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Abstract
Connections between the principle of least action and optimal control are explored
with a view to describing the trajectories of energy conserving systems, subject to tem-
poral boundary conditions, as solutions of corresponding systems of characteristics
equations on arbitrary time horizons. Motivated by the relaxation of least action to sta-
tionary action for longer time horizons, due to loss of convexity of the action functional,
a corresponding relaxation of optimal control problems to stationary control problems
is considered. In characterizing the attendant stationary controls, corresponding to
generalized velocity trajectories, an auxiliary stationary control problem is posed with
respect to the characteristic system of interest. Using this auxiliary problem, it is
shown that the controls rendering the action functional stationary on arbitrary time
horizons have a state feedback representation, via a verification theorem, that is con-
sistent with the optimal control on short time horizons. An example is provided to
illustrate application via a simple mass-spring system.
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1 Introduction

In recent investigations [6,10], connections between Hamilton’s action principle and
optimal control have been exploited to synthesize fundamental solutions for conser-
vative systems of differential equations, in finite and infinite dimensions, and their
related two point boundary value problems (TPBVPs). In each case, an optimal con-
trol problem is identified whose cost is representative of the desired action, leading
to a characteristic system corresponding to the desired conservative system. The tools
of optimal control, including dynamic programming, semigroup theory, idempotent
algebra, and convex analysis, subsequently provide a pathway for construction of its
fundamental solution, for large classes of boundary conditions, see for example [10].

For short time horizons, convexity of the action functional with respect to the
generalized velocity trajectory is typically guaranteed for finite dimensional dynamics.
This ensures that an associated optimal control problem is well-defined, c.f. [10].
Consequently, stationary action is achieved as least action [9], as characterised by a
corresponding value function, while the associated equations of motion are described
by the characteristic system corresponding to a standard Hamilton–Jacobi–Bellman
(HJB) partial differential equation (PDE).

For longer or infinite time horizons, or for configurations with infinite dimen-
sional dynamics, the equivalence of stationary action and optimal control breaks down,
typically due to a loss of convexity of the action [7,10]. This leads to finite escape phe-
nomena exhibited by the value function, and hence an inability to propagate solutions
beyond these times. This limitation is particularly severe in the infinite dimensional
setting [6,7], and motivates exploration of stationary control problems, as opposed
to optimal control problems, whose value can propagate through these finite escape
phenomena to longer horizons [5,11–13].

An optimal control problem can be relaxed to a stationary control problem by for-
mally replacing the infimum (or supremum) operation in the definition of the attendant
value function with a stat operation [11–13]. As indicated, this stat operation requires
only stationarity of its cost function argument, rather than optimality. In the stationary
action problems considered to date, see for example [5–7,11–14], this has involved
the characterization of open loop controls that render the cost stationary. However,
motivated by the notion of minimax solutions or minimal selections considered in
[4,16,17], it is also reasonable to consider initial adjoint or generalized momentum
variables that render an associated characteristics based cost stationary. An investiga-
tion in this direction forms the basis of this work, as initiated in [8]. The main results
provide an equivalence between two stationary control problems, subject to unique-
ness of solutions of a TPBVP [5], and a verification result for stationary trajectories
posed with respect to a suitable HJB PDE. An illustrative example is included.

In terms of organization, Sect. 2 reviews the connection between least action and
optimal control, and states the main assumptions used throughout. Section 3 relaxes
optimality to stationarity in the minimax solution/minimal selection representation [4,
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16,17] of the optimal control problem encapsulating least action, yielding a stationary
control problem and value function compatible with stationary action. This relaxed
problem is used to characterize the stationary trajectories of interest, both via TPBVPs
as per earlier work [5], and via a verification theorem involving an HJB PDE. The
paper concludes with a simple example in Sect. 4 followed by a brief conclusion in
Sect. 5. An appendix is included, containing proofs diverted from the main body of
the paper.

Throughout,R,Z,N denote the real, integer, and natural numbers respectively, with
extended reals defined as R

.= R ∪ {±∞}. a ∨ b denotes the maximum of a, b ∈ R.
| · | and 〈·, ·〉 denote the Euclidean norm and scalar product, respectively. The space
of continuous mappings between Banach spacesX and Y is denoted by C(X ;Y ).
The set of bounded linear operators between the two spaces is denoted by L(X ;Y ),
orL(X ) ifX andY coincide. The norm onX is denoted by ‖·‖X , or simply ‖·‖ if
contextually clear. IfX is a Hilbert space, the inner product is denoted by 〈· , ·〉X , or
〈· , ·〉 again if contextually clear. Given a closed interval I ⊂ R and Hilbert spaceX ,
the space of square summable measurable functions on I , endowed with the standard
inner product, is denoted by L 2(I ;X ).

Given two Banach spaces X , Y , a function f ∈ C(X ;Y ) is Fréchet differen-
tiable at x ∈ X , with derivative D f (x) = Dx f (x) ∈ L(X ;Y ), if the function
d fx :X → Y defined by

d fx (h)
.=

{
0 ‖h‖X = 0,

f (x+h)− f (x)−D f (x) h
‖h‖X ‖h‖X > 0,

(1)

satisfies lim‖h‖X →0 ‖d fx (h)‖Y = 0; i.e. f is Fréchet differentiable at x if h �→
d fx (h) is continuous at 0. The function f is Fréchet differentiable (everywhere) if
it is Fréchet differentiable at every x ∈ X . A function f is continuously Fréchet
differentiable, denoted f ∈ C1(X ;Y ), if D f : X → L(X ;Y ) is continuous.
Higher order Fréchet derivatives are similarly defined, with f ∈ Ck(X ;Y ) if f
is k-times continuously Fréchet differentiable, k ∈ N. The Fréchet derivative D f of
a real-valued function f : X → R, where it exists, has the Riesz representation
D f (x) h = 〈∇ f (x), h〉 for x, h ∈ X , in which ∇ f = ∇x f : X → X . Where
f is twice Fréchet differentiable, D2 f (x) h h̃ = 〈D∇ f (x) h̃, h〉 = 〈∇2 f (x) h̃, h〉 =
〈∇2 f (x) h, h̃〉 for all h, h̃ ∈ X , in which ∇2 f = D∇ f : X → L(X ) denotes the
Fréchet derivative of ∇ f .

2 Least Action and Optimal Control

The action associated with a desired energy conserving motion is classically defined
as the time integral of the Lagrangian formed by the difference of the generalized
kinetic and potential energies involved. Where the action is uniformly bounded below
(or above) with respect to the generalized velocity trajectory, it may be interpreted as
the integrated running cost associated with an optimal control problem, to which a
terminal cost may be added so as to encode desired terminal conditions of the motion.
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Formalizing, let X denote a real Hilbert space of instantaneous generalized posi-
tions of the motion, and let T ∈ R≥0 and t ∈ [0, T ] denote the final and initial times
of that motion. Let U [t, T ] .= L 2([t, T ];X ) define the space of associated admis-
sible generalized velocity trajectories. Given an initial generalized position x ∈X , a
coercive self-adjoint inertia operatorM ∈ L(X ), a potential field V :X → R, and
an artificial terminal cost ψ : X → R, the cost function JT (t, x, ·) : U [t, T ] → R

encapsulating the action is defined by

JT (t, x, u)
.=

∫ T

t

1
2 〈us, M us〉 − V (x̄s) ds + ψ(x̄T ) , (2)

in which u ∈ U [t, T ] is the generalized velocity trajectory, and x̄ ∈ C([t, T ];X ) is
the corresponding unique generalized position trajectory, satisfying

x̄s
.= x +

∫ s

t
uσ dσ, (3)

for all s ∈ [t, T ]. The inertial operator, potential field, and terminal cost are assumed
to satisfy the following throughout:

∃ m ∈ R>0, K ∈ R≥0 s.t . ∀ x, h ∈X ,⎧⎪⎪⎨
⎪⎪⎩

m ‖h‖2 − 〈h, M h〉 ≤ 0,

‖∇2V (x)‖L(X ) ∨ ‖D∇2V (x)‖L(X ;L(X )) ∨ ‖D2∇2V (x)‖L(X ×X ;L(X )) ≤ K
2 ,

‖∇2ψ(x)‖L(X ) ≤ K
2 ;

(4)

i.e., the inertia operator M is coercive (and hence boundedly invertible), while the
third and fourth derivatives of the potential field, along with the second derivative of
the terminal cost, are uniformly bounded.

Under assumption (4) and for sufficiently short time horizons T − t , the cost u �→
JT (t, x, u) is strongly convex, see Lemma 1 below. Consequently, an optimal control
problem defined via (2) encapsulates stationary action as least action, with the value
function WT : [0, T ] ×X → R involved defined for all t ∈ [0, T ], x ∈X by

WT (t, x)
.= inf

u∈U [t,T ]
JT (t, x, u). (5)

Theorem 1 Given m, K ∈ R≥0 as per (4), T ∈ R≥0, t ∈ [0, T ] such that ((T −
t) ∨ 1) (T − t) < m

K , and any x ∈ X , there exists a unique ū ∈ U [t, T ] such that
WT (t, x) = JT (t, x, ū) ∈ R; i.e. the value function (5) is well-defined and real-valued.

The proof of Theorem 1 uses the following lemma.

Lemma 1 Given arbitrary T ∈ R≥0, t ∈ [0, T ], x ∈ X , and u ∈ U [t, T ], cost
JT (t, x, ·) : U [t, T ] → R is twice Fréchet differentiable, with second derivative
Du∇u JT (t, x, u) ∈ L(U [t, T ]) given by
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Du∇u JT (t, x, u) δu = (M−ΔT (t, x, u)) δu (6)

for all δu ∈ U [t, T ], in which ∇u JT (t, x, u) ∈ U [t, T ] denotes the Riesz repre-
sentation of the first Fréchet derivative at u, with ΔT (t, x, u) ∈ L(U [t, T ]) given
by

[ΔT (t, x, u) δu]r .=
∫ T

t

[∫ T

r∨ρ

∇2V (x̄σ ) dσ −∇2ψ(x̄T )

]
[δu]ρ dρ

for all r ∈ [t, T ], δu ∈ U [t, T ]. Moreover, given m, K ∈ R≥0 as per (4),

〈δu, Du∇u JT (t, x, u) δu〉U [t,T ] ≥ K ( m
K − ((T − t) ∨ 1) (T − t)) ‖δu‖2U [t,T ] (7)

for all δu ∈ U [t, T ], so that Du∇u JT (t, x, u) is coercive and JT (t, x, ·) is strongly
convex, provided that T − t ∈ R≥0 is sufficiently small.

