT Xt dt + hdt + �(Xt )dBt

X0 ∼ μ ∈ M1(R
N )

, (1.1)

where J is a random matrix with independent entries (up to, possibly, a symmetry

constraint) and variance profile m = (mi j )i, j scaled such that E[‖J‖2] = O(1), h

is a bounded drift vector, and � is an affine transform of Xt . Note that for �(Xt )

non-constant, we do not expect to have an explicit closed-form solution to (1.1).

In the N → ∞ limit, the diffusions of (1.1) encompass many interesting and

well-studied models of Markov processes with random coefficients, and give rise

to rich and varied behavior. This includes metastability, aging, and non-Markovian

limiting evolution equations, in e.g., randomly coupled (geometric) Brownian motions,

and Langevin dynamics and gradient flows for the spherical Sherrington–Kirkpatrick

(SK) spin glass and symmetric and asymmetric Hopfield nets [6,13,25–27]: concrete

applications are described in Sect. 1.4. In many such examples, the analysis is more

tractable when J is Gaussian and one can use tools like Gaussian integration by parts,

Girsanov, and the rotational invariance of the Gaussian ensemble.

In this paper, we develop a simple combinatorial framework for proving universality

for the solution trajectories of SDS’s of the form (1.1). Before describing our approach,

we explain a few difficulties one encounters when trying to prove universality for

solutions of randomly coupled dynamical systems, using some of the approaches

described above for other universality results. We begin by considering a Lindeberg

approach where we examine the effect that re-sampling one Ji j has on an averaged

statistic F(t) = F(X1(t), . . . , X N (t)). The obstacle in employing such an approach

is that changing Ji j to J̃i j on X j (t), say, beyond affecting the drift

∑

1≤i≤N

Ji j X i (t) + h j ,

of the j-th coordinate of the SDS, also induces a highly non-linear effect both on

X j (t) and on X i (t) for all i �= j . The problem instead lends itself to comparing the

effect of J → J̃ in a more averaged way.

An alternative approach would be to use the linear structure of the problem in a

strong way, relying on sharp universality results on the spectra of random matrices to

study the problem. This approach, while feasible if �(Xt ) is constant, requires one

to diagonalize the problem without loss of generality—i.e., it requires an assumption

of joint rotational invariance for the laws of (X0, J, B). In [2], such an approach is

followed for analyzing the dynamics of the spherical SK model, and their results hold

assuming the law of J is invariant under the orthogonal group, and its spectrum satisfies

certain large deviation estimates satisfied by the GOE. However, this restriction would

not include the cases of e.g., the uniform measures on [−1, 1]N and {±1}N absent the

rotational symmetry, and could not include the case of non-constant �(Xt ).
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Very recently, [17] proved a universality result for the dynamics of the asymmetric

Langevin dynamics for the soft-spin SK model. There they used large deviations theory

to obtain exponential control on the empirical measure on sample paths—as obtained

in the Gaussian setting in [6,7]—together with sharp control via Girsanov’s theorem

on the Radon–Nikodym derivative between the Gaussian paths and those driven by

non-Gaussian J on short time scales, to show universality for the empirical measure

LN = 1
N

∑
i δXi (t). While such an approach allows for a deterministic non-linearity

in the drift through a (double-well) confining potential, it cannot handle degenerate

diffusions, e.g. the gradient flow. Further, the need for control on the trajectories at

the exponential scale forces [17] to consider only asymmetric i.i.d. J (whereby the

Radon–Nikodym derivative is a product of functions of independent rows of JT ).

We introduce a simple combinatorial approach to proving universality for SDS’s

of the form of (1.1), similar in flavor to the moment method. Namely, we avoid the

inherent difficulty of the problem, that the transformation J → J̃ affects X j (t) through

both (Ji j )i → ( J̃i j )i and (X i (t))i → (X̃ i (t))i . We do so by Taylor expanding the

semigroup Pt f = EX0 [ f (Xt )] in powers of the infinitesimal generator: each term

appearing in this expansion is a polynomial in (xi ), (Ji j ) evaluated at X0 where,

crucially, the initial data is independent of Ji j . One then finds that on order one

timescales, the predominant contribution to E[Pt f ] is from polynomials whose degree

in (Ji j )i, j is at most two. We refer to Sect. 1.3 for more details.

This approach works quite generally, and is robust to symmetric and asymmet-

ric choices of J with non-homogenous means and variances, and general choices of

diffusion coefficients in (1.1), including �(Xt ) non-constant making the diffusion

non-linear, and � ≡ 0 corresponding to a deterministic dynamical system. Lastly, the

analysis works for arbitrary initialization independent of J. The assumption of linear

drift is, of course, important, and one would like to be able to drop it. We emphasize,

though, that this is primarily used in order to justify the absolute convergence of the

Taylor expansion of the semigroup, which one could hope to justify by other means

for higher order diffusions given that a strong solution exists; the remaining combina-

torial framework for moments of the generator may then generalize. We discuss this

in Remark 1.5.

We end this section by mentioning two recent results [1,10] showing universality

for a Lipschitz family of approximate message passing (AMP) algorithms—a discrete-

time state evolution that has found many applications to inference and optimization

in high dimensions. Some of the ideas there appear similar in spirit to our approach,

using a combinatorial approach to control moments of the final state of the AMP.

All the same, the general setting of (1.1) introduces many key differences e.g., the

diffusions of (1.1) are in general non-linear, not globally Lipschitz, and have a built-in

stochasticity.

1.1 Setup: diffusions with random linear interactions

Consider an N -dimensional stochastic differential system with a mixture of random

and deterministic linear interactions, along with possibly, some constant drifts. More

precisely, consider the SDS Xt := (X i (t))
N
i=1 driven by the following parameters.
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Suppose that for some matrix m = (mi j )i, j we have random interactions given by

the random matrix

A = (Ai j )1≤i, j≤N , where E[Ai j ] = 0, E[A2
i j ] = mi j .

We assume that the entries Ai j are either fully independent, or are independent up

to a symmetry constraint Ai j = A j i . Let PA be the law of A. In order to scale the

interactions to have an order one cumulative effect, it will be convenient to work with

the rescaled interactions matrix J given by

J := N−1/2
A .

We then denote the distribution induced by PA on J by PJ.

We further consider additional deterministic interactions satisfying, for some con-

stant C� < ∞,

� = (�i j )1≤i, j≤N , where max
i

‖(�i j ) j‖1 ≤ C� and

sup
i, j

|�i j | ≤ C�

N�
for N� := max

j
‖(�i j )i‖0

(the ‖·‖0-norm of a vector is its number of non-zero entries). We also consider external

drift parameters

h = (hi )1≤i≤N , where sup
i≤N

|hi | ≤ Ch for a constant Ch < ∞ ,

and diffusion coefficients �(Xt ) governed by the matrix

σ = (σi j )0≤i≤N ,1≤ j≤N where sup
1≤ j≤N

|σ0 j | ≤ Cσ and

sup
1≤i, j≤N

|σi j | ≤ Cσ

Nσ
for Nσ := max

j
‖(σi j )i‖0 .

The SDS (Xt )t≥0 = (X1(t), X2(t), . . . , X N (t))t≥0 initialized from some random

X0 distributed according to a product measure μ is driven by a standard Brownian

motion Bt = (B1(t), . . . , BN (t)) as follows

d X j (t) =
N∑

i=1

Ji j X i (t)dt +
N∑

i=1

�i j X i (t)dt + h j dt +
√

2
( N∑

i=0

σi j X i (t)
)

d B j (t) ,

X i (0) ∼ μi , (1.2)
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where for ease of notation, we hereon set X0(t) ≡ 1 so that (σ0 j ) j≥1 capture the

constant diffusion coefficients. We denote the martingale part of Xt by

Mt = (M j (t)) j≤N , where d M j (t) =
√

2
( N∑

i=0

σi j X i (t)
)

d B j (t) . (1.3)

The process Xt is well-defined for a.e. J and all t ≥ 0 (as we have finite, possibly

N -dependent operator norms ‖J‖2, ‖�‖2 and ‖(σi j )i≥1‖2, see e.g., [31, Theorem

5.2.1]).

Notational comment There are three distinct sources of randomness above dictating

the law of the solution Xt to (1.2): the law of the interaction matrix PJ, the law of

the Brownian motions, denoted PB, and the law of the initial data μ—each of these

are product measures and we do not distinguish notationally between the law of the

individual entries of J, B or X0 and the ensembles.

In proving universality, we consider the difference between PJ, P
J̃

induced by

two different distributions PA and P
Ã

over mean-zero random matrices A, Ã with

independent entries (possibly up to symmetry), having matching variance profiles

m = m̃. For ease of notation, we will henceforth use

P = μ ⊗ PJ ⊗ PB , and P̃ = μ ⊗ P
J̃
⊗ PB ,

and denote the corresponding expectations E and Ẽ respectively.

1.2 Main results

We begin by describing the observables to which our universality results apply. The

building blocks of these observables are chosen among the family of vector valued

functions,

F =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1t = (1, . . . , 1)

Xt = (X1(t), . . . , X N (t))

Gt = (G1(Xt ), . . . , G N (Xt ))

Mt = (M1(t), . . . , MN (t))

, where G j (x) =
N∑

i=1

Ji j xi . (1.4)

We establish universality in the mean for weighted empirical averages of monomials

in functions from F evaluated at a finite collection of times. Specifically, fixing an

m-tensor a = (ai1,...,im ) with entries bounded by Ca and a p-tuple of times t =
(t1, . . . , tp), for every � ≤ m, fix p observables Y(�,1), . . . ,Y(�,p) ∈ F which are to

be evaluated at these p times. That is,

F(t) = 1

N m

∑

i1,...,im≤N

ai1,...,im F
(1)
i1

(t) · · · F
(m)
im

(t) , where

F
(�)
i (t) = Y

(�,1)
i (t1) · · · Y(�,p)

i (tp) . (1.5)
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We also need to add a sub-exponential tail constraint on μ and PA beyond the minimal

assumptions of zero-mean and matching variances of PA and P
Ã

; this is henceforth

referred to as Hypothesis 1.

Hypothesis 1 Assume that the law μ is a product of μi of X i (0) having finite moments

of all order, which are bounded uniformly over i and N. That is, there exist Cμ(r) ≥ 1

such that for any r finite,

sup
N

sup
i≤N

E[|X i (0)|r ] ≤ Cμ(r) . (1.6)

Further assume PA has uniformly bounded exponential tails, i.e., the following equiv-

alent properties hold:

sup
N

sup
i, j≤N

E[eε|Ai j |] < ∞ , for some ε > 0 , (1.7)

sup
N

sup
i, j≤N

E[|Ai j |�] ≤ (� − 1)! C
�/2
A

, ∀� ≥ 1 and some CA < ∞ . (1.8)

For ease of notation for dependencies on constants, we denote by C� :=
max{C1/2

A
, C

1/2

Ã
, C�, Ch, C2

σ } (where C
Ã

is the constant CA with respect to distri-

bution P
Ã

), and state our first result, on universality at the level of the mean (hence

also of moments), for observables (1.5).

Theorem 1 Let μ, PA, P
Ã

satisfy Hypothesis 1 and suppose that A, Ã, symmetric

or independent, are mean-zero of matching variance profile m = (mi j )i, j . For any

T , m, p < ∞ and a ∈ R
N m

with ‖a‖∞ ≤ Ca, there exists C(T , m, p, Ca, C�, Cμ) <

∞, such that for every N and F as in (1.5) with (Y(�,1), . . . ,Y(�,p)) ∈ F,

sup
t∈[0,T ]p

∣∣E[F(t)] − Ẽ[F(t)]
∣∣ ≤ C N−1/2 .

In particular,
∣∣E[F(t)] − Ẽ[F(t)]

∣∣ → 0 as N → ∞, uniformly in t ∈ [0, T ]p.

Theorem 1 follows from a more general result bounding the difference in expecta-

tions for each individual monomial F
(�)
i from (1.5) with (Y(�,1), . . . ,Y(�,p)) ∈ F. As

a special case, see Proposition 2.1, we find that the moments of each spin X i (t) are

universal. Specifically, for every fixed k,

sup
t∈[0,T ]

max
1≤i≤N

∣∣E[X i (t)
k] − Ẽ[X i (t)

k]
∣∣ = O(N−1/2) . (1.9)

For a more restricted class of observables, with additional restrictions on the dis-

tributions μ and PA and P
Ã

, we extend the above to almost sure and Lq convergence

for the observable trajectories. Precisely, we restrict the observables of (1.5) to m = 1
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and p = 2, leaving, the following quadratic observables

F(t) = FY,Y ′,a(Xt , Xt ′) := 1

N

N∑

i=1

aiYi (t)Y
′
i (t

′) . (1.10)

In order to extend Theorem 1 to a convergence for the trajectories of these observables,

we further need to assume that � is constant, so that Mt is just a scaled Brownian

motion, and assume the following concentration property on μ, PA, P
Ã

, which we

refer to as Hypothesis 2.

