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Abstract
An experiment-based closure framework for turbulent combustion modeling is further 
validated using the Sydney piloted turbulent partially premixed flames with inhomogene-
ous inlets. The flames are characterized by the presence of mixed mode combustion. The 
framework’s closure is “trained” on multi-scalar measurements to construct thermo-chem-
ical scalar statistics parameterized in terms of principal components (PCs). Three flame 
conditions are used for this training, while an additional flame is used for validation. The 
results show that the leading PCs exhibit complex features near the jet inlet where effects 
of partial premixing and the presence of different burning modes are strong. These fea-
tures may not be captured through a strict definition for the mixture fraction or measures 
of reaction progress. Further downstream, the first 2 PCs tend to be reasonably correlated 
with parameters that are characteristic of nonpremixed flames, including the mixture frac-
tion and the progress variable. Comparisons of the model predictions for unconditional 
mean and RMS for the measured quantities show a very good qualitative and quantitative 
agreement with experimental statistics for all 4 flames using the same closure for the PCs 
governing equations.

Keywords  Data-based modeling · Kernel density estimation · Principal component 
analysis · Artificial neural networks

1  Introduction

In two recent studies (Ranade and Echekki 2019a, b), we have introduced a novel 
experiment-based framework, which relies on instantaneous multi-scalar measurements 
to construct turbulent combustion closure models. This approach replaces the tradi-
tional physics-based moments with principal components (PCs). These PCs, which are 
derived from the principal component analysis (PCA) of the multi-scalar measurements, 
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represent a generic and optimum description of the composition space. The experimen-
tal data-based framework (Ranade and Echekki 2019a, b) was validated using Reynolds-
averaged Navier–Stokes (RANS) simulations of the Sandia piloted jet flames, D, E and 
F (Barlow and Frank 1998). These validations provided an important demonstration of 
the framework and its model elements in well-studied flames that are subject to extinc-
tion and reignition.

The Sydney piloted jet diffusion flames with inhomogeneous inlets (Meares and 
Masri 2014; Barlow et  al. 2015; Meares et  al. 2015; Cutcher et  al. 2017) provide a 
natural extension to the Sandia flames. These flames, like the Sandia flames, exhibit 
non-equilibrium effects. They also feature a range of mixture inhomogeneities at the 
burner inlet. These inhomogeneities result in varying degrees of partial premixing and 
the presence of multiple modes of combustion. Several studies based on variations of 
different closure models have been carried out to accurately model the Sydney flames 
with inhomogeneous inlets (Wu and Ihme 2016; Maio et  al. 2021; Perry et  al. 2017; 
Galindo et al. 2017; Kleinheinz et al. 2017; Ji et al. 2018; Galindo-Lopez et al. 2018; 
Kim and Kim 2017; Perry and Mueller 2019). They have sought to address the presence 
of different modes of combustion through different strategies, including a multi-regime 
combustion model (Kleinheinz et  al. 2017), which is built on the flamelet approach, 
a two-mixture fraction flamelet model (Perry et  al. 2017), the implementation of the 
multi-environment PDF approach with tabulated chemistry based on premixed and non-
premixed flames solutions (Galindo-Lopez et al. 2018) and the multiple mapping condi-
tioning (MMC) approach (Galindo et al. 2017; Galindo-Lopez et al. 2018).

In this work, the experiment-based framework is used to model four Sydney piloted 
jet flames at different mixture and velocity inlet conditions (Meares and Masri 2014; 
Barlow et al. 2015; Meares et al. 2015; Cutcher et al. 2017). These flames exhibit var-
iations in fuel inlet velocities and mixture conditions resulting in various degrees of 
extinction and reignition as well as variations in the in the dominant combustion mode 
at different downstream distances. Out of the 4 flames, the data used to determine the 
PCs and associated statistics is based only on 3 of these flames. Therefore, a principal 
objective of this study is to investigate whether data based on a set of flames can be 
used to model a similar set of flames. Within this objective, it is important to investigate 
whether a relatively low number of PCs can still represent the additional complexity of 
multi-mode combustion, especially in the near field of these flames.

In Sect. 2, we briefly present the formulation of the closure framework and informa-
tion related to different preprocessing steps. This is followed, in Sect. 3, by a discussion 
of PCs generated from the experimental data relative to the Sandia flames and down-
stream conditions and the a priori and a posteriori validation of the framework. Finally, 
conclusions and a discussion of future work are presented in Sect. 4.

2 � Model Formulation

The model formulation is briefly stated here since it follows the same procedure adopted 
in Ranade and Echekki 2019b. The transported PCs are derived using a linear transfor-
mation from a normalized set of representative thermo-chemical scalars, which in the 
present study correspond to the measured quantities (temperature and major species). 
The governing equations for the low Mach number formulation are:
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In the above expressions, the symbols “–“ and “~” correspond to Reynolds and Favre 
averaging, respectively. ũi and 𝜙̃k represent the ith direction velocity component and the kth 
PC, respectively. �T is and ScT are the turbulent kinematic viscosity and Schmidt number 
and Sij is the ij component of the rate-of-strain tensor. In addition to �T , the mean PC source 
terms, s�k

, and the averaged density � are the main closure terms in Eqs. (1) and (2); and 
both s�k

 and � are obtained from the data-based framework.
The unconditional means of the density and the PC source terms are evaluated using a 

convolution of their conditional means with the PCs’ joint PDFs:

where ⟨���⟩,
�
�
k
���
�
 and 

⟨
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⟩

 represent the means of density, thermo-chemical scalars, 
and PC source terms, respectively, conditioned on the PCs. P

(
𝛟;𝛟̃

)
 is the joint PCs PDF. 