Proof Fix T ∈ R≥0, t ∈ [0, T ], x ∈ X , and u ∈ U [t, T ]. Hölder’s inequality and
the second inequality in (4) yield ΔT (t, x, u) ∈ L(U [t, T ]), with

‖ΔT (t, x, u)‖L(X ) ≤ K ((T − t) ∨ 1) (T − t). (8)

Twice Fréchet differentiability of JT (t, x, ·) : U [t, T ] → R, boundedness of the
second derivative involved, i.e. Du∇u JT (t, x, u) ∈ L(U [t, T ]), and (6), subsequently
follow by a minor generalization of [5, Theorem 3.6]. Combining (8) with the first
inequality in (4) via Cauchy–Schwartz and (6) yields

〈δu, Du∇u JT (t, x, u) δu〉U [t,T ] = 〈δu, (M−ΔT (t, x, u)) δu〉U [t,T ]
≥ 〈δu, (m − K ((T − t) ∨ 1) (T − t)) δu〉U [t,T ]
= K ( m

K − ((T − t) ∨ 1) (T − t)) ‖δu‖2U [t,T ],

for all δu ∈ U [t, T ], which is (7). By inspection, for sufficiently short time horizons,
i.e. ((T − t) ∨ 1) (T − t) < m

K , it follows that Du∇u JT (t, x, u) ∈ L(U [s, t]) is
coercive. Given an arbitrary û ∈ U [t, T ], and ũ

.= û − u ∈ U [t, T ], Taylor’s
theorem further implies that

JT (t, x, û) = JT (t, x, u)+ 〈ũ,∇u JT (t, x, u)〉U [t,T ]

+
〈
ũ,

(∫ 1

0
(1− σ) Du∇u JT (t, x, u + σ ũ) dσ

)
ũ

〉
U [t,T ]

≥ JT (t, x, u)+ 〈ũ,∇u JT (t, x, u)〉U [t,T ]
+ 1

2 K ( m
K − ((T − t) ∨ 1) (T − t)) ‖ũ‖2U [t,T ].

Hence, JT (t, x, ·) is strongly convex by (4). ��
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Proof (Theorem 1) Fix T ∈ R≥0, t ∈ [0, T ] as per the hypothesis, and any x ∈ X .
Lemma 1 implies that the cost JT (t, x, ·) : U [t, T ] → R of (2) is strongly convex.
Hence, the infimum in (5) is achieved at a unique minimizer ū ∈ U [t, T ], thereby
yielding a well-defined and real-valued optimal cost JT (t, x, ū) = WT (t, x). ��

Theorem1ensures that for sufficiently short timehorizons the principle of stationary
action can be formulated as a principle of least action [5,9,10], via the optimal control
problem defined by the value function (5). Applying standard tools from optimal
control [2–4] for finite dimensional X , this value function may subsequently be
characterized as the viscosity solution of a non-stationary HJB PDE constrained by a
terminal condition. Indeed, by strengthening by (4) to include boundedness of V and
ψ , [4, Theorems 5.2.12, 7.4.14] implies that the value function WT of (5) is the unique
viscosity solution W of

⎧⎨
⎩ 0 = −∂W

∂t
(t, x)+ H(x,∇x W (t, x)), (t, x) ∈ [0, T ] ×X ,

W (T , x) = ψ(x), x ∈X ,

(9)

in which the Hamiltonian H :X ×X → R is

H(x, p)
.= V (x)+ 1

2 〈p, M−1 p〉 = V (x)+ sup
u∈X

{−〈p, u〉 − 1
2 〈u, M u〉} (10)

for all x, p ∈ X . (Alternatively, boundedness of V and ψ may be replaced with
a restriction on the instantaneous generalized velocities, i.e. us ∈ U ⊂ X for all
s ∈ [t, T ], in which U is compact; see [4, Theorem 7.4.14].)

In establishing the equations of motion imparted by the least action principle, the
characteristic system for (9) is given by the final value problem (FVP)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̄xs = −∇p H(x̄s, p̄s) = −M−1 p̄s, s ∈ [t, T ], (11a)
˙̄ps = ∇x H(x̄s, p̄s) = ∇V (x̄s), (11b)
˙̄zs = −〈 p̄s,∇p H(x̄s, p̄s)〉 + H(x̄s, p̄s) = V (x̄s)− 1

2 〈 p̄s,M−1 p̄s〉, (11c)

x̄T = y, p̄T = ∇ψ(y), z̄T = ψ(y), y ∈X , (11d)

in which∇x and∇p refer to the Riesz representations of the respective Fréchet deriva-
tives, and terminal generalized position y ∈X is used to parameterize the solutions.
The first two equations (11a), (11b) describe the motion imparted by the principle of
least action, corresponding respectively to the generalized position and additive inverse
of the momentum, while the third equation (11c) describes the temporal evolution of
the cost, i.e. action. As formalized later in Lemma 2, equations (11a), (11b) coupled
with initial data, or terminal data as per (11d), exhibit a unique classical solution, so
that the second derivative ¨̄xs is well defined. In particular,

¨̄xs = −M−1 ˙̄ps = −M−1 ∇V (x̄s)
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for all s ∈ [t, T ], which describes Newton’s second law. Observe also that the Hamil-
tonian H of (10) corresponds to the total energy, i.e. the sum of potential and kinetic
energies. As expected, the chain rule implies that

d
ds H(x̄s, p̄s) = 〈∇x H(x̄s, p̄s), ˙̄xs〉 + 〈∇p H(x̄s, p̄s), ˙̄ps〉

= −〈∇x H(x̄s, p̄s),∇p H(x̄s, p̄s)〉 + 〈∇p H(x̄s, p̄s),∇x H(x̄s, p̄s)〉
= 0,

for all s ∈ [t, T ], i.e. the total energy is conserved.

3 Stationary Action and Stationary Control

The connection between least action and optimal control is known to break down for
longer time horizons, due typically to a loss of convexity of the action encapsulated by
the cost (2), see for example [7, Lemma 1]. This can be glimpsed in Lemma 1, where
the sufficient condition for convexity of the cost (2) is no longer valid, rendering the
optimal control interpretation of Theorem 1 inapplicable. In practice, as the horizon
length increases and convexity of the cost is lost, the value function (5) involved
experiences finite escape phenomena.

However, on longer time horizons, it is well known that the principle of stationary
action (rather than least action) continues to describe the motion of energy conserving
systems [9]. In order to encapsulate this description in a framework that is analogous
to optimal control, the infimum operation appearing in (5) is relaxed to a stat operation
[5,10–12].

Definition 1 The stat operation, along with the corresponding argstat operation, is
defined with respect to a function F ∈ C1(Z ;R) by

stat
ζ∈Z

F(ζ )
.=

{
F(ζ̄ )

∣∣∣∣ ζ̄ ∈ arg stat
ζ∈Z

F(ζ )

}
,

arg stat
ζ∈Z

F(ζ )
.=

{
ζ ∈ Z

∣∣∣∣ 0 = lim
y→ζ

|F(y)− F(ζ )|
‖y − ζ‖

}
,

(12)

in whichZ is a Banach space. The elements in arg statζ∈Z F(ζ ) are called stationary
points for F .

Relaxing the inf appearing in (5) to a stat gives rise to the notion of a stationary
control problem.

3.1 Stationary Control Problem

WithZ
.= U [t, T ] and F

.= JT (t, x, ·) in (12), define the stationary control problem
[5,6,11,12] corresponding to (5) via the relaxed value function W̃T : [0, T ]×X → R

given by
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W̃T (t, x)
.= stat

u∈U [t,T ]
JT (t, x, u), (13)

for all t ∈ [0, T ], x ∈ X , in which JT is the same cost (2), and the stat operation is
as per (12). The utility of (13), relative to (5), in recovering the desired dynamics on
arbitrary time horizons is illustrated via the following standard calculus of variations
result [5].

Theorem 2 Given T ∈ R≥0, t ∈ [0, T ], x ∈X , the following statements are equiva-
lent:

(i) there exists ū ∈ U [t, T ] such that the cost JT (t, x, ·) of (2) is stationary, i.e.

ū ∈ arg stat
u∈U [t,T ]

JT (t, x, u); (14)

(ii) there exist y ∈ X and (x̄, p̄) ∈ (U [t, T ])2 that the TPBVP defined by FVP (11)
and x̄t = x is satisfied.

Moreover, the maps s �→ ūs and s �→ p̄s satisfy

ūs = −M−1 p̄s a.e. s ∈ [t, T ]. (15)

Proof See for example [5, Theorem 3.9]. ��
Consistent with optimal control, dynamic programming is applicable to stationary

control problems, albeit currently in a restricted setting, see [11]. The dynamic pro-
gramming principle obtained yields an HJB PDE analogous to (9), which may be used
for verification of stationarity given an explicit candidate for the value function (13).
However, rather than adopt that approach here, the aim is instead to use an alternative
to cost (2) that explicitly encapsulates the characteristic system (11a), (11b) describ-
ing the motion, and to use the ensuing analysis to explore how TPBVPs involving the
motion might otherwise be solved.

To this end, let (s, y) �→ (X−s,T (y), P−s,T (y), Z−s,T (y)) ∈ X 2 × R denote the

solution map for the FVP (11) integrated backwards in time. With x̄s = X−s,T (y),

p̄s = P−s,T (y), and ūs
.= −M−1P−s,T (y) = −M−1 p̄s for s ∈ [t, T ], note by (11c)

that

Z−s,T (y) = z̄s = ψ(y)+
∫ T

s

1
2 〈P−r ,T (y),M−1 P−r ,T (y)〉 − V (X−r ,T (y)) dr

= ψ(y)+
∫ T

s

1
2 〈 p̄r ,M−1 p̄r 〉 − V (x̄r ) dr

= ψ(y)+
∫ T

s

1
2 〈ūr ,M ūr 〉 − V (x̄r ) dr . (16)

Hence, Z−t,T (y) = JT (t, x, ū), c.f. (2), when X−t,T (y) = x . For short horizons, this
motivates an equivalent characterization of the value functionWT of (5) as theminimax
solution [16] or minimal selection [4], i.e.
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WT (t, x) = inf
y∈X

{
Z−t,T (y)

∣∣ X−t,T (y) = x
}
, (17)

for all t ∈ [0, T ], x ∈X . That is, the value function WT (t, x) describes the minimal
action accumulated by the family of solutions of the characteristic system (11) as
parameterized by terminal generalized positions x̄T = y that is compatible with the
fixed initial generalized position x and terminal generalized momentum constraint
p̄T = ∇ψ(y) imposed by the terminal cost ψ . As per [17] and in view of (16), (17),
it is reasonable to reparameterize these solutions with respect to the initial adjoint
variable p̄t

.= p ∈X , rather than the terminal generalized position variable x̄T = y.
For short horizons, the alternative value function ŴT : [0, T ] ×X → R of interest
is defined by [8]

ŴT (t, x)
.= inf

p∈X
J̄T (t, x, p) (18)

for all t ∈ [0, T ], x ∈ X , in which the associated cost J̄T (t, x, ·) : X → R from
(16) is

J̄T (t, x, p)
.=

∫ T

t

1
2 〈 p̄s, M−1 p̄s〉 − V (x̄s) ds + ψ(x̄T ), (19)

and s �→ x̄s and s �→ p̄s satisfy the corresponding initial value problem (IVP)
involving (11a), (11b), i.e.

⎧⎪⎨
⎪⎩
˙̄xs = −M−1 p̄s, s ∈ [t, T ],
˙̄ps = ∇V (x̄s),

x̄t = x, p̄t = p, x, p ∈X .

(20)

Consistent with the relaxation of the optimal control value function WT of (5) for
short horizons to W̃T of (13) for arbitrary horizons, the infimum in the definition (18)
of ŴT may also be relaxed to stat (12), yielding the corresponding value function
W T : [0, T ] ×X → R defined by

W T (t, x)
.= stat

p∈X
J̄T (t, x, p) (21)

for all T ∈ R≥0, t ∈ [0, T ], x ∈X , with cost J̄T as per (19).