Hypothesis 2 A sequence of probability measures (P(n))n≥1 over Zn in metric spaces

(Xn, d) satisfies exponential concentration for Lipschitz functions if there exists some

C > 0 such that for any sequence of 1-Lipschitz functions fn : (Xn, d) → (R, | · |)
and all λ > 0,

P
(n)
(
| fn(Zn) − E[ fn(Zn)]| > λ

)
≤ C exp(−λ/C) . (1.11)

Assume that μ, PA respectively satisfy exponential concentration for Lipschitz func-

tions on R
N and R

N 2
(or R

N (N+1)/2 if A is symmetric), equipped with their Euclidian

norms, for some Cμ, CA > 0.

Remark 1.1 Recall, from the theory of measure concentration, that Hypothesis 2 holds

for any distribution on R
n which satisfy a Poincaré inequality with constant c > 0

(independent of n), namely for all nice f one has that Var[ f (Zn)] ≤ cE[|∇ f (Zn)|2]
(see [21]). By the tensorization of the Poincaré inequality, if Zn = (Z1, . . . , Zn), and

each of the laws of Zi satisfy this inequality, then the product also satisfies it with the

worst constant c. Having here product measures μ, PA, the marginal laws can come

from any distribution satisfying a Poincaré inequality in n = 1. These include (see

e.g., [39])

– Exponential, Gaussian, and log-concave measures of the form exp(−V (x)) for

V (x) strictly convex,

– Linear functionals of r.v.’s having a Poincaré inequality: e.g., the uniform measure

on [−1, 1].

The next theorem shows that under Hypothesis 2, any F of the form (1.10) concentrates

around its mean.

Theorem 2 Suppose μ, PA satisfy Hypotheses 1–2 and the diffusion coefficients have

σi j = 0 if i �= 0. Then, for some C(T , Ca, C�, Cμ) > 0, any ‖a‖∞ ≤ Ca, every F as

in (1.10) with Y,Y ′ ∈ F, all λ > 0 and N ≥ N0(T , Ca, C�, Cμ),

P

(
sup

t∈[0,T ]2

|F(t) − E[F(t)]| ≥ λ
)

≤ pN (λ) :=
{

N C e−λ
√

N/C , λ ≤ C

e−(log λ)
√

N/C , λ > C
. (1.12)

123



Diffusions interacting through a randommatrix: universality… 1065

(One might observe that the exp(−	(
√

N )) concentration in (1.12) differs from

the more traditional exp(−	(N )) concentration in e.g. [2,3]; such differences, which

recur throughout the paper, are because our Hypothesis 2 allows for merely sub-

exponential, as opposed to Gaussian, tails.) Combining Theorems 1 and 2 we get the

following strong universality for such quadratic observables.

Corollary 3 Suppose μ, PA, P
Ã

satisfy Hypotheses 1–2, where A, Ã, symmetric or

independent, are mean-zero and have matching variance profile m = (mi j )i, j . Let

F(·) and F̃(·) be as in (1.10), for a ∈ R
N such that ‖a‖∞ ≤ Ca, with respect to the

corresponding solutions Xt , X̃t for (1.2) with constant �, i.e., σi j = 0 if i �= 0. Then,

for every T < ∞ we have that as N → ∞,

Z N := sup
t∈[0,T ]2

∣∣F(t) − F̃(t)
∣∣ → 0 almost surely, and in Lq for q ≥ 1 .

Proof The observables of (1.10) correspond to the m = 1 and p = 2 case of (1.5),

so Theorem 1 applies here with some constant C1 = C(T , m, p, Ca, C�, Cμ). For

N ≥ (λ/C1)
2 we then get upon combining the triangle inequality with Theorems 1–2,

that

P(Z N > 3λ) ≤ 2pN (λ) .

Since
∑

N pN (λ) < ∞ for any fixed λ > 0, by Borel-Cantelli Z N
a.s.→ 0 as N → ∞.

Similarly, upon using the triangle inequality for ‖ · ‖q we get from Theorems 1 and 2

that

(
E[|Z N |q ]

)1/q ≤ C1 N−1/2 + 2
(

Cq +
∫ ∞

C

qλq−1 pN (λ)dλ
)1/q

.

Further, N �→ pN (·) decrease pointwise on [C,∞), while for any q ≥ 1, the preceding

integral is finite for all N large enough. With {Z
q
N }N uniformly integrable, it follows

that Z N → 0 also in Lq .

1.3 Proof strategy

As mentioned in the introduction, traditional approaches to proving universality run

into substantial difficulty when we apply them to diffusions with random coefficients.

The dependence on specific entries of the random matrix are quite bad, as the depen-

dence applies in the drift both through the Ji j , and through its effect on Xt , whose

history evidently also depends on Ji j : this effect can exponentially amplify small

differences; in fact, the exponential amplification is inherent to the problem at hand.

At a high level, our strategy for proving Theorem 1, and the main novelty of the

paper, is to leverage the independence of μ from PJ, P
J̃

by pulling back f (Xt ) and

f (X̃t ) to properties of (time) derivatives of f (Xt ) evaluated at t = 0. At the level of

expectations, these derivatives can be seen as iterates of the infinitesimal generator

applied to the function F , which can then be controlled by combinatorial moment
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methods. The dominant contribution to the drift of F comes from drift terms that are

polynomials of degree at most two in (Ji j )i j . Since the first two moments of PA and

P
Ã

match, these terms do not contribute to the difference in expectations above. We

emphasize that the approach does not need rely on an explicit solution to the SDE

of (1.2), nor does it use exponential control, or large deviations theory as in [17], or

refined estimates on the spectrum of A as in the setting of [2] where, crucially, the

process has a rotational symmetry.

Recall that the SDE defined in Eq. (1.2) has infinitesimal generator L that we split

as follows (see e.g., [31, Theorem 7.3.3]):

L :=
∑

1≤i, j≤N

Ji j xi∂ j

︸ ︷︷ ︸
LJ

+
∑

1≤i, j≤N

�i j xi∂ j

︸ ︷︷ ︸
L�

+
∑

1≤ j≤N

h j∂ j

︸ ︷︷ ︸
Lh

+
∑

1≤ j≤N

( ∑

0≤i≤N

σi j xi

)2
∂ j∂ j

︸ ︷︷ ︸
L�

.

(1.13)

By Ito’s formula, we have for every f , say, in C∞(RN ),

∣∣E[ f (Xt )] − Ẽ[ f (X̃t )]
∣∣ =

∣∣E[Pt f (X0)] − Ẽ[Pt f (X0)]
∣∣ ,

where Pt = Pt (J) denotes the semi-group operator

Pt f (x) := EB[ f (Xt ) | X0 = x] with formal expansion Pt = et L (1.14)

in terms of the generator L . In order to reduce the problem to a combinatorial question,

we wish to Taylor expand the semi-group operator Pt f = et L f . As long as f is

smooth and the Taylor expansion converges absolutely—shown in Sect. 2.2—this

formal expansion is valid and we can switch expectations over μ, PJ, P
J̃

with the

sum, and compute expectations of powers of the generator L acting on f . Namely,

the difference in expectations is bounded by controlling (1) the size in N , and (2) the

growth in k of

|E[(Lk f )(X0)] − Ẽ[(Lk f )(X0)]| . (1.15)

Expanding these terms as words in LJ, L�, Lh, L�, we observe that a non-zero dif-

ference between the two expectations in (1.15), can only come from the summands

(monomials in J, X,�, h, σ ) satisfying

– Every Ji j that is present, must appear at least twice.

– At least one Ji j must appear at least three times.

This is because the means of PA, P
Ã

are zero, and the variances of PA and P
Ã

match.

A careful analysis of this combinatorial problem for the monomials eventually yields

that the contributions from these monomials are, together, O(N−1/2) in N , and o(k!)
in k: this computation is carried out in Sect. 2.3.

Remark 1.2 One may notice that in the case where �(Xt ) is constant so that Mt is

just a Brownian motion, we are left with a linear SDS and one could use this linearity
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in a more central way, to explicitly solve expectations of monomials in (X i (t))i as

Gaussian integrals and time integrals over words in esJ and (X i (t))i . If the system

Xt is invariant under rotations, then we can work in the coordinates of J so that it

is diagonal and apply universality results for the spectrum of J. Absent rotational

symmetry, however, the natural step would be to Taylor expand esJ, at which point the

expansion and the resulting combinatorics will be similar, and perhaps less transparent,

than our generator based approach. Of course, for non-constant �(Xt ) as in Theorem 1,

the SDS is non-linear, and such an approach would not generalize.

In Sect. 3, we extend this bound on the difference in expectations of statistics f

to multi-time observables, then to statistics that contain the driving martingale terms

and finally establish the universality at the level of expectation for observables of the

form of (1.5), as stated in Theorem 1. In Sect. 4, we adapt the approach of [3] to

establish Theorem 2, namely, to show that the restricted class of observables of (1.10)

concentrate around their expectations, by localizing to a set of large probability where

F is O(N−1/2)-Lipschitz in the triplet (X0, J, (Mt )t∈[0,T ]) and using Hypothesis 2.

1.4 Applications

In this section, we discuss systems for which Theorem 1–Corollary 3 imply concrete

universality results. All the examples that follow will be in the context of � that is

constant, i.e., σi j = 0 if i �= 0, where both Theorems 1–2 apply. Among the examples

with non-constant �, one which may be of interest is a system of geometric Brownian

motions interacting linearly through J.

We next describe two well-studied families of Markov processes/dynamical systems

to which our results apply: Langevin dynamics and gradient flows on various energy

landscapes (Hamiltonians) or loss functions.

Langevin dynamics

In the case where J and � are symmetric matrices, and σ0 j are identically one, (1.2)

corresponds exactly to the Langevin dynamics for the Hamiltonian

H(x) = − β
∑

1≤i, j≤N

(Ji j + �i j )xi x j − β
∑

1≤i≤N

hi xi . (1.16)

The linearity of the diffusion here corresponds to having a quadratic Hamiltonian.

The Langevin dynamics is a reversible Markov process designed such that, when

non-degenerate, its invariant measure on R
N is given by dπ(x) ∝ e−H(x)dx. For

Hamiltonians coming from spin glass theory, the Langevin dynamics has been ana-

lyzed at length in the case of Gaussian disorder, and found to have a varied and rich

behavior; in §1.4.1, we explore this further in the context of a simple spin glass model,

called the spherical SK model.
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Gradient flows

The case where σ0 j are identically zero—i.e., besides the randomness of J and, possi-

bly, the initial data, the dynamics is deterministic— also fits into the framework of the

paper. Here, given J and X0, the law of the dynamics is taken to be the delta function

on the trajectory of the solution to the resulting system of ODE’s. This corresponds

to the gradient flow on H(x): in optimization and learning settings, e.g., the examples

of Sects. 1.4.2–1.4.3, gradient descent and its many variants, are favored methods.

We now turn to a few well-studied concrete problems to which our results are

applicable.

1.4.1 The (soft) spherical SK model

The dynamics of spin glasses are a canonical setting in which Markov processes with

random coefficients are studied in their thermodynamic (N → ∞) limit. The short-

time (N → ∞, then T → ∞) behavior of Langevin dynamics, especially, in the

context of spin glasses have been extensively studied in both the physics and math

literature [2–7,11,12,15,18]. Perhaps the most well-known mean field spin glass is the

Sherrington–Kirkpatrick (SK) spin glass, where N spins taking values in {+1,−1}
interact pairwise with one another, and their interaction strengths are moderated by

“coupling” parameters Ji j = J j i which are drawn i.i.d., say, Gaussian. We discuss

a simplification of this known as the spherical SK model, which has been found to

nevertheless exhibit some of the same phenomena.

Take an i.i.d. symmetric matrix J = (Ji j )i j with law PJ. The spherical SK model

has Hamiltonian

H(x) =
∑

1≤i, j≤N

Ji j xi x j for x ∈ S
N−1(

√
N ) . (1.17)

To avoid differential geometry on the sphere, it is sometimes preferable to extend

the Hamiltonian to all x ∈ R
N (note that the Hamiltonian is homogeneous so that

dividing x by the Euclidean norm ‖x‖/
√

N gives the same process on S
N−1(

√
N )).