Therefore, these conditional means and PDFs are the quantities that are extracted directly 
from the experimental data. Although not needed for the solution of Eqs. (1) and (2), the 
thermo-chemical scalars (temperature and measured species) unconditional means can be 
evaluated as well using:

As outlined in Ref. (Ranade and Echekki 2019b), the procedure for evaluating s�
k
 and � 

and  P
(
𝛟;𝛟̃

)
 is as follows:

1.	 First, the measured thermo-chemical scalars are normalized to vary from − 1 to 1. PCs 
are determined from an eigen-decomposition of the normalized data’s covariance matrix. 
The PCs are ordered by the magnitude of their corresponding eigenvalues. The number 
of retained PCs, NPC, is determined based on a threshold on the cumulative variance 
contributed by the leading PCs. Here we adopt a threshold of 99%. The resulting PCs 
are related to the original thermo-chemical scalars (Mirgolbabaei and Echekki 2014):

where the constant matrix �� contains the retained NPC PCs eigenvectors. Following 
PCA, the conditional means are computed for the measured thermo-chemical scalars 
and density using a binning procedure. A similar relation expresses the PCs’ chemical 
sources in terms of thermo-chemical scalars’ sources:

however the evaluation of �� within a prescribed chemical mechanism also requires the 
evaluation of the concentration of additional species that are not measured. Relying on 
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the raw measured data to recover these species invariably results in greater uncertainty 
in the evaluation of ��.

2.	 The missing species are recovered by first clustering the data based on the values of the 
PCs using self-organizing maps (SOMs) (Kohonen 1982), then, carrying out pairwise 
mixing stirred reactor (PMSR) simulations (Pope 1997; Yang and Pope 1998) in each 
cluster. The initial states of the particles within the PMSR correspond to the experimen-
tal measurements, while the missing species are set to 0. Following the PMSR calcula-
tions, conditional means for the species (measured and recovered) updated solutions 
from PMSR and the PCs chemical source terms (Eq. (6)) are determined. These means 
are implemented using a 2D binning procedure for the 2-PC parameterization of the 
composition space.

3.	 The PCs joint PDFs are constructed at each measurement position using the multidimen-
sional kernel density estimation (KDE) technique (Bowman and Azzalini 1997). KDE 
accommodates different shapes in the statistical distribution and can be implemented 
without assuming statistical dependence between the PCs. A d-dimensional KDE is 
expressed as a sum of kernel functions centered on model-determined points from the 
sample data (Bowman and Azzalini 1997) at any given measurement position:

where K is the kernel function, h is the bandwidth and 𝛟̂i
 are the n samples of the selected 

PCs for a given measurement position, which is also characterized by the unconditional 
means of the PCs,  𝛟̃ . �  corresponds to the instantaneous PCs at a given position in space. 
In the present study, the KDE-constructed joint PCs’ PDF is used explicitly to determine 
the unconditional reaction rate mean (Eq. (3)). The kernel function adopted is the Gaussian 
function.

With the available data and the PMSR calculations, the PCs unconditional means 
can be evaluated using Eq.  (3). Finally, artificial neural networks (ANN) are used to 
construct regressions for the unconditional means as functions of the Favre averaged 
PCs. As a multi-variate, non-linear regression method, ANN has found use in differ-
ent applications in combustion (Christo et al. 1995, 1996a, b; Blasco et al. 1998, 1999, 
2000; Chen et al. 2000; Ihme et al. 2008, 2009; Sen and Menon 2010; Sen et al. 2010; 
Chatzopoulos and Rigopoulos 2013; Ranade et al. 2019a, b, 2021; Franke et al. 2017; 
Owoyele et al. 2019). In the present study, separate networks are constructed for differ-
ent output variables in terms of the retained PCs unconditional means. The PC source 
terms networks consist of input and output layers and 3 hidden layers; and the number 
of neurons in each hidden layer is 30, 22 and 15, respectively. The thermo-chemical 
scalar networks are simpler and contain 2 hidden layers with 30 and 15 neurons, respec-
tively. The data set is divided into training, validation and testing set in the following 
ratio, 70/15/15. The ANN training is implemented until the mean squared error between 
the network output and target value for the testing data is below 10−6 . The entire training 
process takes approximately an hour on a single processor of an Intel Xeon CPU.