Remark 1 For short horizons as per Theorem 1, the value function WT of (5), the
minimax solution/minimal selection (17), and the stationary control problem value
function W̃T of (13) all coincide. In particular, there exists a unique optimal control
ū ∈ U [t, T ] as per Theorem 1, so that the argstat in (13), (14) is the singleton {ū},
i.e. W̃T (t, x) is single-valued and real. Moreover, Theorem 2 implies the existence
of y ∈ X and a solution s �→ (x̄s, p̄s) of the characteristic system (11) satisfying
x̄t = x , x̄T = y, p̄T = ∇ψ(y), with ūs = −M−1 p̄s for all s ∈ [t, T ]. Hence, the set
{ y ∈X | X−t,T (y) = x} in (17) is non-empty, i.e. WT (t, x) is single-valued and real.
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For arbitrary horizons, convexity of the argstat (if known) is sufficient to guarantee
that the value functions W̃T , W T of (13), (21) are single-valued and real. �

The subsequent analysis is concerned the relationship between the argstats associ-
atedwith (13) and (21), i.e. characterizing the former via the latter.With this analysis in
mind, it is convenient for brevity of notation to define f :X 2 →X 2, l :X 2 → R,
and Ψ :X 2 → R by

f (X)
.=

(−M−1 p
∇V (x)

)
, X

.= Yp(x)
.=

(
x
p

)
∈X 2,

l(X)
.= 1

2 〈p, M−1 p〉 − V (x), Ψ (X)
.= ψ(x). (22)

Using this notation, observe that (19), (20), (21) correspond to

J̃T (t, Y ) = J̄T (t, x, p) =
∫ T

t
l(Xs) ds + Ψ (XT ), (23)

Ẋs = f (Xs), s ∈ [t, T ], Xt = Y
.= Yp(x), (24)

W T (t, x) = stat
p∈X

J̃T
(
t, Yp(x)

)
. (25)

3.2 Fréchet Differentiation of the Cost

The objective now is to characterize the argstat in (21) via differentiation of (19),
(23). With this in mind, some intermediate lemmas are useful. The proofs involved
rely on classical arguments, such as those in [15, Chap. 5], and are delayed to
Appendix A.

Lemma 2 Given any T ∈ R≥0, t ∈ [0, T ], Y ∈ X 2, the initial value problem (24)
has a unique classical solution X(Y ) ∈ C([t, T ];X 2) ∩ C1((t, T );X 2).

Lemma 3 The map Y �→ X(Y ) defined via the unique classical solution of Lemma 2
is continuous, i.e. X ∈ C(X 2;C([t, T ];X 2)). In particular, there exists an α ∈ R≥0
such that

‖X(Y + h)− X(Y )‖∞ ≤ ‖h‖ exp(α (T − t)) (26)

for all Y , h ∈X 2.

Lemma 4 The map Y �→ X(Y ) ∈ C(X 2;C([t, T ];X 2)) of Lemma 3 is Fréchet
differentiable with derivative given by

DX(Y ) ∈ L(X 2;C([t, T ];X 2)), [DX(Y ) h]s = Us,t (Y ) h, s ∈ [t, T ], (27)
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for all Y , h ∈ X 2, in which Us,r (Y ) ∈ L(X 2), r , s ∈ [t, T ], is an element of the
two-parameter family of evolution operators generated by A(Y )s ∈ L(X 2), i.e.

Us,r h = Us,r (Y ) h = h +
∫ s

r
A(Y )σ Uσ,r (Y ) h dσ, ∀ r , s ∈ [t, T ], h ∈X ,

(28)

in which s �→ A(Y )s is defined uniquely, given Y , by

A(Y )s
.= Λ(X(Y )s)

.=
(

0 −M−1
∇2V (x̄(Y )s) 0

)
, (29)

for all s ∈ [t, T ], and X(Y ) =
(

x̄(Y )

p̄(Y )

)
.

Lemma 5 Given T ∈ R>0, t ∈ [0, T ), the map Y �→ Us,r (Y ) of (28) is twice Fréchet
differentiable, uniformly in r , s,∈ [t, T ].
Remark 2 Regularity of the map Y �→ Us,r (Y ), s, r ∈ [t, T ], of (28) is ultimately
determined by regularity of V . If V is k-times Fréchet differentiable with k ≥ 2,
then Y �→ Us,r (Y ) is k − 2 times Fréchet differentiable, uniformly in r , s,∈ [t, T ].
Note by (4) that k

.= 4 is assumed throughout, so that Y �→ Us,r (Y ) must be twice
differentiable, as stated in Lemma 5. For further details, see the proof of Lemma 5 in
Appendix A. �

By applying these lemmas to (23), Fréchet regularity of the cost (t, Y ) �→ J̃T (t, Y )

may be demonstrated.

Proposition 1 Given T ∈ R≥0, the map (t, Y ) �→ J̃T (t, Y ) of (23) is continuously
Fréchet differentiable with derivative D J̃T given by

D J̃T (t, Y ) (δ, h) = (
Dt J̃T (t, Y ) δ, DY J̃T (t, Y ) h

)
, (30)

where Dt J̃T (t, Y ) δ = −l(X(Y )t ) δ and DY J̃T (t, Y ) h = 〈∇Y J̃T (t, Y ), h〉X 2 for
all t ∈ [0, T ), Y , h ∈ X 2, δ ∈ (−t, T − t), in which ∇Y J̃T (t, Y ) ∈ X 2 is the
corresponding Riesz representation of DY J̃T (t, Y ), given by

∇Y J̃T (t, Y ) = UT ,t (Y )′ ∇Ψ (X(Y )T )+
∫ T

t
Us,t (Y )′ ∇l(X(Y )s) ds. (31)

Moreover, the map (t, Y ) �→ D J̃T (t, Y ) is also continuously Fréchet differentiable.

Proof Fix T ∈ R≥0, t ∈ [0, T ], Y , h ∈ X 2, and δ ∈ (−t, T − t). Note immediately
that (t, Y ) �→ J̃T (t, Y ) is Fréchet differentiable if and only if t �→ J̃T (t, Y ) and
Y �→ J̃T (t, Y ) are Fréchet differentiable, using for example the norm ‖(t, Y )‖2 .=
|t |2+‖Y‖2

X 2 . By inspection of (23), t �→ J̃T (t, Y ) is Fréchet differentiable, with the
derivative indicated in the left-hand equality in (30).
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In order to demonstrate that the map Y �→ J̃T (t, Y ) is Fréchet differentiable, with
derivative as per the right-hand equality in (30), the chain rule for Fréchet differenti-
ation [1] may be applied. To this end, in view of (23), define Ĩ : C([t, T ];X 2) → R

and ι̃ : C([t, T ];X 2) → L(C([t, T ];X 2);R) by

Ĩ (Z)
.=

∫ T

t
l(Zs) ds + Ψ (ZT ),

ι(Z) δ
.=

∫ T

t
〈∇l(Zs), δs〉X 2 ds + 〈∇Ψ (ZT ), δT 〉X 2

(32)

for all Z , δ ∈ C([t, T ];X 2), in which 〈(v, x), (w, y)〉X 2
.= 〈v, w〉X + 〈x, y〉X

for all v,w, x, y ∈ X . Note in particular that J̃T (t, Y ) = Ĩ ◦ X(Y ), with X ∈
C(X 2;C([t, T ];X 2)) Fréchet differentiable by Lemma 4, and the candidate deriva-
tive of z �→ DĨ (Z) is ι(Z) in (32). Fix an arbitrary such Z , δ ∈ C([t, T ];X 2). By
inspection,

| Ĩ (Z + δ)− Ĩ (Z)− ι̃(Z) δ| ≤
∫ T

t
|l(Zs + δs)− l(Zs)− 〈∇l(Zs), δs〉X 2 | ds

+ |Ψ (ZT + δT )− Ψ (ZT )− 〈∇Ψ (ZT ), δT 〉X 2 |.

As l, Ψ ∈ C3(X 2;R) by (4), (22), and Dl(Y ) h = 〈∇l(Y ), h〉, the mean value
theorem implies that

| Ĩ (Z + δ)− Ĩ (Z)− ι̃(Z) δ| ≤
∫ T

t

∣∣∣∣
∫ 1

0
(1− η) 〈δs ,∇2l(Zs + η δs) δs〉X 2 dη

∣∣∣∣ ds

+
∣∣∣∣
∫ 1

0
(1− η) 〈δT ,∇2Ψ (ZT + η δT ) δT 〉X 2 dη

∣∣∣∣
≤ C

∫ T

t
‖δs‖2X 2 ds + C ‖δT ‖2X 2 ≤ C (T − t) ∨ 1 ‖δ‖2∞

in which C <∞ is given by

C
.= 1

2 sup
Y∈X 2

max(‖∇2l(Y )‖L(X 2), ‖∇2Ψ (Y )‖L(X 2)),

and finiteness follows by (4), (22). Recalling (1) yields |d ĨZ (δ)| ≤ C max(T −
t, 1) ‖δ‖∞, i.e. Ĩ is Fréchet differentiable with derivative DĨ = ι̃. Hence, J̃T (t, Y ) =
Ĩ ◦ X(Y ), in which Ĩ : C([t, T ];X 2) → C([t, T ];X 2) is Fréchet differentiable,
as demonstrated above, and X ∈ C(X 2;C([t, T ];X 2) is Fréchet differentiable by
Lemma 4. The chain rule, along with (27), (32), thus yield

DY J̃T (t, Y ) h = DĨ (X(Y )) DX(Y ) h = ι̃(X(Y )) U·,t (Y ) h

=
∫ T

t
〈∇l(X(Y )s), Us,t (Y ) h〉 ds + 〈∇Ψ (X(Y )T ), UT ,t (Y ) h〉X 2
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=
〈∫ T

t
Us,t (Y )′ ∇l(X(Y )s) ds +UT ,t (Y )′ ∇Ψ (X(Y )T ), h

〉
X 2

= 〈∇Y J̃T (t, Y ), h〉X 2 ,

in which ∇Y J̃T (t, Y ) is as per the lemma statement. Hence, the right-hand equality in
(30) holds.

It may be verified that (t, Y ) �→ D J̃T (t, Y ) is continuous. In particular, by inspec-
tion of (30) and Lemma 3 that (t, Y ) �→ Dt J̃T (t, Y ) is continuous, i.e. l ∈ C4(X 2;R)

by (4), (22), and t �→ X(Y )t and Y �→ X(Y )t are both continuous. Similarly, by
inspection of (30), (31), (t, Y ) �→ DY J̃T (t, Y ) is continuous as Y �→ Us,t (Y ) is
continuous, uniformly in s ∈ [t, T ], by Lemma 5.

Twice continuous Fréchet differentiability follows similarly, via (4), (27), (30), and
Lemma 5. ��

Proposition 1 and (23) may be combined directly to obtain corresponding Riesz
representations for the Fréchet derivatives of the cost function J̄T of (19), with respect
to the generalized position and adjoint variable.