Instead of adding a non-linear confining force as is done in, e.g., [2], we either add a

linear confining force FK (x) = K x , or have no confinement (K = 0) (the linearity

of the system ensures no finite time blowup). Consider now the Langevin dynamics at

inverse temperature β > 0 for the Hamiltonian of (1.17), corresponding to Xt = X
(β)
t

solving the SDS

{
dXt = −∇H(Xt )dt − F ′

K (‖Xt‖2/N )Xt dt + β−1/2dBt

X0 ∼ μ
. (1.18)

We also consider the gradient flow where we take β = ∞, so that the Brownian

motion term drops out: Xt is then the (deterministic) dynamical system following the

(random) gradient vector field of H(x) + FK (‖x‖2/N ). The following universality

for the above system is an immediate corollary of Theorem 3.
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Corollary 1.3 Fix β ∈ (0,∞] and consider the SDS’s Xt and X̃t given by (1.18) for

A and Ã having mean zero, matching variance profiles mi j = 1{i �= j}. Suppose μ

is independent of PA, P
Ã

and these satisfy Hypotheses 1–2. Then for F as in (1.10)

with Y,Y ′ ∈ F and ‖a‖∞ ≤ Ca, for every T < ∞,

sup
s,t∈[0,T ]

∣∣F(Xs, Xt ) − F(X̃s, X̃t )
∣∣ → 0 almost surely, and in Lq for q ≥ 1 .

As shown in [14] and rigorously proved in [2], when J is Gaussian, the spherical SK

model, or the soft spherical SK Model with confining potential F satisfying F(x)/x →
∞ as x → ∞, exhibits a sharp aging transition. Informally, aging is defined as

the notion that the older a system gets, the more it remembers its past; formally, it

corresponds to a transition in the behavior of the auto-correlation,

CN (s, t) := 1

N

∑

i≤N

X i (s)X i (t) ,

between a (FDT) regime where CN (s, t) ∼ �(t − s) and an aging regime where

CN (s, t) ∼ �( t
s
) for large s, t . In [2], it was established that for J having rotationally

invariant law, e.g., a GOE matrix, CN (s, t) solves a non-linear equation [2, Eq. (2.16)],

which exhibits exactly this type of transition at some βag. Our results allow us to read

off universality for this limiting behavior, as formalized in the following corollary.

Corollary 1.4 Consider the Langevin dynamics for the soft spherical SK model, as

defined in (1.18) where PA is a Wigner matrix satisfying Hypothesis 2, the confinement

is FK (x) = K x for some K > E[‖J‖2→2], and the initialization μ is e.g., standard

Gaussian, independent of PA. Then, for every β ∈ (0,∞] and every T < ∞, the limit

(limN→∞ CN (s, t))s,t∈[0,T ] exists, and satisfies [2, Eq. (2.16)].

In the specific case of β = ∞, the conclusions of [2, §3.2.2] apply, and the solution

exhibits aging: i.e., there is a γ > 0 (specified therein) such that for every λ > 1,

lim
s→∞

lim
N→∞

CN (s, λs)√
CN (s, s)CN (λs, λs)

≈ (λ − 1)−γ .

Proof For the first statement, while [2, Theorem 2.6] is stated for confinement F

growing super-linearly, following the proof one sees that it is only used to localize the

process, for which it suffices for K to exceed ‖J‖2→2 (which for Wigner matrices is

a.s. less than 2 + ε for any ε > 0). The first part of the corollary therefore follows

from Corollary 1.3 together with the result of [2, Theorem 2.6] showing that for A

standard normal, CN (s, t) satisfies [2, (2.16)].

For concreteness, the analysis of the limiting equation [2, (2.16)] and the derivation

of the aging transition is carried out in [2] only for a specific choice of quadratic F .

One could in principle perform the same analyses with other choices of F including

F = FK that is linear, corresponding to the case we consider, and understand the

limiting behavior of CN (s, t) as N → ∞ then s, t → ∞ as β varies. We do not pursue

this, and instead notice that in the specific case of β = ∞, the homogeneity allows us
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to disregard the choice of the confining potential and obtain universality for the zero-

temperature aging behavior. To see this, since H(x) is a homogeneous polynomial, if

β = ∞, we see that dXt is a constant multiple (for a constant depending only on ‖Xt‖)

of d(Xt/‖Xt‖). Therefore, at β = ∞, the projection of the dynamics (1.18) onto the

sphere S
N−1(

√
N ) matches the projection of the Langevin SDS of [2], regardless of

the choice of confining potential used therein. We apply Corollary 1.3 first to deduce

that lims→∞ limN→∞ CN (s, s) =: C∞ is the same for Gaussian and non-Gaussian

PA. Then applying it to CN (s, λs), we find that the N → ∞ limit of the normalized

auto-correlation is the same for Gaussian and non-Gaussian PA, and it is further

independent of the choice of confining potential: as such for any PA, it has the same

N → ∞ limit as in [2].

Remark 1.5 It would be of interest to consider similar Langevin dynamics for the

spherical or soft spherical p-spin glass models for p > 2. Permitting higher

order interactions gives rise to a wealth of more complicated models and differ-

ent behavior. At the level of the off-equilibrium Langevin dynamics, these lead

to the famous Cugliandolo–Kurchan/Crisanti–Horner–Sommers limit of coupled

integro-differential equations for CN (s, t) and an integrated response χN (s, t) =
1
N

∑
i X i (s)Bi (t) [3,11,12,15,16,18,23], as well as the evolution of other observ-

ables e.g., the Hamiltonian and its square gradient [5]. Our combinatorial framework

suggests that the differences in expectations (over p-tensors J and J̃) of averaged

observables are microscopic, as long as there is a non-linear confining potential to

prevent finite-time blowup. The complication is in the fact that the two non-linearities

(from the interactions, and the confining potential) cancel out, but these cancellations

are not easily seen in the Taylor series obtained by expanding in powers of the genera-

tor; thus we are not able to show that this series is absolutely summable and exchange

the infinite sum with its expectation.

1.4.2 Symmetric and asymmetric Hopfield networks

Let us also mention a different context in which diffusions of the form of (1.1) appear.

Hopfield networks were introduced by [26] and have become one of the simplest and

most fundamental examples of neural networks. In this model, a set of N neurons

(X i )i are either active {+1} or inactive {−1} depending on whether the neuron X j ’s

input
∑

Ji j X i , for some weights J = (Ji j )i, j , exceeds a deterministic threshold hi .

This model was introduced in the symmetric setting, but has since been analyzed

extensively both in symmetric and asymmetric setups [13,25,41].

One typically initializes the neurons at some pre-determined state independent

of J, e.g., all inactive/active, or uniformly at random, and tracks their time-evolution,

whereby each neuron activates/de-activates at some rate, depending on the relationship

between its input and threshold. Though there are many ways this is implemented, one

is to soften the problem to continuous state space, either to the sphere, or to full-space

and add in stochasticity by running some Langevin dynamics. This is the approach

pursued in [13] as well as e.g., [41]. Then, with a linear confining force, our results

imply universality for both for the symmetric and asymmetric Langevin dynamics (and
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gradient flow) of general Hopfield networks: this includes universality for observables

capturing the energy/loss in the network, its square gradient, and its “memory”.

1.4.3 Rayleigh quotient minimization for randommatrices

We conclude with a related optimization problem in high dimensions: that of opti-

mizing the Rayleigh quotient of a random matrix J with a certain mean and variance

profile. Maximizing the Rayleigh quotient is an efficient way to find the top eigen-

vector and eigenvalue of the random matrix via local iteration, e.g., either gradient

descent or Langevin dynamics at low temperatures (large β). To place this in the

framework of (1.2), take H(x) = 〈x, Jx〉 and either no confining force or F ′
K = K for

some K > ‖J‖2→2 in (1.18). In the situation where the matrix ensemble is rotation-

ally invariant, e.g., the GOE, the limiting trajectories of, say, H(Xt ) for the gradient

flow/Langevin dynamics can be explicitly solved (by diagonalization). Corollary 3

implies these limiting trajectories will be universal, and thus, match the limiting tra-

jectories obtained when J is not Gaussian. In [1,10], similar universality results were

described for an AMP approach to finding the top eigenvalue/eigenvector of J.

2 Universality of expectations of monomial observables

In this section, we prove that two solutions X and X̃ of (1.2) driven by J and J̃ are such

that expectations of observables of the form (1.10) are universal, as long as A and Ã

have the same variance profiles. As discussed in Sect. 1.3, we reduce differences in

expectations to combinatorial calculations by expanding the Markov transition semi-

group of the process Xt in terms of its generator, an approach for proving universality

in randomly driven dynamical systems which is the key contribution of this paper.

For the entirety of this paper, we will take two distributions PA and P
Ã

on A

and Ã that are mean zero and have the same, uniformly bounded, variance profiles

m = m̃. Recall that PA and P
Ã

are either fully independent or symmetric ensembles.

For conciseness, we present our results in the case of fully independent (in particular,

not symmetric). The case where they are symmetric is handled mutatis mutandis and

only induces a few constant factors in certain estimates (see Remark 2.8 for more on

these minimal modifications).

2.1 Main result on difference in expectations

The observables in Theorem 1 are composed of polynomials in J and X, as well as M.

We first establish the universality of expectations for general monomials in J and X

via a combinatorial moment matching type of argument. In Sect. 3 such universality is

reduced for monomials that additionally involve the martingale, to that of monomials

only in J and X.

More precisely, the statistics we consider throughout this section are of the following

form. Fix any s (not necessarily distinct) pairs α = (α1, . . . , αs) where each αk = ik jk ,

and r -tuple (not necessarily distinct) γ = (γ1, . . . , γr ) where each γi ∈ {1, . . . , N }.
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Then consider observables fα,γ (x) of the form

fα,γ (x) =
s∏

k=1

Jαk

r∏

l=1

xγl
. (2.1)

For an s-tuple of pairs α, let

– Iα count the number of distinct pairs in α, i.e., Iα = |{α1, . . . , αs}|,
– Iα,1 count the number of (αk)k which appear exactly once in α, and

– I +
α,1 equal Iα,1 plus the indicator that no pair appears more than twice in α.

Our bound on the distance between the expectations of fα,γ (Xt ) and fα,γ (X̃t ) depends

on α, γ and the laws μ, PA, P
Ã

only through C�, Cμ, s, r and I +
α,1. More precisely,

we derive here the following.

Proposition 2.1 There exists C = C(r , s, T , C�, Cμ(r)) such that for every T , r , s ≥
0, every s-tuple of pairs α and every r-tuple γ , if PA, P

Ã
and μ satisfy Hypothesis 1,

then

sup
t∈[0,T ]

∣∣E[ fα,γ (Xt )] − Ẽ[ fα,γ (X̃t )]
∣∣ ≤ C N

−(s+I +
α,1)/2

.

Observe that in the case s = 0, the right-hand side is C N−1/2.

Remark 2.2 The above theorem shows that having more distinct J ’s in the observable,

decreases the difference in expectations by more than N−s/2 as would be expected

from the typical size of Ji j . This should be expected due to CLT-type cancellations:

one way to motivate this scaling is by recalling averaged statistics which have J in

them, in the context of the spherical SK model, e.g., the most relevant being

H(x)

N
= 1

N 3/2

∑

1≤i, j≤N

Ai j xi x j and

|∇H(x)|2
N

= 1

N

∑

1≤i≤N

G2
i (x) = 1

N

∑

1≤i≤N

( ∑

1≤ j≤N

1√
N

Ai j x j

)2
.

(Notice that these statistics are not rescaled by the number of order-one sized mono-

mials; but they remain on the O(1) scale due to additional cancellations from (Ji j )).

This gain in the scaling has to be visible at the level of the difference in expectations

under P and P̃ in order to hope for universality for such statistics.

Recall from Sect. 1.3 that our high level strategy is to reduce the expectations

of statistics of the solution Xt of the sds to combinatorial calculations in terms of

mixed moments of J and X0. This is possible by writing EB[ f (Xt )] as Pt f (X0)

and then Taylor expanding Pt = et L where L is the generator for the process Xt as

defined in (1.13). In order for this expansion to be valid, and therefore our approach

to be permissible, we need the Taylor expansion for et L to converge absolutely, for
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each fixed N . In the next sub-section, we show that indeed with μ, PA, P
Ã

satisfying

Hypothesis 1, for each fixed N , the infinite series corresponding to Pt f converges

absolutely, so we can follow this plan.

Before proceeding further, we make the following notational remark.

Notational comment on set and sequence differences For sets {b1, . . . , bm} ⊂
{a1, . . . , an}, we let {a1, . . . , an} \ {b1, . . . , bm} denote the set difference as usual.