As a data-based modeling framework, our approach benefits from an a priori valida-
tion step to determine the adequacy of the closure approach on the data used for training 
the model, including the adequacy of the retained PCs. The training relies primarily on 
characterizing the data in composition space. The ability of the governing Eqs. (1) and 
(2) to predict thermo-chemical scalars statistics also depends largely on the closure for 
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the PCs source terms. Despite the potential role of experimental uncertainty in deter-
mining the species reaction rates in PMSR, pairwise mixing in this reactor combined 
with reaction significantly reduces this contribution from experimental uncertainty as 
demonstrated in the a posteriori results. In contrast, statistics associated with condi-
tional means and joint PCs PDFs tend to be inherently less sensitive to this uncertainty.

3 � Results and discussion

In this section, we present results of our closure methodology implemented on four Sydney 
piloted jet flames with inhomogeneous inlets (Meares and Masri 2014; Barlow et al. 2015; 
Meares et al. 2015; Cutcher et al. 2017).

3.1 � Flame Description

The modified Sydney piloted jet burner was developed by Meares et  al. (2014) to study 
turbulent flame characteristics under the presence of inhomogeneous inlet conditions. 
The burner consists of an inner tube and an outer concentric tube with diameters of 4 and 
7.5 mm, respectively. In the FJ flame configurations considered, the fuel is injected through 
the inner tube while co-flow air is injected through the outer tube. The outer tube is sur-
rounded by a pilot stream, which has a diameter of 18 mm. The fuel jet comprises of meth-
ane (CP grade) with 99% CH4 at a temperature of 294 K. The 5-gas (5GP) pilot stream in 
each case is a mixture of C2H2, H2, CO2, N2 and air with an adiabatic flame temperature 
of 2226 K and a bulk inlet velocity of 3.7 m/s. The co-flow consists of air at 291 K and an 
inlet velocity of 15 m/s. The inner tube is recessed and can slide within the outer tube to 
allow for various degrees of partial premixing for a recess distance, Lr, of up to 500 mm 
from the exit plane. A fully recessed inner tube allows effective premixing of fuel and air 
and corresponds to a homogeneous inlet condition. In contrast, when Lr = 0 , such a condi-
tion corresponds to a fully inhomogeneous inlet condition.

In the present study, the experiment-based framework is validated for 4 different flame 
conditions. They represent two recess lengths of 75 mm and 300 mm (Lr75 and Lr300) and 
different fuel inlet speeds, Uj, which correspond to 57, 59, 80 and 103 m/s. These flames 
are summarized in Table 1.

As the table indicates, the data from 3 of the flames are used for model train-
ing to determine the closure for the unconditional means for the density and the PCs 
source terms. They include FJ200-5GP-Lr75-57, FJ200-5GP-Lr75-80 and FJ200-5GP-
Lr300-59 (Meares and Masri 2014; Barlow et  al. 2015; Meares et  al. 2015; Cutcher 
et al. 2017), for which velocity inlet data is also available, while FJ200-5GP-Lr75-103 

Table 1   Characteristics of the 
studied Sydney flames

Flame Lr (mm) Uj (m/s) Validation 
(V)/Training 
(T)

FJ200-5GP-Lr075-57 75 57 V & T
FJ200-5GP-Lr075-80 75 80 V & T
FJ200-5GP-Lr075-103 75 103 V
FJ200-5GP-Lr300-59 300 59 V & T



	 Flow, Turbulence and Combustion

1 3

is modeled with this 3-flame data. This latter flame has a higher fuel jet inlet velocity 
than the corresponding 57 and 80 m/s inlet velocities, resulting in higher occurrences of 
extinction conditions. FJ200-5GP-Lr75-57, FJ200-5GP-Lr75-80, FJ200-5GP-Lr300-59 
and FJ200-5GP-Lr75-103 are at 50%, 70%, 70% and 80% from experimentally meas-
ured blow-off velocity, respectively.

The 75  mm recess length corresponds to highly inhomogeneous conditions; while 
the 300 mm recess length results in a near-homogeneous condition at the burner inlet. 
Although measurements are available corresponding to different mixture conditions at 
the burner inlet, we have chosen 3 flames for training the data primarily because of 
the availability of inlet velocity measurements, as suggested above. It is likely that a 
different combination of flames used for training would yield slightly different abili-
ties to predict all flames. In the present study, we have not investigated such combina-
tions. However, the framework relies on the presence of variability in the data, which is 
manifested in the presence of different inlet conditions, the representation of different 
combustion modes and conditions for extinction and reignition. The experimental data 
corresponding to the 4 flames consist of instantaneous measurements collected at differ-
ent downstream of x/d = 1, 2, 3, 5, 7, 10, 12, 15, 20 and 30 where x is the downstream 
distance and d is the fuel jet diameter and radial positions. Each measurement position 
includes from 2000 to 3000 single shot multi-scalar measurements. The experimental 
data includes line measurements of temperature in addition the following species: H2O, 
CO2, O2, CH4, CO and H2.