Proposition 2 Given T ∈ R>0, t ∈ [0, T ), the maps x �→ J̄T (t, x, p) and p �→
J̄T (t, x, p) of (19) are Fréchet differentiable with derivatives given by

Dx J̄T (t, x, p) ∈ L(X ;R), Dx J̄T (t, x, p) h = 〈∇x J̄T (t, x, p), h〉,
Dp J̄T (t, x, p) ∈ L(X ;R), Dp J̄T (t, x, p) h = 〈∇p J̄T (t, x, p), h〉, (33)

for all x, p, h ∈ X , in which the Riesz representations are ∇x J̄T (t, x, p) =(I 0
) ∇Y J̃T

(
t, Yp(x)

)
and ∇p J̄T (t, x, p) = (

0 I ) ∇Y J̃T
(
t, Yp(x)

)
respectively,

with ∇ J̃T (t, ·), Yp(x) as per (31), (22). Moreover, given (x, p) ∈X 2 and

(
x̄s

p̄s

)
.= X(Yp(x))s ∈X 2, ζs

.=
(∇x J̄T (s, x̄s, p̄s)

∇p J̄T (s, x̄s, p̄s)

)
∈X 2, (34)

the map s �→ ζs satisfies

ζs = UT ,s(Yp(x))′ ∇Ψ (X(Yp(x))T )+
∫ T

s
Uσ,s(Yp(x))′ ∇l(X(Yp(x))σ ) dσ, (35)

for all s ∈ [t, T ]. Equivalently, ζs =
(

p̄s − πs

ξs

)
for all s ∈ [t, T ], where s �→

(
πs

ξs

)
is the unique solution of the FVP⎧⎪⎨

⎪⎩
ξ̇s = −Mπs, s ∈ [t, T ], (36a)

π̇s = ∇2V (x̄s) ξs, (36b)

ξT = 0, πT = p̄T − ∇ψ(x̄T ), (36c)

c.f. (29).
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Proof Fix arbitrary T ∈ R≥0, t ∈ [0, T ), x, p, h ∈ X . By (19), (23), J̄T (t, x, p) =
J̃T

(
t, Yp(x)

)
, and note that the maps x �→ Yp(x) and p �→ Yp(x) are Fréchet differ-

entiablewith respective derivatives given by Dx Yp(x) h = (I 0 )′ h and DpYp(x) h =
( 0 I )′ h, with 0, I ∈ L(X ) denoting the zero and identity maps. Applying the chain
rule, and Proposition 1,

Dx J̄T (t, x, p) h = DY J̃T (t, Yp(x)) Dx Yp(x) h = 〈∇Y J̃T (t, Yp(x)), Dx Yp(x) h〉X 2

= 〈(I 0
)∇Y J̃T (t, Yp(x)), h〉,

yielding the first asserted Riesz representation, with the other asserted representation
following similarly.

For the remaining assertions (35), (36a), (36b), (36c), given (34), note that

ζs = ∇Y J̃T (s, Yp̄s (x̄s)) = ∇Y J̃T (s, X(Yp(x))s),

so that (35) follows by Proposition 1. By inspection, s �→ ζs of (35) is differentiable,
with the Leibniz integral rule yielding

ζ̇s = ( ∂
∂s UT ,s(Yp(x)))′ ∇Ψ (X(Yp(x))T )−∇l(X(Yp(x))s)

+
∫ T

s
( ∂
∂s Uσ,s(Yp(x)))′ ∇l(X(Yp(x))σ ) dσ

= −A(Yp(x))′s ζs − ∇l(X(Yp(x))s)

=
(

0 −∇2V (x̄s)

M−1 0

)
ζs +

( ∇V (x̄s)

−M−1 p̄s

)
,

for all s ∈ (t, T ). Defining s �→ (πs, ξs) via

(
p̄s − πs

ξs

)
= ζs as per the hypothesis,

it follows that

ξ̇s =M−1( p̄s − πs)−M−1 p̄s = −M−1 πs,

π̇s = ˙̄ps − [ ˙̄ps − π̇s] = ∇V (x̄s)− [−∇2V (x̄s) ξs +∇V (x̄s)] = ∇2V (x̄s) ξs,

for all s ∈ [t, T ]. That is, (36a), (36b) hold.
Moreover, as UT ,T (Yp(x)) = I, and Ψ is as per (22), note by (35) that

ζT = ∇Ψ (X(Yp(x))T ) =
(∇ψ(x̄T )

0

)
,

i.e. the terminal conditions (36c) hold. Uniqueness of this solution follows via argu-
ments as per Lemma 2. ��
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3.3 Characterization of Stationary Trajectories

With the Fréchet derivative of the cost J̄T of (19) given by Proposition 2, the argstat
in (21) may be further investigated with a view to characterizing the argstat (14)
underlying the stationary control problem (13), via Theorem 2. To this end, given
T ∈ R>0, t ∈ [0, T ], x ∈X , observe by Proposition 2 that

p ∈ arg stat
q∈X

J̄T (t, x, q)

⇐⇒
{

the unique solution s �→ (ξs, πs) of FVP (36) satisfies

0 = ∇p J̄T (t, x, p) = ∇p J̄T (t, x̄t , p̄t ) = ξt .

Note that if the left-hand argstat condition holds, the implication is that the unique
solution s �→ (ξs, πs) of FVP (36) satisfies its terminal conditions (36c) and an
additional boundary condition ξt = 0. However, the totality of these conditions,
i.e. ξt = 0 = ξT and πT = p̄T − ∇ψ(x̄T ), is insufficient to guarantee that 0 =
πT = p̄T − ∇ψ(x̄T ), as required by Theorem 2 in order to characterize the argstat
(14). In particular, the TPBVP defined by (36a), (36b), and the boundary conditions
ξt = 0 = ξT , does not necessarily have the trivial solution as its only solution.
However, this is the case if 0 = πt = p −∇x J̄T (t, x, p) is also imposed.

Thismotivates an additional argstat condition involving the cost J̄T of (19), allowing
the argstat in (13), (14) to be characterized via the argstat in (21), as formalized by the
following lemma and theorem.

Lemma 6 Given T ∈ R>0, t ∈ [0, T ), x, p ∈ X , and (x̄s, p̄s)
.= X(Yp(x))s for all

s ∈ [t, T ], the following statements are equivalent:

(i) 0 = ∇p J̄T (t, x, p) and p = ∇x J̄T (t, x, p);
(ii) 0 = ∇p J̄T (s, x̄s, p̄s) for all s ∈ [t, T ];

(iii) p̄s = ∇x J̄T (s, x̄s, p̄s) for all s ∈ [t, T ].
Proof Fix T ∈ R>0, t ∈ [0, T ), x, p ∈X . By Proposition 2, recall that

(
ξs

πs

)
.=

( ∇p J̄T (s, x̄s, p̄s)

p̄s −∇x J̄T (s, x̄s, p̄s)

)
(37)

satisfies (36a), (36b) for all s ∈ (t, T ).
(i) �⇒ (ii), (iii): Suppose (i) holds, i.e. 0 = ∇p J̄T (t, x, p), p = ∇x J̄T (t, x, p).

Consequently, selecting s = t in (37), ξt = 0 = πt . Hence, by (36a), (36b), it
follows that ξs = 0 = πs for all s ∈ [t, T ], so that by (37), 0 = ∇p J̄T (s, x̄s, p̄s) and
p̄s = ∇x J̄T (s, x̄s, p̄s) for all s ∈ [t, T ]. That is, both (ii) and (iii) hold.

(iii) �⇒ (ii): Suppose (iii) holds, i.e. 0 = p̄s − ∇x J̄T (s, x̄s, p̄s)
.= πs for all

s ∈ [t, T ]. Then, by (36a), ξ̇s = −M−1 πs = 0 for all s ∈ [t, T ]. Moreover, selecting
s = T in (37) yields ξT = ∇p J̄T (T , x̄T , p̄T ) = ∇pψ(x̄T ) = 0, see (19). As ξ̇s = 0
for all s ∈ [t, T ] and ξT = 0, integration yields ξs = 0 for all s ∈ [t, T ]. That is, by
(37), 0 = ∇p J̄T (s, x̄s, p̄s), and so (ii) holds.
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(ii) �⇒ (iii): Suppose (ii) holds, i.e. 0 = ∇p J̄T (s, x̄s, p̄s)
.= ξs for all s ∈ [t, T ].

Then, by (36a), −M−1 πs = ξ̇s = 0, so that 0 = πs = p̄s − ∇x J̄T (s, x̄s, p̄s) for all
s ∈ [t, T ]. That is, (iii) holds.

(ii) �⇒ (i): Suppose (ii) holds. By the preceding implication, (iii) also holds.
Selecting s = t in both (ii) and (iii) yields 0 = ∇p J̄T (t, x̄t , p̄t ) = ∇p J̄T (t, x, p) and
p = p̄t = ∇x J̄T (t, x̄t , p̄t ) = ∇x J̄T (t, x, p) respectively. That is, (i) holds. ��
Theorem 3 Given T ∈ R≥0, t ∈ [0, T ], and x ∈ X , the following statements are
equivalent:

(i) there exists ū ∈ arg statu∈U [t,T ] JT (t, x, u), as per (14);
(ii) there exists p ∈ arg statq∈X J̄T (t, x, q) such that (x̄s, p̄s)

.= X(Yp(x))s satisfies

p̄s ∈ arg stat
q∈X

J̄T (s, x̄s, q) ∀ s ∈ [t, T ].

Moreover, ū of (i) and (x̄, p̄)
.= X(Yp(x)) satisfy (15), i.e. ūs = −M−1 p̄s a.e.

s ∈ [t, T ].
Proof Fix arbitrary T ∈ R≥0, t ∈ [0, T ], and x ∈X .

(ii) ⇒ (i): Suppose (ii) holds, i.e. there exists p ∈ arg statq∈X J̄T (t, x, q) such

that (x̄s, p̄s)
.= X(Yp(x))s satisfies 0 = ∇p J̄T (s, x̄s, p̄s) for all s ∈ [t, T ]. That

is, assertion (ii) of Lemma 6 holds, so that the equivalent assertion (iii) also holds,
i.e. p̄s = ∇x J̄T (s, x̄s, p̄s) for all s ∈ [t, T ]. In particular, p̄T = ∇x J̄T (T , x̄T , p̄T ) =
∇ψ( p̄T ). Hence, s �→ (X(Yp(x))s, z̄s), s ∈ [t, T ], c.f. (16), solves theTPBVPdefined
by FVP (11) with y ∈ x̄T and x̄t = x , and so Theorem 2 implies the existence of
ū ∈ arg statu∈U [t,T ] JT (t, x, u), with its explicit form (15).

(i) ⇒ (ii): Suppose (i) holds, i.e. there exists ū ∈ arg statu∈U [t,T ] JT (t, x, u). By
Theorem 2 and (16), there exists a solution s �→ (x̄s, p̄s, z̄s) to the TPBVP defined by
FVP (11) with y = x̄T and x̄t = x . Let p

.= p̄t , and note that (x̄s, p̄s)
.= X(Yp(x))s ,

s ∈ [t, T ]. As p̄T = ∇ψ(x̄T ) by (11b), (11d), FVP (36) has the trivial solution as its
unique solution, i.e. ξs = 0 = πs for all s ∈ [t, T ]. Consequently, by Proposition 2,
i.e. (34),

(∇x J̄T (s, x̄s, p̄s)

∇p J̄T (s, x̄s, p̄s)

)
= ζs =

(
p̄s − πs

ξs

)
=

(
p̄s

0

)
, s ∈ [t, T ], (38)

so that 0 = ∇p J̄T (s, x̄s, p̄s), i.e. p̄s ∈ arg statq∈X J̄T (s, x̄s, q), for all s ∈ [t, T ].
��

Theorem 4 Given T ∈ R>0, t ∈ [0, T ), and x ∈ X , the following statements are
equivalent:

(i) there exists ū ∈ arg statu∈U JT (t, x, u), as per (14);
(ii) there exists p ∈X such that

p ∈ arg stat
q∈X

J̄T (t, x, q), x ∈ arg stat
y∈X

{〈y, p〉 − J̄T (t, y, p)
}
. (39)
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Moreover, ū of (i) and (x̄, p̄)
.= X(Yp(x)) satisfy (15), i.e. ūs = −M−1 p̄s a.e.

s ∈ [t, T ].
Proof Fix T ∈ R>0, t ∈ [0, T ), x ∈X .

(i)⇒ (ii): Suppose that (i) holds, i.e. there exists ū ∈ arg statu∈U JT (t, x, u). That
is, assertion (i) of Theorem 3 holds, so that the equivalent assertion (ii) of Theorem
3 also holds, i.e. there exists p ∈ X such that (x̄s, p̄s)

.= X(Yp(x))s satisfies p̄s ∈
arg statq∈X J̄T (t, x̄s, q) for all s ∈ [t, T ]. Hence, s �→ (x̄s, p̄s) satisfies assertion (iii)
of Lemma 6, so that the equivalent assertion (i) of Lemma 6 also holds, yielding (39).
That is, (ii) holds.