Frequently we deal with tuples, or sequences in which the order does not matter. For

two such tuples (a1, . . . , an) and (b1, . . . , bm) (where of course there may be rep-

etitions in each sequence), we denote by (a1, . . . , an) \ (b1, . . . , bm) the difference

wherein for each bi appearing in {a1, . . . , an} we only remove one of its appearances—

say the first one—from (a1, . . . , an). We also define (a1, . . . , an) � (b1, . . . , bm) to

be the concatenation given by (a1, . . . , an, b1, . . . , bm).

2.2 Switching the expectation and the infinite series

The goal of this sub-section is to prove the following absolute convergence result.

Proposition 2.3 Suppose PA and μ satisfy Hypothesis 1. Then, there exists finite No =
No(r , T , C�) such that for every N ≥ No, every T < ∞, every s-tuple of pairs α, and

every r-tuple of indices γ , we have

∑

k≥0

T k

k! E
[∣∣Lk fα,γ (X0)

∣∣] < ∞ .

As a consequence of Proposition 2.3 and Fubini–Tonelli, we may use the following

expansion.

Corollary 2.4 Suppose PA, P
Ã

, μ satisfy Hypothesis 1. Setting L and L̃ for their

generators, we have that

E[ fα,γ (Xt )] − Ẽ[ fα,γ (X̃t )] =
∑

k≥0

tk

k!
(
E[Lk fα,γ (X0)] − Ẽ[L̃k fα,γ (X0)]

)
,

for every N ≥ No(r , T , C�), every t < ∞, and every s-tuple of pairs α and r-tuple

of indices γ .

Proceeding hereafter to prove Proposition 2.3, we fix r , s,α and γ , and set f =
fα,γ . Aiming for upper bounds on E[|Lk f (X0)|] which are summable against T k/k!,
we first utilize (1.13) to expand Lk as a sum over the 4k words W in the letters

{LJ, L�, Lh, L�} and thereby get the bound

E
[
|Lk f (X0)|

]
≤4k sup

W∈{LJ,L�,Lh,L�}k

E
[
|W f (X0)|

]
, (2.2)

where for every x ∈ R
N , W f (x) should be understood as (Wk · · · W2W1 f )(x). For

every word W ∈ {LJ, L�, Lh, L�}k , let kJ = kJ(W ) denote the number of LJ’s that
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appear in W , and similarly define k�, kh, and k�, so that kJ + k� + kh + k� = k and

the following structural decomposition of W f holds.

Claim For any word W ∈ {LJ, L�, Lh, L�}k with kJ, k�, kh, k� occurrences of the

corresponding symbols, W f can be expressed as a sum of (not necessarily distinct)

monomials of the form

φβ,β ′,ζ ′,ζ ,ξ (x) =
s∏

i=1

Jαi

kJ∏

�=1

Jβ�

k�∏

�=1

�β ′
�

kh∏

�=1

hζ ′
�

2k�∏

�=1

σζ�

r∏

�=1

xξ�
, (2.3)

β,β ′, ζ denote the collection of pairs (β�)�≤kJ
, (β ′

�)�≤k�
, (ζ�)�≤2k�

, while ζ ′, ξ denote

the sequences (ζ ′
�)�≤kh

, (ξ�)�≤r and hereupon we adopt the convention x0 ≡ 1, allow-

ing for ξ� = 0 as well as ζ� ∈ (0 j) j .

In view of Hypothesis 1 on PA we have that for every N , � ≥ 0, and index pair α,

E[|Jα|�+1] ≤ �!
(CA

N

)(�+1)/2
.

Thus, if Iα�β distinct index pairs appear at multiplicities (n�+1)�≤Iα�β
in the sequence

α � β of length kJ + s, then by the independence of (Jα)α ,

E

[∣∣∣
s∏

i=1

Jαi

kJ∏

�=1

Jβ�

∣∣∣
]

≤
(CA

N

)(kJ+s)/2
Iα�β∏

�=1

n�! .

Consequently, with X0 independent of J we have in view of the assumed bounds on

(�i j )i, j (σi j )i, j and (hi )i , that for any term of the form (2.3) with Iζ entries such that

ζ� /∈ (0 j) j ,

E

[∣∣φβ,β ′,ζ ′,ζ ,ξ (X0)
∣∣
]

≤
(CA

N

)(kJ+s)/2(C�

N�

)k�
(C

2k�
σ

N
Iζ
σ

)
C

kh

h
sup

i

{E
[
|X i (0)|r ]}

Iα�β∏

�=1

n�!

≤Cμ(r)Cs
�

Ck
�

N (kJ+s)/2N
k�

� N
Iζ
σ

Iα�β∏

�=1

n�! , (2.4)

using in the last inequality also (1.6) from Hypothesis 1 on μ, and the definition of

C�.

Our next result is a first step in controlling the number of monomial terms that can

appear in the expansion of each word W ∈ {LJ, L�, Lh, L�}k .

Lemma 2.5 For every kJ, k�, kh, k� and every β,β ′, ζ ′, ζ , ξ , if we let φ = φβ,β ′,ζ ′,ζ ,ξ

be as in (2.3), then Lhφ, LJφ, L�φ and L�φ can each be expressed as a sum of at

most r , r N , rN� and rN 2
σ many such monomials, respectively, each of the same form

(with possibly different β,β ′, ζ ′, ζ , ξ ) as (2.3), with the respective kJ, k�, kh or k�

increased by one.
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Proof Fixing kJ, k�, kh, k� which sum up to k, we proceed by separately considering

the effect each of Lhφ, LJφ, L�φ and L�φ has on the monomial φ. First,

(Lhφ)(x) =
s∏

�=1

Jα�

kJ∏

�=1

Jβ�

k�∏

�=1

�β ′
�

kh∏

�=1

hζ ′
�

2k�∏

�=1

σζ�

N∑

j=1

h j∂ j

( r∏

�=1

xξ�

)
, (2.5)

with non-zero contribution only from j ∈ ξ , yielding at most r non-zero terms. To each

of these corresponds a monomial of the form of (2.3), for kh �→ kh+1, ζ ′ �→ ζ ′ � ( j)

and ξ �→ (ξ \ ( j)) � (0). Next,

(LJφ)(x) =
s∏

�=1

Jα�

kJ∏

�=1

Jβ�

k�∏

�=1

�β ′
�

kh∏

�=1

hζ ′
�

2k�∏

�=1

σζ�

N∑

i, j=1

Ji j xi∂ j

( r∏

�=1

xξ�

)
, (2.6)

with non-zero contribution only when j ∈ ξ . With i ≤ N the total number of resulting

non-zero monomials is now at most r N , each having the stated form with kJ �→ kJ+1,

β �→ β � (i j) and ξ �→ (ξ \ ( j)) � (i). Likewise, we have that

(L�φ)(x) =
s∏

�=1

Jα�

kJ∏

�=1

Jβ�

k�∏

�=1

�β ′
�

kh∏

�=1

hζ ′
�

2k�∏

�=1

σζ�

N∑

i, j=1

�i j xi∂ j

( r∏

�=1

xξ�

)
, (2.7)

with non-zero contributions only for j ∈ ξ . Enumerating over i ≤ N , gives now at

most rN� non-zero monomials, of the stated form, with k� �→ k�+1, β ′ �→ β ′�(i j)

and ξ �→ (ξ \ ( j)) � (i). Finally,

(L�φ)(x) =
s∏

�=1

Jα�

kJ∏

�=1

Jβ�

k�∏

�=1

�β ′
�

kh∏

�=1

hζ ′
�

2k�∏

�=1

σζ�

N∑

j=1

( N∑

i,i ′=0

σi jσi ′ j xi xi ′
)
∂ j∂ j

( r∏

�=1

xξ�

)
, (2.8)

is non-zero only for the summands in which j ∈ ξ . Enumerating over 0 ≤ i, i ′ ≤ N

(recalling the convention that x0 ≡ 1), gives at most rN 2
σ non-zero monomials, of the

stated form, with k� �→ k� + 1, ζ �→ ζ � (i j) � (i ′ j) and ξ �→ (ξ \ ( j, j)) � (i, i ′).

Fixing N , k, an s-tuple of pairs α, an r -tuple of indices γ and W ∈
{LJ, L�, Lh, L�}k , upon inductively applying Lemma 2.5, we are able to express

W f as the sum of at most

r k N kJN
k�

� N 2k�
σ , (2.9)

many non-zero monomials of the form of (2.3). Recall that for a monomial φ, we use

Iζ for the number of ζ� /∈ (0 j) j , Iα for the number of distinct pairs in α, Iα�β for the

123



1076 A. Dembo, R. Gheissari

number of distinct pairs in α � β, and introduce I� = Iα�β − Iα , which counts the

number of distinct pairs in {β}\{α}. A careful examination of the proof of Lemma 2.5,

yields the following significant refinement upon the crude bound of (2.9).

Proposition 2.6 Fix N, r , s, k ≥ 0, an s-tuple of pairs α, an r-tuple of indices γ , and

a word W ∈ {LJ, L�, Lh, L�}k . Then, of the monomials in such expansion of W f , at

most

(
kJ

I�, n1, . . . , n Iα�β

)(
2k�

Iζ

)
r k N I� N

k�

� N
Iζ
σ (2.10)

have Iζ elements of ζ with ζ� /∈ (0 j) j , and the Iα�β = Iα + I� distinct pairs in α �β

appear in multiplicities {n� + 1{�>Iα}}�≤Iα�β
within the sequence β of length kJ. (N.b.

we ordered the (n�) with multiplicities in β of the distinct pairs of α appearing first,

and the multiplicities in β of the remaining I� distinct pairs next.)

Proof The first improvement in (2.10) over (2.9) is from observing that the growth

factor Nσ applies only in those Iζ of the 2k� applications of L� within W which

have led to an element ζ� /∈ (0 j) j (see (2.8)), and that there are at most
(2k�

Iζ

)
ways to

choose which Iζ elements of ζ are not from the 0-th row of σ .

Similarly, the growth factor N in counting the number of monomials after applying

LJ is only relevant during the I� applications of LJ within W in which a new pair

(i j) is selected (see (2.6)). The left-most term in (2.10) counts the number of ways

to select the locations of these I� new elements within the kJ long sequence β, and

thereafter to partition the remaining kJ − I� consistently with having the prescribed

n� ≥ 0 repeats for each of the Iα�β distinct pairs in question. Putting all this together

yields the stated bound (2.10) on the number of relevant monomials in the expansion

of W f .

Proof of Proposition 2.3. Combining Proposition 2.6 with the bound (2.4) we deduce

that for any word W of length k and any α whose Iα distinct terms appear in multi-

plicities (c�)�≤Iα ,

E[|W f (X0)|] ≤ Cμ(r)Cs
� kJ!

(4rC�)
k

N (kJ+s)/2

kJ∑

I�=0

N I�

I�!

∑

(n�)�≤Iα�β

Iα∏

�=1

(n� + c� − 1)!
n�!

, (2.11)

where the inner sum is over all partitions of kJ− I� into Iα�β indistinguishable integers

n� ≥ 0. Since
∑

� c� = s and n� + c� ≤ kJ + s for all �, the right-most product is at

most (kJ + s)s . Further, the number of (n�)� considered here is at most the number

of integer partitions of kJ, which grows slower than ekJ (c.f. the Hardy-Ramanujan

asymptotic partition formula [24]). Thus, we find that for C(r , s, Cμ, C�) finite and
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any word W of length k,

E[|W f (X0)|] ≤ C

N s/2
(4reC�)

k−kJ kJ! (kJ + s)s
(4reC�√

N

)kJ

kJ∑

I�=0

N I�

I�!
. (2.12)

Since k! ≥ kJ!(k − kJ)!, the bounds (2.12) and (2.2) will yield the stated abso-

lute convergence of the infinite series. Specifically, fixing T < ∞ and setting

δ = 1/(16T reC�), we have that

∞∑

k=0

T k

k! E[|Lk f (X0)|] ≤ C

N s/2

∞∑

k=0

∑

kJ≤k

(4T )k

k! (4reC�)
k−kJ kJ! (kJ + s)s

(4reC�√
N

)kJ

kJ∑

I�=0

N I�

I�!

≤ C

N s/2

∞∑

k′=k−kJ=0

δ−k′

k′!

∞∑

kJ=0

(kJ + s)s
(
δ
√

N
)−kJ

kJ∑

I�=0

N I�

I�!
,

(2.13)

which is finite for any fixed N > δ−2, thereby concluding the proof.

2.3 Controlling the differences of the k’th order Taylor coefficients

By Corollary 2.4, we have that

sup
t∈[0,T ]

∣∣∣E[ f (Xt )] − Ẽ[ f (X̃t )]
∣∣∣

≤ sup
t∈[0,T ]

∑

k≥0

tk

k!