In contrast with the Sandia piloted flames that we have investigated recently (Ranade 
and Echekki 2019a, b), the present Sydney flames data feature additional complexities. 
The first, as outlined earlier, is associated with the presence of multiple modes of com-
bustion associated with mixture inlet inhomogeneity in the Sydney flames. From the 
measurement adequacy standpoint, the Sydney flames data does not include OH. In the 
Sandia flames studies (Ranade and Echekki 2019a, b), OH is the major contributor to 
the third PC. As a radical species, its presence is an important indicator of the pres-
ence of reaction. A consequence of not including OH, implementing the threshold of 
99% for the selection of the PCs results in the selection of 2 PCs compared to 3 PCs 
in the Sandia flames (Ranade and Echekki 2019a, b). This, of course, does not suggest 
that less PCs are needed to model the Sydney flames for comparable abilities to predict 
statistics. Therefore, it remains to be determined whether not measuring OH will signifi-
cantly impact the predictions of the remaining scalar statistics as well as the closure for 
the PCs source terms.

3.2 � A Priori Results

Before implementing the experimental data-based framework to develop closure models 
for a CFD simulation, we would like to evaluate the adequacy of the different elements 
of the framework with respect to the experimental data of Sydney flames. In the a priori 
studies, we validate the robustness of the closure framework by reconstructing Favre 
averages of measured thermo-chemical scalars using Eq. (4) and comparing them with 
experimentally measured averages, which are readily available from the multiple shot 
measurements. These results will allow us to evaluate the number of PCs required for 
an accurate representation of the composition space and to determine the adequacy of 
conditional means and joint PDFs amidst experimental uncertainty.
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3.2.1 � PCA Parameterization

Figure 1 shows a comparison of the scree plots for the Sydney flames based on the 3 flame 
conditions used for the training the framework and the Sandia flames based on flames D, 
E and F (Barlow and Frank 1998). These plots show the percent cumulative variance cap-
tured by the PCs. The contribution of each PC to the total variance of the data is expressed 
as the ratio of the eigenvalue associated with that PC and the sum of all the PCs eigen-
values. A principal advantage of PCA in combustion problems is that the bulk of the data 
variance is represented by the first few PCs, thus justifying the assumption of the presence 
of low-dimensional manifolds in composition space. Assessing the cumulative contribution 
of these first PCs to the entire data can help identify the number of PCs that can adequately 
represent the composition space accessed by experimental data. The a priori assessment 
presented in Sec. 3.2.2 provides an additional validation for the adequacy of this contribu-
tion. As argued above, 2 PCs without OH in the case of the Sydney flames capture approx-
imately as much variation as 3 PCs with OH in the Sandia flames. In a previous study 
(Ranade and Echekki 2019a, b), we have observed that OH played an important role in the 
makeup of the third and fourth PCs in the Sandia flames.

To further understand the contribution of the measured thermo-chemical scalars to the 
PCs, we re-write Eq. (5) in terms of the contributing thermo-chemical scalars in the Syd-
ney flames as follows:

Note that the superscript “*” indicates a normalization of the thermo-chemical scalars 
using minimum and maximum values in the data such that their values range from − 1 to 
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1. The normalization accommodates the different magnitudes of the measured quantities. 
As implemented in Ref. (Ranade and Echekki 2019a), we are highlighting values of the 
coefficients in the �� matrix with magnitudes greater than 0.4. This choice is arbitrary, 
and it attempts to highlight the major contributing thermo-chemical scalars to the PCs. 
Also, for comparison, we reproduce the same relations for the Sandia piloted flames with 
and without OH in Eqs. (9) and (10), respectively. In Eq. (9), we place the normalized OH 
mass fraction at the bottom of the thermo-chemical scalars’ vector and place PC4, which is 
dominated by the OH, at the bottom of the PC vector.

For the Sandia flames, we have identified the contributions of PC1 and PC2, as being 
strongly correlated with the reaction progress variable (i.e., heavily weighted by the reac-
tants, products, or temperature) and the mixture fraction (i.e., heavily weighted by C/H 
containing species vs. O containing species and varies monotonically with the mixture 
fraction). We see that by omitting OH, the first two PCs still represent a progress variable 
and a mixture fraction. The most important variations arise at the remaining PCs as indi-
cated in Eq. (9).

Similar contributions are found for the Sydney flames based on the coefficients of the 
matrix of eigenvectors corresponding to the first 2 PCs (i.e., the first 2 rows of these matri-
ces); even though the magnitudes of these coefficients are different. The most important 
differences between the Sandia flames and the Sydney flames for the first PC are related to 
the contributions of the products H2O and CO2 and the intermediate H2. Part of these dif-
ferences can be attributed to the ranges of values used in the normalization, which, for the 
Sydney flames, correspond to the different modes of combustion present in these flames. 
These differences will be considered below. For the second PC, the dominant contribution 
in the Sandia flames is from the fuel. However, in the Sydney flames, the oxidizer is also 
important.

Equations (11–13) re-write Eq. (5) for the Sydney flames for 3 different ranges of x/d. 
The first range shown in Eq. (11) corresponds to a PCA that includes data from x/d = 1 to 
7 near the jet inlet where the mixtures burn in mixed modes (premixed and nonpremixed). 
The second range presented in Eq.  (12) corresponds to data from x/d = 7 to 10, which 
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represents more-or-less the transition region prior to non-premixed combustion. Finally, 
the last range shown in Eq. (13) corresponds to data at x/d = 12 and above. However, it is 
important to note that the modeling framework is based on the cumulative data from all 
downstream distances and all flames considered for training as presented in Eq. (7).