(ii)⇒ (i): Suppose that (ii) holds. Reversing the sequence of implications provided
by the equivalences in Lemma 6 and Theorem 3 in the above argument yields (i).

��

3.4 Verification via an HJB PDE

Averification theorem is provided for the cost J̄T of (19), (21), formulatedwith respect
to the extended Hamiltonian H̄ :X 2 ×X 2 → R defined by

H̄(x, p, π̂ , ξ)
.= − 1

2 〈p, M−1 p〉 + V (x)+ 〈π̂ , M−1 p〉 − 〈ξ, ∇V (x)〉 (40)

for all x, p, π̂ , ξ ∈X .

Theorem 5 Given T ∈ R>0 suppose there exists a W ∈ C([0, T ] × X 2;R) ∩
C1((0, T )×X 2;R) satisfying the HJB PDE and terminal condition

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
− ∂W

∂t
(t, x, p)+ H̄(x, p,∇x W (t, x, p),∇pW (t, x, p)) = 0,

(t, x, p) ∈ (0, T )×X 2,

W (T , x, p) = ψ(x), (x, p) ∈X 2,

(41)

in which H̄ is as per (40), and ψ is the terminal cost appearing in (2), (19). Then,
J̄T (t, x, p) = W (t, x, p) for all t ∈ (0, T ), x, p ∈X , where J̄T is as per (19).

Conversely, J̄T of (19) always satisfies (41), and is consequently its unique solution.

Proof Fix T ∈ R>0, t ∈ (0, T ), and let W be as per the theorem statement. Fix any
x, p ∈X . With X̄ as per Lemmas 2, 3, 4, let (x̄s, p̄s)

.= X(Yp(x))s for all s ∈ [t, T ].
Note in particular that s �→ (x̄s, p̄s) is a classical solution of the IVP (20), (24). Hence,
by the asserted regularity of W , s �→ W (s, x̄s, p̄s) is differentiable, so that the chain
rule and (41) yield

d
ds W (s, x̄s, p̄s) = ∂

∂s W (s, x̄s, p̄s)+ 〈∇x W (s, x̄s, p̄s), ˙̄xs〉 + 〈∇pW (s, x̄s, p̄s), ˙̄ps〉
= −[− ∂

∂s W (s, x̄s, p̄s)+ H̄(x, p,∇x W (s, x̄s, p̄s),∇pW (s, x̄s, p̄s))]
+ H̄(x, p,∇x W (s, x̄s, p̄s),∇pW (s, x̄s, p̄s))

+ 〈∇x W (s, x̄s, p̄s), −M−1 p̄s〉 + 〈∇pW (s, x̄s, p̄s), ∇V (x̄s)〉
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= − 1
2 〈 p̄s, M−1 p̄s〉 + V (x̄s)+ 〈∇x W (s, x̄s, p̄s), M−1 p̄s〉

− 〈∇pW (s, x̄s, p̄s), ∇V (x̄s)〉
+ 〈∇x W (s, x̄s, p̄s), −M−1 p̄s〉 + 〈∇pW (s, x̄s, p̄s), ∇V (x̄s)〉
= − 1

2 〈 p̄s, M−1 p̄s〉 + V (x̄s),

for all s ∈ (t, T ). Integrating with respect to s ∈ (t, T ), and recalling the boundary
condition in (41), subsequently yields

ψ(x̄T )−W (t, x, p) = W (T , x̄T , p̄T )−W (t, x, p)

=
∫ T

t
− 1

2 〈 p̄s, M−1 p̄s〉 + V (x̄s) ds.

Rearranging, and recalling (19), yields the asserted equality J̄T (t, x, p) = W (t, x, p).
Recalling that t ∈ (0, T ), x, p ∈X are arbitrary yields the first assertion.

For the converse, note by Proposition 1 that J̄T ∈ C([0, T ]×X 2;R)∩C1((0, T )×
X 2;R). Fix x, p ∈ X . Note by (19) that J̄T (T , x, p) = ψ(x), so that the terminal
condition in (41) trivially holds. Fix t ∈ (0, T ), and let (x̄s, p̄s)

.= X(Yp(x))s for all
s ∈ [t, T ]. Fix r ∈ (t, T ]. By (19),

J̄T (t, x, p) =
∫ r

t
+ 1

2 〈 p̄s, M−1 p̄s〉 − V (x̄s) ds

+
∫ T

r
+ 1

2 〈 p̄s, M−1 p̄s〉 − V (x̄s) ds − ψ(x̄T )

=
∫ r

t
+ 1

2 〈 p̄s, M−1 p̄s〉 − V (x̄s) ds + J̄T (r , x̄r , p̄r ).

Dividing through by r − t and sending r → t+, Proposition 1 implies that

− 1
2 〈p, M−1 p〉 + V (x) = d

dt J̄T (t, x̄t , p̄t )

= ∂
∂t J̄T (t, x, p)+ 〈∇x J̄T (t, x, p), −M−1 p〉 + 〈∇p J̄T (t, x, p), ∇V (x)〉,

i.e. J̄T satisfies (41), and uniqueness follows by the first assertion. ��

Verification Theorem 5 may be used to restate the characterization of stationary
controls provided by Theorem 4. Note in particular that a form of state feedback
characterization of the stationary control is inherited from the earlier theorem, which
mirrors the corresponding characterization provided by a standard verification theorem
for optimal control.

Theorem 6 Given T ∈ R>0, suppose there exists a W ∈ C([0, T ] × X 2;R) ∩
C1((0, T ) ×X 2;R) satisfying the HJB PDE and terminal condition (41). Suppose
further that, given t ∈ [0, T ] and x ∈X , there exists a p ∈X such that
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p ∈ arg stat
q∈X

W (t, x, q), x ∈ arg stat
y∈X

{〈y, p〉 −W (t, y, p)} . (42)

Then, there exists ū ∈ arg statu∈U [t,T ] JT (t, x, u) such that

x̄s = x +
∫ s

t
ūσ dσ, p̄s ∈ arg stat

q∈X
W (s, x̄s, q),

ūs = −M−1 ∇x W (s, x̄s, p̄s) = −M−1 p̄s,

(43)

for all s ∈ [t, T ].
Proof Fix T ∈ R>0, W ∈ C([0, T ] ×X 2;R) ∩ C1((0, T ) ×X 2;R), t ∈ [0, T ],
x ∈X , as per the theorem statement. Suppose that p ∈X exists such that (42) holds.
Observe by Theorem 5 that J̄T ≡ W . Hence, by (42) and Theorem 4, there exists ū ∈
arg statu∈U [t,T ] JT (t, x, u) satisfying ūs = −M−1 p̄s for all s ∈ [t, T ]. Moreover,
by Lemma 6, p̄s = ∇x J̄T (s, x̄s, p̄s) = ∇x W (s, x̄s, p̄s), and 0 = ∇p J̄T (s, x̄s, p̄s) =
∇pW (t, x̄s, p̄s) for all s ∈ [t, T ], so that (43) holds. ��
Remark 3 The characteristic system for (41) is the FVP given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂xs = −∇π̂ H̄(x̂s, p̂s, π̂s, ξ̂s) = −M−1 p̂s, s ∈ [t, T ], (44a)
˙̂ps = −∇ξ̂

H̄(x̂s, p̂s, π̂s, ξ̂s) = ∇V (x̂s), (44b)

˙̂πs = ∇x̂ H̄(x̂s, p̂s, π̂s, ξ̂s) = ∇V (x̂s)− ∇2V (x̂s) ξ̂s, (44c)
˙̂
ξs = ∇ p̂ H̄(x̂s, p̂s, π̂s, ξ̂s) = −M−1 ( p̂s − π̂s), (44d)

˙̂zs = −〈(π̂s, ξ̂s), (∇π̂ H̄(x̂s, p̂s, π̂s, ξ̂s),∇ξ̂
H̄(x̂s, p̂s, π̂s, ξ̂s)〉X 2

+H̄(x̂s, p̂s, π̂s, ξ̂s)

= V (x̂s)− 1
2 〈 p̂s, M−1 p̂s〉, (44e)

x̂T = y, p̂T = q, π̂T = ∇ψ(y), ξ̂T = 0, ẑT = ψ(y),

y, q ∈X . (44f)

Fix y ∈ X and q
.= ∇ψ(y) ∈ X , and let the respective solutions of FVP (11) and

FVP (44a), (44b), (44e), (44f) be denoted by s �→ (x̄s, p̄s, z̄s) and s �→ (x̂s, p̂s, ẑs)

for all s ∈ [t, T ]. Note that they are identical, by choice of q. Note further that the
remaining equations in (44) can be written as the FVP

⎧⎪⎪⎨
⎪⎪⎩
˙̂ps − ˙̂πs = ∇2V (x̄s) ξ̂s,

˙̂
ξs = −M−1 ( p̂s − π̂s),

p̂T − π̂T = 0, ξ̂T = 0,

which has the trivial solution as its unique solution, i.e. p̂s − π̂s = 0 = ξ̂s for all
s ∈ [t, T ]. Moreover, by inspection of (10), (40), H(x̄s, p̄s) = H̄(x̂s, p̂s, π̂s, ξ̂s) for
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all s ∈ [t, T ]. That is, the characteristic systems and Hamiltonians for the optimal and
stationary control problems coincide. Recall by Theorem 5 that the HJB PDE (41)
has a unique classical solution W = J̄T . Interpreting the associated characteristics
as satisfying π̂s = ∇x W (s, x̂s, p̂s) and ξ̂s = ∇pW (s, x̂s, p̂s), note that p̄s = π̂s =
∇x W (s, x̄s, p̄s) = ∇x J̄T (s, x̄s, p̄s) and 0 = ξ̂s = ∇pW (s, x̄s, p̄s) = ∇p J̄T (s, x̄s, p̄s)

for all s ∈ [t, T ], which is equivalent to (39), (42) by Lemma 6. �

Remark 4 Theorem 5 provides a characterization of the cost J̄T of (19) via the HJB
PDE (41). With this characterization available, it is possible to provide an auxiliary
statement of Proposition 2 that yields corresponding assertions, and in particular that
(36a), (36b) hold. This auxiliary statement appears in Appendix B. �

4 A One-Dimensional Example

A one-dimensional linear mass-spring system consists of a mass M .= m ∈ R>0
located at position x ∈X

.= Rwhosemotion is a consequence of a quadratic potential
field V : R → R≥0, V (x)

.= 1
2 κ x2, x ∈ R. Suppose that an initial velocity ˙̄xt ∈ R

of this mass is sought, at a fixed initial time t , so as to achieve a particular terminal
velocity ˙̄xT = v ∈ R later, at a fixed final time T . The corresponding terminal cost
ψ : R→ R in (19), (23) encapsulating this requirement is defined byψ(x)

.= −m v x
for all x ∈ R, i.e. so that p̄T = ∇ψ(x̄T ) = −m v in (11), (20), (44). Observe by
inspection that assumption (4) holds, with K

.= 2 κ . With a view to determining the
initial velocity required, an explicit solution to the HJB PDE (41) is constructed, and
Theorem 6 subsequently applied. To this end, fix t ∈ [0, T ] and define

Σ
.=

(
κ 0
0 − 1

m

)
, Γ

.=
(
0 − 1

m
κ 0

)
. (45)

Recalling (40), (45), note that the HJB PDE (41) may be written as

0 = −∂W

∂s
(s, x, p)+ 1

2

〈(
x
p

)
, Σ

(
x
p

)〉
−

〈(∇x W (s, x, p)

∇pW (s, x, p)

)
, Γ

(
x
p

)〉

= −∂W

∂s
(s, Y )+ 1

2 〈Y , Σ Y 〉 − 〈∇Y W (s, Y ), Γ Y 〉, (46)

for all s ∈ (t, T ), Y
.= Yp(x) = (x, p) ∈ R

2. Define a solution candidate W̆ :
[t, T ] × R

2 → R by

W̆ (s, Y )
.= 1

2 〈Y , Ps Y 〉 + 〈Qs, Y 〉, (47)

in which
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Ps
.= −

∫ T

s
exp(Γ ′ (σ − s))Σ exp(Γ (σ − s)) dσ,

Qs
.= exp(Γ ′ (T − s))

(−m v

0

)
,

(48)

for all s ∈ (t, T ), Y ∈ R
2. Applying Leibniz, note that

Ṗs = Σ − Γ ′ Ps − Ps Γ , Q̇s = −Γ ′ Qs, (49)

for all s ∈ (t, T ). Differentiating (47) yields

∂
∂s W̆ (s, Y ) = 1

2 〈Y , Ṗs Y 〉 + 〈Q̇s, Y 〉, ∇Y W̆ (s, Y ) = Ps Y + Qs .