∣∣∣E[Lk f (X0)] − Ẽ[Lk f (X0)]
∣∣∣

≤
∑

k≥0

(4T )k

k! sup
W∈{LJ,L�,Lh,L�}k

∣∣∣E[W f (X0)] − Ẽ[W f (X0)]
∣∣∣

≤
∑

k≥0

(4T )k

k! sup
W∈{LJ,L�,Lh,L�}k

∑

φ∈(W f )(x)

∣∣∣E[φ(X0)] − Ẽ[φ(X0)]
∣∣∣ , (2.14)

where the last sum is over φ appearing in the monomial decomposition of W f (x) per

Claim 2.2. To bound the differences of expectations on the rhs of (2.14), we next

control the type of monomials φ of the form (2.3) in the expansion of W f , for which

we may possibly have E[φ(X0)] �= Ẽ[φ(X0)].

Lemma 2.7 For any k, s ≥ 0, every s-tuple of pairsα, and every W ∈ {LJ, L�, Lh, L�}k ,

the monomials φ in the expansion of W f in Claim rm 2.2 may have E[φ(X0)] �=
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Ẽ[φ(X0)] only if

kJ + s ≥ 3 and kJ ≥ 2I� + I +
α,1 , (2.15)

where as before, I� = Iα�β − Iα denotes the number of distinct elements in {β} \ {α}.
Proof By the independence of J, J̃ and μ, if E[φ(X0)] �= Ẽ[φ(X0)] for some φ =
φβ,β ′,ζ ,ζ ′,ξ as in (2.3), then

E

[ s∏

i=1

Jαi

kJ∏

�=1

Jβ�

]
�= Ẽ

[ s∏

i=1

Jαi

kJ∏

�=1

Jβ�

]
,

which for independent, zero-mean (Ji j )i j of matching variances 1
N

m = 1
N

m̃, requires

that simultaneously:

No pair α� appears exactly once in the concatenation α � β. (2.16)

Some α� appears more than twice in the concatenation α � β. (2.17)

The condition (2.16) implies that each of the I� distinct elements in {β} \ {α} must

appear at least twice in {β}, to which end we need at least 2I� applications of LJ to select

those elements. In addition, some other Iα,1 of the kJ applications of LJ must align

exactly with the pairs (αi j ) appearing only once in α, so necessarily kJ ≥ 2I� + Iα,1.

Further, the condition (2.17) requires kJ + s ≥ 3 and when no pair appears more than

twice in α, an extra application of LJ beyond the preceding 2I� + Iα,1 is needed for

producing the third appearance of some α�, as stated in (2.15).

We are now able to prove that the expectations of monomials of the form fα,γ (Xt )

are universal.

Proof of Proposition 2.1. Fixing α, γ , in view of Lemma 2.7, it suffices when bound-

ing the rhs of (2.14), to consider only words W and monomials φ for which (2.15)

holds. By restricting attention only to monomials for which (2.15), holds, we find as

in (2.11), that for any α whose Iα distinct terms appear in multiplicities (c�)�≤Iα , and

every word W of length k such that kJ + s ≥ 3,

∣∣E[W f (X0)] − Ẽ[W f (X0)]
∣∣ ≤ 2Cμ(r)Cs

� kJ!
(4rC�)

k

N (kJ+s)/2

∑

{I�:kJ≥2I�+I +
α,1}

N I�

I�!

∑

(n�)�≤Iα�β

Iα∏

�=1

(n� + c� − 1)!
n�!

,

where as in (2.11), the inner sum runs over all partitions of kJ − I� into Iα�β indistin-

guishable integers n� ≥ 0. Reasoning as we did leading up to (2.12), we find that

∣∣E[W f (X0)] − Ẽ[W f (X0)]
∣∣ ≤ 2C

N s/2
(4reC�)

k−kJ kJ! (kJ + s)s
(4reC�√

N

)kJ
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∑

{I�:kJ≥2I�+I +
α,1}

N I�

I�!
. (2.18)

Plugging (2.18) into (2.14), as in the derivation of (2.13), we get for δ = 1/(16T reC�)

and N ≥ ρ := (2/δ)2,

sup
t∈[0,T ]

∣∣∣E[ f (Xt )] − Ẽ[ f (X̃t )]
∣∣∣

≤ 2C

N s/2

∑

k′≥0

δ−k′

k′!
∑

I�≥0

1

I�!
∑

kJ≥2I�+I +
α,1

(kJ + s)s δ−kJ N I�−kJ/2

≤ C̄ N
−(s+I +

α,1)/2
∑

I�≥0

ρ I�

I�!
∑

kJ≥0

(kJ + s)s2−kJ , (2.19)

where C̄ = 2Ce−1/δρ
I +
α,1/2. This completes the proof, as both series on the rhs of

(2.19) are finite and independent of N .

Remark 2.8 In the case of symmetric random matrices A, Ã (where only the upper

triangular and diagonal elements are independent), we identify index pairs β = i j

and β̂ = j i as being the same. We do so whenever considering Iα , Iα,1, I +
α,1, Iα�β ,

I�, and the multiplicities (n�)�, as well as in the restrictions (2.16)–(2.17) imposed on

the multiplicities within α � β. Once this is done, the only difference in our proof is

to replace in (2.10) the weight r k by (2r)k .

3 The extension tomulti-time polynomial observables

In this section, we extend the results of Sect. 2 to more general observables, namely

those that contain coefficients that depend on the driving martingale, and those that

depend on the trajectory through multiple times, rather than just one. We then use

those extensions to prove Theorem 1. To this end, fix any l, any (α(1), . . . ,α(l)) each

consisting of si pairs, any (γ (1), . . . , γ (l)) each consisting of ri indices, and also fix

m indices ξ = (ξ1, . . . , ξm). Fix l times 0 ≤ t1 ≤ · · · ≤ tl ≤ T and m times

0 ≤ u1 ≤ · · · ≤ um ≤ T . For fα(i),γ (i) as in (2.1), consider observables of the form,

g(α(i)),(γ (i)),ξ (t, u) =
( l∏

i=1

fα(i),γ (i)(Xti )
)( m∏

i=1

Mξi
(ui )

)
. (3.1)

Let r̄ =
∑

i ri +m and ᾱ denote the concatenation α(1)�· · ·�α(l) of length s̄ :=
∑

i si .

Proposition 3.1 There exist finite C(r̄ , s̄, m, l, T , C�, Cμ(r̄)) such that for every

l, m, every (α(i))i≤l , (γ (i))i≤l , ξ , every t ∈ [0, T ]l , u ∈ [0, T ]m and g(t, u) =
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g(α(i)),(γ (i)),ξ (t, u) as in (3.1),

∣∣E[g(t, u)] − Ẽ[g(t, u)]
∣∣ ≤ C N

−(s̄+I +
ᾱ,1)/2

.

We proceed to prove Proposition 3.1, which we thereafter combine with a short

combinatorial estimate bounding the number of terms with specific values of I +
ᾱ,1 to

establish Theorem 1.

3.1 Proof of Proposition 3.1

We start with the case of m = 0 to which we will reduce the case of m > 0.

Lemma 3.2 Proposition 3.1 holds when m = 0.

Proof Fixing l, (α(i))i≤l and (γ (i))i≤l , we set here f (i)(x) = fα(i),γ (i)(x) and

g(x(1), . . . , x
(l)) :=

l∏

i=1

f (i)(x(i)) =
l∏

i=1

J
α

(i)
1

· · · J
α

(i)
ri

x
(i)

γ
(i)
1

· · · x
(i)

γ
(i)
si

, (3.2)

and for any l-tuple of times t = (t1, . . . , tl) ∈ [0, T ]l , evaluate (3.2) on the argument

(Xt1 , . . . , Xtl ): i.e., let

g(t) = g(α(i)),(γ (i))(t) = g(Xt1 , . . . , Xtl ) .

We express the expectation EB with respect to the Brownian motion of g(t), in terms

of the (diffusion) semi-group operator as

EB[g(t)] =
(
Pt1 f (1) Pt2−t1 f (2) · · · Ptl−tl−1 f (l)

)
(X0) .

Expanding each semi-group operator in terms of powers of the generator L , the above

is precisely

∑

k1≥0

t
k1
1

k1!
Lk1

[
f (1)

∑

k2≥0

(t2 − t1)
k2

k2!
Lk2

[
f (2) · · ·

∑

kl≥0

(tl − tl−1)
kl

kl !
Lkl f (l)

]]
(X0)

=
∑

k1,...,kl≥0

( l∏

i=1

(ti − ti−1)
ki

ki !
)[

Lk1 f (1)Lk2 f (2) · · · Lkl f (l)
]
(X0) .

Taking the difference in expectations between E and Ẽ, upon justifying swapping the

expectation with the infinite sum (as done in Sect. 2.2), and using the fact that

(
k

k1, . . . , kl

)
l−k ≤

∑

k1,...,kl≥0∑
ki =k

(
k

k1, . . . , kl

)
l−k = 1 , (3.3)
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for every k1, k2, . . . , kl such that k1 + · · · + kl = k, we obtain that

∣∣E[g(t)] − Ẽ[g(t)]
∣∣ ≤

∑

k≥0

∑

k1,...,kl∑
i ki =k

lk T k

k!
∑

W1,...,Wl

Wi ∈{LJ,L�,Lh,L�}ki

∣∣E[(W1 f (1) · · · Wl f (l))(X0)] − Ẽ[(W1 f (1) · · · Wl f (l))(X0)]
∣∣ .

The following structural property for words appearing in the above will allow us to

reduce the analysis of multi-time observables to the combinatorial analysis of one-

time observables fᾱ,γ̄ = f (1) f (2) · · · f (l), for ᾱ = α(1) � · · · � α(l) and γ̄ :=
γ (1) � · · · � γ (l), which we have already completed.

Claim Fix k1, . . . , kl ≥ 0 such that
∑

i ki = k and words Wi ∈ {LJ, L�, Lh, L�}ki ,

i = 1, . . . , l, with ki
J
, ki

�, ki
h
, ki

�, of each appearing, respectively. Then, the function

(W1 f (1)W2 f (2) · · · Wl f (l))(x)

consists of a sum of (not necessarily distinct) monomials of the form

φ(x) =
s1∏

i=1

J
α

(1)
i

· · ·
sl∏

i=1

J
α

(l)
i

∑
ki

J∏

�=1

Jβ�

∑
ki
�∏

�=1

�β ′
�

∑
ki

h∏

�=1

hζ ′
�

2
∑

k�∏

�=1

σζ�

∑
ri∏

�=1

xξ�
.

Moreover, each monomial φ(x) appearing in this expansion, must also appear in such

monomial expansion of W fᾱ,γ̄ for W = W1 · · · Wl ∈ {LJ, L�, Lh, L�}k .

Proof The structure of the monomials is evident. Every such monomial in

W1 f (1)W2 f (2) · · · Wl f (l) must also appear in the monomial expansion of [W1 · · · Wl ] fᾱ,γ̄

because a subset of the terms in the latter are obtained by applying the letters in Wl

to f (l), then the letters in Wl−1 to f (l−1)(Wl f (l)), and so on. Finally, observe that

W1 · · · Wl is always a word in {LJ, L�, Lh, L�}k .

With Claim 3.1 in hand, we further get that

|E[g(t)] − Ẽ[g(t)]| ≤
∑

k≥0

∑

k1,...,kl∑
ki =k

4klk T k

k! sup
W1,...,Wl

Wi ∈{LJ,L�,Lh,L�}ki

∑

φ∈(W1 f (1)···Wl f (l))(x)

∣∣E[φ(X0)] − Ẽ[φ(X0)]
∣∣

≤
∑

k≥0

∑

k1,...,kl∑
ki =k

(4lT )k

k! sup
W∈{LJ,L�,Lh,L�}k

∑

φ∈(W fᾱ,γ̄ )(x)

∣∣E[φ(X0)] − Ẽ[φ(X0)]
∣∣

≤
∑

k≥0

(k + 1)l(4lT )k

k! sup
W∈{LJ,L�,Lh,L�}k

∑

φ∈(W fᾱ,γ̄ )(x)
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∣∣E[φ(X0)] − Ẽ[φ(X0)]
∣∣ , (3.4)

where the sums are over the monomials φ in the decomposition of W1 f (1) · · · Wl f (l)

and that of W fᾱ,γ̄ per Claim 3.1. Note that each summand on the rhs of (3.4) is

at most some (k + 1)llk times the corresponding summand of (2.14) for the choice

f = fᾱ,γ̄ for which we have deduced the bound of (2.18). Utilizing the latter and the

elementary bound k + 1 ≤ (kJ + 1)(k + 1 − kJ), by proceeding as in the derivation of

(2.19), we find that for C = C(r̄ , s̄, Cμ(r̄), C�) finite, δ = 1/(16 l T r̄ e C�) positive

and N ≥ (2/δ)2,

sup
t∈[0,T ]l

∣∣E[g(t)] − Ẽ[g(t)]
∣∣ ≤ 2C

N s̄/2

∑

k′≥0

δ−k′

k′! (k′ + 1)l
∑

I�≥0

1

I�!
∑

kJ≥2I�+I +
ᾱ,1

(kJ + s̄)s̄+l δ−kJ N I�−kJ/2

≤ C̄ N
−(s̄+I +

ᾱ,1)/2

for some finite C̄ = C̄(l, r̄ , s̄, T , C�, Cμ(r̄)).