From the different data ranges, there is significant similarity between the dominant 
terms, which contribute to the first two PCs, as well as there are similarities between the 
eigenvector matrices and those of the combined data for the Sydney flames (see Eq. (8)). 
Again, the magnitudes of the coefficients can be attributed to the differences in the ranges 
of values of the thermo-chemical scalars due to different modes of combustion at the dif-
ferent downstream distances. However, the most important change as a function of down-
stream distance is observed for the second PC where the main contribution is shifted to the 
fuel at the expense of the oxidizer as the dominant combustion mode shifts to nonpremixed 
burning. This shift is present in the contribution to the PCs of the Sandia flames. Beyond 
the second PC, the relative magnitudes of the coefficients exhibit similar trends to the com-
bined data for the Sydney flames.

It is important to note that in all the above comparisons, the first 2 PCs account for 
approximately 99% of the data variance. Therefore, we expect these 2 PCs to provide an 
adequate representation of the transitions in combustion modes in the Sydney flames. 
Adding the third PC can potentially improve the prediction of CO given the important 
contribution of this species for this PC. However, this addition may come at the expense 
of model complexity. This complexity translates into a higher dimension for the condi-
tional means and the joint PCs PDFs. Again, much of the difference between the Sandia 
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and the Sydney flames appears in the contributions to the second PC. It goes without 
saying that the degrees of partial premixing occurring near the burner inlet clouds the 
definitions of a reference state for pure fuel and oxidizer (Barlow et al. 2015). Here, we 
speculate that the preservation of the importance of both the fuel and oxidizer near the 
inlet indicates the importance of lean and rich premixed burning at these conditions.

Barlow et al. (2017) have investigated 3 different definitions of progress variable in 
the Sydney flames, 2 based on weighted sums of the products and one based on the oxy-
gen mass fractions in the products. Although the progress variable based on oxygen is 
identified as a good choice for post-processing results from experimental measurements, 
the progress variables do not exhibit statistical independence with the mixture fraction, 
raising important challenges for traditional modeling strategies. Regardless, it is clear 
that a choice of parameters to characterize the Sydney flames is not trivial; yet PCA is 
able to extract such parameters as a linear combination of the representative scalars for 
the data.

The above observations suggest that adopting a traditional non-premixed flamelet/pro-
gress variable (FPV) approach may not be adequate to accommodate the different regimes 
encountered in the Sydney flames as a function of downstream distance and recess length. 
Nonetheless, variants of this approach have been applied to the Sydney flames.

Perry et  al. (2017) proposed a two-mixture fraction model to accommodate the fuel-
stream variations at the inlet. Their study investigated 2 flame conditions, FJ200-5GP-
Lr300-59 and FJ200-5GP-Lr75-57. Kleinheinz et al. (2017) applied a multi-regime flame-
let model to accommodate variations in the combustion mode as a function of downstream 
distance. Their study covered 4 different flame configurations, FJ200-5GP-Lr000-57, 
FJ200-5GP-Lr75-80, FJ200-5GP-Lr300-59 and FJ200-3GP-Lr100-82. Kim and Kim 
(2017) used the flamelet generated manifolds (FGM) approach combined with the multi-
environment PDF approach to study the Sydney flames and premixed and non-premixed 
flamelet libraries. Their study included the near-homogeneous and inhomogeneous flames, 
FJ200-5GP-Lr300-59 and FJ200-Lr75-57. These studies provided adequate comparisons 
between flamelet-based models and experiment, although comparisons were made for only 
a subset of the measured scalars.

Having discussed the contributions of various thermo-chemical scalars to the PCs at 
different downstream distances, our subsequent discussion will be based on PCs that are 
constructed based on 3 flames and all downstream distances combined. This includes our 
a posteriori analysis where the governing Eqs. (1) and (2) are solved using only one pair 
of PCs based on the transformation presented in Eq.  (8). Figure 2 shows scatter plots of 
the first 2 PCs vs. the Bilger’s mixture fraction (Barlow et al. 2017) for flames FJ200-5GP-
Lr75-57 (the “inhomogeneous inlet” case) and FJ200-5GP-Lr300-59 (the “near-homogene-
ous inlet” case) at a downstream distance of one jet diameter (x/d = 1). The scatter points 
are color-coded based on temperature (red symbols for temperatures above 1000  K and 
black symbols for temperatures below 1000  K). The red vertical dashed lines mark the 
stoichiometric mixture fraction. With one key difference, the first PC’s profiles are similar 
to the temperature profiles discussed by Barlow et al. (Barlow et al. 2015). This difference 
is exhibited by the trailing cold mixing contributions from the fuel as shown by the nearly 
linear scatter profiles from the stoichiometric mixture fraction to higher values. The scatter 
around the stoichiometric mixture fraction exhibits the near-vertical trajectories for PC1 for 
the inhomogeneous inlet case indicating a wide range of burning and non-burning condi-
tions and the conditions at the pilot (Barlow et al. 2015).