Substituting these derivatives in the right-hand side of (46), and applying (49), subse-
quently yields

− ∂W̆

∂s
(s, Y )+ 1

2 〈Y , Σ Y 〉 − 〈∇Y W̆ (s, Y ), Γ Y 〉
= − 1

2 〈Y , Ṗs Y 〉 − 〈Q̇s, Y 〉 + 1
2 〈Y , Σ Y 〉 − 〈Ps Y + Qs, Γ Y 〉

= 1
2 〈Y , [−Ṗs +Σ − Ps Γ − Γ ′ Ps] Y 〉 + 〈−Q̇s − Γ ′ Qs, Y 〉

= 0,

for all s ∈ (t, T ), Y ∈ R
2. Note further that W̆ (T , x, p) = W̆ (T , Y ) = 〈QT , Y 〉 =

−m v x = ψ(x). That is W̆ of (47) is a solution of (41). Hence, by Theorem 5, the cost
J̄T (s, x, p) of (19) is given explicitly by J̄T (s, x, p) = W̆ (s, Yp(x)) for all s ∈ [t, T ].
Diagonalizing Γ and integrating (48) yields

Ps = 1
2

(− κ
ω
sin(2ω (T − s)) 1− cos(2ω(T − s))

1− cos(2ω (T − s)) 1
m ω

sin(2ω (T − s))

)
, ω

.=
√

κ

m
,

Qs = −m v

(
cos(ω (T − s))

−ω
κ
sin(ω (T − s))

)
.

With a view to illustrating Theorem 6, fix x ∈ R, and note that

∇x W̆ (t, x, p) = ( 1 0 )∇Y W̆ (t, Yp(x)) = ( 1 0 )

(
Pt

(
x
p

)
+ Qt

)
= − κ

2ω
sin(2ω (T − t)) x + 1

2 [1− cos(2ω(T − t))] p − m v cos(ω (T − t)),

∇pW̆ (t, x, p) = ( 0 1 )∇Y W̆ (t, Yp(x)) = ( 0 1 )

(
Pt

(
x
p

)
+ Qt

)
= 1

2 [1− cos(2ω (T − t))] x + 1
2m ω

sin(2ω (T − t)) p + m v (ω
κ
) sin(ω (T − t)), (50)

for all p ∈ R. Note that m ω = √κ m = κ
ω
. Motivated by (42), let p ∈ R be such that

0 = ∇pW̆ (t, x, p) and p = ∇x W̆ (t, x, p) via (50). Collecting and simplifying these
two equations via double angle formulae subsequently yields
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Ωt

(
x
√

κ m
p

)
= Θt , (51)

in which

Ωt
.=

(
sin2(ω (T − t)) sin(ω (T − t)) cos(ω (T − t))

sin(ω (T − t)) cos(ω (T − t)) cos2(ω (T − t))

)
,

Θt
.= −m v

(
sin(ω (T − t))
cos(ω (T − t))

)
,

By inspection, the matrix (Ωt Θt ) ∈ R
2×3 is rank one, i.e. the two equations in

(51) are linearly dependent. Some minor manipulations yield four possible cases for
selecting p, given x , t , T , and v, namely,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p = −x
√

κ m tan (ω (T − t))− m v sec(ω (T − t)),
ω (T − t) /∈ {

n π, (n + 1
2 ) π : n ∈ Z

}
,

p = (−1)n+1 m v, ω (T − t) ∈ {n π : n ∈ Z}, x ∈ R,

p arbitrary, ω (T − t) ∈ {(n + 1
2 ) π : n ∈ Z}, x = (−1)n+1 ( v

ω
),

p does not exist, ω (T − t) ∈ {(n + 1
2 ) π : n ∈ Z}, x �= (−1)n+1 ( v

ω
).

Note in the second case that p must correspond to the desired terminal generalized
momentum, with sign determined by whether T − t is a period or half-period of the
mass-spring oscillation. In the third and fourth cases, T − t corresponds to a quarter
or three quarter period of the mass-spring oscillation, and p is either arbitrary, or does
not exist, depending on the specific choice of x . Where p exists, note that the initial
velocity that achieves the desired terminal velocity ˙̄xT = v is given by ˙̄xt = −p/m.
An example of the third case, where p and hence ˙̄xt is arbitrary, is illustrated in Fig. 1,
for v

.= −2 and x = (−1)4 ( v
ω
) ≈ −4.47. Note in particular that the desired terminal

˙̄xT = v is achieved for every trajectory, irrespective of its initial velocity, as expected.

5 Conclusions

Connections between stationary action and stationary control are explored with a view
to characterizing trajectories of energy conserving systems with temporal boundary
conditions, evolving on arbitrary time horizons. An auxiliary stationary control prob-
lem is defined with respect to the characteristic system associated with the energy
conserving dynamics of interest, and a verification theorem developed. This verifica-
tion theoremprovides a characterization of generalized velocity trajectories that render
the associated action functional stationary for arbitrary time horizons, in an analogous
way to existing verification results available for optimal control problems encapsu-
lating least action on short time horizons. Application of this verification theorem is
illustrated via a simple mass-spring example.
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Appendix

A Proofs of Lemmas 2, 3, 4, and 5

Proof (Lemma 2) The proof employs a standard fixed point argument, exploiting global
Lipschitz continuity of f of (22), see for example [15, Theorem 5.1, p. 127]. Note that
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global Lipschitz continuity of ∇V (x) in (22) follows directly from the second bound
assumed in (4). ��
Proof (Lemma 3) Fix T ∈ R≥0, t ∈ [0, T ], and Y , h ∈X 2. Applying Lemma 2, there
exist unique classical solutions X(Y ) and X(Y + h) to (24) satisfying respectively
X(Y )t = Y and X(Y + h)t = Y + h. In integral form,

X(Y )s = Y +
∫ s

t
f (X(Y )σ ) dσ,

X(Y + h)s = Y + h +
∫ s

t
f (X(Y + h)σ ) dσ,

(52)

so that

X(Y + h)s − X(Y )s = h +
∫ s

t
f (X(Y + h)σ )− f (X(Y )σ ) dσ

for all s ∈ [t, T ]. Consequently, as f is globally Lipschitz by inspection of (22),

‖X(Y + h)s − X(Y )s‖ ≤ ‖h‖ +
∫ s

t
‖ f (X(Y + h)σ )− f (X(Y )σ )‖ dσ

≤ ‖h‖ + α

∫ s

t
‖X(Y + h)σ − X(Y )σ‖ dσ

inwhichα ∈ R≥0 is the associatedLipschitz constant.ApplyingGronwall’s inequality,
and recalling the definition of ‖ · ‖∞, yields

‖X(Y + h)− X(Y )‖∞ ≤ ‖h‖ exp(α (T − t)),

so that (26) holds. As Y , h ∈X 2 are arbitrary, the asserted continuity follows. ��
Proof (Lemma 4) Fix T ∈ R≥0, t ∈ [0, T ], and X ∈ C(X 2;C([t, T ];X 2)) as per
Lemma 3. Fix Y ∈X 2 and s �→ A(Y )s as per (29), and note that (28) follows by [15,
Theorem 5.2, p. 128]. Fix any h ∈X 2, s ∈ [t, T ], and note by inspection of (22) that
A(Y )s = D f (X(Y )s). Hence, recalling (52),

X(Y + h)s − X(Y )s −Us,t (Y ) h =
∫ s

t
f (X(Y + h)σ )− f (X(Y )σ )− A(Y )σ Uσ,t (Y ) h dσ

=
∫ s

t
f (X(Y )σ + [X(Y + h)σ − X(Y )σ ])− f (X(Y )σ )− D f (X(Y )σ ) Uσ,t (Y ) h dσ

=
∫ s

t
f (X(Y )σ + [X(Y + h)σ − X(Y )σ ])− f (X(Y )σ )− D f (X(Y )σ ) [X(Y + h)σ − X(Y )σ ]

+ D f (X(Y )σ ) [X(Y + h)σ − X(Y )σ −Uσ,t (Y ) h] dσ. (53)

Define Ī f : C([t, T ];X 2)→ C([t, T ];X 2) by

Ī f (X)s
.=

∫ s

t
f (Xσ ) dσ (54)
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for all X ∈ C([t, T ];X 2). Note that Y �→ f (Y ) is twice Fréchet differentiable by
(4), with D2 f (Y ) ∈ L(X 2;L(X 2)) = L(X 2 ×X 2;X 2) for all Y ∈ X 2. Again
by (4), there exists an M ∈ R>0 such that

sup
Y∈X 2

‖D2 f (Y )‖L(X 2×X 2;X 2) ≤ M <∞.

Hence, by the mean value theorem, given X , δ ∈ C([t, T ];X 2),

∥∥∥∥ Ī f (X + δ)s − Ī f (X)s −
∫ s

t
D f (Xσ ) δσ dσ

∥∥∥∥ ≤
∫ s

t
‖ f (Xσ + δσ )− f (Xσ )− D f (Xσ ) δσ ‖ dσ

=
∫ s

t

∥∥∥∥
(∫ 1

0

∫ 1

0
D2 f (Xσ + η̂ η δσ ) dη̂ η dη

)
(δσ , δσ )

∥∥∥∥ dσ

≤
∫ s

t

∫ 1

0

∫ 1

0
‖D2 f (Xσ + η δσ )‖L(X 2×X 2;X 2)dη̂ η dη ‖δσ ‖2 dσ

≤ M
2

∫ s

t
‖δσ ‖2 dσ ≤ M

2 (s − t) ‖δ‖2∞.

That is, ∥∥∥∥∥ Ī f (X + δ)− Ī f (X)−
∫ (·)

t
D f (Xσ ) δσ dσ

∥∥∥∥∥∞ ≤
M
2 (T − t) ‖δ‖2∞,

so that Ī f is Fréchet differentiable with derivative

[DĪ f (X) δ]s =
∫ s

t
D f (Xσ ) δσ dσ (55)

for all X , δ ∈ C([t, T ];X 2), s ∈ [t, T ]. So, recalling (53), and (1),

X(Y + h)s − X(Y )s −Us,t (Y ) h = [d[ Ī f ]X(Y )
(X(Y + h)− X(Y ))]s ‖X(Y + h)− X(Y )‖∞

+
∫ s

t
D f (X(Y )σ ) [X(Y + h)σ − X(Y )σ −Uσ,t (Y ) h] dσ.