We now add in the driving martingale observables (i.e., m > 0) and conclude the

proof of Proposition 3.1.

Proof of Proposition 3.1. We reduce the situation m > 0 to the combinatorial calcu-

lations of Lemma 3.2 by utilizing the following expansion from Ito’s lemma:

Mξi
(u) = Xξi

(u) −
∫ u

0
(L xξi

)(Xτ )dτ .

When expanding (3.1) in this manner, the terms containing only products of Xξi
(ui )

can be absorbed into γ , in which case their difference in expectations has already been

handled in Lemma 3.2, so by linearity it suffices for us to focus on handling terms of

the form

h(α(i)),(γ (i)),ξ (t, u) =
( l∏

i=1

fα(i),γ (i)(Xti )
)( m∏

i=1

∫ ui

0
(Lxξi

)(Xτi
)dτi

)

=
∫ u1

0
· · ·

∫ um

0
ĥ(t, τ )dτ1 · · · dτm ,

where τ = (τ1, . . . , τm) ∈ [0, T ]m and where, setting f (i)(x) = fα(i),γ (i)(x),

ĥ(t, τ ) :=
l∏

i=1

f (i)(Xti )

m∏

i=1

(Lxξi
)(Xτi

) .
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Thus, fixing l, m, (α(i)), (γ (i)), ξ and letting h(t, u) = h(α(i)),(γ (i)),ξ (t, u) we obtain

after swapping the expectation and integrals that

E
[
h(t, u)

]
=
∫ u1

0
· · ·

∫ um

0
E
[̂
h(t, τ )

]
dτ1 · · · dτm ,

which thereby yields the following bound on the relevant difference in expectations

∣∣E[h(t, u)]−Ẽ[h(t, u)]
∣∣ ≤ T m sup

τ∈[0,T ]m

∣∣∣E
[̂
h(t, τ )

]
− Ẽ

[̂
h(t, τ )

]∣∣∣ .

Proceeding hereafter wlog to bound the difference in expectations for ĥ(t, τ ), we

suppose for ease of exposition that 0 ≤ tl = τ0 ≤ τ1 ≤ · · · ≤ τm (the situation where

the two groups intertwine is similarly analyzed with the obvious modifications). As

done in the proof of Lemma 3.2, first expressing EB in terms of the semi-group operator

and then expanding that in powers of the generator L we find that

EB

[̂
h(t, τ )

]

= Pt1

[
f (1) Pt2−t1

[
f (2) · · · Ptl−tl−1

[
f (l) Pτ1−tl

[
Lxξ1 · · · Pτm−τm−1 Lxξm

]]]]
(X0)

=
∑

k≥0

∑

(ki )≥0,(�i )≥1∑
ki +

∑
�i =k+m

l∏

i=1

(ti − ti−1)
ki

ki !

m∏

i=1

(τi − τi−1)
�i −1

(�i − 1)! Lk1

[
f (1) · · · Lkl

[
f (l)L�1

[
xξ1 · · · L�m xξm

]]]
(X0) .

At this point, proceeding as in the derivation of (3.4), up to the transformations

k �→ k + m =: k̄ , l �→ l + m =: l̄ , and ( f (l+1), . . . , f (l̄)) �→ (xξ1 , . . . , xξm ) ,

we first use (3.3) to get the bound

∣∣∣E
[̂
h(t, τ )

]
− Ẽ

[̂
h(t, τ )

]∣∣∣

≤
∑

k≥0

∑

(ki )≥0,(�i )≥1∑
ki +

∑
�i =k̄

4k̄(l̄T )k

k! sup
W1,...,Wl ,W

′
1,...,W

′
m

Wi ∈{LJ,L�,Lh,L�}ki

W ′
i ∈{LJ,L�,Lh,L�}�i

∑

φ∈(W1 f (1)···W ′
m xξm )(x)

∣∣E[φ(X0)] − Ẽ[φ(X0)]
∣∣ ,

with the sum running over monomial decomposition of (W1 f (1) · · · Wl f (l)W ′
1xξ1 · · ·

W ′
m xξm )(x). Then, utilizing again Claim 3.1, as well as the bound k! ≥ k̄!/(k̄)m , we

arrive at
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1084 A. Dembo, R. Gheissari

∣∣∣E
[̂
h(t, τ )

]
− Ẽ

[̂
h(t, τ )

]∣∣∣

≤
∑

k̄≥m

( k̄

l̄T

)m (k̄)l̄(4l̄T )k̄

k̄!
sup

W∈{LJ,L�,Lh,L�}k̄

∑

φ∈(W fᾱ,γ̄ )(x)

∣∣E[φ(X0)] − Ẽ[φ(X0)]
∣∣ ,

(3.5)

where as before ᾱ = α(1) � · · · � α(l) is of length s̄ =
∑

i si , while γ̄ of length

r̄ =
∑

ri + m has now the additional elements (xξi
)i≤m . Up to this update of r̄ and

the immaterial weight factor (k̄/(l̄T ))m of its summands, the expression on the rhs

of (3.5) is the same as that in (3.4). We thus conclude as in the proof of Lemma 3.2

that for some C(l, m, r̄ , s̄, T , C�, Cμ(r̄)) all t ∈ [0, T ]l and u ∈ [0, T ]m ,

∣∣E[h(t, u)] − Ẽ[h(t, u)]
∣∣ ≤ C N

−(s̄+I +
ᾱ,1)/2

.

3.2 Proof of Theorem 1.

Fix T , m, p, Ca, a ∈ R
N m

such that ‖a‖∞ ≤ Ca, and t ∈ [0, T ]p. For every � ≤ m,

fix observables Y(�,1), . . . ,Y(�,p) ∈ F and let F(t) be as in (1.5) with those choices.

By linearity of expectations and the uniform bound on ‖a‖∞, it suffices to show that

uniformly over i1, . . . , im ,

sup
t∈[0,T ]p

∣∣∣E
[ ∏

�≤m

Y
(�,1)
i�

(t1) · · · Y(�,p)

i�
(tp)

]
− Ẽ

[ ∏

�≤m

Y
(�,1)
i�

(t1) · · · Y(�,p)

i�
(tp)

]∣∣∣

≤ C N−1/2 (3.6)

We denote by s̄ the number of Y terms appearing in the preceding product which is

a coordinate of Gt . In case s̄ = 0, the bound (3.6) follows from considering Propo-

sition 3.1 at s̄ = 0, in which case I +
ᾱ,1 = 1. Otherwise, we expand every term in

that product which is a coordinate of Gt to obtain a sum of monomials of the form

of (3.1). Each of these monomials has a sequence ᾱ of length s̄, and as a result of such

expansion there are at most s̄ s̄ N Iᾱ monomials with precisely Iᾱ distinct pairs in the

sequence ᾱ. Note that for any ᾱ,

s̄ + I +
ᾱ,1 ≥ 2Iᾱ + 1 .

Indeed, each pair which appears once in ᾱ, is counted both in s̄ and in Iᾱ,1, all other

pairs are counted at least twice in s̄, and for any ᾱ of maximal multiplicity two, we

have added one to I +
ᾱ,1. Consequently, the bound of Proposition 3.1 on the difference

in expectation for each of these s̄ s̄ N Iᾱ many monomials is at most C N−Iᾱ−1/2 for

some constant C(T , m, p, C�, Cμ). From this, the bound (3.6) immediately follows

upon enumerating over the at most s̄ many choices for Iᾱ .
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4 Concentration for quadratic observables: Proof of Theorem 2

Assuming henceforth that Mt is a scaled Brownian motion (i.e., that σi j are identically

zero for i �= 0), our goal is to prove Theorem 2 about the uniform over t ∈ [0, T ]2

concentration property of the quadratic observable of (1.10),

F(t) = FY,Y ′,a(Xt1 , Xt2) = 1

N

∑

i

aiYi (t1)Y
′
i (t2) ,

(for uniformly bounded non-random a = (ai )i and Y,Y ′ in the collection F =
{1t , Xt , Gt , Mt } of (1.4)). To this end, we introduce in Sect. 4.1 high probability

localizing sets LN ,R on which various norms of Xt (and our observables F(t)), are

uniformly bounded. Sect. 4.2 shows that on LN ,R , such F(t) are O(N−1/2)-Lipschitz

in a mixed �2-norm. Combining these facts we prove Theorem 2 in Sect. 4.3.

4.1 Localizing the process

Denote the 2-to-2 matrix norm by

‖J‖2→2 := sup
x:‖x‖=1

‖Jx‖ = ‖J
T ‖2→2 = sup

x:‖x‖=1

(∑

i≤N

Gi (x)2
)1/2

,

and for each constant R consider the following localization subset of EN := R
N ×

R
N 2 × C([0, T ], R

N ),

LN ,R :=
{
(X0, J, M) ∈ EN : ‖X0‖2 + N‖J‖2

2→2 + sup
t∈[0,T ]

‖Mt‖2 ≤ RN
}

, (4.1)

We begin by bounding the probability that (X0, J, M) /∈ LN ,R .

Lemma 4.1 There exists C = C(T , Cμ, CA, Cσ ) > 0 and R0(T , Cμ, CA, Cσ ) < ∞,

such that for every R ≥ R0 if μ, PA satisfy Hypotheses 1–2, then

P
(
Lc

N ,R

)
≤ exp(−

√
RN/C) .

Proof We bound Lc
N ,R by the union of the events where each of the three norms is

greater than
√

RN/3. First, since Mt is a Brownian motion (scaled by (σ0 j ) j ), by

Doob’s maximal inequality for the sub-martingale exp(δ‖Mt‖2), we have for some

C(Cσ ) > 0 any R ≥ T R0(Cσ ) and all N ,

PB

(
sup

t∈[0,T ]
‖Mt‖ >

√
RN/3

)
≤ exp(−RN/(CT )) . (4.2)

Next, since μ satisfies Hypotheses 1–2, the independent X i (0) have uniform (in i and

N ), second moments and exponential tails. Hence, applying [30, Theorem 3] for the
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centered sum of i.i.d. variables that stochastically dominate X2
i (0), we have for some

C(Cμ) > 0, any R ≥ R0(Cμ) and all N ,

μ
(
‖X0‖2 > RN/3

)
≤ exp(−

√
RN/C) .

It thus remains only to show that when PA satisfies Hypothesis 2, we have for some

C(CA) > 0 any R ≥ R0(CA) and all N ,

PA(‖A‖2→2 >
√

RN/3) ≤ exp(−
√

RN/C) . (4.3)

To this end, recall [28, Theorem 2] that there exists a universal constant C such that

for any matrix A with independent, zero-mean entries of second moments mi j and

fourth moments bi j ,

EA[‖A‖2→2] ≤ C
(

max
i≤N

( ∑

j≤N

mi j

)1/2
+ max

j≤N

(∑

i≤N

mi j

)1/2
+
( ∑

1≤i, j≤N

bi j

)1/4)
.

For PA satisfying Hypothesis 1, bi j and mi j are bounded uniformly in i, j and N

(see (1.8)). Hence, in the case where A is composed of independent entries, for some

C(CA) finite and all N ,

EA[‖A‖2→2] ≤ C
√

N . (4.4)

Likewise, representing a symmetric A as A = A+ + A−, with A+ the upper triangle

(including the diagonal) part of A and A− its lower triangle part, [28, Theorem 2]

holds for the matrices A− and A+ of zero-mean, independent entries (with uniformly

bounded forth moments). Thus, (4.4) holds also in this case up to a factor of 2. Thanks

to (4.4), if
√

R ≥ 4C then

PA

(
‖A‖2→2 >

√
RN/3

)
≤ PA

(
| ‖A‖2→2 − EA[‖A‖2→2] | >

√
RN/4

)
.

Recall that ‖A‖2→2, which is the largest singular value of A, is 1-Lipschitz in its entries

(endowed with the Euclidean norm, on A+ when A assumed symmetric). Indeed, this

follows by combining the triangle inequality |‖A‖2→2−‖B‖2→2| ≤ ‖A−B‖2→2 with

the domination of the operator norm by the Frobenius norm, ‖A−B‖2→2 ≤ ‖A−B‖F .

Hypothesis 2 for PA thus yields the bound (4.3).