In contrast, PC2 for the inhomogeneous case is reasonably correlated with the mixture 
fraction and reproduces the trends observed in the Sandia flames. In the near-homogeneous 
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flame, FJ200-5GP-Lr300-59, PC2 is monotonic with the mixture fraction and exhibits a dip 
in its profiles at slightly rich conditions.

Figure 3 shows the same scatter plots shown in Fig. 2 for the case of x/d = 10. The figure 
shows that the qualitative trends for the inhomogeneous and near-homogeneous flames are 
similar further downstream of the jet inlet as the mixture transitions to a primarily nonpre-
mixed combustion mode. These are the same trends observed for other thermo-chemical 
scalars (T and CH4, O2 and CO mass fractions) in Ref. (Barlow et al. 2015). As expected, 
the differences in statistics between the two flames are primarily attributed to the nature of 
reaction at the inlet due to partial premixing.

3.2.2 � A Priori Radial Plot Comparisons

The present modeling framework includes measures of quality control that can be estab-
lished through a priori comparisons of the measured scalars’ statistics obtained directly 
from experimental measurements or from the convolution of the scalars’ conditional means 
with the PCs joint PDFs. These comparisons provide a crucial assessment of the adequacy 
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Fig. 2   Scatter plots of PC1 and PC2 versus the Bilger mixture fraction for flames FJ200-5GP-Lr75-57 and 
FJ200-5GP-Lr300-59 at x/d = 1. Red scatter points: T ≥ 1000 K ; black scatter points: T < 1000 K.
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of the number of PCs retained as well as the models for the scalars’ conditional means and 
the PCs joint PDFs.

Figure  4 shows such comparisons based on 2 PCs for radial profiles of the uncondi-
tional Favre-averaged means of temperature and H2, CO and H2O mass fractions at five 
different axial locations, x/d = 1, 5, 10, 15, 20 and 30 and for Sydney flame FJ200-5GP-
Lr75-57. Similar comparisons are obtained for the other 2 flames considered for training 
the modeling framework. The conditional means are constructed from a compilation of all 
the instantaneous measurements of the 3 flames, while the joint PDFs are constructed at 
the different measurement positions.

The figure shows that the radial profiles of T, H2, CO and H2O, obtained using Eq. (4) 
are in excellent agreement with the experimental means. Although not shown here, other 
measured scalars such as O2, CH4 and CO2 show a similar agreement. Such agreements are 
necessary, yet insufficient, conditions for the success of the modeling framework. The most 
important ingredient for this success is the ability to model the closure terms in the PCs 
governing equations: models: s�k

 and � , which are strongly coupled with other transport 
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FJ200-5GP-Lr300-59 at x/d = 10
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terms in the PCs’ governing equations. Based on the above results, our model implemen-
tation is based on the transport of 2 PCs, which are obtained using PCA on the 3 flame 
selected flames and at all downstream distances where data is available.

3.3 � A Posteriori Results

For the a posteriori studies, the PC transport equations are solved using RANS for the 4 
flames considered, while the data used for the construction of the framework is based on 3 
of these flames.

3.3.1 � RANS setup

The RANS simulations are carried out in Ansys Fluent 17.0 with the governing Eqs. (1) 
and (2) are solved in their conservative forms. A realizable k-ε model it used to model 
the turbulent viscosity (Shih et al. 1995) thus also requiring the solutions for the turbulent 
kinetic energy, q , and its dissipation rate, � . The simulation is set-up on a 2-D axis-symmet-
ric domain and a structured, quadrilateral mesh with a cell count of close to 100,000 cells. 
A highly refined mesh is considered to ensure grid independence.

The closure model is integrated into the solver using user-defined functions (UDF) and 
the PC transport equations are defined as user-defined scalars (UDS). The Poisson equation 
for the dynamic pressure is solved to enforce continuity. First-order upwind schemes are 
used for q , � and the PCs transport equations, while the pressure and momentum equations 
are resolved to second order accuracy. The solution convergence is tracked by monitor-
ing the residuals of all transported quantities. The solution converges when the relative 
residual falls below 10−5 . Since this is a steady-state run, an initial flame solution is pro-
vided. This solution is obtained by interpolating the radial profiles from experiments at 
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different downstream distances. The inlet conditions for the velocity, the turbulence param-
eters and the PCs are prescribed with values provided with the experimental database for 
flames FJ200-5GP-Lr75-57, FJ200-5GP-Lr75-80 and FJ200-5GP-Lr300-59. Since the inlet 
velocity information is not available for flame FJ200-5GP-Lr75-103, we extrapolate the 
inlet information for the velocity field from the provided profiles for FJ200-5GP-Lr75-57 
and FJ200-5GP-Lr75-80. A turbulent Schmidt number of 0.7 is used in the PCs’ transport 
equations.

For computational efficiency, we also carried out the following steps:

•	 The unconditional mean chemical source terms for the PCs are pre-computed vs. the 
PCs unconditional means. This process is implemented at every measurement posi-
tion using the joint PCs PDF at that position and Eq. (3). An artificial neural network 
(ANN) regression is implemented to relate 2 PCs unconditional mean chemical source 
terms to the 2 unconditional means of the PCs.