Noting that L
.= supσ∈[t,T ] ‖D f (X(Y )σ )‖L(X 2) <∞, taking the norm of both sides

yields

‖X(Y + h)s − X(Y )s −Us,t (Y ) h‖
≤ ‖d[ Ī f ]X(Y )(X(Y + h)− X(Y ))‖∞ ‖X(Y + h)− X(Y )‖∞
+

∫ s

t
L ‖X(Y + h)σ − X(Y )σ −Uσ,t (Y ) h‖ dσ.

Hence, by Gronwall’s inequality,

‖X(Y + h)s − X(Y )s −Us,t (Y ) h‖
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≤ ‖d[ Ī f ]X(Y )(X(Y + h)− X(Y ))‖∞ ‖X(Y + h)− X(Y )‖∞ exp(L (T − t)),

or, with θY (h)
.= ‖d[ Ī f ]X(Y )(X(Y + h)− X(Y ))‖∞,

‖X(Y + h)− X(Y )−U·,t (Y ) h‖∞
≤ θY (h) ‖X(Y + h)− X(Y )‖∞ exp(L (T − t))

≤ θY (h) ‖X(Y + h)− X(Y )−U·,t (Y ) h‖∞ exp(L (T − t))

+ θY (h) sup
s∈[t,T ]

‖Us,t (Y )‖L(X 2) ‖h‖ exp(L (T − t)).

As θY is continuous at 0, there exists an r > 0 sufficiently small such that ‖h‖ < r
implies that θY (h) exp(L (T − t)) < 1

2 . Hence, with ‖h‖ < r ,

‖X(Y + h)− X(Y )−U·,t (Y ) h‖∞ < 2 θY (h) sup
s∈[t,T ]

‖Us,t (Y )‖L(X 2) ‖h‖ exp(L (T − t))

= Q θY (h) ‖h‖,

in which Q
.= 2 sups∈[t,T ] ‖Us,t (Y )‖L(X 2) exp(L (T − t)). Consequently, taking a

limit,

lim‖h‖→0

‖X(Y + h)− X(Y )−U·,t (Y ) h‖∞
‖h‖ ≤ lim‖h‖→0

Q θY (h) = 0.

That is, Y �→ X(Y ) is Fréchet differentiable, with the indicated derivative. ��
Proof (Lemma 5) Fix T ∈ R>0, t ∈ [0, T ] as per the lemma statement. It is first
demonstrated that Y �→ Us,r (Y ) is continuous, uniformly in r , s ∈ [t, T ], as this
motivates the subsequent proof of continuous differentiability. Fix r , s ∈ [t, T ], h, ĥ ∈
X 2. As Us,r (Y ) ∈ L(X 2) is an element of the two-parameter family of evolution
operators generated by A(Y )s ∈ L(X 2), see (29),

Us,r (Y ) h = h +
∫ s

r
A(Y )σ Uσ,r (Y ) h dσ,

Us,r (Y + ĥ) h = h +
∫ s

r
A(Y + ĥ)σ Uσ,r (Y + ĥ) h dσ,

so that

[Us,r (Y + ĥ)−Us,r (Y )] h =
∫ s

r
[A(Y + ĥ)σ Uσ,r (Y + ĥ)− A(Y )σ Uσ,r (Y )] h dσ

=
∫ s

r
[A(Y + ĥ)σ − A(Y )σ ] [Uσ,r (Y + ĥ)−Uσ,r (Y )] h dσ

+
∫ s

r
A(Y )σ [Uσ,r (Y + ĥ)−Uσ,r (Y )] h dσ +

∫ s

r
[A(Y + ĥ)σ − A(Y )σ ]Uσ,r (Y ) h dσ.

(56)
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Hence, by the triangle inequality,

‖[Us,r (Y + ĥ)−Us,r (Y )] h‖
≤

∫ s

r
‖A(Y + ĥ)σ − A(Y )σ‖L(X 2) ‖[Uσ,r (Y + ĥ)−Uσ,r (Y )] h‖ dσ

+
∫ s

r
‖A(Y )σ‖L(X 2) ‖[Uσ,r (Y + ĥ)−Uσ,r (Y )] h‖ dσ

+
∫ s

r
‖A(Y + ĥ)σ − A(Y )σ‖L(X 2) ‖Uσ,r (Y ) h‖ dσ. (57)

Recalling (4), and in particular the uniform bound on x �→ D∇2V (x), given x, x̄ ∈
X 2, themean value theorem implies that∇2V (x)−∇2V (x̄) = (

∫ 1
0 D∇2V (x̄+η (x−

x̄)) dη)(x− x̄), so that ‖∇2V (x)−∇2V (x̄)‖L(X ) ≤ K
2 ‖x− x̄‖. Hence, by (29), there

exists an α1 ∈ R≥0 such that Λ : X 2 → L(X 2) satisfies ‖Λ(Z)−Λ(Z̄)‖L(X 2) ≤
α1‖Z − Z̄‖ for all Z , Z̄ ∈ X 2. So, applying Lemma 3, there exists an α ∈ R≥0,
L0

.= supσ∈[t,T ] ‖A(0)σ‖L(X 2) <∞, L1
.= α1 exp(α (T − t)) <∞, such that

sup
σ∈[t,T ]

‖A(Y + ĥ)σ − A(Y )σ ‖L(X 2) ≤ α1 sup
σ∈[t,T ]

‖X(Y + ĥ)σ − X(Y )σ ‖ ≤ L1 ‖ĥ‖,

sup
σ∈[t,T ]

‖A(Y )σ ‖L(X 2) ≤ L0 + L1 ‖ĥ‖, (58)

in which the second inequality follows from the first, via the triangle inequality,
by selecting ĥ = −Y . Note further that as σ �→ A(Y )σ is continuous, L2

.=
supσ∈[t,T ] ‖Uσ,t (Y )‖L(X 2) < ∞, see [15, Theorem 5.2, p.128]. Hence, substituting
these inequalities in (57) yields

‖[Us,r (Y + ĥ)−Us,r (Y )] h‖ ≤ (L0 + 2 L1 ‖ĥ‖)
∫ s

r
‖[Uσ,r (Y + ĥ)−Uσ,r (Y )] h‖ dσ

+ (T − t) L1 L2 ‖ĥ‖ ‖h‖.

Gronwall’s inequality subsequently implies that

sup
r ,s∈[t,T ]

‖Us,r (Y + ĥ)−Us,r (Y )‖L(X 2) ≤ (T − t) L1 L2 ‖ĥ‖ exp((L0 + 2 L1 ‖ĥ‖)(T − t)). (59)

Continuity of Y �→ Us,r (Y ), uniformly in r , s ∈ [t, T ], thus follows.
Next, Y �→ Us,r (Y ) is shown to be Fréchet differentiable, uniformly in r , s ∈

[t, T ]. Appealing to the contraction theorem and Picard’s principle, for any t ≤ r <

s ≤ T and Y ∈ X , consider the two-parameter family of operators Vs,r (Y ) ∈
L(X 2;L(X 2)) solving

Vs,r (Y ) ĥ h =
∫ s

r
A(Y )σ Vσ,r (Y ) ĥ h dσ +

∫ s

r
DY A(Y )σ ĥ Uσ,r (Y ) h dσ (60)
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for all h, ĥ ∈ X 2, r , s ∈ [t, T ], in which DY A(Y )σ = DΛ(X(Y )σ ) Uσ,t (Y ) ∈
L(X 2;L(X 2)) by the chain rule and Lemma 4. Note in particular by (4), (29), and
Lemma 3 that

L3
.= sup

σ∈[t,T ]
‖DΛ(X(Y )σ )‖L(X 2;L(X 2)) <∞.

Applying the triangle inequality to (60), and recalling the definitions of L0, L1, L2,
yields

‖Vs,r (Y ) ĥ h‖ ≤
∫ s

r
(L0 + L1 ‖ĥ‖) ‖Vs,r (Y ) ĥ h‖ dσ +

∫ s

r
L3 ‖ĥ‖ L2 ‖h‖ dσ

≤ (T − t) L2 L3 ‖ĥ‖ ‖h‖ + (L0 + L1 ‖ĥ‖)
∫ s

r
‖Vs,t (Y ) ĥ h‖ dσ,

so that by Gronwall’s inequality,

‖Vs,r (Y ) ĥ h‖ ≤ (T − t) L2 L3 ‖ĥ‖ ‖h‖ exp
(
(L0 + L1 ‖ĥ‖) (T − t)

)
.

As ĥ, h ∈ X 2 are arbitrary, it follows immediately that Vs,r (Y ) ∈ L(X 2;L(X 2))

for all r , s ∈ [t, T ]. Recalling (56), observe by adding and subtracting terms that

[Us,r (Y + ĥ)−Us,r (Y )− Vs,r (Y ) ĥ] h
=

∫ s

r
[A(Y + ĥ)σ Uσ,r (Y + ĥ)− A(Y )σ Uσ,r (Y )] h dσ − Vs,r (Y ) ĥ h

=
∫ s

r
A(Y )σ [Uσ,r (Y + ĥ)−Uσ,r (Y )− Vσ,r (Y ) ĥ] h dσ

+
∫ s

r
[A(Y + ĥ)σ − A(Y )σ ] [Uσ,r (Y + ĥ)−Uσ,r (Y )] h dσ

+
∫ s

r
[A(Y + ĥ)σ − A(Y )σ − DY A(Y )σ ĥ]Uσ,r (Y ) h dσ

−
[

Vs,r (Y ) ĥ h −
∫ s

r
A(Y )σ Vσ,r (Y ) ĥ h dσ −

∫ s

r
DY A(Y )σ ĥ Uσ,r (Y ) h dσ

]
,

(61)

and the last term in square brackets is zero by definition (60) of Vs,r (Y ). Define
Â : C([t, T ];X 2) → C([t, T ];L(X 2)) by Â(X)σ

.= A(Xσ ) for all X ∈
C([t, T ];X 2), and note that the range of Â follows by (4), (29). Fix X , δ ∈
C([t, T ];X 2), and (for convenience) write Xσ = ([X1]σ ], [X2]σ ]) ∈ X 2, δσ =
([δ1]σ , [δ2]σ ) ∈X 2 for all σ ∈ [t, T ], with X1, X2, δ1, δ2 ∈ C([t, T ];X ). Combin-
ing (4), (29) with the mean value theorem, there exists α̂ ∈ R≥0 such that

‖ Â(X + δ)− Â(X)− D A(X) δ‖C([t,T ];L(X 2))

= sup
σ∈[t,T ]

‖A(Xσ + δσ )− A(Xσ )− D A(Xσ ) δσ ‖L(X 2)
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= sup
σ∈[t,T ]

∥∥∥∥
(

0 0
∇2V ([X1]σ + [δ1]σ )−∇2V ([X1]σ ])− D∇2V ([X1]σ ) [δ1]σ 0

)∥∥∥∥L(X 2)

= α̂ sup
σ∈[t,T ]

‖∇2V ([X1]σ + [δ1]σ )−∇2V ([X1]σ )− D∇2V ([X1]σ ) [δ1]σ ‖L(X )

= α̂ sup
σ∈[t,T ]

∥∥∥∥
(∫ 1

0

∫ 1

0
D2∇2V ([X1]σ + η̂ η [δ1]σ ) dη̂ η dη

)
([δ1]σ , [δ1]σ )

∥∥∥∥L(X )