We further have on the sets LN ,R the following localization for both (Xt )t∈[0,T ]
and (Gt )t∈[0,T ].

Proposition 4.2 There exists R0(T , C�) and C0(C�) such that if R ≥ R0, and

(X0, J, M) ∈ LN ,R , then

1√
N

sup
t∈[0,T ]

{‖Xt‖} ≤ eC0

√
RT ,

1√
N

sup
t∈[0,T ]

{‖Gt‖} ≤ eC0

√
RT . (4.5)
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In addition, for every a such that ‖a‖∞ ≤ Ca (uniformly over N) and every Y,Y ′ ∈ F,

if F(t) is as in (1.10), we have for all k ≥ 1,

lim sup
N→∞

E
[( 1√

N
sup

t∈[0,T ]
‖Xt‖

)k]
< ∞ , lim sup

N→∞
E
[( 1√

N
sup

t∈[0,T ]
‖Gt‖

)k]
< ∞ ,

(4.6)

lim sup
N→∞

E
[

sup
t∈[0,T ]2

|F(t)|k
]

< ∞ . (4.7)

Proof Setting eN (t) = 1√
N

‖Xt‖, we get upon expanding (1.2), that

(eN (t))2 ≤ 1

N

∑

j≤N

|X j (t)|

(
|X j (0)| + |M j (t)| +

∫ t

0
|h j |ds +

∫ t

0
|G j (Xs)|ds +

∫ t

0
|� j (Xs)|ds

)

=: I1 + I2 + I3 + I4 + I5 .

From the definition of the 2-to-2 norm, evidently

‖Gs‖ =
√∑

j≤N

G j (Xs)2 ≤ ‖J‖2→2‖Xs‖ ,

√∑

j≤N

� j (Xs)2 ≤ ‖�‖2→2‖Xs‖ .(4.8)

Hence, by Cauchy–Schwarz,

I1 ≤ eN (t)
1√
N

‖X0‖ , I2 ≤ eN (t)
1√
N

‖Mt‖ , I3 ≤ eN (t) Ch T ,

I4 ≤ eN (t)
1√
N

∫ t

0
‖Gs‖ds ≤ eN (t)‖J‖2→2

∫ t

0
eN (s)ds ,

I5 ≤ eN (t)
1√
N

∫ t

0

( ∑

j≤N

|� j (Xs)|2
)1/2

ds ≤ eN (t)C�

∫ t

0
eN (s)ds ,

where in the last inequality we rely on our assumption that ‖�‖1→1 ≤ C� and

‖�‖∞→∞ ≤ C�, to deduce that ‖�‖2→2 ≤ C�. Combining these bounds on (Ii )i≤5,

and dividing out by eN (t), we see that

eN (t) ≤ 1√
N

[
‖X0‖ + ‖Mt‖

]
+ ChT + (‖J‖2→2 + C�)

∫ t

0
eN (s)ds .

By Gronwall’s inequality, using the localization to LN ,R , it then follows that for any

t ∈ [0, T ],

eN (t) ≤ (
√

R + ChT ) exp
(
(
√

R + C�)t
)
,
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yielding the lhs of (4.5) as soon as R ≥ R0(T , C�) ≥ 1. From the lhs of (4.8) we

know that ‖Gt‖ ≤
√

R ‖Xt‖ throughout LN ,R , hence after suitably increasing C0 and

R0, the rhs of (4.5) holds as well.

To deduce the uniformly bounded moment estimate of (4.6) for Xt , recall first from

the lhs of (4.5) that

Z k
N ,X :=

(
sup
t≤T

eN (t)
)k ≤ eC0

√
RT k =: f (R) , ∀R ≥ R0 , (X0, J, M) ∈ LN ,R .

Combining the latter bound with that of Lemma 4.1, we arrive at

E[Z k
N ,X] =

∫ ∞

0
f ′(R)P(Z k

N ,X > f (R))d R

≤ f (R0) +
∫ ∞

R0

f ′(R)P(Lc
N ,R)d R ≤ f (R0) +

∫ ∞

R0

f ′(R)e−
√

RN/C d R .

(4.9)

The rhs decreases in N and as f ′(R) = (C0T k)/(2
√

R) f (R), it is finite for
√

N/C >

C0T k, yielding the lhs of (4.6). The rhs of (4.6) follows by applying the same

reasoning to Z k
N ,G =

(
N−1/2 supt∈[0,T ] ‖Gt‖

)k
while utilizing the rhs of (4.5).

Turning to (4.7), note that for any k ≥ 1 and F(t) of (1.10) with ‖a‖∞ ≤ Ca, by

Cauchy–Schwarz,

|F(t)|k ≤ Ck
a

√
Z2k

N ,Y

√
Z2k

N ,Y ′ , where Z2k
N ,Y :=

( 1√
N

sup
t∈[0,T ]

{‖Y(t)‖}
)2k

.

Thus, yet another application of Cauchy–Schwarz results with

E
[

sup
t∈[0,T ]2

|F(t)|k
]

≤ Ck
a

√
E[Z2k

N ,Y
]
√

E[Z2k
N ,Y ′ ] ≤ Ck

a max
Y∈F

E[Z2k
N ,Y ] .

If Y is 1, this latter expectation is simply 1. If Y is M, using the tail bound of (4.2) in

combination with (4.9) (now for f (R) = (R/3)k), the latter expectation is uniformly

bounded in N . Lastly if Y is from {X, G}, the expectation above is uniformly bounded

in N by (4.6). Combining these yields the desired (4.7).

4.2 A Lipschitz estimate on quadratic observables

Our next proposition shows that on LN ,R all F(t) of the form (1.10) are O(N−1/2)-

Lipschitz in the (X0, J, M) endowed with the following mixed 2-norm on EN ,

‖(X0, J, M)‖2
mix

:= ‖X0‖2 + N
∑

1≤i, j≤N

J 2
i j + sup

t∈[0,T ]
‖Mt‖2 (4.10)

(which is taken from [3, Hypothesis 1.1]).
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Proposition 4.3 Fixing a such that ‖a‖∞ ≤ Ca and Y,Y ′ ∈ F, denote by

F(t; (X0, J, M)) the observable in (1.10) evaluated on the trajectory Xt constructed

out of the triplet (X0, J, M). There exist R0(T , Ca, C�) and C(T , Ca, C�) such that

for any R ≥ R0 all N and (X0, J, M), (X′
0, J′, M′) in LN ,R

sup
t∈[0,T ]2

|F(t; (X0, J, M)) − F(t; (X′
0, J

′, M
′))|

≤ CeC
√

R

√
N

‖(X0, J, M) − (X′
0, J

′, M
′)‖mix .

The key to Proposition 4.3 is to show that Xt is O(1)-Lipschitz on LN ,R endowed

with ‖ · ‖mix. Specifically, denoting by Xt (X0, J, M) the solution to (1.2), constructed

from the triplet (X0, J, M) and X′
t (X0, J, M) the solution constructed from the triplet

(X′
0, J′, M′), our next lemma establishes a uniform over LN ,R Lipschitz bound on

‖Xt − X′
t‖.

Lemma 4.4 There exist R0(T , C�), C(T , C�) such that for all R ≥ R0 and

(X0, J, M), (X′
0, J′, M′) ∈ LN ,R ,

sup
t∈[0,T ]

∥∥Xt (X0, J, M) − X
′
t (X

′
0, J

′, M
′)
∥∥ ≤ eC

√
R
∥∥(X0, J, M) − (X′

0, J
′, M

′)
∥∥

mix
.

Proof Following the strategy of proof of [3, Lemma 2.6], we let

eN (t) := 1√
N

‖Xt (X0, J, M) − X
′
t (X

′
0, J

′, M
′)‖ ,

and expanding over j ≤ N , we have by the definition of the solution Xt for the sds

(1.2)–(1.3), that

eN (t)2 ≤ 1

N

∑

j≤N

|X j (t) − X ′
j (t)|

(
|X j (0) − X ′

j (0)| + |M j (t) − M ′
j (t)| +

∫ t

0
|� j (Xs) − � j (X

′
s)|ds

+
∫ t

0
|G j (Xs) − G j (X

′
s)|ds +

∫ t

0
|G j (X

′
s) − G ′

j (X
′
s)|ds

)

=: I1 + I2 + I3 + I4 + I5 ,

where G′(·) is defined as G(·) but constructed using J′ instead of J. By Cauchy–

Schwarz,

I1 ≤ eN (t)
1√
N

‖X0 − X
′
0‖ , and I2 ≤ eN (t)

1√
N

‖Mt − M
′
t‖ .
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Recalling (4.8), we similarly find that

I3 ≤ eN (t)
1√
N

∫ t

0

( ∑

j≤N

|� j (Xs − X
′
s)|2

)1/2
ds ≤ eN (t)C�

∫ t

0
eN (s)ds .

Turning to the terms involving G(·) or G′(·), observe first that

‖G(Xt ) − G(X′
t )‖ ≤ ‖J‖2→2‖Xt − X

′
t‖] , and

‖G(Xt ) − G
′(Xt )‖ ≤ ‖J − J

′‖2→2‖Xt‖ . (4.11)

Using the localization to LN ,R , we thus find that

I4 ≤ eN (t)
1√
N

∫ t

0
‖G(Xs) − G(X′

s)‖ds ≤ eN (t)‖J‖2→2

∫ t

0
eN (s)ds

≤ eN (t)
√

R

∫ t

0
eN (s) ,

I5 ≤ eN (t)
1√
N

∫ t

0
‖G(X′

s) − G
′(X′

s)‖ds ≤ eN (t) ‖J − J
′‖2→2

1√
N

∫ t

0
‖X

′
s‖ds

≤ eN (t) ‖J − J
′‖2→2 T eC0

√
RT ,

where in the last inequality we further assumed R ≥ R0(T , C�), utilizing the lhs of

(4.5). Further increasing R0 such that T eC0

√
R0T ≥ 1, upon combining the bounds on

(Ii )i≤5, and dividing out by eN (t), we see that

eN (t) ≤ T eC0

√
RT

√
N

[
‖X0 − X

′
0‖ +

√
N‖J − J

′‖2→2 + sup
t≤T

‖Mt − M
′
t‖
]

+
[
C� +

√
R
] ∫ t

0
eN (s)ds .

Recall that ‖J‖2
2→2 ≤

∑
i j J 2

i j , so by Gronwall’s inequality, there exist C(T , C�),

such that

eN (t) ≤ eC
√

R

√
N

‖(X0, J, M) − (X′
0, J

′, M
′)‖mix ,

for any R ≥ R0, every N and all t ∈ [0, T ], as claimed.

Proof of Proposition 4.3. Fix Y1,Y2 ∈ F, a such that ‖a‖∞ ≤ Ca and t = (t1, t2) ∈
[0, T ]2. Equipped with Lemma 4.4 and (4.11) it remains to establish a Lipschitz control

on differences of F(t; (X0, J, M)) in terms of differences of ‖Gt‖, ‖Xt‖ and ‖Mt‖
corresponding to any pair of triplets (X0, J, M) and (X′

0, J′, M′) in LN ,R . To this end,
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we start with the following bound on differences of F(t; ·):

∣∣F(t; (X0, J, M)) − F(t; (X′
0, J

′, M
′))
∣∣ ≤ Ca

N

∑

i≤N

∣∣Y1
i (Xt1) − Y1

i (X′
t1
)
∣∣∣∣Y2

i (Xt2)
∣∣

+ Ca

N

∑

i≤N

∣∣Y1
i (X′

t1
)
∣∣∣∣Y2

i (Xt2) − Y2
i (X′

t2
)
∣∣ .

Since the two terms on the RHS can be bounded symmetrically, wlog we focus on

the first one, which by Cauchy–Schwarz, is at most

Ca sup
Y∈F,t∈[0,T ]

{ 1√
N

‖Y(Xt ) − Y(X′
t )‖

}
sup

Y∈F,t∈[0,T ]

{ 1√
N

‖Y(Xt )‖
}
, (4.12)

where as before, X′
t is constructed out of the triplet (X′

0, J′, M′). Now recall from

(X0, J, M) ∈ LN ,R and Proposition 4.2, that the right-most term in (4.12) is at most

exp(C0

√
RT ) for all R ≥ R0, in which case by the preceding

sup
t∈[0,T ]2

∣∣F(t; (X0, J, M)) − F(t; (X′
0, J

′, M
′))
∣∣

≤ 2CaeC0

√
RT

√
N

sup
Y∈F,t∈[0,T ]

‖Y(Xt ) − Y(X′
t )‖ . (4.13)

Recall Lemma 4.4 and (4.11), to deduce that for some C(T , C�) > 0, every R ≥ R0,

and all (X0, J, M), we have (X′
0, J′, M′) ∈ LN ,R ,

sup
Y∈F,t∈[0,T ]

‖Y(Xt ) − Y(X′
t )‖ ≤

√
ReC

√
R‖(X0, J, M) − (X′

0, J
′, M

′)‖mix .