•	 Equation (3) also requires calculations of the PCs conditional means as a function of 
the PCs. This step is implemented after the PMSR calculations and the conversion 
from thermo-chemical scalars chemical source terms to the PCs source terms (given in 
Eq. (6)).

•	 The unconditional means of the thermo-chemical scalars can also pre-computed in 
terms of the PCs unconditional means at each measurement position. Therefore, once 
the RANS solution is computed for the unconditional means of the PCs, the 2D fields 
can readily be converted to the thermo-chemical scalars’ unconditional means. Again, 
we used ANN regression to express this conversion.

3.3.2 � A Posteriori Radial Profiles’ Comparisons

In this section, we compare the mean radial profiles obtained from the RANS solution with 
the experimental radial profiles at different downstream distances. Figure  5 shows com-
parisons of the mean mixture fraction, Z, at x/d = 1 for flames FJ200-5GP-Lr300-59 and 
FJ200-5GP-Lr75-57. The mixture fraction is based on the Bilger’s definition (Bilger et al. 
1990). The difference in mixture fraction stratification can be clearly observed here. Flame 
FJ200-5GP-Lr75-57 (and similarly Flames F200-5GP-Lr75-80 and FJ200-5GP-Lr75-103, 
not shown here) exhibits greater inhomogeneities and variation along the radial distance.

Figures 6 and 7 compare the mean radial profiles for T and H2O, H2, CO and CO2 mass 
fractions and the mixture fraction, Z, at various axial locations, x/d = 5, 12, 20 and 30 for 
Flames FJ200-5GP-Lr75-57 and FJ200-5GP-Lr75-103. Similar comparisons are made for 
the remaining two flames, F200-5GP-Lr75-80, and FJ200-5GP-Lr300-59 in the Appen-
dix. It may be observed that the results from the closure framework are overall in good 

Fig. 5   Comparison of mixture 
fraction radial profiles at x/d = 1 
for the Sydney flames (from left 
to right) FJ200-5GP-Lr300-59 
and FJ200-5GP-Lr75-57
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agreement with the experimental data. The reignition process is delayed as a function of 
the Reynolds number. It is important to note that Flame FJ200-5GP-Lr75-103, whose data 
has not been used in the construction of the framework, also exhibits a reasonably good 
overall agreement with experimental statistics and shows the trends observed between the 
flames.

The results based on mean profiles show that the experiment-based framework trained 
on 4 flames and using 2 PCs to represent the variations in both inlet conditions and to pre-
dict process of extinction and reignition are satisfactory. The framework captures reason-
ably well the effects of variations in inlet mixture and velocity conditions.

Next, we compare the predicted radial profiles of the same measured quanti-
ties’ RMS values with the experimental statistics corresponding to Figs.  6 and 7. 
These comparisons are shown in Figs.  8 and 9 for flames FJ200-5GP-Lr75-57 and 
FJ200-5GP-Lr75-103, respectively. Similar plots for flames FJ200-5GP-Lr75-80 and 
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Fig. 6   A posteriori mean radial profile comparison of closure framework (line) and experimental data (sym-
bol) for Sydney flame FJ200-5GP-Lr75-57
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FJ200-5GP-Lr300-59 are shown in the Appendix. The most visible trends in the data 
can be seen further downstream x/d = 20 and 30 where the lower jet Reynolds num-
ber flames exhibit higher RMS values in all quantities for the Lr = 75  mm cases. As 
observed for the mean profiles, the RMS profiles are comparable in magnitudes for all 
flames.

Based on the above comparisons and despite the presence of some discrepancies 
between the RMS statistics from the model and the experiment, the overall trends of the 
RMS profiles across the different flames are reasonably captured both qualitatively and 
quantitatively. This is the case even for flame FJ200-5GP-Lr75-103, which is not repre-
sented in the training for the modeling framework.

At this point, it is useful to compare the present model predictions with those of 
Perry et al. (2017), Kleinheinz et al. (2017) and Kim and Kim (2017), which adopted 
different variants of flamelet-based approaches. All these studies, including the present 
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Fig. 7   A posteriori mean radial profile comparison of closure framework (line) and experimental data (sym-
bol) for Sydney flame FJ200-5GP-Lr75-103
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one, have investigated the near-homogeneous flame, FJ200-5GP-Lr300-59, and either 
one of the inhomogenous flames, FJ200-5GP-Lr75-57 or FJ200-5GP-Lr-80.

Perry et al. (2017) did not provide radial profiles of unconditional means, although, 
some results are reported in the Proceedings of the TNF Workshop (Arndt et al. 2018). 
Mean temperature profiles conditioned on the mixture fractions yielded good compari-
sons with experimental data while more pronounced deviations are noted for the corre-
sponding H2 mass fraction statistics. Nonetheless, the choice of a two-mixture fraction 
outperforms the use of a single mixture fraction.