≤ α̂ sup
σ∈[t,T ]

sup
η̂,η∈[0,1]

∥∥D2∇2V ([X1]σ + η̂ η [δ1]σ )
∥∥L(X ×X ;L(X ))

sup
σ∈[t,T ]

‖[δ1]σ ‖2X
≤ α̂ ( K

2 ) ‖δ‖2C([t,T ];X 2)
(62)

for all X , δ ∈ C([t, T ];X 2). Dividing both sides by ‖δ‖C([t,T ];X 2) and taking the

limit as ‖δ‖C([t,T ];X 2) → 0 subsequently yields that Â is Fréchet differentiable with

derivative D Â(X) ∈ L(C([t, T ];X 2);C([t, T ];L(X 2). Hence, taking the norm
of both sides of (61), applying the triangle inequality, (59), (62), and recalling the
definitions of L1, L2, L3,

‖[Us,r (Y + ĥ)−Us,r (Y )− Vs,r (Y ) ĥ] h‖
≤ (L0 + L1 ‖ĥ‖)

∫ s

r
‖[Us,r (Y + ĥ)−Us,r (Y )− Vs,r (Y ) ĥ] h‖ dσ

+ (T − t)2 L2
1 L2 ‖ĥ‖2 exp((L0 + 2 L1 ‖ĥ‖)(T − t)) ‖h‖

+ (T − t) L2 ‖ Â ◦ X(Y + ĥ)− Â ◦ X(Y )− D Â(X(Y )) DX(Y ) ĥ‖C([t,T ];L(X 2)) ‖h‖
= (L0 + L1 ‖ĥ‖)

∫ s

r
‖[Us,r (Y + ĥ)−Us,r (Y )− Vs,r (Y ) ĥ] h‖ dσ

+ (T − t)2 L2
1 L2 ‖ĥ‖2 exp((L0 + 2 L1 ‖ĥ‖)(T − t)) ‖h‖

+ (T − t) L2 ‖d( Â ◦ X)Y (ĥ)‖C([t,T ];L(X 2)) ‖ĥ‖ ‖h‖,

in which d( Â ◦ X)Y (·) is defined via (1). Hence, by Gronwall’s inequality,

‖[Us,r (Y + ĥ)−Us,r (Y )− Vs,r (Y ) ĥ] h‖
≤ (T − t) L2

[
(T − t) L2

1 ‖ĥ‖ exp((L0 + 2 L1 ‖ĥ‖)(T − t))

+ ‖d( Â ◦ X)Y (ĥ)‖C([t,T ];L(X 2))

]‖ĥ‖ ‖h‖
× exp((L0 + L1 ‖ĥ‖) (T − t)).

As ĥ, h ∈X 2 are arbitrary,

lim
‖ĥ‖→0

supr ,s∈[t,T ] ‖Us,r (Y + ĥ)−Us,r (Y )− Vs,r (Y ) ĥ‖L(X 2)

‖ĥ‖
≤ lim
‖ĥ‖→0

‖d( Â ◦ X)Y (ĥ)‖C([t,T ];L(X 2)) = 0. (63)
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Hence, Y �→ Us,r (Y ) is Fréchet differentiable, uniformly in r , s ∈ [t, T ], with deriva-
tive Vs,r (Y ).

It remains to be shown that Y �→ Us,r (Y ) is twice Fréchet differentiable via (60). To
this end, define υs

.= Vs,r (Y ) ĥ ∈ L(X 2) and ws
.= DY A(Y )s ĥ Us,r (Y ) ∈ L(X 2)

for all s ∈ [t, T ], and note by (60) that

υs =
∫ s

r
A(Y )σ υσ + wσ dσ,

for all s ∈ [t, T ], recalling that h ∈ X in (60) is arbitrary. Equivalently, s �→ υs

is the unique solution of the IVP υ̇s = A(Y )s υs + ws for all s ∈ (t, T ), subject to
υr = 0 ∈ L(X 2). By definition, s �→ A(Y )s generates the two-parameter family
Us,r (Y ), r , s ∈ [t, T ], so that s �→ υs = Vs,r (Y ) ĥ satisfies

Vs,r (Y ) ĥ = υs = Us,r (Y ) υr +
∫ s

r
Us,σ (Y ) wσ dσ =

∫ s

r
Us,σ (Y ) wσ dσ

=
∫ s

r
Us,σ (Y ) DY A(Y )σ ĥ Uσ,r (Y ) dσ (64)

for all r , s ∈ [t, T ], in which the third equality follows as vr = Vr ,r (Y ) ĥ = 0 ∈
L(X 2), either by (60) or directly as Vr ,r (Y )

.= DY Ur ,r (Y ) = DY I = 0. Hence, by
inspection of (64), the map Y �→ Vs,r (Y )

.= DY Us,r (Y ) is also Fréchet differentiable,
with

DY Vs,r (Y ) h ĥ =
∫ s

r
Vs,σ (Y ) h DY A(Y )σ ĥ Uσ,r (Y )

+Us,σ (Y ) D2
Y A(Y )σ h ĥ Uσ,r (Y )+Us,σ (Y ) DY A(Y )σ ĥ Vσ,r (Y ) h dσ,

in which D2
Y A(Y )σ ∈ L(X 2 ×X 2;L(X 2)), σ ∈ [t, T ], exists by (29) and (4).

��

B An Auxiliary Statement of Proposition 2

Proposition 3 Given T ∈ R>0, t ∈ [0, T ), x, p ∈ X , and (x̄s, p̄s)
.= X(Yp(x))s

for all s ∈ [t, T ], the maps s �→ ∇p J̄T (s, x̄s, p̄s) and s �→ ∇x J̄T (s, x̄s, p̄s) are
continuously differentiable, with derivatives given by
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d
ds

[∇p J̄T (s, x̄s, p̄s)
] = −M−1 (

p̄s −∇x J̄T (s, x̄s, p̄s)
)
, (65)

d
ds

[∇x J̄T (s, x̄s, p̄s)
] = ∇V (x̄s)−∇2V (x̄s)∇p J̄T (s, x̄s, p̄s), (66)

for all s ∈ (t, T ). Moreover, s �→ ∇p J̄T (s, x̄s, p̄s) is twice continuously differentiable,
and satisfies

0 = d2

ds2
[∇p J̄T (s, x̄s, p̄s)

]+M−1 ∇2V (x̄s)∇p J̄T (s, x̄s, p̄s), (67)

for all s ∈ (t, T ).

Proof Fix T ∈ R>0, x, p ∈ X , and let (x̄s, p̄s) ∈ X 2, s ∈ [t, T ], be as per the
lemma statement. Fix h ∈ X . Applying Proposition 1, (s, x, p) �→ J̄T (s, x, p) is
twice continuously differentiable, and the order of differentiation may be swapped. In
particular,

d
ds [Dp J̄T (s, x̄s , p̄s) h]
= ∂

∂s [Dp J̄T (s, x̄s , p̄s) h] + Dx [Dp J̄T (s, x̄s , p̄s) h] ˙̄xs + Dp [Dp J̄T (s, x̄s , p̄s) h] ˙̄ps

= (
Dp

∂
∂s J̄T (s, x̄s , p̄s)+ Dx Dp J̄T (s, x̄s , p̄s) ˙̄xs + Dp Dp J̄T (s, x̄s , p̄s) ˙̄ps

)
h. (68)

Meanwhile, J̄T satisfies (41) by Theorem 5, i.e.

0 = − ∂
∂s J̄T (s, x, p)− 1

2 〈p, M−1 p〉 + V (x)+ Dx J̄T (s, x, p)M−1 p − Dp J̄T (s, x, p)∇V (x),

(69)

for all s ∈ (t, T ), x, p ∈X . Differentiating (69) with respect to p,

0 = −Dp(
∂
∂s J̄T (s, x, p)) h − 〈M−1 p, h〉 + Dp (Dx J̄T (s, x, p)) h M−1 p

+ Dx J̄T (s, x, p)M−1 h − Dp (Dp J̄T (s, x, p)∇V (x)) h

= −〈M−1 (p −∇x J̄T (s, x, p)), h〉
− (

Dp
∂
∂s J̄T (s, x, p)− Dx Dp J̄T (s, x, p)M−1 p + Dp Dp J̄T (s, x, p)∇V (x)

)
h.

Evaluating along the trajectory s �→ (x̄s, p̄s) corresponding to X(Yp(x)), i.e. as per
(20), yields

(
Dp

∂
∂s J̄T (s, x̄s, p̄s)+ Dx Dp J̄T (s, x̄s, p̄s) ˙̄xs + Dp Dp J̄T (s, x̄s, p̄s) ˙̄ps

)
h

= −〈M−1 ( p̄s −∇x J̄T (s, x̄s, p̄s)), h〉.

Substitution in (68) subsequently yields

〈 d
ds [∇p J̄T (s, x̄s , p̄s)], h〉 = d

ds [Dp J̄T (s, x̄s , p̄s) h] = −〈M−1 ( p̄s − ∇x J̄T (s, x̄s , p̄s)), h〉.
(70)

Recalling that h ∈X is arbitrary immediately yields (65).
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Similarly, for (66), observe that

d
ds [Dx J̄T (s, x̄s, p̄s) h] = ∂

∂s [Dx J̄T (s, x̄s, p̄s) h] + Dx [Dx J̄T (s, x̄s, p̄s) h] ˙̄xs

+ Dp [Dx J̄T (s, x̄s, p̄s) h] ˙̄ps

= (
Dx

∂
∂s J̄T (s, x̄s, p̄s)+ Dx Dx J̄T (s, x̄s, p̄s) ˙̄xs + Dp Dx J̄T (s, x̄s, p̄s) ˙̄ps

)
h.

(71)

Differentiating (69) with respect to x ,

0 = −Dx (
∂
∂s J̄T (s, x, p)) h + Dx V (x) h + Dx (Dx J̄T (s, x, p)) h M−1 p

− Dx (Dp J̄T (s, x, p)) h ∇V (x)− Dp J̄T (s, x, p) Dx∇V (x) h

= −
(

Dx
∂
∂s J̄T (s, x, p)+ Dx Dx J̄T (s, x, p) (−M−1 p)+ Dp Dx J̄T (s, x, p)∇V (x)

)
h

+ (
Dx V (x)− Dp J̄T (s, x, p) Dx∇V (x)

)
h

Evaluating along the trajectory s �→ (x̄s, p̄s) corresponding to X(Yp(x)), i.e. as per
(20), yields

(
Dx

∂
∂s J̄T (s, x̄s, p̄s)+ Dx Dx J̄T (s, x̄s, p̄s) ˙̄xs)+ Dp Dx J̄T (s, x̄s, p̄s) ˙̄ps

)
h

= 〈∇V (x̄s)− ∇2V (x̄s)∇p J̄T (s, x̄s, p̄s), h〉.

Substitution in (71) subsequently yields

〈 d
ds [∇x J̄T (s, x̄s, p̄s)], h〉 = 〈∇V (x̄s)− ∇2V (x̄s)∇p J̄T (s, x̄s, p̄s), h〉.

Recalling that h ∈X is arbitrary immediately yields (66).
The remaining assertion regarding twice differentiability is immediate by inspection

of (65), (66), with

d2

ds2
[∇p J̄T (s, x̄s, p̄s)] = −M−1 ( ˙̄ps − d

ds [∇x J̄T (s, x̄s, p̄s)]
)

= −M−1 (
∇V (x̄s)− [∇V (x̄s)−∇2V (x̄s)∇p J̄T (s, x̄s, p̄s)]

)
= −M−1 ∇2V (x̄s)∇p J̄T (s, x̄s, p̄s),

as required. ��
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