Putting these all together, we deduce that there exists some other R0(T , C�) and

C(T , Ca, C�), such that for all R ≥ R0(T , C�),

sup
(X0,J,M),(X′

0,J′,M′)∈LN ,R

t∈[0,T ]2

∣∣F(t; (X0, J, M)) − F(t; (X′
0, J

′, M
′))
∣∣

≤ CeC
√

R

√
N

‖(X0, J, M) − (X′
0, J

′, M
′)‖mix .

We conclude this subsection by combining the respective exponential concentra-

tions of Lipschitz functions due to μ, PA and PB.

Lemma 4.5 Suppose that μ, PA satisfy Hypothesis 2. Then P = μ⊗PA ⊗PB satisfies

exponential concentration of Lipschitz functions with respect to (EN , ‖ · ‖mix).
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Proof Fix any function f that is 1-Lipschitz on (EN , ‖ · ‖mix). Let us expand

f (X0, J, M) − E[ f (X0, J, M)] = ( f (X0, J, M) − EB[ f (X0, J, M)])
+ (EB

[
f (X0, J, M)] − EJ,B[ f (X0, J, M)])

+ (EJ,B[ f (X0, J, M)] − E[ f (X0, J, M)]) ,

where the subscripts of the expectations indicate which random variables the expec-

tation is taken over. Call the above three differences IM, IJ and IX0 say. For every

X0, J fixed, f (X0, J, M) is 1-Lipschitz in M ∈ C([0, T ], R
N ) endowed with the

norm supt≤T ‖ · ‖. As such, from the exponential concentration of Lipschitz functions

satisfied by PB with respect to C([0, T ], R
N ) endowed with supt≤T ‖ · ‖ (see e.g., the

discussion around [3, Hypothesis 1.1]), there exists C = C(Cσ ) > 0 such that for

every r > 0,

sup
X0,J

PB

(
|IM| > r/3

)
≤ Ce−r/C .

Similarly, we have that for every fixed X0, EB[ f (X0, J, M)] is 1-Lipschitz in J

endowed with its rescaled Frobenius norm
∑

i, j (
√

N Ji j )
2, and finally, EJ,B[ f (X0, J, M)]

is 1-Lipschitz in X0 endowed with its �2 norm. Altogether, expanding

P(| f (X0, J, M) − E[ f (X0, J, M)]| > r)

≤ E
[
PB(|IM| > r/3 | X0, J)

]
+ E

[
PJ

(
|IJ| > r/3 | X0

)]
+ μ

(
|IX0 | > r/3

)

we see that the exponential concentrations for 1-Lipschitz functions of μ, PA and PB

lift to exponential concentration of P for functions that are 1-Lipschitz in the triplet

(X0, J, M) on (EN , ‖ · ‖mix).

4.3 Proof of Theorem 2

We first prove a concentration estimate for F at a fixed pair of times t ∈ [0, T ]2,

before extending this to the full trajectory (F(t))t∈[0,T ]2 by bounding the modulus of

continuity of F .

Proposition 4.6 Suppose μ, PA satisfy Hypotheses 1–2. There exist C(T , Ca, C�, Cμ)

large, such that for any F as in (1.10) with ‖a‖∞ ≤ Ca, Y,Y ′ ∈ F, all t ∈ [0, T ]2,

λ > 0 and N ≥ N0(T , Ca, C�, Cμ),

P
(
|F(t) − E[F(t)]| > λ

)
≤ qN (λ) :=

{
Ce−λ

√
N/C + λ−1e−

√
N/C , λ ≤ C

e−(log λ)
√

N/C , λ > C
.

(4.14)

Proof In proving [3, Lemma 2.5] it is shown, using a Lipschitz extension, that if P

satisfies exponential concentration for Lipschitz functions as in (1.11) and V is an
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A-Lipschitz function on a set L on which |V | is uniformly bounded by K , then for

some universal constant C > 0 and every λ > 0,

P(|V − E[V ]| ≥ λ) ≤ Ce−λ/(2AC) + P(Lc) + 2

λ
(
√

E[V 2] + K )
√

P(Lc) .(4.15)

Recall from Lemma 4.5 that P = μ ⊗ PA ⊗ PB satisfies exponential concentration

for Lipschitz functions in (EN , ‖ · ‖mix) and Proposition 4.3 that V = F(t; ·) is D(R)√
N

-

Lipschitz on L = LN ,R for D(R) = C1eC1

√
R , for some C1(T , Ca, C�) for every

R ≥ R0(T , Ca, C�), all N , and every F , t as in Theorem 2.

Further, increasing R0 as needed for Lemma 4.1 and Proposition 4.2, yields

sup
(X0,J,M)∈LN ,R

|F(t; (X0, J, M))| ≤ K (R) where

K (R) := Ca max(R, e2C0

√
RT ) ,

as well as guaranteeing that C2
2 := supN ,t{E[F(t)2]} is finite and that P(Lc

N ,R) ≤
exp(−

√
RN/C3) for some C3(T , Cμ, CA, Cσ ). Plugging all this into (4.15) gives us

a family of upper bounds for R ≥ R0,

qN (λ; R) = Ce−λ
√

N/(2D(R)C) + e−
√

RN/C3 + 2

λ
(C2 + K (R))e−

√
RN/(2C3) .

For R = R0 we can embed the constant factor 2D(R0) into C and further adjust C3 to

bound the pre-exponent 2(C2 + K (R0)) within the factor exp(−
√

R0 N/(2C3)) multi-

plying it, resulting with qN (λ; R0) as in the top line on the rhs of (4.14). For a better tail

decay, consider Rλ = (η log λ)2 ≥ R0, with η = 1/(2C1) so D(Rλ) = C1eC1η log λ ≤
C1λ/ log λ for all λ ≥ 4. In addition, once

√
N/(2C3) ≥ 4C0T we can again embed

the pre-exponent 2(C2 + K (Rλ))/λ within the factor exp(−
√

RλN/(2C3)) multiply-

ing it . Thus, upon adjusting the various constants we end up with qN (λ; Rλ) as in the

bottom line on the rhs of (4.14).

Setting hereafter R for the larger of R0 and Rλ values from the preceding proof

of Proposition 4.6, recall that the event Lc
N ,R was already ruled out as part of the

derivation of (4.14). Thus, proceeding to prove Theorem 2, we fix ε = N−k , k > 1,

and apply Proposition 4.6 at the MN = �T N k�2 grid points ti, j = (iε, jε) within

[0, T ]2, to deduce by the union bound that

P(Lc
N ,R) + P

(
sup
i, j

∣∣F(ti, j ) − E[F(ti, j )]
∣∣ > λ,LN ,R

)
≤ MN qN (λ) .

It is easy to check that 2MN qN (λ) is further bounded by pN (3λ) of (1.12) once we

suitably enlarge the constant C on the rhs of (1.12) relative to that of (4.14). In

addition, since the right-most term in (4.15) exceeds one whenever E[|V |1Lc
N ,R

] =
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E[|F(t)|1Lc
N ,R

] ≥ λ/2, if that inequality holds for any t ∈ [0, T ]2, then qN (λ) and in

turn pN (3λ) of (1.12) would exceed one. Thus, we may assume wlog that

sup
t,s:t+s∈[0,T ]2

{E[|F(t + s) − F(t)| 1Lc
N ,R

]} ≤ 2 sup
t∈[0,T ]2

E[|F(t)|1Lc
N ,R

] ≤ λ .(4.16)

We can then expand

P

(
sup

t∈[0,T ]2

∣∣F(t) − E[F(t)]
∣∣ > 3λ

)

≤ P(Lc
N ,R) + P

(
sup
i, j

|F(ti, j ) − E[F(ti, j )]| > λ,LN ,R

)

+ MN sup
i, j

P

(
sup

s∈[0,ε]2

|F(ti, j + s) − F(ti, j )| > λ,LN ,R

)

+ 1

{
sup
t,s

E[|F(t + s) − F(t)|1LN ,R
] > λ

}
.

Restricting to λ > 1/
√

N (as otherwise pN (3λ) ≥ 1), and using pN (3λ) �
MN exp(−(λ2 ∧ λ)N k/C ′) (as k > 1) with the above, the stated bound of Theo-

rem 2, follows from the following short-time estimates.

Lemma 4.7 There exists C ′(Cσ ), such that for every ε ≤ 1, λ ≥ C ′ε, and F as in

Theorem 2,

sup
t∈[0,T −ε]2

P

(
sup

s∈[0,ε]2

|F(t + s) − F(t)| > λ, LN ,R

)
≤ 2e−(λ2∧λ)/(C ′ε) . (4.17)

In particular, for any N ≥ N0(T , Ca, Cμ, C�) and λ ≥ N−1/2 = ε1/(2k), k > 1,

sup
t∈[0,T −ε]2,s∈[0,ε]2

E
[
|F(t + s) − F(t)|1LN ,R

]
≤ λ . (4.18)

Proof Similarly to the computation leading to (4.13), we find that for any t+s ∈ [0, T ]2

and F as in Theorem 2, evaluated on the solution Xt (X0, J, M) that corresponds to

some (X0, J, M) ∈ LN ,R

|F(t + s) − F(t)| ≤ 2CaeC0

√
RT

√
N

max
Y∈F

max
i=1,2

{‖Y(ti + si ) − Y(ti )‖} .

When Y = 1 this difference is zero, whereas in case Y = X and si ≤ ε, assuming

wlog that R0, C� ≥ 1, we have on LN ,R , by (4.5) and the rhs of (4.8), that

‖Xti +si
− Xti ‖ ≤ ‖Mti +si

− Mti ‖ +
∫ ti +si

ti

[ ‖Gu‖ + C�‖Xu‖ +
√

NCh ] du

≤ ‖Mti +si
− Mti ‖ + 3ε

√
NC�eC0

√
RT . (4.19)
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Further, similarly to the lhs of (4.11), on LN ,R ,

‖Gti +si
− Gti ‖ ≤ ‖J‖2→2‖ Xti +si

− Xti ‖ ≤
√

R‖ Xti +si
− Xti ‖ ,

so up to extra factor
√

R the bound (4.19) applies for Y = G, and considering all

cases we get for s ∈ [0, ε]2,

|F(t + s) − F(t)| ≤ 2Ca

√
ReC0

√
RT

√
N

max
i=1,2

‖Mti +si
− Mti ‖

+6εCaC�

√
Re2C0

√
RT . (4.20)

For some C ′ > 0, when R = R0 and λ ≥ C ′ε, the right most term in (4.20) can not

exceed λ/2. The same applies for R = Rλ = (η log λ)2 provided η ≤ 1/(3C0T ). By

the same reasoning, for such η and some C4(T , Ca, R0) > 0, the factor multiplying

‖Mti +si
−Mti ‖ in (4.20), is in both cases at most (

√
λ∨1)/(2C4

√
N ). Recall from (4.2)

and the stationarity of Brownian increments, that there exists C(Cσ ) such that for every

L ≥ ε2 L0(Cσ ), every N ,

sup
t∈[0,T −ε]

PB

(
sup

s∈[0,ε]
{‖Mt+s − Mt‖} > L

√
N
)

≤ e−3L2/(Cε) . (4.21)

Combining (4.20) and (4.21), we thus get that for some C ′(Cσ ), for every λ ≥ C ′ε,

and every N , t = (t1, t2),

P

(
sup

s∈[0,ε]2

|F(t + s) − F(t)| > λ, LN ,R

)

≤ 2 max
i=1,2

P

(
sup

s∈[0,ε]
‖Mti +s − Mti ‖ > C4(λ ∧

√
λ)

√
N
)

≤ 2e−(λ2∧λ)/(C ′ε) ,

as claimed in (4.17). Next, by Cauchy-Schwarz, (4.7) and (4.17), there exists

C(T , Ca, Cμ, C�) such that for every N ≥ N0(T , Ca, Cμ, C�), every λ ≥ 2C ′ε,

every t, s and all F ,

E
[
|F(t + s) − F(t)|1LN ,R

]
≤ λ

2
+ 2 P

(
|F(t + s) − F(t)| >

λ

2
, LN ,R

)1/2

sup
t∈[0,T ]2

{
√

E[F(t)2]}

≤ λ

2
+ Ce−(λ2∧λ)/(4C ′ε) .

Our assumption that λ ≥ ε1/(2k) for some k > 1 guarantees that the right most term

is at most λ/2 (as soon as N ≥ N0), thereby establishing (4.18).
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