Kleinheinz et al. (2017) reported radial profiles for unconditional means and RMS 
for temperature and CO mass fractions for flame FJ200-5GP-Lr75-57. They obtain bet-
ter predictions at intermediate locations of x/d = 5 and 10, although, both temperature 
and CO mass fractions are overpredicted at x/d = 30. These over-predictions are con-
sistent with observations made for different models in the TNF Workshop (Arndt et al. 
2018). Our present results for the same flame indicate a better agreement at x/d = 30 for 
both temperature and CO mass fraction.
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Fig. 8   A posteriori RMS radial profile comparison of closure framework (line) and experimental data (sym-
bol) for Sydney flame FJ200-5GP-Lr75-57
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4 � Conclusions

In this study, further validation of a novel modeling framework based on multiscalar meas-
urements is carried out using the Sydney flames with inhomogeneous inlets. The mixture, 
flow and inlet configuration of these flames features different complexities for modeling 
them. They include the presence of extinction and reignition and multiple combustion 
modes due to the varying degrees of partial premixing at the inlet.

The modeling framework parameterizes the composition space in terms of PCs instead 
of the traditional moments, including the mixture fraction and the progress variables. The 
use of these latter variables is further clouded by ambiguities in defining adequate refer-
ence states at the inlet of the Sydney flames. Accordingly, the PCs exhibit different trends 
based on the degree of partial premixing near the inlet compared to further downstream 
where non-premixed combustion prevails.

The modeling framework can be implemented a priori to investigate the performance of 
a number of the framework elements. This is crucial because an a priori validation can be 
used to determine the adequate number of retained PCs and to assess the adequacy of the 
data. In the present study, the data is based on 3 flames, which include two different recess 
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Fig. 9   A posteriori RMS radial profile comparison of closure framework (line) and experimental data (sym-
bol) for Sydney flame FJ200-5GP-Lr75-103
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distances for the fuel inlet and different inlet velocities. The a priori validation suggests 
that 2 PCs are adequate in reproducing measured species and temperature statistics. These 
2 PCs can represent the trends in the data associated with different mixture homogeneities 
at the inlet and the presence of extinction and reignition further downstream.

The a posteriori validation is carried out on the 4 flames (3 flames used to train the 
model and a fourth flame condition). The comparisons of unconditional mean and RMS 
computed and measured radial profiles of the measured quantities show a very good agree-
ment. These profiles exhibit similar trends for different inlet velocities and recess lengths. 
These comparisons are achieved with the some training data from 3 flames.

The present study has demonstrated a unified model that predicts statistics of 4 differ-
ent flames that exhibit variations in combustion mode and turbulence conditions. These 
reported results here compared to previous published studies are established using the 
same pair of PCs constructed from the data of 3 flames. The model’s prediction establishes 
the robustness of this approach. Immediate extensions of the modeling framework must 
target 2 elements of this framework. The first element is related to the determination of 
the missing species and the PCs chemical source terms. Data denoising strategies exploit-
ing the inherent correlations of the measured species and temperature will be explored as 
a complement to the PMSR approach. The second element is related to the construction 
of the PCs PDF. In a recent study, we have demonstrated a novel approach (Gitushi et al. 
2021) that is based on the Deep Operator Network (or DeepONet) (Lu et al. 2021) to con-
struct joint PCs PDFs. The approach has the potential to extend the evaluation of PDFs 
outside their established range of training.

Finally, it is important to note that the present experiment-based modeling framework 
can be expanded to incorporate multi-fidelity experimental and computational data. Such 
expansions can potentially accommodate conditions where measurements are not available 
or incomplete and where mixture and flow conditions may be different from the measure-
ments. Exploring such expansions has been a proven strategy in combustion modeling. 
Well-established data-based tabulation approaches, including the steady flamelet (Peters 
1984), the flamelet-generated manifolds (FGM) (Oijen and Goey 2000) or the flame pro-
longation by intrinsic low-dimensional manifolds (FPI) approach (Gicquel et al. 2000) have 
been enhanced by combining data from distinct reactor simulations (e.g., non-premixed 
and premixed flames data). However, the addition of stochastic reactor models, such as the 
partially stirred reactor (PaSR) or PMSRs, can potentially generate statistical distributions 
in addition to conditional means. Machine learning tools can also serve to enhance the cou-
pling of data originating from different sources or models.

Appendix

In this Appendix, we include additional results of comparisons of mean and RMS profiles 
of species and temperature corresponding to flames FJ200-5GP-Lr75-80 and FJ200-5GP-
Lr300-59. These profiles are shown in Figs. 10 and 11 for the mean profiles of tempera-
ture, major species and mixture fraction for flames FJ200-5GP-Lr75-80 and FJ200-5GP-
Lr300-59, respectively. Figures 12 and 13 show the corresponding RMS profiles for both 
flames.

We can equally contrast the prediction of the profiles of flames FJ200-5GP-Lr75-57 
(shown in Fig. 6) and FJ200-5GP-Lr300-59 (shown in Fig. 11), which have comparable 
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inlet velocities and different degrees of inlet inhomogeneities. Although it may not be 
easily discernable from the plots, there are some variations between the two flames’ sta-
tistics that are captured by the model. In the near field at x/d = 5 and at x/d = 12, the peak 
temperature, the products’ mass fractions and H2 mass fraction in FJ200-5GP-Lr75-57 
is slightly higher than in FJ200-5GP-Lr300-59. The trends are reversed at x/d = 30 with 
greater broadening of the mean profiles.
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